WO2016105065A1 - 페라이트계 스테인리스강 및 그 제조방법 - Google Patents

페라이트계 스테인리스강 및 그 제조방법 Download PDF

Info

Publication number
WO2016105065A1
WO2016105065A1 PCT/KR2015/014060 KR2015014060W WO2016105065A1 WO 2016105065 A1 WO2016105065 A1 WO 2016105065A1 KR 2015014060 W KR2015014060 W KR 2015014060W WO 2016105065 A1 WO2016105065 A1 WO 2016105065A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
excluding
stainless steel
ferritic stainless
cold
Prior art date
Application number
PCT/KR2015/014060
Other languages
English (en)
French (fr)
Inventor
김상석
정일찬
Original Assignee
(주)포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코 filed Critical (주)포스코
Publication of WO2016105065A1 publication Critical patent/WO2016105065A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel used in an exhaust manifold for automobiles and a method of manufacturing the same.
  • Ferritic stainless steel is cheaper than austenitic stainless steel, has low thermal expansion rate, and has good surface gloss, formability, and oxidation resistance, so that it is widely used in heat-resistant appliances, sink tops, exterior materials, home appliances, electronic parts, automobile exhaust systems, etc. It is used.
  • Flue gas has a tendency to increase the NOx, HC, CO purification reaction as the temperature increases. Therefore, in order to reduce the emission of pollutants, the temperature of the exhaust gas is continuously increased, and thus, it is required to improve the high temperature characteristics of each component constituting the exhaust system to control the exhaust gas.
  • the weight reduction of automobile materials, the rise of exhaust gas temperature by turbo engine, and the improvement of fuel efficiency of automobiles have been studied.
  • the ferrite for high temperature which has superior high temperature strength, heat resistance and corrosion resistance, is superior to conventional ferritic stainless steels.
  • the demand for stainless steels is increasing.
  • Exhaust system manifold is a component that collects the exhaust gas discharged from each cylinder of the engine and discharges it to the manifold pipe.
  • the exhaust gas temperature reaches about 900 ° C, which is why it is required to have excellent high temperature strength and excellent heat resistance at high temperature exposure.
  • the exhaust gas temperature is expected to be increased by 30 ° C. to 50 ° C. or more compared to the existing vehicle due to the turbo mounting and the downsizing of the engine to improve vehicle fuel efficiency.
  • STS 429EM 14Cr-1Si steel
  • STS 441 18Cr steel
  • STS444 (19Cr-2Mo steel)
  • An object of the present invention is to provide a stainless steel and a method of manufacturing the same, which is excellent in high temperature strength and does not cause cracks during press molding in order to solve the conventional problems.
  • Ferritic stainless steel according to the present invention for achieving this purpose, C: 0.007 wt% or less (excluding 0), Si: 0.3 wt% or less (excluding 0), Mn: 0.5 ⁇ 1.5 wt%, P: 0.02 wt% or less (excluding 0), S: 0.02 wt% or less (excluding 0), Cr: 14 to 17 wt%, Mo: 1.0 wt% or less (0 or less), W: 1 to 4 wt%, Ti: 0.3 wt % Or less (0 or less), Nb: 0.6 wt% or less (excluding 0), N: 0.01 wt% or less (excluding 0), Al: 0.1 wt% or less (0 or less), and include residual Fe and other unavoidable impurities ,
  • the average size of the precipitated phase (Fe 2 W) is less than 1 ⁇ m, satisfies the following formula.
  • Ferritic stainless steel according to the present invention for achieving this purpose, C: 0.007 wt% or less (excluding 0), Si: 0.3 wt% or less (excluding 0), Mn: 0.5 ⁇ 1.5 wt%, P: 0.02 wt% or less (excluding 0), S: 0.02 wt% or less (excluding 0), Cr: 14 to 17 wt%, Mo: 1.0 wt% or less (0 or less), W: 1 to 4 wt%, Ti: 0.3 wt % Or less (0 or less), Nb: 0.6 wt% or less (excluding 0), N: 0.01 wt% or less (excluding 0), Al: 0.1 wt% or less (0 or less), and include residual Fe and other unavoidable impurities , Satisfies the following formula.
  • the grain size of the ferritic stainless steel of the present invention is characterized by being 5.0 or more (ASTM No. standard).
  • the ferritic stainless steel of the present invention is characterized in that Charpy impact energy is 10J or more during a 0 ° C. impact test using 2.0 to 3.0 mm V-notch impact specimens.
  • the ferritic stainless steel of the present invention is characterized in that? Satisfying the following formula is 0.3 or more and 0.5 or less.
  • (average grain size of cold rolled products) / (average grain size of hot rolled products)
  • the ferritic stainless steel of the present invention has an average r-bar for plastic anisotropy (r) values in respective directions of 0 °, 45 °, and 90 ° after 15% tension through a crosshead speed of 20 mm / min at room temperature.
  • the value is characterized by being 1.0 or more.
  • the ferritic stainless steel of the present invention is characterized in that the gauge part surface roughness (Rt) of the specimen tensioned by 15% is 20 ⁇ m or less.
  • the ferritic stainless steel of the present invention is characterized in that the tensile strength of 45MPa or more at 900 °C.
  • Method for producing a ferritic stainless steel according to the present invention for achieving this object C: 0.007 wt% or less (excluding 0), Si: 0.3 wt% or less (excluding 0), Mn: 0.5 ⁇ 1.5 wt%, P : 0.02 wt% or less (excluding 0), S: 0.02 wt% or less (excluding 0), Cr: 14 to 17 wt%, Mo: 1.0 wt% or less (0 or less), W: 1 to 4 wt%, Ti: 0.3 wt% or less (0 or less), Nb: 0.6 wt% or less (excluding 0), N: 0.01 wt% or less (excluding 0), Al: 0.1 wt% or less (0 or less), and balance Fe and other unavoidable impurities
  • the present invention has the advantage that the high temperature strength is improved and the press formability is improved due to the above technical configuration.
  • 1 is a view showing the high temperature strength according to the average size of the precipitated phase (Fe 2 W) of cold-rolled products
  • Figure 2 is processed by the V-notch impact specimen of 2.0 ⁇ 3.0mm thick cold rolled products according to [(Ti% + 1 / 2Nb%) / (C + N)] and the crystal grain size (ASTM No. standard) of cold rolled products Figure showing the impact energy value at 0 °C impact test,
  • FIG. 3 is a graph showing the shape anisotropy average r-bar value according to the ratio (average grain size of the center portion of a cold rolled product) / (average grain size of the center portion of a hot rolled product).
  • Ferritic stainless steel sheet having excellent high temperature strength and press formability is C: 0.007 wt% or less (excluding 0), Si: 0.3 wt% or less (excluding 0), Mn: 0.5 to 1.5 wt%, P: 0.02 wt% or less (excluding 0), S: 0.02 wt% or less (excluding 0), Cr: 14 to 17 wt%, Mo: 1.0 wt% or less (0 or less), W: 1 to 4 wt%, Ti: 0.3 Less than or equal to wt% (less than or equal to 0), Nb: Less than or equal to 0.6 wt% (excluding 0), N: Less than or equal to 0.01 wt% (excluding 0), Al: Less than or equal to 0.1 wt% (less than or equal to 0), including residual Fe and other unavoidable impurities
  • the average size of the precipitated phase Fe 2
  • C is added at 0.007 wt% or less.
  • C is an element that increases the room temperature strength of ferritic stainless steel. When the addition amount exceeds 0.007 wt%, the room temperature strength of the ferritic stainless steel is increased, but relatively high temperature strength and ductility, workability, and toughness at room temperature may decrease. Can be. Therefore, C should be added at 0.007 wt% or less, preferably at 0.005 wt% or less.
  • Si is added at 0.3 wt% or less.
  • Si is an element that acts as a deoxidizer in molten steel and is an element necessary in the steelmaking process. Si may also advantageously work to improve the oxidation resistance of ferritic stainless steels. On the other hand, when Si is added in excess of 0.3 wt%, the hardness of the ferritic stainless steel increases due to the Si solid-solution strengthening phenomenon, and the elongation and workability of the ferritic stainless steel are lowered. Therefore, Si is added at 0.3 wt% or less.
  • Mn is added in the range of 0.5-1.5 wt%.
  • ferritic stainless steel must have peeling resistance to the scale, for which Mn is added.
  • Mn when the amount of Mn added exceeds 1.5 wt%, Mn reacts with S to form MnS. MnS may adversely affect the corrosion resistance of ferritic stainless steel, so Mn should be added in a controlled range of 0.5 to 1.5 wt%.
  • Cr is an alloying element that must be added in order to improve corrosion resistance and oxidation resistance of ferritic stainless steel. That is, ferritic stainless steel is difficult to obtain sufficient corrosion resistance when the addition amount of Cr is low, while Cr should be added more than 14 wt%, whereas when the addition amount of Cr exceeds 17 wt%, the corrosion resistance of ferritic stainless steel is improved. However, since the strength is so high that the elongation and impact properties are drastically reduced, Cr should be added in a controlled range of 14 to 17 wt%.
  • Ti is added at 0.3 wt% or less.
  • Ti is an alloying element added to improve the high temperature strength and intergranular corrosion resistance of ferritic stainless steel. If the amount of Ti added in the ferritic stainless steel exceeds 0.3 wt%, steelmaking inclusions increase, and surface defects such as scab frequently occur, and nozzle clogging occurs during the play, thereby lowering process efficiency. In addition, the increase in solid solution Ti decreases the elongation and low temperature impact properties of the ferritic stainless steel.
  • N is added at 0.01 wt% or less.
  • N acts to increase the strength of the ferritic stainless steel like C, but can reduce the ductility and workability.
  • N is added at 0.01 wt% or less, and preferably at 0.007 wt% or less.
  • the amount of Mo added is 1.0 wt% or less, W is adjusted to be added in the range of 1 to 4 wt%.
  • various studies and efforts have been made, such as adding Mo to improve high temperature strength.
  • Mo is added 3 wt% or more, there is a problem that a sigma phase of ferritic stainless steel is generated.
  • the sigma phase may not only cause defects in manufacturing ferritic stainless steel, but also may cause durability problems when used for exhaust manifolds for automobiles.
  • Mo is preferably added at 0.8 wt% or less.
  • the amount of W added is less than 1 wt%, the amount of nano-sized fine precipitates such as Fe 2 W and the like, the amount of W solid solution in the matrix decreases, so that the ferritic stainless steel hardly obtains high temperature strength and thermal fatigue characteristics.
  • the amount of W added exceeds 4 wt%, the raw material cost of the ferritic stainless steel may be increased, and a large amount of Fe 2 W is generated in the ferritic stainless steel, which adversely affects the line flowability, lowers the production efficiency, and weldability. And moldability can be reduced.
  • the ferritic stainless steel further includes W, so that the tensile strength is 40 MPa or more in the high temperature tensile test tested at 900 ° C, and is applicable to an exhaust manifold for automobiles requiring high strength at high temperatures.
  • Ti is 0.3 wt% or less
  • Nb is 0.6 wt% or less
  • N is 0.01 wt% or less
  • Al is added at 0.01 wt% or less, wherein the relationship between the elements satisfies the following formula.
  • predetermined Ti and Nb In order for the ferritic stainless steel to satisfy the high temperature strength and thermal fatigue characteristics, predetermined Ti and Nb must be added. At this time, when the addition amount of Ti and Nb is below a predetermined value, grain boundary corrosion occurs in the weld heat affected zone of ferritic stainless steel, or high temperature strength and thermal fatigue characteristics are reduced, and (Ti + 1 / 2Nb) / (C + N ) Must be added to 19.5 or more, while (Ti + 1/2 Nb) / (C + N) exceeds 32, it may be advantageous for the high temperature properties of ferritic stainless steel, but the amount of Nb added is too high Room temperature elongation, toughness and processability may be reduced. Therefore, (Ti + 1 / 2Nb) / (C + N) should be adjusted within the range of 19.5 ⁇ 32.
  • the grain size of the cold rolled product in the present invention is ASTM No.
  • ASTM No The grain size of the cold rolled product in the present invention.
  • the average size of the precipitated phase exceeds 1 ⁇ m, the high precipitation strength is lowered because the effect of fine precipitation strengthening is lowered, and when the amount of precipitation of Nb-C and Nb-N is larger than the amount of precipitation of Fe-W, coarse Nb (C, N) A precipitated phase is formed and shows a 900 MPa high temperature strength of 40 MPa or less.
  • the hot-rolled annealing temperature and cold-rolled annealing temperature by adjusting the (cold-rolled annealing temperature) / (hot-rolled annealing temperature) ratio in the range of 1.05 ⁇ 1.15 (average grain size average size of the cold-rolled product) / (determination of the center of the hot-rolled product)
  • the particle size average size) should satisfy 0.3 ⁇ 0.5.
  • the plastic anisotropy average r-bar value due to hot rolled micro annealing is lowered, and if it exceeds 1.15, the grain size of the cold rolled product is coarsened and orange peel (Orange) There is a problem that cracks occur during the Peel) development and press molding.
  • Table 1 shows the alloy components of Examples and Comparative Examples.
  • Table 2 shows various parameter measurements as steel grades for the examples and comparative examples described in Table 1.
  • Inventive Examples 1 to 7 are controlled to an average size of the precipitated phase (Fe 2 W) to 1 ⁇ m or less, defined as [(Fe + W) precipitation amount / (Nb) precipitation amount] It can be seen that the A value is 1.0 or less.
  • the value of [(Ti% + 1 / 2Nb%) / (C + N)] is in the range of 19.5 to 32, the grain size (based on ASTM No.) is 5.0, and (the average grain size of the center of the cold rolled product) / It can be seen that the value of ⁇ defined by (average size of grain size in the center of hot rolled product) is 0.3 to 0.5.
  • the invention examples 1 to 7 were 900.
  • High temperature Tensile Strength value was measured to be 45MPa or more.
  • V-notch impact specimens were prepared from cold rolled products having a thickness of 2.0 to 3.0 mm corresponding to Inventive Examples 1 to 7, and confirmed that Charpy impact energy was 10 J or more when subjected to an impact test at O ° C, using JIS 13B specimens.
  • the surface roughness (Rt) of the gauge portion of the specimen stretched to 15% was less than 20 ⁇ m Orange Peel (Orange Peel) did not occur.
  • Comparative Example 3 and Comparative Example 4 although the W content is less than 1wt% and the Nb content is more than 0.6wt%, although the appropriate hot and cold rolling annealing is performed, the amount of [(Fe + W) precipitates / (Nb) precipitates A value of more than 1.0 did not show the effect of improving the high temperature strength by Fe 2 W precipitates, and the Charpy impact energy did not reach 10J due to the large amount of Nb.
  • Component system of Comparative Example 7 and Comparative Example 8 is within the scope of the present invention, when the cold rolling annealing Fe 2 W is reprecipitated at high temperature and then finely precipitated to secure high temperature strength, but excessively increased the annealing temperature of the cold rolled products
  • the grain size is ASTM No. 5 or less.
  • the surface roughness of the gauge portion of the specimen tensioned 15% at a tensile test in accordance with JIS Z 2241 using a JIS 13B specimen (the temperature at the time of testing is specified at room temperature and the crosshead speed of deformation is 20 mm / min). Rt) exceeded 20 ⁇ m, it was confirmed that the orange peel (Orange Peel) phenomenon occurred during visual inspection.
  • Figure 1 is a view showing the high temperature strength according to the average size of the precipitated phase (Fe 2 W) of cold-rolled products.
  • Laves type precipitated phase Fe 2 W in cluster form along grain boundary has a value of 45MPa or more at 900 °C, but high temperature strength decreases when large precipitated phase is formed. It can be seen.
  • the molded anisotropy average r-bar value according to the ratio (average grain size of the center portion of the cold rolled product) / (average grain size of the center portion of the hot rolled product) ratio. If the cold-rolled annealing temperature is less than 1040 °C, the average r-bar value decreases due to the undeveloped ⁇ 111 ⁇ texture due to micro-annealing of the material. If the cold-rolled annealing temperature exceeds 1080 °C, the ⁇ 111 ⁇ texture is developed and averaged. Although the r-bar value reached 1.2 level, the surface roughness (Rt) of the gauge part of the specimen at 20% tensile strength was over 20 ⁇ m, resulting in orange peel phenomenon during visual inspection.
  • Rt surface roughness
  • the grain size of the orange peel to be formed decreases the Charpy impact energy value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

고온강도 및 프레스 성형성이 우수한 페라이트계 스테인리스강이 소개된다. 본 발명의 페라이트계 스테인리스강은, C: 0.007 wt% 이하(0은 제외), Si: 0.3 wt% 이하(0 제외), Mn: 0.5~1.5 wt%, P: 0.02 wt% 이하(0 제외), S: 0.02 wt% 이하(0 제외), Cr: 14~17 wt%, Mo: 1.0 wt% 이하(0 이하), W: 1~4 wt%, Ti: 0.3 wt% 이하(0 이하), Nb: 0.6 wt% 이하(0 제외), N: 0.01 wt% 이하(0 제외), Al: 0.1 wt% 이하(0 이하)이며, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 석출상(Fe2W)의 평균 크기가 1㎛ 미만이며, 하기의 수식을 만족한다. Α = [(Fe+W) 석출량 / (Nb) 석출량] < 1.0

Description

페라이트계 스테인리스강 및 그 제조방법
본 발명은 자동차용 배기 매니폴드에 사용되는 페라이트계 스테인리스강 및 그 제조방법에 관한 것이다.
페라이트계 스테인리스강은 오스테나이트계 스테인리스강보다 가격이 저렴하고 열팽창률이 낮으며 표면광택, 성형성 및 내산화성이 양호하여 내열기구, 싱크대 상판, 외장재, 가전제품, 전자부품, 자동차 배기계 부품 등에 널리 사용되고 있다.
최근 자동차 배가스에 의하여 유발되는 환경문제의 심각성으로 인하여 각국에서는 배가스 배출에 대한 규제가 실행되고 있다. 이러한 추세에 대한 대응으로, 촉매를 이용하여 배가스의 정화능을 향상시키기 위한 기술이 주목 받고 있다.
배가스는 온도가 상승할수록 NOx, HC, CO의 정화반응이 증가하는 경향을 나타낸다. 따라서, 오염물질 배출을 저감시키기 위하여, 배가스의 온도를 지속적으로 상승시키는 추세이며, 이에 따라 배가스를 제어하는 배기계 시스템을 구성하는 각 구성품의 고온 특성 개선이 요구되고 있다.
구체적으로, 자동차 소재의 경량화, 터보엔진에 의한 배가스의 온도상승 및 자동차의 연비 향상 등이 연구되고 있으며, 이를 위하여 기존에 사용되던 페라이트계 스테인리스강보다 고온 강도, 내열성 및 내식성 등이 우수한 고온용 페라이트계 스테인리스강에 대한 수요가 증가하고 있다.
배기 매니폴드용 소재는 과거 구상흑연주철, 혹은 내열성 및 고온특성이 우수한 Si 구상흑연주철이 많이 사용되다가, 배가스 온도상승 및 경량화에 대한 요구에 따라 최근에는 스테인리스강을 많이 사용하는 추세이다.
배기계 매니폴드는 엔진의 각 기통으로부터 배출되는 배가스를 모아 매니폴드 파이프로 배출하는 부품으로 배가스 온도가 900℃ 정도 달하기 때문에 우수한 고온 강도 및 고온 노출시 우수한 내열화특성이 요구되는 부품이다
또한, 최근에는 차량 연비 향상을 위하여 터보 (turbo) 장착 및 엔진의 소형화 (downsizing)에 따라 배가스 온도가 기존 차량에 비해 30oC 내지 50oC 이상 상승될 것으로 예상 되고 있다.
따라서, 종래의 배기 매니폴드용으로 사용되는 페라이트계 스테인리스강종 등급(grade)인 STS 429EM(14Cr-1Si강), STS 441(18Cr강), STS444(19Cr-2Mo강)로는 고객요구 품질특성을 만족시킬 수 없으므로, 고온에서의 성능이 보다 향상된 페라이트계 스테인리스강에 대하여 다양한 연구가 진행되고 있다.
상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
본 발명은 이러한 종래의 문제점을 해결하기 위해 고온 강도가 우수하고, 프레스 성형 시 크랙이 발생하지 않는 스테인리스강 및 그 제조방법을 제공하는데 목적이 있다.
이러한 목적을 달성하기 위한 본 발명에 따른 페라이트계 스테인리스강은, C: 0.007 wt% 이하(0은 제외), Si: 0.3 wt% 이하(0 제외), Mn: 0.5~1.5 wt%, P: 0.02 wt% 이하(0 제외), S: 0.02 wt% 이하(0 제외), Cr: 14~17 wt%, Mo: 1.0 wt% 이하(0 이하), W: 1~4 wt%, Ti: 0.3 wt% 이하(0 이하), Nb: 0.6 wt% 이하(0 제외), N: 0.01 wt% 이하(0 제외), Al: 0.1 wt% 이하(0 이하)이며, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 석출상(Fe2W)의 평균 크기가 1㎛ 미만이며, 하기의 수식을 만족한다.
Α = [(Fe+W) 석출량 / (Nb) 석출량] < 1.0
이러한 목적을 달성하기 위한 본 발명에 따른 페라이트계 스테인리스강은, C: 0.007 wt% 이하(0은 제외), Si: 0.3 wt% 이하(0 제외), Mn: 0.5~1.5 wt%, P: 0.02 wt% 이하(0 제외), S: 0.02 wt% 이하(0 제외), Cr: 14~17 wt%, Mo: 1.0 wt% 이하(0 이하), W: 1~4 wt%, Ti: 0.3 wt% 이하(0 이하), Nb: 0.6 wt% 이하(0 제외), N: 0.01 wt% 이하(0 제외), Al: 0.1 wt% 이하(0 이하)이며, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기의 수식을 만족한다.
19.5≤[(Ti+1/2Nb)/(C+N)]≤32
본 발명의 페라이트계 스테인리스강의 결정입도는 5.0 이상(ASTM No. 기준)인 것을 특징으로 한다.
본 발명의 페라이트계 스테인리스강은 2.0~3.0mm V-notch 충격 시편을 이용한 0℃ 충격 시험 시 샤르피 충격 에너지는 10J 이상인 것을 특징으로 한다.
본 발명의 페라이트계 스테인리스강은, 하기의 수식을 만족하는 Γ는 0.3 이상, 0.5 이하인 것을 특징으로 한다.
Γ = (냉연 제품의 중심부 결정입도 평균크기)/(열연제품의 중심부 결정입도 평균크기)
본 발명의 페라이트계 스테인리스강은, 상온에서 20mm/min의 크로스 헤드 스피드를 통해 15% 인장 후 0°, 45°, 90°의 각각의 방향에 대한 소성 이방성(r)값에 대한 평균 r-bar값은 1.0 이상인 것을 특징으로 한다.
본 발명의 페라이트계 스테인리스강은 15%로 인장된 시편의 게이지부 표면조도(Rt)는 20㎛ 이하 인 것을 특징으로 한다.
본 발명이 페라이트계 스테인리스강은 900℃에서 인장강도가 45MPa 이상인 것을 특징으로 한다.
이러한 목적을 달성하기 위한 본 발명에 따른 페라이트계 스테인리스강 제조방법은, C: 0.007 wt% 이하(0은 제외), Si: 0.3 wt% 이하(0 제외), Mn: 0.5~1.5 wt%, P: 0.02 wt% 이하(0 제외), S: 0.02 wt% 이하(0 제외), Cr: 14~17 wt%, Mo: 1.0 wt% 이하(0 이하), W: 1~4 wt%, Ti: 0.3 wt% 이하(0 이하), Nb: 0.6 wt% 이하(0 제외), N: 0.01 wt% 이하(0 제외), Al: 0.1 wt% 이하(0 이하)이며, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 냉간압연하고, 1040~1080℃ 범위에서 200초 이내로 냉연소둔하되, 냉연 소둔온도/ 열연 소둔온도는, 1.05~1.15인 것을 특징으로 한다.
본 발명은 상기한 기술적 구성으로 인해 고온강도가 개선되고, 프레스 성형성이 개선되는 이점이 있다.
도 1은 냉연 제품의 석출상(Fe2W)의 평균 크기에 따른 고온 강도를 나타낸 도면,
도 2는 [(Ti%+1/2Nb%)/(C+N)] 및 냉연 제품의 결정입도(ASTM No. 기준)에 따른 2.0~3.0mm 두께 냉연 제품을 V-notch 충격 시편으로 가공하여 0℃ 충격 시험 시 충격 에너지값을 나타낸 도면,
도 3은 (냉연제품의 중심부 결정입도 평균 크기)/(열연제품의 중심부 결정입도 평균 크기) 비에 따른 성형 이방성 평균 r-bar 값을 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 의한 고온 강도 및 프레스 성형성이 우수한 페라이트계 스테인리스강에 대하여 설명한다.
본 발명에 따른 고온 강도 및 프레스 성형성이 우수한 페라이트계 스테인리스 강판은 C: 0.007 wt% 이하(0은 제외), Si: 0.3 wt% 이하(0 제외), Mn: 0.5~1.5 wt%, P: 0.02 wt% 이하(0 제외), S: 0.02 wt% 이하(0 제외), Cr: 14~17 wt%, Mo: 1.0 wt% 이하(0 이하), W: 1~4 wt%, Ti: 0.3 wt% 이하(0 이하), Nb: 0.6 wt% 이하(0 제외), N: 0.01 wt% 이하(0 제외), Al: 0.1 wt% 이하(0 이하)이며, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 냉간압연 및 소둔을 진행한 냉연 제품에 대하여, 석출상(Fe2W)의 평균 크기가 1㎛ 미만이며, Α = [(Fe+W) 석출량 / (Nb) 석출량] < 1.0인 것을 특징으로 한다.
이하, 성분계의 한정이유를 설명한다. 이하에서는 특별한 언급이 없으며 성분의 함량 범위는 중량 퍼센트(wt%)이다.
C는 0.007 wt% 이하로 첨가된다.
C는 페라이트계 스테인리스강의 상온 강도를 증가시키는 원소로, 첨가량이 0.007 wt%를 초과하는 경우 페라이트계 스테인리스강의 상온 강도는 증가하지만, 상대적으로 고온 강도 및 상온에서의 연성, 가공성, 인성 등이 저하될 수 있다. 따라서, C는 0.007 wt% 이하로 첨가되어야 하며, 바람직하게는 0.005 wt% 이하로 첨가한다.
Si는 0.3 wt% 이하로 첨가된다.
Si는 용강 상태에서 탈산제로서 작용하는 원소로, 제강 과정에서 필요한 원소이다. 또한, Si는 페라이트계 스테인리스강의 내산화성을 개선하는데 유리하게 작용할 수 있다. 반면, Si가 0.3 wt%를 초과하여 첨가되는 경우, Si 고용강화 현상에 의하여 페라이트계 스테인리스강의 경도가 상승, 페라이트계 스테인리스강의 연신율 및 가공성 등을 저하시킨다. 따라서, Si는 0.3 wt% 이하로 첨가한다.
Mn은 0.5~1.5 wt% 범위 내에서 첨가된다.
페라이트계 스테인리스강은 자동차용 배기 매니폴드용 소재로 사용될 때, 고온에서 스케일 등이 생성될 수 있다. 이때, 생성된 스케일은 쉽게 탈락될 수 있으며, 탈락된 스케일은 촉매장치(컨버터)에 유입되어 촉매장치 통로를 막을 수 있다.
따라서, 페라이트계 스테인리스강은 스케일에 대한 내박리성을 갖추어야 하는바, 이를 위해 Mn이 첨가된다. 반면, Mn 첨가량이 1.5 wt%를 초과하면 Mn이 S과 반응하여 MnS를 형성한다. MnS는 페라이트계 스테인리스강의 내식성에 불리한 영향을 미칠 수 있으므로, Mn은 0.5~1.5 wt%의 범위 내에서 조절하여 첨가되어야 한다.
Cr은 14~17 wt% 범위 내에서 조절하여 첨가된다.
Cr은 페라이트계 스테인리스강의 내식성 및 내산화성 향상을 위하여 반드시 첨가되어야 하는 합금원소이다. 즉, 페라이트계 스테인리스강은 Cr의 첨가량이 낮으면 충분한 내식성을 얻기 곤란하므로, Cr은 14 wt% 이상 첨가되어야 하는 반면, Cr의 첨가량이 17 wt%를 초과하는 경우, 페라이트계 스테인리스강의 내식성은 향상되지만 강도가 너무 높아져 연신율 및 충격 특성이 급격하게 저하되므로, Cr은 14~ 17 wt% 범위 내에서 조절하여 첨가되어야 한다.
Ti는 0.3 wt% 이하로 첨가된다.
Ti는 페라이트계 스테인리스강의 고온 강도와 내입계 부식성을 향상시키기 위하여 첨가되는 합금 원소이다. 페라이트계 스테인리스강 중의 Ti 첨가량이 0.3 wt% 초과하면 제강성 개재물이 증가하여 스캡(scab) 등 표면결함이 빈번하게 발생하고, 연주 시 노즐막힘이 발생하여 공정효율을 저하된다. 또한, 고용 Ti의 증가로 페라이트계 스테인리스강의 연신율 및 저온 충격성을 저하된다.
N는 0.01 wt% 이하로 첨가된다.
N은 C와 마찬가지로 페라이트계 스테인리스강의 강도를 높이는 역할을 하지만, 연성 및 가공성을 저하시킬 수 있다. 특히, 페라이트계 스테인리스강의 충분한 용접부 인성 및 가공성을 확보하기 위해서, N은 0.01 wt% 이하로 첨가되며, 0.007 wt% 이하로 첨가하는 것이 바람직하다.
본 발명에서 Mo 첨가량은 1.0 wt% 이하, W은 1~4 wt% 범위 내에서 조절되어 첨가된다. 페라이트계 스테인리스강의 경우, 고온 강도를 향상시키기 위하여 Mo를 첨가하는 등의 다양한 연구와 노력이 있어 왔다. 이 중 Mo을 3 wt% 이상 첨가하는 경우, 페라이트계 스테인리스강의 시그마상이 생성되는 문제가 있다. 시그마상은 페라이트계 스테인리스강을 제조하는데 불량을 유발할 수 있을 뿐 아니라, 자동차용 배기 매니폴드용으로 사용될 경우에도 내구성에 문제를 일으킬 수 있다. 본 발명에 따른 페라이트계 스테인리스강에서는 Mo 함량을 저감하여 시그마상 생성을 억제할 수 있다. Mo은 0.8 wt% 이하로 첨가하는 것이 바람직하다. 페라이트계 스테인리스강의 제강 공정에서 첨가되는 물질의 양을 미량으로 제어하는 것은 용이하지 않기 때문에, 이를 제어하는 것이 비효율적 일 수 있지만, Mo 등의 원소는 고가의 원료이므로 그 첨가량을 미세하게 조정하는 것은 생산비를 절감하는데 유리하게 작용하므로, Mo 첨가량을 0.8 wt% 이하로 조절함으로써, 소정의 페라이트계 스테인리스강의 물성을 유지함과 동시에 공정 효율을 개선할 수 있게 된다.
W 첨가량이 1 wt% 미만이면 Fe2W 등과 같은 나노 사이즈의 미세 석출물의 생성량과, 기지(matrix) 내 W 고용량이 저하되어, 페라이트계 스테인리스강은 충분한 고온 강도 및 열피로특성을 얻기 어렵다. 또한, W 첨가량이 4 wt%를 초과하는 경우 페라이트계 스테인리스강의 원재료비가 증가될 수 있으며, 페라이트계 스테인리스강 내에 다량의 Fe2W가 생성되어 라인 통판성에 불리하게 작용하여 생산효율을 저하시키고, 용접성 및 성형성 등을 저하시킬 수 있다. 페라이트계 스테인리스강은 W을 더 포함함으로써 900℃에서 시험하는 고온인장시험에서 인장강도가 40MPa 이상으로, 고온에서 높은 강도를 요구하는 자동차용 배기 매니폴드용으로 적용이 가능하다.
본 발명에서 Ti는 0.3 wt% 이하, Nb는 0.6 wt% 이하, N는 0.01 wt% 이하, 및 Al은 0.01 wt% 이하로 첨가되는바, 이때 각각 원소들의 관계는 하기의 수식을 만족한다.
19.5≤[(Ti+1/2Nb)/(C+N)]≤32
페라이트계 스테인리스강이 고온 강도와 열피로 특성을 만족하기 위해서는 소정의 Ti 및 Nb가 첨가되어야 한다. 이때, Ti 및 Nb의 첨가량이 소정 이하인 경우, 페라이트계 스테인리스강의 용접 열영향부에서 입계부식이 발생하거나, 고온강도 및 열피로특성이 저하되는바, (Ti+1/2Nb)/(C+N)가 19.5 이상이 되도록 첨가되어야 하는 반면, (Ti+1/2Nb)/(C+N)가 32를 초과하는 경우, 페라이트계 스테인리스강의 고온 특성에는 유리할 수 있지만, 고용 Nb의 첨가량이 과다하게 높아져 상온 연신율, 인성 및 가공성이 저하될 수 있다. 따라서, (Ti+1/2Nb)/(C+N)는 19.5~32 범위 내에서 조절하여야 한다.
본 발명에서 냉연 제품의 결정입도는 ASTM No. 기준으로 5 이상이어야 하는바, 5 미만인 경우에는 가공 시 오렌지필(Orange peel) 현상을 발생시키는 것은 물론, 프레스 성형성이 저하되는 문제점이 존재한다.
이와 같이, [(Ti%+1/2Nb%)/(C+N)]값을 19.5~32 범위로 제어하고, 결정입도(ASTM No. 기준)를 5.0 이상으로 제어하면, 2.0~3.0mm t의 냉연제품을 V-notch 충격시편으로 가공, 0℃ 충격시험 시(Charpy impact test) 10J 이상이 도출된다.
또한, 냉연압연 및 소둔을 행한 냉연제품에 대하여, Fe-W으로 구성되는 석출상(Fe2W)의 평균 크기가 1㎛ 미만이며, Α = [(Fe+W) 석출량 / (Nb) 석출량] < 1.0 를 만족한다. 석출상의 평균 크기가 1㎛를 초과하는 경우, 미세 석출강화 효과가 저하되기 때문에 고온 강도가 저하되고, Fe-W계 석출량 대비 Nb-C, Nb-N계 석출량이 많을 때는 조대 Nb(C,N) 석출상이 형성되어 900℃ 고온강도가 40MPa 이하를 나타낸다.
본 발명에서는 열연 소둔온도와 냉연 소둔온도에 있어서, (냉연 소둔온도)/(열연 소둔온도) 비를 1.05~1.15 범위로 조절하여 (냉연제품의 중심부 결정입도 평균 크기)/(열연제품의 중심부 결정입도 평균 크기) 값이 0.3~0.5를 만족하도록 한다. (냉연 소둔 온도)/(열연 소둔 온도) 값이 1.05 미만이면 열연 미소둔에 의한 소성 이방성 평균 r-bar 값이 저하되며, 1.15를 초과하면 냉연제품의 결정립도가 조대화되어 가공 시 오렌지필(Orange Peel) 현상 및 프레스 성형 시 크랙이 발생하는 문제점이 있다.
이하에서는 실시예 및 비교예를 기초로, 본 발명에 대하여 더 상세히 설명한다.
표 1은 실시예 및 비교예의 합금 성분을 나타낸 것이다.
C Si Mn Cr Mo W Ti Nb N Al
발명예1 0.0050 0.28 0.98 14.9 0.51 3.10 0.10 0.43 0.0050 0.06
발명예2 0.0043 0.13 0.98 14.9 0.74 3.80 0.09 0.44 0.0063 0.07
발명예3 0.0060 0.15 0.97 14.9 0.52 2.70 0.10 0.38 0.0077 0.07
발명예4 0.0050 0.28 0.92 14.7 0.50 3.30 0.10 0.42 0.0050 0.06
발명예5 0.0066 0.19 0.97 14.8 0.70 3.90 0.09 0.38 0.0076 0.05
발명예6 0.0050 0.21 1.01 15.1 0.76 3.50 0 0.50 0.0064 0.07
발명예7 0.0046 0.29 0.96 14.9 0.70 3.60 0.11 0.41 0.0068 0.08
비교예1 0.0100 0.28 0.98 16.7 0.51 3.40 0.10 0.43 0.020 0.08
비교예2 0.0200 0.13 0.98 14.2 0.74 3.50 0.10 0.44 0.0063 0.09
비교예3 0.0050 0.15 0.97 16.5 0.52 1.00 0.10 0.87 0.0077 0.07
비교예4 0.0060 0.28 0.92 15.5 0.50 0.75 0.10 0.67 0.0050 0.06
비교예5 0.0050 0.19 0.97 14.3 0.70 3.70 0.10 0.38 0.0076 0.07
비교예6 0.0060 0.21 1.01 15.5 0.76 3.60 0.10 0.50 0.0064 0.06
비교예7 0.0070 0.29 0.96 16.9 0.70 3.50 0.10 0.41 0.0068 0.05
비교예8 0.0050 0.20 1.00 15.5 0.70 3.70 0.10 0.40 0.0070 0.09
표 2는 표 1에 기재된 실시예 및 비교예에 대한 강종으로 다양한 파라미터 측정치를 나타낸 것이다.
구분 열연소둔온도(℃) 냉연소둔온도(℃) 냉연재중심부 평균결정입도(ASTM No.) Fe2W평균크기(㎛) A (Ti%+1/2Nb%)/(C+N) Γ 샤르피 충격에너지(J) @0℃ 고온강도(MPa)@900℃ 평균 R-bar 오렌지필 현상유무
발명예1 980 1040 6.0 0.9 0.95 31.5 0.42 21 47 1.2 미발생
발명예2 1020 1080 5.0 0.1 0.40 29.2 0.50 17 53 1.3 미발생
발명예3 1000 1050 5.5 0.6 0.70 21.2 0.45 20 45 1.1 미발생
발명예4 1000 1055 5.5 0.6 0.70 31.0 0.48 23 47 1.1 미발생
발명예5 990 1045 6.0 0.8 0.75 19.7 0.45 22 51 1.1 미발생
발명예6 980 1050 5.5 0.6 0.75 21.9 0.40 17 48 1.1 미발생
발명예7 1010 1070 5.5 0.4 0.50 27.6 0.50 18 49 1.2 미발생
비교예1 980 1045 6.0 0.9 0.75 10.5 0.25 9 42 0.7 미발생
비교예2 1000 1055 5.5 0.7 0.70 12.1 0.28 5 39 0.8 미발생
비교예3 980 1045 6.0 0.9 2.01 48.6 0.35 9 35 1.3 미발생
비교예4 990 1040 6.0 0.9 1.50 34.2 0.38 8 33 1.3 미발생
비교예5 980 1000 7.0 2.0 1.30 23.0 0.23 27 42 0.9 미발생
비교예6 980 950 8.0 4.0 1.70 28.2 0.15 32 39 0.8 미발생
비교예7 1010 1100 4.0 0.05 0.20 22.1 0.62 5 46 1.2 발생
비교예8 1020 1120 3.0 0.03 0.10 25.0 0.75 2 49 1.3 발생
표 2에 나타난 바와 같이, 발명예 1 내지 발명예 7은 석출상(Fe2W)의 평균 크기가 1㎛ 이하로 제어되고, [(Fe+W) 석출량 / (Nb) 석출량]으로 정의되는 Α값이 1.0이하임을 알 수 있다. 또한, [(Ti%+1/2Nb%)/(C+N)] 값이 19.5~32 범위이고, 결정입도(ASTM No. 기준)는 5.0이며, (냉연제품의 중심부 결정입도 평균 크기)/(열연제품의 중심부 결정입도 평균 크기)로 정의되는 Γ 값이 0.3~0.5임을 알 수 있다.
이러한 발명예 1 내지 발명예 7을 JIS G0567에 따른 고온인장 시험(인장 전에 시험 온도에서 15분 유지한 후, 항복 전 01.5mm/min으로 변형, 항복 후 4.8mm/min으로 변형)한 결과, 900℃ 고온 인장강도(Tensile Strength)값이 45MPa 이상으로 측정되었다.
또한, 발명예 1 내지 발명예 7에 해당하는 2.0~3.0mm 두께의 냉연제품으로 V-notch 충격시편을 제조하여 O℃에서 충격 시험 시 샤르피 충격 에너지가 10J 이상임을 확인하였으며, JIS 13B 시편을 이용하여, JIS Z 2241에 준거한 인장 시험(시험 시 온도는 상온으로 규정하며, 변형 속도인 crosshead speed는 20mm/min)을 통하여 15% 인장후의 0˚, 45˚, 90˚각 방향에 대한 소성 이방성(r)값에 대하여, 평균 r-bar값이 1.0 이상임을 확인하였다. 또한, 15%로 인장된 시편의 gauge부의 표면조도(Rt)가 20㎛ 이하로 오렌지필(Orange Peel)이 발생되지 않았다.
반면, 비교예 1 및 비교예 2는 C, N 함량이 본 발명의 수치 범위를 벗어나고, [(Ti%+1/2Nb%)/(C+N)] 값이 각 10.5, 12.1로 낮아 샤르피 충격 에너지가 10J에 미치지 못 하며, 높은 C, N 함량으로 인하여 적정 열연, 냉연 소둔을 행하였음에도 불구하고 냉연 제품의 평균 r-bar 값이 1.0에 이르지 못 하였다.
비교예 3 및 비교예 4는 W 함량이 1wt% 미만이고, Nb 함량이 0.6wt%를 초과하여 적정 열연 및 냉연 소둔을 행하였음에도 불구하고, [(Fe+W) 석출량 / (Nb) 석출량]로 정의되는 Α값이 1.0을 초과, Fe2W 석출물에 의한 고온 강도 향상 효과가 나타나지 않았으며, 다량의 Nb 함량으로 인해 샤르피 충격 에너지가 10J에 이르지 못 하였다.
비교예 5 및 비교예 6의 성분계는 본 발명의 범위에 속하지만, 냉연 소둔 시 Fe2W이 고온에서 재고용된 후에 미세 석출되어야 함에도 불구하고, 냉연 소둔온도가 낮아 열간압연 및 열연소둔 시에 형성된 조대 Fe2W 상이 그대로 잔존, 고온강도가 충분히 발현되지 못 한 것으로 판명되었다. 또한 냉간압연 후 소둔 과정에서 충분한 재결정 현상이 일어나지 않아 {111} 집합조직이 충분히 발달하지 못 해 낮은 평균 r-bar 값을 나타낸다.
비교예 7 및 비교예 8의 성분계는 본 발명의 범위에 속하고, 냉연 소둔 시 Fe2W이 고온에서 재고용된 후에 미세석출되어 고온 강도 확보는 충분히 이루어졌으나, 소둔온도를 과도하게 올려 냉연제품의 결정입도가 ASTM No. 5 이하가 된 경우이다. 이로 인해 JIS 13B 시편을 이용하여 JIS Z 2241에 준거한 인장 시험(시험시의 온도는 상온으로 규정하며, 변형속도인 crosshead speed는 20mm/min)에서 15%로 인장된 시편의 gauge부의 표면조도(Rt)가 20㎛를 초과, 육안 검사 시 오렌지필(Orange Peel) 현상이 발생된 것을 확인하였다.
한편, 도 1은 냉연제품의 석출상(Fe2W)의 평균 크기에 따른 고온 강도를 나타낸 도면이다. Laves type의 석출상 Fe2W가 결정립계를 따라서 cluster 형태로 1㎛ 이하로 석출된 강종의 900℃에서의 강도는 45MPa 이상은 값을 가지나, 큰 덩어리 형태의 석출상이 형성된 경우에는 고온 강도 저하가 발생됨을 알 수 있다.
도 2는 [(Ti%+1/2Nb%)/(C+N)] 및 냉연제품의 결정입도(ASTM No. 기준)에 따른 충격 에너지 값을 나타낸 것으로, 2.0~3.0mm 두께의 냉연제품을 V-notch 충격시편으로 가공하여 0℃ 충격 시험한 결과를 나타낸 도면이다.
(Ti%+1/2Nb%)/(C+N)가 19.5 미만을 가진 비교예의 경우, 다량의 고용 C, N에 의한 소재의 경화로 0℃에서의 샤피 충격 에너지가 10J에 이르지 못 하고, (Ti%+1/2Nb%)/(C+N)가 19.5 이상으로 제어되더라도 냉연제품의 중심부 결정입도(ASTM No. 기준)가 5에 이르지 못 하면 0℃에서의 샤르피 충격 에너지가 10J에 이르지 못 함을 확인할 수 있다.
도 3은 (냉연제품의 중심부 결정입도 평균 크기)/(열연제품의 중심부 결정입도 평균 크기) 비에 따른 성형 이방성 평균 r-bar 값을 나타낸다. 냉연 소둔온도가 1040℃ 미만이면, 소재의 미소둔에 의하여 {111} 집합조직의 미발달로 평균 r-bar값이 저하되며, 냉연소둔 온도가 1080℃를 초과하면 {111} 집합조직은 발달하여 평균 r-bar값이 1.2 수준에 이르지만 15% 인장 시 시편의 gauge부의 표면조도(Rt)가 20㎛ 이상을 나타내어 육안 검사시 오렌지필(Orange Peel) 현상이 발생되었다.
오렌지필이 형성될 수준의 결정입도는 도 2에서 관찰한 바와 같이, 샤르피 충격에너지 값을 저하시키게 된다.
본 발명은 특정한 실시 예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.

Claims (9)

  1. C: 0.007 wt% 이하(0은 제외), Si: 0.3 wt% 이하(0 제외), Mn: 0.5~1.5 wt%, P: 0.02 wt% 이하(0 제외), S: 0.02 wt% 이하(0 제외), Cr: 14~17 wt%, Mo: 1.0 wt% 이하(0 이하), W: 1~4 wt%, Ti: 0.3 wt% 이하(0 이하), Nb: 0.6 wt% 이하(0 제외), N: 0.01 wt% 이하(0 제외), Al: 0.1 wt% 이하(0 이하)이며, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 석출상(Fe2W)의 평균 크기가 1㎛ 미만이며, 하기의 수식을 만족하는, 페라이트계 스테인리스강.
    Α = [(Fe+W) 석출량 / (Nb) 석출량] < 1.0
  2. C: 0.007 wt% 이하(0은 제외), Si: 0.3 wt% 이하(0 제외), Mn: 0.5~1.5 wt%, P: 0.02 wt% 이하(0 제외), S: 0.02 wt% 이하(0 제외), Cr: 14~17 wt%, Mo: 1.0 wt% 이하(0 이하), W: 1~4 wt%, Ti: 0.3 wt% 이하(0 이하), Nb: 0.6 wt% 이하(0 제외), N: 0.01 wt% 이하(0 제외), Al: 0.1 wt% 이하(0 이하)이며, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기의 수식을 만족하는, 페라이트계 스테인리스강.
    19.5≤[(Ti+1/2Nb)/(C+N)]≤32
  3. 청구항 1 또는 청구항 2에 있어서,
    결정입도는 5.0 이상(ASTM No. 기준)인 것을 특징으로 하는, 페라이트계 스테인리스강.
  4. 청구항 1 또는 청구항 2에 있어서,
    2.0~3.0mm V-notch 충격 시편을 이용한 0℃ 충격 시험 시 샤르피 충격 에너지는 10J 이상인 것을 특징으로 하는, 페라이트계 스테인리스강.
  5. 청구항 1 또는 청구항 2에 있어서,
    하기의 수식을 만족하는 Γ는 0.3 이상, 0.5 이하인 것을 특징으로 하는, 페라이트계 스테인리스강.
    Γ = (냉연 제품의 중심부 결정입도 평균크기)/(열연제품의 중심부 결정입도 평균크기)
  6. 청구항 1 또는 청구항 2에 있어서,
    상온에서 20mm/min의 크로스 헤드 스피드를 통해 15% 인장 후 0°, 45°, 90°의 각각의 방향에 대한 소성 이방성(r)값에 대한 평균 r-bar값은 1.0 이상인 것을 특징으로 하는, 페라이트계 스테인리스강.
  7. 청구항 1 또는 청구항 2에 있어서,
    15%로 인장된 시편의 게이지부 표면조도(Rt)는 20㎛ 이하 인 것을 특징으로 하는, 페라이트계 스테인리스강.
  8. 청구항 1 또는 청구항 2에 있어서,
    900℃에서 인장강도가 45MPa 이상인 것을 특징으로 하는, 페라이트계 스테인리스강.
  9. C: 0.007 wt% 이하(0은 제외), Si: 0.3 wt% 이하(0 제외), Mn: 0.5~1.5 wt%, P: 0.02 wt% 이하(0 제외), S: 0.02 wt% 이하(0 제외), Cr: 14~17 wt%, Mo: 1.0 wt% 이하(0 이하), W: 1~4 wt%, Ti: 0.3 wt% 이하(0 이하), Nb: 0.6 wt% 이하(0 제외), N: 0.01 wt% 이하(0 제외), Al: 0.1 wt% 이하(0 이하)이며, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 냉간압연하고,
    1040~1080℃ 범위에서 200초 이내로 냉연소둔하되,
    냉연 소둔온도/ 열연 소둔온도는, 1.05~1.15인 것을 특징으로 하는, 페라이트계 스테인리스강 제조방법.
PCT/KR2015/014060 2014-12-23 2015-12-21 페라이트계 스테인리스강 및 그 제조방법 WO2016105065A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140187305A KR20160076792A (ko) 2014-12-23 2014-12-23 페라이트계 스테인리스강 및 그 제조방법
KR10-2014-0187305 2014-12-23

Publications (1)

Publication Number Publication Date
WO2016105065A1 true WO2016105065A1 (ko) 2016-06-30

Family

ID=56151011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014060 WO2016105065A1 (ko) 2014-12-23 2015-12-21 페라이트계 스테인리스강 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20160076792A (ko)
WO (1) WO2016105065A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3690075A4 (en) * 2017-12-11 2020-08-05 Posco FERRITIC STAINLESS STEEL WITH EXCELLENT HIGH TEMPERATURE RESISTANCE AND METHOD FOR ITS MANUFACTURING

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220170129A1 (en) * 2019-03-26 2022-06-02 Jfe Steel Corporation Ferritic stainless steel sheet and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105605A (ja) * 2000-07-25 2002-04-10 Kawasaki Steel Corp 常温加工性および高温での機械特性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2002241843A (ja) * 2001-02-20 2002-08-28 Sumitomo Metal Ind Ltd 表面光沢および加工性に優れたフェライト系ステンレス鋼板の製造方法
KR20050007572A (ko) * 2002-06-14 2005-01-19 제이에프이 스틸 가부시키가이샤 내열성 페라이트계 스테인리스강 및 그 제조 방법
KR20120108786A (ko) * 2011-03-25 2012-10-05 주식회사 포스코 고온강도가 우수한 페라이트계 스테인리스강의 제조방법
KR20140117586A (ko) * 2012-03-30 2014-10-07 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내열 페라이트계 스테인리스 냉연 강판, 냉연 소재용 페라이트계 스테인리스 열연 강판 및 그들의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519505B2 (ja) 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 成形性に優れるフェライト系ステンレス鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105605A (ja) * 2000-07-25 2002-04-10 Kawasaki Steel Corp 常温加工性および高温での機械特性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2002241843A (ja) * 2001-02-20 2002-08-28 Sumitomo Metal Ind Ltd 表面光沢および加工性に優れたフェライト系ステンレス鋼板の製造方法
KR20050007572A (ko) * 2002-06-14 2005-01-19 제이에프이 스틸 가부시키가이샤 내열성 페라이트계 스테인리스강 및 그 제조 방법
KR20120108786A (ko) * 2011-03-25 2012-10-05 주식회사 포스코 고온강도가 우수한 페라이트계 스테인리스강의 제조방법
KR20140117586A (ko) * 2012-03-30 2014-10-07 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내열 페라이트계 스테인리스 냉연 강판, 냉연 소재용 페라이트계 스테인리스 열연 강판 및 그들의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3690075A4 (en) * 2017-12-11 2020-08-05 Posco FERRITIC STAINLESS STEEL WITH EXCELLENT HIGH TEMPERATURE RESISTANCE AND METHOD FOR ITS MANUFACTURING
US11339460B2 (en) 2017-12-11 2022-05-24 Posco Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor

Also Published As

Publication number Publication date
KR20160076792A (ko) 2016-07-01

Similar Documents

Publication Publication Date Title
WO2017164344A1 (ja) 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法
WO2010110466A1 (ja) 耐熱性と加工性に優れたフェライト系ステンレス鋼板
JP3936849B2 (ja) フェライト系球状黒鉛鋳鉄及びこれを用いた排気系部品
JP5540637B2 (ja) 耐熱性に優れるフェライト系ステンレス鋼
EP1652949A1 (en) Austenite heat-resistant spheroidal graphite cast iron
JP6768929B2 (ja) 高温耐摩耗性に優れたフェライト系ステンレス鋼、フェライト系ステンレス鋼板の製造方法、排気部品、高温摺動部品、およびターボチャージャー部品
JP6796708B2 (ja) フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品
WO2014209064A1 (ko) 고강도 강판 및 그 제조 방법
KR20060045409A (ko) 열피로 특성이 우수한 자동차 배기계 부재용 페라이트계스테인레스강
WO2019117430A1 (ko) 고온 내산화성이 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2016105065A1 (ko) 페라이트계 스테인리스강 및 그 제조방법
JP4185425B2 (ja) 成形性と高温強度・耐高温酸化性・低温靱性とを同時改善したフェライト系鋼板
JP2000336462A (ja) 高温強度に優れた高純度フェライト系ステンレス鋼
US20040244878A1 (en) Soft Cr-containing steel
JP2000303149A (ja) 自動車排気系部品用フェライト系ステンレス鋼
WO2019059660A1 (ko) 강도 및 연성이 우수한 저합금 강판 및 이의 제조방법
WO2016105092A1 (ko) 페라이트계 스테인리스강 및 그 제조방법
WO2016064226A1 (ko) 고강도, 고연성의 페라이트계 스테인리스 강판 및 그의 제조방법
WO2010002150A2 (ko) 용접부의 가공성이 우수한 페라이트계 스테인리스강, 이를 이용한 용접강관 및 그 제조방법
KR20120108786A (ko) 고온강도가 우수한 페라이트계 스테인리스강의 제조방법
CN112662947B (zh) 一种耐工业大气腐蚀用钢及其制备方法
WO2017209431A1 (ko) 내식성 및 가공성이 향상된 오스테나이트계 스테인리스강 및 이의 제조 방법
WO2019124690A1 (ko) 확관 가공성이 향상된 페라이트계 스테인리스강 및 그 제조방법
WO2020085687A1 (ko) 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
WO2018062617A1 (ko) 카본 슬러지 흡착이 저감된 배기계 열교환기용 페라이트계 스테인리스강 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873592

Country of ref document: EP

Kind code of ref document: A1