WO2016103802A1 - 新規な含臭素重合体及びその製造方法 - Google Patents

新規な含臭素重合体及びその製造方法 Download PDF

Info

Publication number
WO2016103802A1
WO2016103802A1 PCT/JP2015/075862 JP2015075862W WO2016103802A1 WO 2016103802 A1 WO2016103802 A1 WO 2016103802A1 JP 2015075862 W JP2015075862 W JP 2015075862W WO 2016103802 A1 WO2016103802 A1 WO 2016103802A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
general formula
atom
Prior art date
Application number
PCT/JP2015/075862
Other languages
English (en)
French (fr)
Inventor
勝頼 屋敷
須藤 篤
Original Assignee
マナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マナック株式会社 filed Critical マナック株式会社
Priority to US15/538,770 priority Critical patent/US10442876B2/en
Priority to EP15872371.8A priority patent/EP3239192B1/en
Priority to KR1020177020151A priority patent/KR102352441B1/ko
Priority to JP2016565961A priority patent/JP6606102B2/ja
Priority to CN201580070694.9A priority patent/CN107108797B/zh
Publication of WO2016103802A1 publication Critical patent/WO2016103802A1/ja
Priority to IL253126A priority patent/IL253126B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/38Amides
    • C08F22/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/36Amides or imides
    • C08F122/38Amides
    • C08F122/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/30Nitriles
    • C08F22/32Alpha-cyano-acrylic acid; Esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/08N-Vinyl-pyrrolidine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F26/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a novel bromine-containing polymer and a method for producing the same.
  • Bromine-containing polymers containing bromine atoms in the molecule are used as resin additives that impart flame retardancy. It is also known that the bromine-containing polymer itself is useful as a resin material excellent in flame retardancy and optical properties (particularly high refractive index).
  • bromine-containing polymers include brominated polystyrene, brominated polyphenylene ether, brominated benzyl acrylate polymer, brominated polycarbonate oligomer, brominated epoxy and the like, and these are mainly used as brominated flame retardants ( For example, refer nonpatent literature 1).
  • polyacrylates containing bromine-substituted carbazole in the side chain and polyacrylates obtained using bromine-containing monomers as comonomers are reported to be flame retardant and excellent in optical properties (especially high refractive index).
  • Patent Documents 1 and 2 For example, see Patent Documents 1 and 2).
  • the present invention provides a novel bromine-containing polymer excellent in heat resistance and capable of imparting flame retardancy, or a novel bromine-containing polymer having flame resistance excellent in heat resistance and optical properties, and a method for producing the same. Is.
  • the present invention provides the following general formula (1): (Where p is 0 or 1; m is an integer from 2 to 5, R 1 may be the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; R 2 represents a hydrogen atom, a fluorine atom, a chlorine atom, an iodine atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, or a haloalkyl having 1 to 4 carbon atoms.
  • a haloalkoxy group having 1 to 4 carbon atoms, a vinyl group, a nitro group, a cyano group, an aldehyde group, an amino group, a hydroxyl group, a thiol group, a sulfo group, a sulfonamide group, a carboxyl group, or an ester group, and m is In the case of 2 or 3, each R 2 may be the same or different, (The asterisk indicates the point of attachment to the polymer end or other structural unit)
  • the polymer which has the structural unit represented by this, its manufacturing method, and the flame retardant containing the polymer.
  • a bromine-containing polymer useful as a flame retardant or a flame retardant resin having a bromine atom in a monomer unit and having a ring structure in the main chain and excellent in heat resistance is provided.
  • the polymer of the present invention can be expected as a resin material excellent in optical properties (particularly high refractive index) having flame retardancy by containing bromine atoms.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 1.
  • 3 shows a 13 C-NMR chart of the compound obtained in Example 1.
  • FIG. 2 shows an FT-IR chart of the compound obtained in Example 1.
  • 2 shows a MALDI-TOFMS chart of the compound obtained in Example 1.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 2.
  • 2 shows an FT-IR chart of the compound obtained in Example 2.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 3.
  • 2 shows an FT-IR chart of the compound obtained in Example 3.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 4.
  • 2 shows an FT-IR chart of the compound obtained in Example 4.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 5.
  • Example 5 shows an FT-IR chart of the compound obtained in Example 5.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 6.
  • 2 shows an FT-IR chart of the compound obtained in Example 6.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 7.
  • 2 shows an FT-IR chart of the compound obtained in Example 7.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 8.
  • 2 shows an FT-IR chart of the compound obtained in Example 8.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 9.
  • FIG. 13 shows a 13 C-NMR chart of the compound obtained in Example 9.
  • FIG. 2 shows an FT-IR chart of the compound obtained in Example 9.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 10.
  • Example 10 shows an FT-IR chart of the compound obtained in Example 10.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 11.
  • FIG. 13 shows a 13 C-NMR chart of the compound obtained in Example 11.
  • FIG. 2 shows an FT-IR chart of the compound obtained in Example 11.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 12.
  • 2 shows an FT-IR chart of the compound obtained in Example 12.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 13.
  • 2 shows an FT-IR chart of the compound obtained in Example 13.
  • 1 shows a 1 H-NMR chart of the compound obtained in Example 14.
  • 2 shows an FT-IR chart of the compound obtained in Example 14.
  • 2 shows an FT-IR chart of the compound obtained in Example 15.
  • R 1 may be the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms;
  • R 2 represents a hydrogen atom, a fluorine atom, a chlorine atom, an iodine atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, or a haloalkyl having 1 to 4 carbon atoms.
  • a haloalkoxy group having 1 to 4 carbon atoms, a vinyl group, a nitro group, a cyano group, an aldehyde group, an amino group, a hydroxyl group, a thiol group, a sulfo group, a sulfonamide group, a carboxyl group, or an ester group, and m is In the case of 2 or 3, each R 2 may be the same or different, (The asterisk indicates the point of attachment to the polymer end or other structural unit) It is a polymer which has a structural unit represented by these.
  • alkyl group having 1 to 4 carbon atoms means a monovalent group of linear or branched aliphatic saturated hydrocarbon having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, Examples include propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, and t-butyl group.
  • C1-C4 haloalkyl group means a C1-C4 alkyl group substituted with one or more halogen atoms, and includes a bromomethyl group, a 2-bromoethyl group, a 3-bromopropyl group, 4 -Bromobutyl group, iodomethyl group, 2-iodoethyl group, 3-iodopropyl group, 4-iodobutyl group, fluoromethyl group, 2-fluoroethyl group, 3-fluoropropyl group, 4-fluorobutyl group, tribromomethyl group, A trichloromethyl group, a trifluoromethyl group, etc. can be illustrated.
  • the halogen atoms of the alkyl group having 1 to 4 carbon atoms substituted with two or more halogen atoms may be the same or different.
  • C 1-4 alkoxy group means a group RO— (wherein R is an alkyl group having 1 to 4 carbon atoms), and is a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group. , Butoxy group, isobutoxy group, s-butoxy group, and t-butoxy group.
  • C1-C4 haloalkoxy group means a C1-C4 alkoxy group substituted with one or more halogen atoms, including bromomethoxy group, 2-bromoethoxy group, 3-bromopropyl group.
  • the halogen atoms of the alkoxy group having 1 to 4 carbon atoms substituted by two or more halogen atoms may be the same or different.
  • alkylthio group having 1 to 4 carbon atoms means a group R′S— (wherein R ′ is an alkyl group having 1 to 4 carbon atoms), methylthio group, ethylthio group, propylthio group, Examples include isopropylthio group, butylthio group, isobutylthio group, s-butylthio group, and t-butylthio group.
  • halogen atom or “halo” are interchangeable and mean iodine atom, bromine atom, chlorine atom or fluorine atom.
  • carboxyl group or ester group means a group: —COOH or an ester group thereof (ie, group: —COOR ′′).
  • R ′′ means an alkyl group having 1 to 4 carbon atoms.
  • Each R 1 in the general formula (1) may be any of a hydrogen atom or an alkyl group having a carbon number of 1 ⁇ 4, R 1 in each structural unit may each have identical or different, hydrogen Although it may contain both an atom and an alkyl group having 1 to 4 carbon atoms, a hydrogen atom or a methyl group is preferred in that the bromine content can be increased or a polymer can be easily obtained.
  • each R 2 may be appropriately selected according to the availability of raw materials and the ease of synthesis, but more preferably contains one or more hydrogen atoms from the viewpoint that the bromine content can be further increased. More preferably, all are hydrogen atoms.
  • the structural unit represented by the general formula (1) contained in the polymer of the present invention may be either the general formula (2) or the general formula (3). Two or more types of structural units represented by any one of the formulas may be included. Further, the polymer may contain both of the structural units represented by the general formulas (2) and (3).
  • the number m of bromine atoms substituted is 2 to 5, preferably 3 to 5 from the viewpoint of bromine content.
  • the bromine content of the polymer of the present invention is preferably 10 to 75% by weight, more preferably 30 to 75% by weight, and still more preferably 50 to 75% by weight based on the total weight of the polymer from the viewpoint of flame retardancy.
  • a bromine content means the measured value of the method according to JIS * K * 7229 (flask combustion method).
  • the measured value may be corrected using an appropriate measurement method such as chromatography.
  • the polymer of the present invention is not particularly limited as long as it has a structural unit represented by the general formula (1).
  • Components other than the structural unit represented by the general formula (1) may be appropriately included as a copolymer component depending on the purpose and application.
  • the other copolymer component is preferably a structural unit containing a vinyl group in the structure other than the general formula (1) from the viewpoint of copolymerizability.
  • Examples of the monomer containing a vinyl group other than the structural unit represented by the general formula (1) include vinyl compounds, vinylidene compounds, vinylene compounds, cyclic olefin compounds, conjugated diene compounds, and vinyl at the end of the polymer molecular chain.
  • the macro compound etc. which have group are mentioned, You may use 1 type individually or in combination of 2 or more types.
  • vinyl compound examples include ethylene, propylene, styrene, brominated styrene, chlorinated styrene, methoxystyrene, vinyl benzyl methyl ether, vinyl toluene, vinyl chloride, vinyl bromide, vinyl fluoride, vinyl acetate, vinyl propionate, and butyric acid.
  • vinylidene compound examples include vinylidene chloride, vinylidene fluoride, ⁇ -methylstyrene, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, and s-butyl.
  • vinylene compound examples include, but are not limited to, dialkyl fumarate, maleimide, N-phenylmaleimide, brominated N-phenylmaleimide, N-cyclohexylmaleimide, and vinylene carbonate.
  • cyclic olefin compound examples include, but are not limited to, norbornene, cyclobutene, cyclopentene, cyclohexene, indene, brominated indene, 1-methylindene, brominated 1-methylindene, phenanthrene, and brominated phenanthrene.
  • conjugated diene compound examples include, but are not limited to, 1,3-butadiene, isoprene, chloroprene, 2,3-dichloro-1,3-butadiene, and the like.
  • polystyrene examples include polystyrene, polymethyl (meth) acrylate, poly-n-butyl (meth) acrylate, and polysiloxane. It is not limited.
  • examples of both ends of the polymer having the structural unit represented by the general formula (1) include an initiator residue derived from a polymerization initiator described later, a hydrogen atom, and the like.
  • the polymer of the present invention preferably contains 30 mol% or more, more preferably 50 mol% or more of the structural unit represented by the general formula (1) from the viewpoint of imparting flame retardancy and heat resistance. Preferably it contains 80 mol% or more. Most preferably, the polymer of the present invention has only the structural unit represented by the general formula (1).
  • the molecular weight of the polymer of the present invention may be appropriately set according to the purpose and application.
  • the weight average molecular weight in terms of polystyrene is preferably 1,000 to 1, It is 1,000,000, more preferably 1,000 to 500,000, and still more preferably 1,000 to 250,000.
  • the 5% weight loss temperature in thermogravimetric analysis (TGA) is preferably 200 to 450 ° C., 250 More preferably, the temperature is ⁇ 450 ° C.
  • the flame retardant referred to in the present invention refers to those used for the purpose of imparting flame retardancy to flammable materials such as plastic, rubber, fiber, paper, and wood.
  • the thing which can be used as a material which has a flame retardance as itself is also included.
  • the flame-retardant optical material refers to a material having flame retardancy among materials used for the purpose of passing light such as visible light, infrared light, ultraviolet light, X-rays, and laser through the material.
  • Examples of the use of the flame retardant optical material include an optical lens, an optical film, an optical adhesive, an optical substrate, an optical filter, an optical disc, and an optical fiber.
  • the manufacturing method of the polymer of this invention is not specifically limited, You may manufacture using what kind of manufacturing method.
  • the following general formula (4) (Where m is an integer from 2 to 5, R 1 may be the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; R 2 represents a hydrogen atom, a fluorine atom, a chlorine atom, an iodine atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, or a haloalkyl having 1 to 4 carbon atoms.
  • a haloalkoxy group having 1 to 4 carbon atoms, a vinyl group, a nitro group, a cyano group, an aldehyde group, an amino group, a hydroxyl group, a thiol group, a sulfo group, a sulfonamide group, a carboxyl group, or an ester group, and m is In the case of 2 or 3, each R 2 may be the same or different)
  • the polymer which has a structural unit represented by this can be obtained.
  • the monomer represented by the general formula (4) used in the production method of the present invention may be prepared by any production method.
  • a known method for example, an aniline derivative and an acrylic acid halide derivative (for example, It can be synthesized according to the method described in European Patent Application Publication No. 1956033.
  • the following general formula (5) (Wherein m and R 2 are as defined above)
  • the bromine-containing N-phenyldiacrylamide derivative represented by the general formula (4) can be obtained by reacting the acrylic acid halide derivative represented by general formula (4) in the presence of a base.
  • the aniline derivative represented by the general formula (5) is commercially available and can be easily obtained from suppliers such as Manac Co., Ltd. and Sigma Aldrich Japan Co., Ltd.
  • it can be synthesized according to a known method (for example, the method described in Organic Syntheses, Vol. 13, p. 93 (1933)).
  • the acrylic acid halide derivative represented by the general formula (6) is commercially available, and can be easily obtained from suppliers such as Tokyo Chemical Industry Co., Ltd. Examples thereof include acrylic acid chloride, methacrylic acid chloride, 2-ethylacrylic acid chloride and the like. Further, it can be synthesized by subjecting an acrylic acid derivative to a known acid halide reaction.
  • acrylic acid halide derivative represented by the general formula (6) a hydrogen halide adduct that generates an acrylic acid halide derivative in the presence of a base can also be used.
  • a hydrogen halide adduct that generates an acrylic acid halide derivative in the presence of a base can also be used.
  • 3-chloropropionyl chloride, 3-bromopropionyl chloride and the like can be mentioned.
  • the amount of the acrylic acid halide derivative represented by the general formula (6) is 1.0 to 10 mol, preferably 1.5 to 8 mol, based on 1 mol of the aniline derivative represented by the general formula (5), More preferably, it is 2.0 to 5.0 mol.
  • any of an inorganic base, an organic base and a metal alkoxide can be used, and one or a combination of two or more can be used. You can also.
  • the inorganic base is not particularly limited. For example, ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, Examples thereof include sodium hydrogen carbonate, potassium hydrogen carbonate, cesium hydrogen carbonate, disodium hydrogen phosphate, sodium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, metal lithium, metal sodium, and metal potassium.
  • organic base examples include, but are not limited to, pyridine, 4-dimethylaminopyridine (DMAP), lutidine, collidine, trimethylamine, dimethylamine, triethylamine, diethylamine, N, N-diisopropylethylamine, N, N-diisopropylpentylamine.
  • DMAP 4-dimethylaminopyridine
  • lutidine collidine
  • trimethylamine dimethylamine
  • triethylamine diethylamine
  • N N-diisopropylethylamine
  • N N-diisopropylpentylamine.
  • Morpholine piperidine, pyrrolidine, 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), 1,5-diazabicyclo [4.3.0] non-5-ene (DBN), 1 , 4-diazabicyclo [2.2.2] octane (DABCO) and the like.
  • the metal alkoxide is not particularly limited, and examples thereof include sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, t-butoxy sodium, and t-butoxy potassium. Of these, organic bases are preferable, and pyridine, 4-dimethylaminopyridine (DMAP), and triethylamine are more preferable.
  • the amount of the base used is 0.5 to 20 mol, preferably 0.5 to 15 mol, more preferably 0.8 to 10 mol, per 1 mol of the aniline derivative represented by the general formula (5).
  • the order of addition of the aniline derivative represented by the general formula (5), the acrylic acid halide derivative represented by the general formula (6) and the base is not particularly limited. These three types may be added and mixed simultaneously to start the reaction, or after mixing any two types, the remaining one type may be added at once or dividedly to start and proceed the reaction.
  • the synthesis of the monomer represented by the general formula (4) may be carried out without a solvent or using a solvent.
  • the solvent to be used is not particularly limited as long as it is inert to the reaction, and is appropriately selected depending on the desired reaction temperature and the like. Specific examples include aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylene, monochlorobenzene, monobromobenzene, dichlorobenzene, and trichlorobenzene; n-hexane, n-heptane, n-octane, and cyclopentane.
  • solvents toluene, xylene, monochlorobenzene, dichloromethane, tetrahydrofuran, cyclopentyl methyl ether, acetone, methyl ethyl ketone, due to the solubility of raw materials, little influence on human body and environment, and easy industrial availability.
  • Methyl isobutyl ketone, dimethyl sulfoxide and acetonitrile are preferred.
  • the amount of the solvent used is preferably 0 to 20 times (weight basis), more preferably 0 to 10 times (weight basis) based on 1 g of the compound represented by the general formula (5). preferable.
  • the reaction temperature is preferably in the range of 0 to 200 ° C.
  • the reaction temperature is more preferably in the range of 0 to 150 ° C. from the viewpoint of suppressing side reactions.
  • the reaction time can be appropriately set according to the conditions such as the amount and type of the starting material to be used, the presence or absence of the solvent, the type thereof, and the reaction temperature. Usually, it is preferably 1 minute to 336 hours, and more preferably 10 minutes to 168 hours from the viewpoint of workability.
  • a polymerization method of the monomer represented by the general formula (4) a polymerization method such as bulk polymerization, solution polymerization, and emulsion polymerization can be used, and may be appropriately selected according to the purpose and use. Polymerization and bulk polymerization are industrially advantageous, and structure adjustment such as molecular weight is easy and preferable.
  • a polymerization method based on a mechanism such as radical polymerization, anionic polymerization, cationic polymerization, coordination polymerization, etc. can be used, but the polymerization method based on the radical polymerization mechanism is industrially advantageous, preferable.
  • a thermal radical polymerization initiator that generates radicals by heat and a photo radical polymerization initiator that decomposes by light irradiation to generate radicals are used.
  • a polymerization initiator is not particularly limited, and may be appropriately selected according to polymerization conditions such as polymerization temperature, solvent, type of monomer to be polymerized, and these may be used alone. Two or more kinds may be used in combination. Moreover, you may use together reducing agents, such as a transition metal salt and amines, with a polymerization initiator.
  • the thermal radical polymerization initiator is not particularly limited as long as it generates radicals by supplying thermal energy and initiates polymerization.
  • 3-hydroxy-1,1-dimethylbutylperoxyneodeca Noate ⁇ -cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, t-amylperoxyneodecanoate, t-butylperoxyneodecanoate, di ( 2-ethylhexyl) peroxydicarbonate, di (s-butyl) peroxydicarbonate, t-butylperoxyneoheptanoate, t-amylperoxypivalate, t-butylperoxypivalate, diisononanoyl peroxide, dilauroyl peroxide 1,1,3,3-tetramethylbu Ruperoxy-2-ethylhexanoate, dibenzoyl peroxid
  • the radical photopolymerization initiator is not particularly limited as long as it is decomposed by light irradiation to generate radicals and initiate polymerization.
  • the amount of the polymerization initiator used is not particularly limited as long as it is appropriately set according to the type and amount of the monomer used, the polymerization temperature, the polymerization conditions such as the polymerization concentration, the molecular weight of the target polymer, etc.
  • it is preferably 0.01 to 20 mol%, preferably 0.05 to 15 mol, based on the total number of moles of monomers.
  • the mol% is more preferable, and 0.1 to 10 mol% is more preferable.
  • a chain transfer agent may be used as necessary, and it is more preferable to use it together with a radical polymerization initiator.
  • a chain transfer agent is used at the time of polymerization, there is a tendency that increase in molecular weight distribution and gelation can be suppressed.
  • chain transfer agents include mercaptocarboxylic acids such as mercaptoacetic acid and 3-mercaptopropionic acid; methyl mercaptoacetate, methyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, N-octyl 3-mercaptopropionate, methoxybutyl 3-mercaptopropionate, stearyl 3-mercaptopropionate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), di Mercaptocarboxylic esters such as pentaerythritol hexakis (3-mercaptopropionate); ethyl mercaptan, t-butyl mercaptan, n-dodecyl mercaptan, 1,2-dimercaptoethane, etc.
  • mercaptocarboxylic acids such as mercapto
  • Alkyl mercaptans Alkyl mercaptans; mercapto alcohols such as 2-mercaptoethanol and 4-mercapto-1-butanol; aromatic mercaptans such as benzenethiol, m-toluenethiol, p-toluenethiol and 2-naphthalenethiol; tris [(3 Mercaptoisocyanurates such as -mercaptopropionyloxy) -ethyl] isocyanurate; disulfides such as 2-hydroxyethyl disulfide and tetraethylthiuram disulfide; dithiocarbamates such as benzyldiethyldithiocarbamate; simple units such as ⁇ -methylstyrene dimer Non-limiting examples of monomeric dimers; halogenated alkyls such as carbon tetrabromide.
  • mercaptocarboxylic acids mercaptocarboxylic acids, mercaptocarboxylic acid esters, alkyl mercaptans, mercapto alcohols, aromatic mercaptans; mercaptoisocyanurates in terms of availability, ability to prevent crosslinking, and low degree of polymerization rate reduction.
  • Compounds having a mercapto group such as alkyls are preferred, and alkyl mercaptans, mercaptocarboxylic acids, and mercaptocarboxylic esters are most preferred. These may be used alone or in combination of two or more.
  • the amount of chain transfer agent used is not particularly limited as long as it is appropriately set according to the type and amount of monomers used, the polymerization temperature, the polymerization conditions such as the polymerization concentration, the molecular weight of the target polymer, etc.
  • it is preferably 0.01 to 20 mol%, preferably 0.05 to 15 mol, based on the total number of moles of monomers.
  • the mol% is more preferable, and 0.1 to 10 mol% is more preferable.
  • the polymerization temperature when the monomer represented by the general formula (4) is polymerized using a polymerization initiator that generates radicals by heat by a radical polymerization mechanism the type and amount of the monomer used, polymerization What is necessary is just to set suitably according to the kind, quantity, etc. of an initiator, but 30-200 degreeC is preferable and 60-170 degreeC is more preferable.
  • bulk polymerization is preferably selected from the viewpoint of productivity. What is necessary is just to set suitably the conditions in the case of superposing
  • the solvent used for the polymerization is not particularly limited as long as it is inert to the polymerization reaction, and the polymerization mechanism, What is necessary is just to set suitably according to superposition
  • toluene, xylene, monochlorobenzene, dichloromethane, tetrahydrofuran, cyclopentyl methyl ether, N— are preferred because of the solubility of the monomer, little influence on the human body and the environment, and easy industrial availability.
  • Methyl-2-pyrrolidone N, N-dimethylacetamide, N, N-dimethylformamide, methanol, ethanol, isopropyl alcohol, n-propyl alcohol, isobutanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl sulfoxide and acetonitrile are preferred.
  • the amount of the solvent used is preferably 10 to 5,000 parts by weight with respect to 100 parts by weight of all monomers, More preferred is ⁇ 1,000 parts by weight.
  • the polymerization time in the production method of the present invention can be appropriately set depending on conditions such as the amount and type of the starting material to be used, the presence or absence of a solvent, the type thereof, and the reaction temperature. Usually, it is preferably 1 minute to 72 hours, and more preferably 10 minutes to 48 hours from the viewpoint of workability.
  • a polymer having a structural unit represented by the general formula (1) can be isolated from the obtained reaction solution using a general method.
  • the isolation method is not particularly limited, and examples thereof include a method of concentrating the polymerization solvent and / or a method of depositing a solid by adding it to a poor solvent.
  • the isolated polymer can be further purified by column chromatography, reprecipitation method, or the like, if necessary, and can be dried and / or melted by heating and pelletized as necessary.
  • HPLC purity of compounds obtained in Examples and Synthesis Examples 5% weight loss temperature, glass transition temperature (or melting point), weight average molecular weight, MALDI-TOFMS, bromine content, 1 H-NMR, 13 C-NMR
  • FT-IR infrared absorption spectrum
  • HPLC purity Measured using high performance liquid chromatography (HPLC) and calculated by area percentage. The measurement conditions are as follows.
  • 5% weight loss temperature About 10 mg of a sample is placed in an aluminum cell, and the temperature is increased at a rate of 10 ° C./min in a nitrogen stream using a differential thermal and thermogravimetric simultaneous measurement device (Shimadzu Corporation DTG-60). The temperature was raised to 40 to 600 ° C. The temperature was the time when the weight decreased by 5% from the start of measurement.
  • Glass transition temperature Approximately 5 mg of a sample was sealed in an aluminum pan, and a differential scanning calorimeter (DSC-60 manufactured by Shimadzu Corporation) was used, and the temperature was 100 ° C. to 300 ° C. at a rate of 20 ° C. per minute in a nitrogen atmosphere. The temperature was raised twice. The glass transition temperature was calculated from the extrapolated point of the DSC curve at the second temperature rise by analysis software.
  • DSC-60 differential scanning calorimeter manufactured by Shimadzu Corporation
  • Weight average molecular weight Measured by gel permeation chromatography. A standard curve up to a molecular weight of about 1,200,000 was prepared in advance using Tosoh standard polystyrene, and the weight average molecular weight in terms of standard polystyrene was calculated from the resulting chromatograph using a data processor. The analysis conditions are as follows.
  • Sample preparation 0.01 g of sample is dissolved in 10 mL of tetrahydrofuran Injection amount: 10 ⁇ L Detector: SPD-M10AVP (manufactured by Shimadzu Corporation) Oven: CTO-10A (manufactured by Shimadzu Corporation) Pump: LC-10AD (manufactured by Shimadzu Corporation) Degasser: DGU-14A (manufactured by Shimadzu Corporation) System controller: CBM-10A (manufactured by Shimadzu Corporation) Column: TSK-Gel G4000Hxl ⁇ 1, G3000Hxl ⁇ 1, G2000Hxl ⁇ 2 4 linked (manufactured by Tosoh Corporation) Mobile phase: Tetrahydrofuran Column temperature: 40 ° C Flow rate: 1.0 mL / min Wavelength: 254nm
  • Matrix-assisted laser desorption / ionization-time-of-flight mass spectrometry 10 mg of matrix (1,8,9-trihydroxyanthracene), 10 mg of ionizing agent (sodium trifluoroacetate) and 3 mg of measurement sample were dissolved in 1 mL of tetrahydrofuran. Then, 30 ⁇ L of the solution was dropped onto a measurement plate and dried to prepare a sample, and measurement was performed with MALDI-TOFMS (AXIMA Confidence manufactured by Shimadzu Corporation).
  • Bromine content Measured by a method according to JIS K 7229 (flask combustion method).
  • a quantitative sample was prepared by a flask combustion method, and then measured using an ion chromatograph apparatus DX-320 manufactured by Dionex Corporation. The analysis conditions are as follows.
  • Sample preparation 20 mg of a sample was obtained by a method according to JIS K 7229 (flask combustion method).
  • Pump detector module IC-25 (manufactured by Dionex) Flow rate: 1.0 mL / min
  • 1 H-NMR Compound and deuterated chloroform (containing 0.05% TMS of chloroform-d 1 manufactured by Wako Pure Chemical Industries, Ltd.) or heavy DMSO (dimethylsulfoxide-d 6 manufactured by Wako Pure Chemical Industries, Ltd.) A solution in which 05% TMS was mixed was prepared, and 1 H-NMR measurement was performed by NMR (JNM-AL400 manufactured by JEOL Ltd.).
  • FT-IR Infrared absorption spectrum
  • FIG. 1A shows the 1 H-NMR of the target product
  • FIG. 1B shows the 13 C-NMR
  • FIG. 2 shows the FT-IR chart
  • FIG. 3 shows the MALDI-TOF-MASS.
  • Example 1 As shown in FIG. 2, as a result of IR measurement, two C ⁇ O absorption peaks (1722 cm ⁇ 1 and 1696 cm ⁇ 1 ) of imide were observed. By comparison with the IR measurement results of Reference Examples 1 and 2, the former can be attributed to an imide structure having a 5-membered ring and the latter to a 6-membered ring. Therefore, the polymer obtained in Example 1 includes both the structural unit represented by the general formula (2) and the structural unit represented by the general formula (3). Further, as shown in FIG. 1B, as a result of 13 C-NMR, two signals (178 ppm and 175 ppm) derived from C ⁇ O of imide were observed.
  • the former can be attributed to an imide structure having a 5-membered ring and the latter to a 6-membered ring. From the integration ratio of both, the abundance ratio of the structural unit (5-membered ring) represented by the general formula (3) and the structural unit (6-membered ring) represented by the general formula (2) is 1: 1.5. And calculated.
  • FIG. 4 shows the 1 H-NMR of the target product
  • FIG. 5 shows the FT-IR chart.
  • FIG. 8 shows the 1 H-NMR of the target product
  • FIG. 9 shows the FT-IR chart.
  • Example 5 Copolymerization of N- (2,4,6-tribromophenyl) dimethacrylamide and methyl methacrylate N- (2,4,6-tribromophenyl) dimethacrylamide synthesized in Synthesis Example 1 (233 mg, 0. 500 mmol) and 51.4 mg (0.513 mmol) of methyl methacrylate (Wako Pure Chemical Industries, Ltd.) were copolymerized in the same procedure as in Example 4. The obtained solid was dissolved in tetrahydrofuran, and this solution was added to 30 mL of methanol. The resulting precipitate was filtered with suction and vacuum dried to obtain the desired copolymer as a white solid (183 mg, 64% of the theoretical weight).
  • FIG. 10 shows the 1 H-NMR of the target product
  • FIG. 11 shows the FT-IR chart.
  • Example 6 Copolymerization of N- (2,4,6-tribromophenyl) dimethacrylamide and benzyl methacrylate 233 mg (0.500 mmol) of N- (2,4,6-tribromophenyl) dimethacrylamide synthesized in Synthesis Example 1 ) And benzyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 88.2 mg (0.500 mmol) were copolymerized in the same procedure as in Example 4. The obtained solid was dissolved in tetrahydrofuran, and this solution was added to 30 mL of methanol.
  • Example 7 Copolymerization of N- (2,4,6-tribromophenyl) dimethacrylamide and N-isopropylacrylamide 233 mg of N- (2,4,6-tribromophenyl) dimethacrylamide synthesized in Synthesis Example 1 (0. 500 mmol) and 56.6 mg (0.500 mmol) of N-isopropylacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) were copolymerized in the same procedure as in Example 4. The obtained solid was dissolved in tetrahydrofuran, and this solution was added to 30 mL of methanol.
  • Example 8 Copolymerization of N- (2,4,6-tribromophenyl) dimethacrylamide and 1-vinyl-2-pyrrolidone 233 mg of N- (2,4,6-tribromophenyl) dimethacrylamide synthesized in Synthesis Example 1 (0.500 mmol) and 1-vinyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) 56.5 mg (0.508 mmol) were copolymerized in the same procedure as in Example 4. The obtained solid was dissolved in tetrahydrofuran, and this solution was added to 30 mL of methanol.
  • FIG. 16 shows the 1 H-NMR of the target product
  • FIG. 17 shows the FT-IR chart.
  • FIG. 18A shows the 1 H-NMR of the target product
  • FIG. 18B shows the 13 C-NMR
  • FIG. 19 shows the FT-IR chart.
  • the polymer obtained in Example 9 includes both the structural unit represented by the general formula (2) and the structural unit represented by the general formula (3).
  • FIG. 18B as a result of 13 C-NMR, two signals (178 ppm and 175 ppm) derived from C ⁇ O of imide were observed.
  • the former can be attributed to an imide structure having a 5-membered ring and the latter to a 6-membered ring.
  • the abundance ratio of the structural unit (5-membered ring) represented by the general formula (3) and the structural unit (6-membered ring) represented by the general formula (2) is 1.2: 1. And calculated.
  • FIG. 20 shows the 1 H-NMR of the target product
  • FIG. 21 shows the FT-IR chart.
  • FIG. 22A shows the 1 H-NMR of the target product
  • FIG. 22B shows the 13 C-NMR
  • FIG. 23 shows the FT-IR chart.
  • Example 11 As shown in FIG. 23, as a result of IR measurement, one absorption peak (1722 cm ⁇ 1 ) of C ⁇ O of imide was observed. By comparison with the results of IR measurement of Reference Example 1, it can be attributed to a five-membered imide structure.
  • FIG. 22B As a result of 13 C-NMR, one signal (178 ppm) derived from C ⁇ O of imide was observed. By comparison with the result of 13 C-NMR measurement of Reference Example 1, it can be attributed to a five-membered imide structure. From these results, the polymer obtained in Example 11 is a compound composed of the structural unit represented by the general formula (2).
  • FIG. 24 shows the 1 H-NMR of the target product
  • FIG. 25 shows the FT-IR chart. From 1 H-NMR, the ratio of diacryloylamide monomer to styrene monomer was 2: 1.
  • FIG. 26 shows the 1 H-NMR of the target product
  • FIG. 27 shows the FT-IR chart.
  • FIG. 30 shows an FT-IR chart of the object.
  • the polymer of the present invention contains a bromine atom in the monomer unit and has a ring structure in the main chain, a bromine-containing polymer useful as a flame retardant or a flame retardant resin excellent in heat resistance is provided. . Further, the polymer of the present invention can be expected as a resin material having flame retardancy with excellent optical properties (particularly high refractive index) by containing bromine atoms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fireproofing Substances (AREA)

Abstract

 耐熱性に優れ、難燃性付与を可能とする新規の含臭素重合体あるいは耐熱性及び光学特性に優れた難燃性を有する新規の含臭素重合体及びその製造方法を提供する。 本発明は、下記一般式(1): (式中、R、R、m、p及び星印は、明細書及び特許請求の範囲に記載の通りである)で表される構造単位を有する重合体及びその製造方法に関する。

Description

新規な含臭素重合体及びその製造方法
 本発明は、新規な含臭素重合体及びその製造方法に関する。
 分子内に臭素原子を含有する含臭素重合体は、難燃性を付与する樹脂添加剤等として利用されている。また含臭素重合体自体が難燃性及び光学特性(特に高屈折率)に優れた樹脂材料として有用であることが知られている。
 含臭素重合体の例として、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ベンジルアクリレートポリマー、臭素化ポリカーボネートオリゴマー、臭素化エポキシ等が挙げられ、これらは主に臭素系難燃剤として利用されている(例えば、非特許文献1参照)。
 さらに側鎖に臭素置換カルバゾールを有するポリアクリレート、含臭素モノマーをコモノマーとして用いて得られたポリアクリレートは難燃性を有し、光学特性(特に高屈折率)に優れた材料であることが報告されている(例えば、特許文献1及び2参照)。
 一方、近年の樹脂材料は用途の多様化により、これら樹脂材料に求められる耐熱性もより高度なものになっており、樹脂の高耐熱化や樹脂添加剤の高耐熱化が種々検討されている。
特開平5-262952号公報 米国特許第5132430号明細書
西澤仁監修『難燃化の最新技術と難燃剤の選定・使用法』株式会社R&D支援センター、2013年8月1日、67-69頁
 本発明は、耐熱性に優れ、難燃性付与を可能とする新規の含臭素重合体あるいは耐熱性及び光学特性に優れた難燃性を有する新規の含臭素重合体及びその製造方法を提供するものである。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、本発明を完成するに至った。即ち、本発明は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000006

(式中、
pは、0又は1であり、
mは、2~5の整数であり、
は、各々同一であっても異なっていてもよく、水素原子又は炭素数1~4のアルキル基であり、
は、水素原子、フッ素原子、塩素原子、ヨウ素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアルキルチオ基、炭素数1~4のハロアルキル基、炭素数1~4のハロアルコキシ基、ビニル基、ニトロ基、シアノ基、アルデヒド基、アミノ基、ヒドロキシル基、チオール基、スルホ基、スルホンアミド基、カルボキシル基もしくはエステル基であり、mが2又は3の場合、各Rは同一であっても異なっていてもよく、
星印は、重合体末端又は他の構造単位との結合点を示す)
で表される構造単位を有する重合体、その製造方法及びその重合体を含む難燃剤に関する。
 本発明によれば、モノマー単位中に臭素原子を含み、かつ主鎖に環構造を有し、耐熱性に優れた難燃剤あるいは難燃性樹脂として有用な含臭素重合体が提供される。また本発明の重合体は臭素原子を含むことで難燃性を有する光学特性(特に高屈折率)に優れた樹脂材料としても期待できる。
実施例1で得られた化合物の1H-NMRチャートを示す。 実施例1で得られた化合物の13C-NMRチャートを示す。 実施例1で得られた化合物のFT-IRチャートを示す。 実施例1で得られた化合物のMALDI-TOFMSチャートを示す。 実施例2で得られた化合物の1H-NMRチャートを示す。 実施例2で得られた化合物のFT-IRチャートを示す。 実施例3で得られた化合物の1H-NMRチャートを示す。 実施例3で得られた化合物のFT-IRチャートを示す。 実施例4で得られた化合物の1H-NMRチャートを示す。 実施例4で得られた化合物のFT-IRチャートを示す。 実施例5で得られた化合物の1H-NMRチャートを示す。 実施例5で得られた化合物のFT-IRチャートを示す。 実施例6で得られた化合物の1H-NMRチャートを示す。 実施例6で得られた化合物のFT-IRチャートを示す。 実施例7で得られた化合物の1H-NMRチャートを示す。 実施例7で得られた化合物のFT-IRチャートを示す。 実施例8で得られた化合物の1H-NMRチャートを示す。 実施例8で得られた化合物のFT-IRチャートを示す。 実施例9で得られた化合物の1H-NMRチャートを示す。 実施例9で得られた化合物の13C-NMRチャートを示す。 実施例9で得られた化合物のFT-IRチャートを示す。 実施例10で得られた化合物の1H-NMRチャートを示す。 実施例10で得られた化合物のFT-IRチャートを示す。 実施例11で得られた化合物の1H-NMRチャートを示す。 実施例11で得られた化合物の13C-NMRチャートを示す。 実施例11で得られた化合物のFT-IRチャートを示す。 実施例12で得られた化合物の1H-NMRチャートを示す。 実施例12で得られた化合物のFT-IRチャートを示す。 実施例13で得られた化合物の1H-NMRチャートを示す。 実施例13で得られた化合物のFT-IRチャートを示す。 実施例14で得られた化合物の1H-NMRチャートを示す。 実施例14で得られた化合物のFT-IRチャートを示す。 実施例15で得られた化合物のFT-IRチャートを示す。
 以下に本発明の実施の形態について詳細に説明する。
 本発明の一つの実施態様は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000007

(式中、
pは、0又は1であり、
mは、2~5の整数であり、
は、各々同一であっても異なっていてもよく、水素原子又は炭素数1~4のアルキル基であり、
は、水素原子、フッ素原子、塩素原子、ヨウ素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアルキルチオ基、炭素数1~4のハロアルキル基、炭素数1~4のハロアルコキシ基、ビニル基、ニトロ基、シアノ基、アルデヒド基、アミノ基、ヒドロキシル基、チオール基、スルホ基、スルホンアミド基、カルボキシル基もしくはエステル基であり、mが2又は3の場合、各Rは同一であっても異なっていてもよく、
星印は、重合体末端又は他の構造単位との結合点を示す)
で表される構造単位を有する重合体である。
 ここで、用語「炭素数1~4のアルキル基」は、炭素数1~4の、直鎖状又は分岐状の脂肪族飽和炭化水素の一価の基を意味し、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基を例示することができる。
 用語「炭素数1~4のハロアルキル基」は、1個以上のハロゲン原子で置換された炭素数1~4のアルキル基を意味し、ブロモメチル基、2-ブロモエチル基、3-ブロモプロピル基、4-ブロモブチル基、ヨードメチル基、2-ヨードエチル基、3-ヨードプロピル基、4-ヨードブチル基、フルオロメチル基、2-フルオロエチル基、3-フルオロプロピル基、4-フルオロブチル基、トリブロモメチル基、トリクロロメチル基、トリフルオロメチル基等を例示することができる。2個以上のハロゲン原子で置換された炭素数1~4のアルキル基のハロゲン原子は、同一であっても異なっていてもよい。
 用語「炭素数1~4のアルコキシ基」は、基RO-(ここで、Rは、炭素数1~4のアルキル基である)を意味し、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基を例示することができる。
 用語「炭素数1~4のハロアルコキシ基」は、1個以上のハロゲン原子で置換された炭素数1~4のアルコキシ基を意味し、ブロモメトキシ基、2-ブロモエトキシ基、3-ブロモプロピルオキシ基、4-ブロモブチルオキシ基、ヨードメトキシ基、2-ヨードエトキシ基、3-ヨードプロピルオキシ基、4-ヨードブチルオキシ基、フルオロメトキシ基、2-フルオロエトキシ基、3-フルオロプロピルオキシ基、4-フルオロブチルオキシ基、トリブロモメトキシ基、トリクロロメトキシ基、トリフルオロメトキシ基等を例示することができる。2個以上のハロゲン原子で置換された炭素数1~4のアルコキシ基のハロゲン原子は、同一であっても異なっていてもよい。
 用語「炭素数1~4のアルキルチオ基」は、基R′S-(ここで、R′は、炭素数1~4のアルキル基である)を意味し、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基を例示することができる。
 用語「ハロゲン原子」又は「ハロ」は、互換可能であり、ヨウ素原子、臭素原子、塩素原子又はフッ素原子を意味する。
 用語「カルボキシル基もしくはエステル基」は、基:-COOHもしくはそのエステル基(すなわち、基:-COOR″)を意味する。ここで、R″は、炭素数1~4のアルキル基を意味する。
 前記一般式(1)において各Rは、水素原子又は炭素数1~4のアルキル基のいずれでもよく、各構造単位中のRは、各々同一であっても異なっていてもよく、水素原子及び炭素数1~4のアルキル基の両方を含んでも差し支えないが、臭素含量をより高くできる点又は重合体が得られ易い点において水素原子又はメチル基が好ましい。
 前記一般式(1)において各Rは、原料の入手容易性、合成容易性に応じて適宜選択すればよいが、臭素含量をより高くできる点において水素原子を1置換以上含むことがより好ましく、全て水素原子であることがさらに好ましい。
 前記一般式(1)においてpが1の場合はイミド部分が6員環構造であることを意味し、具体的には、下記一般式(2)を表し、
Figure JPOXMLDOC01-appb-C000008

(式中、R、R、m及び星印は、前記と同義である)
pが0の場合はイミド部分が5員環構造であることを意味し、具体的には、下記一般式(3)を表す。
Figure JPOXMLDOC01-appb-C000009

(式中、R、R、m及び星印は、前記と同義である)
 本発明の重合体に含まれる、前記一般式(1)で表される構造単位は、前記一般式(2)又は前記一般式(3)のいずれか一方であってもよく、重合体中にいずれか一方の式で表される構造単位を2種類以上含んでいてもよい。また、重合体中に前記一般式(2)及び(3)で表される構造単位を両方含んでも差し支えない。
 前記一般式(1)において臭素原子の置換数mは、2~5であり、臭素含量の観点から3~5が好ましい。臭素原子の置換位置には特に制限はなく、重合体中の各構造単位において、臭素原子の置換数、位置が異なる任意の異性体を包含しうる。
 本発明の重合体の臭素含量は、難燃性の観点から、重合体の全重量に対して10~75重量%が好ましく、30~75重量%がより好ましく、50~75重量%がさらに好ましい。なお、本発明において、臭素含量は、JIS K 7229(フラスコ燃焼法)に準じる方法の測定値を意味する。ただし、重合体が臭素原子以外のハロゲン原子を含む場合には、クロマトグラフィー等の適切な測定法を用いて補正された測定値であってよい。
 本発明の重合体は、前記一般式(1)で表される構造単位を有していれば特に限定されない。目的、用途に応じて適宜前記一般式(1)で表される構造単位以外の成分を共重合成分として含んでもよい。他の共重合成分としては、共重合性の点から前記一般式(1)以外の構造中にビニル基を含有する構造単位が好ましい。
 前記一般式(1)で表される構造単位以外のビニル基を含有する単量体としては、ビニル化合物、ビニリデン化合物、ビニレン化合物、環状オレフィン化合物、共役ジエン化合物、重合体分子鎖の末端にビニル基を有するマクロ化合物等が挙げられ、1種を単独で又は2種以上を組み合わせて使用してもよい。
 上記ビニル化合物としては、エチレン、プロピレン、スチレン、臭素化スチレン、塩素化スチレン、メトキシスチレン、ビニルベンジルメチルエーテル、ビニルトルエン、塩化ビニル、臭化ビニル、フッ化ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル、ビニルメチルエーテル、ビニルエチルエーテル、アリルグリシジルエーテル、アクリル酸、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、i-プロピルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、s-ブチルアクリレート、t-ブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、3-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、臭素化2-ヒドロキシ-3-フェノキシプロピルアクリレート、アリルアクリレート、2,3-ジブロモプロピルアクリレート、トリブロモネオペンチルアクリレート、ベンジルアクリレート、臭素化ベンジルアクリレート、シクロヘキシルアクリレート、フェニルアクリレート、臭素化フェニルアクリレート、2-メトキシエチルアクリレート、2-フェノキシエチルアクリレート、臭素化2-フェノキシエチルアクリレート、メトキシジエチレングリコールアクリレート、メトキシトリエチレングルコールアクリレート、メトキシプロピレングルコールアクリレート、メトキシジプロピレングルコールアクリレート、イソボルニルアクリレート、ジシクロペンタジエニルアクリレート、グリセロールモノアクリレート、グリシジルアクリレート、2-アミノエチルアクリレート、2-ジメチルアミノエチルアクリレート、2-アミノプロピルアクリレート、2-ジメチルアミノプロピルアクリレート、3-アミノプロピルアクリレート、3-ジメチルアミノプロピルアクリレート、アクリルアミド、N-2-ヒドロキシエチルアクリルアミド、N-イソプロピルアクリルアミド、N-フェニルアクリルアミド、臭素化N-フェニルアクリルアミド、1-ビニル-2-ピロリドン、アクリロニトリル、ジアリルエーテル、フェニルアリルエーテル、臭素化フェニルアリルエーテル、アリルアミン等が挙げられるが、これらに限定されない。
 上記ビニリデン化合物としては、塩化ビニリデン、フッ化ビニリデン、α-メチルスチレン、メタクリル酸、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、i-プロピルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、s-ブチルメタクリレート、t-ブチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、3-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、臭素化2-ヒドロキシ-3-フェノキシプロピルメタクリレート、アリルメタクリレート、2,3-ジブロモプロピルメタクリレート、トリブロモネオペンチルメタクリレート、ベンジルメタクリレート、臭素化ベンジルメタクリレート、シクロヘキシルメタクリレート、フェニルメタクリレート、臭素化フェニルメタクリレート、2-メトキシエチルメタクリレート、2-フェノキシエチルメタクリレート、臭素化2-フェノキシエチルメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシトリエチレングルコールメタクリレート、メトキシプロピレングルコールメタクリレート、メトキシジプロピレングルコールメタクリレート、イソボルニルメタクリレート、ジシクロペンタジエニルメタクリレート、グリセロールモノメタクリレート、グリシジルメタクリレート、2-アミノエチルメタクリレート、2-ジメチルアミノエチルメタクリレート、2-アミノプロピルメタクリレート、2-ジメチルアミノプロピルメタクリレート、3-アミノプロピルメタクリレート、3-ジメチルアミノプロピルメタクリレート、メタクリルアミド、N-2-ヒドロキシエチルメタクリルアミド、N-イソプロピルメタクリルアミド、N-フェニルメタクリルアミド、臭素化N-フェニルメタクリルアミド、α-クロロアクリルアミド、メタクリロニトリル、α-クロロアクリロニトリル、シアン化ビニリデン等が挙げられるが、これらに限定されない。
 上記ビニレン化合物としては、フマル酸ジアルキル、マレイミド、N-フェニルマレイミド、臭素化N-フェニルマレイミド、N-シクロヘキシルマレイミド、炭酸ビニレン等が挙げられるが、これらに限定されない。
 上記環状オレフィン化合物としては、ノルボルネン、シクロブテン、シクロペンテン、シクロヘキセン、インデン、臭素化インデン、1-メチルインデン、臭素化1-メチルインデン、フェナントレン、臭素化フェナントレン等が挙げられるが、これらに限定されない。
 上記共役ジエン化合物としては、1,3-ブタジエン、イソプレン、クロロプレン、2,3-ジクロロ-1,3-ブタジエン等が挙げられるが、これらに限定されない。
 上記重合体分子鎖の末端にビニル基を有するマクロ化合物における重合体分子鎖としては、ポリスチレン、ポリメチル(メタ)アクリレート、ポリ-n-ブチル(メタ)アクリレート、ポリシロキサン等が挙げられるが、これらに限定されない。
 また、前記一般式(1)で表される構造単位を有する重合体の両末端としては、後述する重合開始剤に由来する開始剤残基、水素原子等が挙げられる。
 本発明の重合体は、難燃性付与及び耐熱性付与の観点から、好ましくは前記一般式(1)で表される構造単位を30モル%以上含み、より好ましくは50モル%以上含み、さらに好ましくは80モル%以上含む。最も好ましくは、本発明の重合体は、前記一般式(1)で表される構造単位のみを有する。
 本発明の重合体の分子量は、目的、用途に応じて適宜設定すればよいが、良好な熱安定性や加工性を得るためにはポリスチレン換算の重量平均分子量で好ましくは1,000~1,000,000、より好ましくは1,000~500,000、さらに好ましくは1,000~250,000である。
 本発明の重合体は、例えば難燃剤として使用する場合、加工温度での安定性が求められるため、熱重量分析(TGA)における5%重量減少温度が200~450℃であることが好ましく、250~450℃であることがより好ましい。
 本発明でいう難燃剤とは、プラスチック・ゴム・繊維・紙・木材等の可燃性素材に難燃性を付与する目的で使用されるものを指すが、本発明の重合体のように、それ自体を材料として難燃性を有する材料として用いることができるものも含む。
 本発明でいう難燃性光学用材料とは、可視光、赤外線、紫外線、X線、レーザー等の光をその材料中に通過させる用途に用いられる材料のうち難燃性を有するものを指す。難燃性光学用材料の用途として例えば、光学レンズ、光学フィルム、光学接着剤、光学基板、光学フィルタ、光ディスク、光ファイバー等が挙げられる。
 本発明の重合体の製造方法は、特に限定されず、いかなる製造方法を用いて製造してもよい。好ましくは、下記一般式(4):
Figure JPOXMLDOC01-appb-C000010

(式中、
mは、2~5の整数であり、
は、各々同一であっても異なっていてもよく、水素原子又は炭素数1~4のアルキル基であり、
は、水素原子、フッ素原子、塩素原子、ヨウ素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアルキルチオ基、炭素数1~4のハロアルキル基、炭素数1~4のハロアルコキシ基、ビニル基、ニトロ基、シアノ基、アルデヒド基、アミノ基、ヒドロキシル基、チオール基、スルホ基、スルホンアミド基、カルボキシル基もしくはエステル基であり、mが2又は3の場合、各Rは同一であっても異なっていてもよい)
で表される単量体を重合することにより、下記一般式(1):
Figure JPOXMLDOC01-appb-C000011

(式中、R、R、m、p及び星印は、前記と同義である)
で表される構造単位を有する重合体を得ることができる。
 本発明の製造方法で用いる一般式(4)で示される単量体は、いかなる製造方法を用いて調製してもよいが、例えばアニリン誘導体及びアクリル酸ハライド誘導体を用いて公知の方法(例えば、欧州特許出願公開第1956033号に記載の方法)に準じて合成することが可能である。好ましくは、下記一般式(5):
Figure JPOXMLDOC01-appb-C000012

(式中、m及びRは、前記と同義である)
で表されるアニリン誘導体と、一般式(6):
Figure JPOXMLDOC01-appb-C000013

(式中、
は、水素原子又は炭素数1~4のアルキル基であり、
Xは、塩素原子又は臭素原子である)
で表されるアクリル酸ハライド誘導体を、塩基存在下で反応させることで、前記一般式(4)で表される含臭素N-フェニルジアクリルアミド誘導体を得ることができる。
 一般式(5)で表されるアニリン誘導体は、市販されており、マナック(株)、シグマアルドリッチジャパン(株)等の供給業者より容易に入手することが可能である。例えば、2,4-、2,5-、2,6-もしくは3,4-ジブロモアニリン、2,6-ジブロモ-4-メチルアニリン、4-クロロ-2,4-ジブロモアニリン、2,6-ジブロモ-4-トリフルオロメチルアニリン、2,6-ジブロモ-4-トリフルオロメトキシアニリン、2,6-ジブロモ-4-ニトロアニリン、2,4,6-トリブロモアニリン、3-メチル-2,4,6-トリブロモアニリン等が挙げられる。また、公知の方法(例えば、Organic Syntheses, Vol.13, p.93 (1933)に記載の方法)に準じて合成することが可能である。
 一般式(6)で表されるアクリル酸ハライド誘導体は、市販されており、東京化成工業(株)等の供給業者より容易に入手することが可能である。例えば、アクリル酸クロリド、メタクリル酸クロリド、2-エチルアクリル酸クロリド等が挙げられる。また、アクリル酸誘導体を公知の酸ハロゲン化物反応に付すことにより、合成することが可能である。
 さらに一般式(6)で表されるアクリル酸ハライド誘導体は、塩基存在下でアクリル酸ハライド誘導体を生成するハロゲン化水素付加体も用いることも可能である。例えば、3-クロロプロピオニルクロリド、3-ブロモプロピオニルクロリド等が挙げられる。
 一般式(6)で表されるアクリル酸ハライド誘導体の使用量は、一般式(5)で表されるアニリン誘導体1モルに対して1.0~10モル、好ましくは1.5~8モル、さらに好ましくは2.0~5.0モルである。
 一般式(4)で示される単量体の合成における塩基としては、無機塩基、有機塩基及び金属アルコキシドのいずれをも使用することが可能であり、1種又は2種以上を組み合わせて使用することもできる。無機塩基としては、特に限定されないが、例えば、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水素化リチウム、水素化ナトリウム、水素化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム、金属リチウム、金属ナトリウム、金属カリウム等が挙げられる。有機塩基としては、特に限定されないが、例えば、ピリジン、4-ジメチルアミノピリジン(DMAP)、ルチジン、コリジン、トリメチルアミン、ジメチルアミン、トリエチルアミン、ジエチルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジイソプロピルペンチルアミン、モルホリン、ピペリジン、ピロリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等が挙げられる。金属アルコキシドとしては、特に限定されないが、例えば、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、t-ブトキシナトリウム、t-ブトキシカリウム等が挙げられる。なかでも有機塩基が好ましく、ピリジン、4-ジメチルアミノピリジン(DMAP)、トリエチルアミンがより好ましい。塩基の使用量は、一般式(5)で表されるアニリン誘導体1モルに対して0.5~20モル、好ましくは0.5~15モル、さらに好ましくは0.8~10モルである。
 一般式(5)で表されるアニリン誘導体、一般式(6)で表されるアクリル酸ハライド誘導体及び塩基の添加順序は特に限定されない。これら3種を同時に添加混合して反応を開始させてもよく、またいずれか2種を混合した後、残りの1種を一度に又は分割添加して、反応を開始・進行させてもよい。
 一般式(4)で示される単量体の合成は、無溶媒で、あるいは溶媒を使用して実施してもよい。使用する溶媒は、反応に不活性な溶媒であれば特に限定されず、所望する反応温度等に応じて適宜選択される。具体的には、例えば、ベンゼン、トルエン、キシレン、メシチレン、モノクロロベンゼン、モノブロモベンゼン、ジクロロベンゼン、トリクロロベンゼン等の芳香族炭化水素系溶媒;n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、ジクロロメタン、ジブロモメタン、クロロホルム、四塩化炭素、エチレンジクロリド、1,1,1-トリクロロエタン、トリクロロエチレン等の脂肪族炭化水素系溶媒、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸エチル、γ-ブチロラクトン、γ-バレロラクトン等のエステル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒、ジメチルスルホキシド等の含硫黄系溶媒、ピコリン、ピリジン等の含窒素系溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒が挙げられる。これらは単独で用いても、2種以上を併用してもよい。これらの溶媒の中では、原料の溶解性、人体及び環境への影響の少なさ、工業的入手のし易さから、トルエン、キシレン、モノクロロベンゼン、ジクロロメタン、テトラヒドロフラン、シクロペンチルメチルエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルスルホキシド、アセトニトリルが好ましい。溶媒の使用量は、一般式(5)で表される化合物1gに対して、0~20倍量(重量基準)であることが好ましく、0~10倍量(重量基準)であることがより好ましい。
 反応温度は、0~200℃の範囲が好ましい。反応温度は、副反応を抑制する点から、0~150℃の範囲がより好ましい。また、反応時間は、使用する出発物質の量や種類、溶媒の有無やその種類、反応温度等の条件によって適宜設定することができる。通常、1分~336時間であることが好ましく、作業性の観点から10分~168時間であることがより好ましい。
 上記一般式(4)で示される単量体の重合方法としては、バルク重合、溶液重合、乳化重合等の重合方法を用いることができ、目的、用途に応じて適宜選択すればよいが、溶液重合及びバルク重合が工業的に有利で、分子量等の構造調整も容易であり好ましい。重合機構としては、ラジカル重合、アニオン重合、カチオン重合、配位重合等の機構に基づいた重合方法を用いることができるが、ラジカル重合機構に基づく重合方法が、工業的にも有利であるため、好ましい。
 上記一般式(4)で示される単量体をラジカル重合機構により重合する場合、熱によりラジカルを発生する熱ラジカル重合開始剤、光照射により分解してラジカルを発生する光ラジカル重合開始剤を用いるのが工業的に有利で好ましい。そのような重合開始剤としては、特に限定されるものではなく、重合温度や溶媒、重合させる単量体の種類等の重合条件に応じて、適宜選択すればよく、これらは単独で用いても、2種以上を併用してもよい。また、重合開始剤とともに遷移金属塩やアミン類等の還元剤を併用してもよい。
 熱ラジカル重合開始剤としては、熱エネルギーを供給することによりラジカルを発生し重合を開始させるものであれば特に限定されるものではなく、例えば、3-ヒドロキシ-1,1-ジメチルブチルペルオキシネオデカノエート、α-クミルペルオキシネオデカノエート、1,1,3,3-テトラメチルブチルペルオキシネオデカノエート、t-アミルペルオキシネオデカノエート、t-ブチルペルオキシネオデカノエート、ジ(2-エチルヘキシル)ペルオキシジカーボネート、ジ(s-ブチル)ペルオキシジカーボネート、t-ブチルペルオキシネオヘプタノエート、t-アミルペルオキシピバレート、t-ブチルペルオキシピバレート、ジイソノナノイルペルオキシド、ジラウロイルペルオキシド、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、ジベンゾイルペルオキシド、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシソブチレート、1,1-ジ(t-アミルペルオキシ)シクロヘキサン、t-アミルペルオキシイソノナノエート、t-アミルペルオキシn-オクトエート、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-アミルペルオキシソプロピルカーボネート、t-ブチルペルオキシソプロピルカーボネート、t-アミルペルオキシ2-エチルヘキシルカーボネート、t-ブチルペルオキシ2-エチルヘキシルカーボネート、t-アミルペルオキシベンゾエート、t-アミルペルオキシアセテート、t-ブチルペルオキシアセテート、t-ブチルペルオキシソノナノエート、t-ブチルペルオキシベンゾエート、2,2-ジ(t-ブチルペルオキシ)ブタン、n-ブチル 4,4-ジ(t-ブチルペルオキシ)バレレート、メチルエチルケトンペルオキシド、エチル 3,3-ジ(t-ブチルペルオキシ)ブチレート、1,3-ジ(2-t-ブチルペルオキシソプロピル)ベンゼン、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、ジ-t-アミルペルオキシド、ジ-t-ブチルペルオキシド、1,1,3,3-テトラメチルブチルハイドロペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキシン-3、t-アミルハイドロペルオキシド、t-ブチルハイドロペルオキシド、過酸化水素、過硫酸塩等の過酸化物;2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジハイドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェートジハイドレート、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(2-アミジノプロパン)ジハイドロクロリド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]n-ハイドレート、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、ジメチル2,2’-アゾビス(イソブチレート)、4,4’-アゾビス(4-シアノペンタン酸)、1,1-アゾビス(1-アセトキシ-1-フェニルエタン)等のアゾ化合物等が挙げられ、好ましくは、ジ-t-ブチルペルオキシド、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、ジクミルペルオキシド、ジベンゾイルペルオキシド、ジラウロイルペルオキシドが挙げられる。
 光ラジカル重合開始剤としては、光照射により分解してラジカルを発生し重合を開始させるものであれば特に限定されず、例えば、アセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4'-ジメトキシベンゾフェノン、4,4'-ジアミノベンゾフェノン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)等が挙げられる。
 重合開始剤の使用量は、使用する単量体の種類や量、重合温度、重合濃度等の重合条件、目標とする重合体の分子量等に応じて適宜設定すればよく、特に限定されないが、ポリスチレン換算の重量平均分子量が1,000~1,000,000の重合体を得るには、単量体の総モル数に対して、0.01~20モル%が好ましく、0.05~15モル%がより好ましく、0.1~10モル%がより好ましい。
 上記一般式(4)で示される単量体をラジカル重合機構により重合する場合、必要に応じて、連鎖移動剤を使用してもよく、ラジカル重合開始剤と併用するのがより好ましい。重合時に連鎖移動剤を使用すると、分子量分布の増大やゲル化を抑制できる傾向にある。このような連鎖移動剤としては、具体的には、例えば、メルカプト酢酸、3-メルカプトプロピオン酸等のメルカプトカルボン酸類;メルカプト酢酸メチル、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸2-エチルヘキシル、3-メルカプトプロピオン酸n-オクチル、3-メルカプトプロピオン酸メトキシブチル、3-メルカプトプロピオン酸ステアリル、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)等のメルカプトカルボン酸エステル類;エチルメルカプタン、t-ブチルメルカプタン、n-ドデシルメルカプタン、1,2-ジメルカプトエタン等のアルキルメルカプタン類;2-メルカプトエタノール、4-メルカプト-1-ブタノール等のメルカプトアルコール類;ベンゼンチオール、m-トルエンチオール、p-トルエンチオール、2-ナフタレンチオール等の芳香族メルカプタン類;トリス〔(3-メルカプトプロピオニロキシ)-エチル〕イソシアヌレート等のメルカプトイソシアヌレート類;2-ヒドロキシエチルジスルフィド、テトラエチルチウラムジスルフィド等のジスルフィド類;ベンジルジエチルジチオカルバメート等のジチオカルバメート類;α-メチルスチレンダイマー等の単量体ダイマー類;四臭化炭素等のハロゲン化アルキル類等が挙げられるが、これらに限定されない。これらの中では、入手性、架橋防止能、重合速度低下の度合いが小さい等の点で、メルカプトカルボン酸類、メルカプトカルボン酸エステル類、アルキルメルカプタン類、メルカプトアルコール類、芳香族メルカプタン類;メルカプトイソシアヌレート類等のメルカプト基を有する化合物が好ましく、アルキルメルカプタン類、メルカプトカルボン酸類、メルカプトカルボン酸エステル類が最も好ましい。これらは単独で用いても、2種以上を併用してもよい。
 連鎖移動剤の使用量は、使用する単量体の種類や量、重合温度、重合濃度等の重合条件、目標とする重合体の分子量等に応じて適宜設定すればよく、特に限定されないが、ポリスチレン換算の重量平均分子量が1,000~1,000,000の重合体を得るには、単量体の総モル数に対して、0.01~20モル%が好ましく、0.05~15モル%がより好ましく、0.1~10モル%がより好ましい。
 上記一般式(4)で示される単量体をラジカル重合機構により、熱によりラジカルを発生する重合開始剤を用いて重合する際の重合温度としては、使用する単量体の種類や量、重合開始剤の種類や量等に応じて適宜設定すればよいが、30~200℃が好ましく、60~170℃がより好ましい。
 上記一般式(4)で示される単量体が重合時に液体の場合には、生産性の観点からバルク重合を選択することが好ましい。バルク重合により重合する場合の条件は、使用する単量体の種類に応じて適宜設定すればよい。
 上記一般式(4)で示される単量体を溶液重合法により重合する場合、重合に使用する溶媒としては、重合反応に不活性なものであれば特に限定されるものではなく、重合機構、使用する単量体の種類や量、重合温度、重合濃度等の重合条件に応じて適宜設定すればよく、特に限定されないが、例えば、ベンゼン、トルエン、キシレン、メシチレン、モノクロロベンゼン、モノブロモベンゼン、ジクロロベンゼン、トリクロロベンゼン等の芳香族炭化水素系溶媒;n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、ジクロロメタン、ジブロモメタン、クロロホルム、四塩化炭素、エチレンジクロリド、1,1,1-トリクロロエタン、トリクロロエチレン等の脂肪族炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、テトラメチル尿素、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン等のアミド系溶媒;メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール、イソブタノール、n-ブチルアルコール、s-ブタノール、t-ブタノール、エチレングリコール等のアルコール系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸エチル、γ―ブチロラクトン、γ―バレロラクトン等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒;ジメチルスルホキシド等の含硫黄系溶媒;ピコリン、ピリジン等の含窒素系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒が挙げられる。これらは単独で用いても、2種以上を併用してもよい。これらの溶媒の中では、単量体の溶解性、人体及び環境への影響の少なさ、工業的入手のし易さから、トルエン、キシレン、モノクロロベンゼン、ジクロロメタン、テトラヒドロフラン、シクロペンチルメチルエーテル、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール、イソブタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルスルホキシド、アセトニトリルが好ましい。
 上記一般式(4)で示される単量体を溶液重合法により重合する場合、溶媒の使用量としては、全単量体100重量部に対して、10~5,000重量部が好ましく、50~1,000重量部がより好ましい。
 本発明の製造方法における重合時間は、使用する出発物質の量や種類、溶媒の有無やその種類、反応温度等の条件によって適宜設定することができる。通常、1分~72時間であることが好ましく、作業性の観点から10分~48時間であることがより好ましい。
 重合終了後、得られた反応溶液から、一般的な方法を用いて一般式(1)で示される構造単位を有する重合体を単離することができる。単離する方法としては、特に限定されないが、例えば、重合溶媒を濃縮する方法及び/又は貧溶媒中へ添加することで固体を析出させる方法等が挙げられる。
 単離した重合体は必要に応じてカラムクロマトグラフィー、再沈殿法等によりさらに精製することもでき、必要に応じて乾燥及び/又は加熱溶融しペレット化することもできる。
 以下に、本発明を具体的な実施例により示すが、本発明は実施例の内容に制限されるものではない。なお、実施例及び合成例で得られた化合物のHPLC純度、5%重量減少温度、ガラス転移温度(又は融点)、重量平均分子量、MALDI-TOFMS、臭素含量、H-NMR、13C-NMR及び赤外線吸収スペクトル(FT-IR)の測定方法は以下の通りである。
 HPLC純度:高速液体クロマトグラフィー(HPLC)を用いて測定し、面積百分率により算出した。測定条件は以下の通りである。
 試料調製 :試料1.0mgをアセトニトリル1.0mLに溶解
 検出器 :SPD-10AVP((株)島津製作所製)
 オーブン :CTO-10AVP((株)島津製作所製)
 ポンプ :LC-10ADVP((株)島津製作所製)
 カラム :ODS-80TM(東ソー(株)製)
 溶離液 :アセトニトリル/水/リン酸=600/400/0.5
 カラム温度 :40℃
 流速 :1.0mL/min
 波長 :254nm
 5%重量減少温度:試料約10mgをアルミニウム製セルに入れ、示差熱・熱重量同時測定装置((株)島津製作所製 DTG-60)にて窒素気流下、10℃/分の昇温速度で、40~600℃まで昇温した。測定開始から5%重量が減少した時点の温度とした。
 ガラス転移温度:試料約5mgをアルミニウム製パン中に封入し、示差走査熱量計((株)島津製作所製DSC-60)を用い、窒素雰囲気下、毎分20℃の速度で100℃から300℃として2回昇温した。解析ソフトにより2回目昇温時のDSC曲線の外挿点からガラス転移温度を算出した。
 融点:試料約5mgをアルミニウム製パン中に封入し、示差走査熱量計((株)島津製作所製DSC-60)にて、窒素雰囲気下、毎分10℃で40~200℃まで昇温し、測定を行った。解析ソフトによりDSC曲線の外挿点から融点を算出した。
 重量平均分子量:ゲル浸透クロマトグラフ法により測定した。予め、東ソー製標準ポリスチレンを用い、分子量約120万までの検量線を作成し、得られたクロマトグラフによりデータ処理装置を用いて標準ポリスチレン換算の重量平均分子量を計算した。分析条件は以下の通りである。
 試料調製:試料0.01gをテトラヒドロフラン10mLに溶解
 注入量:10μL
 検出器:SPD-M10AVP(株式会社島津製作所製)
 オーブン:CTO-10A(株式会社島津製作所製)
 ポンプ:LC-10AD(株式会社島津製作所製)
 デガッサ:DGU-14A(株式会社島津製作所製)
 システムコントローラー:CBM-10A(株式会社島津製作所製)
 カラム:TSK-Gel G4000Hxl×1、G3000Hxl×1、G2000Hxl×2 4本連結(東ソー株式会社製)
 移動相:テトラヒドロフラン
 カラム温度:40℃
 流速:1.0mL/min
 波長:254nm
 マトリクス支援レーザー脱離イオン化-飛行時間型質量分析(MALDI-TOFMS):マトリックス(1,8,9-トリヒドロキシアントラセン)10mg、イオン化剤(トリフルオロ酢酸ナトリウム)10mgと測定試料3mgをテトラヒドロフラン1mLに溶かし、それを測定用プレートに30μL滴下して乾燥してサンプル調製を行い、MALDI-TOFMS(島津製作所社製AXIMA Confidence)にて測定を行った。
 臭素含量:JIS K 7229(フラスコ燃焼法)に準じる方法で測定した。なお、
フッ素を含有する合成例5はフラスコ燃焼法により定量試料を調製した後、ダイオネクス(株)社製のイオンクロマトグラフ装置DX-320を用いて測定した。分析条件は以下の通りである。
 試料調製:試料20mgをJIS K 7229(フラスコ燃焼法)に準ずる方法による得た。
 カラム:IonPac AS11-HC 4×250mm(ダイオネクス(株)製)
 オーブン:LC-25(ダイオネクス(株)製)
 オートサンプラ:AS-50(ダイオネクス(株)製)
 溶離液ジェネレータ:EG-40(ダイオネクス(株)製)
 ポンプ検出器モジュール:IC-25(ダイオネクス(株)製)
 流速:1.0mL/min
 カラム温度:30℃
 溶離液:5mM KOH
 H-NMR:化合物と重クロロホルム(和光純薬工業(株)社製 クロロホルム-d 0.05%TMS含有)または重DMSO(和光純薬工業(株)社製ジメチルスルホキシド-d 0.05%TMS含有)とを混合した溶液を調製し、NMR(日本電子(株)製 JNM-AL400)にて、H-NMR測定を行った。
 13C-NMR:化合物と重DMSO(和光純薬工業(株)社製ジメチルスルホキシド-d 0.05%TMS含有)とを混合した溶液を調製し、測定温度40℃でNMR(日本電子(株)製 JNM-ECA-500)にて、13C-NMR測定を行った。
 赤外線吸収スペクトル(FT-IR):IR測定装置((株)パーキンエルマー製Spectrum 100 FT-IR Spectrometer)を用い、KBr法にて赤外吸収スペクトルを測定した。
[合成例1]
N-(2,4,6-トリブロモフェニル)ジメタクリルアミドの合成
 コンデンサーを備えたナスフラスコに、2,4,6-トリブロモアニリン(マナック(株)社製)1.65g(5.00mmol)、ジクロロメタン5.00mL、4-ジメチルアミノピリジン(東京化成工業(株)社製)0.09g(0.736mmol)、トリエチルアミン(東京化成工業(株)社製)1.52g(15.0mmol)を加え、氷浴中で塩化メタクリロイル(東京化成工業(株)社製)1.57g(15.0mmol)をゆっくり滴下した後、室温で6日間撹拌を行った。反応終了後、反応溶液を減圧下で留去し、ヘキサン/酢酸エチルの混合溶媒により再結晶を行った。得られた白色結晶を真空下で乾燥を行うことによって目的物を1.49g(3.20mmol)、収率64%、HPLC純度100.0%、臭素含量51.5%、融点139℃で得た。
[合成例2]
 N-(2,4,6-トリブロモフェニル)メタクリルアミドの合成
 コンデンサー、温度計及びガス吸収装置を備えた500mL4つ口フラスコに、2,4,6-トリブロモアニリン(マナック(株)社製)52.1g(158mmol)、4-ジメチルアミノピリジン(東京化成工業(株)社製)0.965g(7.90mmol)、モノクロロベンゼン 230mL、トリエチルアミン(東京化成工業(株)社製)15.9g(158mmol)を加え、ここへ塩化メタクリロイル(東京化成工業(株)社製)19.8g(190mmol)を滴下し、還流管を取り付けて還流するまで加熱した。18時間撹拌後、室温に戻し水200mLを注入し有機層を洗浄・分液した。分液後、反応液を静置すると固体が析出してきたため、ろ過して回収した(44.5g)。また、ろ過後の溶液にヘプタン95.0gを加え、固体を析出させ、これをろ過して回収した(8.46g)。得られた粗生成物50.3g(126mmol)をトルエンにより再結晶を行った。得られた結晶を乾燥することによって目的のN-(2,4,6-トリブロモフェニル)メタクリルアミドを44.3g(111mmol)、収率70%、HPLC純度99.6%、臭素含量60.1%、融点159℃で得た。
[合成例3]
N-(2,4,6-トリブロモフェニル)ジアクリルアミドの合成
 コンデンサーを備えたナスフラスコに、2,4,6-トリブロモアニリン(マナック(株)社製)5.00g(15.1mmol)、)、4-ジメチルアミノピリジン(東京化成工業(株)社製)0.19g(1.56mmol)、モノクロロベンゼン 32mL、トリエチルアミン 9.20g(90.9mmol)、2,6-ジ-t-ブチル-p-クレゾール(BHT)(東京化成工業(株)社製)0.01g(0.045mmol)を加え、3-クロロプロピオニルクロリド(東京化成工業(株)社製)5.77g(45.4mmol)を滴下した後、内温40℃で80分間撹拌した。反応終了後、反応溶液をろ過した後、母液を減圧下で濃縮して粗生成物を得た。得られた粗生成物をイソプロピルアルコール/ヘプタン(重量比=1:1)の混合溶媒により10℃で再結晶を行ない、結晶を濾取した。得られた白色結晶を40℃で送風乾燥を行うことによって目的物を2.33g(5.32mmol)、収率35%、HPLC純度99.9%、臭素含量54.8%、融点99℃で得た。
[合成例4]
N-(2,6-ジブロモ-4-メチルフェニル)ジメタクリルアミドの合成
 コンデンサーを備えたナスフラスコに、2,6-ジブロモ-4-メチルアニリン(東京化成工業(株)社製)3.04g(11.5mmol)、モノクロロベンゼン23.0mL、4-ジメチルアミノピリジン(東京化成工業(株)社製)0.07g(0.573mmol)、トリエチルアミン(東京化成工業(株)社製)2.79g(27.6mmol)を加え、塩化メタクリロイル(東京化成工業(株)社製)2.88g(27.6mmol)をゆっくり滴下した後、内温70℃で17時間撹拌を行った。反応終了後、反応溶液をろ過した後、母液を減圧下で濃縮して粗生成物を得た。得られた粗生成物をヘプタン/モノクロロベンゼンの混合溶媒により再結晶を行ない、結晶を濾取した。得られた白色結晶を60℃で送風乾燥を行うことによって目的物を2.15g(5.36mmol)、収率47%、HPLC純度100.0%、臭素含量39.7%、融点137℃で得た。
[合成例5]
N-(2,6-ジブロモ-4-トリフルオロメトキシフェニル)ジメタクリルアミドの合成
 2,6-ジブロモ-4-メチルアニリン(東京化成工業(株)社製)の代わりに、2,6-ジブロモ-4-トリフルオロメトキシアニリン(東京化成工業(株)社製)3.00g(8.96mmol)を用いた以外は合成例4と同様な手順で行った。得られた粗生成物をヘプタン/モノクロロベンゼンの混合溶媒再結晶を行ない、結晶を濾取した。得られた白色結晶を60℃で送風乾燥を行うことによって目的物を1.05g(2.23mmol)、収率25%、HPLC純度99.7%、臭素含量33.1%、融点94℃で得た。
[合成例6]
N-(2,6-ジブロモ-4-ニトロフェニル)ジメタクリルアミドの合成
 2,6-ジブロモ-4-メチルアニリン(東京化成工業(株)社製)の代わりに、2,6-ジブロモ-4-ニトロアニリン(東京化成工業(株)社製)3.00g(10.1mmol)を用いた以外は合成例4と同様な手順で行った。得られた粗生成物をメタノールにより再結晶を行ない、結晶を濾取した。得られた白色結晶を60℃で送風乾燥を行うことによって目的物を3.55g(8.22mmol)、収率81%、HPLC純度99.6%、臭素含量36.6%、融点141℃で得た。
[参考例1]
5員環モデル化合物の合成
Figure JPOXMLDOC01-appb-C000014

 2,4,6-トリブロモアニリン(マナック(株)社製)0.659g(2.00mmol)と4-ジメチルアミノピリジン(DMAP)0.0500g(0.409mmol)、トリエチルアミン(TEA)0.700mLをジクロロメタン20mLに溶解させた。氷浴中でコハク酸クロリド0.450mLをゆっくりと加え、17時間室温で撹拌した。飽和食塩水と酢酸エチルで分液後、硫酸ナトリウムで乾燥した。シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:10→1:2)で分離し、酢酸エチル:ヘキサン=1:10の混合溶媒で再結晶し、目的物を0.335g、収率41%で得た。
IR:1724cm-1
13C-NMR:174.88ppm
[参考例2]
6員環モデル化合物の合成
Figure JPOXMLDOC01-appb-C000015

 2,4,6-トリブロモアニリン(マナック(株)社製)0.653g(1.98mmol)とDMAP0.0255g(0.209mmol)、TEA0.700mLをジクロロメタン20mLに溶解させた。氷浴中でグルタリルクロリド0.450mLをゆっくりと加え、1時間室温で撹拌した。薄層クロマトグラフィーによる反応追跡により、反応が進行していないことを確認したため、TEA0.700mLとグルタリルクロリド0.450mLを追加して室温で23時間撹拌した。飽和食塩水と酢酸エチルで分液後、硫酸ナトリウムで乾燥した。シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2→1:0)で分離し、目的物を0.0753g、収率9%で得た。
IR:1698cm-1
13C-NMR:171.16ppm
[実施例1]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドのラジカル重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド510mg(1.09mmol)を反応容器に入れ、そこにジ-t-ブチルペルオキシド(和光純薬工業(株)社製)850mgをジエチルエーテル10mLに溶かした溶液を0.1mL加えた(よって、実際に加えられたラジカル開始剤の量は8.5mg、0.058mmol)。減圧にてジエチルエーテルを除去し、アルゴン置換したのち、140℃で24時間撹拌した。得られた固体をテトラヒドロフランに溶解し、この溶液をメタノール30mLに加えた。生成した沈殿物を吸引濾過し、真空乾燥することで目的の重合体を白色固体として得た(372mg、理論重量の72%)。臭素含量:実測値50.9%、理論値51.4%;ガラス転移温度255℃;5%重量減少温度396℃;重量平均分子量7,600(Mw/Mn2.1)。目的物のH-NMRを図1Aに、13C-NMRを図1Bに、FT-IRチャートを図2に、MALDI-TOF-MASSを図3に示す。
 図2に示したように、IR測定の結果、イミドのC=Oの吸収ピークが2本(1722cm-1及び1696cm-1)観察された。参考例1及び2のIR測定の結果との比較により、前者が5員環、後者は6員環のイミド構造に帰属できる。したがって、実施例1で得られた重合体は、一般式(2)で表される構造単位と一般式(3)で表される構造単位の双方を含む。また、図1Bに示したように、13C-NMRの結果、イミドのC=Oに由来するシグナルが2本(178ppm及び175ppm)観察された。参考例1及び2の13C-NMR測定の結果との比較により、前者が5員環、後者は6員環のイミド構造に帰属できる。両者の積分比より、一般式(3)で表される構造単位(5員環)と一般式(2)で表される構造単位(6員環)との存在比は、1:1.5と算出された。
[比較例1]
 実施例1で得られた重合体と主要な難燃剤の耐熱性を比較する為、それぞれの5%重量減少温度及びガラス転移温度を表1に示す。
Figure JPOXMLDOC01-appb-T000016
[実施例2]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドとN-(2,4,6-トリブロモフェニル)メタクリルアミドの共重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド234mg(0.501mmol)と合成例2で合成したN-(2,4,6-トリブロモフェニル)メタクリルアミド199mg(0.501mmol)を反応容器に入れ、そこにジ-t-ブチルペルオキシド(和光純薬工業(株)社製)360mgをジエチルエーテル10mLに溶かした溶液を0.1mL加えた(よって、実際に加えられたラジカル開始剤の量は3.6mg,0.025mmol)。減圧にてジエチルエーテルを除去し、アルゴン置換したのち、160℃で24時間撹拌した。得られた固体をテトラヒドロフランに溶解し、この溶液をメタノール30mLに加えた。生成した沈殿物を吸引濾過し、真空乾燥することで目的の共重合体を白色固体として得た(307mg,理論重量の70%)。臭素含量:実測値58.8%;ガラス転移温度207℃;5%重量減少温度318℃;重量平均分子量4,300(Mw/Mn2.1)。目的物のH-NMRを図4に、FT-IRチャートを図5に示す。
[実施例3]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドと(2,4,6-トリブロモフェニル)アクリレートの共重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド233mg(0.500mmol)と(2,4,6-トリブロモフェニル)アクリレート(第一工業製薬(株)社製ニューフロンティア(登録商標)BR-30)193mg(0.501mmol)を反応容器に入れ、そこにジ-t-ブチルペルオキシド(和光純薬工業(株)社製)360mgをジエチルエーテル10mLに溶かした溶液を0.1mL加えた(よって、実際に加えられたラジカル開始剤の量は3.6mg,0.025mmol)。減圧にてジエチルエーテルを除去し、アルゴン置換したのち、140℃で24時間撹拌した。得られた固体をテトラヒドロフランに溶解し、この溶液をメタノール30mLに加えた。生成した沈殿物を吸引濾過し、真空乾燥することで目的の共重合体を白色固体として得た(375mg,理論重量の87%)。臭素含量:実測値56.4%;ガラス転移温度203℃;5%重量減少温度340℃;重量平均分子量12,600(Mw/Mn2.3)。目的物のH-NMRを図6に、FT-IRチャートを図7に示す。
[実施例4]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドとスチレンの共重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド242mg(0.518mmol)とスチレン(和光純薬工業(株))54.0mg(0.518mmol)を反応容器に加え、そこにジ-t-ブチルペルオキシド(和光純薬工業(株)社製)360mgをジエチルエーテル10mLに溶かした溶液を0.1mL加えた(よって、実際に加えられたラジカル開始剤の量は3.6mg,0.025mmol)。減圧にてジエチルエーテルを除去し、アルゴン置換したのち、140℃で24時間撹拌した。得られた固体をテトラヒドロフランに溶解し、この溶液をメタノール30mLに加えた。生成した沈殿物を吸引濾過し、真空乾燥することで目的の共重合体を白色固体として得た(221mg,理論重量の74%)。臭素含量:実測値46.3%;ガラス転移温度218℃;5%重量減少温度369℃;重量平均分子量18,300(Mw/Mn4.1)。目的物のH-NMRを図8に、FT-IRチャートを図9に示す。
[実施例5]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドとメタクリル酸メチルの共重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド(233mg,0.500mmol)とメタクリル酸メチル(和光純薬工業(株)社製)51.4mg(0.513mmol)の共重合を、実施例4と同様の手順で行った。得られた固体をテトラヒドロフランに溶解し、この溶液をメタノール30mLに加えた。生成した沈殿物を吸引濾過し、真空乾燥することで目的の共重合体を白色固体として得た(183mg,理論重量の64%)。臭素含量:実測値50.3%;ガラス転移温度253℃;、5%重量減少温度393℃、重量平均分子量9,500(Mw/Mn1.9)。目的物のH-NMRを図10に、FT-IRチャートを図11に示す。
[実施例6]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドとメタクリル酸ベンジルの共重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド233mg(0.500mmol)とメタクリル酸ベンジル(和光純薬工業(株)社製)88.2mg(0.500mmol)の共重合を、実施例4と同様の手順で行った。得られた固体をテトラヒドロフランに溶解し、この溶液をメタノール30mLに加えた。生成した沈殿物を吸引濾過し、真空乾燥することで目的の共重合体を白色固体として得た(266mg、理論重量の82%)。臭素含量:実測値39.1%;ガラス転移温度170℃;5%重量減少温度355℃;重量平均分子量15,000(Mw/Mn2.0)。目的物のH-NMRを図12に、FT-IRチャートを図13に示す。
[実施例7]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドとN-イソプロピルアクリルアミドの共重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド233mg(0.500mmol)とN-イソプロピルアクリルアミド(和光純薬工業(株)社製)56.6mg(0.500mmol)の共重合を、実施例4と同様の手順で行った。得られた固体をテトラヒドロフランに溶解し、この溶液をメタノール30mLに加えた。生成した沈殿物を吸引濾過し、真空乾燥することで目的の共重合体を白色固体として得た(190mg、理論重量の65%)。臭素含量:実測値48.7%;ガラス転移温度242℃;5%重量減少温度365℃;重量平均分子量10,800(Mw/Mn2.7)。目的物のH-NMRを図14に、FT-IRチャートを図15に示す。
[実施例8]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドと1-ビニル-2-ピロリドンの共重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド233mg(0.500mmol)と1-ビニル-2-ピロリドン(和光純薬工業(株)社製)56.5mg(0.508mmol)の共重合を、実施例4と同様の手順で行った。得られた固体をテトラヒドロフランに溶解し、この溶液をメタノール30mLに加えた。生成した沈殿物を吸引濾過し、真空乾燥することで目的の共重合体を白色固体として得た(198mg、理論重量の67%)。臭素含量:実測値48.3%;ガラス転移温度257℃;5%重量減少温度387℃;重量平均分子量9,600(Mw/Mn2.0)。目的物のH-NMRを図16に、FT-IRチャートを図17に示す。
[実施例9]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドのラジカル重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド234mg(0.503mmol)を反応容器内に加えた。そこに、アゾビスイソブチロニトリル(AIBN)(和光純薬工業(株)社製)8.00mgを加え、N-メチル-2-ピロリドン(NMP)0.5mLで溶解させた。そして、アルゴン置換したのち、60℃で24時間撹拌した。反応溶液をメタノール40mLに加えて、再沈殿を行った。反応容器をテトラヒドロフラン(THF)1mLで洗浄し、その洗液も再沈殿溶媒に加えた。生成した沈殿物を吸引濾過し、120℃加熱下で真空乾燥することで目的の重合体を白色固体として得た(51.8mg、理論重量の22%)。臭素含量:理論値51.4%;ガラス転移温度205℃;5%重量減少温度363℃;重量平均分子量1,700(Mw/Mn1.5)。目的物のH-NMRを図18Aに、13C-NMRを図18Bに、FT-IRチャートを図19に示す。
 図19に示したように、IR測定の結果、イミドのC=Oの吸収ピークが2本(1722cm-1及び1696cm-1)観察された。参考例1及び2のIR測定の結果との比較により、前者が5員環、後者は6員環のイミド構造に帰属できる。したがって、実施例9で得られた重合体は、一般式(2)で表される構造単位と一般式(3)で表される構造単位の双方を含む。また、図18Bに示したように、13C-NMRの結果、イミドのC=Oに由来するシグナルが2本(178ppm及び175ppm)観察された。参考例1及び2の13C-NMR測定の結果との比較により、前者が5員環、後者は6員環のイミド構造に帰属できる。両者の積分比より、一般式(3)で表される構造単位(5員環)と一般式(2)で表される構造単位(6員環)との存在比は、1.2:1と算出された。
[実施例10]
 N-(2,4,6-トリブロモフェニル)ジメタクリルアミドのラジカル重合
 合成例1で合成したN-(2,4,6-トリブロモフェニル)ジメタクリルアミド467mg(1.00mmol)を反応容器内に加えた。そこに、ジ-t-ブチルペルオキシド(和光純薬工業(株)社製)7.00mgを加え、NMP1mLで溶解させた。そして、アルゴン置換したのち、100℃で24時間撹拌した。反応溶液をメタノール40mLに加えて、再沈殿を行った。反応容器をTHF1mLで洗浄し、その洗液も再沈殿溶媒に加えた。生成した沈殿物を吸引濾過し、120℃加熱下で真空乾燥することで目的の重合体を白色固体として得た(196mg、理論重量の42%)臭素含量:理論値51.4%;ガラス転移温度207℃;5%重量減少温度368℃;重量平均分子量1,400(Mw/Mn1.4)。目的物のH-NMRを図20に、FT-IRチャートを図21に示す。
[実施例11]
 N-(2,4,6-トリブロモフェニル)ジアクリルアミドのラジカル重合
 合成例3で合成したN-(2,4,6-トリブロモフェニル)ジアクリルアミド219mg(0.500mmol)を反応容器内に加えた。そこに、AIBN(和光純薬工業(株)社製)9.00mgとNMP1mLを加えた。そして、アルゴン置換したのち、60℃で24時間撹拌した。反応溶液をメタノール40mLに加えて、再沈殿を行った。生成した沈殿物を吸引濾過し、120℃加熱下で真空乾燥することで目的の重合体を淡黄色固体として得た(169mg、理論重量の77%)臭素含量:理論値54.7%;ガラス転移温度200℃;5%重量減少温度346℃;重量平均分子量5,200(Mw/Mn2.1)。目的物のH-NMRを図22Aに、13C-NMRを図22Bに、FT-IRチャートを図23に示す。
 図23に示したように、IR測定の結果、イミドのC=Oの吸収ピークが1本(1722cm-1)観察された。参考例1のIR測定の結果との比較により、5員環のイミド構造に帰属できる。また、図22Bに示したように、13C-NMRの結果、イミドのC=Oに由来するシグナルが1本(178ppm)観察された。参考例1の13C-NMR測定の結果との比較により、5員環のイミド構造に帰属できる。これらの結果より、実施例11で得られた重合体は、一般式(2)で表される構造単位からなる化合物である。
[実施例12]
 N-(2,4,6-トリブロモフェニル)ジアクリルアミドとスチレンの共重合
 合成例3で合成したN-(2,4,6-トリブロモフェニル)ジアクリルアミド217mg(0.495mmol)とスチレン(和光純薬工業(株)社製)50.8mg(0.506mmol)を反応容器内に加えた。そこに、AIBN(和光純薬工業(株)社製)8.00mgを加え、NMP0.75mLで溶解させた。そして、アルゴン置換し、60℃で24時間撹拌した。反応終了後、THF1mLで溶解させ、メタノール30mLに加えて、再沈殿を行った。反応容器はTHF1mLで洗浄し、その洗液も再沈殿溶媒に加えた。生成した沈殿物を吸引濾過し、120℃加熱下で真空乾燥することで目的の重合体を白色固体として得た(232mg、理論重量の86%)。臭素含量:実測値44.8%;ガラス転移温度195℃;5%重量減少温度337℃;重量平均分子量126,600(Mw/Mn17.5)。目的物のH-NMRを図24に、FT-IRチャートを図25に示す。H-NMRより、ジアクリロイルアミドモノマーとスチレンモノマーの比率は2:1であった。
[実施例13]
 N-(2,6-ジブロモ-4-メチルフェニル)ジメタクリルアミドのラジカル重合
 合成例4で合成したN-(2,6-ジブロモ-4-メチルフェニル)ジメタクリルアミド201mg(0.500mmol)を反応容器内に加えた。そこに、ジ-t-ブチルペルオキシド(和光純薬工業(株)社製)4.00mgを加え、アルゴン置換したのち、140℃で24時間撹拌した。得られた透明固体をTHF1mLに溶解させ、メタノール40mLに加えて再沈殿を行った。反応容器をTHF1mLで洗浄し、その洗液も再沈殿溶媒に加えた。生成した沈殿物を吸引濾過し、120℃加熱下で真空乾燥することで目的の重合体を白色固体として得た(152mg、理論重量の76%)。臭素含量:理論値39.8%;ガラス転移温度253℃;5%重量減少温度395℃;重量平均分子量5,200(Mw/Mn2.4))。目的物のH-NMRを図26に、FT-IRチャートを図27に示す。
[実施例14]
 N-(2,6-ジブロモ-4-トリフルオロメトキシフェニル)ジメタクリルアミドのラジカル重合
 合成例5で合成したN-(2,6-ジブロモ-4-トリフルオロメトキシフェニル)ジメタクリルアミド235mg(0.500mmol)を反応容器内に加えた。そこに、ジt-ブチルペルオキシド(和光純薬工業(株)社製)4.00mgを加え、アルゴン置換したのち、140℃で24時間撹拌した。得られた透明固体をTHF1mLに溶解させ、メタノール40mLに加えて再沈殿を行った。反応容器をTHF1mLで洗浄し、その洗液も再沈殿溶媒に加えた。生成した沈殿物を吸引濾過し、120℃加熱下で真空乾燥することで目的の重合体を白色固体として得た(133mg、理論重量の57%)。臭素含量:理論値33.9%;ガラス転移温度215℃;5%重量減少温度375℃;重量平均分子量11,200(Mw/Mn2.1)。目的物のH-NMRを図28に、FT-IRチャートを図29に示す。
[実施例15]
 N-(2,6-ジブロモ-4-ニトロフェニル)ジメタクリルアミドのラジカル重合
 合成例6で合成したN-(2,6-ジブロモ-4-ニトロフェニル)ジメタクリルアミド216mg(0.500mmol)を反応容器内に加えた。そこに、ジ-t-ブチルペルオキシド(和光純薬工業(株)社製)4.00mgを加え、アルゴン置換したのち、140℃で24時間撹拌した。得られた透明固体をTHF1mLに溶解させ、メタノール40mLに加えて再沈殿を行った。反応容器をTHF1mLで洗浄し、その洗液も再沈殿溶媒に加えた。生成した沈殿物を吸引濾過し、120℃加熱下で真空乾燥することで目的の重合体を白色固体として得た(45.5mg、理論重量の21%)。臭素含量:理論値37.0%;ガラス転移温度(不検出);5%重量減少温度303℃;重量平均分子量8,100(Mw/Mn3.3))。目的物のFT-IRチャートを図30に示す。
 本発明の重合体は、モノマー単位中に臭素原子を含み、かつ主鎖に環構造を有することから、耐熱性に優れた難燃剤あるいは難燃性樹脂として有用な含臭素重合体が提供される。また本発明の重合体は臭素原子を含むことで光学特性(特に高屈折率)に優れた難燃性を有する樹脂材料としても期待できる。

Claims (12)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001

    (式中、
    pは、0又は1であり、
    mは、2~5の整数であり、
    は、各々同一であっても異なっていてもよく、水素原子又は炭素数1~4のアルキル基であり、
    は、水素原子、フッ素原子、塩素原子、ヨウ素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアルキルチオ基、炭素数1~4のハロアルキル基、炭素数1~4のハロアルコキシ基、ビニル基、ニトロ基、シアノ基、アルデヒド基、アミノ基、ヒドロキシル基、チオール基、スルホ基、スルホンアミド基、カルボキシル基もしくはエステル基であり、mが2又は3の場合、各Rは同一であっても異なっていてもよく、
    星印は、重合体末端又は他の構造単位との結合点を示す)
    で表される構造単位を有する重合体。
  2.  前記一般式(1)が下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002

    (式中、
    mは、2~5の整数であり、
    は、各々同一であっても異なっていてもよく、水素原子又は炭素数1~4のアルキル基であり、
    は、水素原子、フッ素原子、塩素原子、ヨウ素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアルキルチオ基、炭素数1~4のハロアルキル基、炭素数1~4のハロアルコキシ基、ビニル基、ニトロ基、シアノ基、アルデヒド基、アミノ基、ヒドロキシル基、チオール基、スルホ基、スルホンアミド基、カルボキシル基もしくはエステル基であり、mが2又は3の場合、各Rは同一であっても異なっていてもよく、
    星印は、重合体末端又は他の構造単位との結合点を示す)
    で表される請求項1記載の重合体。
  3.  前記一般式(1)が下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003

    (式中、
    mは、2~5の整数であり、
    は、各々同一であっても異なっていてもよく、水素原子又は炭素数1~4のアルキル基であり、
    は、水素原子、フッ素原子、塩素原子、ヨウ素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアルキルチオ基、炭素数1~4のハロアルキル基、炭素数1~4のハロアルコキシ基、ビニル基、ニトロ基、シアノ基、アルデヒド基、アミノ基、ヒドロキシル基、チオール基、スルホ基、スルホンアミド基、カルボキシル基もしくはエステル基であり、mが2又は3の場合、各Rは同一であっても異なっていてもよく、
    星印は、重合体末端又は他の構造単位との結合点を示す)
    で表される請求項1記載の重合体。
  4.  Rが水素原子である、請求項1~3のいずれか1項記載の重合体。
  5.  Rが水素原子又はメチル基である、請求項1~4のいずれか1項記載の重合体。
  6.  重合体全体における臭素含量が10重量%~75重量%である請求項1~5のいずれか1項記載の重合体。
  7.  一般式(1)で表される構造単位のみを有する請求項1~6のいずれか1項記載の重合体。
  8.  請求項1~7のいずれか1項記載の重合体を含む難燃剤。
  9.  請求項1~7のいずれか1項記載の重合体を含む難燃性光学用材料。
  10.  下記一般式(4):
    Figure JPOXMLDOC01-appb-C000004

    (式中、
    mは、2~5の整数であり、
    は、各々同一であっても異なっていてもよく、水素原子又は炭素数1~4のアルキル基であり、
    は、水素原子、フッ素原子、塩素原子、ヨウ素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のアルキルチオ基、炭素数1~4のハロアルキル基、炭素数1~4のハロアルコキシ基、ビニル基、ニトロ基、シアノ基、アルデヒド基、アミノ基、ヒドロキシル基、チオール基、スルホ基、スルホンアミド基、カルボキシル基もしくはエステル基であり、mが2又は3の場合、Rは同一であっても異なっていてもよい)
    で表される単量体を重合させる工程を含む下記一般式(1):
    Figure JPOXMLDOC01-appb-C000005

    (式中、R、R、m、p及び星印は、前記と同義である)
    で表される構造単位を有する重合体の製造方法。
  11.  ラジカル重合開始剤存在下に重合させる工程を含む、請求項10記載の製造方法。
  12.  前記ラジカル開始剤が有機過酸化物又は有機アゾ化合物又はそれらの混合物である、請求項11記載の製造方法。
PCT/JP2015/075862 2014-12-24 2015-09-11 新規な含臭素重合体及びその製造方法 WO2016103802A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/538,770 US10442876B2 (en) 2014-12-24 2015-09-11 Bromine-containing polymers and methods for producing the same
EP15872371.8A EP3239192B1 (en) 2014-12-24 2015-09-11 Novel bromine-containing polymers and methods for producing the same
KR1020177020151A KR102352441B1 (ko) 2014-12-24 2015-09-11 신규한 브롬 함유 중합체 및 그의 제조 방법
JP2016565961A JP6606102B2 (ja) 2014-12-24 2015-09-11 新規な含臭素重合体及びその製造方法
CN201580070694.9A CN107108797B (zh) 2014-12-24 2015-09-11 新型的含溴聚合物和其制造方法
IL253126A IL253126B (en) 2014-12-24 2017-06-22 Bromine-containing polymers and methods for their preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014260878 2014-12-24
JP2014-260878 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016103802A1 true WO2016103802A1 (ja) 2016-06-30

Family

ID=56149843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075862 WO2016103802A1 (ja) 2014-12-24 2015-09-11 新規な含臭素重合体及びその製造方法

Country Status (8)

Country Link
US (1) US10442876B2 (ja)
EP (1) EP3239192B1 (ja)
JP (1) JP6606102B2 (ja)
KR (1) KR102352441B1 (ja)
CN (1) CN107108797B (ja)
IL (1) IL253126B (ja)
TW (1) TWI666223B (ja)
WO (1) WO2016103802A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101213A (ja) * 2015-12-04 2017-06-08 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク組成物、活性エネルギー線硬化型インクジェット用インク組成物、組成物収容容器、2次元又は3次元の像形成装置、及び2次元又は3次元の像形成方法
JP2017110204A (ja) * 2015-12-10 2017-06-22 三菱化学株式会社 共重合体
JP2018119045A (ja) * 2017-01-24 2018-08-02 マナック株式会社 難燃性ポリアミド樹脂組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3310736B1 (de) 2015-06-17 2019-01-30 Clariant International Ltd Wasserlösliche oder wasserquellbare polymere als wasserverlustreduzierer in zementschlämmen
BR112019011780B1 (pt) 2016-12-12 2023-03-07 Clariant International Ltd Polímero compreendendo carbono de material biológico, seu processo de obtenção e seu uso
CN110300573B (zh) 2016-12-12 2023-07-25 科莱恩国际有限公司 生物基聚合物在化妆、皮肤病学或药物学组合物中的用途
US11401362B2 (en) 2016-12-15 2022-08-02 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US11542343B2 (en) 2016-12-15 2023-01-03 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
EP3554646A1 (en) 2016-12-15 2019-10-23 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
WO2018108664A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217217A (ja) * 1984-03-12 1985-10-30 アトランテイツク・リツチフイールド・カンパニー チヤー形成性重合体及びそれを含有する成形可能な組成物
JPS6397601A (ja) * 1986-10-15 1988-04-28 Ube Ind Ltd 光硬化性組成物
JPH02218759A (ja) * 1988-11-07 1990-08-31 Pennwalt Corp ポリマー結合難燃剤
WO2015076296A1 (ja) * 2013-11-20 2015-05-28 マナック株式会社 含臭素n-フェニルジアクリルイミド誘導体及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604422A (en) * 1984-12-24 1986-08-05 Atlantic Richfield Company Flame-retardant molded composition incorporating a poly[N-(bromophenyl)maleimide-co-styrene-co-maleic anhydride] copolymer
JPH02189316A (ja) * 1989-01-19 1990-07-25 Hitachi Chem Co Ltd 光学用樹脂の製造法
US5132430A (en) 1991-06-26 1992-07-21 Polaroid Corporation High refractive index polymers
IL100540A (en) 1991-12-27 1995-12-08 Bromine Compounds Ltd Flame retarded poly (methylmethacrylates)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217217A (ja) * 1984-03-12 1985-10-30 アトランテイツク・リツチフイールド・カンパニー チヤー形成性重合体及びそれを含有する成形可能な組成物
JPS6397601A (ja) * 1986-10-15 1988-04-28 Ube Ind Ltd 光硬化性組成物
JPH02218759A (ja) * 1988-11-07 1990-08-31 Pennwalt Corp ポリマー結合難燃剤
WO2015076296A1 (ja) * 2013-11-20 2015-05-28 マナック株式会社 含臭素n-フェニルジアクリルイミド誘導体及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. A. STONE-ELANDER ET AL.: "Conformational Effects on the Cyclopolymerization of N-(p-Bromophenyl) dimethacrylamide", MACROMOLECULES, vol. 15, no. Issue 1, 1982, pages 45 - 54, XP055458347 *
See also references of EP3239192A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101213A (ja) * 2015-12-04 2017-06-08 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク組成物、活性エネルギー線硬化型インクジェット用インク組成物、組成物収容容器、2次元又は3次元の像形成装置、及び2次元又は3次元の像形成方法
JP2017110204A (ja) * 2015-12-10 2017-06-22 三菱化学株式会社 共重合体
JP2018119045A (ja) * 2017-01-24 2018-08-02 マナック株式会社 難燃性ポリアミド樹脂組成物

Also Published As

Publication number Publication date
US10442876B2 (en) 2019-10-15
EP3239192A1 (en) 2017-11-01
CN107108797B (zh) 2020-01-10
JPWO2016103802A1 (ja) 2017-10-05
TW201623343A (zh) 2016-07-01
KR20170098896A (ko) 2017-08-30
US20170349679A1 (en) 2017-12-07
EP3239192B1 (en) 2019-08-28
EP3239192A4 (en) 2018-07-18
KR102352441B1 (ko) 2022-01-18
IL253126A0 (en) 2017-08-31
CN107108797A (zh) 2017-08-29
JP6606102B2 (ja) 2019-11-13
TWI666223B (zh) 2019-07-21
IL253126B (en) 2020-07-30

Similar Documents

Publication Publication Date Title
JP6606102B2 (ja) 新規な含臭素重合体及びその製造方法
EP2058338B1 (en) Hyperbranched polymer and method for producing the same
TWI564286B (zh) 化合物,其製造方法及自由基聚合起始劑以及光硬化性組成物
US8153744B2 (en) Hyperbranched polymer and process for production thereof
JP7417350B2 (ja) 光学素子、光学材料、光学機器及びトリアリールアミン化合物
JP6463658B2 (ja) 硬化性樹脂組成物及びカラーフィルタ
JP5282385B2 (ja) ラジカル重合性組成物
JP2008081682A (ja) (メタ)アクリロイルオキシナフタレン化合物を含有する光硬化性組成物およびその硬化方法
WO2018181183A1 (ja) 光学素子、材料、光学機器及び化合物
JP6159415B2 (ja) 含臭素n−フェニルジアクリルイミド誘導体及びその製造方法
JP2014201732A (ja) 4−[(ジ置換ホスホリル)オキシ]−1−ナフチル(メタ)アクリレート化合物及びその製造法並びにそれらを含有するラジカル重合性組成物及びその重合物
JP2015098555A (ja) 含臭素ポリn−フェニルアクリルアミド誘導体及びその製造方法
JP5904549B2 (ja) リビングカチオン重合開始剤系及びこれを用いた重合体の製造方法
JP5582424B2 (ja) ラジカル重合性組成物の重合方法及びその重合物
JP6408353B2 (ja) 多官能アリルチオウレア化合物、その製造方法およびその重合物
JP2022133843A (ja) チオウレア含有重合体
JP6295806B2 (ja) 5,11−ジオキソ−6,12−ビス(置換カルボニルオキシ)ナフタセン化合物及びその用途
JP5671603B2 (ja) アクリル酸エステル誘導体およびアルコール誘導体並びにそれらの製造方法
JP2021017498A (ja) ジスルフィド化合物を用いる重合体の製造方法
JP2023009771A (ja) 化合物、重合体、重合性組成物、接着剤、コーティング剤、硬化物及び硬化物の製造方法
JP2012122011A (ja) チオール化合物、その製造方法、および重合成組成物
WO2012035666A1 (ja) アクリル酸エステル誘導体およびアルコール誘導体並びにそれらの製造方法
JP2012006874A (ja) 10−アシルオキシ−1,2,3,4−テトラヒドロアントラセン−9−イル−(メタ)アクリレート化合物、その製造法及び該(メタ)アクリレート化合物を重合してなる重合物。
JP2015224331A (ja) シアノ基含有単量体、シアノ基含有重合体、およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565961

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15538770

Country of ref document: US

Ref document number: 253126

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015872371

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020151

Country of ref document: KR

Kind code of ref document: A