WO2016103800A1 - Component removal device, substrate, component removal method, component repairing device and component mounting substrate - Google Patents

Component removal device, substrate, component removal method, component repairing device and component mounting substrate Download PDF

Info

Publication number
WO2016103800A1
WO2016103800A1 PCT/JP2015/075700 JP2015075700W WO2016103800A1 WO 2016103800 A1 WO2016103800 A1 WO 2016103800A1 JP 2015075700 W JP2015075700 W JP 2015075700W WO 2016103800 A1 WO2016103800 A1 WO 2016103800A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
substrate
laser beam
unit
suction
Prior art date
Application number
PCT/JP2015/075700
Other languages
French (fr)
Japanese (ja)
Inventor
研 足立
大鳥居 英
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016103800A1 publication Critical patent/WO2016103800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • This technology relates to a component removal device.
  • the present invention relates to an apparatus and a component removal method for removing chip components mounted on a substrate by soldering or the like from the substrate.
  • the above-described conventional technology is to fix a component holding pin to a component with a thermosetting adhesive, and remove the component by the following procedure. First, by irradiating light (soft beam) of a halogen lamp, the thermosetting adhesive is cured and the component holding pin is fixed to the component. Next, by irradiating the electronic component with the soft beam, the solder is melted and the component is removed together with the component holding pin.
  • this conventional technique has a problem that it takes time to remove parts because it is necessary to dissolve the solder after the thermosetting adhesive is cured.
  • This technology was created in view of such a situation, and aims to shorten the time required for component removal.
  • a first side thereof includes a laser beam irradiation unit that irradiates a laser beam that dissolves a thermoplastic bonding agent that bonds a component to a substrate, and A component removing apparatus comprising: a suction portion that removes the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by the laser light irradiation.
  • the apparatus may further include a measuring unit that measures a state of air inflow into the suction unit accompanying the suction. This brings about the effect
  • the measuring unit measures a pressure sensor that measures the air inflow state by measuring a pressure difference between the outside and the inside of the suction unit, or measures a flow rate in the air inflow.
  • a pressure sensor that measures the air inflow state by measuring a pressure difference between the outside and the inside of the suction unit, or measures a flow rate in the air inflow.
  • a control unit that controls the inflow of the air based on the measurement result of the measurement unit may be further provided. This brings about the effect
  • the first aspect further includes a distance adjusting unit that adjusts a distance between the substrate and the opening, and the control unit controls the inflow of the air by causing the distance adjusting unit to adjust the distance. May be. This brings about the effect
  • the control unit controls the inflow of air and causes the laser beam irradiation unit to start irradiation with the laser beam when the inflow of air reaches a predetermined state.
  • the laser beam irradiation unit may stop the laser beam irradiation. Thereby, the irradiation of the laser beam is started when the inflow of the air reaches a predetermined state, and the irradiation of the laser beam is stopped when the inflow state of the air changes after the irradiation of the laser beam is started. It brings about the effect of being.
  • a capture unit that captures the inhaled part may be further provided. Thereby, the effect
  • an exhaust unit that performs the inhalation by exhausting the air in the intake unit may be further provided. This brings about the effect
  • the suction portion includes a transmission portion that transmits the laser light on a surface facing the opening, and the laser light irradiation portion is attached to the component through the transmission portion and the opening. You may irradiate the said laser beam. This brings about the effect
  • the laser beam irradiation unit may irradiate the laser beam on the surface of the substrate opposite to the surface where the component is bonded. This brings about the effect
  • the second aspect of the present technology provides a bonding pad in which a component is bonded by a thermoplastic bonding agent and a laser beam that dissolves the thermoplastic bonding agent is applied to the component to dissolve the thermoplastic bonding agent.
  • the heating member is disposed near the bonding pad and absorbs the laser light to generate heat, the bonding pad and the bonding pad.
  • a base material on which a heat generating member is disposed This brings about the effect that the heat generating member generates heat by the laser beam.
  • the heat generating member may be Si, Ti, Cr, Ni, Pt, Sn, W, Fe, Al, or an alloy thereof.
  • the bonding pad to which the component is bonded by a thermoplastic bonding agent and the laser beam that dissolves the thermoplastic bonding agent is irradiated to the component to dissolve the thermoplastic bonding agent.
  • a reflection member that reflects the laser beam when the component is removed by being sucked through an opening larger than the component, and a base material on which the bonding pad and the reflection member are disposed may be provided. . This brings about the effect
  • the reflecting member may be any one of Al, Cu, Au, Ag, or an alloy thereof. This brings about the effect
  • thermoplastic adhesive is dissolved by the laser light irradiation procedure for irradiating the laser light for dissolving the thermoplastic adhesive for joining the component to the substrate, and the laser light irradiation.
  • a component removal method comprising: an inhalation procedure for removing the component from the substrate by later inhaling through an opening larger than the component. This brings about the effect
  • a laser beam irradiation unit that irradiates a laser beam that dissolves a thermoplastic bonding agent for bonding a component to a substrate, and the thermoplastic bonding agent is dissolved by the laser beam irradiation.
  • a component removing device including a suction unit that removes the component from the substrate by sucking through an opening larger than the component later, a substrate transport device that transports the substrate, and the substrate from which the component has been removed.
  • a flux application device for applying a flux for applying a flux
  • a component repair device comprising at least one of the above.
  • a laser beam irradiation process for irradiating a laser beam for dissolving a thermoplastic bonding agent for bonding a component to a substrate, and the thermoplastic bonding agent is dissolved by the laser beam irradiation.
  • a component mounting board comprising the substrate used in a component removal method including a suction step of removing the component from the substrate by sucking through an opening larger than the component later.
  • the component may be a chip component, a semiconductor chip, a MEMS, or a wafer level package.
  • the chip component, the semiconductor chip, the MEMS, or the wafer level package is removed by the component removal method.
  • the component may be a sensor
  • the component mounting board may be a sensor array device. This brings about the effect
  • the senor may be a light receiving sensor.
  • the light receiving sensor mounted on the sensor array device is removed by the component removing method.
  • composition of a parts removal device in a 1st embodiment of this art. It is a figure showing an example of composition of inhalation part 230 in a 1st embodiment of this art. It is a figure showing an example of composition of a parts removal device in a 2nd embodiment of this art. It is a figure showing an example of composition of a parts removal device in a 3rd embodiment of this art. It is a figure showing other examples of composition of a parts removal device in a 3rd embodiment of this art. It is a figure showing an example of parts removal procedure in a 3rd embodiment of this art. It is a figure showing an example of composition of a parts removal device in a modification of a 3rd embodiment of this art.
  • composition of a parts removal device in a 4th embodiment of this art. It is a figure showing an example of composition of substrate 410 in a 5th embodiment of this art. It is a figure showing an example of composition of substrate 410 in a 5th embodiment of this art. It is a figure showing an example of composition of a parts repair device in a 6th embodiment of this art. It is a figure showing an example of composition of a component mounting board in a 7th embodiment of this art.
  • First embodiment basic configuration example
  • Second embodiment example in which inhalation of parts is detected by a camera
  • Third embodiment an example in which inhalation of a component is detected based on a change in pressure or air flow rate
  • Fourth embodiment example in which laser light is irradiated from the back surface of the substrate
  • Fifth embodiment example of substrate to be used
  • Sixth embodiment example of repair device
  • Seventh embodiment example of component mounting board
  • FIG. 1 is a diagram illustrating a configuration example of a component removal apparatus according to the first embodiment of the present technology.
  • the component removing apparatus shown in FIG. 1 includes a laser light generation unit 110, an optical waveguide 120, a laser light emission unit 130, a camera 140, and an optical unit 150.
  • the component removing apparatus shown in the figure includes a distance adjusting unit 210, a suction unit holding unit 220, a suction unit 230, an exhaust tube 240, a substrate holding unit 250, a filter 310, a vacuum pump 330, and a control unit.
  • the laser light generation unit 110, the optical waveguide 120, and the laser light emission unit 130 constitute a laser light irradiation unit.
  • thermoplastic bonding agent is a conductive bonding agent that dissolves by heating, and corresponds to, for example, a bonding agent in which solder or conductive fine particles are dispersed in a thermoplastic adhesive.
  • a sample in which the component 420 is bonded to the substrate 410 by solder is assumed.
  • the component 420 corresponds to a chip component such as a chip resistor, a semiconductor chip for bare chip mounting, a MEMS (Micro Electro Mechanical Systems), or a wafer level package.
  • a semiconductor chip on which bumps are formed corresponds to a semiconductor chip for bare chip mounting.
  • the wafer level package is a concept including an IC having a shape in which a semiconductor chip or the like is enclosed in a package.
  • an IC having a chip size package shape is also included in the wafer level package.
  • the laser beam generator 110 generates and outputs a laser beam for heating the component 420 and the solder that joins the component 420 to the substrate 410.
  • the laser beam generator 110 includes a laser oscillator and a power supply device.
  • the laser oscillator is constituted by, for example, a semiconductor laser oscillator, and oscillates and outputs laser light.
  • a semiconductor laser oscillator that oscillates near infrared or ultraviolet laser light can be used. Since ultraviolet rays have a higher absorption rate in solder, the efficiency of the entire apparatus can be improved by employing a semiconductor laser that oscillates ultraviolet rays. On the other hand, when a semiconductor laser that oscillates near infrared rays is employed, the cost can be reduced.
  • the power supply device supplies power to the laser oscillator. By changing the electric power, it is possible to control on / off of the laser light.
  • the optical waveguide 120 is a waveguide that guides the laser light output from the laser light generation unit 110 to a laser light emission unit 130 described later.
  • the optical waveguide 120 for example, an optical waveguide constituted by an optical fiber can be used. Further, for example, an optical waveguide of a reflection optical system that reflects laser light with a mirror can be used.
  • the laser light emitting unit 130 irradiates the component 420 and the like with laser light.
  • the laser beam emitting unit 130 includes an objective lens, condenses the laser beam to a desired spot diameter, and emits the laser beam from an emitting unit (not shown) provided below. As the spot diameter, it is necessary to make the whole part 420 heatable.
  • the camera 140 is a camera that outputs an image of the component 420 or the like. This camera 140 is used for observing the surface state of the substrate 410 before and after removing the component 420, determining the irradiation position of the laser light, and the like.
  • the optical unit 150 has a function of shaping laser light into a predetermined spot diameter and a function of taking an image from the emission part of the laser light emission part 130 and guiding it to the camera 140.
  • the inhalation unit 230 inhales the part 420.
  • the suction portion 230 is for sucking and removing the component 420 from the substrate after the solder is melted by the laser light emitted from the laser light emitting portion 130.
  • the laser light emitted from the laser light emitting unit 130 is applied to the component 420 via the suction unit 230.
  • the surface of the suction unit 230 on which the laser light is incident needs to be a member that transmits light.
  • an opening larger than the part 420 is provided below the inhalation part 230.
  • the substrate holding unit 250 holds the substrate 410.
  • the substrate holder 250 can be configured to move the substrate 410 in the X and Y directions. As a result, it is possible to perform alignment by moving the substrate 410 so that the optical axis of the laser light irradiated by the laser light emitting unit 130 and the component 420 are aligned.
  • the control unit 340 described later controls the substrate holding unit 250 to perform this alignment.
  • the part 420 is arranged at the spot of the laser light, and the whole part 420 is heated evenly.
  • a suction method such as vacuum suction and electrostatic suction or a method of fixing with a mounting bracket can be used as a holding method of the substrate 410 in the substrate holding unit 250.
  • the suction part holding part 220 holds the suction part 230.
  • the distance adjusting unit 210 holds the suction unit holding unit 220 and adjusts the height of the suction unit holding unit 220. Thereby, the distance adjustment part 210 can adjust the distance between the board
  • the vacuum pump 330 is a pump that exhausts the air inside the suction unit 230 in order to depressurize the inside of the suction unit 230.
  • the exhaust tube 240 is a tube that connects the suction unit 230 and the vacuum pump 330 and guides the gas inside the suction unit 230 to the vacuum pump 330.
  • a filter 310 described later is disposed in the middle of the exhaust tube 240.
  • the exhaust tube 240 for example, a tube made of hard resin can be used.
  • the filter 310 is a filter that captures the part 420 sucked by the suction unit 230.
  • the removed part 420 is sucked into the suction part 230 together with the surrounding air and moves in the exhaust tube.
  • This part 420 is captured by the filter 310 before reaching the vacuum pump 330. Thereby, damage to the vacuum pump 330 can be prevented.
  • the control unit 340 controls the substrate holding unit 250, the vacuum pump 330, and the laser light generation unit 110.
  • the control unit 340 controls on / off of the vacuum pump 330 and the laser light generation unit 110.
  • the filter 310 is an example of a capturing unit described in the claims.
  • the vacuum pump 330 is an example of an exhaust unit described in the claims.
  • FIG. 2 is a diagram illustrating a configuration example of the suction unit 230 according to the first embodiment of the present technology.
  • a represents a top view of the suction portion 230
  • b in the drawing represents a cross-sectional view taken along the line AA ′ in FIG.
  • FIG. 5b a sectional view of the component 420, the substrate 410, and the substrate holding portion 250 in addition to the suction portion 230 is further described.
  • the component 420 is a bare chip component and is assumed to be bonded to a bonding pad (not shown) of the substrate 410 by solder 421.
  • the size of the upper surface of the chip portion of the component 420 is assumed to be 0.2 mm ⁇ 0.2 mm.
  • b in the figure represents a state in which the component 420 is removed from the substrate 410 by being irradiated with the laser light 501.
  • the suction part 230 includes a suction nozzle 231 and a transparent member 232.
  • the suction nozzle 231 has a cylindrical shape with a mortar-shaped bottom, and has openings 233 and 235 at the top and bottom, respectively.
  • the suction nozzle 231 has an opening 234 on the side surface of the cylindrical portion.
  • the exhaust tube 240 is connected to a position where the opening 234 and the hole of the exhaust tube 240 coincide.
  • the transparent member 232 is attached to the opening 233 and closes the opening 233 and transmits the laser light 501.
  • a disk-shaped plate made of glass can be used as the transparent member 232.
  • the laser beam 501 that has passed through the transparent member 232 is irradiated to the component 420 through the opening 235.
  • the optical axis of the laser beam 501 and the opening 235 need to be arranged at substantially coaxial positions.
  • the opening 235 needs to be larger than the part 420.
  • the opening 235 can have a diameter of 1 mm, for example.
  • the spot diameter of the laser beam 501 can be set to 0.4 mm, for example.
  • the size of the hole in the opening 234 and the exhaust tube 240 also needs to be larger than that of the component 420, and can be, for example, 10 mm in diameter.
  • a method of removing the part 420 using the suction part 230 having such a shape will be described.
  • the vacuum pump 330 When the vacuum pump 330 is operated, the pressure inside the suction part 230 is reduced to a negative pressure by being depressurized through the exhaust tube 240. For this reason, air flows from the opening 235.
  • the two are brought close to each other so that the distance d between the opening 235 and the substrate 410 becomes a value close to the height of the component 420, the opening 235 is blocked by the component 420 and apparently opens.
  • the portion 235 is narrowed. For this reason, the pressure difference inside and outside the opening 235 increases, and the flow rate of the air flowing in increases and the flow rate decreases.
  • this air flow is represented by a white arrow.
  • the control unit 340 causes the laser light generation unit 110 to generate laser light. Then, the component 420 is irradiated with the laser beam 501 emitted from the laser beam emitting unit 130, and the component 420 is heated. When the solder 421 is melted by this heating, the component 420 is attached to the substrate 410 by the melted solder. For this reason, buoyancy arises in the component 420 by the above-mentioned fast air flow. Due to this buoyancy, the component 420 is peeled from the substrate 410 and sucked from the opening 235. The sucked component 420 is discharged from the opening 234 together with the inflowing air.
  • the control unit 340 stops the laser light generation unit 110 from generating the laser light and stops the irradiation of the laser light 501.
  • the component 420 can be removed from the substrate 410.
  • the irradiation time of the laser beam that can dissolve the solder 421 that joins the component 420 needs to be acquired in advance. These vary depending on the size of the component 420, the number of soldered portions, and the like.
  • the power supplied to the laser light generation unit 110 is 3 W
  • laser light having a wavelength of 940 nm is generated and irradiated to the component 420
  • the solder 421 is melted after about 0.5 seconds and the component 420 is melted. Is sucked into the suction part 230.
  • the part 420 can be removed in a short time.
  • laser light irradiation can be completed in a short time, thermal damage to the substrate 410 is reduced.
  • the component 420 can be removed without contact, the component 420 having a complicated shape or a fine shape can be easily removed.
  • the distance d is adjusted to set the pressure inside the suction unit 230 and the flow rate of the inflowing air.
  • the suction unit 230 is required to have high airtightness. That is, it is necessary to provide an O-ring or the like at the joint between the suction nozzle 231 and the exhaust tube 240 and the joint between the suction nozzle 231 and the transparent member 232 to prevent inflow of air from the outside.
  • the transparent member 232 needs to be configured to be easy to clean. Specifically, it is necessary to make the configuration easy to remove from the suction nozzle 231.
  • the exhaust tube 240 needs to have a relatively large diameter, for example, a 10 mm diameter so as not to hinder the exhaust by the vacuum pump 330.
  • the filter 310 needs to select the filtration diameter so that the part 420 can be captured and the exhaust is not hindered.
  • a filter having a filtration diameter of 5 ⁇ m or more and a flow rate of 30 L / min or less can be used as the filter 310.
  • the time required for removing the component is obtained by heating the component with the laser beam and sucking and removing the component with the suction portion having an opening larger than the component. Can be shortened. Further, since the heating time is shortened, damage to the substrate can be reduced.
  • Second Embodiment> the irradiation of the laser beam is stopped based on the irradiation time acquired by the preliminary examination.
  • the suction of the component 420 is confirmed and the irradiation of the laser light is stopped.
  • FIG. 3 is a diagram illustrating a configuration example of the component removing device according to the second embodiment of the present technology.
  • the component removal apparatus shown in the figure is different from the component removal apparatus described in FIG. 1 in that a camera 160 and a control device 360 are provided instead of the camera 140 and the control device 340. Since the configuration other than this is the same as that of the component removing apparatus described in FIG.
  • the laser pump when removing the component 420, the laser pump is operated to exhaust and the laser beam is irradiated to melt the solder 421 and the laser beam is sucked after the component 420 is sucked. Stop irradiation. At that time, after confirming the suction of the component 420, the irradiation of the laser light is stopped. Confirmation of inhalation of the component 420 is performed as follows.
  • the camera 160 converts the acquired image into an image signal and outputs it to the control unit 360.
  • the control unit 360 analyzes the output image signal and detects that the component 420 has been removed from the substrate 410. Thereafter, the control unit 360 controls the laser beam generation unit 110 to stop the irradiation of the laser beam. Thereby, removal of components can be ensured. In addition, since unnecessary laser light irradiation can be prevented, damage to the substrate 410 after the component 420 is inhaled can be reduced.
  • the irradiation of the laser beam is stopped without confirming the suction of the component 420, and in order to ensure the suction of the component 420, the laser obtained by prior examination is used. It is necessary to make the irradiation time longer than the light irradiation time. For this reason, the substrate 410 is irradiated with laser light for a relatively long time, and the substrate 410 is greatly damaged by heating.
  • the suction of the component 420 is confirmed by the image acquired by the camera 160 and the irradiation of the laser beam is stopped, the removal of the component 420 is surely performed. In addition, damage to the substrate 410 can be reduced.
  • FIG. 4 is a diagram illustrating a configuration example of the component removing device according to the third embodiment of the present technology.
  • the component removing apparatus shown in the figure is different from the component removing apparatus described in FIG. 1 in that a pressure sensor 320 is disposed in the exhaust tube 240 and a control unit 370 is provided instead of the control unit 340. Since the configuration other than this is the same as that of the component removing apparatus described in FIG.
  • FIG. 5 is a diagram illustrating another configuration example of the component removing device according to the third embodiment of the present technology. 1 is different from the component removal apparatus described in FIG. 1 in that a flow sensor 350 is disposed in the exhaust tube 240 and a control unit 370 is provided instead of the control unit 340. Since the configuration other than this is the same as that of the component removing apparatus described in FIG. Note that the pressure sensor 320 and the flow rate sensor 350 constitute a measurement unit that measures the state of the inflow of air into the suction unit 230 accompanying suction.
  • the pressure sensor 320 is a sensor that measures the differential pressure inside and outside the suction unit 230.
  • the pressure sensor 320 measures the differential pressure between the outside and the inside of the suction unit 230 by measuring the differential pressure between the atmospheric pressure and the pressure of the air in the exhaust tube 240.
  • a differential pressure gauge can be used as the pressure sensor 320.
  • the flow sensor 350 is a sensor that measures the flow rate of air inflow in the suction unit 230.
  • the flow sensor 350 measures the flow rate of the inflow of air in the suction unit 230 by measuring the flow rate of the exhaust gas flowing through the exhaust tube 240.
  • the control unit 370 causes the distance adjustment unit 210 to control the distance d between the suction unit 230 and the substrate 410 based on the measurement result of the pressure sensor 320 or the flow rate sensor 350.
  • the laser light is irradiated while exhausting by operating the vacuum pump 330. After confirming the suction of the component 420, the laser light irradiation is stopped. Confirmation of inhalation of the component 420 can be performed as follows. When the part 420 is sucked up and passes through the opening 235 in a state where the above-described distance d is adjusted and the differential pressure between the outside and the inside of the suction part 230 and the flow rate of air in the suction are set to predetermined values, A change occurs in the air flow in the opening 235. With this change, the above-described differential pressure and air flow rate change. Therefore, this change can be detected by the pressure sensor 320 or the flow sensor 350, and the suction of the component 420 can be detected.
  • the suction of the component 420 changes the differential pressure and the flow rate by 2 KPa and 0.2 L / min, respectively. Therefore, it is possible to determine inhalation of the component 420 by capturing this change.
  • the controller 340 monitors the measurement result of the pressure sensor 320 or the flow sensor 350 and stops the laser light irradiation at the timing when the change is captured.
  • the component removing apparatus shown in FIGS. 4 and 5 can detect inhalation of the component 420 without analyzing the image of the camera 140. This is compared with the component removal apparatus in FIG. A filter is disposed in the optical unit 150 in order to prevent harmful laser light from entering the camera. Due to this filter, the image obtained by the camera 160 in FIG. 2 is unclear. Furthermore, since the size of the component 420 is small, it is difficult to confirm inhalation by image processing, and advanced image processing is required, and processing takes time. At the same time, it is necessary to use a camera with high resolution as the camera 160. On the other hand, in the component removing apparatus shown in FIGS.
  • the camera 140 since the camera 140 is used for observation of the surface state of the substrate 410, a normal monitoring camera can be used. Further, when it is not necessary to observe the surface state of the substrate 410, the camera 140 can be omitted. In addition, when irradiating with ultraviolet laser light, it is necessary to employ the method for confirming component removal according to the third embodiment of the present technology because confirmation of component removal cannot be performed with an ordinary camera.
  • the control unit 370 controls the distance adjustment unit 210 while confirming the differential pressure or the air flow rate.
  • the distance d can be adjusted. For this reason, it is possible to set the suction conditions of the component 420 more precisely.
  • the pressure sensor In order to eliminate the influence of a change in pressure (so-called pressure loss) caused by the filter 310, it is desirable to dispose the pressure sensor between the suction unit 230 and the filter 310.
  • the flow sensor 350 is preferably disposed between the filter 310 and the vacuum pump 330 to prevent malfunction due to the component 420 and contaminants.
  • FIG. 6 is a diagram illustrating an example of a component removal process according to the third embodiment of the present technology.
  • the control unit 370 operates the vacuum pump 330 (step S901). Thereby, inhalation in the inhalation unit 230 is started.
  • the control unit 370 performs alignment by controlling the substrate holding unit 250 (step S902).
  • the control unit 370 determines whether or not the pressure or flow rate is a predetermined value (step S903). Specifically, it is determined whether or not the measured value of the pressure sensor or the flow rate sensor is a predetermined value. As a result, when the predetermined pressure or flow rate is not reached (step S903: No), the control unit 370 adjusts the distance between the suction unit 230 and the substrate 410 (step S904).
  • step S903: Yes when the predetermined pressure and flow rate are reached (step S903: Yes), the control unit 370 controls the laser light generation unit 110 to start laser light irradiation (step S905). Next, the control unit 370 waits until the component 420 is sucked into the suction unit 230 (step S906). When the component 420 has been inhaled (step S906: Yes), the control unit 370 controls the laser light generation unit 110 to stop the laser light irradiation (step S907). Thereafter, when there are more components to be removed (step S903: Yes), the control unit 370 executes the processing from step S902 again. On the other hand, when the removal process has been completed for all the parts that need to be removed (step S908: No), the control unit 370 stops the vacuum pump 330 (step S909) and ends the part removal process.
  • the configuration of the component removing apparatus can be simplified.
  • the pressure sensor 320 or the flow rate sensor 350 makes it possible to set a precise suction condition.
  • the air inflow state is detected using either the pressure sensor 320 or the flow sensor 350.
  • both the pressure sensor 320 and the flow sensor 350 are used.
  • FIG. 7 is a diagram illustrating a configuration example of the component removing device according to a modification of the third embodiment of the present technology.
  • the part removing apparatus shown in the figure is different from the parts removing apparatus shown in FIGS. 4 and 5 in that both the pressure sensor 320 and the flow rate sensor 350 are provided. That is, the measurement unit in the modification of the third embodiment of the present technology includes both the pressure sensor 320 and the flow sensor 350. Since the configuration other than this is the same as that of the component removing apparatus described with reference to FIGS.
  • the component removing apparatus shown in the figure includes both the pressure sensor 320 and the flow rate sensor 350, it is possible to set a more precise suction condition as compared with the component removing apparatuses shown in FIGS.
  • the component 420 is irradiated with the laser light.
  • laser light is irradiated on the surface of the substrate 410 opposite to the surface where the component 420 is bonded.
  • FIG. 8 is a diagram illustrating a configuration example of the component removing device according to the fourth embodiment of the present technology.
  • the component removing apparatus shown in the figure includes a substrate holding unit 260 and a suction unit 270 instead of the substrate holding unit 250 and the suction unit 230.
  • the substrate holding unit 260 is disposed immediately below the laser beam emitting unit 130, and the substrate 410 is held by the substrate holding unit 260 so that the component 420 faces downward.
  • the suction part 270 is held by the suction part holding part 220 so that the opening part faces upward, and is arranged below the substrate holding part 260.
  • the rest of the configuration of the component removal apparatus is the same as that of the component removal apparatus described with reference to FIG.
  • the substrate holding part 260 has an opening 261.
  • the component 420 is sucked into the suction portion 270 through the opening 261.
  • the suction part 270 has an opening similar to the opening 235 of the suction part 230 described in FIG. 2, and the component 420 is sucked through the opening. However, since there is no need to allow laser light to pass therethrough, the suction part 270 need not include the transparent member 232.
  • Position alignment is performed in the substrate holding portion 260 so that the openings of the component 420 and the suction portion 270 are substantially coaxial.
  • the control unit 340 controls the distance adjustment unit 210 to adjust the distance between the opening of the suction unit 270 and the substrate 410.
  • the substrate 410 is irradiated with laser light. As a result, the substrate 410 is heated, the solder is melted by heat conduction, and the component 420 is sucked.
  • the component 420 is heated first, so that the melting of the solder starts at the interface between the package portion of the component 420 and the solder. For this reason, a lot of solder remains on the pad side of the substrate 410 after the component 420 is sucked, and the process of removing the solder cannot be omitted.
  • the solder remaining on the pads of the substrate 410 can be reduced, and the solder removal step is omitted. can do.
  • exchanges the components 420 can be simplified.
  • [Substrate structure] 9 and 10 are diagrams illustrating a configuration example of the substrate 410 according to the fifth embodiment of the present technology.
  • the substrate 410 shown in the figure includes a bonding pad 412 and a base material 411.
  • the laser beam is irradiated onto the substrate 410 from above the paper surface.
  • description of a substrate protective layer, a wiring pattern and the like disposed on the substrate surface is omitted.
  • the bonding pad 412 is a member to which the solder 421 is bonded.
  • the bonding pad 412 can be a conductive thin film, for example, a thin film made of Cu.
  • the base material 411 is a member on which the bonding pad 412 is disposed.
  • a base material made of glass-containing epoxy resin, glass, ceramic and Si can be used.
  • the use of glass, ceramic and Si is preferred.
  • FIG. 9A illustrates an example in which the heat generating member 413 is disposed between the base material 411 and the bonding pad 412. Further, b in FIG. 9 represents an example in which the heat generating member 414 is disposed in the vicinity of the bonding pad 412 inside the base material 411.
  • heat generating members 413 and 414 for example, any of Si, Ti, Cr, Ni, Pt, Sn, W, Fe, Al, or an alloy thereof can be used. These heat generating members 413 and 414 generate heat by laser light irradiation, and this heat is transmitted to the bonding pad 412 and heated, so that the solder 421 can be efficiently dissolved.
  • the heat generating member 413 when a member that is compatible with the solder 421, for example, Sn is used as the heat generating member 413, the heat generating member 413 can be used in combination with the bonding pad 412.
  • the laser light passes through the base material 411 and reaches the component 420.
  • the laser light absorption rate of the component 420 is high, the component 420 becomes hotter than the bonding pad 412, and the solder 421 may start to melt from the package interface of the component 420. Therefore, a reflecting member 415 that reflects the laser light is disposed between the component 420 and the laser light emitting portion.
  • the reflecting member is a member having a high reflectance with respect to laser light.
  • a indicates that the reflecting member 415 is disposed on the surface opposite to the surface to which the component 420 of the base material 411 is bonded.
  • b in FIG. 10 represents an example in which the reflecting member 415 is disposed in the base material 411 and in the vicinity of the component 420.
  • the reflecting member 415 for example, any of Al, Cu, Au, Ag, or an alloy thereof can be used.
  • the laser beam traveling toward the component 420 is reflected by the reflecting member 415. For this reason, the heat generation of the component 420 due to the irradiation of the laser light is reduced, the melting of the solder 421 can be started from the interface between the bonding pad 412 and the solder 421, and the solder remaining on the substrate 410 can be reduced. .
  • Al is a member that can be used for both the heat generating member and the reflecting member as described above.
  • a member having a higher reflectance with respect to laser light than Al for example, Cu, Au, or Ag can be used as the reflecting member.
  • C in FIG. 10 represents an example in which the heat generating member 414 and the reflecting member 415 are arranged inside the base material 411.
  • the reflecting member 415 is disposed at a position closer to the component 420.
  • the heat generating member 414 absorbs the laser light and generates heat, and this heat is transmitted to the bonding pad 412.
  • laser light that has not been absorbed by the heat generating member 414 and has passed through the heat generating member 414 is reflected by the reflecting member 415 and cannot reach the component 420.
  • the solder 421 can be dissolved from the interface between the bonding pad 412 and the solder 421, and the amount of solder remaining on the substrate 410 can be reduced.
  • the laser beam is irradiated on the substrate 410 side.
  • the efficiency of heating by laser light can be improved.
  • FIG. 11 is a diagram illustrating a configuration example of the component repair device according to the sixth embodiment of the present technology.
  • the component repair device shown in FIG. 1 includes a component removal device 610, a flux application device 620, a substrate transport device 630, a component mounting device 640, a loader / unloader 650, and a reflow device 660.
  • the component removal device 610 As the component removal device 610, the component removal device described in the first to fourth embodiments can be used. In addition, in the component removal apparatus 610 of the same figure, description of the laser beam emission part 130 grade
  • the flux applying device 620 is a device that applies flux to the substrate 410 from which the component 420 has been removed by the component removing device 610.
  • the component mounting device 640 is a device that mounts a new component 420 on the substrate 410 coated with flux.
  • the loader / unloader 650 is a device that serves as both a loader for loading the substrate 410 before repair and an unloader for collecting the substrate 410 after repair.
  • the substrate transfer device 630 is a device that transfers the substrate 410 to these devices.
  • the reflow device 660 is a device that melts the solder and then solidifies it to join the component 420 to the substrate 410, that is, a device that performs soldering. Note that the component repair apparatus in FIG.
  • soldering can be performed in the component removing device 610 by irradiating the component 420 with laser light and melting the solder without operating the vacuum pump 330. In that case, the reflow device 660 can be omitted.
  • the component removing device 610 As the component removing device 610 according to the sixth embodiment of the present technology, the component removing device described in FIGS. 1, 3 to 5, 7, and 8 can be used. However, it is necessary that the substrate 410 can be exchanged with the substrate transfer device 630. Since the configuration of the component removal apparatus other than this is the same as that of the component removal apparatus described in the above-described drawings, description thereof is omitted. It is also necessary to change the part removal procedure. Specifically, in the flow described in FIG. 6, it is necessary to add a procedure for carrying in the substrate 410 after step S901 and add a procedure for carrying out the substrate 410 before step S909. Since other procedures are the same as those described in FIG.
  • FIG. 12 is a diagram illustrating a configuration example of a component mounting board according to the seventh embodiment of the present technology.
  • “a” represents the configuration of the sensor array device 450 as an example of a component mounting board.
  • the sensor array device 450 of FIG. 14A is configured by arranging a large number of light receiving sensors 470 on a substrate 460 in a two-dimensional lattice shape.
  • the sensor array device 450 is an imaging device and is required to be defect-free. That is, all the light receiving sensors 470 arranged need to operate normally.
  • due to defects in the manufacturing process for example, the occurrence of soldering defects or defects in the light receiving sensor 470 itself, it is difficult to eliminate defects, and repair of the light receiving sensor 470 is essential.
  • the light receiving sensor 470 has a size of about 0.2 mm ⁇ 0.2 mm, and since the interval between the adjacent light receiving sensors 470 is narrow, it is difficult to remove only the light receiving sensor 470 at the defective portion for repair. It is. Therefore, the component removal apparatus of the present embodiment is applied.
  • B in the same figure is a figure explaining the removal of the light reception sensor 470 of a malfunction location. There is a defect in the light receiving sensor 470 described in the center, and the laser light 502 is irradiated to remove the light receiving sensor 470. At this time, in this embodiment, since the laser beam 502 is not irradiated to the other light receiving sensors 470, thermal damage to other normal light receiving sensors 470 can be reduced.
  • the light receiving sensor 407 in which the solder is dissolved by the irradiation with the laser beam 502 is quickly sucked and removed, the time required for repair can be shortened. As a result, a practical turnaround time can be obtained. These enable mass production of sensor array devices that are defect-free.
  • the sensor mounted on the sensor array device 450 is not limited to the light receiving sensor, and various sensors can be used.
  • the component mounting substrate include a component mounting substrate on which a component such as a chip component, a semiconductor chip (bare chip component), a MEMS, or a wafer level package is mounted.
  • a part is heated by a laser beam and sucked and removed by a suction part having an opening larger than the part, thereby shortening the time required for part removal. can do.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • this technique can also take the following structures.
  • a laser beam irradiation unit for irradiating a laser beam for dissolving a thermoplastic bonding agent for bonding a component to a substrate;
  • a component removing apparatus comprising: a suction portion that removes the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by the laser light irradiation.
  • the component removing device further including a measuring unit that measures a state of inflow of air into the suction unit accompanying the suction.
  • the measurement unit may measure the flow rate of the air inflow by measuring a pressure sensor that measures the state of the air inflow by measuring a pressure difference between the outside and the inside of the suction unit.
  • the component removal apparatus further including at least one of flow rate sensors for measuring the state of.
  • the said control part is a component removal apparatus as described in said (4) which makes the said distance adjustment part adjust the said distance and controls the inflow of the said air.
  • the control unit controls the inflow of air and causes the laser beam irradiation unit to start irradiating the laser beam when the inflow of air reaches a predetermined state, and starts irradiating the laser beam.
  • the component removal apparatus according to (4) or (5), wherein when the state of the inflow of air changes later, the laser light irradiation unit stops the irradiation of the laser light.
  • the component removing device according to (1) to (6), further including a capturing unit that captures the inhaled component.
  • the component removing apparatus according to any one of (1) to (7), further including an exhaust unit that performs the suction by exhausting air in the suction unit.
  • the suction portion includes a transmission portion that transmits the laser light on a surface facing the opening
  • the said laser beam irradiation part is a component removal apparatus as described in said (1) to (8) which irradiates the said laser beam to the said component through the said permeation
  • thermoplastic bonding agent a bonding pad to which the component is bonded by a thermoplastic bonding agent; When the component is removed by being sucked through an opening larger than the component after the component is irradiated with a laser beam that dissolves the thermoplastic bonding agent and the thermoplastic bonding agent is dissolved.
  • a heating member that is disposed near the pad and absorbs the laser light to generate heat;
  • a substrate comprising the bonding pad and a base material on which the heat generating member is disposed.
  • the heat generating member is any one of Si, Ti, Cr, Ni, Pt, Sn, W, Fe, Al, or an alloy thereof.
  • thermoplastic bonding agent a bonding pad to which the component is bonded by a thermoplastic bonding agent; When the component is removed by being sucked through an opening larger than the component after the component is irradiated with a laser beam that dissolves the thermoplastic bonding agent and the thermoplastic bonding agent is dissolved.
  • a reflective member that reflects light;
  • a substrate comprising the bonding pad and a base material on which the reflecting member is disposed.
  • the reflecting member is any one of Al, Cu, Au, Ag, or an alloy thereof.
  • a component removing method comprising: a suction procedure for removing the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by the laser light irradiation.
  • a laser beam irradiation unit that irradiates a laser beam that dissolves a thermoplastic bonding agent for bonding the component to the substrate
  • a component removing device comprising: a suction portion that removes the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by irradiation of the laser beam;
  • a substrate transfer device for transferring the substrate;
  • a flux application device for applying flux to the substrate from which the component has been removed, a component mounting device for mounting a new component on the substrate from which the component has been removed, and a solidification after dissolving the thermoplastic bonding agent
  • a component repair device comprising: at least one of reflow devices for bonding a component to the substrate.
  • a laser beam irradiation step of irradiating a laser beam that dissolves a thermoplastic bonding agent for bonding the component to the substrate The substrate used in a component removal method comprising: a suction step of removing the component from the substrate by suction through an opening larger than the component after the thermoplastic bonding agent has been dissolved by the laser light irradiation
  • a component mounting board comprising: (18) The component mounting board according to (17), wherein the component is a chip component, a semiconductor chip, a MEMS, or a wafer level package. (19) The component is a sensor, The component mounting board according to (17), wherein the component mounting board is a sensor array device. (20) The component mounting board according to (19), wherein the sensor is a light receiving sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

In order to reduce the time required to remove a component using a component removal device, a proposed component removal device is provided with a laser light irradiation unit and a suction unit, and removes a component from a substrate to which the component has been bonded by means of a thermoplastic bonding agent such as solder. The laser light irradiation unit radiates laser light for melting the thermoplastic bonding agent which bonds the component to the substrate. The suction unit sucks the component through an opening larger than the component after the thermoplastic bonding agent has been melted by the laser light irradiation. In this way the component is removed from the substrate.

Description

部品除去装置、基板、部品除去方法、部品リペア装置および部品実装基板Component removal device, substrate, component removal method, component repair device, and component mounting substrate
 本技術は、部品の除去装置に関する。詳しくは、半田付け等により基板に実装されたチップ部品等を基板から除去する装置および部品除去方法に関する。 This technology relates to a component removal device. Specifically, the present invention relates to an apparatus and a component removal method for removing chip components mounted on a substrate by soldering or the like from the substrate.
 従来、電子部品を実装した基板の外観検査等により不具合が発見された場合には、半田付けされた電子部品の交換が必要となる。この際、例えば、半田ごてを用いた人手による電子部品の取外しが行われる。しかし、近年、電子部品の小型化やウェハレベルパッケージ(Wafer Level Package)形状の採用等により、人手による部品の取外しが困難になっている。そこで、電子部品の除去を容易にする部品除去装置が提案されている。例えば、部品保持用のピンを部品に固定して、半田を溶解し、ピンおよび部品を基板から除去する装置が提案されている(例えば、特許文献1参照。)。 Conventionally, when a defect is found by visual inspection of a board on which an electronic component is mounted, it is necessary to replace the soldered electronic component. At this time, for example, electronic parts are manually removed using a soldering iron. However, in recent years, it has become difficult to manually remove components due to the miniaturization of electronic components and the adoption of wafer level package shapes. Therefore, a component removal apparatus that facilitates removal of electronic components has been proposed. For example, an apparatus has been proposed in which a component holding pin is fixed to a component, solder is melted, and the pin and the component are removed from the substrate (for example, see Patent Document 1).
特願2007-523281号公報Japanese Patent Application No. 2007-523281
 上述の従来技術は、部品保持用のピンを熱硬化性接着剤により部品に固定するものであり、次の手順により部品の除去を行う。まず、ハロゲンランプの光(ソフトビーム)が照射されることにより、この熱硬化性接着剤が硬化して部品保持用のピンが部品に固定される。次に、このソフトビームが電子部品に照射されることにより、半田が溶解されて部品保持用のピンとともに部品が除去される。このように、従来技術によれば、半田ごてを使用せずに部品の取外しが可能である。しかしながら、この従来技術では、熱硬化性接着剤の硬化を待って半田を溶解させる必要があるため、部品除去に時間が掛かるという問題がある。 The above-described conventional technology is to fix a component holding pin to a component with a thermosetting adhesive, and remove the component by the following procedure. First, by irradiating light (soft beam) of a halogen lamp, the thermosetting adhesive is cured and the component holding pin is fixed to the component. Next, by irradiating the electronic component with the soft beam, the solder is melted and the component is removed together with the component holding pin. Thus, according to the prior art, it is possible to remove components without using a soldering iron. However, this conventional technique has a problem that it takes time to remove parts because it is necessary to dissolve the solder after the thermosetting adhesive is cured.
 本技術はこのような状況に鑑みて生み出されたものであり、部品除去に要する時間の短縮を目的とする。 This technology was created in view of such a situation, and aims to shorten the time required for component removal.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射部と、上記レーザ光の照射により上記熱可塑性接合剤が溶解された後に上記部品よりも大きな開口部を通して吸入することにより上記部品を上記基板から除去する吸入部とを具備する部品除去装置である。これにより、上記熱可塑性接合剤が溶解された後に上記部品が吸入されるという作用をもたらす。 The present technology has been made to solve the above-described problems, and a first side thereof includes a laser beam irradiation unit that irradiates a laser beam that dissolves a thermoplastic bonding agent that bonds a component to a substrate, and A component removing apparatus comprising: a suction portion that removes the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by the laser light irradiation. This brings about the effect | action that the said components are inhaled, after the said thermoplastic joining agent is melt | dissolved.
 またこの第1の側面において、上記吸入に伴う上記吸入部への空気の流入の状態を計測する計測部をさらに具備してもよい。これにより、上記吸入部への空気の流入の状態が計測されるという作用をもたらす。 Further, in the first aspect, the apparatus may further include a measuring unit that measures a state of air inflow into the suction unit accompanying the suction. This brings about the effect | action that the state of the inflow of the air to the said suction part is measured.
 またこの第1の側面において、上記計測部は、上記吸入部の外部および内部の差圧を計測することにより上記空気の流入の状態を計測する圧力センサまたは上記空気の流入における流量を計測することにより上記空気の流入の状態を計測する流量センサのうちの少なくとも1つを備えてもよい。これにより、上記吸入部の外部および内部の差圧または上記空気の流入の状態のうちの少なくとも1つが計測されるという作用をもたらす。 In the first aspect, the measuring unit measures a pressure sensor that measures the air inflow state by measuring a pressure difference between the outside and the inside of the suction unit, or measures a flow rate in the air inflow. May include at least one of the flow sensors for measuring the air inflow state. This brings about the effect that at least one of the differential pressure inside and outside the suction part or the air inflow state is measured.
 またこの第1の側面において、上記計測部の上記計測結果に基づいて上記空気の流入を制御する制御部をさらに具備してもよい。これにより、上記計測結果に基づいて上記空気の流入が制御されるという作用をもたらす。 Further, in the first aspect, a control unit that controls the inflow of the air based on the measurement result of the measurement unit may be further provided. This brings about the effect | action that the inflow of the said air is controlled based on the said measurement result.
 またこの第1の側面において、上記基板および上記開口部の距離を調整する距離調整部をさらに具備し、上記制御部は、上記距離調整部に上記距離を調整させて上記空気の流入を制御してもよい。これにより、上記距離を調整させることにより上記空気の流入が制御されるという作用をもたらす。 The first aspect further includes a distance adjusting unit that adjusts a distance between the substrate and the opening, and the control unit controls the inflow of the air by causing the distance adjusting unit to adjust the distance. May be. This brings about the effect | action that the inflow of the said air is controlled by adjusting the said distance.
 またこの第1の側面において、上記制御部は、上記空気の流入を制御して上記空気の流入が所定の状態になった際に上記レーザ光照射部に上記レーザ光の照射を開始させ、上記レーザ光の照射開始後に上記空気の流入の状態が変化した場合には上記レーザ光照射部に上記レーザ光の照射を停止させてもよい。これにより、上記空気の流入が所定の状態になった際に上記レーザ光の照射が開始され、上記レーザ光の照射開始後に上記空気の流入の状態が変化した場合に上記レーザ光の照射が停止されるという作用をもたらす。 Further, in the first aspect, the control unit controls the inflow of air and causes the laser beam irradiation unit to start irradiation with the laser beam when the inflow of air reaches a predetermined state. When the air inflow state changes after the start of laser beam irradiation, the laser beam irradiation unit may stop the laser beam irradiation. Thereby, the irradiation of the laser beam is started when the inflow of the air reaches a predetermined state, and the irradiation of the laser beam is stopped when the inflow state of the air changes after the irradiation of the laser beam is started. It brings about the effect of being.
 またこの第1の側面において、上記吸入された上記部品を捕捉する捕捉部をさらに具備してもよい。これにより、上記吸入された上記部品が捕捉されるという作用をもたらす。 Further, in the first aspect, a capture unit that captures the inhaled part may be further provided. Thereby, the effect | action that the said inhaled said components are capture | acquired is brought about.
 またこの第1の側面において、上記吸入部内の空気を排気することにより上記吸入を行わせる排気部をさらに具備してもよい。これにより、上記吸入部内の空気を排気することにより上記吸入が行われるという作用をもたらす。 In addition, in the first aspect, an exhaust unit that performs the inhalation by exhausting the air in the intake unit may be further provided. This brings about the effect | action that the said suction | inhalation is performed by exhausting the air in the said suction part.
 またこの第1の側面において、上記吸入部は、上記開口部と対向する面に上記レーザ光を透過させる透過部を備え、上記レーザ光照射部は、上記透過部および上記開口部を通して上記部品に上記レーザ光を照射してもよい。これにより、上記部品に上記レーザ光が照射されるという作用をもたらす。 In the first aspect, the suction portion includes a transmission portion that transmits the laser light on a surface facing the opening, and the laser light irradiation portion is attached to the component through the transmission portion and the opening. You may irradiate the said laser beam. This brings about the effect | action that the said laser beam is irradiated to the said components.
 またこの第1の側面において、上記レーザ光照射部は、上記基板における上記部品が接合された面の反対側の面に上記レーザ光を照射してもよい。これにより、上記基板における上記部品が接合された面の反対側の面に上記レーザ光が照射されるという作用をもたらす。 In the first aspect, the laser beam irradiation unit may irradiate the laser beam on the surface of the substrate opposite to the surface where the component is bonded. This brings about the effect | action that the said laser beam is irradiated to the surface on the opposite side to the surface where the said components in the said board | substrate were joined.
 また、本技術の第2の側面は、部品が熱可塑性接合剤により接合される接合パッドと、上記熱可塑性接合剤を溶解するレーザ光が上記部品に照射されて上記熱可塑性接合剤が溶解された後に上記部品よりも大きな開口部を通して吸入されることにより上記部品が除去される際に上記接合パッドの近傍に配置されて上記レーザ光を吸収して発熱する発熱部材と、上記接合パッドおよび上記発熱部材が配置される基材とを具備する基板である。これにより、上記発熱部材がレーザ光により発熱するという作用をもたらす。 In addition, the second aspect of the present technology provides a bonding pad in which a component is bonded by a thermoplastic bonding agent and a laser beam that dissolves the thermoplastic bonding agent is applied to the component to dissolve the thermoplastic bonding agent. After that, when the component is removed by being sucked through an opening larger than the component, the heating member is disposed near the bonding pad and absorbs the laser light to generate heat, the bonding pad and the bonding pad. And a base material on which a heat generating member is disposed. This brings about the effect that the heat generating member generates heat by the laser beam.
 またこの第2の側面において、上記発熱部材は、Si、Ti、Cr、Ni、Pt、Sn、W、FeもしくはAlのいずれかまたはこれらの合金であってもよい。これにより、Si、Ti、Cr、Ni、Pt、Sn、W、FeもしくはAlのいずれかまたはこれらの合金により上記吸熱剤が構成されるという作用をもたらす。 In the second aspect, the heat generating member may be Si, Ti, Cr, Ni, Pt, Sn, W, Fe, Al, or an alloy thereof. Thereby, the effect | action that the said endothermic material is comprised by either of Si, Ti, Cr, Ni, Pt, Sn, W, Fe, or Al, or these alloys is brought about.
 またこの第2の側面において、部品が熱可塑性接合剤により接合される接合パッドと、上記熱可塑性接合剤を溶解するレーザ光が上記部品に照射されて上記熱可塑性接合剤が溶解された後に上記部品よりも大きな開口部を通して吸入されることにより上記部品が除去される際に上記レーザ光を反射する反射部材と、上記接合パッドおよび上記反射部材が配置される基材とを具備してもよい。これにより、上記反射材により上記レーザ光が反射されるという作用をもたらす。 In this second aspect, the bonding pad to which the component is bonded by a thermoplastic bonding agent and the laser beam that dissolves the thermoplastic bonding agent is irradiated to the component to dissolve the thermoplastic bonding agent. A reflection member that reflects the laser beam when the component is removed by being sucked through an opening larger than the component, and a base material on which the bonding pad and the reflection member are disposed may be provided. . This brings about the effect | action that the said laser beam is reflected by the said reflecting material.
 またこの第2の側面において、上記反射部材は、Al、Cu、AuもしくはAgのいずれかまたはこれらの合金であってもよい。これにより、Al、Cu、AuもしくはAgのいずれかまたはこれらの合金により上記反射部材が構成されるという作用をもたらす。 In the second aspect, the reflecting member may be any one of Al, Cu, Au, Ag, or an alloy thereof. This brings about the effect | action that the said reflection member is comprised by either Al, Cu, Au, Ag, or these alloys.
 また、本技術の第3の側面は、部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射手順と、上記レーザ光の照射により上記熱可塑性接合剤が溶解された後に上記部品よりも大きな開口部を通して吸入することにより上記部品を上記基板から除去する吸入手順とを具備する部品除去方法である。これにより、上記熱可塑性接合剤が溶解された後に上記部品が吸入されるという作用をもたらす。 Further, according to a third aspect of the present technology, the thermoplastic adhesive is dissolved by the laser light irradiation procedure for irradiating the laser light for dissolving the thermoplastic adhesive for joining the component to the substrate, and the laser light irradiation. A component removal method comprising: an inhalation procedure for removing the component from the substrate by later inhaling through an opening larger than the component. This brings about the effect | action that the said components are inhaled, after the said thermoplastic joining agent is melt | dissolved.
 また、本技術の第4の側面は、部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射部と、上記レーザ光の照射により上記熱可塑性接合剤が溶解された後に上記部品よりも大きな開口部を通して吸入することにより上記部品を上記基板から除去する吸入部とを備える部品除去装置と、上記基板を搬送する基板搬送装置と、上記部品が除去された上記基板にフラックスを塗布するフラックス塗布装置、上記部品が除去された基板に新たな上記部品を搭載する部品搭載装置および上記熱可塑性接合剤を溶解させた後に凝固させて上記部品を上記基板に接合させるリフロー装置のうちの少なくとも1つとを具備する部品リペア装置である。これにより、上記部品リペア装置における部品除去装置において上記熱可塑性接合剤が溶解された後に上記部品吸入されるという作用をもたらす。 In addition, according to a fourth aspect of the present technology, a laser beam irradiation unit that irradiates a laser beam that dissolves a thermoplastic bonding agent for bonding a component to a substrate, and the thermoplastic bonding agent is dissolved by the laser beam irradiation. A component removing device including a suction unit that removes the component from the substrate by sucking through an opening larger than the component later, a substrate transport device that transports the substrate, and the substrate from which the component has been removed. A flux application device for applying a flux, a component mounting device for mounting a new component on a substrate from which the component has been removed, and a reflow device for solidifying the thermoplastic bonding agent and then solidifying it to bond the component to the substrate A component repair device comprising at least one of the above. This brings about the effect | action that the said components are inhaled after the said thermoplastic joining agent is melt | dissolved in the components removal apparatus in the said components repair apparatus.
 また、本技術の第5の側面は、部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射工程と、上記レーザ光の照射により上記熱可塑性接合剤が溶解された後に上記部品よりも大きな開口部を通して吸入することにより上記部品を上記基板から除去する吸入工程とを備える部品除去方法に用いられた上記基板を具備する部品実装基板である。これにより、上記部品実装基板に実装された部品が上記部品除去方法により除去されるという作用をもたらす。 In addition, according to a fifth aspect of the present technology, a laser beam irradiation process for irradiating a laser beam for dissolving a thermoplastic bonding agent for bonding a component to a substrate, and the thermoplastic bonding agent is dissolved by the laser beam irradiation. A component mounting board comprising the substrate used in a component removal method including a suction step of removing the component from the substrate by sucking through an opening larger than the component later. Thereby, the effect | action that the component mounted in the said component mounting board | substrate is removed by the said component removal method is brought about.
 またこの第5の側面において、上記部品は、チップ部品、半導体チップ、MEMSまたはウェハレベルパッケージであってもよい。これにより、上記チップ部品、上記半導体チップ、上記MEMSまたは上記ウェハレベルパッケージが上記部品除去方法により除去されるという作用をもたらす。 In this fifth aspect, the component may be a chip component, a semiconductor chip, a MEMS, or a wafer level package. As a result, the chip component, the semiconductor chip, the MEMS, or the wafer level package is removed by the component removal method.
 またこの第5の側面において、上記部品は、センサであり、上記部品実装基板は、センサアレイデバイスであってもよい。これにより、上記センサアレイデバイスに実装された上記センサが上記部品除去方法により除去されるという作用をもたらす。 In the fifth aspect, the component may be a sensor, and the component mounting board may be a sensor array device. This brings about the effect | action that the said sensor mounted in the said sensor array device is removed by the said component removal method.
 またこの第5の側面において、上記センサは、受光センサであってもよい。これにより、上記センサアレイデバイスに実装された上記受光センサが上記部品除去方法により除去されるという作用をもたらす。 In the fifth aspect, the sensor may be a light receiving sensor. As a result, the light receiving sensor mounted on the sensor array device is removed by the component removing method.
 本技術によれば、部品除去に要する時間を短縮することができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, it is possible to achieve an excellent effect that the time required for removing the parts can be shortened. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の第1の実施の形態における部品除去装置の構成例を示す図である。It is a figure showing an example of composition of a parts removal device in a 1st embodiment of this art. 本技術の第1の実施の形態における吸入部230の構成例を示す図である。It is a figure showing an example of composition of inhalation part 230 in a 1st embodiment of this art. 本技術の第2の実施の形態における部品除去装置の構成例を示す図である。It is a figure showing an example of composition of a parts removal device in a 2nd embodiment of this art. 本技術の第3の実施の形態における部品除去装置の構成例を示す図である。It is a figure showing an example of composition of a parts removal device in a 3rd embodiment of this art. 本技術の第3の実施の形態における部品除去装置の他の構成例を示す図である。It is a figure showing other examples of composition of a parts removal device in a 3rd embodiment of this art. 本技術の第3の実施の形態における部品除去手順の一例を示す図である。It is a figure showing an example of parts removal procedure in a 3rd embodiment of this art. 本技術の第3の実施の形態の変形例における部品除去装置の構成例を示す図である。It is a figure showing an example of composition of a parts removal device in a modification of a 3rd embodiment of this art. 本技術の第4の実施の形態における部品除去装置の構成例を示す図である。It is a figure showing an example of composition of a parts removal device in a 4th embodiment of this art. 本技術の第5の実施の形態における基板410の構成例を示す図である。It is a figure showing an example of composition of substrate 410 in a 5th embodiment of this art. 本技術の第5の実施の形態における基板410の構成例を示す図である。It is a figure showing an example of composition of substrate 410 in a 5th embodiment of this art. 本技術の第6の実施の形態における部品リペア装置の構成例を示す図である。It is a figure showing an example of composition of a parts repair device in a 6th embodiment of this art. 本技術の第7の実施の形態における部品実装基板の構成例を示す図である。It is a figure showing an example of composition of a component mounting board in a 7th embodiment of this art.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(基本的な構成例)
 2.第2の実施の形態(カメラにより部品の吸入を検出する場合の例)
 3.第3の実施の形態(圧力または空気の流量の変化に基づいて部品の吸入を検出する場合の例)
 4.第4の実施の形態(基板の裏面からレーザ光を照射する場合の例)
 5.第5の実施の形態(使用する基板の例)
 6.第6の実施の形態(リペア装置の例)
 7.第7の実施の形態(部品実装基板の例)
Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. First embodiment (basic configuration example)
2. Second embodiment (example in which inhalation of parts is detected by a camera)
3. Third embodiment (an example in which inhalation of a component is detected based on a change in pressure or air flow rate)
4). Fourth embodiment (example in which laser light is irradiated from the back surface of the substrate)
5. Fifth embodiment (example of substrate to be used)
6). Sixth embodiment (example of repair device)
7). Seventh embodiment (example of component mounting board)
 <1.第1の実施の形態>
 [部品除去装置の構成]
 図1は、本技術の第1の実施の形態における部品除去装置の構成例を示す図である。同図の部品除去装置は、レーザ光発生部110と、光導波路120と、レーザ光出射部130と、カメラ140と、光学ユニット150とを備える。また、同図の部品除去装置は、距離調整部210と、吸入部保持部220と、吸入部230と、排気チューブ240と、基板保持部250と、フィルタ310と、真空ポンプ330と、制御部340とを備える。なお、レーザ光発生部110、光導波路120、および、レーザ光出射部130は、レーザ光照射部を構成する。
<1. First Embodiment>
[Configuration of parts removal equipment]
FIG. 1 is a diagram illustrating a configuration example of a component removal apparatus according to the first embodiment of the present technology. The component removing apparatus shown in FIG. 1 includes a laser light generation unit 110, an optical waveguide 120, a laser light emission unit 130, a camera 140, and an optical unit 150. In addition, the component removing apparatus shown in the figure includes a distance adjusting unit 210, a suction unit holding unit 220, a suction unit 230, an exhaust tube 240, a substrate holding unit 250, a filter 310, a vacuum pump 330, and a control unit. 340. The laser light generation unit 110, the optical waveguide 120, and the laser light emission unit 130 constitute a laser light irradiation unit.
 なお、試料として熱可塑性接合剤により基板410に接合された部品420を想定する。ここで、熱可塑性接合剤とは、加熱により溶解する導電性の接合剤であり、例えば、半田や導電性の微粒子を熱可塑性接着剤に分散させた接合剤が該当する。本技術の実施の形態においては、部品420が基板410に半田により接合された試料を想定する。また、部品420としては、チップ抵抗等のチップ部品やベアチップ実装のための半導体チップ、MEMS(Micro Electro Mechanical Systems)またはウェハレベルパッケージ等の部品が該当する。なお、ベアチップ実装のための半導体チップには、バンプが形成された半導体チップ等が該当する。以降の説明では、これをベアチップ部品と称する。また、ウェハレベルパッケージは、半導体チップ等がパッケージに封入された形状のICを含む概念である。例えば、チップサイズパッケージ形状のICもウェハレベルパッケージに含まれる。 Note that a component 420 bonded to the substrate 410 with a thermoplastic bonding agent is assumed as a sample. Here, the thermoplastic bonding agent is a conductive bonding agent that dissolves by heating, and corresponds to, for example, a bonding agent in which solder or conductive fine particles are dispersed in a thermoplastic adhesive. In the embodiment of the present technology, a sample in which the component 420 is bonded to the substrate 410 by solder is assumed. The component 420 corresponds to a chip component such as a chip resistor, a semiconductor chip for bare chip mounting, a MEMS (Micro Electro Mechanical Systems), or a wafer level package. Note that a semiconductor chip on which bumps are formed corresponds to a semiconductor chip for bare chip mounting. In the following description, this is referred to as a bare chip component. The wafer level package is a concept including an IC having a shape in which a semiconductor chip or the like is enclosed in a package. For example, an IC having a chip size package shape is also included in the wafer level package.
 レーザ光発生部110は、部品420および部品420を基板410に接合する半田を加熱するためのレーザ光を発生し、出力するものである。このレーザ光発生部110は、レーザ発振器および電源装置を有する。レーザ発振器は、例えば、半導体レーザ発振器により構成され、レーザ光を発振して出力する。この半導体レーザ発振器には、近赤外線または紫外線のレーザ光を発振する半導体レーザ発振器を使用することができる。紫外線の方が半田における吸収率が高いため、紫外線を発振する半導体レーザを採用することにより、装置全体の効率を向上させることができる。一方、近赤外線を発振する半導体レーザを採用した場合には、低コスト化が可能になる。電源装置は、レーザ発振器に電力を供給するものである。この電力を変更することにより、レーザ光のオンおよびオフ等の制御が可能となる。 The laser beam generator 110 generates and outputs a laser beam for heating the component 420 and the solder that joins the component 420 to the substrate 410. The laser beam generator 110 includes a laser oscillator and a power supply device. The laser oscillator is constituted by, for example, a semiconductor laser oscillator, and oscillates and outputs laser light. As this semiconductor laser oscillator, a semiconductor laser oscillator that oscillates near infrared or ultraviolet laser light can be used. Since ultraviolet rays have a higher absorption rate in solder, the efficiency of the entire apparatus can be improved by employing a semiconductor laser that oscillates ultraviolet rays. On the other hand, when a semiconductor laser that oscillates near infrared rays is employed, the cost can be reduced. The power supply device supplies power to the laser oscillator. By changing the electric power, it is possible to control on / off of the laser light.
 光導波路120は、レーザ光発生部110から出力されたレーザ光を後述するレーザ光出射部130に導く導波路である。この光導波路120は、例えば、光ファイバにより構成された光導波路を使用することができる。また、例えば、鏡によりレーザ光を反射させる反射光学系の光導波路を使用することもできる。 The optical waveguide 120 is a waveguide that guides the laser light output from the laser light generation unit 110 to a laser light emission unit 130 described later. As the optical waveguide 120, for example, an optical waveguide constituted by an optical fiber can be used. Further, for example, an optical waveguide of a reflection optical system that reflects laser light with a mirror can be used.
 レーザ光出射部130は、部品420等にレーザ光を照射するものである。このレーザ光出射部130は、対物レンズを備え、レーザ光を所望のスポット径に集光し、下部に備えられた出射部(不図示)よりレーザ光を出射する。スポット径としては、部品420の全体を加熱可能な大きさにする必要がある。 The laser light emitting unit 130 irradiates the component 420 and the like with laser light. The laser beam emitting unit 130 includes an objective lens, condenses the laser beam to a desired spot diameter, and emits the laser beam from an emitting unit (not shown) provided below. As the spot diameter, it is necessary to make the whole part 420 heatable.
 カメラ140は、部品420等の画像を出力するカメラである。このカメラ140は、部品420の除去前および除去後における基板410の表面状態の観察ならびにレーザ光の照射位置の決定等のために使用されるものである。光学ユニット150は、レーザ光を所定のスポット径に整形する機能と上述のレーザ光出射部130の出射部から画像を取り込んでカメラ140に導く機能とを有するものである。 The camera 140 is a camera that outputs an image of the component 420 or the like. This camera 140 is used for observing the surface state of the substrate 410 before and after removing the component 420, determining the irradiation position of the laser light, and the like. The optical unit 150 has a function of shaping laser light into a predetermined spot diameter and a function of taking an image from the emission part of the laser light emission part 130 and guiding it to the camera 140.
 吸入部230は、部品420を吸入するものである。この吸入部230は、レーザ光出射部130から出射されたレーザ光により半田が溶解した後、部品420を吸入して基板上から除去するものである。本技術の第1の実施の形態では、レーザ光出射部130から出射されたレーザ光は、吸入部230を介して部品420に照射される。そのため、吸入部230のレーザ光が入射される面は、光を透過する部材にする必要がある。さらに、部品420を吸入するため、吸入部230の下部には、部品420より大きな開口部が設けられている。溶解した半田により基板410に付着している部品420を吸入部230内に吸入するには、部品420に浮力を生じさせて吸入部230に引き込む必要がある。この浮力を生じさせるため、吸入の際に、吸入部230の内部を減圧し、負圧の状態にして、部品420の周囲の空気を吸入部230の内部に流入させて、部品420の上面に空気の流れを発生させる必要がある。これら吸入部230の構成等についての詳細は、後述する。 The inhalation unit 230 inhales the part 420. The suction portion 230 is for sucking and removing the component 420 from the substrate after the solder is melted by the laser light emitted from the laser light emitting portion 130. In the first embodiment of the present technology, the laser light emitted from the laser light emitting unit 130 is applied to the component 420 via the suction unit 230. For this reason, the surface of the suction unit 230 on which the laser light is incident needs to be a member that transmits light. Further, in order to inhale the part 420, an opening larger than the part 420 is provided below the inhalation part 230. In order to suck the component 420 adhering to the substrate 410 with the melted solder into the suction part 230, it is necessary to generate buoyancy in the part 420 and pull it into the suction part 230. In order to generate this buoyancy, the inside of the suction portion 230 is depressurized during suction, and the air around the component 420 is caused to flow into the suction portion 230 so that the air flows around the upper surface of the component 420. It is necessary to generate an air flow. Details of the configuration and the like of the suction unit 230 will be described later.
 基板保持部250は、基板410を保持するものである。この基板保持部250は、基板410をXおよびY方向に移動可能な構成にすることができる。これにより、レーザ光出射部130により照射されたレーザ光の光軸と部品420とを合わせるように基板410を移動させる位置合せを行うことができる。この場合、後述する制御部340が基板保持部250を制御して、この位置合せを行う。この結果、レーザ光のスポットの部分に部品420が配置され、部品420は、その全体が均等に加熱されることとなる。なお、基板保持部250における基板410の保持方法として、例えば、真空吸着および静電吸着等の吸着法や取付け金具により固定する方法を使用することができる。 The substrate holding unit 250 holds the substrate 410. The substrate holder 250 can be configured to move the substrate 410 in the X and Y directions. As a result, it is possible to perform alignment by moving the substrate 410 so that the optical axis of the laser light irradiated by the laser light emitting unit 130 and the component 420 are aligned. In this case, the control unit 340 described later controls the substrate holding unit 250 to perform this alignment. As a result, the part 420 is arranged at the spot of the laser light, and the whole part 420 is heated evenly. In addition, as a holding method of the substrate 410 in the substrate holding unit 250, for example, a suction method such as vacuum suction and electrostatic suction or a method of fixing with a mounting bracket can be used.
 吸入部保持部220は、吸入部230を保持するものである。距離調整部210は、吸入部保持部220を保持するとともに吸入部保持部220の高さを調整するものである。これにより、距離調整部210は、基板410と上述した吸入部230の開口部との間の距離を調整することができる。 The suction part holding part 220 holds the suction part 230. The distance adjusting unit 210 holds the suction unit holding unit 220 and adjusts the height of the suction unit holding unit 220. Thereby, the distance adjustment part 210 can adjust the distance between the board | substrate 410 and the opening part of the suction | inhalation part 230 mentioned above.
 真空ポンプ330は、吸入部230の内部を減圧するため、吸入部230内部の空気を排気するポンプである。 The vacuum pump 330 is a pump that exhausts the air inside the suction unit 230 in order to depressurize the inside of the suction unit 230.
 排気チューブ240は、吸入部230と真空ポンプ330とを接続して、吸入部230内部の気体を真空ポンプ330に導くチューブである。この排気チューブ240の途中に、後述するフィルタ310が配置されている。排気チューブ240として、例えば、硬質樹脂により構成されたチューブを使用することができる。 The exhaust tube 240 is a tube that connects the suction unit 230 and the vacuum pump 330 and guides the gas inside the suction unit 230 to the vacuum pump 330. A filter 310 described later is disposed in the middle of the exhaust tube 240. As the exhaust tube 240, for example, a tube made of hard resin can be used.
 フィルタ310は、吸入部230により吸入された部品420を捕捉するフィルタである。除去された部品420は、周囲の空気とともに吸入部230に吸入され、排気チューブ内を移動する。この部品420が真空ポンプ330に到達する前に、フィルタ310により捕捉される。これにより、真空ポンプ330の損傷を防ぐことができる。 The filter 310 is a filter that captures the part 420 sucked by the suction unit 230. The removed part 420 is sucked into the suction part 230 together with the surrounding air and moves in the exhaust tube. This part 420 is captured by the filter 310 before reaching the vacuum pump 330. Thereby, damage to the vacuum pump 330 can be prevented.
 制御部340は、基板保持部250、真空ポンプ330およびレーザ光発生部110を制御するものである。この制御部340は、真空ポンプ330およびレーザ光発生部110のオンおよびオフの制御を行う。 The control unit 340 controls the substrate holding unit 250, the vacuum pump 330, and the laser light generation unit 110. The control unit 340 controls on / off of the vacuum pump 330 and the laser light generation unit 110.
 なお、フィルタ310は、特許請求の範囲に記載の捕捉部の一例である。真空ポンプ330は、特許請求の範囲に記載の排気部の一例である。 The filter 310 is an example of a capturing unit described in the claims. The vacuum pump 330 is an example of an exhaust unit described in the claims.
 [吸入部の構成]
 図2は、本技術の第1の実施の形態における吸入部230の構成例を示す図である。同図におけるaは、吸入部230の上面図を表し、同図におけるbは、同図におけるaのA-A'線に沿う断面図を表している。また、同図におけるbには、吸入部230に加えて部品420、基板410および基板保持部250の断面図をさらに記載した。なお、部品420はベアチップ部品であり、半田421により基板410の接合パッド(不図示)に接合されていることを想定する。また、この部品420のチップ部分の上面のサイズとして0.2mm×0.2mmを想定する。さらに、同図におけるbは、レーザ光501が照射されて部品420が基板410から除去される様子を表している。
[Configuration of suction section]
FIG. 2 is a diagram illustrating a configuration example of the suction unit 230 according to the first embodiment of the present technology. In the drawing, a represents a top view of the suction portion 230, and b in the drawing represents a cross-sectional view taken along the line AA ′ in FIG. Further, in FIG. 5b, a sectional view of the component 420, the substrate 410, and the substrate holding portion 250 in addition to the suction portion 230 is further described. Note that the component 420 is a bare chip component and is assumed to be bonded to a bonding pad (not shown) of the substrate 410 by solder 421. Further, the size of the upper surface of the chip portion of the component 420 is assumed to be 0.2 mm × 0.2 mm. Further, b in the figure represents a state in which the component 420 is removed from the substrate 410 by being irradiated with the laser light 501.
 同図に表したように、この吸入部230は、吸入ノズル231と、透明部材232とを備える。吸入ノズル231は、すり鉢状の底部を有する円筒形状をしており、上部および最下部にそれぞれ開口部233および235を有する。また、この吸入ノズル231は、円筒形状部分の側面に開口部234を有している。排気チューブ240は、この開口部234および排気チューブ240の穴が符合する位置に接続されている。透明部材232は、開口部233に取り付けられ、開口部233を塞ぐとともにレーザ光501を透過させるものである。この透明部材232には、例えば、ガラスにより構成された円盤状の板を使用することができる。 As shown in the figure, the suction part 230 includes a suction nozzle 231 and a transparent member 232. The suction nozzle 231 has a cylindrical shape with a mortar-shaped bottom, and has openings 233 and 235 at the top and bottom, respectively. The suction nozzle 231 has an opening 234 on the side surface of the cylindrical portion. The exhaust tube 240 is connected to a position where the opening 234 and the hole of the exhaust tube 240 coincide. The transparent member 232 is attached to the opening 233 and closes the opening 233 and transmits the laser light 501. As the transparent member 232, for example, a disk-shaped plate made of glass can be used.
 透明部材232を透過したレーザ光501は、開口部235を通って部品420に照射される。このため、レーザ光501の光軸および開口部235は、略同軸となる位置に配置する必要がある。また、前述のように、部品420を通過させる必要があるため、開口部235は、部品420より大きくする必要がある。部品420が上述のサイズの場合、開口部235は、例えば、1mm径の大きさにすることができる。また、レーザ光501のスポット径は、例えば、0.4mmにすることができる。なお、開口部234および排気チューブ240の穴の大きさも部品420より大きくする必要があり、例えば、10mm径の大きさにすることができる。 The laser beam 501 that has passed through the transparent member 232 is irradiated to the component 420 through the opening 235. For this reason, the optical axis of the laser beam 501 and the opening 235 need to be arranged at substantially coaxial positions. Further, as described above, since the part 420 needs to pass through, the opening 235 needs to be larger than the part 420. When the component 420 has the above-described size, the opening 235 can have a diameter of 1 mm, for example. Further, the spot diameter of the laser beam 501 can be set to 0.4 mm, for example. Note that the size of the hole in the opening 234 and the exhaust tube 240 also needs to be larger than that of the component 420, and can be, for example, 10 mm in diameter.
 このような形状を有する吸入部230を用いた部品420の除去方法について説明する。真空ポンプ330を作動させると、排気チューブ240を通して減圧されることにより、吸入部230の内部は、負圧の状態となる。このため、開口部235から空気が流入する。この際、開口部235と基板410との間の距離dが部品420の高さに近い値になるように両者を接近させた場合、開口部235が部品420によって塞がれて、見かけ上開口部235が狭くなる。このため、開口部235の内外の差圧が大きくなり、流入する空気の流速が増加するとともに流量が低下する。なお、同図におけるbでは、この空気の流れを白抜きの矢印により表した。 A method of removing the part 420 using the suction part 230 having such a shape will be described. When the vacuum pump 330 is operated, the pressure inside the suction part 230 is reduced to a negative pressure by being depressurized through the exhaust tube 240. For this reason, air flows from the opening 235. At this time, when the two are brought close to each other so that the distance d between the opening 235 and the substrate 410 becomes a value close to the height of the component 420, the opening 235 is blocked by the component 420 and apparently opens. The portion 235 is narrowed. For this reason, the pressure difference inside and outside the opening 235 increases, and the flow rate of the air flowing in increases and the flow rate decreases. In FIG. 6B, this air flow is represented by a white arrow.
 この状態で、制御部340は、レーザ光発生部110にレーザ光を発生させる。すると、レーザ光出射部130から出射されたレーザ光501が部品420に照射され、部品420が加熱される。この加熱により半田421が溶解すると、部品420は、溶解した半田により基板410に付着した状態になる。このため、上述の速い空気の流れにより、部品420に浮力が生じる。この浮力により部品420が基板410から剥がされて、開口部235から吸入される。吸入された部品420は、流入した空気とともに開口部234から排出される。 In this state, the control unit 340 causes the laser light generation unit 110 to generate laser light. Then, the component 420 is irradiated with the laser beam 501 emitted from the laser beam emitting unit 130, and the component 420 is heated. When the solder 421 is melted by this heating, the component 420 is attached to the substrate 410 by the melted solder. For this reason, buoyancy arises in the component 420 by the above-mentioned fast air flow. Due to this buoyancy, the component 420 is peeled from the substrate 410 and sucked from the opening 235. The sucked component 420 is discharged from the opening 234 together with the inflowing air.
 所定の時間が経過した後、制御部340は、レーザ光発生部110に対してレーザ光の発生を停止させて、レーザ光501の照射を停止させる。このような手順により、部品420を基板410から除去することができる。なお、事前の検討により部品420を吸入可能にする開口部235と基板410との距離dの値を予め取得し、この距離になるように距離調整部210を制御する必要がある。同様に、部品420を接合している半田421を溶解可能なレーザ光の照射時間も、事前の検討により取得しておく必要がある。これらは、部品420のサイズや半田付けされた部分の数量等により変化する。 After a predetermined time has elapsed, the control unit 340 stops the laser light generation unit 110 from generating the laser light and stops the irradiation of the laser light 501. With this procedure, the component 420 can be removed from the substrate 410. In addition, it is necessary to acquire in advance a value of the distance d between the opening 235 that enables the component 420 to be sucked and the substrate 410 and to control the distance adjusting unit 210 so as to be this distance. Similarly, the irradiation time of the laser beam that can dissolve the solder 421 that joins the component 420 needs to be acquired in advance. These vary depending on the size of the component 420, the number of soldered portions, and the like.
 具体例を挙げて説明すると、レーザ光発生部110への供給電力を3Wとし、波長940nmのレーザ光を発生させて部品420に照射すると、およそ0.5秒後に半田421が溶解して部品420が吸入部230に吸入される。 Specifically, when the power supplied to the laser light generation unit 110 is 3 W, laser light having a wavelength of 940 nm is generated and irradiated to the component 420, the solder 421 is melted after about 0.5 seconds and the component 420 is melted. Is sucked into the suction part 230.
 このように、短い時間で部品420を除去することができる。また、レーザ光の照射も短時間で済むため、基板410に対する熱的な損傷が少なくなる。さらに、非接触で部品420を除去可能なため、複雑な形状または微細な形状の部品420においても除去が容易である。 Thus, the part 420 can be removed in a short time. In addition, since laser light irradiation can be completed in a short time, thermal damage to the substrate 410 is reduced. Furthermore, since the component 420 can be removed without contact, the component 420 having a complicated shape or a fine shape can be easily removed.
 なお、本技術の第1の実施の形態では、上述のように、距離dを調整して吸入部230の内部の圧力および流入する空気の流量を設定している。誤差の発生を防ぐため、吸入部230には、高い気密性が要求される。すなわち、吸入ノズル231と排気チューブ240との間の継ぎ目および吸入ノズル231と透明部材232との間の継ぎ目にはオーリング等を配置して外部からの空気の流入を防ぐ必要がある。 In the first embodiment of the present technology, as described above, the distance d is adjusted to set the pressure inside the suction unit 230 and the flow rate of the inflowing air. In order to prevent the occurrence of errors, the suction unit 230 is required to have high airtightness. That is, it is necessary to provide an O-ring or the like at the joint between the suction nozzle 231 and the exhaust tube 240 and the joint between the suction nozzle 231 and the transparent member 232 to prevent inflow of air from the outside.
 また、レーザ光により部品420を加熱する際、半田ヒュームや加熱されたフラックス残渣に起因する汚染物質が発生し、透明部材232に付着する。このため、透明部材232は清掃が容易な構成にする必要がある。具体的には、吸入ノズル231から取り外すことが容易な構成にする必要がある。また、排気チューブ240は、真空ポンプ330による排気を阻害することのないように、比較的大きな口径、例えば、10mm径にする必要がある。同様に、フィルタ310は、部品420を捕捉可能とした上で、排気を阻害することのないように、ろ過径を選択する必要がある。本技術の第1の実施の形態においては、フィルタ310として、例えば、ろ過径5μm以上、流量30L/分以下のフィルタを使用することができる。 Further, when the component 420 is heated by the laser beam, contaminants due to solder fume and heated flux residue are generated and adhere to the transparent member 232. For this reason, the transparent member 232 needs to be configured to be easy to clean. Specifically, it is necessary to make the configuration easy to remove from the suction nozzle 231. Further, the exhaust tube 240 needs to have a relatively large diameter, for example, a 10 mm diameter so as not to hinder the exhaust by the vacuum pump 330. Similarly, the filter 310 needs to select the filtration diameter so that the part 420 can be captured and the exhaust is not hindered. In the first embodiment of the present technology, as the filter 310, for example, a filter having a filtration diameter of 5 μm or more and a flow rate of 30 L / min or less can be used.
 このように、本技術の第1の実施の形態によれば、部品をレーザ光により加熱して、部品より大きな開口部を備えた吸入部により吸入して除去することにより、部品除去に要する時間を短縮することができる。また、加熱時間が短縮されるため基板の損傷を少なくすることができる。 As described above, according to the first embodiment of the present technology, the time required for removing the component is obtained by heating the component with the laser beam and sucking and removing the component with the suction portion having an opening larger than the component. Can be shortened. Further, since the heating time is shortened, damage to the substrate can be reduced.
 <2.第2の実施の形態>
 上述の実施の形態では、事前の検討により取得した照射時間に基づいてレーザ光の照射を停止していた。これに対し、本技術の第2の実施の形態では、部品420の吸入を確認してレーザ光の照射を停止する。
<2. Second Embodiment>
In the above-described embodiment, the irradiation of the laser beam is stopped based on the irradiation time acquired by the preliminary examination. On the other hand, in the second embodiment of the present technology, the suction of the component 420 is confirmed and the irradiation of the laser light is stopped.
 [部品除去装置の構成]
 図3は、本技術の第2の実施の形態における部品除去装置の構成例を示す図である。同図の部品除去装置は、カメラ140および制御装置340の代わりにカメラ160および制御装置360を備えている点で、図1において説明した部品除去装置と異なっている。これ以外の構成は図1において説明した部品除去装置と同様であるため、説明を省略する。
[Configuration of parts removal equipment]
FIG. 3 is a diagram illustrating a configuration example of the component removing device according to the second embodiment of the present technology. The component removal apparatus shown in the figure is different from the component removal apparatus described in FIG. 1 in that a camera 160 and a control device 360 are provided instead of the camera 140 and the control device 340. Since the configuration other than this is the same as that of the component removing apparatus described in FIG.
 同図の部品除去装置においても、部品420の除去の際、真空ポンプ330を作動させて排気を行いながら、レーザ光を照射して半田421を溶解させて、部品420が吸入された後にレーザ光の照射を停止させる。その際、部品420の吸入を確認した後にレーザ光の照射を停止させる。この部品420の吸入の確認は、次のように行う。カメラ160は、取得した画像を画像信号に変換して制御部360に対して出力する。制御部360は、出力された画像信号を解析して基板410から部品420が除去されたことを検出する。その後、制御部360は、レーザ光発生部110を制御してレーザ光の照射を停止させる。これにより、部品の除去を確実なものとすることができる。また、不必要なレーザ光の照射を防ぐことができるため、部品420が吸入された後の基板410に対する損傷を軽減することができる。 Also in the component removing apparatus shown in FIG. 2, when removing the component 420, the laser pump is operated to exhaust and the laser beam is irradiated to melt the solder 421 and the laser beam is sucked after the component 420 is sucked. Stop irradiation. At that time, after confirming the suction of the component 420, the irradiation of the laser light is stopped. Confirmation of inhalation of the component 420 is performed as follows. The camera 160 converts the acquired image into an image signal and outputs it to the control unit 360. The control unit 360 analyzes the output image signal and detects that the component 420 has been removed from the substrate 410. Thereafter, the control unit 360 controls the laser beam generation unit 110 to stop the irradiation of the laser beam. Thereby, removal of components can be ensured. In addition, since unnecessary laser light irradiation can be prevented, damage to the substrate 410 after the component 420 is inhaled can be reduced.
 一方、図1において説明した部品除去装置では、部品420の吸入を確認することなくレーザ光の照射を停止しており、部品420の吸入を確実なものとするためには事前検討により取得したレーザ光照射時間より長い照射時間にする必要がある。このため、基板410に比較的長い時間レーザ光が照射され、加熱による基板410の損傷が大きくなる。 On the other hand, in the component removing apparatus described with reference to FIG. 1, the irradiation of the laser beam is stopped without confirming the suction of the component 420, and in order to ensure the suction of the component 420, the laser obtained by prior examination is used. It is necessary to make the irradiation time longer than the light irradiation time. For this reason, the substrate 410 is irradiated with laser light for a relatively long time, and the substrate 410 is greatly damaged by heating.
 このように、本技術の第2の実施の形態によれば、カメラ160により取得した画像により、部品420の吸入を確認してレーザ光の照射を停止させるため、部品420の除去を確実なものにするとともに基板410の損傷を軽減することができる。 As described above, according to the second embodiment of the present technology, since the suction of the component 420 is confirmed by the image acquired by the camera 160 and the irradiation of the laser beam is stopped, the removal of the component 420 is surely performed. In addition, damage to the substrate 410 can be reduced.
 <3.第3の実施の形態>
 上述の第2の実施の形態では、カメラ160により部品420の吸入を検出していた。これに対し、本技術の第3の実施の形態では、圧力センサ320または流量センサ350の検出結果に基づいて部品420の吸入を検出する。
<3. Third Embodiment>
In the second embodiment described above, inhalation of the part 420 is detected by the camera 160. On the other hand, in the third embodiment of the present technology, the suction of the component 420 is detected based on the detection result of the pressure sensor 320 or the flow sensor 350.
 [部品除去装置の構成]
 図4は、本技術の第3の実施の形態における部品除去装置の構成例を示す図である。同図の部品除去装置は、排気チューブ240に圧力センサ320が配置され、制御部340の代わりに制御部370を備えている点で、図1において説明した部品除去装置と異なっている。これ以外の構成は図1において説明した部品除去装置と同様であるため、説明を省略する。
[Configuration of parts removal equipment]
FIG. 4 is a diagram illustrating a configuration example of the component removing device according to the third embodiment of the present technology. The component removing apparatus shown in the figure is different from the component removing apparatus described in FIG. 1 in that a pressure sensor 320 is disposed in the exhaust tube 240 and a control unit 370 is provided instead of the control unit 340. Since the configuration other than this is the same as that of the component removing apparatus described in FIG.
 図5は、本技術の第3の実施の形態における部品除去装置の他の構成例を示す図である。同図の部品除去装置は、排気チューブ240に流量センサ350が配置され、制御部340の代わりに制御部370を備えている点で、図1において説明した部品除去装置と異なっている。これ以外の構成は図1において説明した部品除去装置と同様であるため、説明を省略する。なお、圧力センサ320および流量センサ350は、吸入に伴う吸入部230への空気の流入の状態を計測する計測部を構成している。 FIG. 5 is a diagram illustrating another configuration example of the component removing device according to the third embodiment of the present technology. 1 is different from the component removal apparatus described in FIG. 1 in that a flow sensor 350 is disposed in the exhaust tube 240 and a control unit 370 is provided instead of the control unit 340. Since the configuration other than this is the same as that of the component removing apparatus described in FIG. Note that the pressure sensor 320 and the flow rate sensor 350 constitute a measurement unit that measures the state of the inflow of air into the suction unit 230 accompanying suction.
 圧力センサ320は、吸入部230の外部および内部の差圧を計測するセンサである。この圧力センサ320は、大気圧と排気チューブ240内の空気の圧力との差圧を計測することにより、吸入部230の外部および内部の差圧を計測する。なお、圧力センサ320として、例えば、差圧計を使用することができる。 The pressure sensor 320 is a sensor that measures the differential pressure inside and outside the suction unit 230. The pressure sensor 320 measures the differential pressure between the outside and the inside of the suction unit 230 by measuring the differential pressure between the atmospheric pressure and the pressure of the air in the exhaust tube 240. As the pressure sensor 320, for example, a differential pressure gauge can be used.
 流量センサ350は、吸入部230における空気の流入の流量を計測するセンサである。本技術の第1の実施の形態では、流量センサ350は、排気チューブ240を流れる排気の流量を測定することにより、吸入部230における空気の流入の流量を計測する。また、制御部370は、圧力センサ320または流量センサ350の計測結果に基づいて距離調整部210に対して吸入部230と基板410との間の距離dの制御を行わせる。 The flow sensor 350 is a sensor that measures the flow rate of air inflow in the suction unit 230. In the first embodiment of the present technology, the flow sensor 350 measures the flow rate of the inflow of air in the suction unit 230 by measuring the flow rate of the exhaust gas flowing through the exhaust tube 240. In addition, the control unit 370 causes the distance adjustment unit 210 to control the distance d between the suction unit 230 and the substrate 410 based on the measurement result of the pressure sensor 320 or the flow rate sensor 350.
 [部品の吸入の検出]
 図4および5の部品除去装置においても、真空ポンプ330を作動させて排気を行いながらレーザ光を照射し、部品420の吸入を確認した後、レーザ光の照射を停止させる。この部品420の吸入の確認は、次のように行うことができる。上述の距離dを調整して吸入部230の外部と内部との差圧および吸入における空気の流量を所定の値にした状態で、部品420が吸い上げられて開口部235を通過すると、部品420により開口部235における空気の流れに変化が生じる。この変化に伴い、上述の差圧および空気の流量が変化することになる。そこで、圧力センサ320または流量センサ350によりこの変化を検出し、部品420の吸入を検出することができる。
[Detection of inhalation of parts]
4 and 5, the laser light is irradiated while exhausting by operating the vacuum pump 330. After confirming the suction of the component 420, the laser light irradiation is stopped. Confirmation of inhalation of the component 420 can be performed as follows. When the part 420 is sucked up and passes through the opening 235 in a state where the above-described distance d is adjusted and the differential pressure between the outside and the inside of the suction part 230 and the flow rate of air in the suction are set to predetermined values, A change occurs in the air flow in the opening 235. With this change, the above-described differential pressure and air flow rate change. Therefore, this change can be detected by the pressure sensor 320 or the flow sensor 350, and the suction of the component 420 can be detected.
 具体例を挙げて説明する。本技術の第1の実施の形態と同様の部品420を使用して同様の吸入の条件により吸入を行う場合を想定する。すなわち、距離調整部210を制御して吸入部230および基板410の距離dを調整する。この時の差圧および流量は、それぞれ-85KPaおよび4L/分である。次に、レーザ光が照射されて部品420が加熱されると、半田が溶解して部品420が吸入される。このときの差圧は-87KPa、流量は3.8L/分となった。すなわち、部品420の吸入により、差圧および流量がそれぞれ2KPaおよび0.2L/分変化する。したがって、この変化を捉えることにより、部品420の吸入を判断することができる。制御部340は、圧力センサ320または流量センサ350の計測結果を監視して上記の変化を捉えたタイミングで、レーザ光の照射を停止させる。 This will be explained with specific examples. A case is assumed in which inhalation is performed under the same inhalation conditions using the same component 420 as in the first embodiment of the present technology. That is, the distance adjustment unit 210 is controlled to adjust the distance d between the suction unit 230 and the substrate 410. The differential pressure and flow rate at this time are -85 KPa and 4 L / min, respectively. Next, when the laser beam is irradiated and the component 420 is heated, the solder is melted and the component 420 is sucked. At this time, the differential pressure was -87 KPa, and the flow rate was 3.8 L / min. That is, the suction of the component 420 changes the differential pressure and the flow rate by 2 KPa and 0.2 L / min, respectively. Therefore, it is possible to determine inhalation of the component 420 by capturing this change. The controller 340 monitors the measurement result of the pressure sensor 320 or the flow sensor 350 and stops the laser light irradiation at the timing when the change is captured.
 この手順を採ることにより、図4および5の部品除去装置は、カメラ140の画像を解析することなく部品420の吸入を検出することができる。これを図2における部品除去装置と比較する。カメラに対して有害なレーザ光の入射を防ぐため、光学ユニット150にはフィルタが配置されている。このフィルタのため、図2のカメラ160により得られる画像は不鮮明なものとなる。さらに、部品420のサイズは小さいため、画像処理により吸入を確認するのは困難であり、高度な画像処理を必要とし、処理に時間がかかる。同時に、カメラ160には、解像度の高いカメラを使用する必要がある。これに対して、図4および5における部品除去装置では、カメラ140は基板410の表面状態の観察の用途に使用されるため、通常のモニター用カメラを使用することができる。また、基板410の表面状態の観察が不要な場合には、このカメラ140を省略することもできる。なお、紫外線のレーザ光を照射する場合には、通常のカメラでは部品除去の確認ができないため、本技術の第3の実施の形態における部品除去の確認方法を採用する必要がある。 By adopting this procedure, the component removing apparatus shown in FIGS. 4 and 5 can detect inhalation of the component 420 without analyzing the image of the camera 140. This is compared with the component removal apparatus in FIG. A filter is disposed in the optical unit 150 in order to prevent harmful laser light from entering the camera. Due to this filter, the image obtained by the camera 160 in FIG. 2 is unclear. Furthermore, since the size of the component 420 is small, it is difficult to confirm inhalation by image processing, and advanced image processing is required, and processing takes time. At the same time, it is necessary to use a camera with high resolution as the camera 160. On the other hand, in the component removing apparatus shown in FIGS. 4 and 5, since the camera 140 is used for observation of the surface state of the substrate 410, a normal monitoring camera can be used. Further, when it is not necessary to observe the surface state of the substrate 410, the camera 140 can be omitted. In addition, when irradiating with ultraviolet laser light, it is necessary to employ the method for confirming component removal according to the third embodiment of the present technology because confirmation of component removal cannot be performed with an ordinary camera.
 また、本技術の第3の実施の形態における部品除去装置では、圧力センサ320または流量センサ350を備えているため、制御部370は差圧または空気の流量を確認しながら距離調整部210を制御して距離dを調整することができる。このため、より精密な部品420の吸入条件の設定が可能となる。なお、フィルタ310による圧力の変化(いわゆる圧損)の影響を除くため、圧力センサは吸入部230とフィルタ310の間に配置するのが望ましい。一方、流量センサ350は、部品420および汚染物質による誤動作を防ぐためフィルタ310と真空ポンプ330との間に配置するのが望ましい。 In addition, since the component removal apparatus according to the third embodiment of the present technology includes the pressure sensor 320 or the flow rate sensor 350, the control unit 370 controls the distance adjustment unit 210 while confirming the differential pressure or the air flow rate. Thus, the distance d can be adjusted. For this reason, it is possible to set the suction conditions of the component 420 more precisely. In order to eliminate the influence of a change in pressure (so-called pressure loss) caused by the filter 310, it is desirable to dispose the pressure sensor between the suction unit 230 and the filter 310. On the other hand, the flow sensor 350 is preferably disposed between the filter 310 and the vacuum pump 330 to prevent malfunction due to the component 420 and contaminants.
 [部品除去処理]
 図6は、本技術の第3の実施の形態における部品除去処理の一例を示す図である。まず、制御部370は、真空ポンプ330を作動させる(ステップS901)。これにより、吸入部230における吸入が開始される。次に、制御部370は、基板保持部250を制御して位置合せを行う(ステップS902)。次に、制御部370は、所定の圧力または流量か否かを判断する(ステップS903)。具体的には、圧力センサまたは流量センサの計測値が所定の値になっているか否かを判断する。その結果、所定の圧力または流量になっていない場合には(ステップS903:No)、制御部370は、吸入部230および基板410の間の距離を調整する(ステップS904)。
[Part removal processing]
FIG. 6 is a diagram illustrating an example of a component removal process according to the third embodiment of the present technology. First, the control unit 370 operates the vacuum pump 330 (step S901). Thereby, inhalation in the inhalation unit 230 is started. Next, the control unit 370 performs alignment by controlling the substrate holding unit 250 (step S902). Next, the control unit 370 determines whether or not the pressure or flow rate is a predetermined value (step S903). Specifically, it is determined whether or not the measured value of the pressure sensor or the flow rate sensor is a predetermined value. As a result, when the predetermined pressure or flow rate is not reached (step S903: No), the control unit 370 adjusts the distance between the suction unit 230 and the substrate 410 (step S904).
 一方、所定の圧力および流量になっている場合には(ステップS903:Yes)、制御部370は、レーザ光発生部110を制御してレーザ光の照射を開始させる(ステップS905)。次に、制御部370は、部品420が吸入部230に吸入されるまで待機する(ステップS906)。部品420が吸入された場合には(ステップS906:Yes)、制御部370は、レーザ光発生部110を制御してレーザ光の照射を停止させる(ステップS907)。その後、制御部370は、除去する部品がさらに存在する場合には(ステップS903:Yes)、再度ステップS902からの処理を実行する。一方、除去の必要な全ての部品について除去処理が終了している場合には(ステップS908:No)、制御部370は、真空ポンプ330を停止させ(ステップS909)、部品除去処理を終了する。 On the other hand, when the predetermined pressure and flow rate are reached (step S903: Yes), the control unit 370 controls the laser light generation unit 110 to start laser light irradiation (step S905). Next, the control unit 370 waits until the component 420 is sucked into the suction unit 230 (step S906). When the component 420 has been inhaled (step S906: Yes), the control unit 370 controls the laser light generation unit 110 to stop the laser light irradiation (step S907). Thereafter, when there are more components to be removed (step S903: Yes), the control unit 370 executes the processing from step S902 again. On the other hand, when the removal process has been completed for all the parts that need to be removed (step S908: No), the control unit 370 stops the vacuum pump 330 (step S909) and ends the part removal process.
 このように、本技術の第3の実施の形態によれば、カメラによる画像解析を行うことなく部品の除去を確認するため、部品除去装置の構成を簡素な構成にすることができる。また、圧力センサ320または流量センサ350により、精密な吸入条件の設定が可能になる。 As described above, according to the third embodiment of the present technology, since the removal of the component is confirmed without performing the image analysis by the camera, the configuration of the component removing apparatus can be simplified. In addition, the pressure sensor 320 or the flow rate sensor 350 makes it possible to set a precise suction condition.
 [変形例]
 上述の実施の形態では、圧力センサ320または流量センサ350のいずれかを使用して空気の流入の状態を検出していた。これに対し、この変形例では、圧力センサ320および流量センサ350の両方を使用する。
[Modification]
In the above-described embodiment, the air inflow state is detected using either the pressure sensor 320 or the flow sensor 350. On the other hand, in this modification, both the pressure sensor 320 and the flow sensor 350 are used.
 [部品除去装置の構成]
 図7は、本技術の第3の実施の形態の変形例における部品除去装置の構成例を示す図である。同図の部品除去装置は、圧力センサ320および流量センサ350の両方を備える点で、図4および5の部品除去装置と異なっている。すなわち、本技術の第3の実施の形態の変形例における計測部は、圧力センサ320および流量センサ350の両方を備えている。これ以外の構成は図4および5において説明した部品除去装置と同様であるため、説明を省略する。
[Configuration of parts removal equipment]
FIG. 7 is a diagram illustrating a configuration example of the component removing device according to a modification of the third embodiment of the present technology. The part removing apparatus shown in the figure is different from the parts removing apparatus shown in FIGS. 4 and 5 in that both the pressure sensor 320 and the flow rate sensor 350 are provided. That is, the measurement unit in the modification of the third embodiment of the present technology includes both the pressure sensor 320 and the flow sensor 350. Since the configuration other than this is the same as that of the component removing apparatus described with reference to FIGS.
 同図の部品除去装置は、圧力センサ320および流量センサ350の両方を備えているため、図4および5の部品除去装置と比較して、より精密な吸入条件の設定が可能である。 Since the component removing apparatus shown in the figure includes both the pressure sensor 320 and the flow rate sensor 350, it is possible to set a more precise suction condition as compared with the component removing apparatuses shown in FIGS.
 <4.第4の実施の形態>
 上述の実施の形態では、レーザ光を部品420に照射していた。これに対し、本技術の第4の実施の形態では、レーザ光を基板410における部品420が接合された面の反対側の面に照射する。
<4. Fourth Embodiment>
In the above embodiment, the component 420 is irradiated with the laser light. On the other hand, in the fourth embodiment of the present technology, laser light is irradiated on the surface of the substrate 410 opposite to the surface where the component 420 is bonded.
 [部品除去装置の構成]
 図8は、本技術の第4の実施の形態における部品除去装置の構成例を示す図である。同図の部品除去装置は、基板保持部250および吸入部230の代わりに基板保持部260および吸入部270を備えている。また、基板保持部260は、レーザ光出射部130の直下に配置されており、基板保持部260には部品420が下側になる向きに基板410が保持されている。さらに吸入部270は、開口部が上向きになるように吸入部保持部220に保持され、基板保持部260の下方に配置されている。これ以外の部品除去装置の構成は図1において説明した部品除去装置と同様であるため、説明を省略する。
[Configuration of parts removal equipment]
FIG. 8 is a diagram illustrating a configuration example of the component removing device according to the fourth embodiment of the present technology. The component removing apparatus shown in the figure includes a substrate holding unit 260 and a suction unit 270 instead of the substrate holding unit 250 and the suction unit 230. The substrate holding unit 260 is disposed immediately below the laser beam emitting unit 130, and the substrate 410 is held by the substrate holding unit 260 so that the component 420 faces downward. Further, the suction part 270 is held by the suction part holding part 220 so that the opening part faces upward, and is arranged below the substrate holding part 260. The rest of the configuration of the component removal apparatus is the same as that of the component removal apparatus described with reference to FIG.
 基板保持部260は、開口部261を有している。部品420は、この開口部261を介して吸入部270に吸入される。 The substrate holding part 260 has an opening 261. The component 420 is sucked into the suction portion 270 through the opening 261.
 吸入部270は、図2において説明した吸入部230の開口部235と同様の開口部を有しており、この開口部を通して部品420が吸入される。しかし、レーザ光を通過させる必要がないため、吸入部270では、透明部材232を備える必要はない。 The suction part 270 has an opening similar to the opening 235 of the suction part 230 described in FIG. 2, and the component 420 is sucked through the opening. However, since there is no need to allow laser light to pass therethrough, the suction part 270 need not include the transparent member 232.
 次に、部品420の除去手順について説明する。部品420および吸入部270の開口部が略同軸になるように基板保持部260において位置合わせが行われる。次に、制御部340は、距離調整部210を制御して吸入部270の開口部および基板410の距離を調整する。その後、レーザ光を基板410に照射する。これにより、基板410が加熱されるとともに、熱伝導により半田が溶解して、部品420が吸入される。 Next, the procedure for removing the component 420 will be described. Position alignment is performed in the substrate holding portion 260 so that the openings of the component 420 and the suction portion 270 are substantially coaxial. Next, the control unit 340 controls the distance adjustment unit 210 to adjust the distance between the opening of the suction unit 270 and the substrate 410. Thereafter, the substrate 410 is irradiated with laser light. As a result, the substrate 410 is heated, the solder is melted by heat conduction, and the component 420 is sucked.
 この際、基板410から半田に熱が伝わるため、基板410の接合パッドと半田の界面部分で半田の溶解が始まる。このため、部品420の吸入により半田とパッドが分離される際には、上記の界面で分離され、半田の多くは、部品420の側に付着し、パッドの側には、少量の半田が残ることとなる。リペアを行うために新たに部品420を半田付けする際に、半田ブリッジ等の半田付け不良の原因となるため、通常はパッド側に残った半田を除去する工程が必要になる。しかし、本技術の第4の実施の形態では、パッド側に残る半田が少なくなるため、この半田の除去の工程を省略することができる。 At this time, since heat is transferred from the substrate 410 to the solder, melting of the solder starts at the interface between the bonding pad of the substrate 410 and the solder. For this reason, when the solder and the pad are separated by inhalation of the component 420, the solder and the pad are separated at the interface, and most of the solder adheres to the component 420 side, and a small amount of solder remains on the pad side. It will be. When a new part 420 is soldered for repair, it causes a soldering failure such as a solder bridge, and therefore a process of removing the solder remaining on the pad side is usually required. However, in the fourth embodiment of the present technology, the amount of solder remaining on the pad side is reduced, so that this solder removal step can be omitted.
 一方、部品420にレーザ光が照射される上述の実施の形態では、部品420が先に加熱されるため、部品420のパッケージ部分と半田の界面で半田の溶解が始まる。このため、部品420の吸入後に基板410のパッドの側に多くの半田が残ることとなり、半田を除去する工程を省略することができない。 On the other hand, in the above-described embodiment in which the component 420 is irradiated with the laser light, the component 420 is heated first, so that the melting of the solder starts at the interface between the package portion of the component 420 and the solder. For this reason, a lot of solder remains on the pad side of the substrate 410 after the component 420 is sucked, and the process of removing the solder cannot be omitted.
 このように、本技術の第4の実施の形態によれば、溶解した半田の多くが部品420とともに吸入されるため、基板410のパッドに残る半田を少なくすることができ、半田除去工程を省略することができる。これにより、部品420を交換するリペアを簡素化することができる。   Thus, according to the fourth embodiment of the present technology, since most of the melted solder is sucked together with the component 420, the solder remaining on the pads of the substrate 410 can be reduced, and the solder removal step is omitted. can do. Thereby, the repair which replaces | exchanges the components 420 can be simplified. *
 <5.第5の実施の形態>
 上述の第4の実施の形態では、レーザ光を基板410における部品420が接合された面の反対側の面に照射する方式を採っていた。これに対し、本技術の第5の実施の形態では、当該方式に適した基板410の構成について提案する。
<5. Fifth embodiment>
In the above-described fourth embodiment, a method of irradiating the surface of the substrate 410 opposite to the surface where the component 420 is bonded is employed. On the other hand, in the fifth embodiment of the present technology, a configuration of the substrate 410 suitable for the method is proposed.
 [基板の構成]
 図9および10は、本技術の第5の実施の形態における基板410の構成例を示す図である。同図の基板410は、接合パッド412と、基材411とを備える。なお、同図においては、レーザ光は、紙面の上方から基板410に照射される。また、同図において基板表面に配置される基板保護層や配線パターン等の記載を省略している。
[Substrate structure]
9 and 10 are diagrams illustrating a configuration example of the substrate 410 according to the fifth embodiment of the present technology. The substrate 410 shown in the figure includes a bonding pad 412 and a base material 411. In the figure, the laser beam is irradiated onto the substrate 410 from above the paper surface. Further, in the same figure, description of a substrate protective layer, a wiring pattern and the like disposed on the substrate surface is omitted.
 接合パッド412は、半田421が接合される部材である。この接合パッド412は、導電性の薄膜、例えば、Cuにより構成された薄膜を使用することができる。基材411は、接合パッド412が配置される部材である。この基材411には、例えば、ガラス含有エポキシ樹脂、ガラス、セラミックおよびSiにより構成された基材を使用することができる。しかし、本技術の第5の実施の形態においては、基板410の部品420が接合された面の反対側の面からレーザ光を照射するため、レーザ光に対する透過率の高い部材の使用が好適である。例えば、ガラス、セラミックおよびSiの使用が好適である。これにより、基材411によるレーザ光の吸収が軽減されるため、照射されたレーザ光の損失を軽減することができ、効率良く半田421を加熱することができる。 The bonding pad 412 is a member to which the solder 421 is bonded. The bonding pad 412 can be a conductive thin film, for example, a thin film made of Cu. The base material 411 is a member on which the bonding pad 412 is disposed. For this base material 411, for example, a base material made of glass-containing epoxy resin, glass, ceramic and Si can be used. However, in the fifth embodiment of the present technology, since the laser beam is irradiated from the surface opposite to the surface where the component 420 of the substrate 410 is bonded, it is preferable to use a member having a high transmittance with respect to the laser beam. is there. For example, the use of glass, ceramic and Si is preferred. Thereby, since the absorption of the laser beam by the base material 411 is reduced, the loss of the irradiated laser beam can be reduced and the solder 421 can be efficiently heated.
 しかし、接合パッド412がCuのようなレーザ光の吸収率が低い部材により構成されている場合には、レーザ光による加熱の効率が低下することとなる。そこで、レーザ光の吸収率が高い部材である発熱部材413を接合パッド412の近傍に配置する。ここで、発熱部材とは、レーザ光を吸収して発熱しやすい部材である。図9におけるaは、発熱部材413を基材411および接合パッド412の間に配置した例を表したものである。また、図9におけるbは、発熱部材414を基材411の内部の接合パッド412の近傍に配置した例を表したものである。これら発熱部材413および414としては、例えば、Si、Ti、Cr、Ni、Pt、Sn、W、FeもしくはAlのいずれかまたはこれらの合金を使用することができる。これら発熱部材413および414がレーザ光の照射により発熱し、この熱が接合パッド412に伝えられて加熱され、半田421を効率良く溶解することができる。なお、図9におけるaで、発熱部材413として、半田421になじむ部材、例えば、Snを使用する場合には、発熱部材413を接合パッド412と併用することもできる。 However, when the bonding pad 412 is made of a member having a low absorption rate of laser light such as Cu, the heating efficiency by the laser light is lowered. Therefore, a heat generating member 413 which is a member having a high laser light absorption rate is disposed in the vicinity of the bonding pad 412. Here, the heat generating member is a member that easily absorbs laser light and generates heat. FIG. 9A illustrates an example in which the heat generating member 413 is disposed between the base material 411 and the bonding pad 412. Further, b in FIG. 9 represents an example in which the heat generating member 414 is disposed in the vicinity of the bonding pad 412 inside the base material 411. As these heat generating members 413 and 414, for example, any of Si, Ti, Cr, Ni, Pt, Sn, W, Fe, Al, or an alloy thereof can be used. These heat generating members 413 and 414 generate heat by laser light irradiation, and this heat is transmitted to the bonding pad 412 and heated, so that the solder 421 can be efficiently dissolved. In FIG. 9A, when a member that is compatible with the solder 421, for example, Sn is used as the heat generating member 413, the heat generating member 413 can be used in combination with the bonding pad 412.
 一方、基材411として、レーザ光の透過率の高い部材を使用した場合には、レーザ光は基材411を透過して部品420に到達する。部品420のレーザ光吸収率が高い場合には、接合パッド412よりも部品420の方が高温となり、部品420のパッケージの界面から半田421が溶解を開始する可能性がある。そこで、レーザ光を反射する反射部材415を部品420およびレーザ光出射部の間に配置する。ここで、反射部材とは、レーザ光に対する反射率が高い部材である。図10におけるaは、この反射部材415を基材411の部品420が接合された面の反対側の面に配置したものである。また、図10におけるbは、この反射部材415を基材411の内部かつ部品420の近傍に配置した例を表したものである。反射部材415としては、例えば、Al、Cu、AuもしくはAgのいずれかまたはこれらの合金を使用することができる。この反射部材415により、部品420に向かうレーザ光は、反射される。このため、レーザ光の照射による部品420の発熱が減少し、接合パッド412と半田421との界面から半田421の溶解が始まる状態にすることができ、基板410に残る半田を少なくすることができる。 On the other hand, when a member having a high laser light transmittance is used as the base material 411, the laser light passes through the base material 411 and reaches the component 420. When the laser light absorption rate of the component 420 is high, the component 420 becomes hotter than the bonding pad 412, and the solder 421 may start to melt from the package interface of the component 420. Therefore, a reflecting member 415 that reflects the laser light is disposed between the component 420 and the laser light emitting portion. Here, the reflecting member is a member having a high reflectance with respect to laser light. In FIG. 10, a indicates that the reflecting member 415 is disposed on the surface opposite to the surface to which the component 420 of the base material 411 is bonded. In addition, b in FIG. 10 represents an example in which the reflecting member 415 is disposed in the base material 411 and in the vicinity of the component 420. As the reflecting member 415, for example, any of Al, Cu, Au, Ag, or an alloy thereof can be used. The laser beam traveling toward the component 420 is reflected by the reflecting member 415. For this reason, the heat generation of the component 420 due to the irradiation of the laser light is reduced, the melting of the solder 421 can be started from the interface between the bonding pad 412 and the solder 421, and the solder remaining on the substrate 410 can be reduced. .
 なお、反射部材415は、レーザ光による接合パッド412の加熱を妨げることのないように、接合パッド412ならびに発熱部材413および414を避けて配置する必要がある。また、Alは、上述のように発熱部材および反射部材の両方に使用可能な部材である。このAlを発熱部材として使用する場合には、反射部材として、Alよりもレーザ光に対する反射率の高い部材、例えば、Cu、AuもしくはAgを使用することができる。 In addition, it is necessary to arrange the reflecting member 415 while avoiding the bonding pad 412 and the heat generating members 413 and 414 so as not to prevent the heating of the bonding pad 412 by laser light. Further, Al is a member that can be used for both the heat generating member and the reflecting member as described above. When this Al is used as a heat generating member, a member having a higher reflectance with respect to laser light than Al, for example, Cu, Au, or Ag can be used as the reflecting member.
 これら発熱部材および反射部材の両方を使用することも可能である。図10におけるcは、基材411の内部に発熱部材414および反射部材415を配置した例を表したものである。この例では、反射部材415をより部品420に近い位置に配置している。発熱部材414がレーザ光を吸収して発熱し、この熱が接合パッド412に伝えられる。同時に、発熱部材414で吸収されずに発熱部材414を透過したレーザ光は、反射部材415により反射され、部品420に到達することができない。これにより、接合パッド412と半田421の界面から半田421の溶解が始まる状態にすることができ、基板410に残る半田を少なくすることができる。 It is also possible to use both these heat generating members and reflecting members. C in FIG. 10 represents an example in which the heat generating member 414 and the reflecting member 415 are arranged inside the base material 411. In this example, the reflecting member 415 is disposed at a position closer to the component 420. The heat generating member 414 absorbs the laser light and generates heat, and this heat is transmitted to the bonding pad 412. At the same time, laser light that has not been absorbed by the heat generating member 414 and has passed through the heat generating member 414 is reflected by the reflecting member 415 and cannot reach the component 420. As a result, the solder 421 can be dissolved from the interface between the bonding pad 412 and the solder 421, and the amount of solder remaining on the substrate 410 can be reduced.
 このように、本技術の第5の実施の形態によれば、発熱部材または反射部材のいずれか一方または両方が配置された基板410を使用することにより、基板410側にレーザ光を照射する場合において、レーザ光による加熱の効率を向上させることができる。また、この第5の実施の形態によれば、基板410に残る半田を少なくすることも可能となる。 As described above, according to the fifth embodiment of the present technology, by using the substrate 410 on which either one or both of the heat generating member and the reflecting member is used, the laser beam is irradiated on the substrate 410 side. In this case, the efficiency of heating by laser light can be improved. Further, according to the fifth embodiment, it is possible to reduce the solder remaining on the substrate 410.
 <6.第6の実施の形態>
 上述の実施の形態では、部品除去装置について提案していた。これに対し、本技術の第6の実施の形態では、当該部品除去装置を採用した部品リペア装置について提案する。
<6. Sixth Embodiment>
In the above-described embodiment, a component removal apparatus has been proposed. On the other hand, in the sixth embodiment of the present technology, a component repair device that employs the component removal device is proposed.
 [部品除去装置の構成]
 図11は、本技術の第6の実施の形態における部品リペア装置の構成例を示す図である。同図の部品リペア装置は、部品除去装置610と、フラックス塗布装置620と、基板搬送装置630と、部品搭載装置640と、ローダ/アンローダ650と、リフロー装置660とを備える。
[Configuration of parts removal equipment]
FIG. 11 is a diagram illustrating a configuration example of the component repair device according to the sixth embodiment of the present technology. The component repair device shown in FIG. 1 includes a component removal device 610, a flux application device 620, a substrate transport device 630, a component mounting device 640, a loader / unloader 650, and a reflow device 660.
 部品除去装置610には、上述の第1乃至第4の実施の形態において説明した部品除去装置を使用することができる。なお、同図の部品除去装置610では、レーザ光出射部130等の記載を省略している。 As the component removal device 610, the component removal device described in the first to fourth embodiments can be used. In addition, in the component removal apparatus 610 of the same figure, description of the laser beam emission part 130 grade | etc., Is abbreviate | omitted.
 フラックス塗布装置620は、部品除去装置610により部品420が除去された基板410に対してフラックスを塗布する装置である。部品搭載装置640は、フラックスが塗布された基板410に新たな部品420を搭載する装置である。ローダ/アンローダ650は、リペア前の基板410を投入するローダとリペア後の基板410を回収するアンローダとを兼ねる装置である。基板搬送装置630は、基板410をこれらの装置に対して搬送する装置である。リフロー装置660は、半田を溶解させた後に凝固させて部品420を基板410に接合させる装置すなわち半田付けを行う装置である。なお、同図における部品リペア装置は、部品がマウントされた後の基板410に対する半田付けを部品除去装置610において行うことができる。すなわち、真空ポンプ330を作動させずに、部品420にレーザ光を照射して半田を溶解させることにより、部品除去装置610において半田付けを行うことができる。その場合には、リフロー装置660を省略することができる。 The flux applying device 620 is a device that applies flux to the substrate 410 from which the component 420 has been removed by the component removing device 610. The component mounting device 640 is a device that mounts a new component 420 on the substrate 410 coated with flux. The loader / unloader 650 is a device that serves as both a loader for loading the substrate 410 before repair and an unloader for collecting the substrate 410 after repair. The substrate transfer device 630 is a device that transfers the substrate 410 to these devices. The reflow device 660 is a device that melts the solder and then solidifies it to join the component 420 to the substrate 410, that is, a device that performs soldering. Note that the component repair apparatus in FIG. 10 can perform soldering to the substrate 410 after the components are mounted in the component removal apparatus 610. That is, soldering can be performed in the component removing device 610 by irradiating the component 420 with laser light and melting the solder without operating the vacuum pump 330. In that case, the reflow device 660 can be omitted.
 [部品除去装置の構成]
 本技術の第6の実施の形態における部品除去装置610としては、図1、3乃至5、7および8において説明した部品除去装置を使用することができる。ただし、基板搬送装置630との間で基板410のやり取りが可能な構成にする必要がある。これ以外の部品除去装置の構成は上述の図において説明した部品除去装置と同様であるため、説明を省略する。また、部品除去の手順も変更する必要がある。具体的には、図6において説明したフローにおいて、ステップS901の後に基板410を搬入する手順を追加し、ステップS909の前に基板410を搬出する手順を追加する必要がある。これ以外の手順は図6において説明した手順と同様であるため、説明を省略する。
[Configuration of parts removal equipment]
As the component removing device 610 according to the sixth embodiment of the present technology, the component removing device described in FIGS. 1, 3 to 5, 7, and 8 can be used. However, it is necessary that the substrate 410 can be exchanged with the substrate transfer device 630. Since the configuration of the component removal apparatus other than this is the same as that of the component removal apparatus described in the above-described drawings, description thereof is omitted. It is also necessary to change the part removal procedure. Specifically, in the flow described in FIG. 6, it is necessary to add a procedure for carrying in the substrate 410 after step S901 and add a procedure for carrying out the substrate 410 before step S909. Since other procedures are the same as those described in FIG.
 このように、本技術の第6の実施の形態によれば、部品リペア装置における部品の除去を高速に行うことができる。 Thus, according to the sixth embodiment of the present technology, it is possible to remove components in the component repair apparatus at high speed.
 <7.第7の実施の形態>
 上述の実施の形態では、部品除去装置について提案していた。これに対し、本技術の第7の実施の形態では、当該部品除去装置により部品420のリペアを行って製造した部品実装基板ついて提案する。
<7. Seventh Embodiment>
In the above-described embodiment, a component removal apparatus has been proposed. On the other hand, in the seventh embodiment of the present technology, a component mounting board manufactured by repairing the component 420 by the component removing apparatus is proposed.
 [部品実装基板の構成]
 図12は、本技術の第7の実施の形態における部品実装基板の構成例を示す図である。同図におけるaは、部品実装基板の例として、センサアレイデバイス450の構成を表したものである。同図におけるaのセンサアレイデバイス450は、基板460に多数の受光センサ470が2次元格子状に配置されて構成されている。このセンサアレイデバイス450は、撮像用のデバイスであり、無欠陥であることが要求される。すなわち配置された全ての受光センサ470が正常に動作する必要がある。しかし、製造工程における不具合、例えば半田付け不良の発生または受光センサ470自身の不具合により、無欠陥にすることは困難であり、受光センサ470のリペアが必須となる。
[Configuration of component mounting board]
FIG. 12 is a diagram illustrating a configuration example of a component mounting board according to the seventh embodiment of the present technology. In the figure, “a” represents the configuration of the sensor array device 450 as an example of a component mounting board. The sensor array device 450 of FIG. 14A is configured by arranging a large number of light receiving sensors 470 on a substrate 460 in a two-dimensional lattice shape. The sensor array device 450 is an imaging device and is required to be defect-free. That is, all the light receiving sensors 470 arranged need to operate normally. However, due to defects in the manufacturing process, for example, the occurrence of soldering defects or defects in the light receiving sensor 470 itself, it is difficult to eliminate defects, and repair of the light receiving sensor 470 is essential.
 一方、受光センサ470は、0.2mm×0.2mm程度の大きさであり、隣接する受光センサ470との間隔が狭いため、リペアのために不具合箇所の受光センサ470のみを除去するのは困難である。そこで、本実施の形態の部品除去装置を適用する。同図におけるbは、不具合箇所の受光センサ470の除去を説明する図である。中央に記載された受光センサ470に不具合があり、当該受光センサ470を除去するため、レーザ光502が照射されている。この際、本実施の形態では、レーザ光502は、他の受光センサ470には照射されないため、他の正常な受光センサ470の熱的な損傷を軽減することができる。また、レーザ光502の照射により半田が溶解された受光センサ407は、速やかに吸入されて除去されるため、リペアに要する時間を短くすることができる。この結果、実用的なターンアラウンドタイムにすることできる。これらにより無欠陥としたセンサアレイデバイスの量産が可能になる。 On the other hand, the light receiving sensor 470 has a size of about 0.2 mm × 0.2 mm, and since the interval between the adjacent light receiving sensors 470 is narrow, it is difficult to remove only the light receiving sensor 470 at the defective portion for repair. It is. Therefore, the component removal apparatus of the present embodiment is applied. B in the same figure is a figure explaining the removal of the light reception sensor 470 of a malfunction location. There is a defect in the light receiving sensor 470 described in the center, and the laser light 502 is irradiated to remove the light receiving sensor 470. At this time, in this embodiment, since the laser beam 502 is not irradiated to the other light receiving sensors 470, thermal damage to other normal light receiving sensors 470 can be reduced. In addition, since the light receiving sensor 407 in which the solder is dissolved by the irradiation with the laser beam 502 is quickly sucked and removed, the time required for repair can be shortened. As a result, a practical turnaround time can be obtained. These enable mass production of sensor array devices that are defect-free.
 なお、センサアレイデバイス450に実装されるセンサは受光センサに限らず各種のセンサを使用することができる。また、部品実装基板の他の例として、チップ部品、半導体チップ(ベアチップ部品)、MEMSまたはウェハレベルパッケージ等の部品が実装された部品実装基板が挙げられる。 Note that the sensor mounted on the sensor array device 450 is not limited to the light receiving sensor, and various sensors can be used. Other examples of the component mounting substrate include a component mounting substrate on which a component such as a chip component, a semiconductor chip (bare chip component), a MEMS, or a wafer level package is mounted.
 以上のように、本技術の実施の形態によれば、部品をレーザ光により加熱して、部品より大きな開口部を備えた吸入部により吸入して除去することにより、部品除去に要する時間を短縮することができる。 As described above, according to the embodiment of the present technology, a part is heated by a laser beam and sucked and removed by a suction part having an opening larger than the part, thereby shortening the time required for part removal. can do.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 The above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the invention-specific matters in the claims have a corresponding relationship. Similarly, the invention specific matter in the claims and the matter in the embodiment of the present technology having the same name as this have a corresponding relationship. However, the present technology is not limited to the embodiment, and can be embodied by making various modifications to the embodiment without departing from the gist thereof.
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。 Further, the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it. As this recording medium, for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in this specification are merely examples, and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射部と、
 前記レーザ光の照射により前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入することにより前記部品を前記基板から除去する吸入部と
を具備する部品除去装置。
(2)前記吸入に伴う前記吸入部への空気の流入の状態を計測する計測部をさらに具備する前記(1)に記載の部品除去装置。
(3)前記計測部は、前記吸入部の外部および内部の差圧を計測することにより前記空気の流入の状態を計測する圧力センサまたは前記空気の流入における流量を計測することにより前記空気の流入の状態を計測する流量センサのうちの少なくとも1つを備える前記(2)に記載の部品除去装置。
(4)前記計測部の前記計測結果に基づいて前記空気の流入を制御する制御部をさらに具備する前記(2)から(3)に記載の部品除去装置。
(5)前記基板および前記開口部の距離を調整する距離調整部をさらに具備し、
 前記制御部は、前記距離調整部に前記距離を調整させて前記空気の流入を制御する
前記(4)に記載の部品除去装置。
(6)前記制御部は、前記空気の流入を制御して前記空気の流入が所定の状態になった際に前記レーザ光照射部に前記レーザ光の照射を開始させ、前記レーザ光の照射開始後に前記空気の流入の状態が変化した場合には前記レーザ光照射部に前記レーザ光の照射を停止させる前記(4)または(5)に記載の部品除去装置。
(7)前記吸入された前記部品を捕捉する捕捉部をさらに具備する前記(1)から(6)に記載の部品除去装置。
(8)前記吸入部内の空気を排気することにより前記吸入を行わせる排気部をさらに具備する前記(1)から(7)に記載の部品除去装置。
(9)前記吸入部は、前記開口部と対向する面に前記レーザ光を透過させる透過部を備え、
 前記レーザ光照射部は、前記透過部および前記開口部を通して前記部品に前記レーザ光を照射する
前記(1)から(8)に記載の部品除去装置。
(10)前記レーザ光照射部は、前記基板における前記部品が接合された面の反対側の面に前記レーザ光を照射する前記(1)から(8)に記載の部品除去装置。
(11)部品が熱可塑性接合剤により接合される接合パッドと、
 前記熱可塑性接合剤を溶解するレーザ光が前記部品に照射されて前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入されることにより前記部品が除去される際に前記接合パッドの近傍に配置されて前記レーザ光を吸収して発熱する発熱部材と、
 前記接合パッドおよび前記発熱部材が配置される基材と
を具備する基板。
(12)前記発熱部材は、Si、Ti、Cr、Ni、Pt、Sn、W、FeもしくはAlのいずれかまたはこれらの合金である前記(11)に記載の基板。
(13)部品が熱可塑性接合剤により接合される接合パッドと、
 前記熱可塑性接合剤を溶解するレーザ光が前記部品に照射されて前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入されることにより前記部品が除去される際に前記レーザ光を反射する反射部材と、
 前記接合パッドおよび前記反射部材が配置される基材と
を具備する基板。
(14)前記反射部材は、Al、Cu、AuもしくはAgのいずれかまたはこれらの合金である前記(13)に記載の基板。
(15)部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射手順と、
 前記レーザ光の照射により前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入することにより前記部品を前記基板から除去する吸入手順と
を具備する部品除去方法。
(16)部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射部と、
 前記レーザ光の照射により前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入することにより前記部品を前記基板から除去する吸入部と
を備える部品除去装置と、
 前記基板を搬送する基板搬送装置と、
 前記部品が除去された前記基板にフラックスを塗布するフラックス塗布装置、前記部品が除去された基板に新たな前記部品を搭載する部品搭載装置および前記熱可塑性接合剤を溶解させた後に凝固させて前記部品を前記基板に接合させるリフロー装置のうちの少なくとも1つとを具備する
部品リペア装置。
(17)部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射工程と、
 前記レーザ光の照射により前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入することにより前記部品を前記基板から除去する吸入工程と
を備える部品除去方法に用いられた前記基板を具備する部品実装基板。
(18)前記部品は、チップ部品、半導体チップ、MEMSまたはウェハレベルパッケージである前記(17)に記載の部品実装基板。
(19)前記部品は、センサであり、
 前記部品実装基板は、センサアレイデバイスである
前記(17)に記載の部品実装基板。
(20)前記センサは、受光センサである前記(19)に記載の部品実装基板。
In addition, this technique can also take the following structures.
(1) a laser beam irradiation unit for irradiating a laser beam for dissolving a thermoplastic bonding agent for bonding a component to a substrate;
A component removing apparatus comprising: a suction portion that removes the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by the laser light irradiation.
(2) The component removing device according to (1), further including a measuring unit that measures a state of inflow of air into the suction unit accompanying the suction.
(3) The measurement unit may measure the flow rate of the air inflow by measuring a pressure sensor that measures the state of the air inflow by measuring a pressure difference between the outside and the inside of the suction unit. The component removal apparatus according to (2), further including at least one of flow rate sensors for measuring the state of.
(4) The component removal apparatus according to (2) to (3), further including a control unit that controls the inflow of air based on the measurement result of the measurement unit.
(5) further comprising a distance adjusting unit for adjusting a distance between the substrate and the opening;
The said control part is a component removal apparatus as described in said (4) which makes the said distance adjustment part adjust the said distance and controls the inflow of the said air.
(6) The control unit controls the inflow of air and causes the laser beam irradiation unit to start irradiating the laser beam when the inflow of air reaches a predetermined state, and starts irradiating the laser beam. The component removal apparatus according to (4) or (5), wherein when the state of the inflow of air changes later, the laser light irradiation unit stops the irradiation of the laser light.
(7) The component removing device according to (1) to (6), further including a capturing unit that captures the inhaled component.
(8) The component removing apparatus according to any one of (1) to (7), further including an exhaust unit that performs the suction by exhausting air in the suction unit.
(9) The suction portion includes a transmission portion that transmits the laser light on a surface facing the opening,
The said laser beam irradiation part is a component removal apparatus as described in said (1) to (8) which irradiates the said laser beam to the said component through the said permeation | transmission part and the said opening part.
(10) The component removing apparatus according to (1) to (8), wherein the laser beam irradiation unit irradiates the laser beam on a surface of the substrate opposite to a surface to which the component is bonded.
(11) a bonding pad to which the component is bonded by a thermoplastic bonding agent;
When the component is removed by being sucked through an opening larger than the component after the component is irradiated with a laser beam that dissolves the thermoplastic bonding agent and the thermoplastic bonding agent is dissolved. A heating member that is disposed near the pad and absorbs the laser light to generate heat;
A substrate comprising the bonding pad and a base material on which the heat generating member is disposed.
(12) The substrate according to (11), wherein the heat generating member is any one of Si, Ti, Cr, Ni, Pt, Sn, W, Fe, Al, or an alloy thereof.
(13) a bonding pad to which the component is bonded by a thermoplastic bonding agent;
When the component is removed by being sucked through an opening larger than the component after the component is irradiated with a laser beam that dissolves the thermoplastic bonding agent and the thermoplastic bonding agent is dissolved. A reflective member that reflects light;
A substrate comprising the bonding pad and a base material on which the reflecting member is disposed.
(14) The substrate according to (13), wherein the reflecting member is any one of Al, Cu, Au, Ag, or an alloy thereof.
(15) a laser beam irradiation procedure for irradiating a laser beam for dissolving a thermoplastic bonding agent for bonding the component to the substrate;
A component removing method comprising: a suction procedure for removing the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by the laser light irradiation.
(16) a laser beam irradiation unit that irradiates a laser beam that dissolves a thermoplastic bonding agent for bonding the component to the substrate;
A component removing device comprising: a suction portion that removes the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by irradiation of the laser beam;
A substrate transfer device for transferring the substrate;
A flux application device for applying flux to the substrate from which the component has been removed, a component mounting device for mounting a new component on the substrate from which the component has been removed, and a solidification after dissolving the thermoplastic bonding agent A component repair device comprising: at least one of reflow devices for bonding a component to the substrate.
(17) a laser beam irradiation step of irradiating a laser beam that dissolves a thermoplastic bonding agent for bonding the component to the substrate;
The substrate used in a component removal method comprising: a suction step of removing the component from the substrate by suction through an opening larger than the component after the thermoplastic bonding agent has been dissolved by the laser light irradiation A component mounting board comprising:
(18) The component mounting board according to (17), wherein the component is a chip component, a semiconductor chip, a MEMS, or a wafer level package.
(19) The component is a sensor,
The component mounting board according to (17), wherein the component mounting board is a sensor array device.
(20) The component mounting board according to (19), wherein the sensor is a light receiving sensor.
 110 レーザ光発生部
 120 光導波路
 130 レーザ光出射部
 140、160 カメラ
 150 光学ユニット
 210 距離調整部
 220 吸入部保持部
 230、270 吸入部
 231 吸入ノズル
 232 透明部材
 233、234、235、261 開口部
 240 排気チューブ
 250、260 基板保持部
 310 フィルタ
 320 圧力センサ
 330 真空ポンプ
 340、360、370 制御部
 350 流量センサ
 410、460 基板
 411 基材
 412 接合パッド
 413、414 発熱部材
 415 反射部材
 420 部品
 421 半田
 450 センサアレイデバイス
 470 受光センサ
 501、502 レーザ光
 610 部品除去装置
 620 フラックス塗布装置
 630 基板搬送装置
 640 部品搭載装置
 650 ローダ/アンローダ
 660 リフロー装置
DESCRIPTION OF SYMBOLS 110 Laser light generation part 120 Optical waveguide 130 Laser light emission part 140,160 Camera 150 Optical unit 210 Distance adjustment part 220 Suction part holding | maintenance part 230,270 Suction part 231 Suction nozzle 232 Transparent member 233,234,235,261 Opening part 240 Exhaust tube 250, 260 Substrate holding part 310 Filter 320 Pressure sensor 330 Vacuum pump 340, 360, 370 Control part 350 Flow sensor 410, 460 Substrate 411 Base material 412 Bonding pad 413, 414 Heating member 415 Reflective member 420 Parts 421 Solder 450 Sensor Array device 470 Light receiving sensor 501, 502 Laser beam 610 Component removal device 620 Flux coating device 630 Substrate transport device 640 Component mounting device 650 Loader / Unloader 660 Reflowー Device

Claims (20)

  1.  部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射部と、
     前記レーザ光の照射により前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入することにより前記部品を前記基板から除去する吸入部と
    を具備する部品除去装置。
    A laser beam irradiation unit that irradiates a laser beam that dissolves a thermoplastic bonding agent that bonds the component to the substrate;
    A component removing apparatus comprising: a suction portion that removes the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by the laser light irradiation.
  2.  前記吸入に伴う前記吸入部への空気の流入の状態を計測する計測部をさらに具備する請求項1記載の部品除去装置。 2. The component removing apparatus according to claim 1, further comprising a measuring unit that measures a state of inflow of air into the suction unit accompanying the suction.
  3.  前記計測部は、前記吸入部の外部および内部の差圧を計測することにより前記空気の流入の状態を計測する圧力センサまたは前記空気の流入における流量を計測することにより前記空気の流入の状態を計測する流量センサのうちの少なくとも1つを備える請求項2記載の部品除去装置。 The measuring unit measures a state of the air inflow by measuring a flow rate of the air inflow or a pressure sensor that measures the air inflow state by measuring a differential pressure outside and inside the suction unit. The component removal apparatus according to claim 2, further comprising at least one of flow rate sensors to be measured.
  4.  前記計測部の前記計測結果に基づいて前記空気の流入を制御する制御部をさらに具備する請求項2記載の部品除去装置。 The component removing apparatus according to claim 2, further comprising a control unit that controls the inflow of the air based on the measurement result of the measurement unit.
  5.  前記基板および前記開口部の距離を調整する距離調整部をさらに具備し、
     前記制御部は、前記距離調整部に前記距離を調整させて前記空気の流入を制御する
    請求項4記載の部品除去装置。
    Further comprising a distance adjuster for adjusting the distance between the substrate and the opening;
    The component removing apparatus according to claim 4, wherein the control unit controls the inflow of the air by causing the distance adjusting unit to adjust the distance.
  6.  前記制御部は、前記空気の流入を制御して前記空気の流入が所定の状態になった際に前記レーザ光照射部に前記レーザ光の照射を開始させ、前記レーザ光の照射開始後に前記空気の流入の状態が変化した場合には前記レーザ光照射部に前記レーザ光の照射を停止させる請求項4記載の部品除去装置。 The control unit controls the inflow of the air to cause the laser beam irradiation unit to start irradiating the laser beam when the inflow of the air reaches a predetermined state, and after starting the irradiation of the laser beam, the air The component removal apparatus according to claim 4, wherein when the state of the inflow of the laser beam changes, the laser beam irradiation unit stops the laser beam irradiation.
  7.  前記吸入された前記部品を捕捉する捕捉部をさらに具備する請求項1記載の部品除去装置。 The component removing apparatus according to claim 1, further comprising a capturing unit that captures the inhaled component.
  8.  前記吸入部内の空気を排気することにより前記吸入を行わせる排気部をさらに具備する請求項1記載の部品除去装置。 The component removing apparatus according to claim 1, further comprising an exhaust unit that performs the suction by exhausting air in the suction unit.
  9.  前記吸入部は、前記開口部と対向する面に前記レーザ光を透過させる透過部を備え、
     前記レーザ光照射部は、前記透過部および前記開口部を通して前記部品に前記レーザ光を照射する
    請求項1記載の部品除去装置。
    The suction portion includes a transmission portion that transmits the laser light on a surface facing the opening,
    The component removing apparatus according to claim 1, wherein the laser beam irradiation unit irradiates the component with the laser beam through the transmission unit and the opening.
  10.  前記レーザ光照射部は、前記基板における前記部品が接合された面の反対側の面に前記レーザ光を照射する請求項1記載の部品除去装置。 2. The component removing apparatus according to claim 1, wherein the laser beam irradiation unit irradiates a surface of the substrate opposite to a surface where the components are bonded.
  11.  部品が熱可塑性接合剤により接合される接合パッドと、
     前記熱可塑性接合剤を溶解するレーザ光が照射されて前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入されることにより前記部品が除去される際に前記接合パッドの近傍に配置されて前記レーザ光を吸収して発熱する発熱部材と、
     前記接合パッドおよび前記発熱部材が配置される基材と
    を具備する基板。
    A bonding pad to which the parts are bonded by a thermoplastic bonding agent;
    In the vicinity of the bonding pad when the component is removed by being sucked through an opening larger than the component after being irradiated with a laser beam that dissolves the thermoplastic bonding agent and the thermoplastic bonding agent is dissolved. A heating member that is arranged to absorb the laser light and generate heat;
    A substrate comprising the bonding pad and a base material on which the heat generating member is disposed.
  12.  前記吸熱部材は、Si、Ti、Cr、Ni、Pt、Sn、W、FeもしくはAlのいずれかまたはこれらの合金である請求項11記載の基板。 The substrate according to claim 11, wherein the endothermic member is any one of Si, Ti, Cr, Ni, Pt, Sn, W, Fe, Al, or an alloy thereof.
  13.  部品が熱可塑性接合剤により接合される接合パッドと、
     前記熱可塑性接合剤を溶解するレーザ光が照射されて前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入されることにより前記部品が除去される際に前記レーザ光を反射する反射部材と、
     前記接合パッドおよび前記反射部材が配置される基材と
    を具備する基板。
    A bonding pad to which the parts are bonded by a thermoplastic bonding agent;
    The laser beam is reflected when the component is removed by being sucked through an opening larger than the component after being irradiated with a laser beam that dissolves the thermoplastic adhesive and the thermoplastic adhesive is dissolved. A reflective member to be
    A substrate comprising the bonding pad and a base material on which the reflecting member is disposed.
  14.  前記反射部材は、Al、Cu、AuもしくはAgのいずれかまたはこれらの合金である請求項13記載の基板。 14. The substrate according to claim 13, wherein the reflecting member is any one of Al, Cu, Au, Ag, or an alloy thereof.
  15.  部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射手順と、
     前記レーザ光の照射により前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入することにより前記部品を前記基板から除去する吸入手順と
    を具備する部品除去方法。
    A laser beam irradiation procedure for irradiating a laser beam that dissolves a thermoplastic bonding agent for bonding the component to the substrate;
    A component removing method comprising: a suction procedure for removing the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by the laser light irradiation.
  16.  部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射部と、
     前記レーザ光の照射により前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入することにより前記部品を前記基板から除去する吸入部と
    を備える部品除去装置と、
     前記基板を搬送する基板搬送装置と、
     前記部品が除去された前記基板にフラックスを塗布するフラックス塗布装置、前記部品が除去された基板に新たな前記部品を搭載する部品搭載装置および前記熱可塑性接合剤を溶解させた後に凝固させて前記部品を前記基板に接合させるリフロー装置のうちの少なくとも1つとを具備する
    部品リペア装置。
    A laser beam irradiation unit that irradiates a laser beam that dissolves a thermoplastic bonding agent that bonds the component to the substrate;
    A component removing device comprising: a suction portion that removes the component from the substrate by sucking through the opening larger than the component after the thermoplastic bonding agent is dissolved by irradiation of the laser beam;
    A substrate transfer device for transferring the substrate;
    A flux application device for applying flux to the substrate from which the component has been removed, a component mounting device for mounting a new component on the substrate from which the component has been removed, and a solidification after dissolving the thermoplastic bonding agent A component repair device comprising: at least one of reflow devices for bonding a component to the substrate.
  17.  部品を基板に接合する熱可塑性接合剤を溶解するレーザ光を照射するレーザ光照射工程と、
     前記レーザ光の照射により前記熱可塑性接合剤が溶解された後に前記部品よりも大きな開口部を通して吸入することにより前記部品を前記基板から除去する吸入工程と
    を備える部品除去方法に用いられた前記基板を具備する部品実装基板。
    A laser beam irradiation step of irradiating a laser beam that dissolves a thermoplastic bonding agent for bonding the component to the substrate;
    The substrate used in a component removal method comprising: a suction step of removing the component from the substrate by suction through an opening larger than the component after the thermoplastic bonding agent has been dissolved by the laser light irradiation A component mounting board comprising:
  18.  前記部品は、チップ部品、半導体チップ、MEMSまたはウェハレベルパッケージである請求項17記載の部品実装基板。 The component mounting board according to claim 17, wherein the component is a chip component, a semiconductor chip, a MEMS, or a wafer level package.
  19.  前記部品は、センサであり、
     前記部品実装基板は、センサアレイデバイスである
    請求項17記載の部品実装基板。
    The component is a sensor;
    The component mounting board according to claim 17, wherein the component mounting board is a sensor array device.
  20.  前記センサは、受光センサである請求項19記載の部品実装基板。 20. The component mounting board according to claim 19, wherein the sensor is a light receiving sensor.
PCT/JP2015/075700 2014-12-24 2015-09-10 Component removal device, substrate, component removal method, component repairing device and component mounting substrate WO2016103800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-259657 2014-12-24
JP2014259657 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016103800A1 true WO2016103800A1 (en) 2016-06-30

Family

ID=56149841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075700 WO2016103800A1 (en) 2014-12-24 2015-09-10 Component removal device, substrate, component removal method, component repairing device and component mounting substrate

Country Status (1)

Country Link
WO (1) WO2016103800A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526197A (en) * 2018-09-30 2019-03-26 武汉联特科技有限公司 A kind of device for repairing for optics COB encapsulation
JP2021516451A (en) * 2018-01-19 2021-07-01 エヌシーシー ナノ, エルエルシー A method for curing solder paste on thermally fragile substrates
CN113130346A (en) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 Electronic component repairing device and method
JP2022069419A (en) * 2020-10-23 2022-05-11 パック テック-パッケージング テクノロジーズ ゲーエムベーハー Method and device for removing and/or rearranging electronic component connected to circuit board
CN109526197B (en) * 2018-09-30 2024-06-04 武汉联特科技股份有限公司 Repairing device for optical COB packaging

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297539A (en) * 1994-04-19 1995-11-10 Pioneer Electron Corp Part dismounting apparatus
JPH09307225A (en) * 1996-05-13 1997-11-28 Hitachi Ltd Printed circuit board
JPH1070399A (en) * 1996-04-16 1998-03-10 Matsushita Electric Ind Co Ltd Stripper and stripping method for ic device
JP2008072020A (en) * 2006-09-15 2008-03-27 Ricoh Co Ltd Component removal device
JP2010050344A (en) * 2008-08-22 2010-03-04 Fujinon Corp Reworking device
JP2010278248A (en) * 2009-05-28 2010-12-09 Nec Personal Products Co Ltd Electronic component processing device and electronic component processing method
JP2011211073A (en) * 2010-03-30 2011-10-20 Fujitsu Ltd Repairing device for electronic component, repairing method, and heat transfer cap member for use in repair

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297539A (en) * 1994-04-19 1995-11-10 Pioneer Electron Corp Part dismounting apparatus
JPH1070399A (en) * 1996-04-16 1998-03-10 Matsushita Electric Ind Co Ltd Stripper and stripping method for ic device
JPH09307225A (en) * 1996-05-13 1997-11-28 Hitachi Ltd Printed circuit board
JP2008072020A (en) * 2006-09-15 2008-03-27 Ricoh Co Ltd Component removal device
JP2010050344A (en) * 2008-08-22 2010-03-04 Fujinon Corp Reworking device
JP2010278248A (en) * 2009-05-28 2010-12-09 Nec Personal Products Co Ltd Electronic component processing device and electronic component processing method
JP2011211073A (en) * 2010-03-30 2011-10-20 Fujitsu Ltd Repairing device for electronic component, repairing method, and heat transfer cap member for use in repair

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021516451A (en) * 2018-01-19 2021-07-01 エヌシーシー ナノ, エルエルシー A method for curing solder paste on thermally fragile substrates
JP7118463B2 (en) 2018-01-19 2022-08-16 エヌシーシー ナノ, エルエルシー Method for curing solder paste on thermally vulnerable substrates
CN109526197A (en) * 2018-09-30 2019-03-26 武汉联特科技有限公司 A kind of device for repairing for optics COB encapsulation
CN109526197B (en) * 2018-09-30 2024-06-04 武汉联特科技股份有限公司 Repairing device for optical COB packaging
CN113130346A (en) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 Electronic component repairing device and method
JP2022069419A (en) * 2020-10-23 2022-05-11 パック テック-パッケージング テクノロジーズ ゲーエムベーハー Method and device for removing and/or rearranging electronic component connected to circuit board
JP2022069368A (en) * 2020-10-23 2022-05-11 パック テック-パッケージング テクノロジーズ ゲーエムベーハー Method and device for removing electronic component connected to circuit board
CN114501977A (en) * 2020-10-23 2022-05-13 派克泰克封装技术有限公司 Method and apparatus for removing electronic components connected to a circuit board
CN114501978A (en) * 2020-10-23 2022-05-13 派克泰克封装技术有限公司 Method and apparatus for removing and/or repositioning electronic components connected to a circuit board
JP7177863B2 (en) 2020-10-23 2022-11-24 パック テック-パッケージング テクノロジーズ ゲーエムベーハー Method and apparatus for removing electronic components connected to circuit boards
JP7277540B2 (en) 2020-10-23 2023-05-19 パック テック-パッケージング テクノロジーズ ゲーエムベーハー Method and apparatus for removing and/or relocating electronic components connected to a circuit board
CN114501978B (en) * 2020-10-23 2024-03-01 派克泰克封装技术有限公司 Method and apparatus for removing and/or repositioning electronic components connected to a circuit board

Similar Documents

Publication Publication Date Title
JP6407827B2 (en) Semiconductor chip bonding apparatus and operation method thereof
TWI678251B (en) Apparatus and method for laser processing
JP2009164310A (en) Electronic parts repair equipment and electronic parts repairing method
WO2016103800A1 (en) Component removal device, substrate, component removal method, component repairing device and component mounting substrate
JP4572935B2 (en) Detection method for detection object of bonding apparatus, bonding apparatus, and bonding method
TWI440105B (en) Electronic component mounting head, electronic component mounting device and electronic component mounting method
WO2016158588A1 (en) Wire bonding apparatus and wire bonding method
JP6995899B2 (en) Defective LED removal device
JP4697768B2 (en) Magnetic head slider removal method and apparatus
US20220052019A1 (en) System for laser bonding of flip chip
JP5428131B2 (en) Observation device and void observation method
JP5008952B2 (en) Die bonder and die bonding method
JP7177863B2 (en) Method and apparatus for removing electronic components connected to circuit boards
JP2009182162A (en) Bonding device
JP2007086013A (en) Manufacturing method of probe card
JP2016092350A (en) Electronic component mounting device and electronic component mounting method
JP2008041758A (en) Method and apparatus for inspecting transferred state of flux
WO1998034273A1 (en) Ball arranging substrate for forming bump, ball arranging head, ball arranging device, and ball arranging method
KR101144487B1 (en) Apparatus for removing solder ball
JP2010245301A (en) Visual inspection method, and visual inspection auxiliary device for wafer
JP2008235471A (en) Method and apparatus for recovering poorly mounted solder ball, and bump forming method
JP4788604B2 (en) Electronic component removal and repair device
JP2013197581A (en) Reflow inspection system and control method thereof
JP4499446B2 (en) Ball mounting apparatus and ball mounting method
CN115156654A (en) Method and device for repairing MINI LED chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15872369

Country of ref document: EP

Kind code of ref document: A1