WO2016103424A1 - シリコーン組成物 - Google Patents

シリコーン組成物 Download PDF

Info

Publication number
WO2016103424A1
WO2016103424A1 PCT/JP2014/084417 JP2014084417W WO2016103424A1 WO 2016103424 A1 WO2016103424 A1 WO 2016103424A1 JP 2014084417 W JP2014084417 W JP 2014084417W WO 2016103424 A1 WO2016103424 A1 WO 2016103424A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone composition
filler
thickening
silicone
viscosity
Prior art date
Application number
PCT/JP2014/084417
Other languages
English (en)
French (fr)
Inventor
泰佳 渡部
学 北田
Original Assignee
ポリマテック・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリマテック・ジャパン株式会社 filed Critical ポリマテック・ジャパン株式会社
Priority to US15/523,567 priority Critical patent/US10329424B2/en
Priority to CN201480082970.9A priority patent/CN107207858B/zh
Priority to PCT/JP2014/084417 priority patent/WO2016103424A1/ja
Priority to DE112014007281.8T priority patent/DE112014007281B4/de
Priority to JP2016565779A priority patent/JP6574967B2/ja
Publication of WO2016103424A1 publication Critical patent/WO2016103424A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00

Definitions

  • the present invention relates to a silicone composition based on liquid silicone and having functionality such as thermal conductivity.
  • the present invention relates to a silicone composition that is disposed between a heat generator and a heat radiator and used as a heat conductive grease having both heat conductivity and storage stability.
  • heat sinks such as heat sinks are used to dissipate heat generated from heat generators such as semiconductor elements and machine parts, and the heat generators are used to efficiently transfer heat.
  • Thermally conductive grease may be applied between the heat sink and the heat sink.
  • this thermal conductive grease has a lower thermal conductivity than a heating element or a radiator (typically made of metal), a thinner one is advantageous. Further, in order to prevent an air layer having an extremely low thermal conductivity from entering between the heat generating body and the heat radiating body, a heat conductive grease having a low viscosity and a high fluidity is more advantageous. For these reasons, it is known that low-viscosity thermally conductive grease is used when the distance between the heat generator and the heat radiator is narrow. For example, Japanese Patent Application Laid-Open No. 2005-330426 describes that the particle size of the thermally conductive filler is “if it is larger than 15.0 ⁇ m, it is not sufficiently thin when the silicone grease composition is applied, and the heat dissipation effect is reduced”. Has been.
  • thermally conductive filler having a large particle size when blended in the thermally conductive grease, there is a problem that the thermally conductive filler is settled and easily separated from the base oil.
  • Japanese Patent Application Laid-Open No. 2012-052137 describes a thermally conductive filler whose thickness is preferably 50 ⁇ m or less, “If the average particle size is too large, oil separation may easily proceed”.
  • Japanese Patent Application Laid-Open No. 2009-221111 describes that “when the average particle size exceeds 30 ⁇ m, the stability of the composition deteriorates and oil separation tends to occur”.
  • Japanese Patent Application Laid-Open No. 2002-226819 discloses a technique using nonionic and water-soluble cellulose such as methylcellulose and ethylcellulose as an anti-settling agent in an aqueous medium.
  • Japanese Patent No. 3957596 describes adding methyl cell source as a thickener to organopolysiloxane. This is because cellulose dissolves or disperses in an aqueous medium, forms a weak network due to hydrogen bonding, and “thickens”.
  • amide wax, polyamide (polyamide), urea, and the like also form a weak network by bonds such as hydrogen bonds, and have a sedimentation preventing action due to the formation of the network structure.
  • the composition will be thickened if it is intended to prevent the heat conductive filler from settling, so that it cannot be realized for applications that do not want to increase the viscosity, such as heat conductive grease. It has been.
  • JP 2005-330426 A JP 2012-052137 A JP 2009-221111 A JP 2012-052137 A JP 2009-221111 A JP 2002-226819 A Japanese Patent No. 39575596
  • an object of the present invention is to provide a thermally conductive silicone composition capable of highly filling a thermally conductive filler by suppressing the increase in viscosity while suppressing sedimentation of the thermally conductive filler. Moreover, an object of this invention is to provide the silicone composition which suppressed the viscosity raise, suppressing sedimentation of a non-solubility function provision filler.
  • the silicone composition of the present invention that achieves the above object is constituted as follows.
  • a silicone composition comprising a liquid silicone, a non-soluble function-imparting filler, and a non-liquid thickening-suppressing settling-preventing material.
  • the composition can have a predetermined function, and by including a non-liquid thickening-suppressing settling-preventing material, non-dissolving while suppressing increase in viscosity in a mixed system with liquid silicone Sedimentation of the sexual function imparting filler can be prevented.
  • It contains 300 to 2500 parts by weight of a non-soluble function-imparting filler and 100 to 50 parts by weight of a thickening-suppressing anti-settling material with respect to 100 parts by weight of liquid silicone, and has a viscosity at 23 ° C. of 30 to 700 Pa ⁇ S.
  • a silicone composition It contains 300 to 2500 parts by weight of a non-soluble function-imparting filler and 100 to 50 parts by weight of a thickening-suppressing anti-settling material with respect to 100 parts by weight of liquid silicone, and has a viscosity at 23 ° C. of 30 to 700 Pa ⁇ S.
  • a silicone composition contains 300 to 2500 parts by weight of a non-soluble function-imparting filler and 100 to 50 parts by weight of a thickening-suppressing anti-settling material with respect to 100 parts by weight of liquid silicone, and has a viscosity at 23 ° C. of 30 to 700 Pa ⁇ S.
  • a silicone composition It contains 300 to 2500
  • the viscosity at 23 ° C. is 30 to 700 Pa ⁇ S, which can be a silicone composition suitable for coating and the like.
  • the volume ratio of the non-soluble function-imparting filler and the thickening-suppressing sedimentation-preventing material in the silicone composition is suitable, and the desired function obtained through the addition of the non-soluble function-providing filler does not thicken or settle. Can be obtained.
  • the thickening-suppressing sedimentation-preventing material can be a non-thickening sedimentation-preventing material.
  • the thickening-suppressing sedimentation-preventing material is a non-thickening sedimentation-preventing material, it does not cause thickening despite the addition of a non-liquid material, and can be a silicone composition that is excellent in operations such as coating. .
  • the non-soluble function-imparting filler can be a silicone composition containing 25 to 60% by volume of particles having a particle size of more than 50 ⁇ m with respect to the total volume of the non-soluble function-providing filler.
  • the non-soluble function-imparting filler contains 25 to 60% by volume of particles having a particle size of more than 50 ⁇ m with respect to the entire volume of the non-soluble function-providing filler, the desired function, for example, thermal conductivity is increased. be able to.
  • the thickening-suppressing anti-settling material is included, the settling can be suppressed without increasing the viscosity even if the non-soluble function-imparting filler having a particle diameter of more than 50 ⁇ m, which is relatively easy to settle, is included.
  • the thickening-suppressing sedimentation-preventing material or the non-thickening sedimentation-preventing material can be a polysaccharide.
  • the thickening-suppressing anti-settling material or non-thickening anti-settling material is a polysaccharide, it is possible to obtain a silicone composition in which the increase in viscosity is suppressed and settling of the non-soluble function-imparting filler is suppressed. That is, it has been found that when a polysaccharide such as cellulose is added to a silicone composition containing a liquid silicone and an insoluble function-imparting filler, the silicone composition does not thicken. Furthermore, although this composition did not thicken, the result which was not derived
  • Cellulose compounds can be used as thickening-suppressing anti-settling materials, non-thickening anti-settling materials or polysaccharides. Moisture resistance can be improved by using a cellulose compound.
  • the non-soluble function-imparting filler can be a heat conductive filler. Since the non-soluble function-imparting filler is a thermally conductive filler, a silicone composition having thermal conductivity can be obtained.
  • At least one or more selected from metals, metal oxides, metal nitrides, metal hydroxides, metal carbides, graphite, and carbon fibers can be used as the thermally conductive filler.
  • thermoly conductive filler liquid silicone and non-liquid thickening suppression settling prevention materials such as polysaccharides It can be set as the heat conductive silicone composition which suppressed the raise of the viscosity in the mixed system.
  • At least one or more selected from metals, metal oxides, and carbon compounds can be used as the non-soluble function-imparting filler.
  • Conductive silicone that suppresses increase in viscosity in mixed system of liquid silicone and non-liquid thickening-suppressing anti-settling material such as polysaccharides because metal, metal oxide and carbon compound are selected as non-soluble function-providing filler It can be a composition.
  • silicone composition of the present invention a silicone composition that can suppress an increase in viscosity while suppressing sedimentation of a non-soluble function-imparting filler such as a heat conductive filler and is highly filled with a non-soluble function-providing filler. You can get things.
  • This silicone composition contains a liquid silicone, a non-soluble function-imparting filler, and a non-liquid thickening-suppressing anti-settling material.
  • duplication description is abbreviate
  • thermally conductive silicone composition containing a thermally conductive filler in liquid silicone is interposed between a plurality of heating elements placed on a substrate and a radiator provided to face the heating elements, It can be used as a material that plays a role of transferring heat from the heating element to the heat dissipation element.
  • the thermally conductive silicone composition contains liquid silicone, a thermally conductive filler (non-soluble function-imparting filler), and a non-liquid thickening-suppressing anti-settling material.
  • Liquid silicone includes both non-curable liquid silicone and curable liquid silicone.
  • the thermally conductive silicone composition becomes thermally conductive grease or the like, and when curable liquid silicone is used, it becomes a potting material or a thermally conductive sheet. Become.
  • liquid silicone examples include organopolysiloxanes such as dimethylpolysiloxane and methylphenylpolysiloxane, and modified silicones substituted with reactive groups such as alkenyl groups, epoxy groups, acryloyl groups, and amino groups. it can.
  • the curable liquid silicone is preferably a curable addition reaction type liquid silicone. This is because the addition reaction type liquid silicone has a small cure shrinkage. More specifically, when the thermally conductive silicone composition is cured while being sandwiched between the heating element and the radiator, a large gap between the heating element and the radiator may occur if the curing shrinkage is large. This is because the reaction type liquid silicone has a small cure shrinkage and thus is less likely to cause a gap.
  • the addition reaction type liquid silicone it is preferable to use an organopolysiloxane having an alkenyl group at the terminal and an organohydrogenpolysiloxane.
  • the liquid silicone as the main agent and the liquid silicone as the curing agent are mixed to form a curable liquid silicone like the addition reaction type liquid silicone, the main agent, the curing agent, The liquid silicone in any case is included.
  • Liquid silicone having a viscosity of about 0.005 Pa ⁇ s to 2 Pa ⁇ s can be used.
  • Liquid silicone having a viscosity of less than 0.005 Pa ⁇ s has a low molecular weight, and it is difficult to increase the molecular weight even after curing. Therefore, when the heat conductive silicone composition is cured, the cured product may be brittle.
  • a liquid silicone having a lower viscosity can be used, but when it is less than 0.005 Pa ⁇ s, it is not suitable for long-term use in a heat conductive application because of high volatility.
  • the viscosity of the thermally conductive silicone composition is likely to increase. Therefore, if the thermally conductive silicone composition is in a desired viscosity range, the blending amount of the thermally conductive filler is reduced. It becomes difficult to increase thermal conductivity.
  • thermally conductive filler examples include spherical powders such as metals, metal oxides, metal nitrides, metal carbides, and metal hydroxides, and powders such as scales, graphite, and carbon fibers.
  • the metal examples include aluminum, copper, and nickel.
  • the metal oxide examples include aluminum oxide, magnesium oxide, zinc oxide, and quartz.
  • the metal nitride examples include boron nitride and aluminum nitride.
  • metal carbide examples include silicon carbide, and examples of the metal hydroxide include aluminum hydroxide.
  • carbon fibers include pitch-based carbon fibers, PAN-based carbon fibers, fibers obtained by carbonizing resin fibers, fibers obtained by graphitizing resin fibers, and the like.
  • metal oxides, metal nitrides, metal carbides, and metal hydroxide powders are preferably used in applications that require insulation.
  • the heat conductive filler is preferably a material with a low specific gravity. More specifically, it is preferable to use a material having a specific gravity of 4.0 or less. Examples of the material having a specific gravity of 4.0 or less include aluminum, aluminum oxide, magnesium oxide, quartz, boron nitride, aluminum nitride, silicon carbide, aluminum hydroxide, graphite, and carbon fiber. The specific gravity is more preferably 3.0 or less. Examples of the material having a specific gravity of 3.0 or less include aluminum, aluminum hydroxide, quartz, graphite, and carbon fiber. This is because if the specific gravity of the heat conductive filler is low, it is possible to make it difficult to settle compared to the case where a high specific gravity filler is used.
  • the heat conductive filler used here can be divided into a heat conductive filler (A) having an average particle diameter of 50 ⁇ m or less and a heat conductive filler (B) having an average particle diameter exceeding 50 ⁇ m. Further, it is preferable that the heat conductive filler having a particle diameter of more than 50 ⁇ m is 25 to 60% by volume with respect to the total volume of the heat conductive filler. It is because heat conductivity can be improved suitably by setting it as such a predetermined range.
  • the volume of the thermally conductive filler (B) having a large particle size is increased to 60 volumes. Up to about%, the heat conductivity is expected to improve while the viscosity of the heat conductive silicone composition slightly increases. If it exceeds 60% by volume, the improvement in thermal conductivity will not be observed, the fluidity of the thermal conductive silicone composition will be lowered, and the surface will be noticeable. This seems to be because the proportion of the small-diameter thermally conductive particles filling the gaps between the large-diameter thermally conductive fillers becomes too small. On the other hand, if the proportion of the thermally conductive filler (B) is less than 25% by volume, it is difficult to increase the thermal conductivity.
  • the average particle diameter of the heat conductive filler (A) is preferably 0.3 ⁇ m to 10 ⁇ m. If the thickness is less than 0.3 ⁇ m, the viscosity may be higher than necessary and high filling may not be possible. If the thickness exceeds 10 ⁇ m, it is difficult to densely fill gaps having a large particle diameter.
  • the average particle diameter of the heat conductive filler (B) is preferably 50 ⁇ m to 200 ⁇ m. If it is less than 50 ⁇ m, it is difficult to obtain sufficient thermal conductivity, and if it is more than 200 ⁇ m, there is a possibility that the sedimentation rate cannot be sufficiently slowed even with the sedimentation inhibiting action of the thickening inhibiting sedimentation preventing material such as crystalline cellulose.
  • the average particle diameter of the thermally conductive filler can be represented by a volume average particle diameter of a particle size distribution measured by a laser diffraction scattering method (JIS R1629).
  • the heat conductive filler (A) and the heat conductive filler (B) may be made of the same material, but may be made of different materials as follows.
  • the heat conductive filler (A) preferably contains aluminum hydroxide.
  • aluminum hydroxide By using aluminum hydroxide, the specific gravity of the curable thermal conductive grease can be lowered, and separation of the liquid polymer and the thermal conductive filler can be suppressed.
  • thermally conductive filler (B) it is preferable to use aluminum oxide as the thermally conductive filler (B). This is because aluminum oxide has particularly high thermal conductivity and can be effectively increased in thermal conductivity when used as a large particle size thermal conductive filler (B).
  • the shape of the heat conductive filler (B) is preferably spherical. This is because the specific surface area is smaller than that of other shapes if spherical. That is, since the specific surface area is small, even if the proportion of the heat conductive filler (B) having a large particle size in the whole heat conductive filler increases, the fluidity of the curable heat conductive grease is not easily lowered, and the heat conduction.
  • the thermal conductivity can be increased by increasing the filling amount of the conductive filler.
  • the heat conductive filler is preferably contained in the range of 300 to 2500 parts by weight with respect to 100 parts by weight of the liquid silicone. If it is less than 300 parts by weight, it is difficult to obtain sufficient thermal conductivity, and if it exceeds 2500 parts by weight, the viscosity becomes too high.
  • the thickening-suppressing anti-settling material used here has a function of preventing the settling of the insoluble function-imparting filler by adding it to suppress the increase in the viscosity of the system. Unlike a low-viscosity liquid that generally decreases viscosity when added, the non-liquid thickening-suppressing anti-settling material is non-liquid such as solid or gel.
  • the non-thickening anti-settling material has the function of preventing the settling of the non-soluble function-imparting filler by lowering the viscosity of the composition when it is not added. Is. Therefore, it is preferable to use a non-thickening anti-settling material among the thickening-suppressing anti-settling materials.
  • thickening-suppressing sedimentation-preventing material examples include cellulose compounds, polysaccharides such as starch and dextrin. Polysaccharides are generally thickeners, but in a mixed system with liquid silicone, they exhibit behavior as a thickening-inhibiting sedimentation-preventing material, completely different from the function as a conventional thickener.
  • the cellulose compound examples include cellulose (crystalline cellulose), methyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose and the like. Moreover, these cellulose compounds which introduce
  • non-cellulosic compounds include starch, glycogen, agarose, pectin, dextrin, fructan, chitin and the like.
  • the polysaccharide includes a structure in which the surface of the resin is covered with the polysaccharide.
  • polysaccharide those having an irregular shape or a fibrous shape can be used, and those having a particle diameter of 1 to 1000 ⁇ m can be used. Such particle size distribution may vary, but a powder having a large amount of powder of about 5 to 100 ⁇ m is preferable. The particle size can be confirmed by direct observation with an electron microscope or the like. Alternatively, a gel can be used as the polysaccharide.
  • the polysaccharide is preferably 2.0 to 50 parts by weight, more preferably 6.0 to 50 parts by weight, and more preferably 6.0 to 20 parts by weight with respect to 100 parts by weight of the liquid silicone. Is more preferable. If the amount is 1.0 part by weight or less, the effect of preventing sedimentation cannot be obtained, and if it is 2.0 to 50 parts by weight, the effect of preventing sedimentation can be obtained. In addition, an excellent anti-settling effect can be obtained at 6.0 to 50 parts by weight.
  • the viscosity can be kept low at 2.0 to 50 parts by weight, but if it exceeds 50 parts by weight, the amount of crystalline cellulose in the thermally conductive silicone composition becomes excessive and the thermal conductivity may be lowered. If it is 20 parts by weight or less, thermal conductivity is more preferable.
  • the silicone composition having such a composition can contain various additives as long as the function is not impaired.
  • a dispersant, a flame retardant, a coupling agent, a plasticizer, a curing retardant, an antioxidant, a colorant, a catalyst, and the like may be added as appropriate.
  • the silicone composition can be obtained by mixing the above components and stirring well.
  • the viscosity of the heat conductive silicone composition thus obtained is preferably 30 Pa ⁇ s to 700 Pa ⁇ s at 23 ° C.
  • the viscosity becomes low, but when the viscosity is lower than 30 Pa ⁇ s, there is a possibility that sufficient heat conductivity cannot be obtained.
  • it exceeds 700 Pa ⁇ s the coating operation becomes difficult.
  • the above viscosity is measured with a viscometer (BROOKFIELD rotational viscometer DV-E) with spindle no.
  • the measurement can be performed at a rotation speed of 5 rpm and a measurement temperature of 23 ° C. using 14 rotors.
  • a conductive silicone composition containing a conductive filler in liquid silicone can be used as a conductive paste or the like.
  • Components, ratios, etc. other than the non-soluble function-imparting filler are the same as those of the silicone composition described in the first embodiment.
  • filler examples include one or more selected from metals, metal oxides, and carbon compounds. Such fillers include the same fillers used in the previous embodiment as long as they have conductivity.
  • the conductive filler is also preferably contained in the range of 300 to 2500 parts by weight with respect to 100 parts by weight of the liquid silicone. If it is less than 300 parts by weight, the effect derived from the filler may be insufficient. On the other hand, when the amount exceeds 2500 parts by weight, the viscosity becomes too high, and it becomes difficult to use in applications where it is applied and used.
  • the silicone composition in which a filler for imparting strength is contained in liquid silicone can be used as a sealing material for filling a void in a building.
  • the insoluble function-imparting filler included in each of the above embodiments includes a filler (A) having an average particle diameter of 50 ⁇ m or less and a thermally conductive filler (B) having an average particle diameter exceeding 50 ⁇ m.
  • a single thermally conductive filler may be used.
  • the average particle size is not particularly limited. Even if it does in this way, since the anti-settling effect by the thickening suppression anti-settling material is obtained and the composition is difficult to increase the viscosity, the filling amount of the non-soluble function-imparting filler can be increased.
  • liquid silicone 100 parts by weight of vinyl-terminated organopolysiloxane (viscosity at 25 ° C. of 300 mPa ⁇ s), which is the main component of addition reaction type liquid silicone, and amorphous water having an average particle diameter of 1 ⁇ m as heat conductive filler 140 parts by weight of aluminum oxide powder (22.1% by volume with respect to the total heat conductive filler), 200 parts by weight of spherical alumina having an average particle size of 3 ⁇ m (19.5% by volume with respect to the total heat conductive filler), average particle 600 parts by weight of spherical alumina having a diameter of 70 ⁇ m (58.4% by volume with respect to the total thermally conductive filler), and crystalline cellulose (average particle diameter of 50 ⁇ m, hereinafter referred to as cellulose (1) as a thickening-suppressing anti-settling material (additive)) 6 parts by weight) were mixed to prepare a thermally conductive silicone composition as the main component of Sample 1.
  • liquid silicone 100 parts by weight of organohydrogenpolysiloxane (viscosity at 25 ° C. of 400 mPa ⁇ s), which is a curing agent of addition reaction type liquid silicone, and the same material and content as those added to the main agent
  • organohydrogenpolysiloxane viscosity at 25 ° C. of 400 mPa ⁇ s
  • the thermally conductive filler and additive were mixed to prepare a thermally conductive silicone composition as a curing agent.
  • the cellulose (1) used for the heat conductive silicone composition as the main ingredient of Sample 1 was replaced with the additive shown in Table 1, and the same procedure as in the heat conductive silicone composition as the main ingredient of Sample 1 was performed.
  • heat conductive silicone compositions as the main ingredients of Sample 2 to Sample 7 were prepared.
  • heat conductive silicone compositions as curing agents for Sample 2 to Sample 7 were prepared in the same manner as the heat conductive silicone composition as the curing agent for Sample 1, except that the additives of the same material as the main agent were used. .
  • heat conductive silicone compositions as main ingredients of Samples 8 to 17 were prepared.
  • the heat conductive silicone composition as the curing agent of Sample 8 to Sample 17 is the same as the heat conductive silicone composition as the curing agent of Sample 1 except that the additive of the same material as that of the main agent and the addition amount thereof are used. A product was prepared.
  • carboxymethylcellulose (average particle size 50 ⁇ m) is used as cellulose (2)
  • methylcellulose (average particle size 50 ⁇ m) is used as cellulose (3)
  • AEROSIL COK 84 (made by Nippon Aerosil Co., Ltd.) is used as silica.
  • polybutene Nissan Polybutene 10SH (manufactured by NOF Corporation), as terpene resin, YS Polystar T100 (manufactured by Yasuhara Chemical Co., Ltd.), as polysaccharide (1), starch (manufactured by Wako Pure Chemical Industries), As the polysaccharide (2), dextrin hydrate (manufactured by Wako Pure Chemical Industries) was used.
  • Cellulose (2) and cellulose (3) were both amorphous and fibrous, and were mainly powder of about 5 to 100 ⁇ m, and most of the particles were distributed in this range.
  • the polysaccharide (1) and the polysaccharide (2) were both indefinite, mainly powder of about 1 to 100 ⁇ m, and most of the particles were distributed in this range.
  • the heat conductive silicone compositions as the main ingredients of Sample 1 to Sample 6 and Sample 8 to Sample 17 containing the additive were compared with the heat conductive silicone composition as the main ingredient of Sample 7 containing no additive.
  • Table 1 and Table 2 show changes (values obtained by dividing the viscosity of the heat conductive silicone composition as the main agent of each sample by the viscosity of the heat conductive silicone composition as the main agent of Sample 7).
  • Samples 1 to 17 were filled with a thermally conductive silicone composition as a main ingredient in a cylindrical container having a diameter of 20 mm and a height of 120 mm, respectively, and left standing in a stationary state at 60 ° C. for 1000 hours. The sedimentation state of the thermally conductive filler was visually observed.
  • Samples 1 to 17 were mixed with the heat conductive silicone compositions as curing agents of Samples 1 to 17 and mixed sufficiently with the heat conductive silicone compositions as the main ingredients of Samples 1 to 17, and Samples 1 to 17 were mixed.
  • a curable thermally conductive silicone composition was prepared. And each composition was formed in the sheet form of thickness 20mm, and the test piece for thermal conductivity measurement was produced. About each test piece, the heat conductivity was measured by the unsteady method fine wire heating method using the rapid thermal conductivity meter QTM-500 by Kyoto Electronics Industry Co., Ltd. The results are also shown in Tables 1 and 2.
  • thermally conductive silicone compositions as the main ingredients of Sample 1 to Sample 6 containing various additives that are expected to prevent sedimentation of the thermally conductive filler, the thermally conductive filler does not separate, and both settle. The prevention effect was confirmed. On the other hand, in Sample 7 containing no additive, the thermally conductive filler separated from the liquid silicone and settled.
  • the viscosity of Sample 7 containing no additive was 450 Pa ⁇ s.
  • the heat conductive silicone compositions as the main ingredients of Sample 1 to Sample 3 to which the cellulose compound was added all had a viscosity (viscosity change of 0.89 to 0) which was about 10% lower than 450 Pa ⁇ s. .90).
  • the viscosity was 1152 Pa ⁇ s, and the viscosity was considerably increased.
  • Polybutene and terpene resin also had high viscosity. From these results, it was confirmed that the cellulose compounds used in Samples 1 to 3 functioned as non-thickening and sedimentation preventing materials that would reduce the viscosity when added.
  • Sample 14 had a slight increase in viscosity as compared with the case where no additive was added, so that it functions as a thickening-suppressing sedimentation-preventing material but does not function as a non-liquid non-thickening sedimentation-preventing material. It was. The reason why the viscosity of the sample 14 increased compared to the sample 13 was that the addition amount of the cellulose compound as a solid content was excessive with respect to the liquid silicone, and the flow component was relatively decreased. It seems to be the cause.
  • samples 16 and 17 also showed a decrease in viscosity, indicating that they functioned as non-thickening and sedimentation preventing materials.
  • the addition amount of polysaccharides such as cellulose compounds is preferably 2.0 to 50 parts by weight, and more preferably 6.0 to 50 parts by weight.
  • sample 4 and sample 15 to which silica was added first, in sample 4 in which the amount of additive was the same as that of sample 1, the viscosity was considerably increased although there was an anti-settling effect. On the other hand, in Sample 15 in which the amount of silica added was decreased in order to reduce the viscosity, the viscosity did not decrease, and the silica did not function as a thickening-suppressing sedimentation preventive material. The conductive filler was separated and the sedimentation prevention effect was insufficient.
  • Sample 1 to sample 12, sample 16, and sample 17 had no difference in thermal conductivity.
  • the amount of cellulose (1) added to sample 13 was 50 parts by weight, the thermal conductivity was slightly decreased, and at 80 parts by weight of sample 14, the thermal conductivity was greatly decreased.
  • the reason is considered to be that the proportion of the heat conductive filler per unit volume in the heat conductive silicone composition is small. From this result, it is understood that the addition amount of polysaccharides such as cellulose compounds is preferably 50 parts by weight or less, and more preferably 20 parts by weight or less. Therefore, it can be seen that the addition amount of polysaccharides such as cellulose compounds is more preferably 6.0 to 20 parts by weight.
  • the silicone composition can suppress an increase in viscosity even when a high concentration of a non-soluble filler that thickens when added in a large amount, it can be used as a non-soluble function-providing filler.
  • a silicone composition having excellent fluidity can be obtained by selecting and containing a filler that exhibits a proper function. Therefore, it can be used as a substitute for various functional materials such as thermal conductive grease, conductive paste, and sealing material that have insufficient fluidity and required functions.

Abstract

非溶解性機能付与充填材の沈降を抑制しつつ粘度上昇を抑えたシリコーン組成物を提供すること。 液状シリコーンと、熱伝導性充填材や導電性充填材などの非溶解性機能付与充填材と、非液状のセルロース系化合物や多糖類等の増粘抑制沈降防止材または非増粘沈降防止材と、を含むシリコーン組成物とした。 液状シリコーンと非溶解性機能付与充填材とを含む系において、多糖類は増粘剤ではなく増粘抑制沈降防止材または非増粘沈降防止材として機能し、低粘度で充填材を高充填させたシリコーン組成物を得ることができる。

Description

シリコーン組成物
 本発明は、液状シリコーンをベースとし熱伝導性などの機能性を有するシリコーン組成物に関する。特に、発熱体と放熱体の間に配置されて熱伝導性と保存安定性を兼ね備えた熱伝導性グリスとして用いられるシリコーン組成物に関する。
 コンピュータや自動車部品等の電子機器では、半導体素子や機械部品等の発熱体から生じる熱を放熱するために、ヒートシンクなどの放熱体が用いられており、熱の伝達を効率よくする目的で発熱体と放熱体の間に熱伝導性グリスを塗布することがある。
 この熱伝導性グリスは、発熱体や放熱体(典型的には金属製である)と比較すると熱伝導率が低いため、薄い方が有利である。また、発熱体と放熱体との間に熱伝導率が極めて低い空気層を入り込ませないようにするためには、低粘度で流動性の高い熱伝導性グリスの方が有利である。こうした理由から発熱体と放熱体との間隔が狭い場合には低粘度の熱伝導性グリスを用いることが知られている。例えば特開2005-330426号公報には、熱伝導性充填材の粒径が「15.0μmより大きいとシリコーングリース組成物を塗布した際に十分に薄くならず、放熱効果が小さくなる」と記載されている。
 ところが近年では、発熱する素子が多く、また発熱量の総量も増加の傾向にある。そのため、特定の電子素子というよりは、複数の電子素子、あるいは基板全体から隈なく放熱させることが望まれる。そうすると、放熱対象となる電子素子の高さも様々であり、また、斜めや横向きに配置された発熱体に放熱体を組付ける場合が生じるなど、放熱のために要求される形態が多様化してきている。
 こうした要求に対して、薄膜で使用される従来の熱伝導性グリスを、厚膜で使用すると熱伝達の効率が劣るという問題がある。その理由は、粒径の小さい熱伝導性充填材が配合された樹脂組成物は、薄膜にすることで効率よく熱を伝達できる半面、粒径の大きな熱伝導性充填材も配合された樹脂組成物と比較して熱伝導率が劣る傾向があるためである。したがって、厚膜で使用する場合には、粒径の大きな熱伝導性充填材を含む熱伝導性グリスを用いることが望まれる。
 ところが、熱伝導性グリスにおいて、粒径の大きな熱伝導性充填材を配合すると、熱伝導性充填材が沈降して、基油と分離しやすくなるという問題がある。例えば特開2012-052137号公報には、50μm以下が好ましい熱伝導性充填材について「平均粒径が大きすぎると、オイル分離が容易に進行する可能性がある。」と記載されている。また、特開2009-221311号公報には、「平均粒径が30μmを越えると、組成物の安定性が悪化し、オイル分離が起こりやすい。」と記載されている。
 こうした問題に対して、熱伝導性充填材の沈降を防ぐために、粘度やチクソ性を高めるシリカなどの添加剤を用いることが知られており、例えば特開2012-052137号公報や特開2009-221311号公報に記載されている。
 また、多糖類にも沈降防止作用があることが知られている。特開2002-226819号公報には、水性媒体中でメチルセルロースやエチルセルロースなどの非イオン性且つ水溶性のセルロースを沈降防止剤として用いる技術が公開されている。また、特許3957596号公報には、オルガノポリシロキサンに増粘剤としてメチルセルソースを添加することが記載されている。セルロースは水媒質中に溶解または分散して、水素結合による弱いネットワークを構成し“増粘”するからである。
 さらに、アマイドワックス、ポリアマイド(ポリアミド)、ウレア等も水素結合等の結合により弱いネットワークを構成し、そのネットワーク構造の形成から沈降防止作用があることが知られている。
 しかし、上記シリカ等の添加剤を添加すると、熱伝導性グリスの粘度が上昇してしまうという問題がある。このことは換言すれば、所定の粘度の熱伝導性グリスを作ろうとしたときに、熱伝導性充填材の充填量を少なくする必要があるということであり、さらに言えば、熱伝導性充填材の充填量が少なくなるため、熱伝導性が低下するということである。
 したがって、こうした従来の技術によれば、熱伝導性充填材の沈降防止を図ろうとすれば組成物を増粘させるため、熱伝導性グリスをはじめ、粘度を高めたくない用途には実現できないと考えられている。
特開2005-330426号公報 特開2012-052137号公報 特開2009-221311号公報 特開2012-052137号公報 特開2009-221311号公報 特開2002-226819号公報 特許3957596号公報
 本発明は、上記問題点に鑑みてなされたものである。すなわち、熱伝導性充填材の沈降を抑制しつつ、粘度上昇を抑えることで熱伝導性充填材を高充填できる熱伝導性シリコーン組成物を提供することを目的とする。また本発明は、非溶解性機能付与充填材の沈降を抑制しつつ粘度上昇を抑えたシリコーン組成物を提供することを目的とする。
 上記目的を達成する本発明のシリコーン組成物は以下のとおり構成される。
 即ち、液状シリコーンと、非溶解性機能付与充填材と、非液状の増粘抑制沈降防止材と、を含むシリコーン組成物である。
 非溶解性機能付与充填材を含むことで組成物に所定の機能を付すことができ、非液状の増粘抑制沈降防止材を含むことで液状シリコーンとの混合系で粘度上昇を抑えつつ非溶解性機能付与充填材の沈降を防止することができる。
 液状シリコーン100重量部に対して非溶解性機能付与充填材300~2500重量部、増粘抑制沈降防止材2.0~50重量部を含有し、23℃での粘度が30~700Pa・Sであるシリコーン組成物である。
 液状シリコーン100重量部に対して非溶解性機能付与充填材300~2500重量部、増粘抑制沈降防止材2.0~50重量部を含有させることで、23℃での粘度が30~700Pa・Sであり、塗工などに好適なシリコーン組成物とすることができる。また、シリコーン組成物中での非溶解性機能付与充填材と増粘抑制沈降防止材の占める体積割合が好適で増粘、沈降せず、非溶解性機能付与充填材の添加を通じて求める所望の機能を得ることができる。
 増粘抑制沈降防止材が非増粘沈降防止材であるものとすることができる。
 増粘抑制沈降防止材を非増粘沈降防止材としたため、非液状物を添加しているにもかかわらず増粘を生じさせず、塗布等の作業に優れたシリコーン組成物とすることができる。
 非溶解性機能付与充填材は、その非溶解性機能付与充填材全体の体積に対して粒径が50μmを超える粒子を25~60体積%含有するシリコーン組成物とすることができる。
 非溶解性機能付与充填材は、その非溶解性機能付与充填材全体の体積に対して粒径が50μmを超える粒子を25~60体積%含有するため、所望の機能、例えば熱伝導率を高めることができる。また、増粘抑制沈降防止材を含むため、比較的沈降しやすい50μmを超える粒径の非溶解性機能付与充填材を含んでいても粘度上昇させずにその沈降を抑制することができる。
 増粘抑制沈降防止材または非増粘沈降防止材を多糖類とすることができる。
 増粘抑制沈降防止材または非増粘沈降防止材を多糖類としたため、粘度上昇が抑制され、非溶解性機能付与充填材の沈降を抑制したシリコーン組成物とすることができる。即ち、液状シリコーンと非溶解性機能付与充填材とを含むシリコーン組成物にセルロース等の多糖類を添加するとシリコーン組成物は増粘しないことを見出した。さらに本組成物は増粘しないにもかかわらず、非溶解性機能付与充填材の沈降を効果的に防止できるというこれまでの常識からは導き出されない結果を見出した。
 増粘抑制沈降防止材や非増粘沈降防止材または多糖類としてセルロース系化合物を用いることができる。セルロース系化合物とすれば耐湿性を向上させることができる。
 非溶解性機能付与充填材は熱伝導性充填材とすることができる。非溶解性機能付与充填材を熱伝導性充填材としたため、熱伝導性を有するシリコーン組成物とすることができる。
 そして、熱伝導性充填材には、金属、金属酸化物、金属窒化物、金属水酸化物、金属炭化物、グラファイト、炭素繊維から選択される少なくとも一または複数を用いることができる。
 熱伝導性充填材として金属、金属酸化物、金属窒化物、金属水酸化物、金属炭化物、グラファイト、炭素繊維を選択したため、液状シリコーンと多糖類等の非液状の増粘抑制沈降防止材との混合系において粘度の上昇を抑えた熱伝導性シリコーン組成物とすることができる。
 また、非溶解性機能付与充填材に金属、金属酸化物、炭素化合物から選択される少なくとも一または複数を用いることができる。
 非溶解性機能付与充填材に金属、金属酸化物、炭素化合物を選択したため、液状シリコーンと多糖類等の非液状の増粘抑制沈降防止材との混合系において粘度の上昇を抑えた導電性シリコーン組成物とすることができる。
 本発明のシリコーン組成物によれば、熱伝導性充填材等の非溶解性機能付与充填材の沈降を抑制しつつ粘度上昇を抑えることができ非溶解性機能付与充填材を高充填したシリコーン組成物を得ることができる。
 本発明のシリコーン組成物について説明する。このシリコーン組成物は、液状シリコーンと、非溶解性機能付与充填材と、非液状の増粘抑制沈降防止材と、を含む。即ち、ベースとなる液状シリコーンに対し、その用途に応じて熱伝導性や導電性、強度付与等といった種々の機能を付与するための充填材を含有させた系において、非液状の増粘抑制沈降防止材をさらに含有させることによって、粘度の上昇を抑えたシリコーン組成物である。以下、実施形態に即してさらに詳しく説明するが、各実施形態において同一の材質、組成、製法、作用等については重複説明を省略する。
第1実施形態
 本実施形態では、非溶解性機能付与充填材として熱伝導性を付与する熱伝導性充填材を用いた形態について説明する。熱伝導性充填材を液状シリコーンに含有させた熱伝導性シリコーン組成物は、基板に載置した複数の発熱体と、この発熱体と対向して設けられる放熱体との間に介在させて、発熱体からの熱を放熱体に伝える役割を担う材料として用いることができる。
 熱伝導性シリコーン組成物は、液状シリコーンと、熱伝導性充填材(非溶解性機能付与充填材)と、非液状の増粘抑制沈降防止材と、を含有する。
 液状シリコーンには、硬化性を有しない液状シリコーンと硬化可能な液状シリコーンの双方を含む。硬化性を有しない液状シリコーンを用いた場合には、熱伝導性シリコーン組成物は熱伝導性グリス等になり、硬化可能な液状シリコーンを用いた場合には、ポッティング材料や熱伝導性シート等になる。
 液状シリコーンの具体例としては、ジメチルポリシロキサン、メチルフェニルポリシロキサンなどのオルガノポリシロキサンや、アルケニル基やエポキシ基、アクリロイル基、アミノ基等の反応性基で置換された変性シリコーン等を挙げることができる。
 硬化可能な液状シリコーンについては、硬化可能な付加反応型の液状シリコーンであることが好ましい。付加反応型の液状シリコーンは、硬化収縮が小さいためである。より詳しくは、発熱体と放熱体とで挟持した状態で熱伝導性シリコーン組成物を硬化したときに、硬化収縮が大きいと発熱体または放熱体との間に隙間が生じることがあるが、付加反応型の液状シリコーンであれば、硬化収縮が小さいため隙間が生じる不都合が生じにくいためである。付加反応型の液状シリコーンとしては、アルケニル基を末端に有するオルガノポリシロキサンとオルガノハイドロジェンポリシロキサンを用いることが好ましい。なお、この付加反応型の液状シリコーンのように、主剤としての液状シリコーンと硬化剤としての液状シリコーンとを混合して硬化型液状シリコーンとするような場合には、主剤、硬化剤、混合後の何れの場合の液状シリコーンも含むものである。
 液状シリコーンは、粘度が0.005Pa・s~2Pa・s程度のものを用いることができる。粘度が0.005Pa・s未満の液状シリコーンは低分子量であり、硬化した後でも分子量を高めにくい。そのため、熱伝導性シリコーン組成物を硬化したときにその硬化体が脆くなるおそれがある。硬化させない場合には、より低粘度の液状シリコーンを用いることができるが、0.005Pa・s未満の場合には、揮発性が高いため、熱伝導性用途での長期使用に適さなくなる。一方、粘度が2Pa・sを超えると、熱伝導性シリコーン組成物の粘度が上昇し易いため、熱伝導性シリコーン組成物を所望の粘度範囲にすると熱伝導性充填材の配合量が少なくなり、熱伝導性を高めることが難しくなる。
 次に熱伝導性充填材について説明する。熱伝導性充填材には、例えば、金属、金属酸化物、金属窒化物、金属炭化物、金属水酸化物などの球状、鱗片状等の粉末、グラファイトや炭素繊維などが挙げられる。金属としては、アルミニウム、銅、ニッケルなど、金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、石英など、金属窒化物としては、窒化ホウ素、及び窒化アルミニウムなどを例示することができる。また、金属炭化物としては、炭化ケイ素が挙げられ、金属水酸化物としては、水酸化アルミニウムが挙げられる。さらに炭素繊維としては、ピッチ系炭素繊維、PAN系炭素繊維、樹脂繊維を炭化処理した繊維、樹脂繊維を黒鉛化処理した繊維などが挙げられる。これらの中で、特に絶縁性が求められる用途では金属酸化物、金属窒化物、金属炭化物、金属水酸化物の粉末を用いることが好ましい。
 熱伝導性充填材は、低比重の材質であることが好ましい。より具体的には、比重が4.0以下の材質を用いることが好ましい。比重が4.0以下の材質としては、アルミニウム、酸化アルミニウム、酸化マグネシウム、石英、窒化ホウ素、窒化アルミニウム、炭化ケイ素、水酸化アルミニウム、グラファイト、炭素繊維などを例示することができる。また、比重が3.0以下であることがより好ましい。比重が3.0以下の材質としては、アルミニウム、水酸化アルミニウム、石英、グラファイト、炭素繊維を例示することができる。熱伝導性充填材の比重が低ければ、高比重の充填材を用いたときと比較して、沈降し難くすることができるからである。
 ここで用いる熱伝導性充填材は、平均粒径が50μm以下の熱伝導性充填材(A)と、平均粒径が50μmを超える熱伝導性充填材(B)とに分けることができる。そして、熱伝導性充填材全体の体積に対して、粒径が50μmを超える熱伝導性充填材が25~60体積%であることが好ましい。こうした所定の範囲とすることで、熱伝導性を好適に高めることができるからである。
 2種の熱伝導性充填材(A)及び(B)の合計の配合量(重量)を一定としたときに、大粒径の熱伝導性充填材(B)の割合を高めると、60体積%程度までは、熱伝導性シリコーン組成物の粘度が僅かに上昇しつつ、熱伝導性の向上が見込まれる。60体積%を超えると、熱伝導性の向上が見られなくなり、熱伝導性シリコーン組成物の流動性が低下するとともに表面もざらつきが目立つようになる。このことは、大粒径の熱伝導性充填材の隙間を埋める小粒径の熱伝導性粒子の割合が少なくなりすぎるためであると思われる。一方、熱伝導性充填材(B)の割合が25体積%未満では、熱伝導性を高め難い。
 熱伝導性充填材(A)の平均粒径は、0.3μm~10μmであることが好ましい。0.3μm未満では必要以上に粘度が高くなり高充填できなくなるおそれがあり、10μmを超えると大粒径の隙間に細密充填しにくいためである。
 熱伝導性充填材(B)の平均粒径は、50μm~200μmであることが好ましい。50μm未満では十分な熱伝導性が得られにくく、200μmより大きいと結晶性セルロース等の増粘抑制沈降防止材の沈降抑制作用をもってしても、充分に沈降速度を遅くできないおそれがある。
 熱伝導性充填材の平均粒径は、レーザー回折散乱法(JIS R1629)により測定した粒度分布の体積平均粒径で示すことができる。
 熱伝導性充填材(A)と、熱伝導性充填材(B)とは同じ材質のものであっても良いが、以下のように異なる材質のものとすることができる。
 熱伝導性充填材(A)としては、水酸化アルミニウムを含むことが好ましい。水酸化アルミニウムを用いることで、硬化型熱伝導性グリスの比重を低くすることができ、液状高分子と熱伝導性充填材の分離を抑制することができる。
 一方、熱伝導性充填材(B)としては、酸化アルミニウムを用いることが好ましい。酸化アルミニウムは、特に熱伝導性が高く、大粒径の熱伝導性充填材(B)として用いることで、効果的に熱伝導率を高めることができるからである。
 熱伝導性充填材(B)の形状は球状が好ましい。球状とすれば他の形状に比べて比表面積が小さいからである。すなわち比表面積が小さいため、熱伝導性充填材全体に占める大粒径の熱伝導性充填材(B)の割合が増えても、硬化型熱伝導性グリスの流動性が低下しにくく、熱伝導性充填材の充填量を増やして熱伝導性を高めることができる。
 熱伝導性充填材は、液状シリコーン100重量部に対して、300~2500重量部の範囲で含有させることが好ましい。300重量部未満では、充分な熱伝導性が得られにくく、2500重量部を超えると粘度が高くなりすぎるためである。
 次に増粘抑制沈降防止材について説明する。ここで用いる増粘抑制沈降防止材は、それを加えることで系の粘度上昇を抑えて非溶解性機能付与充填材の沈降を防止する機能を奏するものである。非液状の増粘抑制沈降防止材は、添加することで一般的に粘度を低下させる低粘度液体とは異なり、固形状やゲル状等の非液状である。
 増粘抑制沈降防止材の中でも非増粘沈降防止材は、それを加えることでその組成物の粘度を加えない場合よりも低下させて非溶解性機能付与充填材の沈降を防止する機能を奏するものである。したがって、増粘抑制沈降防止材の中でも非増粘沈降防止材を用いることが好ましい。
 増粘抑制沈降防止材としては、セルロース系化合物やデンプン、デキストリン等の多糖類が挙げられる。多糖類は一般的には増粘剤であるが液状シリコーンとの混合系では従来の増粘剤としての機能とは全く異なり増粘抑制沈降防止材としての挙動を示す。
 セルロース系化合物の具体例としては、セルロース(結晶性セルロース)やメチルセルロース、ヒドロキシメチルセルロース、カルボキシメチルセルロース等を挙げることができる。また、イオン性置換基を導入したこれらのセルロース系化合物を挙げることができる。多糖類としてセルロース系化合物を用いると耐湿性に優れる点で好ましい。
 非セルロース系化合物の具体例としては、デンプン、グリコーゲン、アガロース、ペクチン、デキストリン、フルクタン、キチン等を挙げることができる。
 また、多糖類には、樹脂の表面を多糖類で覆ったような構造のものも含まれる。
 多糖類は、不定形や繊維状の形状のものを用いることができ、また、粒径では1~1000μmのものを用いることができる。こうした粒度分布には幅があってもよいが、5~100μm程度の粉末が多いものが好ましい。なお、粒径は電子顕微鏡等で直接観察することで確認することができる。あるいはまた多糖類としてゲル状のものを用いることもできる。
 多糖類は、液状シリコーン100重量部に対して、2.0~50重量部とすることが好ましく、6.0~50重量部とすることがより好ましく、6.0~20重量部とすることがさらに好ましい。1.0重量部以下では、沈降防止効果を得ることができず、2.0~50重量部では沈降防止効果を得ることができる。また、6.0~50重量部では優れた沈降防止効果を得ることができる。そして、2.0~50重量部では粘度を低く抑えることができるが、50重量部を超えると、熱伝導性シリコーン組成物中の結晶性セルロースの量が過剰になり熱伝導性が低下する可能性があり、20重量部以下であれば熱伝導性はより好ましい。
 こうした組成でなるシリコーン組成物には、その機能を損なわない範囲で種々の添加剤を含ませることができる。例えば分散剤、難燃剤、カップリング剤、可塑剤、硬化遅延剤、酸化防止剤、着色剤、触媒などを適宜添加してもよい。
 上記各成分は混合し、よく攪拌することでシリコーン組成物を得ることができる。
 そうして得られた熱伝導性シリコーン組成物の粘度は、23℃で30Pa・s~700Pa・sであることが好ましい。熱伝導性充填材の充填量が少ない場合には粘度が低くなるが、30Pa・sよりも粘度が低い場合には、充分な熱伝導率が得られないおそれがある。一方、700Pa・sを超えると、塗布作業が困難になる。
 なお、上記粘度は、粘度計(BROOKFIELD回転粘度計DV-E)でスピンドルNo.14の回転子を用い、回転速度5rpm、測定温度23℃で測定することができる。
第2実施形態
 本実施形態では、非溶解性機能付与充填材として導電性を付与する導電性充填材を用いた形態について説明する。導電性充填材を液状シリコーンに含有させた導電性シリコーン組成物は、導電性ペーストなどとして用いることができる。
 非溶解性機能付与充填材以外の成分、割合等については第1実施形態で説明したシリコーン組成物と同じである。
 非溶解性機能付与充填材として用いることのできる充填材には、金属、金属酸化物、炭素化合物から選ばれる何れか一種、または複数が挙げられる。こうした充填材には、導電性を有していれば先の実施形態で用いた充填材と同じものも含まれる。
 導電性充填材も液状シリコーン100重量部に対して、300~2500重量部の範囲で含有させることが好ましい。300重量部未満では、充填材に由来する効果が不十分となるおそれがある。一方、2500重量部を超えると粘度が高くなりすぎ、塗布して使用する用途では使用が困難になるためである。
第3実施形態
 本実施形態では、非溶解性機能付与充填材として強度を付与するための充填材を用いた形態について説明する。強度付与のための充填材を液状シリコーンに含有させたシリコーン組成物は、建物の空隙などに充填するシーリング材などとして用いることができる。
 強度を付与する目的で用いる非溶解性機能付与充填材には、先の実施形態で説明した熱伝導性充填材や導電性充填材の他、炭酸カルシウムやシリカ等の種々の充填材が挙げられる。非溶解性機能付与充填材以外の成分、割合等については第1実施形態で説明したシリコーン組成物と同じである。
変形例
 上記各実施形態において含まれる非溶解性機能付与充填材には、平均粒径が50μm以下の充填材(A)と、平均粒径が50μmを超える熱伝導性充填材(B)と、を含むものとしたが、単一の熱伝導性充填材を用いても良い。その際に、特に平均粒径は限定されない。このようにしても、増粘抑制沈降防止材による沈降防止効果が得られ、また組成物が増粘し難いため、非溶解性機能付与充填材の充填量を高めることができる。
 上記実施形態は本発明の一例であり、こうした形態に限定されるものではなく、本発明の趣旨に反しない限度において、各組成物を構成する成分の形状、材質、製造方法等の変更形態を含むものである。
 以下に説明する試料1~試料17のシリコーン組成物を製造し、各種試験を行って非溶解性機能付与充填材の沈降程度、組成物の粘度、熱伝導率について評価した。まず始めに各試料について説明する。
 <試料の調製>
 試料1
 液状シリコーンとして、付加反応型の液状シリコーンの主剤であるビニル末端オルガノポリシロキサン(25℃での粘度が300mPa・s)100重量部と、熱伝導性充填材として、平均粒径1μmの不定形水酸化アルミニウム粉末140重量部(全熱伝導性充填材に対し22.1体積%)、平均粒径3μmの球状アルミナ200重量部(全熱伝導性充填材に対し19.5体積%)、平均粒径70μmの球状アルミナ600重量部(全熱伝導性充填材に対し58.4体積%)と、増粘抑制沈降防止材(添加剤)として結晶性セルロース(平均粒径50μm、以下セルロース(1)と記す)6重量部と、を混合して、試料1の主剤としての熱伝導性シリコーン組成物を調製した。それを試料1として表1に示す。
 また、液状シリコーンとして、付加反応型の液状シリコーンの硬化剤であるオルガノハイドロジェンポリシロキサン(25℃での粘度が400mPa・s)100重量部と、前記主剤に加えたのと同じ材質、含有量の熱伝導性充填材および添加剤と、を混合して、硬化剤としての熱伝導性シリコーン組成物を調製した。
 試料2~試料7
 試料1の主剤としての熱伝導性シリコーン組成物に対して用いたセルロース(1)を、表1に示した添加剤に代えた以外は試料1の主剤としての熱伝導性シリコーン組成物と同様にして試料2~試料7の主剤としての熱伝導性シリコーン組成物を調製した。
 また、主剤と同じ材質の添加剤に代えた以外は試料1の硬化剤としての熱伝導性シリコーン組成物と同様にして試料2~試料7の硬化剤としての熱伝導性シリコーン組成物を調製した。
 試料8~試料17
 試料1の主剤としての熱伝導性シリコーン組成物に対して用いたセルロース(1)を、表2に示した添加剤や添加量に代えた以外は試料1の主剤としての熱伝導性シリコーン組成物と同様にして試料8~試料17の主剤としての熱伝導性シリコーン組成物を調製した。
 また、主剤と同じ材質の添加剤とその添加量に代えた以外は試料1の硬化剤としての熱伝導性シリコーン組成物と同様にして試料8~試料17の硬化剤としての熱伝導性シリコーン組成物を調製した。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

 表1および表2において、セルロース(2)としてはカルボキシメチルセルロース(平均粒径50μm)を、セルロース(3)としてはメチルセルロース(平均粒径50μm)を、シリカとしてはAEROSIL COK 84(日本アエロジル株式会社製)を、ポリブテンとしてはニッサンポリブテン10SH(日油株式会社製)を、テルペン樹脂としてはYSポリスターT100(ヤスハラケミカル株式会社製)を、多糖類(1)としては、でんぷん(和光純薬製)を、多糖類(2)としては、デキストリン水和物(和光純薬製)を、それぞれ用いた。
 セルロース(2)とセルロース(3)とは、ともに不定形や繊維状で、5~100μm程度の粉末が中心でありほとんどの粒子がこの範囲に分布していた。また、多糖類(1)と多糖類(2)とは、ともに不定形で、1~100μm程度の粉末が中心でありほとんどの粒子がこの範囲に分布していた。
 <試料の測定および評価>
 粘度の測定
 試料1~試料17の主剤としての熱伝導性シリコーン組成物に対して粘度計(BROOK FIELD製回転粘度計DV-E)(スピンドルNo.14の回転子を使用、回転速度5rpm、測定温度23℃)で粘度を測定した。その結果を表1、表2に示した。
 粘度変化の計算
 添加剤を含んだ試料1~試料6、試料8~試料17の主剤としての熱伝導性シリコーン組成物については、添加剤を含まない試料7の主剤として熱伝導性シリコーン組成物と比較し、粘度変化(各試料の主剤としての熱伝導性シリコーン組成物の粘度を試料7の主剤としての熱伝導性シリコーン組成物の粘度で除したときの値)を表1、表2に記載した。
 沈降試験およびその評価
 試料1~試料17の主剤としての熱伝導性シリコーン組成物をそれぞれ直径20mm、高さ120mmの円筒状の容器に100mmの高さまで充填して、60℃の環境下、静止状態で1000時間放置し、熱伝導性充填材の沈降状態を目視で観察した。
 そして、各試料の沈降状態を次に示す5段階に分けて評価した。この結果を表1、表2に示した。
  5:全く分離していない状態。
  4:分離していないが、表面が滑らかに見える状態。(表面の液状シリコーンの濃度が高まり、熱伝導性充填材の粒子感が少なくなった状態。)
  3:分離していないが、液状シリコーンの薄膜が表面を覆った状態。(表面に限れば熱伝導性充填材の粒子が無くなった状態。)
  2:傾けると液状シリコーンが流れ出る程度に分離している状態。(1mm以上5mm未満の厚みで液状シリコーンが分離した状態。)
  1:5mm以上の厚みで液状シリコーンが分離した状態。
 熱伝導率
 試料1~試料17の主剤としての熱伝導性シリコーン組成物に対して試料1~試料17のそれぞれの硬化剤としての熱伝導性シリコーン組成物を混合し十分に攪拌して、試料1~試料17の硬化型熱伝導性シリコーン組成物を調製した。そして、その各組成物を厚さ20mmのシート状に形成して熱伝導率測定用試験片を作製した。各試験片については、京都電子工業株式会社製迅速熱伝導率計QTM-500を用いて非定常法細線加熱法にて熱伝導率を測定した。その結果も表1、表2に示した。
 <考察>
 粘度および沈降防止効果について
 熱伝導性充填材の沈降防止作用が期待される各種添加剤を配合した試料1~試料6の主剤としての熱伝導性シリコーン組成物については、熱伝導性充填材が分離せず、いずれも沈降防止効果が確認された。一方添加剤を含有していない試料7では、熱伝導性充填材が液状シリコーンから分離して沈降した。
 添加剤を含有しない試料7の粘度は450Pa・sであった。この値を基準として、セルロース系化合物を添加した試料1~試料3の主剤としての熱伝導性シリコーン組成物では、いずれも450Pa・sよりも10%程度低い粘度(粘度変化が0.89~0.90)となった。一方、シリカを添加した試料4では、粘度が1152Pa・sとなり、粘度がかなり高まった。また、ポリブテン、テルペン樹脂についても、高粘度となった。
 この結果から、試料1~試料3で用いたセルロース系化合物は添加すると粘度低減をもたらす非増粘沈降防止材として機能していることが確認できた。
 次に、セルロース(1)の添加量を変えた試料1および試料8~試料14の主剤としての熱伝導性シリコーン組成物についてみると、添加量が0.5重量部の試料8および添加量が1.0重量部の試料9では、熱伝導性充填材が分離しており、沈降防止の効果が低かった。一方、添加量が2.0重量部の試料10では、表面に薄く液状シリコーン層があるように見えたが、分離しているとまではいえず、沈降防止効果が確認された。添加量が6.0重量部以上となる試料1および試料11~試料14では、液状シリコーンと熱伝導性充填材の分離は見られず、優れた沈降防止効果を発揮していた。
 上記セルロース(1)を添加した試料は、試料1、試料8~試料13で粘度低下が見られ、非増粘沈降防止材として機能していることがわかった。これらの中では、試料1、試料11および試料12の粘度が特に低かった。
 試料14では、添加剤を加えない場合と比較して僅かに粘度上昇していたため、増粘抑制沈降防止材として機能するものの非液状の非増粘沈降防止材としては機能していないことがわかった。試料14で試料13と比べて粘度上昇してしまった理由としては、液状シリコーンに対して、固形分となるセルロース系化合物の添加量が過剰となり、相対的に流動成分が少なくなり過ぎたことが原因であると思われる。
 また、試料16、試料17についても粘度低下が見られ、非増粘沈降防止材として機能していることがわかった。
 これらの結果より、セルロース系化合物等の多糖類の添加量は、2.0~50重量部とすることが好ましく、6.0~50重量部とすることがより好ましいことがわかる。
 シリカを添加した試料4と試料15については、まず添加剤の添加量が試料1と同じである試料4では、沈降防止効果はあるものの粘度がかなり増大した。一方、粘度を低下させるべくシリカの添加量を減少させた試料15では、粘度の減少も見られずシリカが増粘抑制沈降防止材として機能しないばかりか容器を傾けると液状シリコーンが流れ出る程度に熱伝導性充填材が分離しており、沈降防止効果が不十分だった。
 熱伝導率について
 試料1~試料12、試料16、試料17では、熱伝導率に差がなかった。試料13のセルロース(1)の添加量が50重量部のときに、熱伝導率がやや低下しており、試料14の80重量部では熱伝導率が大きく低下していた。試料14では、熱伝導性シリコーン組成物における単位体積当たりの熱伝導性充填材の割合が少ないことが理由であると考えられる。この結果から、セルロース系化合物等の多糖類の添加量は50重量部以下が好ましく、20重量部以下がさらに好ましいことがわかる。よって、セルロース系化合物等の多糖類の添加量は、6.0~20重量部とすることがさらに好ましいことがわかる。
 以上のように、上記シリコーン組成物は、添加量が多いと増粘する非溶解性充填材を高濃度に含有させても粘度上昇を抑えることができるので、非溶解性機能付与充填材としてさまざまな機能を発揮させる充填材を選択して含有させた流動性に優れたシリコーン組成物とすることができる。したがって、流動性や要求する機能が不十分であった熱伝導性グリスや導電性ペースト、シーリング材など種々の機能材料の代替品として利用することができる。

Claims (9)

  1.  液状シリコーンと、非溶解性機能付与充填材と、非液状の増粘抑制沈降防止材と、を含むシリコーン組成物。
  2.  液状シリコーン100重量部に対して非溶解性機能付与充填材300~2500重量部、増粘抑制沈降防止材2.0~50重量部を含有し、23℃での粘度が30~700Pa・Sである請求項1記載のシリコーン組成物。
  3.  増粘抑制沈降防止材が非増粘沈降防止材である請求項1または請求項2記載のシリコーン組成物。
  4.  非溶解性機能付与充填材は、その非溶解性機能付与充填材全体の体積に対して粒径が50μmを超える粒子を25~60体積%含有する請求項1~請求項3何れか1項記載のシリコーン組成物。
  5.  増粘抑制沈降防止材または非増粘沈降防止材が多糖類である請求項1~請求項4何れか1項記載のシリコーン組成物。
  6.  増粘抑制沈降防止材、非増粘沈降防止材、または多糖類がセルロース系化合物である請求項1~請求項5何れか1項記載のシリコーン組成物。
  7.  非溶解性機能付与充填材が熱伝導性充填材である請求項1~請求項6何れか1項記載のシリコーン組成物。
  8.  非溶解性機能付与充填材または熱伝導性充填材が、金属、金属酸化物、金属窒化物、金属水酸化物、金属炭化物、グラファイト、炭素繊維から選択される少なくとも一であり、シリコーン組成物が熱伝導性シリコーン組成物である請求項1~請求項7何れか1項記載のシリコーン組成物。
  9.  非溶解性機能付与充填材が、金属、金属酸化物、炭素化合物から選択される少なくとも一であり、シリコーン組成物が導電性シリコーン組成物である請求項1~請求項6何れか1項記載のシリコーン組成物。
PCT/JP2014/084417 2014-12-25 2014-12-25 シリコーン組成物 WO2016103424A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/523,567 US10329424B2 (en) 2014-12-25 2014-12-25 Silicone composition
CN201480082970.9A CN107207858B (zh) 2014-12-25 2014-12-25 硅组合物
PCT/JP2014/084417 WO2016103424A1 (ja) 2014-12-25 2014-12-25 シリコーン組成物
DE112014007281.8T DE112014007281B4 (de) 2014-12-25 2014-12-25 Silikonzusammensetzung
JP2016565779A JP6574967B2 (ja) 2014-12-25 2014-12-25 シリコーン組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084417 WO2016103424A1 (ja) 2014-12-25 2014-12-25 シリコーン組成物

Publications (1)

Publication Number Publication Date
WO2016103424A1 true WO2016103424A1 (ja) 2016-06-30

Family

ID=56149517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084417 WO2016103424A1 (ja) 2014-12-25 2014-12-25 シリコーン組成物

Country Status (5)

Country Link
US (1) US10329424B2 (ja)
JP (1) JP6574967B2 (ja)
CN (1) CN107207858B (ja)
DE (1) DE112014007281B4 (ja)
WO (1) WO2016103424A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10155894B2 (en) 2014-07-07 2018-12-18 Honeywell International Inc. Thermal interface material with ion scavenger
US10174433B2 (en) 2013-12-05 2019-01-08 Honeywell International Inc. Stannous methanesulfonate solution with adjusted pH
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
WO2020196584A1 (ja) 2019-03-28 2020-10-01 積水ポリマテック株式会社 シリコーン組成物および硬化型グリス
JP2020196892A (ja) * 2020-08-04 2020-12-10 積水化学工業株式会社 熱伝導シート
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
US11456229B2 (en) 2017-07-24 2022-09-27 Sekisui Chemical Co., Ltd. Thermally conductive sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959125A (ja) * 1995-08-24 1997-03-04 Kao Corp 化粧料用粉体及びこれを含有する化粧料
JP2000072646A (ja) * 1998-08-27 2000-03-07 Chiba Flour Milling Co Ltd 油中水型乳化化粧料
JP2004091743A (ja) * 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk 熱伝導性グリース
JP2005255968A (ja) * 2004-03-09 2005-09-22 Shindo Seni Kogyo Kk 樹脂皮膜を有する付加反応硬化型シリコーンスポンジゴム成形体およびその製造方法
JP2009286855A (ja) * 2008-05-27 2009-12-10 Dow Corning Toray Co Ltd 熱伝導性シリコーン組成物および電子装置
JP2011140566A (ja) * 2010-01-07 2011-07-21 Dow Corning Toray Co Ltd 熱伝導性シリコーングリース組成物
JP2012007057A (ja) * 2010-06-24 2012-01-12 Dow Corning Toray Co Ltd 熱伝導性シリコーングリース組成物
JP2014502648A (ja) * 2010-12-13 2014-02-03 ブルースター シリコンズ フランス 特に歯科印象採得を目的として使用可能なシリコーンエラストマー材料
JP2014105283A (ja) * 2012-11-28 2014-06-09 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361716B1 (en) * 2000-07-20 2002-03-26 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
JP2002226819A (ja) 2001-01-30 2002-08-14 Dainippon Ink & Chem Inc 接着剤用球形ポリエステル樹脂粒子分散液
JP2005330426A (ja) 2004-05-21 2005-12-02 Shin Etsu Chem Co Ltd 放熱用シリコーングリース組成物
GB0723384D0 (en) * 2007-11-29 2008-01-09 Dow Corning Filled rubber compositions
JP2009221311A (ja) 2008-03-14 2009-10-01 Momentive Performance Materials Inc 熱伝導性グリース組成物
US20100239871A1 (en) * 2008-12-19 2010-09-23 Vorbeck Materials Corp. One-part polysiloxane inks and coatings and method of adhering the same to a substrate
US20120061625A1 (en) * 2010-09-09 2012-03-15 Eckert Karissa L Transparent conductive films, compositions, articles, and methods
JP2012052137A (ja) 2011-11-28 2012-03-15 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
US20150249167A1 (en) * 2012-10-15 2015-09-03 Dow Global Technologies Llc Conductive composition
JP5768824B2 (ja) * 2013-03-06 2015-08-26 信越化学工業株式会社 発泡性シリコーンゴム組成物及びシリコーンゴムスポンジ
CN103613929B (zh) * 2013-11-06 2016-04-06 安徽江威精密制造有限公司 一种复合橡胶电容器密封垫及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959125A (ja) * 1995-08-24 1997-03-04 Kao Corp 化粧料用粉体及びこれを含有する化粧料
JP2000072646A (ja) * 1998-08-27 2000-03-07 Chiba Flour Milling Co Ltd 油中水型乳化化粧料
JP2004091743A (ja) * 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk 熱伝導性グリース
JP2005255968A (ja) * 2004-03-09 2005-09-22 Shindo Seni Kogyo Kk 樹脂皮膜を有する付加反応硬化型シリコーンスポンジゴム成形体およびその製造方法
JP2009286855A (ja) * 2008-05-27 2009-12-10 Dow Corning Toray Co Ltd 熱伝導性シリコーン組成物および電子装置
JP2011140566A (ja) * 2010-01-07 2011-07-21 Dow Corning Toray Co Ltd 熱伝導性シリコーングリース組成物
JP2012007057A (ja) * 2010-06-24 2012-01-12 Dow Corning Toray Co Ltd 熱伝導性シリコーングリース組成物
JP2014502648A (ja) * 2010-12-13 2014-02-03 ブルースター シリコンズ フランス 特に歯科印象採得を目的として使用可能なシリコーンエラストマー材料
JP2014105283A (ja) * 2012-11-28 2014-06-09 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10174433B2 (en) 2013-12-05 2019-01-08 Honeywell International Inc. Stannous methanesulfonate solution with adjusted pH
US10428257B2 (en) 2014-07-07 2019-10-01 Honeywell International Inc. Thermal interface material with ion scavenger
US10155894B2 (en) 2014-07-07 2018-12-18 Honeywell International Inc. Thermal interface material with ion scavenger
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11456229B2 (en) 2017-07-24 2022-09-27 Sekisui Chemical Co., Ltd. Thermally conductive sheet
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
WO2020196584A1 (ja) 2019-03-28 2020-10-01 積水ポリマテック株式会社 シリコーン組成物および硬化型グリス
JP7456572B2 (ja) 2019-03-28 2024-03-27 積水ポリマテック株式会社 シリコーン組成物および硬化型グリス
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
JP2020196892A (ja) * 2020-08-04 2020-12-10 積水化学工業株式会社 熱伝導シート
JP7278998B2 (ja) 2020-08-04 2023-05-22 積水化学工業株式会社 熱伝導シート

Also Published As

Publication number Publication date
US20170313881A1 (en) 2017-11-02
CN107207858B (zh) 2021-02-05
DE112014007281T5 (de) 2017-10-12
US10329424B2 (en) 2019-06-25
JPWO2016103424A1 (ja) 2017-10-05
JP6574967B2 (ja) 2019-09-18
DE112014007281B4 (de) 2022-07-07
CN107207858A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6574967B2 (ja) シリコーン組成物
JP4933094B2 (ja) 熱伝導性シリコーングリース組成物
KR101357514B1 (ko) 방열재와 이를 이용한 반도체 장치
JP4993135B2 (ja) 熱伝導性シリコーン組成物
EP2257616B1 (en) Thermally conductive silicone grease composition
KR102176435B1 (ko) 열전도성 실리콘 조성물
JP2009096961A (ja) リワーク性に優れた熱伝導性シリコーングリース組成物
CN110709474B (zh) 导热性聚有机硅氧烷组合物
EP3575363B1 (en) Low heat resistance silicone composition
TWI622624B (zh) Polyoxonium composition and method for producing thermally conductive polyphosphonium composition
JP2008222776A (ja) 熱伝導性シリコーングリース組成物
JP2018188559A (ja) 熱伝導性シリコーン組成物
JP7276493B2 (ja) 熱伝導性シリコーン組成物及びその製造方法
WO2020241054A1 (ja) 熱伝導性シリコーン組成物、半導体装置及びその製造方法
JP2016169281A (ja) 複合フィラーおよびこれを含む樹脂組成物
JP2012052137A (ja) 熱伝導性シリコーングリース組成物
EP4095187A1 (en) Thermally conductive silicone composition and cured product thereof
EP3950850A1 (en) Heat-conducting composition and heat-conducting member
WO2021241097A1 (ja) 熱伝導性付加硬化型シリコーン組成物
TW201940596A (zh) 矽酮組成物
JP2021098768A (ja) 熱伝導性シリコーン組成物、半導体装置及びその製造方法
WO2023276846A1 (ja) 熱伝導性シリコーン組成物、半導体装置及びその製造方法
WO2023162636A1 (ja) 熱伝導性シリコーン組成物
JP2010275450A (ja) 熱伝導性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523567

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016565779

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014007281

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909031

Country of ref document: EP

Kind code of ref document: A1