WO2016101619A1 - Oled像素排列结构及显示装置 - Google Patents

Oled像素排列结构及显示装置 Download PDF

Info

Publication number
WO2016101619A1
WO2016101619A1 PCT/CN2015/085423 CN2015085423W WO2016101619A1 WO 2016101619 A1 WO2016101619 A1 WO 2016101619A1 CN 2015085423 W CN2015085423 W CN 2015085423W WO 2016101619 A1 WO2016101619 A1 WO 2016101619A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
arrangement structure
oled
Prior art date
Application number
PCT/CN2015/085423
Other languages
English (en)
French (fr)
Inventor
洪执华
蔡晓义
柯贤军
苏君海
黄亚清
李建华
Original Assignee
信利(惠州)智能显示有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信利(惠州)智能显示有限公司 filed Critical 信利(惠州)智能显示有限公司
Priority to US15/538,364 priority Critical patent/US10062737B2/en
Publication of WO2016101619A1 publication Critical patent/WO2016101619A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • the present invention relates to the field of semiconductor manufacturing technology, and in particular, to an OLED pixel arrangement structure and a display device.
  • OLED Organic Light-Emitting diode displays
  • red (R), green (G), and blue (B) three primary color pixels are juxtaposed (side-by-side) Pixelation) is the most mature technology in development.
  • three sub-pixels of R, G, and B are alternately arranged in a plane, and three adjacent sub-pixels constitute a pixel unit that can emit any color, that is, a basic image unit, and the pixel units are repeatedly arranged in a plane to form a display screen.
  • a conventional pixel arrangement structure is to group sub-pixels of the same color, so that one FMM opening can simultaneously evaporate two, three or four sub-pixels, but
  • a serious disadvantage is that the distance between the sub-pixels is increased, and the graininess is severe when the monochrome is displayed.
  • Another existing pixel arrangement structure is to form a pixel by red (R) + green (G) or blue (B) + green (G), and achieve the purpose of simulating a high PPI by sharing two sub-pixels of R and B.
  • the true color display effect of the pixel arrangement structure is poor.
  • An OLED pixel arrangement structure includes a plurality of first sub-pixels, a plurality of second sub-pixels, and a plurality of third sub-pixels, wherein adjacent four first sub-pixels and four second sub-pixels are spaced and surrounded Around a third sub-pixel, a center of the adjacent four first sub-pixels and a center of four second sub-pixels constitute a vertex of a virtual octagonal cell, the virtual octagonal cell having At least two orthogonal symmetry axes, the first sub-pixel forming the virtual octagon cell, the second sub-pixel, and the third located in the virtual octagon cell Among the sub-pixels, the first sub-pixel, the second sub-pixel, and a portion of the third sub-pixel located on one side of one of the orthogonal symmetry axes of the virtual octagon form a basic pixel unit; the third sub-pixel The center of the coincides with the center of the virtual octagon cell.
  • a display device comprising the above-described OLED pixel arrangement structure.
  • the OLED pixel arrangement structure and the display device are repeatedly arranged according to the structure of the virtual octagon cells by the plurality of first sub-pixels, the second sub-pixels, and the third sub-pixel, and are divided by half of the virtual octagon cells.
  • the basic pixel unit breaks through the limitations of the FMM fabrication process and the coating process, effectively improves the PPI value and resolution of the OLED display, and improves the image quality and effect of the OLED display.
  • FIG. 1 is a schematic structural view of an OLED pixel arrangement structure of a first embodiment
  • FIG. 2 is a schematic structural view of an embodiment of a basic pixel unit of FIG. 1;
  • FIG. 3 is a schematic structural view of another embodiment of the basic pixel unit of FIG. 1;
  • FIG. 4 is a schematic structural view of an OLED pixel arrangement structure of a second embodiment
  • FIG. 5 is a schematic structural view of an OLED pixel arrangement structure of a third embodiment.
  • the OLED pixel arrangement structure of the first embodiment includes a plurality of first sub-pixels 100 , a plurality of second sub-pixels 101 , and a plurality of third sub-pixels 102 .
  • the adjacent four first sub-pixels 100 and the four second sub-pixels 101 are spaced apart and surround each other around a third sub-pixel 102, and the centers of the four adjacent first sub-pixels 100 and four second
  • the center of the sub-pixel 101 constitutes a vertex of a virtual octagonal cell OC, and the virtual octagonal cell OC has at least two orthogonal symmetry axes.
  • the virtual octagon is located in the first sub-pixel 100, the second sub-pixel 101 forming the virtual octagonal cell OC, and the third sub-pixel 102 located in the virtual octagonal cell OC.
  • the first sub-pixel 100, the second sub-pixel 101, and a portion of the third sub-pixel 102 on one side of the orthogonal symmetry axis of the cell OC form a basic pixel unit.
  • the center of the third sub-pixel 102 coincides with the center of the virtual octagonal cell OC.
  • first sub-pixel 100 is spaced apart from the third sub-pixel 102, and the center of the first sub-pixel 100 is located at the first vertex P1 of the virtual octagonal cell OC.
  • the second sub-pixel 101 is spaced apart from the first sub-pixel 100 and the third sub-pixel 102, and the center of the second sub-pixel 101 is located at the second vertex P2 of the virtual octagonal cell OC, and the second vertex P2 is first The vertex P1 is adjacent.
  • the breakthrough can be achieved.
  • the limitation of the FMM manufacturing process and the coating process effectively improves the PPI value and resolution of the OLED display, and improves the image quality and effect of the OLED display.
  • the four first sub-pixels 100 and the four second sub-pixels 101 forming the virtual octagonal cell OC are alternately arranged in sequence.
  • the four first sub-pixels 100 and the four second sub-pixels 101 forming the virtual octagonal cell OC may also be distributed in other structures, for example, each of the two first sub-pixels 100 is a group.
  • Each of the two second sub-pixels 101 is a group, and the two sets of the first sub-pixels 100 and the two sets of the second sub-pixels 101 are alternately arranged.
  • the OLED pixel arrangement structure is formed by the first sub-pixel 100, the second sub-pixel 101, and the third sub-pixel 102, wherein the plurality of the first sub-pixels 100 and the plurality of second sub-pixels
  • the pixel 101 and the plurality of third sub-pixels 102 constitute a plurality of basic pixel units, the basic pixel unit being a single pixel repeating unit, and the basic pixel unit can be drawn by a virtual rectangular frame RE.
  • Each basic pixel unit includes two 1/2 first sub-pixels 100, two 1/2 second sub-pixels 101, and one 1/2 third sub-pixel 102.
  • the first sub-pixel 100 and the second sub-pixel 101 of the two adjacent basic pixel units sharing the same third sub-pixel 102 are centrally connected to form a virtual octagon cell OC, wherein the first sub-pixel 100 and the center of the second sub-pixel 101 respectively coincide with the first vertex P1 and the second vertex P2 of the virtual octagon cell, and the first sub-pixel 100 and the second sub-pixel 101 are alternately and repeatedly arranged; the third sub- The center of the pixel 102 coincides with the center of the virtual octagonal cell OC.
  • first sub-pixel 100 and the second sub-pixel 101 of the adjacent basic pixel units sharing the same third sub-pixel 102 are distributed along the circumference of the shared third sub-pixel 102, and the first sub-pixel 100 is And the second sub-pixels 101 are alternately arranged.
  • the first vertices P1, the second vertices P2, and the nine sub-pixels placed in the virtual octagonal cell OC constitute a repeating arrangement of sub-pixel groups that are repeatedly arranged in a loop plane of the display device. Since the first vertices P1 of the virtual octagon cells OC, the first sub-pixels 100 at the second vertices P2, and the second sub-pixels 101 are shared by two virtual octagon cells, the calculation is performed.
  • each virtual octagon cell OC includes 4 ⁇ 1/2, that is, two first The sub-pixel and the two second sub-pixels, the third sub-pixel 102 of each virtual octagon cell OC center is calculated as one, that is, each virtual octagon cell OC includes one third sub-pixel.
  • each virtual octagon cell OC includes a first sub-pixel, a second sub-pixel, and a third sub-pixel in a ratio of 2:2:1, that is, the first sub-pixel and the second sub-pixel in the display device. The ratio of the number of pixels to the third sub-pixel is 2:2:1.
  • the virtual octagon cell OC is a regular octagon.
  • the border of the virtual rectangular frame RE passes through the center of five sub-pixels, and includes half of each sub-pixel of five sub-pixels, that is, the frame of the virtual rectangular frame RE passes through a pair respectively.
  • the first sub-pixel 100, the second sub-pixel 101, and the third sub-pixel 102 may be any one of red, green, and blue illuminating colors, and the first sub-pixel 100 and the second sub-pixel
  • the illuminating colors of the 101 and the third sub-pixels 102 are all different.
  • blue luminescent materials have the lowest luminous efficiency and longevity
  • red materials have higher efficiency and lifetime than blue
  • green materials have the highest efficiency and longevity. Therefore, when designing pixel area and arrangement, it is possible to change between sub-pixels.
  • the relative area balances the effects of material factors; the blue illuminating sub-pixel has the largest area, followed by red and green.
  • FIG. 2 is a schematic structural diagram of an embodiment of the basic pixel unit of FIG.
  • the first sub-pixel 100 is a red sub-pixel R
  • the second sub-pixel 101 is a green sub-pixel G
  • the third sub-pixel 102 is a blue sub-pixel B. That is, in the color arrangement example, each basic pixel unit includes one red sub-pixel, one green sub-pixel, and 1/2 blue sub-pixel.
  • FIG. 3 is a schematic structural diagram of another embodiment of the basic pixel unit of FIG. 1.
  • the first sub-pixel 100 is a red sub-pixel R
  • the second sub-pixel 101 is a green sub-pixel B
  • the third sub-pixel 102 is a blue sub-pixel G. That is, in the color arrangement example, each basic pixel unit includes one red sub-pixel, one blue sub-pixel, and 1/2 green sub-pixel.
  • the first sub-pixel 100, the second sub-pixel 101, and the third sub-pixel 102 are all square, and the first sub-pixel 100, the second sub-pixel 101, and the third are not considered.
  • the metal mask, the pixel-divided insulating layer, the precision of the coating, and other factors, as well as the material luminous efficiency, driving design and other factors will restrict the arrangement of pixels, shape and size, and sub-pixels.
  • the spacing between the designs will restrict the arrangement of pixels, shape and size, and sub-pixels.
  • FIG. 4 is a schematic structural diagram of an OLED pixel arrangement structure according to a second embodiment. Compared with the first embodiment of the present invention, some factors affecting the pixel arrangement, the shape and the distance between pixels, and the first sub-pixel 100 and the second sub-pixel are considered in the present embodiment.
  • 101 is a symmetrical pentagon, and the symmetry axis of the pentagon coincides with the edge of the virtual octagon cell OC, and the first sub-pixel 100 and the second sub-pixel 101 are alternately arranged.
  • the shapes of the first sub-pixel 100, the second sub-pixel 101, and the third sub-pixel 102 may also be polygons such as a triangle, a quadrangle, a hexagon, a heptagon, an octagon, and the like. .
  • the minimum spacing between the first sub-pixel 100 and the second sub-pixel 101 is L3, and the minimum spacing between the first sub-pixel 100 and the third sub-pixel 102 is L1.
  • the first sub-pixel 100, the second sub-pixel 101, and the third sub-pixel 102 may be any one of red, green, and blue illuminating colors, and the first sub-pixel 100, the second sub-pixel 101, and the third The color of the sub-pixels 102 is different.
  • the first sub-pixel 100 is a red sub-pixel R
  • the second sub-pixel 101 is a green sub-pixel G
  • the third sub-pixel 102 is a blue sub-pixel B. That is, in the color arrangement example, each basic pixel unit includes one red sub-pixel, one green sub-pixel, and 1/2 blue sub-pixel.
  • the area sizes of the first sub-pixel, the second sub-pixel, and the third sub-pixel may be the same or different depending on the actual situation.
  • the area of the third sub-pixel 102 (blue sub-pixel B) located at the center of the virtual octagon cell OC is the largest, and the area of the first sub-pixel 100 (the red sub-pixel R) is second.
  • the area of the second sub-pixel (green sub-pixel G) is the smallest.
  • FIG. 5 is a schematic structural diagram of an OLED pixel arrangement structure according to a third embodiment.
  • the virtual octagon cell OC is a non-equal octagon having two orthogonal symmetry axes, and the first sub-pixel 100,
  • the centers of the two sub-pixels 101 respectively coincide with the vertices of the virtual octagonal cells OC
  • the center of the third sub-pixels 102 coincides with the center of the virtual octagon cells OC
  • the second sub-pixels 101 are alternately placed at the eight vertices of the virtual octagonal cell OC.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel are all rectangular.
  • the first sub-pixel 100, the second sub-pixel 101, and the third sub-pixel 102 may be any one of red, green, and blue illuminating colors, and the first sub-pixel 100, the second sub-pixel 101, and the third The color of the sub-pixels 102 is different.
  • the first sub-pixel 100 is a red sub-pixel R
  • the second sub-pixel 101 is a green sub-pixel G
  • the third sub-pixel 102 is a blue sub-pixel B. That is, in the color arrangement example, each basic pixel unit includes one red sub-pixel, one green sub-pixel, and 1/2 blue sub-pixel.
  • an embodiment further provides a display device including the above OLED pixel arrangement structure.
  • the OLED pixel arrangement structure and the display device of the embodiment are repeatedly arranged according to the structure of the virtual octagon cells by the plurality of first sub-pixels, the second sub-pixels, and the third sub-pixels, and according to the virtual octagon cells
  • Half of the basic pixel unit breaks through the limitations of the FMM fabrication process and coating process, effectively improving the PPI value and resolution of the OLED display, and improving the image quality and effect of the OLED display.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种OLED像素排列结构,包括多个第一子像素(100)、多个第二子像素(101)及多个第三子像素(102),其中相邻的四个第一子像素(100)和四个第二子像素(101)间隔排列且环绕在一个第三子像素(102)周围,相邻的四个第一子像素(100)的中心和四个第二子像素(101)的中心构成一个虚拟八边形单元格(OC)的顶点,在形成虚拟八边形单元格(OC)的第一子像素(100)、第二子像素(101),以及位于该虚拟八边形单元格(OC)内的第三子像素(102)之中,位于该虚拟八边形的其中一条正交对称轴一侧的第一子像素(100)、第二子像素(101)及部分第三子像素(102)形成一基本像素单元(RE)。

Description

OLED像素排列结构及显示装置
【技术领域】
本发明涉及半导体制造技术领域,特别涉及一种OLED像素排列结构及显示装置。
【背景技术】
近年来,有机电致发光二极管显示器(Organic Light-Emitting Diodes/Display,OLED)成为新兴的显示设备,广泛应用于智能手机、电视、移动可穿戴设备、微显示器上,这是因为OLED显示器具有主动发光,高响应速度(1μm),广色域,高对比度,低功耗,以及轻薄透明等技术优势,完美地符合移动互联网社会对便携性,可弯曲折叠的需求,OLED被誉为替代LCD的梦幻显示技术。
在OLED全彩化方法中,红(R)、绿(G)、蓝(B)三原色像素并置(side-by-side Pixelation)是发展最成熟的技术。一般地,R、G、B三种子像素在平面内交替重复排列,相邻三个子像素构成一个可发射任何颜色的像素单元,即基本的图像单元,像素单元在平面内重复排列构成显示屏幕。像素的尺寸越小,显示器的分辨率,或者PPI(Pixels Per Inch,每英寸所拥有的像素)越高,显示的画面越清晰细腻。
目前,在器件制作方面,形成OLED有机层最成熟的技术是真空蒸镀,有机小分子在蒸发源中受热,由聚集态变成气态,沉积在位于正上面的基板上。紧贴着基板下侧的是金属掩膜板(Fine Metal Mask,FMM),FMM上有大量网孔构成的图案,以使在蒸镀某种颜色子像素时,遮挡住不需要镀膜的其他子像素和像素之间的非镀膜区,只在需要镀膜的子像素区域镀上薄膜。而当今人们对显示设备分辨率的要求越来越高,这就要求像素尺寸越来越小,但是,主要受FMM制作工艺和镀膜工艺的限制,OLED传统的R、G、B交替重复排列结构的PPI值已经接近了极限。
为了解决FMM制造工艺的限制,现有的一种像素排列结构是把相同颜色的子像素集中在一起,这样一个FMM开孔就可以同时蒸镀2个、3个或者4个子像素,但由此带来严重缺点是由于子像素之间距离增大,显示单色时颗粒感严重。
现有的另一像素排列结构是将红(R)+绿(G)或蓝(B)+绿(G)构成一个像素,通过共用R、B两种子像素来达到模拟高PPI的目的,然而该像素排列结构的真实彩色显示效果较差。
【发明内容】
基于此,有必要提供一种提高OLED显示的图像质量及效果的OLED像素排列结构及显示装置。
一种OLED像素排列结构,包括多个第一子像素、多个第二子像素及多个第三子像素,其中相邻的四个第一子像素和四个第二子像素间隔排列且环绕在一个第三子像素周围,所述相邻的四个第一子像素的中心和四个第二子像素的中心构成一个虚拟八边形单元格的顶点,所述虚拟八边形单元格具有至少两条正交对称轴,在形成所述虚拟八边形单元格的所述第一子像素、所述第二子像素,以及位于该所述虚拟八边形单元格内的所述第三子像素之中,位于该所述虚拟八边形的其中一条正交对称轴一侧的第一子像素、第二子像素及部分第三子像素形成一基本像素单元;所述第三子像素的中心与所述虚拟八边形单元格的中心重合。
一种显示装置,所述显示装置包括上述的OLED像素排列结构。
上述OLED像素排列结构及显示装置通过将多个第一子像素、第二子像素及第三子像素按照虚拟八边形单元格的结构进行重复排列,以及按照虚拟八边形单元格的一半划分基本像素单元,突破了FMM制作工艺及镀膜工艺的限制,有效提升了OLED显示的PPI值及分辨率,提高了OLED显示的图像质量及效果。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为第一实施例OLED像素排列结构的结构示意图;
图2为图1中基本像素单元一实施例的结构示意图;
图3为图1中基本像素单元另一实施例的结构示意图;
图4为第二实施例OLED像素排列结构的结构示意图;
图5为第三实施例OLED像素排列结构的结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,第一实施例的OLED像素排列结构包括多个第一子像素100、多个第二子像素101及多个第三子像素102。其中,相邻的四个第一子像素100和四个第二子像素101间隔排列且环绕在一个第三子像素102周围,相邻的四个第一子像素100的中心和四个第二子像素101的中心构成一个虚拟八边形单元格OC的顶点,虚拟八边形单元格OC具有至少两条正交对称轴。并且,在形成虚拟八边形单元格OC的第一子像素100、第二子像素101,以及位于该虚拟八边形单元格OC内的第三子像素102之中,位于该虚拟八边形单元格OC的其中一条正交对称轴一侧的第一子像素100、第二子像素101及部分第三子像素102形成一基本像素单元。并且,第三子像素102的中心与虚拟八边形单元格OC的中心重合。也可以理解为,第一子像素100与第三子像素102隔开,且第一子像素100的中心位于虚拟八边形单元格OC的第一顶点P1处。第二子像素101与第一子像素100及第三子像素102隔开,且第二子像素101的中心位于虚拟八边形单元格OC的第二顶点P2处,第二顶点P2与第一顶点P1相邻。
这样,通过将多个第一子像素、第二子像素及第三子像素按照虚拟八边形单元格的结构进行重复排列,以及按照虚拟八边形单元格的一半划分基本像素单元,能突破FMM制作工艺及镀膜工艺的限制,有效提升OLED显示的PPI值及分辨率,提高OLED显示的图像质量及效果。
本实施例中,形成虚拟八边形单元格OC的四个第一子像素100及四个第二子像素101依次交替分布。其他实施例中,形成虚拟八边形单元格OC的四个第一子像素100及四个第二子像素101也可以呈其他结构分布,例如,每两个第一子像素100为一组,每两个第二子像素101为一组,两组第一子像素100及两组第二子像素101交替设置。
本实施例中,所述OLED像素排列结构由第一子像素100、第二子像素101及第三子像素102排列而成,其中,多个所述第一子像素100、多个第二子像素101及多个第三子像素102组成多个基本像素单元,所述基本像素单元为单个像素重复单元,基本像素单元可通过一虚拟矩形框RE画出。每一基本像素单元包括两个1/2第一子像素100、两个1/2第二子像素101及一个1/2第三子像素102。两个相邻的共用同一第三子像素102的基本像素单元中的第一子像素100及第二子像素101中心连接起来构成一虚拟八边形单元格OC,其中,所述第一子像素100及第二子像素101的中心分别与虚拟八边形单元格的第一顶点P1、第二顶点P2重合,并且第一子像素100及第二子像素101交替重复排列;所述第三子像素102的中心与虚拟八边形单元格OC的中心重合。也可以理解为,相邻的共用同一第三子像素102的基本像素单元中的第一子像素100及第二子像素101沿共用的第三子像素102的周缘分布,且第一子像素100及第二子像素101交错设置。
放置于所述虚拟八边形单元格OC的第一顶点P1、第二顶点P2及中心的9个子像素构成重复排列的子像素组在显示装置的像素平面重复循环排列。由于所述虚拟八边形单元格OC的第一顶点P1、第二顶点P2处的第一子像素100、第二子像素101素被两个虚拟八边形单元格共有,因此,在计算子像素个数时,该第一子像素100、第二子像素101分别只可作为1/2个,因此,每一虚拟八边形单元格OC包含4×1/2个,即2个第一子像素及2个第二子像素,每一虚拟八边形单元格OC中心的第三子像素102计算成1个,即每一虚拟八边形单元格OC包含1个第三子像素。综上,每一虚拟八边形单元格OC包含的第一子像素、第二子像素及第三子像素的数量比为2:2:1,即显示装置中第一子像素、第二子像素及第三子像素的数量比为2:2:1。
本实施例中,所述虚拟八边形单元格OC为正八边形。
请参阅图1至图3,所述虚拟矩形框RE的边框穿过5个子像素的中心,并包含5个子像素的每个子像素的一半,即所述虚拟矩形框RE的边框分别穿过一对第一子像素100、一对第二子像素101及一个第三子像素102;考虑到虚拟矩形框RE中每一第一子像素100、第二子像素101及第三子像素102均为两个虚拟矩形框共用,因此,每一虚拟矩形框RE分别包含2×1/2=1个第一子像素、第二子像素,即1个第一子像素、1个第二子像素,以及1/2个第三子像素。因此,显示装置的基本像素单元由2.5个子像素构成,也可理解成第三子像素被两个基本像素单元共用。
根据实际情况,所述第一子像素100、第二子像素101及第三子像素102可以是红、绿、蓝发光颜色的任意一种,并且所述第一子像素100、第二子像素101及第三子像素102的发光颜色均不相同。一般地,蓝色发光材料的发光效率和寿命最低,红色材料的效率和寿命比蓝色高,绿色材料的效率和寿命最高,因此,在设计像素面积和排列时,可通过改变子像素之间的相对面积来平衡材料因素带来的影响;蓝色发光子像素的面积最大,红色次之,绿色最小。
请参阅图2,图2为图1中基本像素单元一实施例的结构示意图。本实施例中,所述第一子像素100为红色子像素R,所述第二子像素101为绿色子像素G,所述第三子像素102为蓝色子像素B。即在该颜色排列实例中,每一基本像素单元包含1个红色子像素,1个绿色子像素及1/2个蓝色子像素。
请参阅图3,图3为图1中基本像素单元另一实施例的结构示意图。本实施例中,所述第一子像素100为红色子像素R,所述第二子像素101为绿色子像素B,所述第三子像素102为蓝色子像素G。即在该颜色排列实例中,每一基本像素单元包含1个红色子像素,1个蓝色子像素及1/2个绿色子像素。
需要说明的是,上述实施例中,所述第一子像素100、第二子像素101及第三子像素102均为正方形,且未考虑第一子像素100、第二子像素101及第三子像素102三者之间的间距以及单个子像素的面积大小。然而,在实际显示面板的制作中,金属掩膜板、像素分割的绝缘层、镀膜的精度等设备工艺,以及材料发光效率、驱动设计等因素,都会制约像素的排列,形状大小,以及子像素之间的间距设计。
请参阅图4,图4为第二实施例OLED像素排列结构的结构示意图。相比于本发明的第一实施例,本实施例中考虑了上述提到的某些影响像素排列、形状大小,以及像素之间距离的因素,所述第一子像素100及第二子像素101均为对称的五边形,且所述五边形的对称轴与虚拟八边形单元格OC的边重合,所述第一子像素100及第二子像素101交替间隔排列。根据实际情况,可以理解,所述第一子像素100、第二子像素101及第三子像素102的形状还可为三边形、四边形、六边形、七边形、八边形等多边形。
本实施例中,所述第一子像素100与第二子像素101之间的最小间距为L3,所述第一子像素100与第三子像素102之间的最小间距为L1,所述第二子像素101与第三子像素102之间的最小间距为L2,且L1=L2=L3,即本实施例中三个子像素两两之间的最小间距相等。需要指出的是,根据实际情况,可以理解,其他实施例中,还包括其它任意的三个子像素之间的间距关系,比如L1>L2=L3。
所述第一子像素100、第二子像素101及第三子像素102可以是红、绿、蓝发光颜色的任意一种,且所述第一子像素100、第二子像素101及第三子像素102的发光颜色均不相同。本实施例中,所述第一子像素100为红色子像素R,所述第二子像素101为绿色子像素G,所述第三子像素102为蓝色子像素B。即在该颜色排列实例中,每一基本像素单元包含1个红色子像素,1个绿色子像素及1/2个蓝色子像素。
根据实际情况,第一子像素、第二子像素及第三子像素的面积大小可以相同,也可以不同。本实施例中,位于所述虚拟八边形单元格OC中心的第三子像素102(蓝色子像素B)的面积最大,所述第一子像素100(红色子像素R)的面积次之,所述第二子像素(绿色子像素G)的面积最小。
请参阅图5,图5为第三实施例OLED像素排列结构的结构示意图。
相比于本发明的第一实施例,本实施例中,所述虚拟八边形单元格OC为具有两条正交对称轴的非等边八边形,所述第一子像素100、第二子像素101的中心分别与虚拟八边形单元格OC的顶点重合,所述第三子像素102的中心与虚拟八边形单元格OC的中心重合,四个第一子像素100、及四个第二子像素101交替放置在所述虚拟八边形单元格OC的8个顶点。并且第一子像素、第二子像素及第三子像素均为矩形。
所述第一子像素100、第二子像素101及第三子像素102可以是红、绿、蓝发光颜色的任意一种,且所述第一子像素100、第二子像素101及第三子像素102的发光颜色均不相同。本实施例中,所述第一子像素100为红色子像素R,所述第二子像素101为绿色子像素G,所述第三子像素102为蓝色子像素B。即在该颜色排列实例中,每一基本像素单元包含1个红色子像素,1个绿色子像素及1/2个蓝色子像素。
另外,一实施例还提供一种显示装置,所述显示装置包括上述OLED像素排列结构。
本实施例的OLED像素排列结构及显示装置通过将多个第一子像素、第二子像素及第三子像素按照虚拟八边形单元格的结构进行重复排列,以及按照虚拟八边形单元格的一半划分基本像素单元,突破了FMM制作工艺及镀膜工艺的限制,有效提升了OLED显示的PPI值及分辨率,提高了OLED显示的图像质量及效果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
这里本发明的描述和应用是说明性的,并非想将本发明的范围限制在上述实施例中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明的精神或本质特征的情况下,本发明可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本发明范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。

Claims (10)

  1. 一种OLED像素排列结构,其特征在于,包括多个第一子像素、多个第二子像素及多个第三子像素,
    其中相邻的四个第一子像素和四个第二子像素间隔排列且环绕在一个第三子像素周围,所述相邻的四个第一子像素的中心和四个第二子像素的中心构成一个虚拟八边形单元格的顶点,所述虚拟八边形单元格具有至少两条正交对称轴,在形成所述虚拟八边形单元格的所述第一子像素、所述第二子像素,以及位于该所述虚拟八边形单元格内的所述第三子像素之中,位于该所述虚拟八边形单元格的其中一条正交对称轴一侧的所述第一子像素、所述第二子像素及部分所述第三子像素形成一基本像素单元;
    所述第三子像素的中心与所述虚拟八边形单元格的中心重合。
  2. 根据权利要求1所述的OLED像素排列结构,其特征在于,每一所述虚拟八边形单元格包含的所述第一子像素、所述第二子像素及所述第三子像素的数量比为2:2:1。
  3. 根据权利要求2所述的OLED像素排列结构,其特征在于,每一所述基本像素单元包含1个所述第一子像素、1个所述第二子像素及1/2个所述第三子像素。
  4. 根据权利要求1所述的OLED像素排列结构,其特征在于,所述虚拟八边形单元格为正八边形或具有两条正交对称轴的非等边八边形。
  5. 根据权利要求1所述的OLED像素排列结构,其特征在于,所述第一子像素、所述第二子像素及所述第三子像素的形状为多边形。
  6. 根据权利要求5所述的OLED像素排列结构,其特征在于,所述第一子像素、所述第二子像素及所述第三子像素均为正方形。
  7. 根据权利要求1~6任一项所述的OLED像素排列结构,其特征在于,所述第一子像素、所述第二子像素及所述第三子像素是红、绿、蓝发光颜色的任意一种,且所述第一子像素、所述第二子像素及所述第三子像素的发光颜色均不相同。
  8. 根据权利要求7所述的OLED像素排列结构,其特征在于,所述第一子像素为红色子像素,且所述第一子像素的面积大于第二子像素的面积;
    所述第二子像素为绿色子像素;
    所述第三子像素为蓝色子像素,且所述第三子像素的面积大于第一子像素的面积。
  9. 根据权利要求7所述的OLED像素排列结构,其特征在于,所述第一子像素、所述第二子像素及所述第三子像素中两两之间的最小间距相等。
  10. 一种显示装置,其特征在于,所述显示装置包括如权利要求1~9任一项所述的OLED像素排列结构。
PCT/CN2015/085423 2014-12-22 2015-07-29 Oled像素排列结构及显示装置 WO2016101619A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/538,364 US10062737B2 (en) 2014-12-22 2015-07-29 OLED pixel arrangement structure and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410800360.XA CN104576695B (zh) 2014-12-22 2014-12-22 Oled像素排列结构及显示装置
CN201410800360.X 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016101619A1 true WO2016101619A1 (zh) 2016-06-30

Family

ID=53092352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085423 WO2016101619A1 (zh) 2014-12-22 2015-07-29 Oled像素排列结构及显示装置

Country Status (3)

Country Link
US (1) US10062737B2 (zh)
CN (1) CN104576695B (zh)
WO (1) WO2016101619A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504334A (ja) * 2017-06-12 2020-02-06 オッポ広東移動通信有限公司 画素アレイおよびそれを有する表示装置ならびに電子装置
CN113764495A (zh) * 2021-09-09 2021-12-07 武汉华星光电半导体显示技术有限公司 显示面板及移动终端
CN115715128A (zh) * 2022-11-09 2023-02-24 惠科股份有限公司 显示面板及显示装置

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576695B (zh) * 2014-12-22 2017-08-25 信利(惠州)智能显示有限公司 Oled像素排列结构及显示装置
CN106486513B (zh) * 2015-08-31 2023-09-29 昆山国显光电有限公司 像素结构以及oled显示面板
CN105261635A (zh) * 2015-10-29 2016-01-20 Tcl集团股份有限公司 发光二极管像素排列结构、印刷型显示装置及制备方法
US11448807B2 (en) 2016-02-18 2022-09-20 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate, fine metal mask set and manufacturing method thereof
CN110137213A (zh) 2018-02-09 2019-08-16 京东方科技集团股份有限公司 像素排列结构及其显示方法、显示基板
US11264430B2 (en) * 2016-02-18 2022-03-01 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel arrangement structure with misaligned repeating units, display substrate, display apparatus and method of fabrication thereof
CN110134353B (zh) 2018-02-09 2021-04-27 京东方科技集团股份有限公司 颜色补偿方法、补偿装置以及显示装置
US11233096B2 (en) 2016-02-18 2022-01-25 Boe Technology Group Co., Ltd. Pixel arrangement structure and driving method thereof, display substrate and display device
CN110133899A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 像素排列结构、显示基板、显示装置
US11747531B2 (en) 2016-02-18 2023-09-05 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate, fine metal mask set and manufacturing method thereof
CN107275360B (zh) * 2016-04-01 2020-10-16 乐金显示有限公司 有机发光显示装置
KR101700558B1 (ko) * 2016-04-20 2017-01-31 엘지디스플레이 주식회사 유기 발광 표시 장치
JP6842282B2 (ja) * 2016-11-29 2021-03-17 株式会社ジャパンディスプレイ 有機el表示装置
TWI623098B (zh) * 2017-04-21 2018-05-01 友達光電股份有限公司 畫素結構
CN108807462A (zh) * 2017-05-01 2018-11-13 佛山市盈智轩科技有限公司 一种新型的像素排列结构
CN107068731B (zh) 2017-06-09 2019-11-19 京东方科技集团股份有限公司 像素排列结构、显示面板、显示装置和掩模板
CN107706213A (zh) * 2017-09-12 2018-02-16 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其像素排列结构
US10283086B1 (en) * 2017-11-06 2019-05-07 Novatek Microelectronics Corp. Display device with novel sub-pixel configuration
CN107742638A (zh) * 2017-11-16 2018-02-27 信利(惠州)智能显示有限公司 像素排列结构、有机电致发光器件和显示装置
CN109994508A (zh) * 2018-01-02 2019-07-09 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN108364983A (zh) * 2018-02-01 2018-08-03 武汉华星光电半导体显示技术有限公司 像素排列结构
CN110137206A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构及相关装置
US11574960B2 (en) 2018-02-09 2023-02-07 Boe Technology Group Co., Ltd. Pixel arrangement structure, display substrate, display device and mask plate group
CN115542617A (zh) 2018-02-09 2022-12-30 京东方科技集团股份有限公司 显示基板和显示装置
CN110875361A (zh) * 2018-08-31 2020-03-10 京东方科技集团股份有限公司 显示基板及显示装置
CN109307942A (zh) * 2018-10-30 2019-02-05 惠科股份有限公司 一种显示面板、显示装置和制作方法
CN112802884B (zh) * 2018-12-13 2023-10-31 昆山国显光电有限公司 像素排列结构、显示面板及显示装置
CN109638060B (zh) * 2018-12-21 2020-10-27 武汉华星光电半导体显示技术有限公司 阵列基板及柔性显示面板
CN109637420B (zh) * 2019-01-09 2022-09-02 昆山国显光电有限公司 像素排列结构、显示面板和显示装置
CN109904200A (zh) * 2019-02-27 2019-06-18 昆山国显光电有限公司 像素排布结构及显示面板、显示装置
CN110335885B (zh) * 2019-04-29 2021-09-17 上海天马微电子有限公司 显示模组及显示模组的显示方法、显示装置
CN110164925B (zh) * 2019-04-29 2022-02-22 昆山国显光电有限公司 像素排布结构、显示面板及电子设备
CN110277436A (zh) * 2019-06-28 2019-09-24 云谷(固安)科技有限公司 像素排列结构及显示面板
KR20210013493A (ko) * 2019-07-26 2021-02-04 삼성디스플레이 주식회사 표시 장치
RU2728834C1 (ru) 2019-07-31 2020-07-31 Боэ Текнолоджи Груп Ко., Лтд. Подложка отображения и способ ее подготовки, панель отображения и устройство отображения
CN111247630B (zh) 2019-09-30 2022-03-01 重庆康佳光电技术研究院有限公司 一种发光二极管检测系统
CN111028788B (zh) * 2019-12-19 2021-08-24 武汉华星光电半导体显示技术有限公司 像素结构及显示装置
CN112102732B (zh) * 2020-09-23 2022-06-03 合肥维信诺科技有限公司 显示模组、显示装置和显示模组的显示补偿方法
CN112420781B (zh) * 2020-11-03 2024-06-04 南京昀光科技有限公司 像素排布结构、硅基微显示面板及微显示装置
CN112366224B (zh) * 2020-11-24 2023-03-24 武汉天马微电子有限公司 显示面板和显示装置
CN113035125A (zh) * 2021-03-09 2021-06-25 京东方科技集团股份有限公司 一种显示面板、显示装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102986228A (zh) * 2010-07-02 2013-03-20 松下电器产业株式会社 固体摄像元件、具备该固体摄像元件的摄像装置、以及摄像控制方法和摄像控制程序
CN103311266A (zh) * 2012-03-06 2013-09-18 三星显示有限公司 用于有机发光显示装置的像素排列结构
CN104124265A (zh) * 2013-04-25 2014-10-29 三星显示有限公司 有机发光二极管显示装置和掩模单元
CN104576695A (zh) * 2014-12-22 2015-04-29 信利(惠州)智能显示有限公司 Oled像素排列结构及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866707B2 (en) * 2005-03-31 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Display device, and apparatus using the display device having a polygonal pixel electrode
US9583034B2 (en) * 2010-10-15 2017-02-28 Lg Display Co., Ltd. Subpixel arrangement structure for display device
TWI494674B (zh) * 2011-04-22 2015-08-01 Chimei Innolux Corp 顯示面板
CN103474001B (zh) * 2013-09-03 2017-09-12 绍兴视核光电技术有限公司 提高视觉分辨率的计算方法以及最优像素排列结构模块
US9798133B2 (en) * 2015-06-30 2017-10-24 Amazon Technologies, Inc. Electrowetting element with white filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102986228A (zh) * 2010-07-02 2013-03-20 松下电器产业株式会社 固体摄像元件、具备该固体摄像元件的摄像装置、以及摄像控制方法和摄像控制程序
CN103311266A (zh) * 2012-03-06 2013-09-18 三星显示有限公司 用于有机发光显示装置的像素排列结构
CN104124265A (zh) * 2013-04-25 2014-10-29 三星显示有限公司 有机发光二极管显示装置和掩模单元
CN104576695A (zh) * 2014-12-22 2015-04-29 信利(惠州)智能显示有限公司 Oled像素排列结构及显示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504334A (ja) * 2017-06-12 2020-02-06 オッポ広東移動通信有限公司 画素アレイおよびそれを有する表示装置ならびに電子装置
CN113764495A (zh) * 2021-09-09 2021-12-07 武汉华星光电半导体显示技术有限公司 显示面板及移动终端
CN113764495B (zh) * 2021-09-09 2023-12-01 武汉华星光电半导体显示技术有限公司 显示面板及移动终端
CN115715128A (zh) * 2022-11-09 2023-02-24 惠科股份有限公司 显示面板及显示装置
CN115715128B (zh) * 2022-11-09 2024-04-12 惠科股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN104576695A (zh) 2015-04-29
US10062737B2 (en) 2018-08-28
CN104576695B (zh) 2017-08-25
US20170352710A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2016101619A1 (zh) Oled像素排列结构及显示装置
TWI674688B (zh) 像素結構及顯示裝置
CN109935617A (zh) 像素排列结构、显示基板以及掩模板组
WO2015180369A1 (zh) 像素单元、显示面板、显示方法及显示装置
WO2016141659A1 (zh) 像素排列结构和显示装置
CN108847135B (zh) 一种可拉伸的柔性显示面板及其制备方法
CN204991713U (zh) Oled像素结构及显示装置
CN204885166U (zh) 像素结构和oled显示面板
CN209312770U (zh) 像素排列结构、显示基板以及掩模板组
CN105576002A (zh) 一种像素单元、像素结构及显示装置
WO2016115862A1 (zh) 有机发光二极管像素排列结构
WO2020155400A1 (zh) 有机发光二极管显示器像素排列
US20230247886A1 (en) Pixel arrangement structure and display panel
CN104992959A (zh) Oled像素排列结构及显示装置
CN108470751A (zh) 显示面板及显示装置
CN107329309A (zh) 显示模式控制装置及其控制方法、显示装置
CN106935612A (zh) Oled像素结构、有机发光显示器件及其显示方法
CN108198840B (zh) 有机发光二极管像素排列结构及显示面板
WO2020172969A1 (zh) 有机发光二极管显示器像素排列结构及显示面板
WO2018161704A1 (zh) 一种显示器件及其制造方法
WO2020143212A1 (zh) 像素排布结构、显示面板及显示装置
WO2020056910A1 (zh) 像素排列结构和显示面板
CN107068714A (zh) 一种oled像素排列结构及显示装置
CN113130609A (zh) 显示面板、显示装置和掩模板
US20190019848A1 (en) Oled display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15538364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15871693

Country of ref document: EP

Kind code of ref document: A1