WO2016101089A1 - 极性码的编码方法和编码装置 - Google Patents

极性码的编码方法和编码装置 Download PDF

Info

Publication number
WO2016101089A1
WO2016101089A1 PCT/CN2014/094475 CN2014094475W WO2016101089A1 WO 2016101089 A1 WO2016101089 A1 WO 2016101089A1 CN 2014094475 W CN2014094475 W CN 2014094475W WO 2016101089 A1 WO2016101089 A1 WO 2016101089A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
sequence
coded
information bits
congruence
Prior art date
Application number
PCT/CN2014/094475
Other languages
English (en)
French (fr)
Inventor
沈晖
李斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2017008275A priority Critical patent/MX366730B/es
Priority to CN201480082806.8A priority patent/CN107078748B/zh
Priority to RU2017125830A priority patent/RU2685034C2/ru
Priority to JP2017550969A priority patent/JP6455766B2/ja
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2014415500A priority patent/AU2014415500B2/en
Priority to EP14908660.5A priority patent/EP3226422B1/en
Priority to CA2971769A priority patent/CA2971769C/en
Priority to BR112017013449-7A priority patent/BR112017013449B1/pt
Priority to KR1020177020438A priority patent/KR101952799B1/ko
Priority to ES14908660T priority patent/ES2723953T3/es
Priority to CN201910582426.5A priority patent/CN110401456B/zh
Priority to PCT/CN2014/094475 priority patent/WO2016101089A1/zh
Priority to SG11201705119VA priority patent/SG11201705119VA/en
Publication of WO2016101089A1 publication Critical patent/WO2016101089A1/zh
Priority to US15/629,498 priority patent/US10516417B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2792Interleaver wherein interleaving is performed jointly with another technique such as puncturing, multiplexing or routing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/275Interleaver wherein the permutation pattern is obtained using a congruential operation of the type y=ax+b modulo c
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/615Use of computational or mathematical techniques
    • H03M13/616Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving

Definitions

  • Embodiments of the present invention relate to the field of codecs, and more particularly, to a method and an encoding apparatus for a polar code.
  • Polar code is an encoding method that can achieve Shannon capacity and has low coding and decoding complexity.
  • the Polar code is a linear block code including information bits and freeze bits.
  • the generation matrix of the Polar code is G N.
  • the encoding process is Here, Is a binary line vector with a length of N.
  • the embodiment of the invention provides a coding method and an encoding device for a polar code, which can improve the reliability of broadcast signaling transmission.
  • an embodiment of the present invention provides a method for encoding a polar code, including:
  • Polar code coding is performed on the mapped bits to obtain coded coded bits.
  • the M information bits with low reliability include M information bits whose reliability is lower than a preset threshold, or the M information bits with low reliability include K The least reliable M information bits among the information bits.
  • the encoding method further includes:
  • the K information bits are sorted according to the reliability of the K information bits.
  • the letter The size of the reliability of the bit is determined based on the bit capacity, the Barth's distance Bhattacharyya parameter, or the error probability.
  • the coded method further includes:
  • the interleaved coded bits are processed in reverse order, and the first E bits of the coded bits processed in the reverse order are input to the circular buffer according to the preset value E.
  • the encoded coded bits are sorted by the same consonant interleaving to obtain the coded bits after the interleaving, including:
  • the encoded coded bits are interleaved to obtain coded bits after interleaving.
  • the obtaining the congruence sequence according to the length of the encoded coded bits includes:
  • N is the length of the encoded coded bits
  • x 0 , a, c, and m are specific parameters
  • x(0), x(1), ..., x(N-1) are congruence sequences.
  • an embodiment of the present invention provides an encoding apparatus, including:
  • mapping unit configured to map the M reserved bits of the broadcast signaling to the M information bits with low reliability among the K information bits of the polar code, and map the remaining bits of the broadcast signaling to the K information bits The remaining information bits in the obtained bit, wherein M ⁇ K, and M and K are positive integers;
  • a coding unit configured to perform polar code encoding on the mapped bits to obtain coded coded bits.
  • the M letters with low reliability include M information bits whose reliability is lower than a preset threshold, or the M information bits with low reliability include the least reliable M information bits among the K information bits.
  • the encoding apparatus further includes a sorting unit, configured to sort the K information bits according to the reliability of the K information bits.
  • the magnitude of the reliability of the information bits is determined based on the bit capacity, the Barth's distance Bhattacharyya parameter, or the error probability.
  • the encoding apparatus further includes an interleaving unit and an intercepting unit,
  • An interleaving unit configured to perform sequenced congruence interleaving on the encoded coded bits to obtain coded bits after interleaving
  • An intercepting unit configured to input the first E bits of the encoded bit after the interleaving into the circular buffer according to the preset value E, or
  • It is used for performing reverse processing on the interleaved coded bits, and inputting the first E bits of the reverse-processed coded bits into the circular buffer according to the preset value E.
  • the interleaving unit is specifically configured to:
  • the encoded coded bits are interleaved to obtain coded bits after interleaving.
  • the interleaving unit is specifically configured to determine a congruence sequence according to the following formula.
  • N is the length of the encoded coded bits
  • x 0 , a, c, and m are specific parameters
  • x(0), x(1), ..., x(N-1) are congruence sequences.
  • an embodiment of the present invention provides a method for rate matching of a polar code, including:
  • the congruence sequence is sorted to obtain a reference sequence
  • the polarity code coded bits of the control signaling are interleaved to generate coded bits after interleaving.
  • control signaling is broadcast signaling
  • the method further includes:
  • the interleaved coded bits are processed in reverse order, and the first E bits of the coded bits processed in the reverse order are input to the circular buffer according to the preset value E.
  • the congruence sequence is obtained according to the length of the polarity code coded bits of the control signaling, including:
  • N is the length of the polarity code coded bits of the control signaling
  • x 0 , a, c, m are specific parameters
  • x(0), x(1), ..., x(N-1) are the same The remaining sequence.
  • control signaling includes, but is not limited to, one of the following control channels: a physical layer downlink control channel PDCCH, a physical broadcast channel PBCH, and a physical Layer uplink control channel PUCCH.
  • mapping function is:
  • an embodiment of the present invention provides a rate matching apparatus for a polar code, including:
  • An obtaining unit configured to obtain a congruence sequence according to a length of a polarity code coded bit of the control signaling
  • a sorting unit configured to sort the congruence sequence according to a preset rule to obtain a reference sequence
  • a determining unit configured to determine a mapping function according to the congruence sequence and the reference sequence
  • the interleaving unit is configured to interleave the polarity code coded bits of the control signaling according to the mapping function to generate the coded bits after the interleaving.
  • control signaling is broadcast signaling
  • rate matching apparatus further includes an intercepting unit, and the intercepting unit is configured to:
  • the interleaved coded bits are processed in reverse order, and the first E bits of the coded bits processed in the reverse order are input to the circular buffer according to the preset value E.
  • the acquiring unit is specifically configured to determine a congruence sequence according to the following formula,
  • N is the length of the coded bits of the control signaling
  • x 0 , a, c, and m are specific parameters
  • x(0), x(1), ..., x(N-1) are congruence sequences.
  • control signaling includes, but is not limited to, one of the following control channels: a physical layer downlink control channel PDCCH, a physical broadcast channel PBCH, and a physical Layer uplink control channel PUCCH.
  • mapping function is:
  • FIG. 1 illustrates a wireless communication system in accordance with various embodiments described herein.
  • FIG. 2 shows a schematic block diagram of a system for a polar code encoding method to which the present invention is applied in a wireless communication environment.
  • FIG. 3 is a schematic flowchart of a method for encoding a polar code according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of an encoding apparatus of a polar code according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an access terminal that facilitates performing the aforementioned encoding method of a Polar code in a wireless communication system.
  • FIG. 6 is a schematic diagram of a system in which a method of encoding the aforementioned Polar code is performed in a wireless communication environment.
  • FIG. 7 is a system of an encoding method capable of using a Polar code in a wireless communication environment.
  • FIG. 8 is a schematic flowchart of a method for rate matching of a polar code according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a rate matching apparatus for a polar code according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • Both the application running on the computing device and the computing device can be components.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • An access terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a UE (User Equipment, User equipment).
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the base station can be used for communication with a mobile device, and the base station can be a BTS (Base Transceiver Station) in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access), or NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), and may also be an eNB in LTE (Long Term Evolution) Or an eNodeB (Evolutional Node B), or a relay station or an access point, or a base station device in a future 5G network.
  • BTS Base Transceiver Station
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • NB NodeB, base station
  • WCDMA Wideband Code Division Multiple Access
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 illustrates a wireless communication system in accordance with various embodiments described herein.
  • System 100 includes a base station 102 that can include multiple antenna groups.
  • one antenna group may include antennas 104 and 106
  • another antenna group may include antennas 108 and 110
  • additional groups may include antennas 112 and 114.
  • Two antennas are shown for each antenna group, however more or fewer antennas may be used for each group.
  • Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • Base station 102 can communicate with one or more access terminals, such as access terminal 116 and access terminal 122. However, it will be appreciated that base station 102 can communicate with substantially any number of access terminals similar to access terminals 116 and 122. Access terminals 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment. As shown, access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal 122 over forward link 124 and receive information from access terminal 122 over reverse link 126.
  • FDD Frequency Division Duplex
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link 126. Different frequency bands used.
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
  • the antenna group can be designed to communicate with access terminals in sectors of the coverage area of base station 102.
  • the transmit antennas of base station 102 may utilize beamforming to improve the signal to noise ratio for forward links 118 and 124 of access terminals 116 and 122.
  • the base station 102 transmits to the randomly dispersed access terminals 116 and 122 in the relevant coverage area by the base station as compared to all of the access terminals transmitted by the base station, the mobile devices in the adjacent cells are subject to Less interference.
  • base station 102, access terminal 116, and/or access terminal 122 may be transmitting wireless communication devices and/or receiving wireless communication devices.
  • the transmitting wireless communication device can encode the data for transmission.
  • the transmitting wireless communication device can have (eg, generate, obtain, store in memory, etc.) a certain number of information bits to be transmitted over the channel to the receiving wireless communication device.
  • Such information bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce a plurality of code blocks.
  • the transmitting wireless communication device can encode each code block using a Polar code encoder (not shown) to improve the reliability of data transmission, thereby ensuring communication quality.
  • System 200 includes a wireless communication device 202 that is shown to transmit data via a channel. Although shown as transmitting data, the wireless communication device 202 can also receive data via a channel (eg, the wireless communication device 202 can transmit and receive data simultaneously, the wireless communication device 202 can transmit and receive data at different times, or a combination thereof, etc.) .
  • the wireless communication device 202 can be, for example, a base station (e.g., base station 102 of FIG. 1), an access terminal (e.g., access terminal 116 of FIG. 1, access terminal 122 of FIG. 1, etc.), and the like.
  • the wireless communication device 202 can include a polar code encoder 204, a rate matching device 205, and a transmitter 206.
  • the wireless communication device 202 may also include a receiver that may be present separately or integrated with the transmitter 206 to form a transceiver.
  • the polar code encoder 204 is configured to encode the data to be transmitted from the wireless communication device 202 to obtain the encoded polar code.
  • the polar encoder 204 is used to reserve M reserved bits of the broadcast signaling. Mapping the M information bits with low reliability among the K information bits of the polar code respectively, mapping the remaining bits of the broadcast signaling to the remaining information bits of the K information bits, to obtain the mapped bits, where M ⁇ K, and M and K are both positive integers; polar code encoding is performed on the mapped bits to obtain encoded coded bits.
  • transmitter 206 can then transmit the rate matched output bits processed by rate matching device 205 over the channel.
  • transmitter 206 can transmit relevant data to other different wireless communication devices (not shown).
  • FIG. 3 is a schematic flowchart of a method for encoding a polar code according to an embodiment of the present invention.
  • the method illustrated in Figure 3 can be performed by a wireless communication device, such as polar encoder 204 in the wireless communication device shown in Figure 2.
  • the encoding method described in FIG. 3 includes:
  • broadcast signaling refers to signaling carried on a broadcast channel (e.g., physical broadcast channel PBCH).
  • Broadcast signaling usually includes a number of reserved bits that do not actually carry useful information, so that in the process of Polar code encoding, the reserved bits are mapped to information bits with low reliability, even if the reserved bits occur during transmission. Changes will not affect the correct decoding of broadcast signaling.
  • the embodiment of the present invention does not limit the form of measurement of reliability.
  • the broadcast signaling (signaling carried by the PBCH channel) passes the Cyclic Redundancy Check (CRC) and the result is a 0 , a 1 , ..., a 13 , a 14 , ..., a 23 , a 24 , ..., a 39 , where a 14 , ..., a 23 are reserved bits (10), a 24 , ..., a 39 corresponds to a check bit (may contain a mask). It is assumed that the 10 information bits with low reliability in the polarity code are ⁇ 79, 106, 55, 105, 92, 102, 90, 101, 47, 89 ⁇ , respectively.
  • CRC Cyclic Redundancy Check
  • u(79) a 14
  • u(106) a 15
  • u(105) a 17
  • u(92) a 18
  • u(102) a 19
  • u(90) a 20
  • u(101) a 21
  • u(47) a 22
  • u (89) a 23
  • mapping the remaining bits of the broadcast signaling to the remaining information bits of the polar code reference may be made to the foregoing method. To avoid repetition, details are not described herein again.
  • the wireless communication device when the wireless communication device is ready to send broadcast signaling through a PBCH (Public Broadcast Channel, PBCH) channel, the broadcast signaling may be first coded with a polar code.
  • PBCH Public Broadcast Channel
  • the encoded output of the Polar code can be expressed as equation (1):
  • Is a binary line vector with a length of N; G N. is an N*N matrix, N is the length of the encoded coded bit, n ⁇ 0; here B N is a transposed matrix, Is the Kronecker power, defined as
  • a part of the bits are used to carry information (that is, information that needs to be sent to the receiving end). These bits are called information bits, and the index set of these bits is denoted as A; the remaining part of the bits is a fixed value, called freezing.
  • the frozen bit for example, can often be set to zero.
  • the reserved bits are mapped to the M least reliable information bits of the polar code, and the broadcast will be broadcast.
  • the remaining bits of the signaling are mapped to the remaining information bits of the polar code.
  • the encoded Polar code can be obtained according to the encoding process shown by the formula (1), that is, the encoded coded bits are obtained.
  • the encoded Polar code output through the encoding process of the Polar code encoder can be simplified as: Where u A is In the set of information bits, u A is the row vector of length K, and K is the number of information bits. G N. (A) is a sub-matrix rows G N. A by the set corresponding to the index obtained, G N. (A) is a K * N matrix.
  • the M information bits with low reliability include M information bits whose reliability is lower than a preset threshold, or the M information bits with low reliability include K information ratios.
  • the K information may be first The size of the bit reliability, sorting the K information bits.
  • the M reserved bits of the broadcast signaling are respectively mapped to the M information bits with low reliability among the K information bits of the polar code
  • the M reserved bits may be selected according to the sorting result. The M information bits with low reliability among the K information bits are respectively mapped.
  • the polarity code includes 40 information bits, and 40 information bits are sorted according to reliability from large to small, and the following sorted indexes are obtained:
  • the length of the broadcast signaling is 40 bits, including 10 bits of reserved bits.
  • the 10-bit reserved bits should be mapped to the information bits corresponding to ⁇ 79, 106, 55, 105, 92, 102, 90, 101, 47, 89 ⁇ , respectively.
  • the remaining bits of the broadcast signaling are mapped to other information bits than the above 10 bits.
  • the magnitude of the reliability of the information bits is determined based on the bit capacity, the Barth's distance Bhattacharyya parameter, or the error probability.
  • the bit capacity of each information bit of the Polar code can be determined first, and the size of the information bit reliability can be expressed by the size of the bit capacity.
  • the bit having a large bit capacity has high reliability.
  • the Bhattacharyya parameter of each information bit of the Polar code can be determined, and the information bit reliability is represented by the Bhattacharyya parameter size.
  • the information bits of the Bhattacharyya parameter are highly reliable.
  • the coded bit can be sorted by the congruence and the interleaved coded bit is obtained. Then, the first E bits of the interleaved coded bits are input to the circular buffer according to the preset value E.
  • the interleaved coded bits are processed in reverse order, and the first E bits of the coded bits processed in the reverse order are input to the circular buffer according to the preset value E.
  • the preset value E is related to the frame format of the broadcast signaling.
  • the embodiment of the present invention can further improve the code rate.
  • the aforementioned interleaving process can be performed by the rate matching device 205 in the wireless communication device 202 shown in FIG. 2.
  • the polar encoder 204 can perform polar code encoding as described above and output the encoded encoded bits.
  • the rate matching means 205 sorts the coded bits outputted by the polar encoder 204 by the same congruence, and intercepts the interleaved first E bits as a final output result, and outputs it to the circular buffer.
  • the circular buffer is located in the transmitter 206 shown in Figure 2 such that the transmitter transmits the data in the circular buffer.
  • Table 1 shows the relative performance gains of the Polar code-based PBCH channel and the LTE standard tail-biting-convolution PBCH channel under different target lengths under the target packet error rate of 1%.
  • the proposed PBCH scheme of the Polar code has a minimum gain of 0.8 dB in the case of the same decoding complexity as the PBCH scheme of the tailband convolutional code of the LTE standard.
  • the coded congruence coded bits are sorted and congruent interleaved.
  • the congruence sequence may be obtained according to the length of the coded coding bits. Then, according to the preset rule, the congruence sequence is sorted to obtain a reference sequence.
  • the mapping function can be determined according to the congruence sequence and the reference sequence, and the encoded coded bits are interleaved according to the mapping function to obtain the interleaved coded bits.
  • the congruence sequence when the congruence sequence is obtained according to the length of the encoded coded bits, the congruence sequence may be determined according to the following formula (2).
  • N is the length of the encoded coded bits
  • x 0 , a, c, and m are specific parameters
  • x(0), x(1), ..., x(N-1) are congruence sequences.
  • N is the length of the encoded coded bit, which means that N is the code length of the Polar code.
  • Equation (2) represents a linear congruence method, m represents a modulus, and m > 0; a represents a multiplier; c represents an increment; and x (0) represents a starting value.
  • x 0 4831
  • a 7 5
  • the congruence sequence can be generated by using the following procedure based on the matlab:
  • Statement 1 Define the function multiplieCongru_interg that implements the congruence sequence.
  • the return value of the function is seq_x, where initial is the starting value of the congruence sequence, an input parameter of the function, and length is the element of the congruence sequence.
  • Statement 2 Define the first element in the congruence sequence, ie seq_x(1) is the default starting value.
  • Statement 7 Define seq_x(k+1) as a*seq_x(k)+c to modulo m.
  • the wireless communication device may perform the sorting process on the congruence sequence determined as described above in ascending order (an example of a preset rule).
  • the sorting process may be performed, for example, by using a sort function.
  • the sort function can be expressed as sort([first,last]), ie, the pair is in [first, The elements in last] are sorted in ascending order.
  • the congruence sequence may be sorted as described above by using the following procedure:
  • the congruence sequence after the above sorting process can be used as the reference sequence.
  • mapping function can be determined based on the congruence sequence and the reference sequence obtained as described above. Specifically, since each element in the congruence sequence is sorted, the above mapping function can be determined based on the position of each element in the congruence sequence and the reference sequence.
  • mapping function p can be expressed as [0, 2, 1], that is, the first element of sequence B (number 0) is the first element in sequence A (serial number is 0), sequence B The second element (number 1) is the third element in sequence A (number 2), and the third element of sequence B (number 2) is the second element in sequence A (number 1) .
  • mapping function can be obtained from the reference sequence and the congruence sequence obtained as described above.
  • the encoded polar code can be interleaved based on the mapping function obtained as described above.
  • the bit value of the first bit (number 0) of the interleaved polarity code is the first of the polarity codes before the interleaving process.
  • the bit value of the bit (number is 0
  • the bit value of the second bit (number 1) of the polarity code after the interleaving process and the bit value of the third bit (number 2) of the polarity code before the interleaving process
  • the bit value of the third bit (No. 2) of the polarity code after the interleaving process is the bit value of the second bit (No. 1) of the polarity code before the interleaving process.
  • the encoding device 400 of FIG. 4 may be located at a base station or access terminal (e.g., base station 102 and access terminal 116) that includes a mapping unit 401 and an encoding unit 402.
  • the mapping unit 401 is configured to map the M reserved bits of the broadcast signaling to the M information bits with low reliability among the K information bits of the polar code, and map the remaining bits of the broadcast signaling to the K information. The remaining information bits in the bits, resulting in mapped bits, where M ⁇ K, and M K is a positive integer.
  • broadcast signaling refers to signaling carried on a broadcast channel (e.g., physical broadcast channel PBCH).
  • Broadcast signaling usually includes a number of reserved bits that do not actually carry useful information, so that in the process of Polar code encoding, the reserved bits are mapped to information bits with low reliability, even if the reserved bits occur during transmission. Changes will not affect the correct decoding of broadcast signaling.
  • the embodiment of the present invention does not limit the form of measurement of reliability.
  • the broadcast signaling (signaling carried by the PBCH channel) passes the Cyclic Redundancy Check (CRC) and the result is a 0 , a 1 , ..., a 13 , a 14 , ..., a 23 , a 24 , ..., a 39 , where a 14 , ..., a 23 are reserved bits (10), a 24 , ..., a 39 corresponds to a check bit (may contain a mask). It is assumed that the 10 information bits with low reliability in the polarity code are ⁇ 79, 106, 55, 105, 92, 102, 90, 101, 47, 89 ⁇ , respectively.
  • CRC Cyclic Redundancy Check
  • the encoding unit 402 is configured to perform polar code encoding on the mapped bits to obtain encoded coded bits.
  • the process of encoding the bit code of the mapped bit by the coding unit may refer to the description in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the M information bits with low reliability include M information bits whose reliability is lower than a preset threshold, or the M information bits with low reliability include the lowest reliability among the K information bits. M information bits.
  • the encoding device 400 further includes a sorting unit 403.
  • a sorting unit 403 configured to compare K information according to the reliability of the K information bits Special sorting.
  • the coding unit 402 is specifically configured to map the M reserved bits to the M information bits with low reliability among the K information bits according to the sorting result.
  • the polarity code includes 40 information bits, and 40 information bits are sorted according to reliability from large to small, and the following sorted indexes are obtained:
  • the length of the broadcast signaling is 40 bits, including 10 bits of reserved bits.
  • the 10-bit reserved bits should be mapped to the information bits corresponding to ⁇ 79, 106, 55, 105, 92, 102, 90, 101, 47, 89 ⁇ , respectively.
  • the remaining bits of the broadcast signaling are mapped to other information bits than the above 10 bits.
  • the magnitude of the reliability of the information bits is determined based on the bit capacity, the Barth's distance Bhattacharyya parameter, or the error probability.
  • the bit capacity when used as the reliability metric of the information bits, it may be determined that the bit capacity of each information bit of the Polar code is first determined, and the size of the information bit reliability is expressed by the size of the bit capacity. Among them, the bit having a large bit capacity has high reliability.
  • the Bhattacharyya parameter of each information bit of the Polar code can be determined, and the information bit reliability is represented by the Bhattacharyya parameter size.
  • the information bits of the Bhattacharyya parameter are highly reliable.
  • the encoding apparatus 400 further includes an interleaving unit 404 and an intercepting unit 405.
  • the interleaved single 404 element and intercepting unit 405 can be located on the rate matching device 205 of the wireless communication device 202 as shown in FIG.
  • the rate matching means 205 and the polar code encoder 204 together form the encoding means 400 of the polar code.
  • the interleaving unit 404 is configured to perform sorting congruence interleaving on the encoded coded bits to obtain coded bits after interleaving.
  • the intercepting unit 405 is configured to input the first E bits of the interleaved coded bits into the circular buffer according to the preset value E.
  • the intercepting unit 405 is configured to perform reverse processing on the encoded bits after interleaving, according to the preset
  • the value E is input to the circular buffer of the first E bits of the coded bits after the reverse processing.
  • the preset value E is related to the frame format of the broadcast signaling.
  • the embodiment of the present invention can further improve the code rate.
  • the interleaving unit 404 is specifically configured to obtain a congruence sequence according to the length of the encoded coded bits. Then, according to the preset rule, the congruence sequence is sorted to obtain a reference sequence, and the mapping function is determined according to the congruence sequence and the reference sequence. Finally, according to the mapping function, the encoded coded bits are interleaved to obtain the coded bits after the interleaving.
  • the process of interleaving the coded bits by the interleaving unit 404 may refer to the specific description of the foregoing embodiments. To avoid repetition, details are not described herein again.
  • the interleaving unit 404 is specifically configured to determine a congruence sequence according to the following formula (3).
  • N is the length of the encoded coded bits
  • x 0 , a, c, and m are specific parameters
  • x(0), x(1), ..., x(N-1) are congruence sequences.
  • N is the length of the encoded coded bit, which means that N is the code length of the Polar code.
  • Equation (2) represents a linear congruence method, m represents a modulus, and m > 0; a represents a multiplier; c represents an increment; and x (0) represents a starting value.
  • x 0 4831
  • a 7 5
  • Access terminal 500 includes a receiver 502 for receiving signals from, for example, a receiving antenna (not shown) and performing typical actions (e.g., filtering, amplifying, downconverting, etc.) on the received signals, and adjusting The resulting signal is digitized to obtain samples.
  • Receiver 502 can be, for example, a Minimum Mean-Squared Error (MMSE) receiver.
  • Access terminal 500 can also include a demodulator 504 that can be used to demodulate received symbols and provide them to processor 506 for channel estimation.
  • MMSE Minimum Mean-Squared Error
  • Processor 506 can be a processor dedicated to analyzing information received by receiver 502 and/or generating information transmitted by transmitter 516, a processor for controlling one or more components of access terminal 500, and/or A controller for analyzing information received by receiver 502, generating information transmitted by transmitter 516, and controlling one or more components of access terminal 500.
  • Access terminal 500 can additionally include a memory 508 operatively coupled to processor 506 and storing the following data: data to be transmitted, received data, and any other related to performing various actions and functions described herein. Suitable for information.
  • Memory 508 can additionally store associated protocols and/or algorithms for Polar code processing.
  • non-volatile memory can include: Read-Only Memory (ROM), Programmable Read Only Memory (ROM), Erasable Programmable Read Only Memory (Erasable) PROM, EPROM), electrically erasable programmable read only memory (EEPROM) or flash memory.
  • Volatile memory can include: Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Synchronous DRAM synchronous dynamic random access memory
  • Memory 508 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the access terminal 500 also includes a Polar code encoder 512 and a rate matching device 510.
  • receiver 502 can also be coupled to rate matching device 510.
  • Rate matching device 510 can be substantially similar to rate matching device 205 of FIG.
  • the Polar code encoder 512 is substantially similar to the Polar code encoder 204 of FIG.
  • the Polar code encoder 512 can be used to map the M reserved bits of the broadcast signaling to the M information bits with low reliability among the K information bits of the polar code, and map the remaining bits of the broadcast signaling to K.
  • the remaining information bits in the information bits obtain the mapped bits, where M ⁇ K, and M and K are both positive integers, and then the mapped bits are polar code encoded to obtain the encoded coded bits.
  • the embodiment of the present invention when transmitting the broadcast signaling, first mapping according to the reliability of the information bits in the Polar code, and then performing the Polar code encoding on the mapped bits. In this way, it is possible to avoid mapping useful bits in the broadcast signaling to information bits with low reliability, thereby enabling broadcast messages. Make the reliability of the transmission.
  • the M information bits with low reliability include M information bits whose reliability is lower than a preset threshold, or the M information bits with low reliability include the lowest reliability among the K information bits. M information bits.
  • the Polar code encoder 512 sorts the K information bits according to the reliability of the K information bits. Then, the Polar code encoder 512 maps the M reserved bits to the M information bits having low reliability among the K information bits, respectively, according to the sorting result.
  • the magnitude of the reliability of the information bits is determined based on the bit capacity, the Barth's distance Bhattacharyya parameter, or the error probability.
  • the rate matching device 510 performs the following congruence interleaving on the encoded coded bits to obtain the coded bits after the interleaving, and according to the preset value E, the pre-E of the interleaved coded bits.
  • the bits are input to the circular buffer.
  • the rate matching device 510 performs the same-order interleaving on the encoded coded bits, obtains the coded bits after the interleaving, and performs reverse-order processing on the coded bits after the interleaving, and performs the reverse-processed coded bits according to the preset value E.
  • the first E bits are input to the circular buffer.
  • the rate matching device 510 acquires a congruence sequence according to the length of the encoded coded bits. Then, according to the preset rule, the congruence sequence is sorted to obtain a reference sequence, and the mapping function is determined according to the congruence sequence and the reference sequence. Finally, according to the mapping function, the encoded coded bits are interleaved to obtain the coded bits after the interleaving.
  • the rate matching device 510 determines the congruence sequence according to the following formula (4).
  • N is the length of the encoded coded bits
  • x 0 , a, c, and m are specific parameters
  • x(0), x(1), ..., x(N-1) are congruence sequences.
  • N is the length of the encoded coded bit, which means that N is the code length of the Polar code.
  • System 600 includes a base station 602 (e.g., an access point, a NodeB or an eNB, etc.) having a receiver 610 that receives signals from one or more access terminals 604 through a plurality of receive antennas 606, and through transmit antenna 608 to one or A plurality of access terminals 604 transmit signals to the transmitter 624.
  • Receiver 610 can receive information from receive antenna 606 and is operatively associated to a demodulator 612 that demodulates the received information.
  • the demodulated symbols are analyzed by a processor-like processor 614 as described with respect to Figure 7, which is coupled to a memory 616 for storing to be transmitted to the access terminal 604 (or a different base station ( The data of not shown)) or data received from access terminal 604 (or a different base station (not shown)) and/or any other suitable information related to performing the various actions and functions described herein.
  • Processor 614 can also be coupled to Polar code encoder 618 and rate matching device 620.
  • the Polar code encoder 618 can be used to map the M reserved bits of the broadcast signaling to the M information bits with low reliability among the K information bits of the polar code, and map the remaining bits of the broadcast signaling to K. The remaining information bits in the information bits, resulting in mapped bits, where M ⁇ K, and M and K are both positive integers. Then, the mapped bits are subjected to polar code encoding to obtain encoded coded bits.
  • the embodiment of the present invention when transmitting the broadcast signaling, first mapping according to the reliability of the information bits in the Polar code, and then performing the Polar code encoding on the mapped bits. In this way, it is possible to avoid mapping the useful bits in the broadcast signaling to the information bits with low reliability, thereby improving the reliability of the broadcast signaling transmission.
  • the M information bits with low reliability include M information bits whose reliability is lower than a preset threshold, or the M information bits with low reliability include the lowest reliability among the K information bits. M information bits.
  • the Polar code encoder 618 sorts the K information bits according to the reliability of the K information bits. Then, the Polar code encoder 512 maps the M reserved bits to the M information bits having low reliability among the K information bits, respectively, according to the sorting result.
  • the magnitude of the reliability of the information bits is determined based on the bit capacity, the Barth's distance Bhattacharyya parameter, or the error probability.
  • the rate matching device 620 performs the following congruence interleaving on the encoded coded bits to obtain the interleaved coded bits, and according to the preset value E, the pre-E of the interleaved coded bits.
  • the bits are input to the circular buffer.
  • the rate matching device 620 performs the same-order interleaving on the encoded coded bits to obtain the coded bits after the interleaving, and performs inverse processing on the coded bits after the interleaving, and the coded bits processed in the reverse order according to the preset value E.
  • the first E bits are input to the circular buffer.
  • the rate matching device 620 acquires a congruence sequence according to the length of the encoded coded bits. Then, according to the preset rule, the congruence sequence is sorted to obtain a reference sequence, and the mapping function is determined according to the congruence sequence and the reference sequence. Finally, according to the mapping function, the encoded coded bits are interleaved to obtain the coded bits after the interleaving.
  • the rate matching device 620 determines the congruence sequence according to the following formula (5).
  • N is the length of the encoded coded bits
  • x 0 , a, c, and m are specific parameters
  • x(0), x(1), ..., x(N-1) are congruence sequences. It should be understood that N is the length of the encoded coded bit, which means that N is the code length of the Polar code.
  • modulator 622 can multiplex frames for transmitter 624 to transmit to access terminal 604 via antenna 608, although shown separate from processor 614, but it will be appreciated that Polar code encoder 618 Rate matching device 620 and/or modulator 622 may be part of processor 614 or a plurality of processors (not shown).
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), processor, controller, microcontroller, microprocessor, other electronics for performing the functions described herein Unit or combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • processor controller, microcontroller, microprocessor, other electronics for performing the functions described herein Unit or combination thereof.
  • a code segment can represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software group, a class, or any combination of instructions, data structures, or program statements.
  • a code segment can be combined into another code segment or hardware circuit by transmitting and/or receiving information, data, arguments, parameters or memory contents. Information, arguments, parameters, data, etc. can be communicated, forwarded, or transmitted using any suitable means including memory sharing, messaging, token passing, network transmission, and the like.
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • Software code can be stored in a memory unit and executed by the processor Row.
  • the memory unit can be implemented in the processor or external to the processor, in the latter case the memory unit can be communicatively coupled to the processor via various means known in the art.
  • FIG. 7 is a system of an encoding method capable of using a Polar code in a wireless communication environment.
  • system 700 can reside at least partially in a base station. According to another example, system 700 can reside at least partially in an access terminal. It should be understood that system 700 can be represented as including a functional block that can be a functional block representing a function implemented by a processor, software, or a combination thereof (eg, firmware). System 700 includes a logical grouping 702 of electronic components having joint operations.
  • the logical grouping 702 may include M information bits for mapping the M reserved bits of the broadcast signaling to the K information bits of the polarity code, respectively, and mapping the remaining bits of the broadcast signaling to The remaining information bits of the K information bits result in mapped bits, where M ⁇ K, and M and K are both positive integers.
  • the logical grouping 702 can also include performing polar code encoding on the mapped bits to obtain encoded coded bits.
  • the embodiment of the present invention when transmitting the broadcast signaling, first mapping according to the reliability of the information bits in the Polar code, and then performing the Polar code encoding on the mapped bits. In this way, it is possible to avoid mapping the useful bits in the broadcast signaling to the information bits with low reliability, thereby improving the reliability of the broadcast signaling transmission.
  • system 700 can include a memory 712 that retains instructions for executing functions associated with electronic components 704, 706, and 708. Although shown external to memory 712, it will be appreciated that one or more of electronic components 704, 706, and 708 may be present in memory 712.
  • FIG. 8 is a schematic flowchart of a method for rate matching of a polar code according to an embodiment of the present invention.
  • the method illustrated in Figure 8 can be performed by a wireless communication device, such as rate matching device 205 in the wireless communication device shown in Figure 2 .
  • the method of rate matching shown in Figure 8 includes:
  • a congruence sequence is determined by using a length of a control signaling polarity code coded bit, and an interleaving of a control signaling polar code coded bit is implemented by the congruence sequence
  • the interleaved bit sequence structure can be more uniform, the frame error rate can be reduced, the communication reliability can be improved, and the polarization code rate matching for various code lengths can be applied. Process, with good versatility and practicality.
  • the transmitting end may perform a Polar code encoding process on the information that needs to be sent to the receiving end by using, for example, a Polar code encoder, to generate a polarization code (ie, control signaling coded bits), and a polarization code.
  • a Polar code encoder ie, control signaling coded bits
  • It is a linear block code that has been theoretically proven to achieve Shannon capacity and has a low coding and decoding complexity.
  • the encoded output of the Polar code can be expressed as:
  • bits are used to carry information (that is, data information that needs to be sent to the receiving end). These bits are called information bits, and the index set of these bits is denoted as A; the remaining part of the bits is a fixed value, called The frozen bit, for example, can often be set to zero.
  • the Polar code bit sequence output via the encoding process of the Polar code encoder can be simplified as: Where u A is In the set of information bits, u A is the row vector of length K, and K is the number of information bits. G N. (A) is a sub-matrix obtained from G N. A set of rows corresponding to the index, G N. (A) is a K * N matrix, A selected set determine the performance of the Polar codes.
  • polarity code coded bits of the control signaling refer to coded bits obtained by performing polarity code coding on the control signaling.
  • control signaling is broadcast signaling.
  • the first E bits of the interleaved coded bits are input to the circular buffer, or the interleaved coded bits are processed in reverse order, and the reversed order is processed according to the preset value E.
  • the first E bits of the latter coded bits are input to the circular buffer.
  • the congruence sequence when the congruence sequence is obtained according to the length of the polarity code coded bits of the control signaling, the congruence sequence is determined according to the following formula.
  • N is the length of the polarity code coded bits of the control signaling
  • x 0 , a, c, m are specific parameters
  • x(0), x(1), ..., x(N-1) are the same The remaining sequence. It should be understood that the length of the polarity code coded bits of N for control signaling means that N is the code length of the Polar code.
  • Equation (2) represents a linear congruence method, m represents a modulus, and m > 0; a represents a multiplier; c represents an increment; and x (0) represents a starting value.
  • mapping function can be determined based on the congruence sequence and the reference sequence obtained as described above. Specifically, since each element in the congruence sequence is sorted, the above mapping function can be determined based on the position of each element in the congruence sequence and the reference sequence.
  • mapping function p can be expressed as [0, 2, 1], that is, the first element of sequence B (number 0) is the first element in sequence A (serial number is 0), sequence B The second element (number 1) is the third element in sequence A (number 2), and the third element of sequence B (number 2) is the second element in sequence A (number 1) .
  • mapping function can be obtained from the reference sequence and the congruence sequence obtained as described above.
  • the encoded polar code can be interleaved based on the mapping function obtained as described above.
  • the bit value of the first bit (number 0) of the interleaved polarity code is the first of the polarity codes before the interleaving process.
  • the bit value of the bit (number is 0
  • the bit value of the second bit (number 1) of the polarity code after the interleaving process and the bit value of the third bit (number 2) of the polarity code before the interleaving process
  • the bit value of the third bit (No. 2) of the polarity code after the interleaving process is the bit value of the second bit (No. 1) of the polarity code before the interleaving process.
  • control signaling includes, but is not limited to, one of the following control channels: a physical layer downlink control channel PDCCH, a physical broadcast channel PBCH, and a physical layer uplink control channel PUCCH. It should be understood that control signaling may also be referred to as a control channel.
  • mapping function is:
  • mapping function is:
  • FIG. 9 is a schematic block diagram of a rate matching apparatus for a polar code according to an embodiment of the present invention.
  • the rate matching device 900 in FIG. 9 includes an obtaining unit 901, a sorting unit 902, a determining unit 903, and an interleaving unit 904.
  • the obtaining unit 901 is configured to obtain a congruence sequence according to the length of the polarity code coded bits of the control signaling.
  • the sorting unit 902 is configured to perform a sorting process on the congruence sequence according to a preset rule to obtain a reference sequence.
  • the determining unit 903 is configured to determine a mapping function according to the congruence sequence and the reference sequence.
  • the interleaving unit 904 is configured to interleave the polarity code coded bits of the control signaling according to the mapping function to generate the coded bits after the interleaving.
  • a rate matching apparatus for a polar code determines a congruence sequence by using a length of a control signaling polarity code coded bit, and implements interleaving of a control signaling polar code coded bit by the congruence sequence,
  • the interleaved bit sequence structure can be more uniform, the frame error rate can be reduced, the communication reliability can be improved, and the polarization code rate matching process for various code lengths can be applied, which has good versatility and practicality. Sex.
  • control signaling is broadcast signaling
  • rate matching device further includes an intercepting unit 905.
  • the intercepting unit 905 is used to:
  • the interleaved coded bits are processed in reverse order, and the first E bits of the coded bits processed in the reverse order are input to the circular buffer according to the preset value E.
  • the acquiring unit 901 is specifically configured to:
  • N is the length of the coded bits of the control signaling
  • x 0 , a, c, and m are specific parameters
  • x(0), x(1), ..., x(N-1) are congruence sequences. It should be understood that the length of the polarity code coded bits of N for control signaling means that N is the code length of the Polar code.
  • Equation (2) represents a linear congruence method, m represents a modulus, and m > 0; a represents a multiplier; c represents an increment; and x (0) represents a starting value.
  • mapping function can be determined based on the congruence sequence and the reference sequence obtained as described above. Specifically, since each element in the congruence sequence is sorted, the above mapping function can be determined based on the position of each element in the congruence sequence and the reference sequence.
  • mapping function p can be expressed as [0, 2, 1], that is, the first element of sequence B (number 0) is the first element in sequence A (serial number is 0), sequence B The second element (number 1) is the third element in sequence A (number 2), and the third element of sequence B (number 2) is the second element in sequence A (number 1) .
  • mapping function can be obtained from the reference sequence and the congruence sequence obtained as described above.
  • the encoded polar code can be interleaved based on the mapping function obtained as described above.
  • the bit value of the first bit (number 0) of the interleaved polarity code is the first of the polarity codes before the interleaving process.
  • the bit value of the bit (number is 0
  • the bit value of the second bit (number 1) of the polarity code after the interleaving process and the bit value of the third bit (number 2) of the polarity code before the interleaving process
  • the bit value of the third bit (No. 2) of the polarity code after the interleaving process is the bit value of the second bit (No. 1) of the polarity code before the interleaving process.
  • control signaling includes, but is not limited to, one of the following control channels: a physical layer downlink control channel PDCCH, a physical broadcast channel PBCH, and a physical layer uplink control channel PUCCH. It should be understood that control signaling may also be referred to as a control channel.
  • mapping function is:
  • mapping function is:
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computing Systems (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种极性码的编码方法和编码装置。该方法包括:将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数;对映射后的比特进行极性码编码,得到编码后的编码比特。本发明实施例能够提高广播信令传输的可靠性。

Description

极性码的编码方法和编码装置 技术领域
本发明实施例涉及编解码领域,并且更具体地,涉及一种极性码的编码方法和编码装置。
背景技术
通信系统通常采用信道编码提高数据传输的可靠性,保证通信的质量。极性码(Polar码)是可以取得香农容量且具有低编译码复杂度的编码方式。Polar码是一种线性块码,包括信息比特和冻结比特。Polar码的生成矩阵为GN.,其编码过程为
Figure PCTCN2014094475-appb-000001
这里,
Figure PCTCN2014094475-appb-000002
是一个二进制的行矢量,长度为N。
然而,在使用Polar码进行物理广播信道(Physical Broadcast Channel,PBCH)信道编码时,广播信道的传输可靠性还有进一步提升的空间。
发明内容
本发明实施例提供了一种极性码的编码方法和编码装置,能够提高广播信令传输的可靠性。
第一方面,本发明实施例提供了一种极性码的编码方法,包括:
将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数;
对映射后的比特进行极性码编码,得到编码后的编码比特。
结合第一方面,在第一方面的第一种实现方式中,可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者可靠性低的M个信息比特包括K个信息比特中的可靠性最低的M个信息比特。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,在将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特之前,该编码方法还包括:
根据K个信息比特的可靠性的大小,对K个信息比特进行排序。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,信 息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,在对映射后的比特进行极性码编码,得到编码后的编码比特之后,该编码方法还包括:
对编码后的编码比特进行排序同余交织,得到交织后的编码比特;
根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器,或者,
对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,对编码后的编码比特进行排序同余交织,得到交织后的编码比特,包括:
根据编码后的编码比特的长度,获取同余序列;
根据预设规则,对同余序列进行排序处理,得到参考序列;
根据同余序列和参考序列,确定映射函数;
根据映射函数,对编码后的编码比特进行交织,得到交织后的编码比特。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,根据编码后的编码比特的长度,获取同余序列,包括:
根据以下公式,确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
其中,N为编码后的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。
第二方面,本发明实施例提供了一种编码装置,包括:
映射单元,用于将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数;
编码单元,用于对映射后的比特进行极性码编码,得到编码后的编码比特。
结合第二方面,在第二方面的第一种实现方式中,可靠性低的M个信 息比特包括可靠性低于预设阈值的M个信息比特,或者可靠性低的M个信息比特包括K个信息比特中的可靠性最低的M个信息比特。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,编码装置还包括排序单元,用于根据K个信息比特的可靠性的大小,对K个信息比特进行排序。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,编码装置还包括交织单元和截取单元,
交织单元,用于对编码后的编码比特进行排序同余交织,得到交织后的编码比特;
截取单元,用于根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器,或者,
用于对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
结合第二方面及其上述实现方式,在第二方面的第五种实现方式中,交织单元具体用于,
根据编码后的编码比特的长度,获取同余序列;
根据预设规则,对同余序列进行排序处理,得到参考序列;
根据同余序列和参考序列,确定映射函数;
根据映射函数,对编码后的编码比特进行交织,得到交织后的编码比特。
结合第二方面及其上述实现方式,在第二方面的第六种实现方式中,交织单元具体用于,根据以下公式,确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
其中,N为编码后的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。
第三方面,本发明实施例提供了一种极性码的速率匹配的方法,包括:
根据控制信令的极性码编码比特的长度,获取同余序列;
根据预设规则,对同余序列进行排序处理,得到取参考序列;
根据同余序列和参考序列,确定映射函数;
根据映射函数,对控制信令的极性码编码比特进行交织,生成交织后的编码比特。
结合第三方面,在第三方面的第一种实现方式中,控制信令为广播信令,该方法还包括:
根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器,或者,
对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,根据控制信令的极性码编码比特的长度,获取同余序列,包括:
根据以下公式,确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
其中,N为控制信令的极性码编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,a=75,c=0,m=231-1。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,控制信令包括但不限于以下控制信道中的一种:物理层下行控制信道PDCCH,物理广播信道PBCH和物理层上行控制信道PUCCH。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,当N=128时,映射函数为:
{0,112,35,14,48,1,99,54,28,120,126,46,114,110,43,32,81,18,113,63,75,38,64,7,15,37,19,70,27,12,34,50,17,86,3,68,98,23,111,62,57,61,89,59,13,56,66,107,47,41,124,30,2,49,44,88,65,45,123,104,10,85,102,103,122,91,121,58,73,60,26,8,55,105,94,82,115,69,74,83,106,95,9,108,53,90,29,11,36,42,87,39,101,76,4,67,93,31,97,119,100,72,6,5,22,118,25,117,125,92,80,77,21,79,116,33,20,71,52,109,84,51,96,24,40,78,16,127}。
结合第三方面及其上述实现方式,在第三方面的第六种实现方式中,当N=256时,映射函数为:
{0,188,112,128,183,35,150,14,48,149,148,154,130,1,229,152,131,197,182,248,253,99,54,245,231,165,28,226,120,132,136,185,168,196,187,200,159,211,147,126,46,157,114,110,210,43,32,81,18,113,63,158,75,222,38,170,219,208,237,220,252,64,137,230,216,133,7,192,218,15,37,217,19,70,27,173,155,12,34,239,50,207,175,169,223,242,240,17,161,86,3,68,98,23,145,111,62,189,202,57,61,89,59,13,56,66,199,167,214,179,215,221,107,47,41,124,234,30,2,49,44,88,201,65,195,205,45,123,104,10,85,193,102,177,103,122,225,241,181,227,91,172,121,58,142,174,73,134,60,250,180,26,8,55,236,105,94,235,194,82,162,160,243,115,69,74,83,106,191,95,232,9,108,206,53,212,209,90,29,11,139,36,42,87,39,178,101,144,151,138,247,76,4,238,143,67,146,93,254,31,198,97,119,100,171,163,204,72,6,5,22,118,190,233,141,213,25,117,125,92,246,153,80,186,135,77,251,21,79,249,116,203,164,129,33,20,71,184,52,244,109,84,51,96,24,255,40,224,176,78,140,228,16,127,166,156}。
第四方面,本发明实施例提供了一种极性码的速率匹配装置,包括:
获取单元,用于根据控制信令的极性码编码比特的长度,获取同余序列;
排序单元,用于根据预设规则,对同余序列进行排序处理,得到参考序列;
确定单元,用于根据同余序列和参考序列,确定映射函数;
交织单元,用于根据映射函数,对控制信令的极性码编码比特进行交织,生成交织后的编码比特。
结合第四方面,在第四方面的第一种实现方式中,控制信令为广播信令,速率匹配装置还包括截取单元,截取单元用于,
根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器,或者,
对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,获取单元具体用于,根据以下公式,确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
其中,N为控制信令的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,a=75,c=0,m=231-1。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,控制信令包括但不限于以下控制信道中的一种:物理层下行控制信道PDCCH,物理广播信道PBCH和物理层上行控制信道PUCCH。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,当N=128时,映射函数为:
{0,112,35,14,48,1,99,54,28,120,126,46,114,110,43,32,81,18,113,63,75,38,64,7,15,37,19,70,27,12,34,50,17,86,3,68,98,23,111,62,57,61,89,59,13,56,66,107,47,41,124,30,2,49,44,88,65,45,123,104,10,85,102,103,122,91,121,58,73,60,26,8,55,105,94,82,115,69,74,83,106,95,9,108,53,90,29,11,36,42,87,39,101,76,4,67,93,31,97,119,100,72,6,5,22,118,25,117,125,92,80,77,21,79,116,33,20,71,52,109,84,51,96,24,40,78,16,127}。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,当N=256时,映射函数为:
{0,188,112,128,183,35,150,14,48,149,148,154,130,1,229,152,131,197,182,248,253,99,54,245,231,165,28,226,120,132,136,185,168,196,187,200,159,211,147,126,46,157,114,110,210,43,32,81,18,113,63,158,75,222,38,170,219,208,237,220,252,64,137,230,216,133,7,192,218,15,37,217,19,70,27,173,155,12,34,239,50,207,175,169,223,242, 240,17,161,86,3,68,98,23,145,111,62,189,202,57,61,89,59,13,56,66,199,167,214,179,215,221,107,47,41,124,234,30,2,49,44,88,201,65,195,205,45,123,104,10,85,193,102,177,103,122,225,241,181,227,91,172,121,58,142,174,73,134,60,250,180,26,8,55,236,105,94,235,194,82,162,160,243,115,69,74,83,106,191,95,232,9,108,206,53,212,209,90,29,11,139,36,42,87,39,178,101,144,151,138,247,76,4,238,143,67,146,93,254,31,198,97,119,100,171,163,204,72,6,5,22,118,190,233,141,213,25,117,125,92,246,153,80,186,135,77,251,21,79,249,116,203,164,129,33,20,71,184,52,244,109,84,51,96,24,255,40,224,176,78,140,228,16,127,166,156}。
基于上述技术方案,在发送广播信令(如物理广播信道PBCH)时,先根据Polar码中信息比特的可靠性大小进行映射,再对映射后的比特进行Polar码编码。这样,可以避免将广播信令中的有用比特映射到可靠性低的信息比特上,进而能够提高Polar码的编码性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本文所述的各个实施例的无线通信系统。
图2示出了在无线通信环境中适用本发明的用于极性码编码方法的系统的示意性框图。
图3是本发明实施例的极性码的编码方法的示意性流程图。
图4是本发明一个实施例的极性码的编码装置的示意性框图。
图5是在无线通信系统中有助于执行前述Polar码的编码方法的接入终端的示意图。
图6是在无线通信环境中有执行前述Polar码的编码方法的系统的示意图。
图7是无线通信环境中能够使用Polar码的编码方法的系统。
图8是本发明实施例的极性码的速率匹配的方法的示意性流程图。
图9是本发明实施例的极性码的速率匹配装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
此外,结合接入终端描述各个实施例。接入终端也可以称为系统、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或UE(User Equipment,用户设备)。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。此外,结合基站描述了各个实施例。基站可用于与移动设备通信,基站可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB 或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者未来5G网络中的基站设备等。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1示出了根据本文所述的各个实施例的无线通信系统。系统100包括基站102,基站102可包括多个天线组。例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与一个或多个接入终端(例如接入终端116和接入终端122)通信。然而,可以理解,基站102可以与类似于接入终端116和122的基本上任意数目的接入终端通信。接入终端116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。如图所示,接入终端116与天线112和114通信,其中天线112和114通过前向链路118向接入终端116发送信息,并通过反向链路120从接入终端116接收信息。此外,接入终端122与天线104和106通信,其中天线104和106通过前向链路124向接入终端122发送信息,并通过反向链路126从接入终端122接收信息。在FDD(Frequency Division Duplex,频分双工)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。此外,在 TDD(Time Division Duplex,时分双工)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的接入终端通信。在通过前向链路118和124的通信中,基站102的发射天线可利用波束成形来改善针对接入终端116和122的前向链路118和124的信噪比。此外,与基站通过单个天线向它所有的接入终端发送相比,在基站102利用波束成形向相关覆盖区域中随机分散的接入终端116和122发送时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、接入终端116和/或接入终端122可以是发送无线通信装置和/或接收无线通信装置。当发送数据时,发送无线通信装置可对数据进行编码以用于传输。具体地,发送无线通信装置可具有(例如生成、获得、在存储器中保存等)要通过信道发送至接收无线通信装置的一定数目的信息比特。这种信息比特可包含在数据的传输块(或多个传输块)中,其可被分段以产生多个代码块。此外,发送无线通信装置可使用Polar码编码器(未示出)来对每个代码块编码,以提高数据传输的可靠性,进而保证通信质量。
图2示出了在无线通信环境中适用本发明的用于极性码编码方法的系统的示意性框图。系统200包括无线通信设备202,该无线通信设备202被显示为经由信道发送数据。尽管示出为发送数据,但无线通信设备202还可经由信道接收数据(例如,无线通信设备202可同时发送和接收数据,无线通信设备202可以在不同时刻发送和接收数据,或其组合等)。无线通信设备202例如可以是基站(例如图1的基站102等)、接入终端(例如图1的接入终端116、图1的接入终端122等)等。
无线通信设备202可包括极性码编码器204,速率匹配装置205,发射机206。可选地,当无线通信设备202经由信道接收数据时,该无线通信设备202还可以包括一个接收机,该接收机可以单独存在,也可以与发射机206集成在一起形成一个收发机。
其中,极性码编码器204用于对要从无线通信装置202传送的数据进行编码得到编码后的极性码。
在本发明实施例中,极性编码器204用于将广播信令的M个预留比特 分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数;对映射后的比特进行极性码编码,得到编码后的编码比特。
此外,发射机206可随后在信道上传送经过速率匹配装置205处理后的经过速率匹配的输出比特。例如,发射机206可以将相关数据发送到其它不同的无线通信装置(未示出)。
下面,将对上述极性码编码器的具体处理过程,进行详细说明。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
图3是本发明实施例的极性码的编码方法的示意性流程图。图3所示的方法可以由无线通信设备执行,如图2所示的无线通信设备中的极性编码器204。图3所述的编码方法包括:
301,将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特。其中,M<K,且M与K均为正整数。
应理解,广播信令是指承载在广播信道(如,物理广播信道PBCH)上的信令。广播信令通常会包括若干实际上并不携带有用信息的预留比特,这样在Polar码编码的过程中,将预留比特映射到可靠性低的信息比特,即使预留比特在传输过程中发生变化,也不会影响广播信令的正确解码。
也应理解,本发明实施例对可靠性的度量形式不作限制。例如可参照现有Polar码的可靠性度量,如比特容量、巴氏距离Bhattacharyya参数、错误概率等。
例如,假设广播信令(由PBCH信道承载的信令)经过循环冗余校验(Cyclic Redundancy Check,CRC)后的结果为a0,a1,…,a13,a14,…,a23,a24,…,a39,其中a14,…,a23为预留比特(10个),a24,…,a39对应于校验比特(可以包含掩码)。假设极性码中可靠性低的10个信息比特分别为{79,106,55,105,92,102,90,101,47,89}。这样,将前述10个预留比特映射到前述可靠性低的10个信息比特时,可以通过交织器使得u(79)=a14,u(106)=a15,u(55)=a16,u(105)=a17,u(92)=a18,u(102)=a19,u(90)=a20,u(101)=a21,u(47)=a22, u(89)=a23,进而完成了将预留比特映射到信息比特的过程。相似地,在将广播信令的剩余比特映射到极性码的剩余信息比特时,可以参照前述方法,为避免重复,在此不再赘述。
302,对映射后的比特进行极性码(Polar码)编码,得到编码后的编码比特。
例如,在无线通信设备准备通过PBCH(Physical Broadcast Channel,PBCH)信道发送广播信令时,可以先对该广播信令进行极性码编码。Polar码的编码输出可以表示为公式(1):
Figure PCTCN2014094475-appb-000003
其中,
Figure PCTCN2014094475-appb-000004
是一个二进制的行矢量,长度为N;GN.是一个N*N矩阵,
Figure PCTCN2014094475-appb-000005
N为编码后的编码比特的长度,n≥0;这里
Figure PCTCN2014094475-appb-000006
BN是转置矩阵,
Figure PCTCN2014094475-appb-000007
是克罗内克幂(kronecker power),定义为
Figure PCTCN2014094475-appb-000008
在Polar码的编码过程中,
Figure PCTCN2014094475-appb-000009
中的一部分比特用来携带信息(即,需要发送给接收端的信息),这部分比特称为信息比特,这些比特的索引集合记为A;另外剩下的那一部分比特是固定值,称为冻结frozen比特,例如,可以常设置为0。
按照本发明实施例的方法,根据广播信令的预留比特的长度,也即预留比特的个数M,将预留比特映射到极性码的M个可靠性最低的信息比特,将广播信令的剩余比特映射到极性码的剩余信息比特。然后,可以根据公式(1)示出的编码过程,得到编码后的Polar码,也即得到了编码后的编码比特。
经由Polar码编码器的编码处理而输出的编码后的Polar码,可以简化为:
Figure PCTCN2014094475-appb-000010
其中,uA
Figure PCTCN2014094475-appb-000011
中的信息比特集合,uA为长度K的行矢量,K为信息比特个数。GN.(A)是GN.中由集合A中的索引对应的那些行得到的子矩阵,GN.(A)是一个K*N矩阵。
基于上述技术方案,在发送广播信令时,先根据Polar码中信息比特的可靠性大小进行映射,再对映射后的比特进行Polar码编码。这样,可以避免将广播信令中的有用比特映射到可靠性低的信息比特上,进而能够提高广播信令传输的可靠性。
可选地,作为一个实施例,可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者可靠性低的M个信息比特包括K个信息比 特中的可靠性最低的M个信息比特。
可选地,作为另一实施例,在将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特之前,可以先根据K个信息比特的可靠性的大小,对K个信息比特进行排序。这种情况下,在将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特时,可以根据排序结果,将M个预留比特分别映射到K个信息比特中的可靠性低的M个信息比特。
例如,以极性码码长为128比特为例进行说明。其中,极性码包括40个信息比特,按照可靠性的从大到小将40个信息比特进行排序,得到以下排序后的索引:
{127,126,125,23,119,111,95,124,122,63,121,118,117,115,110,109,107,94,93,103,91,62,120,87,61,116,114,59,108,113,79,106,55,105,92,102,90,101,47,89}。
假设广播信令的长度为40比特,其中包括10比特的预留比特。这样,10比特的预留比特应该分别映射到{79,106,55,105,92,102,90,101,47,89}对应的信息比特上。广播信令的剩余比特映射到出上述10比特以外的其它信息比特上。
可选地,作为另一实施例,信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
例如,在使用比特容量作为信息比特的可靠性度量时,可以先确定Polar码的每个信息比特的比特容量,以比特容量的大小来表示信息比特可靠性的大小。其中,比特容量大的比特的可靠性高。
或者,在使用Bhattacharyya参数作为信息比特的可靠性度量时,可以确定Polar码的每个信息比特的Bhattacharyya参数,以Bhattacharyya参数大小来表示信息比特可靠性的大小。其中,Bhattacharyya参数小的信息比特的可靠性高。
可选地,作为另一实施例,在对映射后的比特进行极性码编码,得到编码后的编码比特之后,可以对编码后的编码比特进行排序同余交织,得到交织后的编码比特。然后,根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器。或者,对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
应理解,预设的数值E与广播信令的帧格式有关。这样,本发明实施例可以进一步提高码速率。
例如,前述交织过程可以由图2中示出的无线通信设备202中的速率匹配装置205执行。极性编码器204可以按照前述方法进行极性码编码,并输出编码后的编码比特。速率匹配装置205对极性编码器204输出的编码比特进行排序同余交织,并截取交织后的前E个比特,作为最终输出结果,输出至循环缓冲器。通常该循环缓冲器位于图2中示出的发射机206中,这样,发射机将循环缓冲器中的数据发射出去。
表一
Figure PCTCN2014094475-appb-000012
表一给出了目标误包率1%下,不同List长度大小下的基于Polar码的PBCH信道和LTE标准的基于咬尾卷积的PBCH信道的相对性能增益。从表一中可以看出,我们提出的Polar码的PBCH方案相对LTE标准的咬尾卷积码的PBCH方案在同等译码复杂度的情况下最少有0.8dB的增益。
可选地,作为另一实施例,对编码后的编码比特进行排序同余交织,得到交织后的编码比特时,可以先根据编码后的编码比特的长度,获取同余序列。然后,根据预设规则,对同余序列进行排序处理,得到参考序列。这样,可以根据同余序列和参考序列,确定映射函数,并根据映射函数,对编码后的编码比特进行交织,得到交织后的编码比特。
可选地,作为另一实施例,根据编码后的编码比特的长度,获取同余序列时,可以根据以下公式(2),确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)         (2)
其中,N为编码后的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。
应理解,N为编码后的编码比特的长度是指N为Polar码的码长。
具体地说,设Q是一个给定的正整数,如果两个整数A,B用Q除,所得的余数相同,则称A,B对模Q同余。公式(2)表示了线性同余法,m表示模数,且m>0;a表示乘数;c表示增量;x(0)表示开始值。
可选地,作为另一实施例,x0=4831,a=75,c=0,m=231-1。
在本发明实施例中,可以基于matlab,通过以下程序,生成同余序列:
Figure PCTCN2014094475-appb-000013
该程序的具体注释为:
语句1:定义实现同余序列的函数multiplieCongru_interg,函数的返回值为seq_x,,其中,initial为同余序列的的起始值,是该函数的一个输入参数,length为同余序列的元素的个数,即length=N,N为极性码的码长。
语句2:定义同余序列中的首个元素,即,seq_x(1)为预设的起始值。
语句3:定义参数a=75
语句4:定义参数c=0。
语句5:定义参数m=231-1。
语句6:定义k的取值范围为[1,length-1]。
语句7:定义seq_x(k+1)为a*seq_x(k)+c对m取模。
需要说明的是,由于matlab中数组的序号是从1开始,故matlab的伪码中的序号是从1到N。
其后,无线通信设备可以按升序(预设规则的一例),对如上所述确定的同余序列进行排序处理,在本发明实施例中,例如可以使用sort函数,进行上述排序处理,其中,sort函数可表示为sort([first,last]),即,对在[first, last]中的元素进行按升序排序。
进一步地,本发明实施例中,可以基于matlab,通过以下程序,对如上所述生成同余序列进行排序:
st2=4831;
[seq_x]=multiplieCongru_interg(N,st2);
[ign,p]=sort(seq_x);
Interleaver_RM=p;
由此,可以将经上述排序处理后的同余序列作为参考序列。
这样,可以根据前述获得的同余序列和参考序列,确定映射函数。具体地说,由于对同余序列中的各元素进行了排序处理,因此,可以根据各元素在同余序列和参考序列中的位置,确定上述映射函数。
作为示例而非限定,如果一个序列A为[0,7,1],则对序列A进行升序处理后得到序列B为[0,1,7],从而,序列A到序列B的映射规则(或者说,映射函数)p可以表示为[0,2,1],即,序列B的第一个元素(序号为0)为序列A中的第一个元素(序号为0),序列B的第二个元素(序号为1)为序列A中的第三个元素(序号为2),序列B的第三个元素(序号为2)为序列A中的第二个元素(序号为1)。
同理,可以根据如上所述得到的参考序列和同余序列,获得映射函数。从而,可以基于如上所述获得的映射函数,对编码后的极性码进行交织处理。
作为示例而非限定,如果映射函数p为[0,2,1],则交织后的极性码的第一位(序号为0)的比特值,为交织处理前的极性码的第一位(序号为0)的比特值,交织处理后的极性码的第二位(序号为1)的比特值,为交织处理前的极性码的第三位(序号为2)的比特值,交织处理后的极性码的第三位(序号为2)的比特值,为交织处理前的极性码的第二位(序号为1)的比特值。
图4是本发明一个实施例的极性码的编码装置的示意性框图。图4的编码装置400可以位于基站或接入终端(例如基站102和接入终端116),其包括映射单元401和编码单元402。
映射单元401,用于将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与 K均为正整数。
应理解,广播信令是指承载在广播信道(如,物理广播信道PBCH)上的信令。广播信令通常会包括若干实际上并不携带有用信息的预留比特,这样在Polar码编码的过程中,将预留比特映射到可靠性低的信息比特,即使预留比特在传输过程中发生变化,也不会影响广播信令的正确解码。
也应理解,本发明实施例对可靠性的度量形式不作限制。例如可参照现有Polar码的可靠性度量,如比特容量、巴氏距离Bhattacharyya参数、错误概率等。
例如,假设广播信令(由PBCH信道承载的信令)经过循环冗余校验(Cyclic Redundancy Check,CRC)后的结果为a0,a1,…,a13,a14,…,a23,a24,…,a39,其中a14,…,a23为预留比特(10个),a24,…,a39对应于校验比特(可以包含掩码)。假设极性码中可靠性低的10个信息比特分别为{79,106,55,105,92,102,90,101,47,89}。这样,将前述10个预留比特映射到前述可靠性低的10个信息比特时,可以通过交织器使得u(79)=a14,u(106)=a15,u(55)=a16,u(105)=a17,u(92)=a18,u(102)=a19,u(90)=a20,u(101)=a21,u(47)=a22,u(89)=a23,进而完成了将预留比特映射到信息比特的过程。相似地,在将广播信令的剩余比特映射到极性码的剩余信息比特时,可以参照前述方法,为避免重复,在此不再赘述。
编码单元402,用于对映射后的比特进行极性码编码,得到编码后的编码比特。
这里,编码单元对映射的比特进行极性码编码的过程可以参照前述实施例中的描述,为避免重复,在此不再赘述。
基于上述技术方案,在发送广播信令时,先根据Polar码中信息比特的可靠性大小进行映射,再对映射后的比特进行Polar码编码。这样,可以避免将广播信令中的有用比特映射到可靠性低的信息比特上,进而能够提高广播信令传输的可靠性。
可选地,作为一个实施例,可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者可靠性低的M个信息比特包括K个信息比特中的可靠性最低的M个信息比特。
可选地,作为另一实施例,编码装置400还包括排序单元403。
排序单元403,用于根据K个信息比特的可靠性的大小,对K个信息比 特进行排序。
这种情况下,编码单元402,具体用于根据排序结果,将M个预留比特分别映射到K个信息比特中的可靠性低的M个信息比特。
例如,以极性码码长为128比特为例进行说明。其中,极性码包括40个信息比特,按照可靠性的从大到小将40个信息比特进行排序,得到以下排序后的索引:
{127,126,125,23,119,111,95,124,122,63,121,118,117,115,110,109,107,94,93,103,91,62,120,87,61,116,114,59,108,113,79,106,55,105,92,102,90,101,47,89}。
假设广播信令的长度为40比特,其中包括10比特的预留比特。这样,10比特的预留比特应该分别映射到{79,106,55,105,92,102,90,101,47,89}对应的信息比特上。广播信令的剩余比特映射到出上述10比特以外的其它信息比特上。
可选地,作为另一实施例,信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
例如,在使用比特容量作为信息比特的可靠性度量时,可以确定先确定Polar码的每个信息比特的比特容量,以比特容量的大小来表示信息比特可靠性的大小。其中,比特容量大的比特的可靠性高。
或者,在使用Bhattacharyya参数作为信息比特的可靠性度量时,可以确定Polar码的每个信息比特的Bhattacharyya参数,以Bhattacharyya参数大小来表示信息比特可靠性的大小。其中,Bhattacharyya参数小的信息比特的可靠性高。
可选地,作为另一实施例,编码装置400还包括交织单元404和截取单元405。其中,交织单404元和截取单元405可以位于如图2所示的无线通信设备202的速率匹配装置205上。这样,速率匹配装置205与极性码编码器204一起构成极性码的编码装置400。
交织单元404,用于对编码后的编码比特进行排序同余交织,得到交织后的编码比特。
截取单元405,用于根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器。
或者,截取单元405用于对交织后的编码比特进行逆序处理,根据预设 的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
应理解,预设的数值E与广播信令的帧格式有关。这样,本发明实施例可以进一步提高码速率。
可选地,作为另一实施例,交织单元404具体用于,根据编码后的编码比特的长度,获取同余序列。然后,根据预设规则,对同余序列进行排序处理,得到参考序列,并根据同余序列和参考序列,确定映射函数。最后,根据映射函数,对编码后的编码比特进行交织,得到交织后的编码比特。
具体地,交织单元404对编码后的编码比特进行交织的过程可以参照前述实施例的具体描述,为避免重复,在此不再赘述。
可选地,作为另一实施例,交织单元404具体用于,根据以下公式(3),确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)   (3)
其中,N为编码后的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。
应理解,N为编码后的编码比特的长度是指N为Polar码的码长。
具体地说,设Q是一个给定的正整数,如果两个整数A,B用Q除,所得的余数相同,则称A,B对模Q同余。公式(2)表示了线性同余法,m表示模数,且m>0;a表示乘数;c表示增量;x(0)表示开始值。
可选地,作为另一实施例,x0=4831,a=75,c=0,m=231-1。
图5是在无线通信系统中有助于执行前述Polar码的编码方法的接入终端的示意图。接入终端500包括接收机502,接收机502用于从例如接收天线(未示出)接收信号,并对所接收的信号执行典型的动作(例如过滤、放大、下变频等),并对调节后的信号进行数字化以获得采样。接收机502可以是例如最小均方误差(Minimum Mean-Squared Error,MMSE)接收机。接入终端500还可包括解调器504,解调器504可用于解调所接收的符号并将它们提供至处理器506用于信道估计。处理器506可以是专用于分析由接收机502接收的信息和/或生成由发射机516发送的信息的处理器、用于控制接入终端500的一个或多个部件的处理器、和/或用于分析由接收机502接收的信息、生成由发射机516发送的信息并控制接入终端500的一个或多个部件的控制器。
接入终端500可以另外包括存储器508,后者可操作地耦合至处理器506,并存储以下数据:要发送的数据、接收的数据以及与执行本文所述的各种动作和功能相关的任意其它适合信息。存储器508可附加地存储Polar码处理的相关的协议和/或算法。
可以理解,本文描述的数据存储装置(例如存储器508)可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。通过示例但不是限制性的,非易失性存储器可包括:只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可包括:随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。本文描述的系统和方法的存储器508旨在包括但不限于这些和任意其它适合类型的存储器。
此外,接入终端500还包括Polar码编码器512和速率匹配设备510。实际的应用中,接收机502还可以耦合至速率匹配设备510。速率匹配设备510可基本类似于图2的速率匹配装置205。Polar码编码器512基本类似于图2的Polar码编码器204。
Polar码编码器512可用于将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数,然后对映射后的比特进行极性码编码,得到编码后的编码比特。
根据本发明实施例,在发送广播信令时,先根据Polar码中信息比特的可靠性大小进行映射,再对映射后的比特进行Polar码编码。这样,可以避免将广播信令中的有用比特映射到可靠性低的信息比特上,进而能够广播信 令传输的可靠性。
可选地,作为一个实施例,可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者可靠性低的M个信息比特包括K个信息比特中的可靠性最低的M个信息比特。
可选地,作为另一实施例,Polar码编码器512根据K个信息比特的可靠性的大小,对K个信息比特进行排序。然后,Polar码编码器512根据排序结果,将M个预留比特分别映射到K个信息比特中的可靠性低的M个信息比特。
可选地,作为另一实施例,信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
可选地,作为另一实施例,速率匹配设备510对编码后的编码比特进行排序同余交织,得到交织后的编码比特,并根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器。
或者,速率匹配设备510对编码后的编码比特进行排序同余交织,得到交织后的编码比特,并对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
可选地,作为另一实施例,速率匹配设备510根据编码后的编码比特的长度,获取同余序列。然后,根据预设规则,对同余序列进行排序处理,得到参考序列,并根据同余序列和参考序列,确定映射函数。最后,根据映射函数,对编码后的编码比特进行交织,得到交织后的编码比特。
可选地,作为另一实施例,速率匹配设备510根据以下公式(4),确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)        (4)
其中,N为编码后的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。
应理解,N为编码后的编码比特的长度是指N为Polar码的码长。
图6是在无线通信环境中有执行前述Polar码的编码方法的系统的示意图。系统600包括基站602(例如接入点,NodeB或eNB等),基站602具有通过多个接收天线606从一个或多个接入终端604接收信号的接收机610,以及通过发射天线608向一个或多个接入终端604发射信号的发射机624。 接收机610可以从接收天线606接收信息,并且可操作地关联至对接收信息进行解调的解调器612。通过相对于图7描述的处理器类似的处理器614来分析所解调的符号,该处理器614连接至存储器616,该存储器616用于存储要发送至接入终端604(或不同的基站(未示出))的数据或从接入终端604(或不同的基站(未示出))接收的数据和/或与执行本文所述的各个动作和功能相关的任意其它适合信息。处理器614还可耦合至Polar码编码器618和速率匹配装置620。
Polar码编码器618可用于将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数。然后,对映射后的比特进行极性码编码,得到编码后的编码比特。
根据本发明实施例,在发送广播信令时,先根据Polar码中信息比特的可靠性大小进行映射,再对映射后的比特进行Polar码编码。这样,可以避免将广播信令中的有用比特映射到可靠性低的信息比特上,进而能够提高广播信令传输的可靠性。
可选地,作为一个实施例,可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者可靠性低的M个信息比特包括K个信息比特中的可靠性最低的M个信息比特。
可选地,作为另一实施例,Polar码编码器618根据K个信息比特的可靠性的大小,对K个信息比特进行排序。然后,Polar码编码器512根据排序结果,将M个预留比特分别映射到K个信息比特中的可靠性低的M个信息比特。
可选地,作为另一实施例,信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
可选地,作为另一实施例,速率匹配设备620对编码后的编码比特进行排序同余交织,得到交织后的编码比特,并根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器。
或者,速率匹配设备620对编码后的编码比特进行排序同余交织,得到交织后的编码比特,并对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
可选地,作为另一实施例,速率匹配设备620根据编码后的编码比特的长度,获取同余序列。然后,根据预设规则,对同余序列进行排序处理,得到参考序列,并根据同余序列和参考序列,确定映射函数。最后,根据映射函数,对编码后的编码比特进行交织,得到交织后的编码比特。
可选地,作为另一实施例,速率匹配设备620根据以下公式(5),确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)           (5)
其中,N为编码后的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。应理解,N为编码后的编码比特的长度是指N为Polar码的码长。
此外,在系统600中,调制器622可以对帧进行复用以用于发射机624通过天线608发送到接入终端604尽管示出为与处理器614分离,但是可以理解,Polar码编码器618、速率匹配装置620和/或调制器622可以是处理器614或多个处理器(未示出)的一部分。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
当在软件、固件、中间件或微码、程序代码或代码段中实现实施例时,它们可存储在例如存储部件的机器可读介质中。代码段可表示过程、函数、子程序、程序、例程、子例程、模块、软件分组、类、或指令、数据结构或程序语句的任意组合。代码段可通过传送和/或接收信息、数据、自变量、参数或存储器内容来稿合至另一代码段或硬件电路。可使用包括存储器共享、消息传递、令牌传递、网络传输等任意适合方式来传递、转发或发送信息、自变量、参数、数据等。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器单元中并通过处理器执 行。存储器单元可以在处理器中或在处理器外部实现,在后一种情况下存储器单元可经由本领域己知的各种手段以通信方式耦合至处理器。
图7是无线通信环境中能够使用Polar码的编码方法的系统。
例如,系统700可至少部分地驻留在基站中。根据另一示例,系统700可至少部分地驻留在接入终端中。应理解的是,系统700可表示为包括功能框,其可以是表示由处理器、软件或其组合(例如固件)实现的功能的功能框。系统700包括具有联合操作的电子部件的逻辑组702。
例如,逻辑组702可包括用于将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数。逻辑组702还可包括用于对映射后的比特进行极性码编码,得到编码后的编码比特。
根据本发明实施例,在发送广播信令时,先根据Polar码中信息比特的可靠性大小进行映射,再对映射后的比特进行Polar码编码。这样,可以避免将广播信令中的有用比特映射到可靠性低的信息比特上,进而能够提高广播信令传输的可靠性。
此外,系统700可包括存储器712,后者保存用于执行与电子部件704,706和708相关的功能的指令。尽管示出为在存储器712的外部,但是可理解,电子部件704、706和708中的一个或多个可存在于存储器712中。
图8是本发明实施例的极性码的速率匹配的方法的示意性流程图。图8所示的方法可以由无线通信设备执行,如图2所示的无线通信设备中的速率匹配装置205。图8所示的速率匹配的方法包括:
801,根据控制信令的极性码编码比特的长度,获取同余序列;
802,根据预设规则,对同余序列进行排序处理,得到参考序列;
803,根据同余序列和参考序列,确定映射函数;
804,根据映射函数,对控制信令的极性码编码比特进行交织,生成交织后的编码比特。
根据本发明实施例的极性码的速率匹配的方法,通过基于控制信令极性码编码比特的长度确定同余序列,并通过该同余序列实现对控制信令极性码编码比特的交织,能够使交织后的比特序列结构更具均匀性,能够降低误帧率,提高通信的可靠性,并且,能够适用于针对各种码长的极化码速率匹配 过程,具有良好的通用性和实用性。
具体地说,在步骤801,发送端可以通过例如Polar码编码器,对需要发送至接收端的信息,进行Polar码编码处理,以生成极化码(即,控制信令编码比特),极化码是一种线性块码,在理论上已证明可以取得香农容量且具有低编译码复杂度的编码方式。Polar码的编码输出可以表示为:
Figure PCTCN2014094475-appb-000014
其中,
Figure PCTCN2014094475-appb-000015
是一个二进制的行矢量,长度为N;GN.是一个N*N矩阵,
Figure PCTCN2014094475-appb-000016
码长N=2n,n≥0;这里
Figure PCTCN2014094475-appb-000017
BN是转置矩阵,
Figure PCTCN2014094475-appb-000018
是克罗内克幂(kronecker power),定义为
Figure PCTCN2014094475-appb-000019
在Polar码的编码过程中,
Figure PCTCN2014094475-appb-000020
中的一部分比特用来携带信息(即,需要发送给接收端的数据信息),这部分比特称为信息比特,这些比特的索引集合记为A;另外剩下的那一部分比特是固定值,称为frozen比特,例如,可以常设置为0。
从而,经由Polar码编码器的编码处理而输出的Polar码比特序列,可以简化为:
Figure PCTCN2014094475-appb-000021
其中,uA
Figure PCTCN2014094475-appb-000022
中的信息比特集合,uA为长度K的行矢量,K为信息比特数目。GN.(A)是GN.中由集合A中的索引对应的那些行得到的子矩阵,GN.(A)是一个K*N矩阵,集合A的选取决定了Polar码的性能。
应理解,以上列举的获取Polar码的过程仅为示例性说明,本发明并不限定于此,其他的对信息进行编码处理而获得具有Polar码特性的比特序列的方法均落入本发明的保护范围内。
也应理解,控制信令的极性码编码比特是指对控制信令进行极性码编码得到的编码比特。
可选地,作为一个实施例,控制信令为广播信令。这种情况下,根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器,或者,对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
可选地,作为另一实施例,根据控制信令的极性码编码比特的长度,获取同余序列时,根据以下公式,确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
其中,N为控制信令的极性码编码比特的长度,x0、a、c、m为特定参 数,x(0),x(1),...,x(N-1)为同余序列。应理解,N为控制信令的极性码编码比特的长度是指N为Polar码的码长。
具体地说,设Q是一个给定的正整数,如果两个整数A,B用Q除,所得的余数相同,则称A,B对模Q同余。公式(2)表示了线性同余法,m表示模数,且m>0;a表示乘数;c表示增量;x(0)表示开始值。
这样,可以根据前述获得的同余序列和参考序列,确定映射函数。具体地说,由于对同余序列中的各元素进行了排序处理,因此,可以根据各元素在同余序列和参考序列中的位置,确定上述映射函数。
作为示例而非限定,如果一个序列A为[0,7,1],则对序列A进行升序处理后得到序列B为[0,1,7],从而,序列A到序列B的映射规则(或者说,映射函数)p可以表示为[0,2,1],即,序列B的第一个元素(序号为0)为序列A中的第一个元素(序号为0),序列B的第二个元素(序号为1)为序列A中的第三个元素(序号为2),序列B的第三个元素(序号为2)为序列A中的第二个元素(序号为1)。
同理,可以根据如上所述得到的参考序列和同余序列,获得映射函数。从而,可以基于如上所述获得的映射函数,对编码后的极性码进行交织处理。
作为示例而非限定,如果映射函数p为[0,2,1],则交织后的极性码的第一位(序号为0)的比特值,为交织处理前的极性码的第一位(序号为0)的比特值,交织处理后的极性码的第二位(序号为1)的比特值,为交织处理前的极性码的第三位(序号为2)的比特值,交织处理后的极性码的第三位(序号为2)的比特值,为交织处理前的极性码的第二位(序号为1)的比特值。
可选地,作为另一实施例,控制信令包括但不限于以下控制信道中的一种:物理层下行控制信道PDCCH,物理广播信道PBCH和物理层上行控制信道PUCCH。应理解,控制信令也可称为控制信道。
可选地,作为另一实施例,当N=128时,映射函数为:
{0,112,35,14,48,1,99,54,28,120,126,46,114,110,43,32,81,18,113,63,75,38,64,7,15,37,19,70,27,12,34,50,17,86,3,68,98,23,111,62,57,61,89,59,13,56,66,107,47,41,124,30,2,49,44,88,65,45,123,104,10,85,102,103,122,91,121,58,73,60,26,8,55,105,94,82,115,69,74,83, 106,95,9,108,53,90,29,11,36,42,87,39,101,76,4,67,93,31,97,119,100,72,6,5,22,118,25,117,125,92,80,77,21,79,116,33,20,71,52,109,84,51,96,24,40,78,16,127}。
这时,同余序列为:
{4831,81195000,985810000,707190000,1586500000,1714800000,1700400000,585280000,1278700000,1462300000,1076700000,1500100000,645300000,845220000,38367000,586604271,2108042967,692938163,407887860,603461796,1964624238,1878495441,1715782340,743376464,2015855849,1787239071,1273295708,606422001,177182145,1487976273,970150996,1631941748,383819152,1955095723,646533714,24877378,1502264528,594684317,470422681,1506694960,2042510943,955321706,1504167770,370217906,992220783,1044180926,312459998,917669471,43246343,991814115,651762791,2010628637,1980316514,1478089592,160944248,1308064563,851016002,784856594,1240215484,825361806,1258997469,814087592,751843707,443404601,532873917,1005115029,861925101,1597973492,709990662,1393913502,605122991,1967041192,1698052026,1250215999,1400292945,450239142,1584371213,1877237738,2052404489,1879908509,1842896099,398095212,1374667679,1410606527,1991920056,1077808109,696325518,1504588523,999362636,818220065,1486840714,1212163706,1805531300,1620626990,1342726029,1438206727,2012013704,1636817466,725632992,154065231,1656542782,1536537366,1092655187,1123062412,1076185001,1334036773,1426769131,906382315,1466060034,1991109407,338132248,746962174,3858056,417837782,328076384,1389264039,1918493289,1797232165,1723502100,1640363964,202082762,1233335027,1149637945,1054569556,967989001,1802513782,297325845,2108513993}。
可选地,作为另一实施例,当N=256时,映射函数为:
{0,188,112,128,183,35,150,14,48,149,148,154,130,1,229,152,131,197,182,248,253,99,54,245,231,165,28,226,120,132,136,185,168,196,187,200,159,211,147,126,46,157,114,110,210,43,32,81,18,113,63,158,75,222,38,170,219, 208,237,220,252,64,137,230,216,133,7,192,218,15,37,217,19,70,27,173,155,12,34,239,50,207,175,169,223,242,240,17,161,86,3,68,98,23,145,111,62,189,202,57,61,89,59,13,56,66,199,167,214,179,215,221,107,47,41,124,234,30,2,49,44,88,201,65,195,205,45,123,104,10,85,193,102,177,103,122,225,241,181,227,91,172,121,58,142,174,73,134,60,250,180,26,8,55,236,105,94,235,194,82,162,160,243,115,69,74,83,106,191,95,232,9,108,206,53,212,209,90,29,11,139,36,42,87,39,178,101,144,151,138,247,76,4,238,143,67,146,93,254,31,198,97,119,100,171,163,204,72,6,5,22,118,190,233,141,213,25,117,125,92,246,153,80,186,135,77,251,21,79,249,116,203,164,129,33,20,71,184,52,244,109,84,51,96,24,255,40,224,176,78,140,228,16,127,166,156}。
这时,同余序列为:
{4831,81194617,985812074,707191113,1586533693,1714817099,1700440153,585277195,1278713105,1462300206,1076705974,1500095396,645304792,845221794,38366853,586604271,2108042967,692938163,407887860,603461796,1964624238,1878495441,1715782340,743376464,2015855849,1787239071,1273295708,606422001,177182145,1487976273,970150996,1631941748,383819152,1955095723,646533714,24877378,1502264528,594684317,470422681,1506694960,2042510943,955321706,1504167770,370217906,992220783,1044180926,312459998,917669471,43246343,991814115,651762791,2010628637,1980316514,1478089592,160944248,1308064563,851016002,784856594,1240215484,825361806,1258997469,814087592,751843707,443404601,532873917,1005115029,861925101,1597973492,709990662,1393913502,605122991,1967041192,1698052026,1250215999,1400292945,450239142,1584371213,1877237738,2052404489,1879908509,1842896099,398095212,1374667679,1410606527,1991920056,1077808109,696325518,1504588523,999362636,818220065,1486840714,1212163706,1805531300,1620626990,1342726029, 1438206727,2012013704,1636817466,725632992,154065231,1656542782,1536537366,1092655187,1123062412,1076185001,1334036773,1426769131,906382315,1466060034,1991109407,338132248,746962174,3858056,417837782,328076384,1389264039,1918493289,1797232165,1723502100,1640363964,202082762,1233335027,1149637945,1054569556,967989001,1802513782,297325845,2108513993,19537557,1950206155,71942924,111430407,205110265,576970420,1253182735,1870101016,217118420,534568687,1571827008,1500181709,2095967383,1749544340,1245627656,1593423436,1546610762,745013646,1614686312,281998645,54817586,48683339,29609066,1570849805,108716417,1835720569,58046734,633882600,2145969080,314476195,444154098,244768114,1386507993,694784754,1378771739,1668066243,1937818163,172875139,2114570429,878326000,222492522,662787827,477331400,1657418255,1218226548,624501738,1248127677,661603443,2046225982,1116956416,1531925285,886821112,1265919204,1183570799,133396632,24266556,1973597409,219241501,1857452702,237786075,3495458,766104137,1747766794,1435183092,585904140,1078359485,1373367362,1031015178,226549003,120587290,1633503909,869255315,242828664,1002426548,773781521,1932540862,1671590406,1038883588,1474413406,652311909,502236628,1480274086,368512907,253590001,1479591159,1775460700,882709835,887163369,575781662,601079852,585997076,492851190,505523851,894056225,459895516,670291859,2043545698,1166579815,181253595,1197359719,2103024843,105190328,554801215,170025231,1460806907,1748633445,968600920,1349618180,1310471646,504670690,1587364827,651300708,686850597,1173381154,674724877,1387351579,1988032774,168768945,1821244575,1573151334,135808674,1908750804,1264043942,1878297070,529244590,136558256,1622073596,2033512954}。
可选地,作为另一实施例,a=75,c=0,m=231-1。
图9是本发明实施例的极性码的速率匹配装置的示意性框图。图9中的速率匹配装置900包括获取单元901,排序单元902,确定单元903,和交织单元904。
获取单元901,用于根据控制信令的极性码编码比特的长度,获取同余序列。
排序单元902,用于根据预设规则,对同余序列进行排序处理,得到参考序列。
确定单元903,用于根据同余序列和参考序列,确定映射函数。
交织单元904,用于根据映射函数,对控制信令的极性码编码比特进行交织,生成交织后的编码比特。
根据本发明实施例的极性码的速率匹配装置,通过基于控制信令极性码编码比特的长度确定同余序列,并通过该同余序列实现对控制信令极性码编码比特的交织,能够使交织后的比特序列结构更具均匀性,能够降低误帧率,提高通信的可靠性,并且,能够适用于针对各种码长的极化码速率匹配过程,具有良好的通用性和实用性。
可选地,作为一个实施例,控制信令为广播信令,速率匹配装置还包括截取单元905。截取单元905用于:
根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器,或者,
对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
可选地,作为另一实施例,获取单元901具体用于:
根据以下公式,确定同余序列,
x(0)=xo
x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
其中,N为控制信令的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。应理解,N为控制信令的极性码编码比特的长度是指N为Polar码的码长。
具体地说,设Q是一个给定的正整数,如果两个整数A,B用Q除,所得的余数相同,则称A,B对模Q同余。公式(2)表示了线性同余法,m表示模数,且m>0;a表示乘数;c表示增量;x(0)表示开始值。
这样,可以根据前述获得的同余序列和参考序列,确定映射函数。具体地说,由于对同余序列中的各元素进行了排序处理,因此,可以根据各元素在同余序列和参考序列中的位置,确定上述映射函数。
作为示例而非限定,如果一个序列A为[0,7,1],则对序列A进行升序处理后得到序列B为[0,1,7],从而,序列A到序列B的映射规则(或者说,映射函数)p可以表示为[0,2,1],即,序列B的第一个元素(序号为0)为序列A中的第一个元素(序号为0),序列B的第二个元素(序号为1)为序列A中的第三个元素(序号为2),序列B的第三个元素(序号为2)为序列A中的第二个元素(序号为1)。
同理,可以根据如上所述得到的参考序列和同余序列,获得映射函数。从而,可以基于如上所述获得的映射函数,对编码后的极性码进行交织处理。
作为示例而非限定,如果映射函数p为[0,2,1],则交织后的极性码的第一位(序号为0)的比特值,为交织处理前的极性码的第一位(序号为0)的比特值,交织处理后的极性码的第二位(序号为1)的比特值,为交织处理前的极性码的第三位(序号为2)的比特值,交织处理后的极性码的第三位(序号为2)的比特值,为交织处理前的极性码的第二位(序号为1)的比特值。
可选地,作为另一实施例,a=75,c=0,m=231-1。
可选地,作为另一实施例,控制信令包括但不限于以下控制信道中的一种:物理层下行控制信道PDCCH,物理广播信道PBCH和物理层上行控制信道PUCCH。应理解,控制信令也可称为控制信道。
可选地,作为另一实施例,当N=128时,映射函数为:
{0,112,35,14,48,1,99,54,28,120,126,46,114,110,43,32,81,18,113,63,75,38,64,7,15,37,19,70,27,12,34,50,17,86,3,68,98,23,111,62,57,61,89,59,13,56,66,107,47,41,124,30,2,49,44,88,65,45,123,104,10,85,102,103,122,91,121,58,73,60,26,8,55,105,94,82,115,69,74,83,106,95,9,108,53,90,29,11,36,42,87,39,101,76,4,67,93,31,97,119,100,72,6,5,22,118,25,117,125,92,80,77,21,79,116,33,20,71,52,109,84,51,96,24,40,78,16,127}。
这时,同余序列为:
{4831,81195000,985810000,707190000,1586500000,1714800000,1700400000,585280000,1278700000,1462300000,1076700000,1500100000,645300000,845220000,38367000,586604271,2108042967,692938163, 407887860,603461796,1964624238,1878495441,1715782340,743376464,2015855849,1787239071,1273295708,606422001,177182145,1487976273,970150996,1631941748,383819152,1955095723,646533714,24877378,1502264528,594684317,470422681,1506694960,2042510943,955321706,1504167770,370217906,992220783,1044180926,312459998,917669471,43246343,991814115,651762791,2010628637,1980316514,1478089592,160944248,1308064563,851016002,784856594,1240215484,825361806,1258997469,814087592,751843707,443404601,532873917,1005115029,861925101,1597973492,709990662,1393913502,605122991,1967041192,1698052026,1250215999,1400292945,450239142,1584371213,1877237738,2052404489,1879908509,1842896099,398095212,1374667679,1410606527,1991920056,1077808109,696325518,1504588523,999362636,818220065,1486840714,1212163706,1805531300,1620626990,1342726029,1438206727,2012013704,1636817466,725632992,154065231,1656542782,1536537366,1092655187,1123062412,1076185001,1334036773,1426769131,906382315,1466060034,1991109407,338132248,746962174,3858056,417837782,328076384,1389264039,1918493289,1797232165,1723502100,1640363964,202082762,1233335027,1149637945,1054569556,967989001,1802513782,297325845,2108513993}
可选地,作为另一实施例,当N=256时,映射函数为:
{0,188,112,128,183,35,150,14,48,149,148,154,130,1,229,152,131,197,182,248,253,99,54,245,231,165,28,226,120,132,136,185,168,196,187,200,159,211,147,126,46,157,114,110,210,43,32,81,18,113,63,158,75,222,38,170,219,208,237,220,252,64,137,230,216,133,7,192,218,15,37,217,19,70,27,173,155,12,34,239,50,207,175,169,223,242,240,17,161,86,3,68,98,23,145,111,62,189,202,57,61,89,59,13,56,66,199,167,214,179,215,221,107,47,41,124,234,30,2,49,44,88,201,65,195,205,45,123,104,10,85,193,102,177,103,122,225,241,181,227,91,172,121,58,142,174,73,134,60,250,180,26,8,55,236,105,94,235,194,82, 162,160,243,115,69,74,83,106,191,95,232,9,108,206,53,212,209,90,29,11,139,36,42,87,39,178,101,144,151,138,247,76,4,238,143,67,146,93,254,31,198,97,119,100,171,163,204,72,6,5,22,118,190,233,141,213,25,117,125,92,246,153,80,186,135,77,251,21,79,249,116,203,164,129,33,20,71,184,52,244,109,84,51,96,24,255,40,224,176,78,140,228,16,127,166,156}。
这时,同余序列为:
{4831,81194617,985812074,707191113,1586533693,1714817099,1700440153,585277195,1278713105,1462300206,1076705974,1500095396,645304792,845221794,38366853,586604271,2108042967,692938163,407887860,603461796,1964624238,1878495441,1715782340,743376464,2015855849,1787239071,1273295708,606422001,177182145,1487976273,970150996,1631941748,383819152,1955095723,646533714,24877378,1502264528,594684317,470422681,1506694960,2042510943,955321706,1504167770,370217906,992220783,1044180926,312459998,917669471,43246343,991814115,651762791,2010628637,1980316514,1478089592,160944248,1308064563,851016002,784856594,1240215484,825361806,1258997469,814087592,751843707,443404601,532873917,1005115029,861925101,1597973492,709990662,1393913502,605122991,1967041192,1698052026,1250215999,1400292945,450239142,1584371213,1877237738,2052404489,1879908509,1842896099,398095212,1374667679,1410606527,1991920056,1077808109,696325518,1504588523,999362636,818220065,1486840714,1212163706,1805531300,1620626990,1342726029,1438206727,2012013704,1636817466,725632992,154065231,1656542782,1536537366,1092655187,1123062412,1076185001,1334036773,1426769131,906382315,1466060034,1991109407,338132248,746962174,3858056,417837782,328076384,1389264039,1918493289,1797232165,1723502100,1640363964,202082762,1233335027,1149637945,1054569556,967989001,1802513782,297325845,2108513993,19537557,1950206155,71942924,111430407,205110265,576970420,1253182735,1870101016, 217118420,534568687,1571827008,1500181709,2095967383,1749544340,1245627656,1593423436,1546610762,745013646,1614686312,281998645,54817586,48683339,29609066,1570849805,108716417,1835720569,58046734,633882600,2145969080,314476195,444154098,244768114,1386507993,694784754,1378771739,1668066243,1937818163,172875139,2114570429,878326000,222492522,662787827,477331400,1657418255,1218226548,624501738,1248127677,661603443,2046225982,1116956416,1531925285,886821112,1265919204,1183570799,133396632,24266556,1973597409,219241501,1857452702,237786075,3495458,766104137,1747766794,1435183092,585904140,1078359485,1373367362,1031015178,226549003,120587290,1633503909,869255315,242828664,1002426548,773781521,1932540862,1671590406,1038883588,1474413406,652311909,502236628,1480274086,368512907,253590001,1479591159,1775460700,882709835,887163369,575781662,601079852,585997076,492851190,505523851,894056225,459895516,670291859,2043545698,1166579815,181253595,1197359719,2103024843,105190328,554801215,170025231,1460806907,1748633445,968600920,1349618180,1310471646,504670690,1587364827,651300708,686850597,1173381154,674724877,1387351579,1988032774,168768945,1821244575,1573151334,135808674,1908750804,1264043942,1878297070,529244590,136558256,1622073596,2033512954}。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述 描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (28)

  1. 一种极性码的编码方法,其特征在于,包括:
    将广播信令的M个预留比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将所述广播信令的剩余比特映射到所述K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数;
    对所述映射后的比特进行极性码编码,得到编码后的编码比特。
  2. 根据权利要求1所述的编码方法,其特征在于,所述可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者所述可靠性低的M个信息比特包括所述K个信息比特中的可靠性最低的M个信息比特。
  3. 根据权利要求1或2所述的编码方法,其特征在于,在所述将广播信令的M个预留比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特之前,所述编码方法还包括:
    根据所述K个信息比特的可靠性的大小,对所述K个信息比特进行排序。
  4. 根据权利要求3所述的编码方法,其特征在于,所述信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
  5. 根据权利要求1至4中任一项所述的编码方法,其特征在于,在所述对所述映射后的比特进行极性码编码,得到编码后的编码比特之后,所述编码方法还包括:
    对所述编码后的编码比特进行排序同余交织,得到交织后的编码比特;
    根据预设的数值E,将所述交织后的编码比特的前E个比特输入循环缓冲器,或者,
    对所述交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
  6. 根据权利要求5所述的方法,其特征在于,所述对所述编码后的编码比特进行排序同余交织,得到交织后的编码比特,包括:
    根据所述编码后的编码比特的长度,获取同余序列;
    根据预设规则,对所述同余序列进行排序处理,得到参考序列;
    根据所述同余序列和所述参考序列,确定映射函数;
    根据所述映射函数,对所述编码后的编码比特进行交织,得到交织后的编码比特。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述编码后的编码比特的长度,获取同余序列,包括:
    根据以下公式,确定所述同余序列,
    x(0)=xo
    x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
    其中,N为所述编码后的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为所述同余序列。
  8. 一种极性码的速率匹配的方法,其特征在于,包括:
    根据控制信令的极性码编码比特的长度,获取同余序列;
    根据预设规则,对所述同余序列进行排序处理,得到参考序列;
    根据所述同余序列和所述参考序列,确定映射函数;
    根据所述映射函数,对所述控制信令的极性码编码比特进行交织,生成交织后的编码比特。
  9. 根据权利要求8所述的方法,其特征在于,所述控制信令为广播信令,所述方法还包括:
    根据预设的数值E,将所述交织后的编码比特的前E个比特输入循环缓冲器,或者,
    对所述交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
  10. 根据权利要求8或9所述的方法,其特征在于,所述根据控制信令的极性码编码比特的长度,获取同余序列,包括:
    根据以下公式,确定所述同余序列,
    x(0)=xo
    x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
    其中,N为所述控制信令的极性码编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为所述同余序列。
  11. 根据权利要求10所述的方法,其特征在于,a=75,c=0,m=231-1。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述控制信令包括以下控制信道中的一种:物理层下行控制信道PDCCH,物理广 播信道PBCH和物理层上行控制信道PUCCH。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,当N=128时,所述映射函数为:
    {0,112,35,14,48,1,99,54,28,120,126,46,114,110,43,32,81,18,113,63,75,38,64,7,15,37,19,70,27,12,34,50,17,86,3,68,98,23,111,62,57,61,89,59,13,56,66,107,47,41,124,30,2,49,44,88,65,45,123,104,10,85,102,103,122,91,121,58,73,60,26,8,55,105,94,82,115,69,74,83,106,95,9,108,53,90,29,11,36,42,87,39,101,76,4,67,93,31,97,119,100,72,6,5,22,118,25,117,125,92,80,77,21,79,116,33,20,71,52,109,84,51,96,24,40,78,16,127}。
  14. 根据权利要求8至12中任一项所述的方法,其特征在于,当N=256时,所述映射函数为:
    {0,188,112,128,183,35,150,14,48,149,148,154,130,1,229,152,131,197,182,248,253,99,54,245,231,165,28,226,120,132,136,185,168,196,187,200,159,211,147,126,46,157,114,110,210,43,32,81,18,113,63,158,75,222,38,170,219,208,237,220,252,64,137,230,216,133,7,192,218,15,37,217,19,70,27,173,155,12,34,239,50,207,175,169,223,242,240,17,161,86,3,68,98,23,145,111,62,189,202,57,61,89,59,13,56,66,199,167,214,179,215,221,107,47,41,124,234,30,2,49,44,88,201,65,195,205,45,123,104,10,85,193,102,177,103,122,225,241,181,227,91,172,121,58,142,174,73,134,60,250,180,26,8,55,236,105,94,235,194,82,162,160,243,115,69,74,83,106,191,95,232,9,108,206,53,212,209,90,29,11,139,36,42,87,39,178,101,144,151,138,247,76,4,238,143,67,146,93,254,31,198,97,119,100,171,163,204,72,6,5,22,118,190,233,141,213,25,117,125,92,246,153,80,186,135,77,251,21,79,249,116,203,164,129,33,20,71,184,52,244,109,84,51,96,24,255,40,224,176,78,140,228,16,127,166,156}。
  15. 一种极性码的编码装置,其特征在于,包括:
    映射单元,用于将广播信令的M个预留比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将所述广播信令的剩余比特映射到所述K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数;
    编码单元,用于对所述映射后的比特进行极性码编码,得到编码后的编码比特。
  16. 根据权利要求15所述的编码装置,其特征在于,所述可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者所述可靠性低的M个信息比特包括所述K个信息比特中的可靠性最低的M个信息比特。
  17. 根据权利要求15或16所述的编码装置,其特征在于,所述编码装置还包括排序单元,用于根据所述K个信息比特的可靠性的大小,对所述K个信息比特进行排序。
  18. 根据权利要求17所述的编码装置,其特征在于,所述信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
  19. 根据权利要求15至18中任一项所述的编码装置,其特征在于,所述编码装置还包括交织单元和截取单元,
    所述交织单元,用于对所述编码后的编码比特进行排序同余交织,得到交织后的编码比特;
    所述截取单元,用于根据预设的数值E,将所述交织后的编码比特的前E个比特输入循环缓冲器,或者,
    用于对所述交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
  20. 根据权利要求19所述的编码装置,其特征在于,所述交织单元具体用于,
    根据所述编码后的编码比特的长度,获取同余序列;
    根据预设规则,对所述同余序列进行排序处理,得到参考序列;
    根据所述同余序列和所述参考序列,确定映射函数;
    根据所述映射函数,对所述编码后的编码比特进行交织,得到交织后的编码比特。
  21. 根据权利要求20所述的编码装置,其特征在于,所述交织单元具体用于,根据以下公式,确定所述同余序列,
    x(0)=xo
    x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
    其中,N为所述编码后的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为所述同余序列。
  22. 一种极性码的速率匹配装置,其特征在于,包括;
    获取单元,用于根据控制信令的极性码编码比特的长度,获取同余序列;
    排序单元,用于根据预设规则,对所述同余序列进行排序处理,得到参考序列;
    确定单元,用于根据所述同余序列和所述参考序列,确定映射函数;
    交织单元,用于根据所述映射函数,对所述控制信令的极性码编码比特进行交织,生成交织后的编码比特。
  23. 根据权利要求22所述的速率匹配装置,其特征在于,所述控制信令为广播信令,所述速率匹配装置还包括截取单元,所述截取单元用于,
    根据预设的数值E,将所述交织后的编码比特的前E个比特输入循环缓冲器,或者,
    对所述交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
  24. 根据权利要求22或23所述的速率匹配装置,其特征在于,所述获取单元具体用于,根据以下公式,确定所述同余序列,
    x(0)=xo
    x(n+1)=[a*x(n)+c]mod m,n=0,1,…,(N-2)
    其中,N为所述控制信令的编码比特的长度,x0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为所述同余序列。
  25. 根据权利要求24所述的速率匹配装置,其特征在于,a=75,c=0,m=231-1。
  26. 根据权利要求22至25中任一项所述的速率匹配装置,其特征在于,所述控制信令包括以下控制信道中的一种:物理层下行控制信道PDCCH,物理广播信道PBCH和物理层上行控制信道PUCCH。
  27. 根据权利要求22至26中任一项所述的速率匹配装置,其特征在于, 当N=128时,所述映射函数为:
    {0,112,35,14,48,1,99,54,28,120,126,46,114,110,43,32,81,18,113,63,75,38,64,7,15,37,19,70,27,12,34,50,17,86,3,68,98,23,111,62,57,61,89,59,13,56,66,107,47,41,124,30,2,49,44,88,65,45,123,104,10,85,102,103,122,91,121,58,73,60,26,8,55,105,94,82,115,69,74,83,106,95,9,108,53,90,29,11,36,42,87,39,101,76,4,67,93,31,97,119,100,72,6,5,22,118,25,117,125,92,80,77,21,79,116,33,20,71,52,109,84,51,96,24,40,78,16,127}。
  28. 根据权利要求22至26中任一项所述的速率匹配装置,其特征在于,当N=256时,所述映射函数为:
    {0,188,112,128,183,35,150,14,48,149,148,154,130,1,229,152,131,197,182,248,253,99,54,245,231,165,28,226,120,132,136,185,168,196,187,200,159,211,147,126,46,157,114,110,210,43,32,81,18,113,63,158,75,222,38,170,219,208,237,220,252,64,137,230,216,133,7,192,218,15,37,217,19,70,27,173,155,12,34,239,50,207,175,169,223,242,240,17,161,86,3,68,98,23,145,111,62,189,202,57,61,89,59,13,56,66,199,167,214,179,215,221,107,47,41,124,234,30,2,49,44,88,201,65,195,205,45,123,104,10,85,193,102,177,103,122,225,241,181,227,91,172,121,58,142,174,73,134,60,250,180,26,8,55,236,105,94,235,194,82,162,160,243,115,69,74,83,106,191,95,232,9,108,206,53,212,209,90,29,11,139,36,42,87,39,178,101,144,151,138,247,76,4,238,143,67,146,93,254,31,198,97,119,100,171,163,204,72,6,5,22,118,190,233,141,213,25,117,125,92,246,153,80,186,135,77,251,21,79,249,116,203,164,129,33,20,71,184,52,244,109,84,51,96,24,255,40,224,176,78,140,228,16,127,166,156}。
PCT/CN2014/094475 2014-12-22 2014-12-22 极性码的编码方法和编码装置 WO2016101089A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP14908660.5A EP3226422B1 (en) 2014-12-22 2014-12-22 Polar code coding method and coding device
RU2017125830A RU2685034C2 (ru) 2014-12-22 2014-12-22 Устройство кодирования и способ кодирования полярным кодом
JP2017550969A JP6455766B2 (ja) 2014-12-22 2014-12-22 極性符号の符号化方法および符号化装置
BR112017013449-7A BR112017013449B1 (pt) 2014-12-22 2014-12-22 Método e aparelho de codificação de código polar e meio de armazenamento legível por computador
AU2014415500A AU2014415500B2 (en) 2014-12-22 2014-12-22 Polar code encoding method and encoding apparatus
CN201480082806.8A CN107078748B (zh) 2014-12-22 2014-12-22 极性码的编码方法和编码装置
CA2971769A CA2971769C (en) 2014-12-22 2014-12-22 Polar code encoding method and encoding apparatus
MX2017008275A MX366730B (es) 2014-12-22 2014-12-22 Método de codificación de código polar y aparato de codificación.
KR1020177020438A KR101952799B1 (ko) 2014-12-22 2014-12-22 폴라 코드 인코딩 방법 및 인코딩 장치
ES14908660T ES2723953T3 (es) 2014-12-22 2014-12-22 Método de codificación del código polar y dispositivo de codificación
CN201910582426.5A CN110401456B (zh) 2014-12-22 2014-12-22 极性码的编码方法和编码装置
PCT/CN2014/094475 WO2016101089A1 (zh) 2014-12-22 2014-12-22 极性码的编码方法和编码装置
SG11201705119VA SG11201705119VA (en) 2014-12-22 2014-12-22 Polar code encoding method and encoding apparatus
US15/629,498 US10516417B2 (en) 2014-12-22 2017-06-21 Polar code encoding method and encoding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094475 WO2016101089A1 (zh) 2014-12-22 2014-12-22 极性码的编码方法和编码装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/629,498 Continuation US10516417B2 (en) 2014-12-22 2017-06-21 Polar code encoding method and encoding apparatus

Publications (1)

Publication Number Publication Date
WO2016101089A1 true WO2016101089A1 (zh) 2016-06-30

Family

ID=56148834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094475 WO2016101089A1 (zh) 2014-12-22 2014-12-22 极性码的编码方法和编码装置

Country Status (13)

Country Link
US (1) US10516417B2 (zh)
EP (1) EP3226422B1 (zh)
JP (1) JP6455766B2 (zh)
KR (1) KR101952799B1 (zh)
CN (2) CN107078748B (zh)
AU (1) AU2014415500B2 (zh)
BR (1) BR112017013449B1 (zh)
CA (1) CA2971769C (zh)
ES (1) ES2723953T3 (zh)
MX (1) MX366730B (zh)
RU (1) RU2685034C2 (zh)
SG (1) SG11201705119VA (zh)
WO (1) WO2016101089A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877885A (zh) * 2017-01-22 2017-06-20 深圳大学 一种利用巴哈塔切亚参数构造极化码的方法及系统
CN108429603A (zh) * 2017-02-15 2018-08-21 中兴通讯股份有限公司 一种数据处理方法及装置
US10069510B2 (en) 2016-11-21 2018-09-04 Samsung Electronics Co., Ltd. System and method for maximal code polarization
CN109600197A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 极性码的编码方法和编码装置
CN109889310A (zh) * 2017-09-18 2019-06-14 华为技术有限公司 一种极性码的编码方法和编码装置
JP2019533919A (ja) * 2017-02-10 2019-11-21 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ポーラ符号のための循環バッファレートマッチング
CN111052644A (zh) * 2017-09-11 2020-04-21 高通股份有限公司 用于极性码的物理广播信道设计
JP2020524927A (ja) * 2017-06-12 2020-08-20 クアルコム,インコーポレイテッド ブロードキャストチャネルのための同期信号
TWI734878B (zh) * 2017-01-11 2021-08-01 美商高通公司 控制通道碼率選擇
CN114095122A (zh) * 2017-08-02 2022-02-25 华为技术有限公司 一种Polar码编码方法及装置
US11271592B2 (en) 2017-05-05 2022-03-08 Zte Corporation Method and apparatus for sequence determination, device and storage medium
TWI771431B (zh) * 2017-06-14 2022-07-21 美商Idac控股公司 極化編碼
US11431441B2 (en) 2016-08-10 2022-08-30 Idac Holdings, Inc. Priority-based channel coding for control information
US11496156B2 (en) 2017-02-15 2022-11-08 Zte Corporation Data processing method and device
TWI822722B (zh) * 2018-01-30 2023-11-21 南韓商三星電子股份有限公司 建構極化碼的方法、通信方法以及通信裝置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164959B (zh) * 2014-02-21 2019-06-21 华为技术有限公司 用于极化码的速率匹配的方法和装置
CN107005690B (zh) * 2014-11-27 2019-10-01 华为技术有限公司 极化码的速率匹配的方法、装置和无线通信设备
RU2685034C2 (ru) 2014-12-22 2019-04-16 Хуавэй Текнолоджиз Ко., Лтд. Устройство кодирования и способ кодирования полярным кодом
US10581462B2 (en) 2015-12-01 2020-03-03 Huawei Technologies Co., Ltd. Signature-enabled polar encoder and decoder
CN109478897B (zh) * 2016-07-25 2023-05-12 高通股份有限公司 用于构造极化码的方法和装置
US11356202B2 (en) * 2016-09-28 2022-06-07 Idac Holdings, Inc. Efficient broadcast channel in beamformed systems for NR
US10470191B2 (en) * 2016-12-09 2019-11-05 Samsung Electronics Co., Ltd. Method and apparatus of broadcast signals and channels for system information transmission
US11206044B2 (en) * 2017-01-05 2021-12-21 Lg Electronics Inc. Method and terminal for channel encoding using polar code
SG10202103188RA (en) * 2017-01-09 2021-04-29 Mediatek Inc Broadcast channel enhancement with polar code
CN108540259B (zh) * 2017-03-01 2020-07-10 电信科学技术研究院 一种极化码编译码方法及装置
KR102378324B1 (ko) * 2017-06-19 2022-03-25 삼성전자 주식회사 통신 및 방송 시스템을 위한 부호율-조정 방법 및 장치
EP3665800A1 (en) * 2017-08-10 2020-06-17 Convida Wireless, LLC Pbch timing and aspects of polar code design involving first scrambling of payload data and second scrambling of encoded data
ES2950625T3 (es) 2017-10-03 2023-10-11 Ericsson Telefon Ab L M Entrelazado previo a la codificación CRC de una carga útil de NR PBCH que incluye bits conocidos para mejorar el rendimiento del código polar
US11575467B2 (en) * 2017-11-15 2023-02-07 Interdigital Patent Holdings, Inc. URLLC transmissions with polar codes
KR102031098B1 (ko) 2017-11-16 2019-10-11 엘지전자 주식회사 Pbch 전송 방법 및 전송 장치, 및 pbch 수신 방법 및 수신 장치
CN109905130B (zh) * 2017-12-08 2021-12-17 大唐移动通信设备有限公司 一种极化码编码、译码方法、装置及设备
WO2019139412A1 (ko) * 2018-01-12 2019-07-18 엘지전자 주식회사 정보를 전송하는 방법 및 장치, 그리고 정보를 수신하는 방법 및 장치
WO2019183309A1 (en) 2018-03-22 2019-09-26 Idac Holdings, Inc. Reduced complexity polar encoding and decoding
CN111404556A (zh) * 2020-03-13 2020-07-10 深圳市航天华拓科技有限公司 编码方法、译码方法、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357172A (zh) * 1998-12-04 2002-07-03 高通股份有限公司 利用线性同余序列的turbo码交织器
CN101159513A (zh) * 2007-10-29 2008-04-09 中兴通讯股份有限公司 一种Turbo码速率匹配及码字比特读取的方法
CN103684477A (zh) * 2012-09-24 2014-03-26 华为技术有限公司 混合极性码的生成方法和生成装置
WO2014098480A1 (en) * 2012-12-18 2014-06-26 Samsung Electronics Co., Ltd. Communication system with compound coding mechanism and method of operation thereof
CN104219019A (zh) * 2013-05-31 2014-12-17 华为技术有限公司 编码方法及编码设备

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1635474T3 (da) 1995-02-01 2010-11-29 Sony Corp Datatransmission med interleaving gennem på stedet adressering af RAM-hukommelse
WO1996024196A1 (en) 1995-02-01 1996-08-08 Philips Electronics N.V. Method of error protected transmission, method of error protected reception of data and transmission system for transmission of data
CA2742096C (en) 1999-04-13 2015-01-06 Ericsson Ab Rate matching and channel interleaving for a communications system
US9003243B2 (en) 2004-07-29 2015-04-07 Qualcomm Incorporated System and method for modulation diversity
US8583923B2 (en) 2006-12-08 2013-11-12 Toshiba America Research, Inc. EAP method for EAP extension (EAP-EXT)
US20080301536A1 (en) 2007-05-31 2008-12-04 Interdigital Technology Corporation Channel coding and rate matching for lte control channels
JP2009033340A (ja) * 2007-07-25 2009-02-12 Mitsubishi Electric Corp 車々間通信システム、車載送信装置および車々間通信方法
US8345794B2 (en) * 2008-04-29 2013-01-01 Qualcomm Incorporated Encoded control channel information interleaving
CN101368447B (zh) * 2008-08-26 2010-04-14 江苏南通二建集团有限公司 古城墙修复施工方法
TWI416896B (zh) * 2009-01-12 2013-11-21 Ind Tech Res Inst 基於信號先權值與通道可靠度的資料傳輸方法及裝置
US8543884B2 (en) 2009-06-16 2013-09-24 Qualcomm Incorporated Communications channel parallel interleaver and de-interleaver
US8635517B2 (en) 2011-01-31 2014-01-21 Samsung Electronics Co., Ltd. Methods and apparatus for fast synchronization using quasi-cyclic low-density parity-check (QC-LDPC) codes
CN102164025B (zh) * 2011-04-15 2013-06-05 北京邮电大学 基于重复编码和信道极化的编码器及其编译码方法
KR101327505B1 (ko) * 2011-09-30 2013-11-20 전북대학교산학협력단 이진 이산 무기억 대칭 채널에서 연속 제거 복호 알고리즘을 이용한 송신기 및 수신기
CN103368583B (zh) 2012-04-11 2016-08-17 华为技术有限公司 极性码的译码方法和译码装置
US9954643B2 (en) 2012-06-22 2018-04-24 Samsung Electronics Co., Ltd. Communication system with repeat-response combining mechanism and method of operation thereof
US10616827B2 (en) 2012-07-10 2020-04-07 Huawei Technologies Co., Ltd. System and method for dynamically configurable air interfaces
US9503126B2 (en) 2012-07-11 2016-11-22 The Regents Of The University Of California ECC polar coding and list decoding methods and codecs
KR102015121B1 (ko) * 2012-10-17 2019-08-28 삼성전자주식회사 불휘발성 메모리 장치를 제어하도록 구성되는 컨트롤러 및 컨트롤러의 동작 방법
KR101951663B1 (ko) 2012-12-14 2019-02-25 삼성전자주식회사 Crc 부호와 극 부호에 의한 부호화 방법 및 장치
CN103023618B (zh) 2013-01-11 2015-04-22 北京邮电大学 一种任意码长的极化编码方法
CN106712906A (zh) 2013-03-27 2017-05-24 华为技术有限公司 一种对上行控制信息进行编码的方法和装置
CN103281166B (zh) 2013-05-15 2016-05-25 北京邮电大学 一种基于极化码的混合自动重传请求传输方法
WO2015026148A1 (ko) 2013-08-20 2015-02-26 엘지전자 주식회사 무선 접속 시스템에서 폴라 코딩을 이용한 데이터 송신방법
RU2685034C2 (ru) 2014-12-22 2019-04-16 Хуавэй Текнолоджиз Ко., Лтд. Устройство кодирования и способ кодирования полярным кодом
US10958379B2 (en) * 2017-05-12 2021-03-23 Qualcomm Incorporated Mapping of channel encoded bits to symbol for retransmission
KR102031098B1 (ko) * 2017-11-16 2019-10-11 엘지전자 주식회사 Pbch 전송 방법 및 전송 장치, 및 pbch 수신 방법 및 수신 장치
CN110368447A (zh) 2019-08-09 2019-10-25 吉安市御美丽健康产业股份有限公司 一种含有薁磺酸钠的妇科修复凝胶制剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357172A (zh) * 1998-12-04 2002-07-03 高通股份有限公司 利用线性同余序列的turbo码交织器
CN101159513A (zh) * 2007-10-29 2008-04-09 中兴通讯股份有限公司 一种Turbo码速率匹配及码字比特读取的方法
CN103684477A (zh) * 2012-09-24 2014-03-26 华为技术有限公司 混合极性码的生成方法和生成装置
WO2014098480A1 (en) * 2012-12-18 2014-06-26 Samsung Electronics Co., Ltd. Communication system with compound coding mechanism and method of operation thereof
CN104219019A (zh) * 2013-05-31 2014-12-17 华为技术有限公司 编码方法及编码设备

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431441B2 (en) 2016-08-10 2022-08-30 Idac Holdings, Inc. Priority-based channel coding for control information
US10069510B2 (en) 2016-11-21 2018-09-04 Samsung Electronics Co., Ltd. System and method for maximal code polarization
US10200061B2 (en) 2016-11-21 2019-02-05 Samsung Electronics Co., Ltd System and method for maximal code polarization
US11388731B2 (en) 2017-01-11 2022-07-12 Qualcomm Incorporated Control channel code rate selection
TWI734878B (zh) * 2017-01-11 2021-08-01 美商高通公司 控制通道碼率選擇
CN106877885B (zh) * 2017-01-22 2020-04-07 深圳大学 一种利用巴哈塔切亚参数构造极化码的方法及系统
WO2018133217A1 (zh) * 2017-01-22 2018-07-26 深圳大学 一种利用巴哈塔切亚参数构造极化码的方法及系统
CN106877885A (zh) * 2017-01-22 2017-06-20 深圳大学 一种利用巴哈塔切亚参数构造极化码的方法及系统
JP2019533919A (ja) * 2017-02-10 2019-11-21 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ポーラ符号のための循環バッファレートマッチング
US11764814B2 (en) 2017-02-10 2023-09-19 Telefonaktiebolaget Lm Ericsson (Publ) Circular buffer rate matching for polar codes
US11683052B2 (en) 2017-02-15 2023-06-20 Zte Corporation Data processing method and device
US11496156B2 (en) 2017-02-15 2022-11-08 Zte Corporation Data processing method and device
CN108429603B (zh) * 2017-02-15 2022-03-15 中兴通讯股份有限公司 一种数据处理方法及装置
CN108429603A (zh) * 2017-02-15 2018-08-21 中兴通讯股份有限公司 一种数据处理方法及装置
US11271592B2 (en) 2017-05-05 2022-03-08 Zte Corporation Method and apparatus for sequence determination, device and storage medium
JP2020524927A (ja) * 2017-06-12 2020-08-20 クアルコム,インコーポレイテッド ブロードキャストチャネルのための同期信号
JP7155165B2 (ja) 2017-06-12 2022-10-18 クアルコム,インコーポレイテッド ブロードキャストチャネルのための同期信号
TWI771431B (zh) * 2017-06-14 2022-07-21 美商Idac控股公司 極化編碼
CN114095122A (zh) * 2017-08-02 2022-02-25 华为技术有限公司 一种Polar码编码方法及装置
CN114095122B (zh) * 2017-08-02 2023-07-07 华为技术有限公司 一种Polar码编码方法及装置
US11811528B2 (en) 2017-08-02 2023-11-07 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus in wireless communications
CN111052644B (zh) * 2017-09-11 2022-06-14 高通股份有限公司 用于极性码的物理广播信道设计
CN111052644A (zh) * 2017-09-11 2020-04-21 高通股份有限公司 用于极性码的物理广播信道设计
US11303388B2 (en) 2017-09-18 2022-04-12 Huawei Technologies Co., Ltd. Method for polar coding and apparatus
JP2022031789A (ja) * 2017-09-18 2022-02-22 華為技術有限公司 極性符号化のための方法及び機器
CN109889310A (zh) * 2017-09-18 2019-06-14 华为技术有限公司 一种极性码的编码方法和编码装置
US10693590B2 (en) 2017-09-18 2020-06-23 Huawei Technologies Co., Ltd. Method for polar coding and apparatus
US11843461B2 (en) 2017-09-18 2023-12-12 Huawei Technologies Co., Ltd. Method for polar coding and apparatus
JP7454542B2 (ja) 2017-09-18 2024-03-22 華為技術有限公司 極性符号化のための方法及び機器
CN109600197A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 极性码的编码方法和编码装置
TWI822722B (zh) * 2018-01-30 2023-11-21 南韓商三星電子股份有限公司 建構極化碼的方法、通信方法以及通信裝置

Also Published As

Publication number Publication date
JP6455766B2 (ja) 2019-01-23
SG11201705119VA (en) 2017-07-28
CA2971769C (en) 2021-07-06
BR112017013449A2 (zh) 2018-07-24
RU2017125830A (ru) 2019-01-24
EP3226422B1 (en) 2019-02-27
ES2723953T3 (es) 2019-09-04
RU2685034C2 (ru) 2019-04-16
JP2018506929A (ja) 2018-03-08
US10516417B2 (en) 2019-12-24
MX2017008275A (es) 2017-12-07
AU2014415500B2 (en) 2019-01-17
CN107078748B (zh) 2019-07-19
KR101952799B1 (ko) 2019-02-27
CN110401456A (zh) 2019-11-01
KR20170097190A (ko) 2017-08-25
US20170288703A1 (en) 2017-10-05
CN110401456B (zh) 2023-10-13
BR112017013449B1 (pt) 2022-11-01
RU2017125830A3 (zh) 2019-01-24
EP3226422A4 (en) 2018-01-10
EP3226422A1 (en) 2017-10-04
CN107078748A (zh) 2017-08-18
AU2014415500A1 (en) 2017-07-20
CA2971769A1 (en) 2016-06-30
MX366730B (es) 2019-07-22

Similar Documents

Publication Publication Date Title
WO2016101089A1 (zh) 极性码的编码方法和编码装置
US10778255B2 (en) Polar code processing method and device
WO2016082142A1 (zh) 极化码的速率匹配的方法、装置和无线通信设备
KR101844438B1 (ko) 폴라 코드 비율 매칭 방법 및 장치
US10009146B2 (en) Polar code rate matching method and rate matching apparatus
US10361815B2 (en) Polar code rate matching method and apparatus
WO2017143870A1 (zh) 极化码的编码方法、译码方法、编码设备和译码设备
US11843461B2 (en) Method for polar coding and apparatus
CN109600197B (zh) 极性码的编码方法和编码装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2971769

Country of ref document: CA

Ref document number: 2017550969

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201705119V

Country of ref document: SG

Ref document number: MX/A/2017/008275

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014908660

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014415500

Country of ref document: AU

Date of ref document: 20141222

Kind code of ref document: A

Ref document number: 20177020438

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017125830

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013449

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017013449

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170621