JP7155165B2 - ブロードキャストチャネルのための同期信号 - Google Patents

ブロードキャストチャネルのための同期信号 Download PDF

Info

Publication number
JP7155165B2
JP7155165B2 JP2019567578A JP2019567578A JP7155165B2 JP 7155165 B2 JP7155165 B2 JP 7155165B2 JP 2019567578 A JP2019567578 A JP 2019567578A JP 2019567578 A JP2019567578 A JP 2019567578A JP 7155165 B2 JP7155165 B2 JP 7155165B2
Authority
JP
Japan
Prior art keywords
cell
bits
pbch
synchronization signal
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019567578A
Other languages
English (en)
Other versions
JP2020524927A5 (ja
JP2020524927A (ja
Inventor
ビラル・サディク
ジュエルゲン・セザンヌ
シュリニヴァス・クデカール
ナヴィド・アベディーニ
ムハンマド・ナズムル・イスラム
Original Assignee
クアルコム,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64562728&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7155165(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by クアルコム,インコーポレイテッド filed Critical クアルコム,インコーポレイテッド
Publication of JP2020524927A publication Critical patent/JP2020524927A/ja
Publication of JP2020524927A5 publication Critical patent/JP2020524927A5/ja
Application granted granted Critical
Publication of JP7155165B2 publication Critical patent/JP7155165B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0011Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0093Neighbour cell search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Description

関連技術の相互参照
本出願は、その全体が参照により本明細書に明確に組み込まれる、2017年6月12日に出願された「Synchronization Signal for a Physical Broadcast Channel」と題する米国仮出願第62/518,589号、および2018年3月20日に出願された「SYNCHRONIZATION SIGNAL FOR A BROADCAST CHANNEL」と題する米国特許出願第15/926,884号の利益を主張する。
本開示は全般に通信システムに関し、より詳細には、同期信号およびブロードキャストチャネルに関する。
ワイヤレス通信システムは、電話、ビデオ、データ、メッセージング、およびブロードキャストなどの、様々な電気通信サービスを提供するために広く展開されている。典型的なワイヤレス通信システムは、利用可能なシステムリソースを共有することによって複数のユーザとの通信をサポートすることが可能な多元接続技術を利用することがある。そのような多元接続技術の例には、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC-FDMA)システム、および時分割同期符号分割多元接続(TD-SCDMA)システムがある。
これらの多元接続技術は、異なるワイヤレスデバイスが都市、国家、地域、さらには地球規模で通信することを可能にする共通プロトコルを提供するために、様々な電気通信規格において採用されている。例示的な電気通信規格は5G New Radio(NR)である。5G NRは、レイテンシ、信頼性、セキュリティ、スケーラビリティ(たとえば、Internet of Things(IoT)との)と関連付けられる新しい要件、および他の要件を満たすように、第3世代パートナーシッププロジェクト(3GPP)によって公表された継続的なモバイルブロードバンドの進化の一部である。5G NRのいくつかの態様は、4G Long Term Evolution(LTE)規格に基づくことがある。5G NR技術のさらなる改善の必要がある。これらの改善はまた、他の多元接続技術、およびこれらの技術を採用する電気通信規格にも適用可能であることがある。
NRでは、複数のバーストセット、たとえばL個の同期信号(SS)ブロックのビーム掃引が、ブロードキャストチャネル(BCH)送信時間間隔(TTI)内で基地局によって送信されることがある。バーストセットは、1つの完全なビーム掃引を備えるSSブロックのセットであってもよい。
以下は、そのような態様の基本的理解を可能にするために、1つまたは複数の態様の簡略化された概要を提示する。この概要は、すべての考えられる態様の包括的な概説ではなく、すべての態様の主要または重要な要素を特定することも、いずれかまたはすべての態様の範囲を定めることも意図していない。その唯一の目的は、後で提示されるより詳細な説明の導入として、1つまたは複数の態様のいくつかの概念を簡略化された形で提示することである。
物理ブロードキャストチャネル(PBCH)ペイロードは、凍結ビットなどの、ユーザ機器(UE)にすでに知られている符号化されたビットを含むことがある。PBCHペイロードは、UEに知られている可能性のある符号化されたビットを含むことがあり、UEは、知られていない情報の残りのセットのためだけにPBCHを復号する必要があることがある。本明細書で提示される態様は、基地局におけるPBCH構築およびUEによるPBCH復号性能を改善する。基地局は、情報のビット位置を、凍結ビット、知られている可能性のある情報、および知られていない情報をその情報が備えるかどうかに基づいて選択することによって、PBCHを構築してもよい。たとえば、基地局は、知られている可能性のあるビットの少なくともいくつかに、知られていないビットより信頼性の低いビット位置を与えてもよく、凍結ビットに、知られている可能性のあるビットより信頼性の低いビット位置を与えてもよい。UEは、知られている可能性のあるビットが最初に復号され、知られていないビットの少なくとも一部が続いて復号されるような、連続する復号順序を使用してPBCHを復号してもよい。
本開示のある態様では、基地局におけるワイヤレス通信のための方法、コンピュータ可読媒体、および装置が提供される。装置はPBCHペイロードを構築し、ビット位置は、対応するビット位置の推定される信頼性に基づいてPBCHの複数のビットを符号化するために選択され、複数のビットは、凍結ビットと、ユーザ機器に知られていない、知られていないビットと、ユーザ機器によって知られている可能性のある、知られている可能性のあるビットとを備える。装置は、複数のSSブロックのうちの少なくとも1つにおいてPBCHペイロードを送信する。
本開示の別の態様では、第1の基地局によってサービスされるUEにおけるワイヤレス通信のための方法、コンピュータ可読媒体、および装置が提供される。装置は、複数のSSブロックのうちの少なくとも1つにおいて第2のセルのPBCHペイロードを受信し、各SSブロックは対応するタイミング情報を備え、PBCHペイロードは、凍結ビットと、ユーザ機器に知られていない、知られていないビットと、ユーザ機器によって知られている可能性のある、知られている可能性のあるビットとを備える。知られている可能性のあるビットは、第1のセルによってUEに提供されるシステム情報を備えてもよい。装置は、連続する復号順序に基づいてPBCHを復号する。連続する復号順序は、たとえば、知られている可能性のあるビットが知られていないビットの前に復号されるような、対応するビットの推定される信頼性に基づくものであってもよい。
上記の目的および関係する目的の達成のために、1つまたは複数の態様が、以下で十分に説明されるとともに特に特許請求の範囲において指摘される特徴を備える。以下の説明および添付の図面は、1つまたは複数の態様のいくつかの例示的な特徴を詳細に記載する。しかしながら、これらの特徴は、様々な態様の原理が採用されてもよい様々な方法のうちのいくつかを示すものにすぎず、この説明は、そのようなすべての態様およびそれらの均等物を含むものとする。
ワイヤレス通信システムおよびアクセスネットワークの例を示す図である。 DLフレーム構造の例を示す図である。 DLフレーム構造内のDLチャネルの例を示す図である。 ULフレーム構造の例を示す図である。 ULフレーム構造内のULチャネルの例を示す図である。 アクセスネットワークの中の基地局およびUEの例を示す図である。 UEと通信している基地局を示す図である。 PBCH送信のための例示的なバースト、バーストセット、およびBCH TTIを示す図である。 ペアのセットに対する例示的なSSブロックインデックス構造および対応する例示的な仮定を示す図である。 ペアのセットに対する例示的なSSブロックインデックス構造および対応する例示的な仮定を示す図である。 UEと基地局との間のワイヤレス通信の例を示す図である。 ワイヤレス通信の方法のフローチャートである。 例示的な装置の中の異なる手段/構成要素間のデータフローを示す概念データフロー図である。 処理システムを利用する装置のハードウェア実装形態の例を示す図である。 ワイヤレス通信の方法のフローチャートである。 例示的な装置の中の異なる手段/構成要素間のデータフローを示す概念データフロー図である。 処理システムを利用する装置のハードウェア実装形態の例を示す図である。 SSブロックにおいて搬送されるべきタイミング情報の例を示す図である。
添付の図面に関して以下に記載される発明を実施するための形態は、様々な構成の説明として意図されており、本明細書で説明される概念が実践されてもよい唯一の構成を表すことは意図されていない。詳細な説明は、様々な概念の完全な理解を与える目的で、具体的な詳細を含む。しかしながら、これらの概念はこれらの具体的な詳細なしに実践されてもよいことが、当業者には明らかであろう。いくつかの事例では、そのような概念を不明瞭にすることを回避するために、よく知られている構造および構成要素がブロック図の形態で示される。
以下で、電気通信システムのいくつかの態様が、様々な装置および方法を参照して提示される。これらの装置および方法は、以下の詳細な説明において説明され、(「要素」と総称される)様々なブロック、構成要素、回路、プロセス、アルゴリズムなどによって添付の図面において示される。これらの要素は、電子ハードウェア、コンピュータソフトウェア、またはそれらの任意の組合せを使用して実装されてもよい。そのような要素がハードウェアとして実装されるか、またはソフトウェアとして実装されるかは、具体的な適用例および全体的なシステムに課される設計制約に依存する。
例として、要素、または要素の任意の部分、または要素の任意の組合せは、1つまたは複数のプロセッサを含む「処理システム」として実装されることがある。プロセッサの例には、マイクロプロセッサ、マイクロコントローラ、グラフィックス処理ユニット(GPU)、中央処理ユニット(CPU)、アプリケーションプロセッサ、デジタル信号プロセッサ(DSP)、縮小命令セットコンピューティング(RISC)プロセッサ、システムオンチップ(SoC)、ベースバンドプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、ステートマシン、ゲート論理、個別ハードウェア回路、および本開示全体にわたって説明される様々な機能を実行するように構成された他の適切なハードウェアがある。処理システムの中の1つまたは複数のプロセッサは、ソフトウェアを実行してもよい。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などの名称にかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアコンポーネント、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行ファイル、実行スレッド、プロシージャ、関数などを意味するように広く解釈されるべきである。
したがって、1つまたは複数の例示的な実施形態では、説明される機能は、ハードウェア、ソフトウェア、またはそれらの任意の組合せで実装されることがある。ソフトウェアで実装される場合、機能は、コンピュータ可読媒体上に記憶されるか、またはコンピュータ可読媒体上に1つまたは複数の命令もしくはコードとして符号化されることがある。コンピュータ可読媒体は、コンピュータ記憶媒体を含む。記憶媒体は、コンピュータによってアクセス可能な任意の利用可能な媒体であってもよい。限定ではない例として、そのようなコンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、電気的消去可能プログラマブルROM(EEPROM)、光ディスクストレージ、磁気ディスクストレージ、他の磁気ストレージデバイス、上述のタイプのコンピュータ可読媒体の組合せ、または、コンピュータによってアクセス可能な命令もしくはデータ構造の形態のコンピュータ実行可能コードを記憶するために使用可能な任意の他の媒体を備えることができる。
図1は、ワイヤレス通信システムおよびアクセスネットワーク100の例を示す図である。(ワイヤレスワイドエリアネットワーク(WWAN)とも呼ばれる)ワイヤレス通信システムは、基地局102と、UE104と、Evolved Packet Core(EPC)160とを含む。基地局102は、マクロセル(高電力セルラー基地局)および/またはスモールセル(低電力セルラー基地局)を含むことがある。マクロセルは基地局を含む。スモールセルは、フェムトセル、ピコセル、およびマイクロセルを含む。
(Evolved Universal Mobile Telecommunications System(UMTS) Terrestrial Radio Access Network(E-UTRAN)と総称される)基地局102は、バックホールリンク132(たとえば、S1インターフェース)を通じてEPC160とインターフェースする。他の機能に加えて、基地局102は、ユーザデータの転送、無線チャネルの暗号化および解読、完全性保護、ヘッダ圧縮、モビリティ制御機能(たとえば、ハンドオーバー、デュアル接続性)、セル間干渉協調、接続セットアップおよび解放、負荷分散、非アクセス層(NAS)メッセージのための分配、NASノード選択、同期、無線アクセスネットワーク(RAN)共有、マルチメディアブロードキャストマルチキャストサービス(MBMS)、加入者および機器の追跡、RAN情報管理(RIM)、ページング、測位、ならびに警告メッセージの配信という機能のうちの、1つまたは複数を実行してもよい。基地局102は、バックホールリンク134(たとえば、X2インターフェース)上で互いに直接的または(たとえば、EPC160を介して)間接的に通信してもよい。バックホールリンク134は、有線またはワイヤレスであってもよい。
基地局102は、UE104とワイヤレスに通信することがある。基地局102の各々は、それぞれの地理的カバレッジエリア110に通信カバレッジを提供することがある。重複する地理的カバレッジエリア110が存在することがある。たとえば、スモールセル102'は、1つまたは複数のマクロ基地局102のカバレッジエリア110と重複するカバレッジエリア110'を有することがある。スモールセルとマクロセルの両方を含むネットワークは、異種ネットワークとして知られていることがある。異種ネットワークは、限定加入者グループ(CSG)として知られる限定グループにサービスを提供することがあるHome Evolved Node B(eNB)(HeNB)を含むこともある。基地局102とUE104との間の通信リンク120は、UE104から基地局102への(逆方向リンクとも呼ばれる)アップリンク(UL)送信、および/または基地局102からUE104への(順方向リンクとも呼ばれる)ダウンリンク(DL)送信を含むことがある。通信リンク120は、空間多重化、ビームフォーミング、および/または送信ダイバーシティを含む、多入力多出力(MIMO)アンテナ技術を使用することがある。通信リンクは、1つまたは複数のキャリアを介することがある。基地局102/UE104は、各方向における送信に使用される合計YxMHz(x個のコンポーネントキャリア)までのキャリアアグリゲーションにおいて割り振られた、キャリア当たりYMHz(たとえば、5、10、15、20、100MHz)までの帯域幅のスペクトルを使用することがある。キャリアは、互いに隣接することも、隣接しないこともある。キャリアの割振りは、DLおよびULに対して非対称であってもよい(たとえば、DLの場合、ULの場合よりも多いかまたは少ないキャリアが割り振られることがある)。コンポーネントキャリアは、1次コンポーネントキャリアと、1つまたは複数の2次コンポーネントキャリアとを含むことがある。1次コンポーネントキャリアは1次セル(PCell)と呼ばれることがあり、2次コンポーネントキャリアは2次セル(SCell)と呼ばれることがある。
いくつかのUE104は、デバイスツーデバイス(D2D)通信リンク192を使用して、互いに通信することがある。D2D通信リンク192は、DL/UL WWANスペクトルを使用することがある。D2D通信リンク192は、物理サイドリンクブロードキャストチャネル(PSBCH)、物理サイドリンク発見チャネル(PSDCH)、物理サイドリンク共有チャネル(PSSCH)、および物理サイドリンク制御チャネル(PSCCH)などの、1つまたは複数のサイドリンクチャネルを使用することがある。D2D通信は、たとえば、FlashLinQ、WiMedia、Bluetooth(登録商標)、ZigBee、IEEE 802.11規格に基づくWi-Fi、LTE、またはNRなどの、様々なワイヤレスD2D通信システムを通じたものであってもよい。
ワイヤレス通信システムは、5GHzの免許不要周波数スペクトルにおいて通信リンク154を介してWi-Fi局(STA)152と通信しているWi-Fiアクセスポイント(AP)150をさらに含むことがある。免許不要周波数スペクトルにおいて通信するとき、STA152/AP150は、チャネルが利用可能であるかどうかを決定するために、通信するより前にクリアチャネルアセスメント(CCA)を実行してもよい。
スモールセル102'は、免許周波数スペクトルおよび/または免許不要周波数スペクトルにおいて動作することがある。免許不要周波数スペクトルにおいて動作しているとき、スモールセル102'は、NRを利用し、Wi-Fi AP150によって使用されるのと同じ5GHzの免許不要周波数スペクトルを使用することがある。免許不要周波数スペクトルにおいてNRを利用するスモールセル102'は、アクセスネットワークへのカバレッジを拡大し、かつ/またはアクセスネットワークの容量を増やしてもよい。
gNodeB(gNB)180は、UE104と通信するときにミリメートル波(mmW)周波数および/または準mmW周波数(near mmW frequency)で動作することがある。gNB180がmmW周波数または準mmW周波数で動作するとき、gNB180はmmW基地局と呼ばれることがある。極高周波数(EHF)は、電磁スペクトルにおいてRFの一部である。EHFは、30GHz~300GHzの範囲および1ミリメートルから10ミリメートルの間の波長を有する。この帯域における電波は、ミリメートル波と呼ばれることがある。準mmWは、100ミリメートルの波長を有し、3GHzの周波数まで及ぶことがある。超高周波数(SHF)帯域は、センチメートル波とも呼ばれ、3GHzから30GHzの間に及ぶ。mmW/準mmW無線周波数帯域を使用する通信は、極めて高い経路損失および短い範囲を有する。mmW基地局180は、極めて高い経路損失および短距離を補償するために、UE104に対してビームフォーミング184を利用することがある。
EPC160は、モビリティ管理エンティティ(MME)162と、他のMME164と、サービングゲートウェイ166と、マルチメディアブロードキャストマルチキャストサービス(MBMS)ゲートウェイ168と、ブロードキャストマルチキャストサービスセンター(BM-SC)170と、パケットデータネットワーク(PDN)ゲートウェイ172とを含んでもよい。MME162は、ホーム加入者サーバ(HSS)174と通信していることがある。MME162は、UE104とEPC160との間のシグナリングを処理する制御ノードである。一般に、MME162はベアラと接続管理とを提供する。すべてのユーザインターネットプロトコル(IP)パケットは、サービングゲートウェイ166を通じて転送され、サービングゲートウェイ166自体はPDNゲートウェイ172に接続される。PDNゲートウェイ172は、UEのIPアドレス割振りならびに他の機能を提供する。PDNゲートウェイ172およびBM-SC170は、IPサービス176に接続される。IPサービス176は、インターネット、イントラネット、IPマルチメディアサブシステム(IMS)、PSストリーミングサービス、および/または他のIPサービスを含んでもよい。BM-SC170は、MBMSユーザサービスのプロビジョニングおよび配信のための機能を提供することがある。BM-SC170は、コンテンツプロバイダMBMS送信のためのエントリポイントとして働くことがあり、公衆陸上移動網(PLMN)内のMBMSベアラサービスを認可および開始するために使用されることがあり、MBMS送信をスケジューリングするために使用されることがある。MBMSゲートウェイ168は、特定のサービスをブロードキャストするマルチキャストブロードキャスト単一周波数ネットワーク(MBSFN)エリアに属する基地局102にMBMSトラフィックを配信するために使用されることがあり、セッション管理(開始/停止)およびeMBMS関係の課金情報を収集することを担うことがある。
基地局は、gNB、Node B、evolved Node B(eNB)、アクセスポイント、トランシーバ基地局、無線基地局、無線トランシーバ、トランシーバ機能、基本サービスセット(BSS)、拡張サービスセット(ESS)、または他の何らかの適切な用語で呼ばれることもある。基地局102は、UE104にEPC160へのアクセスポイントを提供する。UE104の例には、携帯電話、スマートフォン、セッション開始プロトコル(SIP)電話、ラップトップ、携帯情報端末(PDA)、衛星無線、全地球測位システム、マルチメディアデバイス、ビデオデバイス、デジタルオーディオプレーヤ(たとえば、MP3プレーヤ)、カメラ、ゲーム機、タブレット、スマートデバイス、ウェアラブルデバイス、車両、電気メーター、ガスポンプ、トースター、または任意の他の同様の機能デバイスがある。UE104の一部は、IoTデバイス(たとえば、パーキングメーター、ガスポンプ、トースター、車両など)と呼ばれることがある。UE104は、局、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、または他の何らかの適切な用語で呼ばれることもある。
図1を再び参照すると、いくつかの態様では、基地局180は、PBCHペイロードを構築するように構成されるPBCH構成要素198を含むように構成されてもよく、ビット位置は、対応するビット位置の推定される信頼性に基づいてPBCHの複数のビットを符号化するために選択され、複数のビットは、凍結ビットと、ユーザ機器に知られていない、知られていないビットと、ユーザ機器によって知られている可能性のある、知られている可能性のあるビットとを備える。他の態様では、UE104は、連続する復号順序に基づいて、凍結ビットと、知られていないビットと、知られている可能性のあるビットとを備えるPBCHを復号するように構成される、PBCH復号構成要素199を含むように構成されてもよい。
図2Aは、DLフレーム構造の例を示す図200である。図2Bは、DLフレーム構造内のチャネルの例を示す図230である。図2Cは、ULフレーム構造の例を示す図250である。図2Dは、ULフレーム構造内のチャネルの例を示す図280である。他のワイヤレス通信技術は、異なるフレーム構造および/または異なるチャネルを有することがある。フレーム(10ms)は、10個の等しいサイズのサブフレームに分割されることがある。各サブフレームは、2つの連続するタイムスロットを含むことがある。2つのタイムスロットを表すためにリソースグリッドが使用されることがあり、各タイムスロットは、1つまたは複数の(物理RB(PRB)とも呼ばれる)同時のリソースブロック(RB)を含む。リソースグリッドは複数のリソース要素(RE)に分割される。ノーマルサイクリックプレフィックスの場合、RBは、合計で84個のREについて、周波数領域に12個の連続するサブキャリアを含むことがあり、時間領域に7つの連続するシンボル(DLの場合はOFDMシンボル、ULの場合はSC-FDMAシンボル)を含むことがある。拡張サイクリックプレフィックスの場合、RBは、合計で72個のREについて、周波数領域に12個の連続するサブキャリアを含むことがあり、時間領域に6個の連続するシンボルを含むことがある。各REによって搬送されるビット数は、変調方式に依存する。
図2Aに示されるように、REのうちのいくつかは、UEにおけるチャネル推定のためのDL基準(パイロット)信号(DL-RS)を搬送する。DL-RSは、(共通RSと呼ばれることもある)セル固有基準信号(CRS)と、UE固有基準信号(UE-RS)と、チャネル状態情報基準信号(CSI-RS)とを含むことがある。図2Aは、(それぞれ、R0、R1、R2、およびR3として示された)アンテナポート0、1、2、および3のためのCRSと、(R5として示された)アンテナポート5のためのUE-RSと、(Rとして示された)アンテナポート15のためのCSI-RSとを示す。
図2Bは、フレームのDLサブフレーム内の様々なチャネルの例を示す。物理制御フォーマットインジケータチャネル(PCFICH)はスロット0のシンボル0内にあり、物理ダウンリンク制御チャネル(PDCCH)が1つのシンボルを占有するか、2つのシンボルを占有するか、または3つのシンボルを占有するかを示す制御フォーマットインジケータ(CFI)を搬送する(図2Bは、3つのシンボルを占有するPDCCHを示す)。PDCCHは、1つまたは複数の制御チャネル要素(CCE)内でダウンリンク制御情報(DCI)を搬送し、各CCEは9つのREグループ(REG)を含み、各REGはOFDMシンボルに4つの連続するREを含む。UEは、DCIも搬送するUE固有の拡張PDCCH(ePDCCH)で構成されることがある。ePDCCHは、2つ、4つ、または8つのRBペアを有することがある(図2Bは2つのRBペアを示し、各サブセットは1つのRBペアを含む)。物理ハイブリッド自動再送要求(ARQ)(HARQ)インジケータチャネル(PHICH)もスロット0のシンボル0内にあり、物理アップリンク共有チャネル(PUSCH)に基づいてHARQ肯定応答(ACK)/否定応答(NACK)フィードバックを示すHARQインジケータ(HI)を搬送する。1次同期チャネル(PSCH)は、フレームのサブフレーム0および5内のスロット0のシンボル6内にあることがある。PSCHは、サブフレーム/シンボルタイミングおよび物理レイヤ識別情報を決定するためにUE104によって使用される、1次同期信号(PSS)を搬送する。2次同期チャネル(SSCH)は、フレームのサブフレーム0および5内のスロット0のシンボル5内にあることがある。SSCHは、物理レイヤセル識別情報グループ番号および無線フレームタイミングを決定するためにUEによって使用される、2次同期信号(SSS)を搬送する。物理レイヤ識別情報および物理レイヤセル識別情報グループ番号に基づいて、UEは物理セル識別子(PCI)を決定することができる。PCIに基づいて、UEは上述のDL-RSの位置を決定することができる。マスター情報ブロック(MIB)を搬送する物理ブロードキャストチャネル(PBCH)は、PSCHおよびSSCHと論理的にグループ化されて、同期信号(SS)ブロックを形成してもよい。MIBは、DLシステム帯域幅の中のRBの数と、PHICH構成と、システムフレーム番号(SFN)とを提供する。物理ダウンリンク共有チャネル(PDSCH)は、ユーザデータと、システム情報ブロック(SIB)などのPBCHを通して送信されないブロードキャストシステム情報と、ページングメッセージとを搬送する。
図2Cに示されるように、REのうちのいくつかは、基地局におけるチャネル推定のための復調基準信号(DM-RS)を搬送する。UEは、サブフレームの最終シンボルにおいてサウンディング基準信号(SRS)をさらに送信することがある。SRSはコム構造を有することがあり、UEはコムのうちの1つの上でSRSを送信することがある。SRSは、基地局によって、UL上での周波数依存スケジューリングを可能にするために、チャネル品質推定のために使用されることがある。
図2Dは、フレームのULサブフレーム内の様々なチャネルの例を示す。物理ランダムアクセスチャネル(PRACH)は、PRACH構成に基づいてフレーム内の1つまたは複数のサブフレーム内にあってもよい。PRACHは、サブフレーム内に6つの連続するRBペアを含むことがある。PRACHにより、UEが初期システムアクセスを実行し、UL同期を実現することが可能になる。物理アップリンク制御チャネル(PUCCH)は、ULシステム帯域幅の端に位置することがある。PUCCHは、スケジューリング要求、チャネル品質インジケータ(CQI)、プリコーディング行列インジケータ(PMI)、ランクインジケータ(RI)、およびHARQ ACK/NACKフィードバックなどのアップリンク制御情報(UCI)を搬送する。PUSCHは、データを搬送し、バッファステータス報告(BSR)、パワーヘッドルーム報告(PHR)、および/またはUCIを搬送するためにさらに使用されることがある。
図3は、アクセスネットワークにおいてUE350と通信している基地局310のブロック図である。DLでは、EPC160からのIPパケットがコントローラ/プロセッサ375に提供されることがある。コントローラ/プロセッサ375はレイヤ3およびレイヤ2の機能を実装する。レイヤ3は無線リソース制御(RRC)レイヤを含み、レイヤ2は、パケットデータコンバージェンスプロトコル(PDCP)レイヤと、無線リンク制御(RLC)レイヤと、媒体アクセス制御(MAC)レイヤとを含む。コントローラ/プロセッサ375は、システム情報(たとえば、MIB、SIB)のブロードキャスティング、RRC接続制御(たとえば、RRC接続ページング、RRC接続確立、RRC接続修正、およびRRC接続解放)、無線アクセス技術(RAT)間モビリティ、ならびにUE測定報告のための測定構成と関連付けられるRRCレイヤ機能と、ヘッダ圧縮/解凍、セキュリティ(暗号化、解読、完全性保護、完全性検証)、およびハンドオーバーサポート機能と関連付けられるPDCPレイヤ機能と、上位レイヤパケットデータユニット(PDU)の転送、ARQを介した誤り訂正、RLCサービスデータユニット(SDU)の連結、セグメンテーション、およびリアセンブリ、RLCデータPDUの再セグメンテーション、ならびにRLCデータPDUの並べ替えと関連付けられるRLCレイヤ機能と、論理チャネルとトランスポートチャネルとの間のマッピング、トランスポートブロック(TB)上へのMAC SDUの多重化、TBからのMAC SDUの逆多重化、スケジューリング情報報告、HARQを介した誤り訂正、優先度処理、および論理チャネル優先順位付けと関連付けられるMACレイヤ機能とを提供する。
送信(TX)プロセッサ316および受信(RX)プロセッサ370は、様々な信号処理機能と関連付けられるレイヤ1機能を実装する。物理(PHY)レイヤを含むレイヤ1は、トランスポートチャネル上の誤り検出と、トランスポートチャネルの前方誤り訂正(FEC)コーディング/復号と、インターリービングと、レートマッチングと、物理チャネル上へのマッピングと、物理チャネルの変調/復調と、MIMOアンテナ処理とを含むことがある。TXプロセッサ316は、様々な変調方式(たとえば、2位相シフトキーイング(BPSK)、4位相シフトキーイング(QPSK)、M位相シフトキーイング(M-PSK)、M直交振幅変調(M-QAM))に基づく信号コンスタレーションへのマッピングを扱う。コーディングされ変調されたシンボルは、次いで、並列ストリームに分割されることがある。各ストリームは、次いで、時間領域OFDMシンボルストリームを搬送する物理チャネルを生成するために、OFDMサブキャリアにマッピングされ、時間領域および/または周波数領域において基準信号(たとえば、パイロット)と多重化され、次いで、逆高速フーリエ変換(IFFT)を使用して一緒に合成されることがある。OFDMストリームは、複数の空間ストリームを生成するために空間的にプリコーディングされる。チャネル推定器374からのチャネル推定値は、コーディングおよび変調方式を決定するために、ならびに空間処理のために使用されることがある。チャネル推定値は、UE350によって送信された基準信号および/またはチャネル状態フィードバックから導出されることがある。各空間ストリームは、次いで、別個のトランスミッタ318TXを介して異なるアンテナ320に提供されることがある。各トランスミッタ318TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調することがある。
UE350において、各レシーバ354RXは、レシーバのそれぞれのアンテナ352を通じて信号を受信する。各レシーバ354RXは、RFキャリア上に変調された情報を復元し、その情報を受信(RX)プロセッサ356に提供する。TXプロセッサ368およびRXプロセッサ356は、様々な信号処理機能と関連付けられるレイヤ1機能を実装する。RXプロセッサ356は、UE350に宛てられたあらゆる空間ストリームを復元するために、情報に対して空間処理を実行してもよい。複数の空間ストリームがUE350に宛てられる場合、複数の空間ストリームは、RXプロセッサ356によって単一のOFDMシンボルストリームへと合成されることがある。次いで、RXプロセッサ356は、高速フーリエ変換(FFT)を使用して、OFDMAシンボルストリームを時間領域から周波数領域に変換する。周波数領域信号は、OFDM信号の各サブキャリアに対して別々のOFDMシンボルストリームを備える。各サブキャリア上のシンボルおよび基準信号は、基地局310によって送信される、可能性が最も高い信号のコンスタレーションポイントを判定することによって復元および復調される。これらの軟判定は、チャネル推定器358によって算出されたチャネル推定値に基づくことがある。軟判定は、次いで、物理チャネル上で基地局310によって最初に送信されたデータおよび制御信号を復元するために復号およびデインターリーブされる。データおよび制御信号は、次いで、レイヤ3およびレイヤ2の機能を実装するコントローラ/プロセッサ359に提供される。
コントローラ/プロセッサ359は、プログラムコードとデータとを記憶するメモリ360に関連付けられ得る。メモリ360は、コンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ359は、EPC160からのIPパケットを復元するために、トランスポートチャネルと論理チャネルとの間の逆多重化と、パケットリアセンブリと、解読と、ヘッダ解凍と、制御信号処理とを行う。コントローラ/プロセッサ359はまた、ACKおよび/またはNACKプロトコルを使用してHARQ動作をサポートする誤り検出を担う。
基地局310によるDL送信に関して説明された機能と同様に、コントローラ/プロセッサ359は、システム情報(たとえば、MIB、SIB)収集、RRC接続、および測定報告と関連付けられるRRCレイヤ機能と、ヘッダ圧縮/解凍およびセキュリティ(暗号化、解読、完全性保護、完全性検証)と関連付けられるPDCPレイヤ機能と、上位レイヤPDUの転送、ARQを通じた誤り訂正、RLC SDUの連結、セグメンテーション、およびリアセンブリ、RLCデータPDUの再セグメンテーション、ならびにRLCデータPDUの並べ替えと関連付けられるRLCレイヤ機能と、論理チャネルとトランスポートチャネルとの間のマッピング、TB上へのMAC SDUの多重化、TBからのMAC SDUの逆多重化、スケジューリング情報報告、HARQを通じた誤り訂正、優先度処理、および論理チャネル優先度付けと関連付けられるMACレイヤ機能とを提供する。
基地局310によって送信された基準信号またはフィードバックから、チャネル推定器358によって導出されたチャネル推定値は、適切なコーディングおよび変調方式を選択するために、ならびに空間処理を容易にするために、TXプロセッサ368によって使用されることがある。TXプロセッサ368によって生成された空間ストリームは、別個のトランスミッタ354TXを介して異なるアンテナ352に提供されることがある。各トランスミッタ354TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調することがある。
UL送信は、UE350におけるレシーバ機能に関して説明された方式と同様の方式で、基地局310において処理される。各レシーバ318RXは、レシーバのそれぞれのアンテナ320を通じて信号を受信する。各レシーバ318RXは、RFキャリア上に変調された情報を復元し、その情報をRXプロセッサ370に提供する。
コントローラ/プロセッサ375は、プログラムコードとデータとを記憶するメモリ376と関連付けられ得る。メモリ376は、コンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ375は、UE350からのIPパケットを復元するために、トランスポートチャネルと論理チャネルとの間の逆多重化と、パケットリアセンブリと、解読と、ヘッダ解凍と、制御信号処理とを行う。コントローラ/プロセッサ375からのIPパケットは、EPC160に提供されることがある。コントローラ/プロセッサ375はまた、ACKおよび/またはNACKプロトコルを使用してHARQ動作をサポートする誤り検出を担う。
図4は、UE404と通信している基地局402を示す図400である。図4を参照すると、基地局402は、方向402a、402b、402c、402d、402e、402f、402g、402hのうちの1つまたは複数において、ビームフォーミングされた信号をUE404に送信することがある。UE404は、1つまたは複数の受信方向404a、404b、404c、404dにおいて基地局402からビームフォーミングされた信号を受信することがある。UE404はまた、方向404a~404dのうちの1つまたは複数において基地局402にビームフォーミングされた信号を送信することがある。基地局402は、受信方向402a~402hのうちの1つまたは複数においてUE404からビームフォーミングされた信号を受信することがある。基地局402/UE404は、基地局402/UE404の各々に対する最良の受信方向および送信方向を決定するためにビーム訓練を実行することがある。基地局402に対する送信方向および受信方向は、同じであることも同じではないこともある。UE404に対する送信方向および受信方向は、同じであることも同じではないこともある。
同期信号(SS)は、たとえば所定の固定された位置において送信されるのではなく、複数のSSブロックにおいてビーム掃引されてもよい。ブロードキャストチャネル(BCH)送信時間間隔(TTI)は、その間はタイミング以外のシステム情報(SI)が物理ブロードキャストチャネル(PBCH)において変化しないままである、時間枠を備えてもよい。したがって、BCH TTI内で、タイミング情報以外のPBCHペイロードは、あらゆる送信されるPBCHに対して同じである。残りのタイミング情報は、SSブロック内に、たとえばSSブロックインデックスの中に備えられてもよい。
たとえば、NR通信は80msのBCH TTIを含むことがある。BCH TTI内で、複数のSSバーストセット、たとえばL個のSSブロックのビーム掃引が送信されてもよい。初期のセル選択バーストセットは、たとえば20msの周期で反復してもよい。しかしながら、接続された/アイドル状態のUE、およびスタンドアロンではない展開などに対しては、他の周期が可能であることがある。
図5は、基地局によるPBCH送信のためのバースト、バーストセット、およびBCH TTIの例示的な構成500を示す。図5において、バースト当たりある数(L個)のSSブロックが示されており、バーストセット当たりある数(N個)のバーストが示されており、BCH TTI当たりある数(m個)のバーストセットが示されている。バーストセットは、たとえば、1つの完全なビーム掃引を備えるSSブロックのセットであってもよい。したがって、バーストセットの周期は、UEが同じgNBビーム上でSSブロックを受信する周期であってもよい。SSブロックは、連続的ではないことがあり、たとえば、ダウンリンク(DL)制御およびデータとアップリンク(UL)制御およびデータの散在を許容することがある。たとえば、バーストセットは複数のバーストを備えてもよく、ここでバーストはgNBに対して利用可能な連続的なSSブロック送信リソースのセットを備える。
同期信号のための残りのタイミング情報の少なくとも一部は、明白にPBCHペイロードの中にあってもよい。たとえば、PBCHペイロードは、SSブロックインデックスおよび/またはSSバーストセットインデックスを含んでもよい。UEは、PBCH復号性能を改善するために、復号のためのPBCH送信を合成してもよい。時々、PBCH送信は異なるSSブロックインデックスを搬送する可能性がある。UEは、任意の2つのPBCH反復のペイロード間のビット差分について仮定を行うことによって、異なるSSブロックからのPBCHを合成するために、SSブロックインデックスを使用してもよく、ビット差分は2つのPBCHに対する異なるSSブロックとバーストセットインデックスにより生じる。
Gが高さ生成行列を表し、bおよびδが(列)ベクトルを表す場合の、符号G(b+δ)=Gb+Gδの線形性に基づいて、GF(2)の中ですべて、2つのSSブロックのそれぞれのペイロード間のビット差分δを仮定したことに基づいて、2つのSSブロックにわたってPBCHが合成されてもよい。
l∈L≡{0,…,lmax-1}を、SSブロックインデックスを表すものとし、lmaxはSSブロックの総数であり、LはSSブロックインデックスのセットを表す。一例では、lmaxは64に等しくてもよい。これは一例にすぎず、本明細書で提示される態様はSSブロックの異なる総数に適合する。
関数c(l)=Gb(l)は、SSブロックインデックスlにおいて送信されるPBCHに含まれる符号語を表してもよく、ここでb(l)はSSブロックインデックスlにおいて送信されるPBCHペイロードであり、l(たとえば、6個の最下位ビット(LSB))を含み、G=Gpolar GCRCはポーラ符号生成行列が後に続くシステマティックCRC生成行列である。このGpolarは、任意の線形符号の生成行列で置き換えることができ、それでも本明細書で提示される態様は適合する。同様に、このGCRCは、任意の線形誤り検出符号の生成行列で置き換えることができ、それでも本明細書で提示される態様は適合する。
SSブロックインデックスl1、インデックスl2においてそれぞれ送信されるPBCH間のビット差分は、δ({l1,l2})=b(l1)+b(l2)によって表されてもよく、ここでB≡{δ({l1,l2}): {l1,l2}⊂L}である。注釈として、
Figure 0007155165000001
個の仮定{l1,l2}があっても、|B|=lmax(たとえば、この例では64)である。
UEがΔtの時間距離だけ離れている2つのSSブロックを検出するとき、UEはこれらの2つのブロックの中のPBCHを合成することができる。時間距離ΔtはSSブロックを単位とするものであってもよい。たとえば、
c(l+Δt)=Gb(l+Δt)=G・[b(l)+δ({l,l+Δt})]
=Gb(l)+Gδ({l,l+Δt})
=c(l)+Gδ({l,l+Δt})
⇒c(l)=c(l+Δt)+Gδ({l,l+Δt})
したがって、SSブロックlおよびl+Δtの中のPBCHにおいて送信される符号語は関連しており、時間離隔Δtが知られているとき、UEは一方の符号語を他方から導出してもよい。言い換えると、一方の符号語を、他方の符号語のスクランブルされたバージョンとして見ることができ、スクランブリングはGδ({l,l+Δt})によって与えられる。この例では、UEはすでにΔt(すなわち、UEが2つのSSブロックを検出した時間がどれだけ離れているか)を知っている。したがって、UEは、2つの反復に対して計算されるLLRなどの復号尺度を合成し、したがって復号性能を改善することができる。一方のPBCH符号語を他方から導出するために、(l+Δt)∈Lであるようなすべての仮定l∈Lに対して、UEは以下を計算してもよい。
(1)bδ({l,l+Δt})を計算する
(2)G・δ({l,l+Δt})を計算する
一例では、これはオフラインで計算および記憶することができ、それは、ビット差分ベクトルδ({l,l+Δt})に対する可能な値が小さい(たとえば、lmax)ことがあるからである。
2つの計算を実行した後で、UEはG・δ({l,l+Δt})を使用してLLR(1+Δt)の符号を訂正することによって、対数尤度比(LLR)を加算してもよい。
次いで、UEはPBCHを復号してCRCを検査してもよい。UEは、復号された情報からPBCHに対するSSブロックインデックスを決定してもよい。
仮定のセットは、(l+Δt)∈Lであるようなすべての仮定l∈Lを備えてもよい。仮定のセットは、通信システムのSSブロックパターン構成(たとえば、SSバーストおよび/またはバーストセットの設計)に依存する。L≡{0,…,l_max-1}はSSブロックインデックスのセットを表し、lmaxはバーストセットの中のSSブロックの総数である。UEが時間Δt離れている2つのSSブロックを検出するとき、仮定のセット、たとえば(l+Δt)∈Lであるようなすべての仮定l∈Lは、システムにおいて使用されるバーストセットパターン(すなわち、SSブロックの相対的な送信時間)に依存する。図6Aは、例示的なSSブロック構造600を示し、UEがΔt=4SSブロック時間長だけ離れている2つのSSブロックを検出する場合にUEがPBCHを合成するために評価することがある、仮定(l,l+Δt)を示す。図6Aでは、lはSSブロックインデックス1、2、3、4、5、または6であってもよいが、SSブロックインデックス7、8、9、および10は、Δt=4SSブロック時間長だけ離隔されているSSブロックを許容しない。
同様のSSブロックパターン構造602に対して、図6Bは、UEがΔt=5ms+(3SSブロック時間長)だけ離れている2つのSSブロックを検出する場合にUEがPBCHを合成するために評価することがある、仮定を示す。
したがって、タイミング情報は、PBCHペイロードにおいて、たとえば、バーストセット内またはBCH TTI内のSSブロックインデックスにおいて搬送されてもよい。タイミング情報が原因で異なる可能性のあるペイロードを搬送する、異なるSSブロックからのPBCHが、検出の改善のために合成され得る。UEは、各PBCHにおいて搬送されるSSブロックインデックスに基づいて仮定してもよく、ここで、この仮定は2つのSSブロックの受信の間の時間ギャップと釣り合っている。各仮定について、UEは、仮定に対するペイロード間のビット差分ベクトルを計算し、ビット差分ベクトルに対応する符号語を計算してもよい。最後に、UEは、この符号語を使用して、2つのPBCHから検出尺度を正しく合成し(たとえば、正しい符号を伴うLLRを加算し)、合成された検出尺度を使用してPBCHを復号してもよい。
PBCHペイロードは、凍結ビットなどの、UEにすでに知られている符号化されたビットを含むことがある。PBCHペイロードは、UEに知られている可能性のある符号化されたビットを含むことがあり、UEは、知られていない情報の残りのセットのためだけにPBCHを復号する必要があることがある。
知られていない情報は、たとえば、SSブロックインデックス、SSバーストセットインデックス、システムフレーム番号(SFN)、および/または誤り検出ビットなどの、タイミング情報を含んでもよい。たとえば、タイミング情報はCRCビットを含んでもよい。
したがって、PBCHペイロードまたは符号化されたPBCHビットの一部はすでにUEに知られていることがあり、UEは残りの知られていない情報のためだけにPBCHを復号する必要があることがある。
たとえば、UEは場合によっては、知られていないタイミング情報を除き、近隣セルPBCHのためのシステム情報の大半、たとえばMIBを知っていることがある。この知られている可能性のある情報は、UEに提供されたのでUEに知られていることがあり、たとえば、サービングセルが近隣セルに関するそのような情報をUEに提供することがある。PBCHは、UEによっても知られている凍結ビットを備えることがある。UEは、ペイロードの知られている可能性のあるビット、ならびに凍結ビットの少なくとも一部を使用して、部分的に知られているPBCHを復号してもよい。
一例では、ポーラ符号化されたPBCHに対して、知られている可能性のあるペイロードは、UEにおける復号プロセスにおいて凍結ビットとして扱われてもよい。
N×Nの所与のポーラ符号生成行列GNに対して、Q=(q1,q2,…,qN)がポーラエンコーダへの入力ビットに対するインデックスを提供するビット位置ベクトルである場合、q1、q2、…、qNは推定される信頼性に基づいてソートされてもよい。たとえば、入力ビットは、q1が最も信頼性が高く、以下同様にqNが最も信頼性が低くなるように、ソートされてもよい。いくつかの場合、信頼性は推定に基づいてもよい。
たとえば、2ビット(列)ベクトルxに対する単純な生成行列
Figure 0007155165000002
生成符号語y=G2xに対して、Q=(2,1)である。
よって、所与のGNに対して、ビット位置ベクトルQがある。そうすると、エンコーダの入力において、最も信頼性のあるビット位置にK<N個の情報ビットが配置され、凍結ビット(これは知られているビットである)は残りのN-K個のビット位置である。このように取得されたビットベクトルは、N×1のベクトルxである。エンコーダは次いで、Nビットの符号語y=G_Nxを生み出す。時には、送信される符号語は、送信すべきN個未満のビットを取得するためにパンクチャリングされてもよい。この場合、ビット位置ベクトルQは、実際に送信されるビットに基づくビット信頼性を反映するように適切に更新されてもよい。
凍結ビットは、最も信頼性の低いビット位置に置かれてもよい。知られている可能性のあるビットの少なくとも一部は、知られていないビットのビット位置より信頼性の低いビット位置に置かれてもよい。したがって、知られている可能性のあるビットは、基地局による送信のためにPBCHを構築する際に、知られていないビットが置かれているビット位置の信頼性よりも信頼性の低いビット位置に置かれてもよい。
知られている可能性のあるビットの位置が与えられると、UEは、情報ビットの連続する復号に基づいてPBCHを復号してもよい。凍結ビットはすでに、UEによって知られており、復号される必要がないことがある。UEは、知られている可能性のあるビットを最初に復号してもよく、次いで、知られていないビットの少なくとも一部を続いて復号してもよい。
これは、UEが近隣セルのためのPBCHをより効率的に復号することを可能にすることがある。たとえば、UEは、PBCHに備えられるSSブロックインデックスなどのタイミング情報を取得するために、4ショットのPBCH復号を必要とすることがある。UEが近隣セルPBCHのための残りのビット、たとえばSSブロックインデックス以外のビットの少なくとも一部を知っている場合、UEはそれらを凍結ビットとして扱ってもよい。これは、UEが、減らされた復号処理を用いて、たとえば単一ショットのPBCH復号を用いて、SSブロックインデックスを取得することを可能にすることがある。
図7は、本明細書で提示される態様による、UE704(たとえば、UE104、350、404、950、装置1202、1202')と、第1の基地局702(たとえば、基地局180、350)と、第2の基地局706(たとえば、基地局180、350、402、1250、装置902、902')との間の通信フロー700を示す。第1の基地局702はサービング基地局であってもよく、第2の基地局は近隣基地局であってもよい。第2の基地局706は複数のSSブロックにおいてPBCHを送信してもよい。各SSブロックは、SSブロックインデックスなどの、PBCHペイロードに含まれるタイミング情報を備えてもよい。たとえば、図7は、基地局706が、第1のSSブロック712において第1のタイミング情報を備える第1のPBCHペイロードを送信することと、第2のSSブロック714において第2のタイミング情報を備える第2のPBCHペイロードを送信することとを示す。
図14は、SSブロックにおいて搬送されるべき全体のタイミング情報1400の例を示す。図14は、異なる分解能でタイミングを示すタイミングビットの様々な部分を示す。これらのタイミングビットの少なくとも一部は、符号化されるべき、たとえばポーラ符号化されるべきPBCHペイロードシーケンスに含まれてもよい。
708において、基地局706は、対応するビット位置に対する推定される信頼性に基づいて選択されるPBCH情報のビット位置を伴うPBCHを構築してもよい。いくつかのPBCHフィールドはいくつかのシナリオでは既知のビット値を有することがあるので、PBCHデコーダ性能を改善するために、PBCHフィールドは、たとえばより信頼性の高いまたはより信頼性の低いビット位置に置かれてもよい。たとえば、凍結ビットが最も信頼性の低いビット位置に置かれてもよく、知られている可能性のあるビットの少なくとも一部が、知られていないビットより信頼性の低いビット位置に置かれてもよい。図5、図6、および図8に関連して説明されるように、PBCHフィールドは、SSブロック時間インデックス、予約された情報ビットおよびシステム情報ビット、SFNビットなどを含んでもよい。
UE704は、720において、連続する復号順序に基づいて基地局706から受信されたPBCHペイロードを復号してもよい。凍結ビットはすでに知られていることがあり、復号を必要としないことがある。UEは、知られている可能性のあるビットを最初に復号し、続いて知られていないビットを復号してもよい。
図7に示されるように、知られている可能性のあるビットは、第1の基地局702からUE704に提供される第2の基地局PBCHに関する情報に対応することがある。
第1の例では、第1のセルは、第2のセルに対するセル品質測定結果をUEが報告する前に、710において第2のセルPBCHビットに関する情報をUE704に提供してもよい。たとえば、UE704は、第2の基地局706からPBCHを受信する前に、第1の基地局702から第2の基地局PBCHに関する情報を受信してもよい。UE704は次いで、第2の基地局のSSブロックを検出してもよく、720において、第1の基地局702から受信された情報710を使用して、連続する復号順序を使用して第2の基地局PBCHを復号してもよい。これは、PBCHの復号レイテンシを減らすことがある。
この第1の例では、サービングセルは、各々のサービスされるUEが近隣セルの品質を報告する際に使用するための、複数の周囲の近隣セルのPBCHビットに関する情報を提供してもよい。たとえば、サービングセルは、複数の近隣セル識別子(ID)に対応する情報を提供してもよい。しかしながら、これは、サービングセルが大量の情報をUEに提供することを必要とすることがある。
第2の例では、UE704は、第1の基地局702から情報を受信する前に、第2の基地局706からのSSブロックを検出することがある。UEは、第2の基地局706のセルIDを検出してもよい。セルIDを検出すると、UEは、716において、セルIDを第1の基地局702に報告してもよい。UEからセルIDを受信したことに応答して、第1の基地局702は、718において、第2の基地局706のためのPBCHビット情報をUEに提供してもよい。UEは次いで、720において、連続する復号順序を使用して第2の基地局PBCHを復号するために、第1のセル702からの情報を使用してもよい。
この第2の例では、サービングセルは、UEが対応するセルIDを報告したことに応答して、特定の近隣セルのためのPBCHビットに関する情報を提供してもよい。これは第1の例より大きいレイテンシを伴うことがあるが、第2の例はサービング基地局に対するRRCシグナリングオーバーヘッドを減らす。
したがって、第1の基地局は、第2の基地局の参照時間を導出する際にUEを助けるための情報を提供してもよく、たとえば、サービングセルは、ターゲットセルの参照時間を導出する際にUEを助けてもよい。
図8は、ワイヤレス通信の方法のフローチャート800である。方法は、UE(たとえば、UE104、350、404、704、950、装置1202、1202')と通信している基地局(たとえば、基地局102、180、310、402、706、1250、装置902、902')によって実行されてもよい。802において、基地局はPBCHペイロードを構築し、ビット位置は、ビット位置の推定される信頼性に基づいてPBCHの複数のビットを符号化するために選択され、複数のビットは、たとえば図7の708に関連して説明されるように、凍結ビットと、ユーザ機器に知られていない、知られていないビットと、ユーザ機器によって知られている可能性のある、知られている可能性のあるビットとを備える。PBCHペイロードはポーラ符号化されたPBCHを備えてもよい。知られている可能性のあるビットの少なくとも一部は、PBCHペイロードを符号化する際に、知られていないビットより信頼性の低いビット位置を与えられてもよい。凍結ビットは、PBCHペイロードを符号化する際に、知られている可能性のあるビットより信頼性の低いビット位置を与えられてもよい。したがって、基地局は、PBCHデコーダ性能の潜在的な改善を可能にするように、PBCHシーケンスを生成してもよく、特定の順序でPBCHシーケンスをポーラ符号化してもよい。
804において、基地局は、複数のSSブロックのうちの少なくとも1つにおいてPBCHペイロードを送信する。一例では、各SSブロックは対応するタイミング情報を備える。たとえば、図5および図6に関して説明されるように、各SSブロックはSSブロックインデックスを備えてもよい。したがって、タイミング情報は、SSブロックインデックス、SSバーストセットインデックス、およびシステムフレーム番号(SFN)のうちの少なくとも1つを備えてもよい。
一例では、知られていないビットは、タイミング情報、たとえばSSブロックインデックス、SSバーストセットインデックス、およびSFNのうちの少なくとも1つを備えてもよい。他の例では、知られていないビットは他の情報を備えてもよい。知られていないビットは、誤り検出ビット、たとえばCRCビットまたは他の情報を含んでもよい。たとえば、ネットワーク同期により、UEがサービングセルから受信するタイミング情報は、近隣セルに適用可能であることがある。したがって、この例では、タイミング情報以外の情報は知られていないビットに備えられてもよい。
知られている可能性のあるビットは、異なるセルによってユーザ機器に提供されるシステム情報を備えてもよい。たとえば、そのような知られている可能性のある情報は、他のチャネルに対するサブキャリア間隔、共通制御リソースセット(CORESET)の構成、残りのシステム情報の送信の構成、システム帯域幅、システム帯域幅内の同期信号の位置、および/または予約されたビットなどの、ヌメロロジーのいずれを含んでもよい。知られている可能性のある情報は、SFNの一部、たとえば全体で10ビットのSFNのうちの8個のMSBを含んでもよい。したがって、第1のセルは第2のセルの厳密なタイミングを提供することが可能ではないことがあるが、第1のセルは、あるレベルの精度で、たとえば最高で20msの精度で、近隣セルの時間を提供することが可能であることがある。
図9は、例示的な装置902における異なる手段/構成要素間のデータフローを示す概念データフロー図900である。装置は、UE950(たとえば、UE104、350、404、704、装置1202、1202')と通信する基地局(たとえば、基地局180、310、402、706、1250)であってもよい。装置は、アップリンク通信を受信する受信構成要素904と、PBCHを含むDL通信をUEへ送信する送信構成要素906とを含む。装置はPBCHペイロードを構築するように構成されるPBCH構築構成要素908を含んでもよく、ビット位置は、ビット位置の推定される信頼性に基づいてPBCHの複数のビットを符号化するために選択され、複数のビットは、凍結ビットと、ユーザ機器に知られていない、知られていないビットと、ユーザ機器によって知られている可能性のある、知られている可能性のあるビットとを備える。たとえば、PBCH構築構成要素は、PBCHを符号化するとき、知られている可能性のあるビットの少なくとも一部に、知られていないビットより信頼性の低いビット位置を与えてもよく、凍結ビットに、知られている可能性のあるビットより信頼性の低いビット位置を与えてもよい。装置は、たとえば送信構成要素906を介して、複数のSSブロックのうちの少なくとも1つにおいて、PBCHペイロードを送信するように構成されるSSブロック構成要素910を含んでもよい。
装置は、図7および図8の上述のフローチャートにおけるアルゴリズムのブロックの各々を実行する追加の構成要素を含んでもよい。したがって、上述の図7および図8のフローチャートにおける各ブロックは構成要素によって実行されてもよく、装置はそれらの構成要素のうちの1つまたは複数を含んでもよい。構成要素は、述べられたプロセス/アルゴリズムを遂行するように具体的に構成された1つもしくは複数のハードウェア構成要素であるか、述べられたプロセス/アルゴリズムを実行するように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであってもよい。
図10は、処理システム1014を利用する装置902'のハードウェア実装形態の例を示す図1000である。処理システム1014は、バス1024によって全般に表されるバスアーキテクチャで実装されてもよい。バス1024は、処理システム1014の具体的な適用例および全体的な設計制約に応じて、任意の数の相互接続するバスおよびブリッジを含んでもよい。バス1024は、プロセッサ1004によって表される1つまたは複数のプロセッサおよび/またはハードウェア構成要素と、構成要素904、906、908、910と、コンピュータ可読媒体/メモリ1006とを含む様々な回路を互いにつなぐ。バス1024はまた、タイミングソース、周辺装置、電圧調整器、および電力管理回路などの、様々な他の回路をつなぐことがあるが、これらの回路は当技術分野においてよく知られており、したがって、これらの回路はこれ以上説明されない。
処理システム1014は、トランシーバ1010に結合されてもよい。トランシーバ1010は、1つまたは複数のアンテナ1020に結合される。トランシーバ1010は、送信媒体を介して様々な他の装置と通信するための手段を提供する。トランシーバ1010は、1つまたは複数のアンテナ1020から信号を受信し、受信された信号から情報を抽出し、抽出された情報を処理システム1014、特に受信構成要素904に与える。加えて、トランシーバ1010は、処理システム1014、特に送信構成要素906から情報を受信し、受信された情報に基づいて、1つまたは複数のアンテナ1020に印加されるべき信号を生成する。処理システム1014は、コンピュータ可読媒体/メモリ1006に結合されたプロセッサ1004を含む。プロセッサ1004は、コンピュータ可読媒体/メモリ1006に記憶されたソフトウェアの実行を含む、一般的な処理を担う。ソフトウェアは、プロセッサ1004によって実行されると、任意の特定の装置に対して、上で説明された様々な機能を処理システム1014に実行させる。コンピュータ可読媒体/メモリ1006はまた、ソフトウェアを実行するときにプロセッサ1004によって操作されるデータを記憶するために使用されてもよい。処理システム1014は、構成要素904、906、908、910のうちの少なくとも1つをさらに含む。それらの構成要素は、プロセッサ1004内で動作し、コンピュータ可読媒体/メモリ1006の中に存在する/記憶されたソフトウェア構成要素、プロセッサ1004に結合された1つまたは複数のハードウェア構成要素、またはそれらの何らかの組合せであってもよい。処理システム1014は、基地局310の構成要素であってもよく、メモリ376、ならびに/または、TXプロセッサ316、RXプロセッサ370、およびコントローラ/プロセッサ375のうちの少なくとも1つを含んでもよい。
一構成では、ワイヤレス通信のための装置902/902'は、PBCHペイロードを構築するための手段であって、ビット位置が、対応するビット位置の推定される信頼性に基づいてPBCHの複数のビットを符号化するために選択され、複数のビットが、凍結ビットと、ユーザ機器に知られていない、知られていないビットと、ユーザ機器によって知られている可能性のある、知られている可能性のあるビットとを備える、手段と、複数のSSブロックのうちの少なくとも1つにおいてPBCHペイロードを送信するための手段とを含み、各SSブロックは対応するタイミング情報を備える。上述の手段は、上述の手段によって列挙された機能を実行するように構成された装置902および/または装置902'の処理システム1014の上述のコンポーネントのうちの1つまたは複数であってもよい。上で説明されたように、処理システム1014は、TXプロセッサ316と、RXプロセッサ370と、コントローラ/プロセッサ375とを含んでもよい。したがって、一構成では、上述の手段は、上述の手段によって列挙された機能を実行するように構成されたTXプロセッサ316、RXプロセッサ370、およびコントローラ/プロセッサ375であってもよい。
図11は、ワイヤレス通信の方法のフローチャート1100である。方法は、第2のセルの基地局(たとえば、基地局102、180、310、402、706、1250、装置902、902')から通信を受信し第1のセルによってサービスされる、UE(たとえば、UE104、350、404、704、950、装置1202、1202')によって実行されてもよい。任意選択の態様が、破線を用いて示されている。1104において、UEは、複数のSSブロックのうちの少なくとも1つにおいて第2のセルのPBCHペイロードを受信し、各SSブロックは対応するタイミング情報を備え、PBCHペイロードは、凍結ビットと、ユーザ機器に知られていない、知られていないビットと、ユーザ機器によって知られている可能性のある、知られている可能性のあるビットとを備える。PBCHペイロードはポーラ符号化されたPBCHを備えてもよい。
1112において、UEは、連続する復号順序に基づいてPBCHを復号する。連続する復号順序は、対応するビットに対する推定される信頼性に基づいてもよい。知られている可能性のあるビットは、知られていないビットより前に復号されてもよい。知られている可能性のあるビットは、第1のセルによってユーザ機器に提供されるシステム情報を備えてもよい。知られていないビットは、タイミング情報、たとえばSSブロックインデックス、SSバーストセットインデックス、およびSFNのうちの少なくとも1つを備えてもよい。知られている可能性のあるビットは、誤り検出ビット、たとえばCRCビットを備えてもよい。
一例では、1102において示されるように、UEは、第1のセルから、セル品質を報告する前に第2のセルのセルIDに対応する複数の知られている可能性のあるビットを受信してもよい。次いで、1106において、UEは、受信されたSSブロックから第2のセルのセルIDを検出してもよい。PBCHは、第1のセルから取得されたビットを使用して、1112において連続する復号順序に基づいて復号されてもよい。
別の例では、UEは、1104において、PBCHを受信する前に知られている可能性のあるビットを受信しなくてもよい。この例では、UEは、1108において、第2のセルの検出されたセルIDを第1のセルに報告してもよい。次いで、1110において、UEは、セルIDを報告したことに応答して、第1のセルから、第2のセルのセルIDに対応する複数の知られている可能性のあるビットを受信してもよい。PBCHは、第1のセルから取得されたビットを使用して、1112において連続する復号順序に基づいて復号されてもよい。
図12は、例示的な装置1202における異なる手段/構成要素間のデータフローを示す概念データフロー図1200である。装置は、第1の基地局1251(たとえば、基地局180、310、402、702)と、および第2の基地局1250(たとえば、基地局180、310、402、706、装置902、902')と通信しているUE(たとえば、UE104、350、404、704、950)であってもよい。装置は、たとえば第1の基地局1251および第2の基地局1250を介して、第1のセルおよび第2のセルからダウンリンク通信を受信する受信構成要素1204を含む。装置は、基地局、たとえば1250、1251へのUL通信を送信する送信構成要素1206を含む。装置は、複数のSSブロックのうちの少なくとも1つにおいて第2のセルのPBCHペイロードを受信するように構成されるPBCH構成要素1208を含み、各SSブロックは対応するタイミング情報を備え、PBCHペイロードは、凍結ビットと、ユーザ機器に知られていない、知られていないビットと、ユーザ機器によって知られている可能性のある、知られている可能性のあるビットとを備える。
装置は、連続する復号順序に基づいてPBCHを復号するように構成される復号構成要素1210を含む。連続する復号順序は、対応するビットに対する推定される信頼性に基づいてもよい。
装置は、第1のセルから、第2のセルのセルIDに対応する複数の知られている可能性のあるビットを受信するように構成される、知られている可能性のあるビット構成要素1212を含んでもよい。装置は、第2のセル1250のセルIDを検出するように構成されるセルID構成要素1214を含んでもよい。知られている可能性のあるビットはセルIDを検出する前に受信されてもよく、セルIDは対応する第2のセルの知られている可能性のあるビットを特定するために使用されてもよい。別の例では、UEは、知られている可能性のあるビットを受信する前にセルIDを検出してもよい。装置はさらに、第2のセルのセルIDを第1のセルに報告するように構成される報告構成要素1216を含んでもよい。次いで、第2のセルの知られている可能性のあるビットは、報告されたセルIDに応答して受信されてもよい。
装置は、図7および図11の上述のフローチャートの中のアルゴリズムのブロックの各々を実行する追加の構成要素を含んでもよい。したがって、図7および図11の上述のフローチャートの中の各ブロックは、1つの構成要素によって実行されてもよく、装置は、それらの構成要素のうちの1つまたは複数を含んでもよい。構成要素は、述べられたプロセス/アルゴリズムを遂行するように具体的に構成された1つもしくは複数のハードウェア構成要素であるか、述べられたプロセス/アルゴリズムを実行するように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであってもよい。
図13は、処理システム1314を利用する装置1202'のハードウェア実装形態の例を示す図1300である。処理システム1314は、バス1324によって全体的に表されるバスアーキテクチャを用いて実装されてもよい。バス1324は、処理システム1314の具体的な適用例および全体的な設計制約に応じて、任意の数の相互接続バスとブリッジとを含んでもよい。バス1324は、プロセッサ1304によって表される1つまたは複数のプロセッサおよび/またはハードウェア構成要素と、構成要素1204、1206、1208、1210、1212、1214、1216と、コンピュータ可読媒体/メモリ1306とを含む様々な回路を互いにつなぐ。バス1324はまた、タイミングソース、周辺装置、電圧調整器、および電力管理回路などの、様々な他の回路をつなぐことがあるが、これらの回路は当技術分野においてよく知られており、したがって、これらの回路はこれ以上説明されない。
処理システム1314は、トランシーバ1310に結合されてもよい。トランシーバ1310は、1つまたは複数のアンテナ1320に結合される。トランシーバ1310は、送信媒体を介して様々な他の装置と通信するための手段を提供する。トランシーバ1310は、1つまたは複数のアンテナ1320から信号を受信し、受信された信号から情報を抽出し、抽出された情報を処理システム1314、特に受信構成要素1204に与える。加えて、トランシーバ1310は、処理システム1314、特に送信構成要素1206から情報を受信し、受信された情報に基づいて、1つまたは複数のアンテナ1320に印加されるべき信号を生成する。処理システム1314は、コンピュータ可読媒体/メモリ1306に結合されたプロセッサ1304を含む。プロセッサ1304は、コンピュータ可読媒体/メモリ1306に記憶されたソフトウェアの実行を含む、一般的な処理を担う。ソフトウェアは、プロセッサ1304によって実行されると、任意の特定の装置に対して、上で説明された様々な機能を処理システム1314に実行させる。コンピュータ可読媒体/メモリ1306はまた、ソフトウェアを実行するときにプロセッサ1304によって操作されるデータを記憶するために使用されてもよい。処理システム1314は、構成要素1204、1206、1208、1210、1212、1214、1216のうちの少なくとも1つをさらに含む。それらの構成要素は、プロセッサ1304内で動作し、コンピュータ可読媒体/メモリ1306の中に存在する/記憶されたソフトウェア構成要素、プロセッサ1304に結合された1つまたは複数のハードウェア構成要素、またはそれらの何らかの組合せであってもよい。処理システム1314は、UE350の構成要素であることがあり、メモリ360、ならびに/またはTXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359のうちの少なくとも1つを含むことがある。
一構成では、ワイヤレス通信のための装置1202/1202'は、複数のSSブロックのうちの少なくとも1つにおいて第2のセルのPBCHペイロードを受信するための手段であって、各SSブロックが対応するタイミング情報を備え、PBCHペイロードが、凍結ビットと、ユーザ機器に知られていない、知られていないビットと、ユーザ機器によって知られている可能性のある、知られている可能性のあるビットとを備える、手段と、連続する復号順序に基づいてPBCHを復号するための手段と、第1のセルから、セル品質を報告する前に第2のセルのセルIDに対応する複数の知られている可能性のあるビットを受信するための手段と、受信されたSSブロックから第2のセルのセルIDを検出するための手段と、第2のセルのセルIDを第1のセルに報告するための手段と、第1のセルから、セルIDを報告したことに応答して第2のセルのセルIDに対応する複数の知られている可能性のあるビットを受信するための手段とを含む。上述の手段は、上述の手段によって列挙された機能を実行するように構成された、装置1202の上述の構成要素、および/または装置1202'の処理システム1314のうちの1つまたは複数であってもよい。上で説明されたように、処理システム1314は、TXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359を含んでもよい。したがって、一構成では、上述の手段は、上述の手段によって列挙された機能を実行するように構成されたTXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359であってもよい。
開示されたプロセス/フローチャートにおけるブロックの特定の順序または階層は例示的な手法の例示であることを理解されたい。設計上の選好に基づいて、プロセス/フローチャートにおけるブロックの特定の順序または階層が再構成されることがあることを理解されたい。さらに、いくつかのブロックは組み合わされてもよく、または省略されてもよい。添付の方法クレームは、様々なブロックの要素を例示的な順序で提示したものであり、提示された特定の順序または階層に限定されるものではない。
上述の説明は、本明細書で説明された様々な態様を当業者が実践できるようにするために提供される。これらの態様の様々な変更が、当業者には容易に明らかになり、本明細書において規定される一般原理は、他の態様に適用されることがある。したがって、特許請求の範囲は、本明細書に示される態様に限定されるものではなく、クレーム文言と一致するすべての範囲を与えられるべきであり、単数形での要素への言及は、そのように明記されていない限り、「唯一無二の」ではなく、「1つまたは複数の」を意味するものとする。「例示的」という語は、本明細書では「例、事例、または例示として機能すること」を意味するために使用される。本明細書で「例示的」であるものとして説明されるいずれの態様も、必ずしも他の態様よりも好ましいまたは有利であると解釈されるべきではない。別段特に述べられない限り、「いくつかの」という用語は、1つまたは複数を指す。「A、B、またはCのうちの少なくとも1つ」、「A、B、またはCのうちの1つまたは複数」、「A、B、およびCのうちの少なくとも1つ」、「A、B、およびCのうちの1つまたは複数」、および「A、B、C、またはそれらの任意の組合せ」などの組合せは、A、B、および/またはCの任意の組合せを含み、複数のA、複数のB、または複数のCを含んでもよい。具体的には、「A、B、またはCのうちの少なくとも1つ」、「A、B、またはCのうちの1つまたは複数」、「A、B、およびCのうちの少なくとも1つ」、「A、B、およびCのうちの1つまたは複数」、および「A、B、C、またはそれらの任意の組合せ」などの組合せは、Aのみ、Bのみ、Cのみ、AおよびB、AおよびC、BおよびC、またはAおよびBおよびCであってもよく、任意のそのような組合せは、A、B、またはCのうちの1つまたは複数のメンバーを含んでもよい。当業者に知られているか、または後に知られることになる、本開示全体を通じて説明された様々な態様の要素に対するすべての構造的および機能的均等物が、参照により本明細書に明確に組み込まれ、特許請求の範囲によって包含されることが意図される。さらに、本明細書で開示されたものは、そのような開示が特許請求の範囲に明示的に列挙されているかどうかにかかわらず、公に供されるものではない。「モジュール」、「機構」、「要素」、「デバイス」などの単語
は、「手段」という単語の代用ではないことがある。したがって、いかなるクレーム要素も、その要素が「のための手段」という語句を使用して明確に列挙されていない限り、ミーンズプラスファンクションとして解釈されるべきではない。
102 基地局
104 UE
110 地理的カバレッジエリア
120 通信リンク
132 バックホールリンク
134 バックホールリンク
150 AP
152 STA
154 通信リンク
160 EPC
162 MME
164 他のMME
166 サービングゲートウェイ
168 MBMS GW
170 BM-SC
172 PDNゲートウェイ
174 HSS
176 IPサービス
180 gNB
184 ビームフォーミング
192 D2D通信リンク
198 PBCH構成要素
199 PBCH復号構成要素
310 基地局
316 TXプロセッサ
318 トランスミッタ
320 レシーバ
350 UE
352 トランスミッタ
354 レシーバ
356 RXプロセッサ
358 チャネル推定器
359 コントローラ/プロセッサ
360 メモリ
368 TXプロセッサ
370 RXプロセッサ
374 チャネル推定器
375 コントローラ/プロセッサ
376 メモリ
402 基地局
402a、402b、402c、402d、402e、402f、402g、402h 受信方向
404 UE
404a、404b、404c、404d 受信方向
600 SSブロック構造
602 SSブロックパターン構造
700 通信フロー
702 基地局
704 UE
706 基地局
902 装置
904 受信構成要素
906 送信構成要素
908 PBCH構築構成要素
910 SSブロック構成要素
950 UE
1004 プロセッサ
1006 コンピュータ可読媒体/メモリ
1010 トランシーバ
1014 処理システム
1020 アンテナ
1024 バス
1202 装置
1204 受信構成要素
1206 送信構成要素
1208 PBCH構成要素
1210 復号構成要素
1212 知られている可能性のあるビット構成要素
1214 セルID構成要素
1216 報告構成要素
1250 第2の基地局
1251 第1の基地局
1304 プロセッサ
1306 コンピュータ可読媒体/メモリ
1310 トランシーバ
1314 処理システム
1320 アンテナ
1324 バス

Claims (14)

  1. 基地局におけるワイヤレス通信の方法であって、
    第2のセルの物理ブロードキャストチャネル(PBCH)ペイロードを構築するステップであって、ビット位置が、前記ビット位置の推定される信頼性に基づいて前記PBCHペイロードの複数のビットを符号化するために選択され、前記複数のビットが、凍結ビットと、ユーザ機器(UE)に知られていないビットと、前記UEによって知られている可能性のあるビットとを含む、ステップと、
    第1のセルにおいてセル品質の報告を受信する前に、前記第2のセルのセル識別子(ID)に対応する複数の知られている可能性のあるビットを送信するステップと、
    複数の同期信号(SS)ブロックのうちの少なくとも1つにおいて前記PBCHペイロードを送信するステップであって、各SSブロックが、対応するタイミング情報を含み、前記タイミング情報がシステムフレーム番号(SFN)を含むステップであって、前記セルIDは前記各SSブロックに含まれ、前記各SSブロックは1次同期信号(PSS)及び2次同期信号(SSS)を少なくとも含む、ステップと
    を含む、方法。
  2. 少なくとも複数の前記知られている可能性のあるビットが、前記知られていないビットより信頼性の低いビット位置を与えられる、請求項1に記載の方法。
  3. 前記凍結ビットが、前記知られている可能性のあるビットより信頼性の低いビット位置を与えられる、請求項1に記載の方法。
  4. 前記知られている可能性のあるビットが、サービングセルによって前記UEに提供されるシステム情報を含む、請求項1に記載の方法。
  5. 前記知られていないビットが誤り検出ビットを含む、請求項1に記載の方法。
  6. 前記PBCHペイロードがポーラ符号化されたPBCHを含む、請求項1に記載の方法。
  7. 基地局におけるワイヤレス通信のための装置であって、
    第2のセルの物理ブロードキャストチャネル(PBCH)ペイロードを構築するための手段であって、ビット位置が、前記ビット位置の推定される信頼性に基づいて前記PBCHペイロードの複数のビットを符号化するために選択され、前記複数のビットが、凍結ビットと、ユーザ機器(UE)に知られていないビットと、前記UEによって知られている可能性のあるビットとを含む、手段と、
    第1のセルにおいてセル品質の報告を受信する前に、前記第2のセルのセル識別子(ID)に対応する複数の知られている可能性のあるビットを送信する手段と、
    複数の同期信号(SS)ブロックのうちの少なくとも1つにおいて前記PBCHペイロードを送信するための手段であって、各SSブロックが、対応するタイミング情報を含み、前記タイミング情報がシステムフレーム番号(SFN)を含む手段であって、前記セルIDは前記各SSブロックに含まれ、前記各SSブロックは1次同期信号(PSS)及び2次同期信号(SSS)を少なくとも含む、手段と
    を含む、装置。
  8. 第1のセルによってサービスされるユーザ機器(UE)におけるワイヤレス通信の方法であって、
    複数の同期信号(SS)ブロックのうちの少なくとも1つにおいて第2のセルの物理ブロードキャストチャネル(PBCH)ペイロードを受信するステップであって、各SSブロックが、対応するタイミング情報、1次同期信号(PSS)及び2次同期信号(SSS)少なくとも含み、前記タイミング情報がシステムフレーム番号(SFN)を含み、前記PBCHペイロードが、凍結ビットと、前記UEに知られていないビットと、前記UEによって知られている可能性のあるビットとを含み、前記知られている可能性のあるビットが、前記第1のセルによって前記UEに提供されるシステム情報を含む、ステップと、
    前記第1のセルから、セル品質を報告する前に前記第2のセルのセル識別子(ID)に対応する複数の知られている可能性のあるビットを受信するステップと、
    受信されたSSブロックから前記セルIDを検出するステップと、
    前記第1のセルから受信された前記知られている可能性のあるビットを使用して、連続する復号順序に基づいて前記PBCHペイロードを復号するステップと
    を含む、方法。
  9. 前記連続する復号順序が、対応するビットの推定される信頼性に基づく、請求項8に記載の方法。
  10. 受信されたSSブロックから前記第2のセルのセル識別子(ID)を検出するステップと、
    前記第2のセルの前記セルIDを前記第1のセルに報告するステップと、
    前記セルIDを前記報告したことに応答して、前記第1のセルから、前記第2のセルの前記セルIDに対応する複数の知られている可能性のあるビットを受信するステップとをさらに含み、
    前記PBCHペイロードが、前記第1のセルから受信された前記知られている可能性のあるビットを使用して、前記連続する復号順序に基づいて復号される、請求項8に記載の方法。
  11. 第1のセルによってサービスされるユーザ機器(UE)におけるワイヤレス通信のための装置であって、
    複数の同期信号(SS)ブロックのうちの少なくとも1つにおいて第2のセルの物理ブロードキャストチャネル(PBCH)ペイロードを受信するための手段であって、各SSブロックが、対応するタイミング情報、1次同期信号(PSS)及び2次同期信号(SSS)少なくとも含み、前記タイミング情報がシステムフレーム番号(SFN)を含み、前記PBCHペイロードが、凍結ビットと、前記UEに知られていないビットと、前記UEによって知られている可能性のあるビットとを含み、前記知られている可能性のあるビットが、前記第1のセルによって前記UEに提供されるシステム情報を含む、手段と、
    前記第1のセルから、セル品質を報告する前に前記第2のセルのセル識別子(ID)に対応する複数の知られている可能性のあるビットを受信する手段と、
    受信されたSSブロックから前記セルIDを検出する手段と、
    前記第1のセルから受信された前記知られている可能性のあるビットを使用して、連続する復号順序に基づいて前記PBCHペイロードを復号するための手段と
    を含む、装置。
  12. 前記知られている可能性のあるビットが、前記知られていないビットの前に復号される、請求項11に記載の装置。
  13. 前記第1のセルから、セル品質を報告する前に前記第2のセルのセル識別子(ID)に対応する複数の知られている可能性のあるビットを受信するための手段と、
    受信されたSSブロックから前記第2のセルのセルIDを検出するための手段とをさらに含み、
    前記PBCHペイロードが、前記第1のセルから受信された前記知られている可能性のあるビットを使用して、前記連続する復号順序に基づいて復号される、請求項11に記載の装置。
  14. 実行されたときに、コンピュータに請求項1から6および8から10のうちのいずれか一項に記載の方法をコンピュータに実行させるための実行可能コードを含む、コンピュータプログラム。
JP2019567578A 2017-06-12 2018-04-27 ブロードキャストチャネルのための同期信号 Active JP7155165B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762518589P 2017-06-12 2017-06-12
US62/518,589 2017-06-12
US15/926,884 US10560910B2 (en) 2017-06-12 2018-03-20 Synchronization signal for a broadcast channel
US15/926,884 2018-03-20
PCT/US2018/029910 WO2018231348A1 (en) 2017-06-12 2018-04-27 Synchronization signal for a broadcast channel

Publications (3)

Publication Number Publication Date
JP2020524927A JP2020524927A (ja) 2020-08-20
JP2020524927A5 JP2020524927A5 (ja) 2021-05-27
JP7155165B2 true JP7155165B2 (ja) 2022-10-18

Family

ID=64562728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019567578A Active JP7155165B2 (ja) 2017-06-12 2018-04-27 ブロードキャストチャネルのための同期信号

Country Status (9)

Country Link
US (2) US10560910B2 (ja)
EP (1) EP3639373A1 (ja)
JP (1) JP7155165B2 (ja)
KR (2) KR102637220B1 (ja)
CN (1) CN110720178B (ja)
BR (1) BR112019025545A2 (ja)
CA (1) CA3062429A1 (ja)
TW (2) TWI749219B (ja)
WO (1) WO2018231348A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669920B (zh) * 2017-01-09 2019-08-21 聯發科技股份有限公司 位元映射方法及其發送裝置
US10868569B2 (en) 2017-05-08 2020-12-15 Qualcomm Incorporated PBCH signal design and efficient continuous monitoring and polar decoding
US10560910B2 (en) 2017-06-12 2020-02-11 Qualcomm Incoporated Synchronization signal for a broadcast channel
CN110945805B (zh) * 2017-07-28 2022-07-19 Lg电子株式会社 发送和接收同步信号块的方法及其设备
PL3723422T3 (pl) 2017-08-11 2023-04-24 Telefonaktiebolaget Lm Ericsson (Publ.) Sposób i urządzenie do synchronizacji
CA3089912C (en) 2018-02-13 2023-02-21 Zte Corporation Cell information acquisition method and apparatus
CN113544986A (zh) * 2019-07-05 2021-10-22 Oppo广东移动通信有限公司 确定侧行反馈信道的方法、装置、设备、系统及存储介质
WO2021176267A1 (en) * 2020-03-02 2021-09-10 Zeku Inc. Cell measurement based on physical broadcasting channel payload

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014159A1 (en) 2014-07-21 2016-01-28 Intel IP Corporation Neighbor cell system information provisioning
WO2016101089A1 (zh) 2014-12-22 2016-06-30 华为技术有限公司 极性码的编码方法和编码装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970506B2 (en) 2001-03-05 2005-11-29 Intervideo, Inc. Systems and methods for reducing frame rates in a video data stream
US9042240B2 (en) * 2009-07-31 2015-05-26 Qualcomm Incorporated Systems, apparatus and methods for broadcast channel decoding
KR101785997B1 (ko) * 2009-10-30 2017-10-17 주식회사 골드피크이노베이션즈 무선통신 시스템에서 요소 반송파 집합 정보 전송방법 및 그 기지국, 단말의 수신방법
US20140204851A1 (en) * 2013-01-18 2014-07-24 Qualcomm Incorporated Enhanced physical broadcast channel for new carrier type in long term evolution
USRE49547E1 (en) 2013-08-20 2023-06-06 Lg Electronics Inc. Method for transmitting data by using polar coding in wireless access system
US10075266B2 (en) 2013-10-09 2018-09-11 Qualcomm Incorporated Data transmission scheme with unequal code block sizes
WO2015074192A1 (zh) 2013-11-20 2015-05-28 华为技术有限公司 极化码的处理方法和设备
US9742440B2 (en) * 2015-03-25 2017-08-22 Samsung Electronics Co., Ltd HARQ rate-compatible polar codes for wireless channels
US9509336B1 (en) * 2015-05-11 2016-11-29 Via Alliance Semiconductor Co., Ltd. Hardware data compressor that pre-huffman encodes to decide whether to huffman encode a matched string or a back pointer thereto
CN106330391B (zh) * 2015-06-30 2019-07-02 展讯通信(上海)有限公司 用户终端及其pbch检测方法及装置
US20170222754A1 (en) 2016-01-28 2017-08-03 Lg Electronics Inc. Error correcting coding method based on cross-layer error correction with likelihood ratio and apparatus thereof
US20180019766A1 (en) 2016-07-14 2018-01-18 Qualcomm Incorporated Pipelining for polar code list decoding
US10595311B2 (en) 2016-07-29 2020-03-17 Qualcomm Incorporated Adapting transmissions in multi-transmission time interval (TTI) sidelink communication
US10263660B2 (en) 2016-08-11 2019-04-16 Qualcomm Incorporated Methods and apparatus for construction of SCMA codebooks
US10897329B2 (en) * 2017-01-02 2021-01-19 Lg Electronics Inc. Method and apparatus for performing HARQ on basis of polar code
US10327235B2 (en) 2017-01-04 2019-06-18 Coherent Logix, Incorporated Scrambling sequence design for multi-mode block discrimination on DCI blind detection
TWI678081B (zh) 2017-01-09 2019-11-21 聯發科技股份有限公司 使用者設備的無線通訊方法
US10476525B2 (en) 2017-01-09 2019-11-12 Qualcomm Incorporated Low latency bit-reversed polar codes
US20180198560A1 (en) 2017-01-09 2018-07-12 Qualcomm Incorporated Generalized polar code based on polarization of linear block codes and convolutional codes
TWI669920B (zh) * 2017-01-09 2019-08-21 聯發科技股份有限公司 位元映射方法及其發送裝置
US10805939B2 (en) 2017-01-11 2020-10-13 Qualcomm Incorporated Control channel code rate selection
US10687296B2 (en) 2017-03-24 2020-06-16 Qualcomm Incorporated Techniques for communicating synchronization signal block index in a physical broadcast channel payload
WO2018187902A1 (en) 2017-04-10 2018-10-18 Qualcomm Incorporated An efficient interleaver design for polar codes
US11122497B2 (en) * 2017-05-04 2021-09-14 Samsung Electronics Co., Ltd. Method and apparatus for SS block index and timing indication in wireless systems
WO2018204665A1 (en) * 2017-05-04 2018-11-08 Sharp Laboratories Of America, Inc. Synchronization signal transmission and reception for radio system
GB2563568A (en) * 2017-05-05 2018-12-26 Tcl Communication Ltd Transmitting and receiving data using polar codes
US10868569B2 (en) 2017-05-08 2020-12-15 Qualcomm Incorporated PBCH signal design and efficient continuous monitoring and polar decoding
US10312939B2 (en) 2017-06-10 2019-06-04 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
US10560910B2 (en) 2017-06-12 2020-02-11 Qualcomm Incoporated Synchronization signal for a broadcast channel
CN111406372B (zh) * 2017-06-16 2022-07-26 创新技术实验室株式会社 指示同步信号块的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014159A1 (en) 2014-07-21 2016-01-28 Intel IP Corporation Neighbor cell system information provisioning
WO2016101089A1 (zh) 2014-12-22 2016-06-30 华为技术有限公司 极性码的编码方法和编码装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ericsson,Reduced system acquisition time for NB-IoT[online],3GPP TSG RAN WG1 #89 R1-1706894,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/R1-1706894.zip>,2017年05月06日,pp. 1-6
Huawei, HiSilicon,Discussion and evaluation on NR-PBCH design[online],3GPP TSG RAN WG1 #89 R1-1708162,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/R1-1708162.zip>,2017年05月06日,pp. 1-8
MediaTek Inc.,Discussion on SS block time index indication[online],3GPP TSG RAN WG1 #89 R1-1707847,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/R1-1707847.zip>,2017年05月07日,pp. 1-7
MediaTek Inc.,PBCH Enhancement with Polar Code[online],3GPP TSG RAN WG1 adhoc_NR_AH_1701 R1-1700169,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1701/Docs/R1-1700169.zip>,2017年01月10日,pp. 1-5

Also Published As

Publication number Publication date
CA3062429A1 (en) 2018-12-20
BR112019025545A2 (pt) 2020-06-16
TWI749219B (zh) 2021-12-11
US10560910B2 (en) 2020-02-11
KR20200015901A (ko) 2020-02-13
EP3639373A1 (en) 2020-04-22
US20200205099A1 (en) 2020-06-25
KR102637220B1 (ko) 2024-02-16
WO2018231348A1 (en) 2018-12-20
CN110720178A (zh) 2020-01-21
JP2020524927A (ja) 2020-08-20
CN110720178B (zh) 2023-08-22
TW201904328A (zh) 2019-01-16
US20180359714A1 (en) 2018-12-13
US11206626B2 (en) 2021-12-21
KR20240024342A (ko) 2024-02-23
TWI758473B (zh) 2022-03-21
TW201904248A (zh) 2019-01-16

Similar Documents

Publication Publication Date Title
CN110326245B (zh) 新无线电中同步信号块索引的使用
CN109076592B (zh) 用于波束调整请求的系统和方法
CN109923818B (zh) 用于映射上行链路控制信息的系统和方法
US10110405B2 (en) System and method for narrowband uplink single tone transmissions
CN110168981B (zh) 用于解码用波束索引联合编码的广播信息的方法和装备
JP7155165B2 (ja) ブロードキャストチャネルのための同期信号
CN110999122B (zh) 与波束细化相关的方法和装置
JP2020502914A (ja) ビーム変更命令受信の失敗中のフォールバックビーム選択手順
CN112075030B (zh) 用于使用多个波束的数据传输的空间分集
CN113193946B (zh) 用于mmw调度的子帧或时隙之内的时分复用传输时间间隔
CN115642942A (zh) 用于稀疏码多址(scma)码本设计的方法和装置
CN109937554B (zh) 基于信道质量指示符的与物理下行链路控制信道相关联的搜索空间
CN111434050A (zh) 重复配置的接收方反馈
CN109792656B (zh) 发信号以指示在目标小区中物理广播信道重复是否被启用
EP3649754B1 (en) Support for multiple coding schemes
CN117099310A (zh) 具有不等错误保护的对多个有效载荷的联合极性编码

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221005

R150 Certificate of patent or registration of utility model

Ref document number: 7155165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150