WO2016098962A1 - 튜브형 공전해 셀 제조방법 - Google Patents

튜브형 공전해 셀 제조방법 Download PDF

Info

Publication number
WO2016098962A1
WO2016098962A1 PCT/KR2015/004371 KR2015004371W WO2016098962A1 WO 2016098962 A1 WO2016098962 A1 WO 2016098962A1 KR 2015004371 W KR2015004371 W KR 2015004371W WO 2016098962 A1 WO2016098962 A1 WO 2016098962A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular
electrolytic cell
clause
cathode
manufacturing
Prior art date
Application number
PCT/KR2015/004371
Other languages
English (en)
French (fr)
Inventor
임탁형
송락현
박석주
이승복
이종원
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to US15/129,660 priority Critical patent/US20170275769A1/en
Publication of WO2016098962A1 publication Critical patent/WO2016098962A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/30Cells comprising movable electrodes, e.g. rotary electrodes; Assemblies of constructional parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a tubular electrolytic cell manufacturing method, and more particularly, to a tubular electrolytic cell manufacturing method capable of producing a synthesis gas from water and carbon dioxide, and a tubular electrolytic cell produced by the manufacturing method. will be..
  • the high temperature electrolysis reaction system injects carbon dioxide and steam into the cathode, air to the anode, and applies electricity while maintaining the high temperature.
  • Syngas is a device that produces syngas by the high temperature electrolysis reaction of C02-H20, which effectively combines the reaction and separation process to simplify the process, increase the reaction efficiency and increase the throughput.
  • the electrolytic cell for preparing the synthesis gas by the high temperature electrolysis reaction of C02-H20 has a low synthesis gas conversion rate of C02, and the efficiency is not good, so it is difficult to be commercialized.
  • An electrolytic cell having excellent gas conversion rate is required.
  • An object of the present invention is to provide a method for producing a tubular electrolytic cell having excellent syngas conversion rate.
  • the solid electrolyte charge may include a gadol ini urn-doped cer i (GDC), and the anode layer may include LSCF-GDC.
  • GDC gadol ini urn-doped cer i
  • the fuel used for the cathode layer may include H20, C02 and H2,
  • the pore forming agent may be activated carbon or carbon black, and the additive may include a binder, a plasticizer, and a lubricant.
  • the cathode and the anode may be coated by dip coat ing.
  • the cathode After coating the cathode, the cathode may be heat-treated at 800 ° C to 1200 ° C, and after the anode is coated, it may be heat-treated at 90CTC to 1400 ° C,
  • the electrolyte may be coated by vacuum slurry coat ing.
  • the fuel used for the additive cathode may include H 2 O, CO 2 and H 2 .
  • the present invention provides a tubular cell-based electrolysis model including the tubular electrolysis cell and the tubular electrolysis cell produced by the above method.
  • the tubular electrolytic cell produced by the tubular electrolytic cell manufacturing method of the present invention has an excellent syngas conversion rate.
  • the tubular electrolytic cell produced by the tubular electrolytic cell manufacturing method of the present invention can generate syngas at low overvoltage.
  • step 1 is a view showing a mixing process of step 1 of the present invention.
  • FIGS. 2 and 3 are views illustrating a process of stirring the mixture of Step 3 of the present invention and a process of extruding the paste.
  • FIGS. 4 and 5 are views showing a process of ring drying and pre-sintering the extruded electrolytic sal support of step 4 of the present invention.
  • 6 to 8 illustrate a process of coating an electrolyte and an anode after coating the cathode of step 5 of the present invention.
  • FIG. 9 is a view showing a process of reducing the tubular electrolytic cell prepared in step 5.
  • FIG. 10 is a view showing a completed tubular electrolytic cell.
  • FIG. 11 is a view showing one end surface of a rib-shaped electrolytic sal.
  • FIG. 12 is a diagram showing atmospheric pressure high temperature electrolysis models including a tubular electrolysis sal,
  • FIG. 13 is a graph showing the results of operating the atmospheric high temperature revolving mothers.
  • a tubular electrolytic cell includes a cylindrical support including NI0 and YSZ; A cathode layer formed on the cylindrical support surface; A solid electrolyte layer formed on the surface of the cathode layer; And an anode layer formed on the surface of the solid electrolyte layer.
  • the electrolytic cell is a device that produces syngas by electrolysis reaction when carbon dioxide and steam are injected into the cathode, air is injected into the anode, and electricity is maintained while maintaining a high temperature. It is a renewable energy production device that can acquire fuel.
  • the support is NIO
  • YSZ is nickel (NI0) / yttria stabilized zirconia (Yttri a
  • It may be cermet of Stabi l i zed Zi rconi a; YSZ, but is not limited thereto.
  • the anode may use a conventionally known in the art, for example, LSCF—GDC, YSZ / LSM and LSM composi te may be used, but is not limited thereto.
  • FIG. 1 is a view showing a mixing process of step 1 of the present invention
  • Figures 2 and 3 is a view showing a process of stirring the mixture of step 3 of the present invention and the process of extruding the paste
  • 4 is a view showing a process of ring drying the support for the extruded electrolytic cell of step 4 of the present invention.
  • Step 1 is a step of mixing the raw materials to prepare a support used in the tubular electrolytic cell of the present invention, after mixing the NIO, YSZ and pore-forming agent, and ball milling The mixing process is shown in FIG. 1.
  • YSZ is nickel (NI0) / yttria stabilized zirconia (Yttr i a Stabi l i zed
  • It may be a cermet of Zi rconia (YSZ), and the pore forming agent is for forming the support porously, and carbon black and activated carbon may be used as the pore forming agent.
  • YSZ Zi rconia
  • the NIO, YSZ and the mixture of activated carbon or carbon black may be uniformly formed by ball milling, and in order to increase the uniformity, ethane may be added as a solvent to prepare a slurry to perform a ball milling process.
  • the pore-forming agent is preferably included in 3 to 10 parts by weight based on the NIO, YSZ raw material powder.
  • step 2 the mixture prepared in step 1 is dried and screened in a hot * plate (step 2).
  • Drying may be performed for 12 to 48 hours at 80 ° C to 100 ° C.
  • Screening is a process for screening powders having a uniform particle size from a mixture having different particle sizes through sieving. It is preferable to use a sieve of 80 to 120 mesh.
  • Step 3 an additive is added to the mixed powder prepared in Step 2 and then stirred to prepare a paste, and extrude to prepare a support for electrolytic sal, (Step 3).
  • Additives may include binders, plasticizers and lubricants.
  • Each substance may be one commonly known in the art to which the present invention pertains.
  • a binder methyl cel lulose, hydroxypropyl methyl cel lulose, or the like may be used.
  • the plasticizer may be propylene carbonate (propylenecarbonate), polyethylene glycol (polyethyleneglycol), dibutyl phthalate (dibutyl phthalate) and the like
  • the lubricant may be used stearic acid (Stear ic Acid) have.
  • the binder is 15 to 15 parts by weight based on 100 parts by weight of the mixed powder NIO and YSZ, which are raw materials.
  • the plasticizer is preferably added in an amount of 4 to 8 parts by weight based on 100 parts by weight of the NIO and YSZ mixed powders, which are raw powders, and when the plasticizer is added in an amount less than 4 parts by weight, deformation and cracking of the extruded body may occur. In addition, when the plasticizer is added in excess of 8 parts by weight, the ductility of the extruded body may be excessively increased, which may cause warpage after sintering.
  • the lubricant is preferably added in an amount of 2 to 6 parts by weight based on 100 parts by weight of the NIO and YSZ mixed powders, which are raw powders, and when the lubricant is added in an amount less than 2 parts by weight, the exfoliation problem may occur. When the lubricant is added in excess of 6 parts by weight, streaks may be formed on the surface by the adhesive force between the extruded body and the mold.
  • FIG. 2 is a view illustrating a process of adding and stirring the additives to the mixed powder prepared in Step 2
  • FIG. 3 is a view illustrating a process of extruding the stirred paste to form a rib-like support. .
  • the tubular support prepared in step 3 is dried by ringing to minimize damage to the surface and then subjected to sintering. (Step 4)
  • FIG. 4 The process of ring drying is shown in FIG. 4 and the step of pre-sintering is shown in FIG. 5, which is preferably carried out by stepwise temperature raising.
  • the pre-sintering process is the temperature of the tubular support prepared in step 3 for 8 hours to 12 hours, then maintaining the temperature for 3 to 7 hours at 300 ° C to 400 ° C, and again 3 The temperature is raised for 7 to 7 hours to maintain the silver for 2 to 4 hours at 700 ° C to 800 ° C.
  • the process may include a step of maintaining the temperature for 2 hours to 4 hours at 1000 ° C to 1200 ° C. by sublimation for 3 to 7 hours.
  • the pore-forming agent rapidly forms pores, causing cracks in the support due to the pores, and thus supporting the substrate by the stack. Will be less durable.
  • step 5 the cathode, the electrolyte, and the anode are sequentially coated on the support for the sintered electrolytically sintered in step 4 (step 5).
  • LST series ceramic cathodes have high redox resistance and are highly concentrated in fuel.
  • the cathode has a P-type conduction mechanism in which charge moves through the hole, it induces a strong reduction potential, which in turn causes resistance to polarize the electrode. That is, the cathode having a P-type conduction mechanism is prone to damage because of the chemical and structural changes of the cathode has a short lifespan problem.
  • LST-based ceramic cathodes do not allow the negative charge free electron carriers to induce current.
  • the method may further include improving the activity of the cathode surface to improve the efficiency of the chemical and electrochemical reaction of the cathode.
  • the process of coating the cathode on the support may be carried out by dip coating, as shown in Figure 6, after the coating is heated to a temperature increase rate of 80 ° C / h to 120 ° C / h
  • the heat treatment may include a step of heat treatment for 2 to 3 hours at 800 ° C to 120 C C, it may further include the step of the heat treatment at a rate of 200 ° C / h to 300 ° C / h after the heat treatment.
  • yttria stabilized zirconia powder YSZ powder
  • LSGM powder lanthanum gallate powder
  • ScSZ powder scandia stabilized zirconium oxide powder
  • GDC powder gadolinia doped ceria powder
  • SDC powder The samaria doped ceria powder (SDC powder) may be used, but is not limited thereto, and may be coated by a vacuum s lurry coat ing.
  • the temperature was raised at an annealing speed of 80 ° C./h to 120 ° C./h and increased to 1200 ° C. It may include the step of heat treatment for 3 to 7 hours at 1600 ° C, and further comprising the step of remarking at a rate of 200 ° C / h to 300 ° C / h after heat treatment.
  • the anode and the electrolyte are coated on the support by the dip coating method as shown in FIG. 8.
  • the anode may use a conventionally known in the art, for example, LSCF-GDC may be used, but is not limited thereto.
  • the method may further include reducing the tubular electrolytic cell prepared by step 5 as shown in FIG. 9.
  • the electrolytic cell support prepared in step 5 is NIO-YSZ Cermet, and the NI0-YSZ Cermet is reduced to NI-YSZ form in order to make the electrolytic cell support having excellent properties such as electrical conductivity and strength.
  • the reduction process can be carried out by treating the tubular electrolytic cell prepared by step 5 with hydrogen and nitrogen gas at 6oo ° C to locxrc.
  • the tubular electrolytic cell produced by the above method can be converted into syngas fuel with high efficiency by electrolyzing carbon dioxide and steam at the same time, and not only excellent in durability, but also easy for high temperature and pressure operation.
  • the paste was extruded and rolled to dry to prepare a support in the form of a stream.
  • the support was heated for 10 hours and maintained at 350 ° C. for 5 hours, again heated for 5 hours, maintained at 750 ° C. for 3 hours, and finally sublimed for 5 hours for 3 hours at 1KXTC. Maintained and plasticized. 2) cathode coating
  • the pre-sintered scaffold was di pp ing into NI-YSZ to form a cathode, and the temperature was raised to 100 ° C / h, maintained at 1000 ° C for 3 hours, and then angled at 250 ° C Heat treatment.
  • anode is formed by dipping on YSZ / LSM and LSM compos i te,
  • the temperature was raised to 100 ° C / h and maintained at 1150 ° C for 3 hours, followed by heat treatment at a rate of 250 ° C / h.
  • the tubular electrolytic cell prepared by the above method is shown in FIG. 10, and the reaction area of the flow-type electrolytic cell was prepared as 3 cm 2.
  • FIG. 11 is a SEM photograph of the cross section of the tubular electrolytic cell.
  • the cathode layer and the electrolyte layer prepared by the method described above are 9.92 um and the anode layer 30.2, respectively. You can see that it has a thickness of um,
  • Ni / Ag wi re is used as the current collector to collect the tubular electrolytic sal manufactured in Example 1, and as shown in FIG. 12, an atmospheric pressure electrolytic evaluation system composed of an HPIX pump, a DC power supply, and a GC is prepared. Experiments were carried out at atmospheric pressure using the electrochemical reactor. The flow rate of the cathode and the anode is 200 cc / min, respectively, the temperature is shown in Figure 13 the results of operating at 800 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

본 발명은 물과 이산화탄소로부터 합성가스를 생산할 수 있는 튜브형 공전해 셀 제조방법 및 상기 제조방법에 의해 제조된 튜브형 공전해 셀에 관한 것으로, NIO 및 YSZ를 포함하는 원통형 지지체; 상기 원통형 지지체 표면에 형성된 (Sr1-xLax)(Ti1-yMy)O3 (M = V, Nb, Co, Mn)를 포함하는 캐소드 층; 상기 캐소드 층 표면에 형성된 고체전해질 층; 및 상기 고체전해질 층 표면에 형성된 애노드 층을 포함하는 튜브형 공전해 셀을 포함하며, 본 발명의 튜브형 공전해 셀 제조방법에 의해 제조된 튜브형 공전해 셀은 우수한 합성가스 전환율을 가지고 낮은 과전압에서도 합성가스를 생성할 수 있다.

Description

【명세서】
ί발명의 명칭】
튜브형 공전해 셀 제조방법
【기술분야】
< 1> 본 발명은 튜브형 공전해 샐 제조방법에 관한 것으로, 보다 상세하게는 물과 이산화탄소로부터 합성가스를 생산할 수 있는 튜브형 공전해 셀 제조방법 및 상기 제조방법에 의해 제조된 튜브형 공전해 셀에 관한 것이다..
<2>
【배경기술】
<3> 1997년 교토의정서가 채택됨에 따라 전 세계적으로 탄소배출량을 감소하기 위해 다양한 정책을 내놓고 있으며 이산화탄소의 발생을 저감시키는 기술을 다양한 측면에서 개발하고 있다.
<4> 이산화탄소의 배출을 근본적으로 차단하기 위해 이산화탄소를 배출하지 않는 연료를 개발하려는 측면에서는 수소 연료를 공기중의 산소와 반웅시켜 전기를 발생 시키는 기술이 개발되었으며, 이러한 수소를 연료로 이용하는 모터를 사용한 자동 차도 널리 알려져 있다.
<5> 한편, 이미 발생된 이산화탄소를 이용하여 사용 가능한 연료로 전환시키는 공정 관련한 연구개발도 꾸준히 이루어지고 있는데, C02 기반 고온 전기분해에 의 한 수소제조는 최근 녹색 에너지 기술 개발과 신재생 에너지 연구개발과 더불어 많 은 관심을 받고 있다.
<6> 고온전해반웅 시스템은 캐소드에 이산화탄소와 스팀을, 애노드에 공기를 주 입하고, 고온을 유지하면서 전기를 가해주면 전기 분해 반웅에 의해 합성가스
(Syngas )를 생산하는 장치로, C02-H20의 고온 전해 반웅에 의한 합성가스를 제조하 는 기술은 반웅과 분리 공정을 효과적으로 결합해 공정을 단순화하며 반웅 효율을 높이고, 처리량을 대량으로 하여 운전을 효율적으로 하는 특징이 있으나, 이산화탄 소의 고온전기분해 기술은 귀금속 전극 중심의 한정된 연구만 진행되어 왔다.
<7> 또한, C02-H20의 고온 전해 반웅에 의한 합성가스를 제조하기 위한 공전해 셀은 C02의 합성가스 전환율이 낮고, 효율이 좋지 않아 상용화하기엔 문제가 있으 므로 기존의 고온전해반웅 시스템보다 합성가스 전환율이 우수한 공전해 샐이 요구 되고 있다.
【발명의 상세한 설명】 【기술적 과제】
<8> 본 발명의 목적은 우수한 합성가스 전환율을 가지는 튜브형 공전해 셀 제조 방법을 제공하는 데 있다,
<9> 또한, 본 발명의 목적은 합성가스를 합성하기 위해 낮은 과전압을 가지는 튜브형 공전해 샐 제조 방법을 제공하는 데 있다.
<10>
【기술적 해결방법】
<ι ι> 상기 목적을 달성하기 위하여, 본 발명은 NI0 및 YSZ를 포함하는 원통형 지 지체; 상기 원통형 지지체 표면에 형성된 (Sri-xLax) (Ti i-yMy)03 (M = V, Nb, Co, Mn) 를 포함하는 캐소드 층; 상기 캐소드 층 표면에 형성된 고체전해질 층; 및 상기 고 체전해질 층 표면에 형성된 애노드 층을 포함하는 튜브형 공전해 셀을 제공한다.
<12> 상기 고체전해질 충은 GDC(gadol ini urn-doped cer i a)를 포함할 수 있으며, 상 기 애노드 층은 LSCF-GDC를 포함할 수 있다.
<13> 상기 캐소드 층에 사용되는 연료는 H20, C02 및 H2를 포함할 수 있다,
<14>
<15> 또한, 본 발명은 NIO, YSZ 및 기공형성제를 흔합한 후, 용매와 흔합하여 슬 러리 형태로 제조하여 볼밀링 하는 단계 (단계 1) ; 상기 슬러리를 건조한 후 분말화 하는 단계 (단계 2) ; 상기 분말화 된 흔합물에 첨가제를 첨가하고 흔련하여 페이스 트를 제조하고, 상기 페이스트를 압출하여 공전해 셀용 지지체를 제조하는 단계 (단 계 3) ; 상기 압출된 공전해 셀용 지지체를 를링 건조하는 단계 (단계 4) ; 상기 를링 건조된 공전해 셀용 지지체를 가소결한 후, 캐소드, 전해질 및 애노드를 코팅하는 단계 (단계 5) ;를 포함하며, 상기 캐소드는 (Sn-xLa T -yMyX)3 (M = V, Nb, Co, Mn) 를 포함하는 튜브형 공전해 샐 제조방법을 제공한다.
<16> 상기 기공형성제는 활성탄 또는 카본블랙일 수 있으며, 상기 첨가제는 바인 더 , 가소제 및 윤활제를 포함할 수 있다.
<17> 상기 가소결은 300°C 내지 400°C로 승온하고, 700°C 내지 800°C로 승온한 후
, 1000 °C 내지 1200°C로 승온하는 단계적 승온에 의해 이루어질 수 있다.
<18> 상기 캐소드 및 상기 애노드는 담금코팅법 (dip coat ing)에 의해 코팅될 수 있다。
<19> 상기 캐소드를 코팅한 후 800°C 내지 1200°C에서 열처리할 수 있으며, 상기 애노드를 코팅한 후 90CTC 내지 1400 °C에서 열처리할 수 있다,
<20> 상기 전해질은 진공슬러리코팅법 (vacuum slurry coat ing)에 의해 코팅될 수 있다,
<2i > 상기 전해질을 코팅한 후 1200°C 내지 160C C에서 열처리할 수 있다ᄋ
<22> 상가 캐소드에 사용되는 연료는 H20, C02 및 H2를 포함할 수 있다.
<23>
<24> 이외에도, 본 발명은 상기 제조방법에 의해 제조된 튜브형 공전해 셀 및 상 기 튜브형 공전해 셀을 포함하는 튜브형 셀 기반 공전해 모들을 제공한다.
<25>
【유리한 효과】
<26> 본 발명의 튜브형 공전해 셀 제조방법에 의해 제조된 튜브형 공전해 샐은 우 수한 합성가스 전환율을 가진다.
<27> 본 발명의 튜브형 공전해 셀 제조방법에 의해 제조된 튜브형 공전해 샐은 낮 은 과전압에서 합성가스를 생성할 수 있다.
ί도면의 간단한 설명】
<28> 도 1은 본 발명의 단계 1의 흔합 과정을 나타낸 도면이다.
<29> 도 2 및 도 3은 본 발명의 단계 3의 흔합물을 흔련하는 과정과 상기 페이스 트를 압출하는 과정을 나타낸 도면이다.
<30> 도 4 및 도 5는 본 발명의 단계 4의 압출된 공전해 샐용 지지체를 를링 건조 하고 가소결 하는 과정을 나타낸 도면이다.
<3 ΐ> 도 6 내지 도 8은 본 발명의 단계 5의 캐소드를 코팅한 후, 전해질 및 애노 드를 코팅하는 과정을 나타낸 도면이다.
<32> 도 9는 단계 5에서 제조된 튜브형 공전해 셀을 환원하는 과정을 나타낸 도면 이다.
<33> 도 10은 완성된 튜브형 공전해 셀을 나타낸 도면이다.
<34> 도 11은 류브형 공전해 샐의 일단면을 나타낸 도면이다.
<35> 도 12는 튜브형 공전해 샐을 포함한 상압 고온 공전해 모들을 나타낸 도면이 다,
<36> 도 13은 상압 고온 공전해 모들을 운전한 결과를 나타낸 그래프이다.
【발명의 실시를 위한 최선의 형태 Ϊ
<37> 이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 설명한다. 본 명세 서 및 특허 청구범위에 사용된 용어나 단어는 통상적이거나 사전적 의미로 한정되 어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되 어야 한다 <38>
<39> 본 발명의 일 실시예에 따른 튜브형 공전해 셀은 NI0 및 YSZ를 포함하는 원 통형 지지체; 상기 원통형 지지체 표면에 형성된 캐소드 층; 상기 캐소드 층 표면 에 형성된 고체전해질 층; 및 상기 고체전해질 층 표면에 형성된 애노드 층을 포함 한다.
<40> 공전해 셀은 캐소드에 이산화탄소와 스팀을, 애노드에 공기를 주입하고, 고 온을 유지하면서 전기를 가해주면 전기 분해 반웅에 의해 합성가스 (Syngas)를 생산 하는 장치로, 이산화탄소로부터 재사용 가능한 연료를 획득할 수 있는 신재생 에너 지 생산 장치이다.
<4i> 상기 지지체는 NIO, YSZ는 니켈 (NI0)/이트리아 안정된 지르코니아 (Yttri a
Stabi l i zed Zi rconi a ;YSZ)의 서멧 (cermet )일 수 있으나, 이에 한정되는 것은 아니 다。
<42> 상기 캐소드는 금속-세라믹 복합체인 Ni-YSZ , 페로브스카이트 계열 세라믹 캐소드인 LSCM ( (La0.75 , Sr0.25)0.95Mn0.5Cro.503) , LST 계열 세라믹 캐소드인 (Sn- xLax)(Ti !-yMy)03 (M = V, Nb, Co, Mn)가 사용될 수 있고, 이에 한정되는 것은 아니 다
<43> 특히 캐소드로는 (Sn-xLaxKTi
Figure imgf000005_0001
(M = V, Nb, Co, Mn)를 사용하는 것이 바람직하다. LST계열 세라믹 캐소드인
Figure imgf000005_0002
(M = V, Nb, Co, Mn)는 레독스 저항성이 우수하여 연료에 고농도의 H20가 함유되어 있을 경우에도 레독스 사이클링을 발생시키지 않아 전기전도도와 기계적 강도를 일정하게 유지할 수 있 다.
<44> 애노드는 본 발명이 속하는 기술분야에서 통상적으로 알려진 것을 사용할 수 있으며, 예를 들어, LSCF— GDC, YSZ/LSM과 LSM composi te이 사용될 수 있으나 이에 한정되는 것은 아니다.
<45>
<46> 도 1은 본 발명의 단계 1의 흔합 과정을 나타낸 도면이고, 도 2 및 도 3은 본 발명의 단계 3의 흔합물을 흔련하는 과정과 상기 페이스트를 압출하는 과정을 나타낸 도면이몌 도 4는 본 발명의 단계 4의 압출된 공전해 셀용 지지체를 를링 건조하는 과정을 나타낸 도면이다.
<47> 단계 1은 본 발명의 튜브형 공전해 셀에 사용되는 지지체를 제조하기 위해 원료들을 흔합하는 단계로, NIO, YSZ 및 기공형성제를 흔합한 후, 볼밀링 하는 단 계를 포함하며, 흔합 과정은 도 1에 도시되어 있다.
<48> NIO, YSZ는 니켈 (NI0)/이트리아 안정된 지르코니아 (Yttr i a Stabi l i zed
Zi rconia ;YSZ)의 서맷 (cermet )일 수 있으며, 상기 기공형성제는 상기 지지체를 다 공성으로 형성하기 위한 것으로, 기공형성제로는 카본블랙, 활성탄 등이 사용될 수 있다.
<49> 상기 NIO, YSZ와 활성탄 또는 카본 블랙의 흔합물을 볼 밀링하여 균일화 할 수 있으며, 균일성을 높이기 위해 용매로서 에탄을을 첨가하여 슬러리형태로 제조 하여 볼 밀링 공정을 수행할 수 있다.
<50> 이 때, 기공형성제는 원료분말인 NIO, YSZ에 대하여 3 내지 10 중량부로 포 함되는 것이 바람직하다.
<51>
<52> 다음으로, 단계 1에서 제조된 흔합물을 건조기 (hot* plate)에서 건조하고 스 크리닝한다。 (단계 2)
<53> 건조는 80°C 내지 100°C에서 12시간 내지 48시간동안 이루어 질 수 있다.
<54> 스크리닝은 체질을 통해 서로 다른 입자 크기를 가진 흔합물에서 균일한 입 자 크기를 가지는 파우더를 선별하기 위한 공정으로, 80 내지 120메쉬의 체를 이용 하는 것이 바람직하다。
<55>
<56> 이후, 상기 단계 2에서 제조된 흔합 분말에 첨가제를 첨가하고 흔련하여 페 이스트를 제조하고 압출하여 공전해 샐용 지지체를 제조한다, (단계 3)
<57> 첨가제로는 바인더, 가소제 및 윤활제가 포함될 수 있다. 각 물질은 본 발명 이 속하는 기술분야에서 통상적으로 알려진 것을 사용할 수 있으며, 예를 들면, 바 인더로는 메틸 셀를로오스 (Methyl cel lulose) , 하이드톡시프로필 메틸 셀를로오스 (Hydroxypropyl methyl cel lulose) 등을 사용할 수 있고, 상기 가소제로는 프로필 렌 카보네이트 (propylenecarbonate) , 폴리에틸렌글리콜 (polyethyleneglycol ) , 디부 틸 프탈레이트 (dibutyl phthalate) 등을 사용할 수 있으며, 상기 윤활유로는 스테 아르산 (Stear ic Acid)을 사용할 수 있다.
<58> 상기 바인더는 원료분말인 NIO, YSZ 흔합분말 100 중량부 기준으로 15 내지
20 중량부로 첨가되는 것이 바람직하며, 상기 바인더가 15 중량부 미만으로 첨가되 는 경우 공전해 샐 지지체의 성형성이 떨어지고 기공 형성률이 저하될 수 있으며, 상기 바인더가 20 중량부를 초과하여 첨가될 경우 기공이 과도하게 형성되어 강도 가 저하되고 소결 과정에서 크랙이 발생할 수 있다, <59> 상기 가소제는 원료분말인 NIO, YSZ 흔합분말 100 증량부 기준으로 4 내지 8 중량부로 첨가되는 것이 바람직하며, 상기 가소제가 4 증량부 미만으로 첨가되는 경우 압출체의 변형 및 크랙이 발생할 수 있으며 상기 가소제가 8 중량부를 초과하 여 첨가되는 경우 압출체의 연성이 과도하게 증가하여 소결 후에 휘는 현상이 발생 할 수 있다.
<60> 상기 윤활제는 원료분말인 NIO, YSZ 흔합분말 100 중량부 기준으로 2 내지 6 중량부로 첨가되는 것이 바람직하며, 상기 윤활제가 2 증량부 미만으로 첨가되는 경우 압출체의 표면 벗겨짐 문제가 발생할 수 있으며, 상기 윤활제가 6 중량부를 초과하여 첨가되는 경우 압출체와 몰드간 접착력에 의해 표면에 줄무늬가 형성될 수 있다.
<6i> 도 2는 상기 단계 2에서 제조된 흔합 분말에 상기 첨가제들을 첨가하고 흔련 하는 과정을 나타낸 도면이며, 도 3은 흔련된 상기 페이스트를 압출하여 류브형의 지지체로 성형하는 과정을 나타낸 도면이다.
<62>
<63> 단계 3에서 제조된 튜브형 지지체는 표면에 손상을 최소화하기 위하여 를링 건조된 후, 가소결하는 과정을 거친다. (단계 4)
<64> 를링 건조하는 과정은 도 4에 나타나 있고 가소결하는 단계는 도 5에 도시 되어 있는데, 상기 가소결 하는 과정은 단계적 승온을 통해 이루어지는 것이 바람 직하다.
<65> 구체적으로, 상기 가소결 과정은 단계 3에서 제조된 튜브형 지지체를 8시간 내지 12시간동안 숭온한 후, 300°C 내지 400°C에서 3시간 내지 7시간 동안 온도를 유지하고, 다시 3시간 내지 7시간동안 승온시켜 700°C 내지 800°C에서 2시간 내지 4시간 동안 은도를 유지한다. 마지막으로 3시간 내지 7시간 동안 승은시켜 1000 °C 내지 1200°C에서 2시간 내지 4시간 동안 온도를 유지하는 과정을 포함할 수 있다.
<66> 만약ᅳ 단계적 승온을 거치지 않고 바로 Kxxrc 내지 i2oo°c로 승온시켜 가소 결하게 된다면, 기공형성제가 급격하게 기공을 형성하기 때문에 기공에 의해 지지 체에 크랙이 발생하게 되고, 크택으로 인해 지지체의 내구성이 떨어지게 된다.
<67>
<68> 다음으로, 단계 4에서 가소결된 공전해 샐용 지지체에 캐소드, 전해질, 애노 드를 순차적으로 코팅한다, (단계 5)
<69> 공전해 셀에 사용될 수 있는 캐소드는 금속-세라믹 복합체인 Ni-YSZ , 페로브 스카이트 계열 세라믹 캐소드인 LSCM ( (La0.75 , Sro.25)0.95Mno.5Cr0,503) , LST 계열 세라 믹 캐소드인 (Sr1-xLax) (Ti 1-yMy)03 (M = V, Nb , Co , Mn)가 사용될 수 있다,
<70> 특히, LST계열 세라믹 캐소드인 (SivxLax) (Ti 1-yMy)03 (M = V, Nb, Co , Mn)를 사용하는 것이 바람직한데, 이는 LST계열 세라믹 캐소드가 수소, CO 환원성 기체 흐름이 충족되지 않은 조건에서 사용되어도 산화하지 않아 상기 조건에서도 캐소드 의 성질을 손상시키지 않기 때문이다.
<7i> 즉, LST계열 세라믹 캐소드는 레독스 저항성이 우수하여 연료에 고농도의
H20가 함유되어 있을 경우에도 레독스 사이클링을 발생시키지 않아 전기전도도와 기계적 강도가 일정하게 유지될 수 있다.
<72> 한편, 캐소드가 전하가 홀을 통해 이동하는 P타입 전도 메커니즘을 가진다면 강한 환원 포텐셜을 유도하게 되고, 이 포텐셜은 전극을 분극시키는 저항을 야기한 다. 즉, P타입 전도 메커니즘을 가진 캐소드는 캐소드의 화학적, 구조적 변화를 야 기하기 때문에 손상되기 쉬워 수명이 짧은 문제가 있다.
<73> 그러나 LST계열 세라믹 캐소드는 음전하 자유전자 캐리어가 전류를 유도하는
N타입 전도 메커니즘을 가져, P타입과 같은 전극 분극의 문제 없이 환원 조건일 경 우 비교적 안정적 거동을 보이므로, 공전해 셀의 캐소드로 사용할 시 우수한 수명 및 전극 특성을 나타낼 수 있다.
<74> 또한, 캐소드의 화학적, 전기화학적 반웅의 효율을 향상시키기 위해 캐소드 표면의 활성을 향상시키는 공정을 더 포함할 수 있다.
<75>
<76> 지지체에 캐소드를 코팅하는 과정은 도 6에 도시되어 있듯이 담금코팅법 ( d i p coat ing)에 의해 수행될 수 있으며, 코팅 후 80°C /h 내지 120°C /h의 승온 속도로 승온한 후 800°C 내지 120C C에서 2 내지 3시간 동안 열처리하는 단계를 포함할 수 있고, 열처리 후 200°C /h 내지 300°C /h의 속도로 넁각하는 단계를 더 포함할 수 있 다,
<77> 전해질은 본 발명이 속하는 기술분야에서 통상적으로 알려진 것을 사용할 수 있다. 예를 들어, 이트리아 안정화 지르코니아 분말 (YSZ 분말), Sr 및 Mg이 도핑된 란타늄 갈레이트 분말 (LSGM 분말), 스칸디아 안정화 산화 지르코늄 분말 (ScSZ 분 말) , 가돌리니아 도핑 세리아 분말 (GDC 분말), 사마리아 도핑 세리아 분말 (SDC 분 말) 등이 사용될 수 있으나 이에 한정되는 것은 아니며, 진공슬러리코팅법 (vacuum s lurry coat ing)에 의해 코팅될 수 있다.
<78> 도 7에 도시된 바와 같이 캐소드가 코팅된 지지체상에 진공슬러리코팅법에 의해 전해질을 코팅한 후 80°C /h 내지 120°C/h의 숭온 속도로 승온하고 1200°C 내 지 1600°C에서 3시간 내지 7시간 동안 열처리하는 단계를 포함할 수 있으며, 열처 리 후 200°C/h 내지 300°C /h의 속도로 넁각하는 단계를 더 포함할 수 있다.
<79> 전해질을 코팅하고 열처리한 후 도 8과 같이 담금코팅법에 의해 캐소드, 전 해질이 코팅된 지지체에 애노드를 코팅한다. 애노드는 본 발명이 속하는 기술분야 에서 통상적으로 알려진 것을 사용할 수 있으며, 예를 들어, LSCF-GDC가 사용될 수 있으나, 이에 한정되는 것은 아니다.
<80> 애노드를 담금코팅 처리한 후, 80°C /h 내지 120°C /h의 속도로 승온하여 1000 t 내지 1300°C에서 2시간 내지 4시간동안 열처리하는 단계를 포함하며, 열처리 후 200°C/h 내지 300°C/h의 속도로 냉각하는 단계를 더 포함할 수 있다.
<8i> 단계 5에 의해 제조된 튜브형 공전해 셀을 도 9와 같이 환원하는 공정을 더 포함할 수 있다.
<82> 단계 5에 의해 제조된 공전해 셀 지지체는 NIO-YSZ Cermet으로, 전기 전도도 및 강도와 같은 물성이 우수한 공전해 셀 지지체로 만들기 위해서는 상기 NI0-YSZ Cermet을 NI-YSZ형태로 환원시켜 사용하여야 하며, 환원공정은 단계 5에 의해 제조 된 튜브형 공전해 셀을 6oo°c 내지 locxrc에서 수소와 질소 기체로 처리하여 수행 될 수 있다.
<83>
<84> 상기와 같은 방법에 의해 제조된 튜브형 공전해 셀은 이산화탄소와 스팀을 동시에 전기 분해하여 높은 효을로 합성가스 연료로 전환할 수 있으며, 내구성이 우수할 뿐만 아니라 고온, 가압운전에 용이하다.
<85>
<86> <실시예 1> 튜브형 공전해 샐 제작
<87> 1) 지지체 제조
<88> 8YSZ(8 mol% yt tria-stabi 1 i zed zi rconia)분말과 NiOU . T. Baker Co. , USA) 분말을 부피비 NiO:8YSZ=40:60로 믹싱하여 흔합 분말을 만들고, 카본블랙을 흔합하 고 볼 밀링하여 균일화 한 후, 건조하고 체질하여 균일한 혼합분말을 얻었다,
<89> 제조된 NI0/YSZ 분말에 유기바인더, 증류수, 가소제, 윤활제 등의 첨가제를 첨가하고 흔련하여 페이스트화 한 후, 상기 페이스트를 압출하고 롤링 건조하여 류 브형태의 지지체를 제조하였다.
<90> 상기 지지체를 10시간 동안 승온하여 350°C에서 5시간 유지하였고, 다시 5시 간 동안 승온하여 750°C에서 3시간 동안 유지한 후, 마지막으로 5시간 동안 승은하 여 1KXTC에서 3시간 유지하여 가소결하였다。 <91> 2) 캐소드 코팅
<92> 가소결된 지지체를 NI-YSZ에 d i pp i ng하여 캐소드를 형성하고, 100°C /h로 승 온하여 1000°C에서 3시간동안 유지한 후 250°C /h의 속도로 넁각하여 열처리하였다。
<93> 3) 전해질 코팅
<94> 이를 Vacuum s lurry coat ing법을 이용하여 전해질로 코팅하고, 100°C /h로 승 온하여 1400°C에서 5시간동안 유지한 후 250°C /h의 속도로 냉각하여 열처리하였다. <95> 4) 애노드 코팅
<96> 상기 열처리 후 YSZ/LSM과 LSM compos i te에 dipping하여 애노드를 형성하고,
100°C /h로 승온하여 1150°C에서 3시간동안 유지한 후 250°C /h의 속도로 넁각하여 열처리하였다.
<97> 상기와 같은 방법으로 제조된 튜브형 공전해 셀을 도 10에 나타내었으며, 상 기 류브형 공전해 셀의 반웅 면적은 3cm2로 제작되었다.
<98> 한편, 도 11은 상기 튜브형 공전해 셀의 단면을 SEM으로 촬영한 사진으로, 도 11을 참고하면 상기와 같은 방법에 의해 제조된 캐소드층과 전해질층은 각각 9.92um , 애노드층은 30.2um의 두께를 가지는 것을 확인할 수 있다,
<99>
<100> <실험예 1> 튜브형 공전해 셀의 상압 공전해 실험
<ioi> Ni /Ag wi re를 집전체로 사용하여 상기 실시예 1에서 제조된 튜브형 공전해 샐을 집전시키고, 도 12와 같이 HPIX 펌프, DC 파워 서플라이, G.C로 구성된 상압 형 공전해 평가 시스템을 이용하여 상압에서 공전해 실험을 수행하였다. 캐소드 및 애노드의 유량은 각각 200cc/min로, 온도는 800°C에서 운전한 결과를 도 13에 나타 내었다.
<102>
<103> 실험 결과, 이산화탄소를 추가할수톡 전체 반웅의 과전압이 감소하는 것을 확인할 수 있었다. 이는 수소와 이산화탄소를 연료에 첨가하여 반웅시킴으로써 수 소와 이산화탄소가 역수성 가스 변화 반웅 (reverse water gas shi f t :RWGS)에 참여 했기 때문인 것으로 판단된다.
<104>
<105> 이상에서 본 발명에 대한 기술사상을 첨부도면과 함께 설명하였으나, 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이고 본 발명을 한정하는 것은 아니다, 또한, 이 기술분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술사 상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 1ᄋ 사실이다.

Claims

ί청구의 범위】
【청구항 II
N10 및 YSZ를 포함하는 원통형 지지체;
상기 원통형 지지체 표면에 형성된 (S -xLaxKT — yMy)03 (M = V , Nb ( Co , Mn) 를 포함하는 캐소드 층;
상기 캐소드 층 표면에 형성된 고체전해질 층; 및
상기 고체전해질 층 표면에 형성된 애노드 층을 포함하는 튜브형 공전해 셀ᅳ ί청구항 2]
제 1항에 있어서,
상기 고체전해질 층은 YSZ (이트리아 안정화 지르코니아) , LSGM(Sr 및 Mg이 도핑된 란타늄 갈레이트) , ScSZ (스칸디아 안정화 산화 지르코늄) , GDC (가돌리니아 도핑 세리아) 및 SDC (사마리아 도핑 세리아)로 구성된 군에서 선택된 하나 이상의 물질을 포함하는 것을 특징으로 하는 튜브형 공전해 샐。
【청구항 33
제 1항에 있어서,
상기 애노드 층은 LSCF-GDC 또는 YSZ-LSM과 LSM 복합체를 포함하는 것을 특 징으로 하는 류브형 공전해 셀, ί청구항 43
제 1항에 있어서,
상기 캐소드 층에 사용되는 연료는 Η20, C02 및 Η2를 포함하는 것을 특징으 로 하는 튜브형 공전해 샐. ί청구항 5】
NI0, YSZ 및 기공형성제를 흔합한 후, 용매와 흔합하여 슬러리 형태로 제조 하여 볼밀링 하는 단계 (단계 1 ) ;
상기 슬러리를 건조한 후 분말화 하는 단계 (단계 2) ;
상기 분말화 된 흔합물에 첨가제를 첨가하고 흔련하여 페이스트를 제조하고, 상기 페이스트를 압출하여 공전해 샐용 지지체를 제조하는 단계 (단계 3) ;
상기 압출된 공전해 셀용 지지체를 를링 건조하는 단계
(단계 4) ; 상기 를링 건조된 공전해 셀용 지지체를 가소결한 후, 캐소드, 전해질 및 애 노드를 코팅하는 단계
(단계 5) ;를 포함하며,
상기 캐소드는 (Si xLa
Figure imgf000013_0001
(M = V, Nb, Co , Mn)를 포함하는 류브형 공전해 샐 제조방법,
【청구항 6]
제 5항에 있어서,
상기 기공형성제는 활성탄 및 카본블랙으로 구성된 군에서 하나 이상 선택되 는 것을 특징으로 하는 튜브형 공전해 셀 제조방법.
【청구항 7]
제 5항에 있어서,
상기 첨가제는 바인더, 가소제 및 윤활제를 포함하는 것을 특징으로 하는 튜 브형 공전해 샐 제조방법.
【청구항 8]
제 5항에 있어서,
상기 가소결은 300°C 내지 400 °C로 승온하고, 700°C 내지 800 °C로 승온한 후 , 1000 °C 내지 1200 °C로 승온하는 단계적 승온에 의해 이루어지는 튜브형 공전해 셀 제조방법 ,
【청구항 9]
제 5항에 있어서,
상기 캐소드 및 상기 애노드는 담금코팅법 (dip coat ing)에 의해 코팅되는 것 을 특징으로 하는 튜브형 공전해 샐 제조방법 .
【청구항 10]
제 9항에 있어서,
상기 캐소드를 코팅한 후 800°C 내지 1200°C에서 열처리하는 것을 특징으로 하는 튜브형 공전해 셀 제조방법ᅳ
【청구항 111 제 9항에 있어서,
상기 애노드를 코팅한 후 900 °C 내지 1400 °C에서 열처리하는 것을 특징으로 하는 류브형 공전해 샐 제조방법 .
【청구항 12]
제 5항에 있어서,
상기 전해질은 진공슬러리코팅법 (vacuum s l urry coat ing)에 의해 코팅되는 것을 특징으로 하는 류브형 공전해 샐 제조방법,
【청구항 13】
제 12항에 있어서,
상기 전해질을 코팅한 후 120CTC 내지 1600°C에서 열처리하는 것을 특징으로 하는 류브형 공전해 셀 제조방법 .
【청구항 14】
제 5항에 있어서,
상기 캐소드에 사용되는 연료는 H20, C02 및 H2를 포함하는 것을 특징으로 하는 튜브형 공전해 샐 제조방법 .
【청구항 15]
청구항 제 5항 내지 제 14항 중 어느 한 항에 의해 제조된 류브형 공전해 씰
【청구항 16】
청구항 제 15항의 튜브형 공전해 셀을 포함하는 튜브형 셀 기반 공전해 모
PCT/KR2015/004371 2014-12-18 2015-04-30 튜브형 공전해 셀 제조방법 WO2016098962A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/129,660 US20170275769A1 (en) 2014-12-18 2015-04-30 Method for manufacturing tubular co-electrolysis cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140183144A KR101620470B1 (ko) 2014-12-18 2014-12-18 튜브형 공전해 셀 제조방법
KR10-2014-0183144 2014-12-18

Publications (1)

Publication Number Publication Date
WO2016098962A1 true WO2016098962A1 (ko) 2016-06-23

Family

ID=56023704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004371 WO2016098962A1 (ko) 2014-12-18 2015-04-30 튜브형 공전해 셀 제조방법

Country Status (3)

Country Link
US (1) US20170275769A1 (ko)
KR (1) KR101620470B1 (ko)
WO (1) WO2016098962A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750185B (zh) * 2016-06-17 2021-12-21 丹麥商托普索公司 具有加熱能力的soec系統
EP3535230A4 (en) * 2016-11-07 2020-06-24 The Regents of The University of Colorado, A Body Corporate IMPROVED PERFORMANCE OF TECHNICAL CERAMICS
KR101963172B1 (ko) * 2016-11-10 2019-07-31 한국에너지기술연구원 Co2를 포함한 바이오가스로부터 합성가스 생산을 위한 고체산화물 전기분해 셀 개발
KR101978280B1 (ko) * 2017-09-08 2019-05-17 한국에너지기술연구원 고압 원통형 고체산화물 공전해 셀 및 이를 이용한 합성 가스 생산 방법
KR102092794B1 (ko) * 2018-02-27 2020-03-24 한국에너지기술연구원 고온 공전해 평관형 단전지 셀 및 이의 제조방법
KR102230130B1 (ko) * 2019-03-29 2021-03-22 고등기술연구원연구조합 공전해 시스템 및 이를 이용한 공전해 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211263B1 (ko) * 2011-03-17 2012-12-11 한국과학기술원 전기화학 반응 장치 및 그 제조 방법
KR20120139433A (ko) * 2011-06-17 2012-12-27 한국에너지기술연구원 원통형 연료극 지지체를 사용한 직접탄소 연료전지 및 이의 제조방법
KR101249204B1 (ko) * 2011-04-29 2013-04-09 한국과학기술원 전기 화학 반응 장치 및 전기 화학 반응 제공 방법
KR20130046504A (ko) * 2011-10-28 2013-05-08 주식회사 코미코 고체산화물 연료전지용 지지체의 제조 방법 및 고체산화물 연료전지의 제조방법
WO2013180081A1 (ja) * 2012-05-28 2013-12-05 国立大学法人 鹿児島大学 電気化学反応器及び燃料ガスの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437498B1 (ko) * 2002-02-04 2004-06-25 한국에너지기술연구원 연료극 지지체식 원통형 고체산화물 연료전지 스택과 그제조 방법
US20060166070A1 (en) * 2003-09-10 2006-07-27 Ion America Corporation Solid oxide reversible fuel cell with improved electrode composition
KR100648144B1 (ko) * 2005-09-15 2006-11-24 한국과학기술연구원 고성능 연료극지지형 고체산화물 연료전지
ATE507796T1 (de) * 2007-06-07 2011-05-15 Nobel Biocare Services Ag Verfahren zur herstellung eines dentalen produkts
US9525179B2 (en) * 2013-03-13 2016-12-20 University Of Maryland, College Park Ceramic anode materials for solid oxide fuel cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211263B1 (ko) * 2011-03-17 2012-12-11 한국과학기술원 전기화학 반응 장치 및 그 제조 방법
KR101249204B1 (ko) * 2011-04-29 2013-04-09 한국과학기술원 전기 화학 반응 장치 및 전기 화학 반응 제공 방법
KR20120139433A (ko) * 2011-06-17 2012-12-27 한국에너지기술연구원 원통형 연료극 지지체를 사용한 직접탄소 연료전지 및 이의 제조방법
KR20130046504A (ko) * 2011-10-28 2013-05-08 주식회사 코미코 고체산화물 연료전지용 지지체의 제조 방법 및 고체산화물 연료전지의 제조방법
WO2013180081A1 (ja) * 2012-05-28 2013-12-05 国立大学法人 鹿児島大学 電気化学反応器及び燃料ガスの製造方法

Also Published As

Publication number Publication date
US20170275769A1 (en) 2017-09-28
KR101620470B1 (ko) 2016-05-13

Similar Documents

Publication Publication Date Title
Mahmud et al. Challenges in fabricating planar solid oxide fuel cells: A review
Khan et al. Flat-tubular solid oxide fuel cells and stacks: a review
WO2016098962A1 (ko) 튜브형 공전해 셀 제조방법
CN101577340B (zh) 一种阴极支撑的管式固体氧化物燃料电池的制备方法
US10305116B2 (en) Cost-effective solid state reactive sintering method for protonic ceramic fuel cells
CN101562255A (zh) 一种金属支撑型固体氧化物燃料电池的制备方法
KR101934006B1 (ko) Ni-YSZ 연료(수소)전극을 포함하는 고체산화물 연료전지와 전해셀 및 이의 제조방법
KR20130123189A (ko) 고체산화물 연료전지용 음극 지지체 및 그 제조방법과 이를 포함한 고체산화물 연료전지
KR20180124919A (ko) 고체 산화물 연료 전지용 대체 애노드 물질
Plonczak et al. Fabrication of solid oxide fuel cell supported on specially performed ferrite-based perovskite cathode
KR101186929B1 (ko) 고체 산화물 연료 전지용 금속 산화물 박막의 저온 무수축 제조 방법
CN114824388B (zh) 一端自密封竹节管式固体氧化物燃料电池/电解池及其电池/电解池堆的制备方法
JP6362007B2 (ja) 電気化学セルおよびその製造方法
KR20200083705A (ko) 평관형 공전해 셀 및 그의 제조방법
JP7231431B2 (ja) 電気化学セル
Panthi et al. Performance improvement and redox cycling of a micro-tubular solid oxide fuel cell with a porous zirconia support
Li et al. Ultra-elevated power density and high energy efficiency of protonic ceramic fuel cells: Numerical and experimental results
Hao et al. Co-tape casting fabrication, field assistant sintering and evaluation of a coke resistant La0. 2Sr0. 7TiO3–Ni/YSZ functional gradient anode supported solid oxide fuel cell
KR100953102B1 (ko) 다공질 금속의 후막 지지체를 이용한 금속 지지체형고체산화물 연료전지 및 이의 제조 방법
CN101222050A (zh) 抗碳沉积阳极膜材及其制备方法
Zhou et al. A low cost large‐area solid oxide cells fabrication technology based on aqueous co‐tape casting and co‐sintering
Abarzua et al. A feasible strategy for tailoring stable spray‐coated electrolyte layer in micro‐tubular solid oxide fuel cells
KR102092794B1 (ko) 고온 공전해 평관형 단전지 셀 및 이의 제조방법
Fu et al. Fabrication and Characterization of Anode‐Supported Low‐Temperature SOFC Based on Gd‐Doped Ceria Electrolyte
ur Rehman et al. Fabrication and characterization of La0. 65Sr0. 3MnO3− δ/(Y2O3) 0.08 (ZrO2) 0.92/Gd0. 1Ce0. 9O2− δ tri-composite cathode-supported tubular direct carbon solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15129660

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870130

Country of ref document: EP

Kind code of ref document: A1