WO2016098825A1 - Method for producing covered optical semiconductor element - Google Patents

Method for producing covered optical semiconductor element Download PDF

Info

Publication number
WO2016098825A1
WO2016098825A1 PCT/JP2015/085268 JP2015085268W WO2016098825A1 WO 2016098825 A1 WO2016098825 A1 WO 2016098825A1 JP 2015085268 W JP2015085268 W JP 2015085268W WO 2016098825 A1 WO2016098825 A1 WO 2016098825A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
semiconductor element
layer
phosphor layer
sheet
Prior art date
Application number
PCT/JP2015/085268
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 直子
弘司 野呂
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015217792A external-priority patent/JP2016119454A/en
Priority claimed from JP2015243519A external-priority patent/JP6543564B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016098825A1 publication Critical patent/WO2016098825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for manufacturing a coated optical semiconductor element.
  • a ceramic ink in which a phosphor is dispersed is applied to LEDs arranged at predetermined intervals on an adhesive sheet, and then the ceramic ink is cured to coat the LEDs with a ceramic ink layer.
  • a method is proposed in which the ceramic ink layer between adjacent LEDs is cut and separated, and then the LED and the ceramic ink layer are peeled off from the adhesive sheet and flip-chip mounted on a circuit board (see, for example, Patent Document 1). ).
  • the ceramic ink layer is further sealed with a transparent resin while the LED is mounted on the circuit board.
  • An object of the present invention is to provide a method for manufacturing a coated optical semiconductor element that can reliably peel the coated optical semiconductor element from the temporary fixing sheet.
  • the present invention [1] includes a plurality of optical semiconductor elements temporarily fixed on a temporarily fixing sheet at intervals, and the temporarily fixing sheet exposing the plurality of optical semiconductor elements from the plurality of optical semiconductor elements.
  • the step (4) of peeling the coated optical semiconductor element from the temporary fixing sheet In the step (3), the first coating layer is filled in the groove. Interposed between the second covering layer and the temporary fixing sheet.
  • the first coating layer is interposed between the second coating layer filled in the groove and the temporarily fixed sheet, so that the second coating layer is formed on the fixed sheet. Direct contact is prevented. Therefore, even if the pressure-sensitive adhesive force of the second coating layer is high, the second coating layer can be prevented from adhering to the temporary fixing sheet.
  • the coated optical semiconductor element can be reliably peeled from the temporarily fixed sheet.
  • the coated optical semiconductor element is transferred from the temporarily fixed sheet to a transfer sheet, and the adhesive force of the coated optical semiconductor element to the transfer sheet is the coated optical semiconductor.
  • seat of an element is included.
  • step (4) since the adhesive force of the coated optical semiconductor element to the transfer sheet is higher than the adhesive force of the coated optical semiconductor element to the temporary fixing sheet, in step (4), the coated optical semiconductor element is temporarily fixed. Transfer from the sheet to the transfer sheet can be performed more reliably.
  • the present invention [3] includes the method for manufacturing a coated optical semiconductor element according to [1] or [2], wherein the first coating layer is a first phosphor layer containing a phosphor.
  • the first coating layer is the first phosphor layer containing the phosphor
  • the light emitted from the optical semiconductor element can be wavelength-converted by the first phosphor layer.
  • the groove is filled with the second coating layer so as to expose the upper surface of the first phosphor layer, and the coated optical semiconductor according to [3] A device manufacturing method is included.
  • step (3) the coating layer is filled in the groove so as to expose the upper surface of the first phosphor layer, so that a coated optical semiconductor element that emits light having upward directivity is obtained. Can do.
  • the groove is filled with the second coating layer so as to cover the upper surface of the first coating layer.
  • the present invention [6] provides the method for producing a coated optical semiconductor element according to any one of [1] to [3], wherein the second coating layer is a second phosphor layer containing a phosphor. Contains.
  • the second coating layer is a second phosphor layer containing a phosphor
  • the wavelength of light emitted from the optical semiconductor element can be converted by the second phosphor layer.
  • the groove is filled with the second covering layer so as to cover the upper surface of the second phosphor layer.
  • the manufacturing method is included.
  • the coating layer is filled in the groove so as to expose the upper surface of the second phosphor layer, so that a coated optical semiconductor element that emits light having upward directivity is obtained. Can do.
  • the coated optical semiconductor element in the step (4), can be reliably peeled from the temporarily fixed sheet.
  • FIG. 1A to 1E are manufacturing process diagrams of a first embodiment of a method for manufacturing a coated optical semiconductor element according to the present invention, in which FIG. 1A is a process of arranging a plurality of optical semiconductor elements on a temporary fixing sheet, FIG. Is a step (1) of covering a plurality of optical semiconductor elements with a first phosphor layer, FIG. 1C is a step (2) of providing a groove in the first phosphor layer located between adjacent optical semiconductor elements, and FIG. 1D is a step (i) of disposing a protective sheet on the upper surface of the first phosphor layer, and FIG.
  • FIG. 1E is a step of disposing the temporary fixing sheet, the optical semiconductor element, the first phosphor layer, and the protective sheet under vacuum ( ii) and the step (iii) of disposing a coating material to form a sealed space.
  • FIG. 2F to 2I are manufacturing process diagrams of the first embodiment of the method for manufacturing a coated optical semiconductor device of the present invention, following FIG. 1E, in which FIG. 2F is a process of flowing the coating material into the sealed space (iv 2G shows the step (v) for peeling off the protective sheet, FIG. 2H shows the step for separating the optical semiconductor element, and FIG. 2I shows the step (4) for transferring the coated optical semiconductor element to the transfer sheet.
  • FIG. 3A to 3C are plan views in the respective steps of the first embodiment, FIG.
  • FIG. 3A is a plan view of step (i) corresponding to FIG. 1D
  • FIG. 3B is a step (ii) corresponding to FIG. 1E
  • FIG. 3C is a plan view of step (iii) corresponding to FIG. 2F.
  • FIG. 4 shows a process of mounting the coated optical semiconductor element shown in FIG. 2I on a substrate.
  • 5A to 5C are manufacturing process diagrams of the second embodiment of the method for manufacturing a coated optical semiconductor element according to the present invention, in which FIG. 5A is a process of covering a plurality of optical semiconductor elements with a first phosphor layer ( 1), FIG. 5B is a step (2) of providing a groove in the first phosphor layer located between the adjacent optical semiconductor elements, and FIG.
  • FIG. 5C is a case where the groove is filled with the second coating layer, and the upper first fluorescence.
  • a step (3) of providing the body layer so as to cover the body layer is shown.
  • 6D and FIG. 6E are manufacturing process diagrams of the second embodiment of the method for manufacturing the coated optical semiconductor element of the present invention, following FIG. 5C, and FIG. 6D is a process of dividing the optical semiconductor element into individual pieces, FIG. 6E shows the process (4) which transfers a covering optical semiconductor element to a transfer sheet.
  • FIG. 7 shows a process of mounting the coated optical semiconductor element shown in FIG. 6E on a substrate.
  • FIG. 8 shows a cross-sectional view of a coated optical semiconductor element obtained by the manufacturing method of the third embodiment.
  • FIG. 9 shows a cross-sectional view of a coated optical semiconductor element obtained by the manufacturing method of the fourth embodiment.
  • FIG. 10 shows a cross-sectional view of a coated optical semiconductor element obtained by the manufacturing method of the fifth embodiment.
  • FIG. 11 is a cross-sectional view of a coated optical semiconductor element obtained by the manufacturing method of the sixth embodiment.
  • 12A to 12D are manufacturing process diagrams of the coated optical semiconductor device of Comparative Example 1.
  • FIG. 12A shows the step (2) of providing an opening in the first phosphor layer
  • FIG. 12B shows the second coating layer.
  • Step (3) of providing FIG. 12C shows a step of cutting the second coating layer
  • FIG. 12D shows a step (4) of transferring the coated optical semiconductor element to the transfer sheet.
  • FIG. 13A to 13D are manufacturing process diagrams of the coated optical semiconductor element of Comparative Example 2, in which FIG. 13A shows the step (2) of providing an opening in the first phosphor layer, and FIG. 13B shows the second coating layer.
  • 14A to 14D are manufacturing process diagrams of the coated optical semiconductor device of Comparative Example 3, in which FIG. 14A shows the step (2) of providing an opening in the first coating layer, and FIG. 14B shows the second phosphor layer.
  • Step (3) of providing, FIG. 14C shows a step of cutting the second phosphor layer, and FIG.
  • FIG. 14D shows a step (4) of transferring the coated optical semiconductor element to the transfer sheet.
  • 15A to 15D are manufacturing process diagrams of the seventh embodiment of the method for manufacturing a coated optical semiconductor element of the present invention, in which FIG. 15A is a process of arranging a plurality of optical semiconductor elements on a temporary fixing sheet, FIG. FIG. 15C shows the step of coating the plurality of optical semiconductor elements with the first phosphor layer, FIG. 15C shows the step of transferring the first covering element assembly to the first transfer sheet, and FIG. 15D shows the first phosphor layer. Step (2) for providing a groove is shown.
  • 16E to 16G are manufacturing process diagrams of the seventh embodiment of the manufacturing method of the coated optical semiconductor element of the present invention, following FIG. 15D.
  • FIG. 15D is a process of arranging a plurality of optical semiconductor elements on a temporary fixing sheet
  • FIG. 15C shows the step of coating the plurality of optical semiconductor elements with the first phosphor layer
  • FIG. 15C shows the step of transferring
  • FIG. 16E illustrates a process of filling the groove with the second coating layer ( 3)
  • FIG. 16F shows a step of separating the optical semiconductor element
  • FIG. 16G shows a step of removing the upper end portion of the second coating layer 4.
  • FIG. 17 shows a process of mounting the coated optical semiconductor element shown in FIG. 16G on a substrate.
  • 18A and 18B are manufacturing process diagrams of an eighth embodiment of the method for manufacturing a coated optical semiconductor element of the present invention, in which FIG. 18A is a process of transferring the coated optical semiconductor element to a second transfer sheet, FIG. Shows the step of removing the bottom of the first phosphor layer.
  • FIG. 19 shows a process of mounting the coated optical semiconductor element shown in FIG. 18B on a substrate.
  • the vertical direction of the paper surface is the vertical direction (first direction, thickness direction)
  • the upper side of the paper surface is the upper side (one side in the first direction, the one side in the thickness direction)
  • the lower side of the paper surface is the lower side (first Direction other side, thickness direction other side).
  • the left and right direction on the paper surface is the left and right direction (second direction orthogonal to the first direction)
  • the left side on the paper surface is the left side (second side in the second direction)
  • the right side on the paper surface is the right side (the other side in the second direction).
  • the paper thickness direction is the front-rear direction (the third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (the other side in the third direction). is there. Specifically, it conforms to the direction arrow in each figure.
  • step (1) a plurality of optical semiconductor elements 1 and a first phosphor layer 2 are prepared. That is, the plurality of optical semiconductor elements 1 temporarily fixed to the upper surface of the first temporary fixing sheet 10 with a space therebetween, and the first phosphor on the upper surface of the first temporary fixing sheet 10 exposed from the plurality of optical semiconductor elements 1.
  • a first phosphor layer 2 covering a plurality of optical semiconductor elements 1 is prepared so that the layer 2 is in direct contact.
  • a plurality of optical semiconductor elements 1 are temporarily fixed to the upper surface of the first temporary fixing sheet 10 at intervals from each other.
  • the optical semiconductor element 1 is an optical semiconductor element that converts electrical energy into optical energy.
  • the optical semiconductor element does not include a rectifier such as a transistor having a technical field different from that of the optical semiconductor element.
  • the optical semiconductor element 1 has, for example, a substantially rectangular shape in cross-sectional view and a substantially rectangular shape in plan view in which the thickness (maximum length in the vertical direction) is shorter than the length in the plane direction (specifically, the length in the left-right direction and the length in the front-rear direction). It has a shape.
  • a part of the lower surface of the optical semiconductor element 1 is formed by bumps (not shown). The bump is configured to be electrically connected to a terminal (not shown in FIG. 4) provided on the upper surface of the substrate 50 (see FIG. 4, described later).
  • optical semiconductor element 1 examples include a blue LED (light emitting diode element) that emits blue light.
  • the thickness (length in the vertical direction) L1 of the optical semiconductor element 1 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the width (the length in the left-right direction and the length in the front-rear direction) L2 of the optical semiconductor element 1 is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and for example, 5000 ⁇ m or less, preferably 2000 ⁇ m or less. is there.
  • the first temporarily fixing sheet 10 temporarily fixes the plurality of optical semiconductor elements 1, and then covers and seals the plurality of optical semiconductor elements 1 together with the first phosphor layer 2.
  • 1 is a support member for forming the groove 3 in the phosphor layer 2.
  • the first temporary fixing sheet 10 includes a temporary fixing layer 11 and a support layer 12.
  • the temporary fixing layer 11 is provided on the temporary fixing layer 11 in order to temporarily fix the plurality of optical semiconductor elements 1.
  • the temporary fixing layer 11 has a pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer is formed in, for example, a substantially flat plate shape extending from the pressure-sensitive adhesive in the left-right direction and the front-rear direction.
  • the pressure-sensitive adhesive include a pressure-sensitive adhesive whose pressure-sensitive adhesive force is reduced by treatment (specifically, irradiation with active energy rays).
  • the temporary fixing layer 11 can have one pressure-sensitive adhesive layer and a base material (not shown) provided on the lower surface of the pressure-sensitive adhesive layer. Further, the temporary fixing layer 11 may have two pressure-sensitive adhesive layers and a base material (not shown) interposed therebetween.
  • the thickness of the temporary fixing layer 11 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 150 ⁇ m or less.
  • the support layer 12 is provided on the lower surface of the temporary fixing layer 11 in order to support the temporary fixing layer 11.
  • the support layer 12 include polymer films such as a polyethylene film and a polyester film (such as PET), such as a ceramic sheet, such as a metal foil.
  • a polymer film is used.
  • the thickness of the support layer 12 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the plurality of optical semiconductor elements 1 are temporarily fixed to the upper surface of the first temporary fixing sheet 10 at intervals. Specifically, a plurality of optical semiconductor elements 1 are aligned and arranged on the upper surface of the temporary fixing layer 11 at intervals in the left-right direction and the front-rear direction. More specifically, the lower surfaces of the plurality of optical semiconductor elements 1 are brought into contact with the upper surface of the temporary fixing layer 11 of the first temporary fixing sheet 10.
  • the interval L3 between the adjacent optical semiconductor elements 1 is, for example, 0.1 mm or more, preferably 0.3 mm or more, and for example, 3 mm or less, preferably 2 mm or less.
  • the plurality of optical semiconductor elements 1 are then placed on the upper surface of the first temporary fixing sheet 10 exposed from the plurality of optical semiconductor elements 1 by the first phosphor layer 2. Cover in direct contact.
  • the first phosphor layer 2 is prepared.
  • the first phosphor layer 2 has a dimension including a plurality of optical semiconductor elements 1 in a plan view, and has a substantially rectangular flat plate shape.
  • the first phosphor layer 2 is a wavelength conversion layer that converts part of the blue light emitted from the optical semiconductor element 1 into, for example, yellow light, red light, green light, and the like.
  • the first phosphor layer 2 is made of a phosphor resin composition.
  • the phosphor resin composition contains a phosphor and a transparent resin composition.
  • Examples of the phosphor include a yellow phosphor capable of converting blue light into yellow light, a red phosphor capable of converting blue light into red light, and a green phosphor capable of converting blue light into green light. Examples include the body.
  • yellow phosphor examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)
  • Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • the green phosphor for example, Lu 3 Al 5 O 12: Ce: garnet phosphors (LuAG ruthenium aluminum garnet) and the like.
  • a yellow phosphor alone or a combination of a red phosphor and a green phosphor is used.
  • Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
  • spherical shape is mentioned from a fluid viewpoint.
  • the average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. It is.
  • the blending ratio of the phosphor is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 80 parts by mass or less, preferably 50 parts by mass with respect to 100 parts by mass of the transparent resin composition. It is below mass parts.
  • the blending ratio of the phosphor is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, for example, 90% by mass or less, preferably 80% by mass with respect to the phosphor resin composition. It is below mass%.
  • the transparent resin composition examples include a transparent resin composition used as a sealing material for sealing the optical semiconductor element 1.
  • examples of the transparent resin composition include a thermosetting resin composition and a thermoplastic resin composition, preferably a thermosetting resin composition.
  • thermosetting resin composition examples include a two-stage reaction curable resin composition and a one-stage reaction curable resin composition.
  • the two-stage reaction curable resin composition has two reaction mechanisms. In the first stage reaction, the A stage state is changed to B stage (semi-cured), and then in the second stage reaction, B C stage (complete curing) can be performed from the stage state. That is, the two-stage reaction curable resin composition is a thermosetting resin composition that can be in a B stage state under appropriate heating conditions. However, the two-stage reaction curable resin composition can be changed from the A-stage state to the C-stage state at a time without maintaining the B-stage state by intense heating.
  • the B stage state is a state between the A stage state in which the thermosetting resin composition is in a liquid state and the C stage state in which the thermosetting resin composition is completely cured. It is a semi-solid or solid state whose modulus is smaller than the elastic modulus in the C-stage state.
  • the first-stage reaction curable resin composition has one reaction mechanism, and can be changed from the A-stage state to the C-stage (completely cured) by the first-stage reaction.
  • the first-stage reaction curable resin composition can be changed from the A-stage state to the B-stage state in the middle of the first-stage reaction.
  • the thermosetting resin composition that can be C-staged (completely cured) from the B-stage state is included. That is, this thermosetting resin composition is a thermosetting resin composition that can be in a B-stage state.
  • the first-stage reaction curable resin composition cannot be controlled to stop in the middle of the first-stage reaction, that is, cannot enter the B-stage state, and is changed from the A-stage state to the C-stage ( A thermosetting resin composition that completely cures).
  • the transparent resin composition examples include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • a silicone resin is used as the transparent resin composition.
  • the above-described transparent resin composition may be of the same type or a plurality of types.
  • silicone resin examples include silicone resin compositions such as an addition reaction curable silicone resin composition and a condensation / addition reaction curable silicone resin composition from the viewpoint of transparency, durability, heat resistance, and light resistance. . Silicone resins may be used alone or in combination.
  • the addition reaction curable silicone resin composition is a one-stage reaction curable resin composition and contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • a phenyl silicone resin composition that is a one-stage reaction curable resin composition that can be in a B-stage state, for example, a B-stage state.
  • a phenyl type silicone resin composition is mentioned.
  • addition reaction curable silicone resin composition examples include an addition reaction curable silicone resin composition described in JP-A-2015-073084.
  • the condensation / addition reaction curable silicone resin composition is a two-stage reaction curable resin, and specifically, for example, those described in JP 2010-265436 A, JP 2013-187227 A, and the like.
  • 1 to 8 condensation / addition reaction curable silicone resin compositions for example, JP 2013-091705 A, JP 2013-001815 A, JP 2013-001814 A, JP 2013-001813 A, Examples thereof include a cage-type octasilsesquioxane-containing silicone resin composition described in JP2012-102167A.
  • the addition reaction curable silicone resin composition and the condensation / addition reaction curable silicone resin composition are solid and have both thermoplasticity and thermosetting properties.
  • the phosphor resin composition if necessary, known pigments (including fillers), silane coupling agents, anti-aging agents, modifiers, surfactants, dyes, anti-discoloring agents, ultraviolet absorbers, etc. These additives can be added at an appropriate ratio.
  • the first phosphor layer 2 can be supported and protected by a release sheet (not shown).
  • a release sheet (not shown) is used to protect the first phosphor layer 2 until the optical semiconductor element 1 is sealed by the first phosphor layer 2 (the upper surface in FIG. 1A). ) Is detachably attached.
  • a peeling sheet (not shown), polymer films, such as a polyethylene film and a polyester film (PET etc.), for example, ceramic sheets, for example, metal foil etc. are mentioned, for example.
  • a polymer film is used.
  • the thickness of the release sheet (not shown) is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the first phosphor layer 2 contains a phenyl silicone resin composition (one-step reaction curable resin composition (addition reaction curable silicone resin composition)), hydrosilyl of an alkenyl group and a hydrosilyl group The chemical reaction proceeds halfway and is stopped once.
  • a phenyl silicone resin composition one-step reaction curable resin composition (addition reaction curable silicone resin composition)
  • hydrosilyl of an alkenyl group and a hydrosilyl group The chemical reaction proceeds halfway and is stopped once.
  • the thickness L0 of the first phosphor layer 2 before covering the optical semiconductor element 1 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the first phosphor layer 2 is pressure-bonded to the plurality of optical semiconductor elements 1 and the first temporary fixing sheet 10.
  • the 1st fluorescent substance layer 2 is thermocompression-bonded (heat press) with respect to the peeling sheet 6 which supports the some optical semiconductor element 1.
  • the first phosphor layer 2, the plurality of optical semiconductor elements 1, and the first temporary fixing sheet 10 are installed in a flat plate press or the like equipped with a heat source.
  • the flat plate press includes a lower mold having a flat upper surface, and an upper mold having a flat lower surface disposed on the upper side thereof.
  • the 1st fluorescent substance layer 2, the some optical semiconductor element 1, and the 1st temporary fixing sheet 10 are hot-pressed by flat plate press.
  • the temperature in the flat plate press is equal to or higher than the thermoplastic temperature of the addition reaction curable silicone resin composition, preferably From the viewpoint of carrying out the thermoplastic and thermosetting of the addition reaction curable silicone resin composition at one time, it is a thermosetting temperature or higher, specifically, for example, 60 ° C or higher, preferably 80 ° C or higher. Also, for example, 150 ° C. or lower, preferably 120 ° C. or lower.
  • the pressing time is, for example, 1 minute or more, preferably 5 minutes or more, and for example, 60 minutes or less, preferably 20 minutes or less.
  • the first phosphor layer 2 contains a phenyl silicone resin composition having thermoplasticity and thermosetting property
  • the first phosphor layer 2 is plasticized by the above-described hot pressing. Subsequently, a plurality of optical semiconductor elements 1 are embedded with the plasticized first phosphor layer 2.
  • the first phosphor layer 2 is in direct contact with the upper surface of the temporary fixing layer 11 exposed from the plurality of optical semiconductor elements 1. That is, the first phosphor layer 2 is in direct contact with the upper surface and side surfaces of the optical semiconductor element 1 and the upper surface of the temporary fixing layer 11 exposed from the temporary fixing layer 11.
  • a plurality of optical semiconductor elements 1 are sealed by one first phosphor layer 2.
  • a first covering element assembly 41 including a plurality of optical semiconductor elements 1 and one first phosphor layer 2 is obtained in a state of being temporarily fixed to the first temporary fixing sheet 10.
  • the upper surface of the first phosphor layer 2 has a flat surface along the surface direction.
  • the lower surfaces of the plurality of optical semiconductor elements 1 are in direct contact (temporarily fixed) with the upper surface of the temporary fixing sheet 10.
  • the thickness L4 of the first phosphor layer 2 (upper first phosphor layer 52) located on the upper side of the optical semiconductor element 1 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 1000 ⁇ m or less, preferably Is 500 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the thickness L5 of the first phosphor layer 2 positioned between the adjacent optical semiconductor elements 1 is, for example, 15 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1500 ⁇ m or less.
  • Step (2) As shown in FIG. 1C, in the step (2), a groove 3 opened upward is provided in the first phosphor layer 2 located between the adjacent optical semiconductor elements 1.
  • the groove 3 has a substantially grid pattern (substantially a cross-beam shape) in plan view so as to partition each of the plurality of optical semiconductor elements 1.
  • the first phosphor layer 2 positioned between adjacent optical semiconductor elements 1 is half-cut by a cutting device such as a dicing saw 35. That is, the upper end portion and the middle portion in the vertical direction of the first phosphor layer 2 located at the center between the adjacent optical semiconductor elements 1 are cut. That is, the lower end portion of the first phosphor layer 2 located between the adjacent optical semiconductor elements 1 is left without being cut.
  • the cutting device enters the upper surface of the first phosphor layer 2 from the upper side of the first phosphor layer 2, and then, before the cutting device reaches the lower surface of the first phosphor layer 2, Terminate cutting (stop dimension).
  • the bottom portion 36 is provided in the first phosphor layer 2 by providing the groove 3.
  • the bottom portion 36 is an overhanging portion that protrudes outward in the surface direction from a portion covering the side surface of the optical semiconductor element 1 in the first phosphor layer 2.
  • the upper surface of the bottom portion 36 is positioned so as to be lowered one step downward from the portion covering the upper surface of the optical semiconductor element 1 in the first phosphor layer 2. Therefore, the upper surface of the bottom portion 36 and the upper surface of the above-described portion A step is formed between the two.
  • the width L6 of the groove 3 is set corresponding to the thickness of the dicing saw 35, specifically, for example, 10 ⁇ m or more, preferably 15 ⁇ m or more, and, for example, 1000 ⁇ m or less, preferably 500 ⁇ m. It is as follows.
  • the depth L7 of the groove 3 is, for example, 50 ⁇ m or more, preferably 75 ⁇ m or more, more preferably 100 ⁇ m or more, and for example, 2000 ⁇ m or less.
  • the thickness L8 of the bottom portion 36 (distance from the upper surface of the temporary fixing layer 11 to the upper surface of the bottom portion 36) is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, and for example, 200 ⁇ m or less. Preferably, it is 75 ⁇ m or less. If the thickness L8 of the bottom portion 36 is equal to or greater than the above-described lower limit, the accuracy of the depth of penetration into the first phosphor layer 2 by the cutting device (specifically, the dicing saw 35 or the like) is, for example, at least about 10 ⁇ m. It is permissible to set a large value.
  • the thickness L8 of the bottom portion 36 is equal to or less than the above-described upper limit, light leakage to the side can be suppressed, and upward luminance (front luminance) can be improved.
  • the distance ⁇ between the inner side surface of the groove 3 and the side surface of the optical semiconductor element 1 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • Process (3) As shown in FIGS. 1D to 2H, in the step (3), the second coating layer 4 is filled into the grooves 3.
  • the method of filling the groove 3 with the second coating layer 4 includes, for example, the step (i) of arranging the protective sheet 6 on the upper surface of the first phosphor layer 2 (see FIG. 1D), the first temporary fixing sheet 10, and the light.
  • the step (ii) (see FIG. 1E) of placing the semiconductor element 1, the first phosphor layer 2 and the protective sheet 6 under vacuum, and the covering material 43 so as to surround the first covering element assembly 41
  • the process (iii) (refer FIG. 1E) which makes the 1st temporary fixing sheet 10 and the protection sheet 6 contact, and makes the sealing material 17 flow into the sealed space 17 (iv) (FIG. 2F) And a step (v) of peeling off the protective sheet 6 (see FIG. 2G). Step (i) to step (v) are sequentially performed.
  • step (i) As shown in FIGS. 1D and 3A, in step (i), the protective sheet 6 is disposed on the upper surface of the upper first phosphor layer 52. At that time, the protective sheet 6 closes the upper end of the groove 3, but the protective sheet 6 is arranged so that the groove 3 is not filled.
  • the protective sheet 6 has a substantially rectangular flat plate shape including the first covering element aggregate 41 when projected in the thickness direction.
  • the protective sheet 6 has a substantially rectangular flat plate shape included in the first temporary fixing sheet 10 when projected in the thickness direction. Specifically, the protective sheet 6 has a size larger than the first covering element assembly 41 and a size smaller than the first temporary fixing sheet 10.
  • the coating material 43 does not cover the upper surface of the upper first phosphor layer 52 and does not cover the upper surface of the upper first phosphor layer 52 in the step (iii) described later (see FIGS. 2F and 3C). It is a sheet for exposing.
  • the protective sheet 6 is a pressure-sensitive adhesive sheet that can be peeled off from the coated optical semiconductor element 5.
  • the protective sheet 6 includes a pressure-sensitive adhesive layer 61 and a support sheet 62 that supports the pressure-sensitive adhesive layer 61.
  • the pressure-sensitive adhesive layer 61 is formed in a substantially flat plate shape from, for example, a pressure-sensitive adhesive.
  • Examples of the pressure-sensitive adhesive include a pressure-sensitive adhesive whose pressure-sensitive adhesive force is reduced by treatment (specifically, irradiation with active energy rays).
  • Examples of such a pressure-sensitive adhesive include a resin composition into which a carbon-carbon double bond is introduced.
  • the resin composition include a polymer having a carbon-carbon double bond.
  • Such a polymer is prepared, for example, by the following method.
  • a precursor polymer having a first functional group is obtained by copolymerizing a monomer component containing a main vinyl monomer and a secondary vinyl monomer having a first functional group so that the first functional group does not disappear.
  • a compound having a second functional group capable of reacting with the first functional group and a carbon-double bond is prepared. Then, this compound is mix
  • Examples of the combination of the first functional group and the second functional group include a combination of a hydroxyl group and an isocyanate group.
  • the first functional group is preferably a hydroxyl group.
  • As the second functional group an isocyanate group is preferable.
  • Examples of the main monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and s-butyl (meth) ) Acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate (2EHA / 2EHMA), octyl (meth) acrylate, isooctyl (meth) Acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate,
  • alkyl (meth) acrylates in which the alkyl moiety has 1 to 20 carbon atoms.
  • 2-ethylhexyl acrylate (2EHA) is used.
  • EHA 2-ethylhexyl acrylate
  • the mixing ratio of the main monomer in the monomer component is, for example, 70% by mass or more, preferably 90% by mass or more, and for example, 99% by mass or less.
  • the secondary vinyl monomer is a vinyl monomer that can be copolymerized as the main vinyl monomer.
  • examples of the secondary vinyl monomer include a carboxy group-containing monomer, an epoxy group-containing monomer, a hydroxyl group-containing monomer, an isocyanate group-containing monomer, and preferably a hydroxyl group-containing monomer.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth) acrylate (2-HEA / HEMA), 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth).
  • hydroxyalkyl (meth) acrylates such as acrylate.
  • 2-hydroxyethyl acrylate (2-HEA) is used.
  • the mixing ratio of the secondary vinyl monomer in the monomer component is, for example, 30% by mass or less, and, for example, 1% by mass or more.
  • Examples of the compound include isocyanate group-containing compounds, and specific examples include isocyanate groups such as (meth) acryloyl isocyanate, 2- (meth) acryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate. And vinyl-containing monomers. Preferably, methacryloyloxyethyl isocyanate is used.
  • the compounding ratio of the compound is such that the introduction amount of the double bond in the polymer is, for example, 0.01 mmol / g or more, preferably 0.2 mmol / g or more, and, for example, 10.0 mmol / g or less, Preferably, it is adjusted to be 5.0 mmol / g or less.
  • the above-described monomer component is solution-polymerized in the above-described ratio in the presence of a polymerization initiator.
  • polymerization initiator examples include peroxides, persulfates, and redox initiators. These can be used alone or in combination.
  • a peroxide is mentioned.
  • the peroxide include diacyl peroxide, peroxyester, peroxydicarbonate, monoperoxycarbonate, peroxyketal, dialkyl peroxide, hydroperoxide, ketone peroxide, and preferably diacyl peroxide. Diperoxide is mentioned.
  • diacyl diperoxide examples include dibenzoyl peroxide (BPO), di-p-nitrobenzoyl peroxide, di-p-chlorobenzoyl peroxide, di (3,5,5-trimethylhexanoyl) peroxide, Examples thereof include di-n-octanoyl peroxide, didecanoyl peroxide, and dilauroyl peroxide.
  • BPO dibenzoyl peroxide
  • BPO dibenzoyl peroxide
  • the mixing ratio of the polymerization initiator is, for example, 0.005 parts by mass or more, for example, 1 part by mass or less with respect to 100 parts by mass of the monomer component.
  • a polymerization solvent is used.
  • the polymerization solvent include aromatic hydrocarbons such as toluene and xylene, and aliphatic hydrocarbons such as hexane.
  • aromatic hydrocarbon is used.
  • a monomer component containing a main vinyl monomer and a sub vinyl monomer is copolymerized so that the first functional group of the sub vinyl monomer does not disappear, thereby preparing a precursor polymer having the first functional group.
  • the above-described compound is added to the precursor polymer.
  • an isocyanate group-containing compound is blended with a precursor polymer containing a hydroxyl group, and the hydroxyl group and the isocyanate group are reacted to form a urethane bond. And the carbon-carbon double bond which a compound has is introduce
  • the photopolymerization initiator is a carbon-carbon introduced into the resin composition by generating radicals when the pressure sensitive adhesive layer 61 is irradiated with active energy rays in the step (v) (see FIG. 2G) described later. It is a photopolymerization catalyst for reacting double bonds with each other.
  • the 10-hour half-life temperature of the photopolymerization initiator is, for example, 20 ° C. or more, preferably 50 ° C. or more, and for example, 107 ° C. or less, preferably 100 ° C. or less.
  • the photopolymerization initiator examples include a ketal photopolymerization initiator, an acetophenone photopolymerization initiator, a benzoin ether photopolymerization initiator, an acylphosphine oxide photopolymerization initiator, an ⁇ -ketol photopolymerization initiator, an aromatic Group sulfonyl chloride photopolymerization initiator, photoactive oxime photopolymerization initiator, benzoin photopolymerization initiator, benzyl photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, and the like. These can be used alone or in combination.
  • a thioxanthone photopolymerization initiator is used.
  • the thioxanthone photopolymerization initiator include 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4 -[4- (2-Hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one.
  • Preferred examples include 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one.
  • the blending ratio of the photopolymerization initiator is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and for example, 10 parts by mass or less, preferably 100 parts by mass of the polymer. 5 parts by mass or less.
  • additives such as a crosslinking agent can be blended in the polymer at an appropriate ratio.
  • the crosslinking agent include isocyanate crosslinking agents, epoxy crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, melamine crosslinking agents, peroxide crosslinking agents, urea crosslinking agents, metal alkoxide crosslinking agents, Metal chelate type crosslinking agents, metal salt type crosslinking agents, carbodiimide type crosslinking agents, amine type crosslinking agents and the like can be mentioned.
  • an isocyanate type crosslinking agent is mentioned.
  • a pressure-sensitive adhesive is applied to the surface of the support sheet 62, and then dried.
  • the support sheet 62 examples include polymer films such as a polyethylene film and a polyester film (such as PET), such as a ceramic sheet, such as a metal foil.
  • the thickness of the support sheet 62 is, for example, 80 ⁇ m or more, preferably 110 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 250 ⁇ m or less.
  • the drying temperature is, for example, 40 ° C. or more, preferably 60 ° C. or more, and for example, 150 ° C. or less, preferably 130 ° C. or less.
  • the drying temperature is, for example, 5 minutes or less.
  • the aging temperature is, for example, 25 ° C. or more, preferably 40 ° C. or more, and for example, 70 ° C. or less, preferably 60 ° C. or less.
  • the aging time is, for example, 10 hours or more, and for example, 120 hours or less.
  • the pressure-sensitive adhesive layer 61 is formed on the surface of the support sheet 62.
  • the thickness of the pressure-sensitive adhesive layer 61 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 250 ⁇ m or less, preferably 100 ⁇ m or less.
  • the protective sheet 6 including the pressure-sensitive adhesive layer 61 and the support sheet 62 disposed on the upper surface of the pressure-sensitive adhesive layer 61 is obtained.
  • the protective sheet 6 has rigidity and toughness that do not substantially deform in the step (iii) shown in FIGS. 2F and 3C.
  • the tensile elastic modulus at 25 ° C. of the protective sheet 6 is, for example, 250 MPa or more, preferably 500 MPa or more, more preferably 1000 MPa or more, and for example, 20,000 MPa or less.
  • the protective sheet 6 is bonded to the first covering element assembly 41.
  • the pressure-sensitive adhesive layer 61 is bonded to the upper surface of the upper first phosphor layer 52.
  • the upper surface of the upper first phosphor layer 52 is pressure-sensitively bonded by the protective sheet 6 to be protected (covered).
  • the bottom surface of the groove 3 (the upper surface of the bottom portion 36) is spaced from the lower surface of the protective sheet 6 in the thickness direction.
  • a distance L7 between the bottom surface of the groove 3 and the lower surface of the protective sheet 6 is the same as the depth L7 of the groove 3.
  • Step (ii) As shown in FIG. 1E, in the step (ii), the first covering element assembly 41, the first temporary fixing sheet 10, and the protective sheet 6 are arranged under vacuum.
  • the first covering element assembly 41, the first temporary fixing sheet 10, and the protective sheet 6 are arranged in the vacuum device 16.
  • the vacuum device 16 includes a vacuum chamber 18, a vacuum line 19, a vacuum pump 20, a vacuum valve 21, an atmospheric line 22, an atmospheric valve 23, and a stage (not shown).
  • the vacuum chamber 18 is a sealed container that can accommodate the first covering element assembly 41, the first temporary fixing sheet 10, and the protective sheet 6.
  • One end (the upstream end in the suction direction) of the vacuum line 19 is connected to the vacuum chamber 18, and the other end (the downstream end in the suction direction) of the vacuum line 19 is connected to the vacuum pump 20.
  • the vacuum pump 20 is configured to communicate with the space in the vacuum chamber 18 via the vacuum line 19.
  • the vacuum valve 21 is interposed in the middle of the vacuum line 19.
  • the atmospheric line 22 is a line that branches from the middle of the vacuum line 19, specifically, a portion between the vacuum chamber 18 and the vacuum valve 21 in the vacuum line 19, and is configured so that one end is opened to the atmosphere. Yes.
  • the atmospheric valve 23 is interposed in the middle of the atmospheric line 22.
  • a stage (not shown) is accommodated in the vacuum chamber 18 and has a substantially plate shape. Further, the stage has a fixing member such as an adsorption mechanism, and is configured to adsorb (fix) the lower surface of the first temporary fixing sheet 10.
  • a fixing member such as an adsorption mechanism
  • the first covering element assembly 41, the first temporary fixing sheet 10, and the protective sheet 6 are arranged in the vacuum chamber 18, and the pressure in the vacuum chamber 18 is set to a vacuum pressure.
  • the vacuum valve 21 and the atmospheric valve 23 are opened. Thereby, the vacuum pump 20 communicates with the atmospheric line 22. In this state, the vacuum pump 20 is operated. Thereafter, the first covering element assembly 41, the first temporarily fixing sheet 10 and the protective sheet 6 are installed in the vacuum chamber 18 so that the first temporarily fixing sheet 10 is fixed to a stage (not shown), Subsequently, the space (chamber space) 34 in the vacuum chamber 18 is sealed.
  • the atmospheric valve 23 is closed.
  • the vacuum pump 20 communicates with the chamber space 24 via the vacuum valve 21.
  • the atmospheric pressure in the chamber space 24 becomes a vacuum.
  • the atmospheric pressure (vacuum pressure) of the chamber space 24 is, for example, 1.0 ⁇ 10 ⁇ 2 MPa or less, preferably 1.0 ⁇ from the viewpoint of smoothly flowing the coating material 43 into the sealed space 17. 10 -3 and in MPa or less, and is, for example, from more effectively suppressing the generation of voids in the first phosphor layer 2 is 5.5 ⁇ 10 -4 MPa or more.
  • Step (iii) As shown in FIG. 2F and FIG. 3C, in step (iii), the covering material 43 is brought into contact with the first temporarily fixing sheet 10 and the protective sheet 6 so as to surround the first covering element assembly 41, A sealed space 17 is formed.
  • the coating material 43 is made of a coating composition having fluidity at normal temperature (25 ° C.).
  • the coating composition contains, for example, a light reflecting component and / or a light absorbing component and a resin.
  • the light reflective component examples include one kind of oxide selected from the group consisting of Ti, Zr, Nb, and Al, for example, particles such as AlN and / or MgF (light reflective particles).
  • the light reflective component is at least one selected from the group consisting of TiO 2 , ZrO 2 , Nb 2 O 5 , Al 2 O 3 , MgF, AlN, and SiO 2 . From the viewpoint of ensuring high light reflectivity, TiO 2 , ZrO 2 , Nb 2 O 5 , and Al 2 O 3 are preferable, and TiO 2 is more preferable.
  • the average particle diameter of the light reflecting particles is, for example, 0.1 ⁇ m or more, preferably 0.15 ⁇ m or more, and for example, 80 ⁇ m or less, preferably 50 ⁇ m or less.
  • the blending ratio of the light-reflecting component is, for example, 5% by mass or more, preferably 70% by mass or less with respect to the coating composition.
  • the blending ratio of the light-reflective component to 100 parts by mass of the resin is, for example, 3 parts by mass or more, preferably 5 parts by mass or more, and for example, 50 parts by mass or less, preferably 40 parts by mass or less. It is.
  • the light-absorbing component examples include pigments and dyes. From the viewpoint of light-absorbing property, light-absorbing particles such as carbon black are preferable.
  • the average particle size of the light-absorbing particles is, for example, 10 nm or more, preferably 15 nm or more, and for example, 100 nm or less, preferably 50 nm or less.
  • the blending ratio of the light absorbing component is, for example, 0.1% by mass or more, for example, 10% by mass or less with respect to the coating composition.
  • the blending ratio of the light absorbing component to 100 parts by mass of the resin is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and for example, 30 parts by mass or less, preferably 25 parts by mass or less.
  • thermoplastic resins for example, curable resins such as thermosetting resins and active energy ray curable resins, preferably curable resins, and more preferably from the viewpoint of heat resistance. Therefore, preferably, a thermosetting resin is used.
  • thermosetting resin examples include a silicone resin, an epoxy resin, and an acrylic resin. From the viewpoint of light resistance, preferably, a silicone resin is used.
  • silicone resin examples include a methyl silicone resin composition disclosed in JP-A-2015-073084.
  • the blending ratio of the resin is, for example, 20% by mass or more, preferably 30% by mass or more, and, for example, 95% by mass or less, preferably 90% by mass or less with respect to the coating composition.
  • the coating composition can be blended with an inorganic filler such as silica or glass at an appropriate ratio.
  • the coating composition can also contain, for example, a metal material such as Ag or Cu, diamond, AlN, or the like at an appropriate ratio.
  • the coating composition does not contain a phosphor.
  • the above-described components are mixed and mixed in the above-described proportions.
  • the viscosity of the coating composition at normal temperature is, for example, 1 Pa ⁇ s or more, preferably 2 Pa ⁇ s or more, and for example, 50 Pa ⁇ s or less, preferably 40 Pa ⁇ s or less.
  • the viscosity of the coating composition is measured with an E-type viscometer.
  • the viscosity of the coating composition is equal to or higher than the lower limit described above, it is possible to suppress the precipitation of the light reflecting component and / or the light absorbing component. If the viscosity of the coating composition is equal to or less than the above upper limit, generation of voids in the first phosphor layer 2 can be suppressed.
  • a vacuum injection device (vacuum dispenser) 39 a vacuum printing machine
  • the coating material 43 is applied between the lower surface of the peripheral edge of the protective sheet 6 and the upper surface of the first temporary fixing sheet 10 facing it by an application device such as a drawing device.
  • the coating material 43 is applied using a vacuum dispenser 39.
  • the vacuum dispenser 39 includes a nozzle 40 that extends in the vertical direction and has a cross-sectional area that decreases in the downward direction, and a tank (not shown) connected to the nozzle 40.
  • the above-described coating apparatus is incorporated in the vacuum apparatus 16 in advance, and specifically, is installed in the vacuum chamber 18. Further, as shown in FIGS. 1D and 3B (hatched portion), the covering material 43 is formed in a substantially rectangular frame (frame) shape in plan view around the area where the first covering element assembly 41 is disposed. The coating material 43 is applied.
  • the frame (frame) shape of the covering material 43 is a continuous shape that is not interrupted along the circumferential direction of the protective sheet 6.
  • the covering material 43 has a cross-sectional shape that rises upward from the upper surface of the insulating plate 12.
  • the coating amount of the coating material 43 is set to be equal to or larger than the volume of the sealed space 17 described below. Specifically, for example, with respect to the volume of the sealed space 17 on a volume basis, for example, 100% or more, preferably 110% or more, more preferably 120% or more, and for example, 200% or less.
  • the space sealed by the coating material 43 forms a sealed space 17.
  • the sealed space 17 is a space including the groove 3, and is defined by the coating material 43, the protective sheet 6, the first temporary fixing sheet 10, and the first phosphor layer 2 (first covering element assembly 41). Space.
  • the pressure in the sealed space 17 is the same as the pressure in the chamber space 24 described above.
  • step (iv) In step (iv), as shown in FIG. 2F, the atmospheric pressure in the chamber space 24 (the chamber space 24 outside the sealed space 17) is set to atmospheric pressure.
  • the vacuum valve 21 is closed, and then the atmospheric valve 23 is opened.
  • the chamber space 24 is opened to the atmosphere via the atmosphere line 22. Then, since the atmosphere flows into the chamber space 24 through the atmosphere line 22 at a stretch, the pressure in the chamber space 24 becomes atmospheric pressure.
  • the air pressure in the sealed space 17 remains the vacuum pressure. Therefore, the pressure in the sealed space 17 is lower than the pressure in the chamber space 24. That is, a differential pressure is generated in the sealed space 17 and the chamber space 24.
  • the differential pressure is a pressure difference obtained by subtracting the air pressure in the sealed space 17 from the air pressure in the chamber space 24 ([atmospheric pressure in the chamber space 24] ⁇ [atmospheric pressure in the sealed space 17]), and specifically, for example, 0.095 MPa.
  • it is 0.096 MPa or more, More preferably, it is 0.097 MPa or more, for example, it is 0.1 MPa or less.
  • the coating material 43 flows into the sealed space 17 and the sealed space 17 is filled with the coating material 43 as shown in FIG. 2F.
  • the coating material 43 is filled in the groove 3 so that the upper surface of the upper first phosphor layer 52 is exposed.
  • the second covering layer 4 having the same shape as the sealed space 17 and made of the covering material 43 is formed. That is, the groove 3 is filled with the second coating layer 4.
  • the thickness L7 of the second coating layer 4 filled in the groove 3 is the same as the depth L7 of the groove 3.
  • the second covering element assembly 29 is an industrially available device, and preferably includes only a plurality of optical semiconductor elements 1, one first phosphor layer 2, and one second covering layer 4. .
  • Step (v) In the step (v), as shown in FIG. 2G, when the second coating layer 4 contains a curable resin, the curable resin is cured. Specifically, if the curable resin is a thermosetting resin, the second coating layer 4 is heated.
  • the protective sheet 6 is peeled off from the second covering element assembly 29.
  • the active energy ray described above is irradiated onto the protective sheet 6 to reduce the pressure-sensitive adhesive force of the protective sheet 6. Subsequently, the protective sheet 6 is peeled off from the upper surface of the upper first phosphor layer 52 and the upper surface of the second coating layer 4.
  • the upper surface of the upper first phosphor layer 52 and the upper surface of the second coating layer 4 become exposed surfaces exposed upward.
  • the upper surface of the second coating layer 4 is formed flush with the upper surface of the upper first phosphor layer 52.
  • the second covering layer 4 of the second covering element assembly 29 and the corresponding first phosphor layer 2 are cut to separate the optical semiconductor element 1 into pieces. Specifically, the second coating layer 4 and the first phosphor layer 2 (bottom portion 36) corresponding to the groove 3 are cut along the thickness direction by a cutting device such as a dicing saw.
  • the coated optical semiconductor element 5 including one optical semiconductor element 1, one first phosphor layer 2, and one second coating layer 4 is supported by the first temporary fixing sheet 10. ,can get.
  • the coated optical semiconductor element 5 is an industrially available device, and preferably includes only one optical semiconductor element 1, one first phosphor layer 2, and one second coating layer 4.
  • the coated optical semiconductor element 5 covers the optical semiconductor element 1, the first phosphor layer 2 that covers the top and side surfaces of the optical semiconductor element 1 and has a bottom 36, and the side of the first phosphor layer 2. And a second covering layer 4 that covers the side surface of the first phosphor layer 2 and the top surface of the bottom portion 36.
  • the width ⁇ of the second coating layer 4 is the same as the length ⁇ of the bottom 36.
  • the width ⁇ of the second coating layer 4 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • Step (4) As shown in FIG. 2I, in the step (4), the coated optical semiconductor element 5 is transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
  • the first transfer sheet 27 is disposed above the plurality of coated optical semiconductor elements 5. Thereafter, the first transfer sheet 27 is pulled down, and the lower surface of the first transfer sheet 27 comes into contact with the upper surfaces of the plurality of coated optical semiconductor elements 5 (the upper surface of the upper first phosphor layer 52 and the upper surface of the second coating layer 4).
  • Examples of the first transfer sheet 27 include known transfer sheets, such as SPV series (manufactured by Nitto Denko Corporation).
  • the adhesive force F2 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 27 is, for example, higher than the adhesive force F1 of the plurality of coated optical semiconductor elements 5 to the first temporary fixing sheet 10.
  • the adhesive force F2 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 27 is higher than the adhesive force F1 of the plurality of coated optical semiconductor elements 5 to the first temporary fixing sheet 10, in step (4), The coated optical semiconductor element 5 can be reliably transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
  • the adhesive force F2 of the plurality of coated optical semiconductor elements 5 to the transfer sheet 27 is, for example, more than 100%, preferably 110% or more, with respect to the adhesive force F1 of the plurality of coated optical semiconductor elements 5 to the temporary fixing sheet 10. More preferably, it is 120% or more, for example, 300% or less.
  • the adhesive force F2 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 27 is, for example, 0.2 N / 20 mm or more, preferably 0.3 N / 20 mm or more, more preferably 0.4 N. / 20 mm or more, and for example, 3.0 N / 20 mm or less.
  • a method for measuring the adhesive force F2 will be described in a later example.
  • the adhesive force F1 of the plurality of coated optical semiconductor elements 5 to the first temporary fixing sheet 10 is the adhesive force of the plurality of coated optical semiconductor elements 5 to the first temporary fixing sheet 10 after processing (irradiation with active energy rays).
  • F1 specifically, for example, 0.4 N / 20 mm or less, preferably 0.2 N / 20 mm or less, more preferably 0.15 N / 20 mm or less, and for example, 0.01 N / It is 20 mm or more.
  • the measuring method of the adhesive force F1 with respect to the 1st temporary fixing sheet 10 after a process of the some covering optical semiconductor element 5 is demonstrated by a subsequent Example.
  • the first transfer sheet 27 is pulled up with respect to the first temporarily fixed sheet 10.
  • the lower surface of the coated optical semiconductor element 5 is peeled off from the upper surface of the first temporary fixing sheet 10.
  • the lower surface of the optical semiconductor element 1 and the lower surface of the bottom portion 36 of the first phosphor layer 2 are peeled off from the upper surface of the temporary fixing layer 11.
  • the coated optical semiconductor element 5 including the optical semiconductor element 1, the first phosphor layer 2, and the second coating layer 4 is transferred to the first transfer sheet 27.
  • the coated optical semiconductor element 5 is then mounted on the substrate 50.
  • the coated optical semiconductor element 5 is flip-chip mounted on the substrate 50. That is, the bumps (not shown) of the optical semiconductor element 1 of the coated optical semiconductor element 5 are electrically connected to the terminals (not shown) of the substrate 50.
  • the light emitting device 51 includes a substrate 50, the optical semiconductor element 1 mounted on the substrate 50, a first phosphor layer 2 that covers a side surface of the optical semiconductor element 1 and has a bottom 36, and a first phosphor. And a second covering layer 4 covering the side surface of the layer 2 and the upper surface of the bottom portion 36. The bottom surface of the bottom portion 36 is in contact with the top surface of the substrate 50.
  • the optical semiconductor element 1 emits light by electricity supplied from the substrate 50.
  • a part of the light emitted from the optical semiconductor element 1 is wavelength-converted by the first phosphor layer 2.
  • the light traveling upward is irradiated on the upper side as it is.
  • the light emitted from the optical semiconductor element 1 toward the side includes light that has been sufficiently wavelength-converted by the bottom portion 36 and light that has been wavelength-converted by the upper portion of the bottom portion 36 in the first phosphor layer 2. , Moderately mixed.
  • step (3) the second coating layer 4 in which the bottom 36 of the first phosphor layer 2 is filled in the groove 3 is used. And the first temporary fixing sheet 10, the second covering layer 4 is prevented from coming into direct contact with the first temporary fixing sheet 10. Therefore, even if the pressure-sensitive adhesive force of the second coating layer 4 is high, the second coating layer 4 can be prevented from adhering to the first temporary fixing sheet 10.
  • the coated optical semiconductor element 5 can be reliably peeled from the first temporary fixing sheet 10 in the step (4).
  • the process (4 ) If the adhesive force F2 of the coated optical semiconductor element 5 to the first temporarily fixing sheet 10 is lower than the adhesive force F1 of the coated optical semiconductor element 5 to the first temporarily fixed sheet 10 after processing, the process (4 ), The coated optical semiconductor element 5 is not transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 but is pressure-bonded to the first temporary fixing sheet 10. If the adhesive force F2 of the coated optical semiconductor element 5 to the first temporary fixing sheet 10 is the same as the adhesive force F1 of the coated optical semiconductor element 5 to the first temporarily fixed sheet 10 after processing, in step (4), The coated optical semiconductor element 5 is not reliably transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
  • the adhesive force F2 of the coated optical semiconductor element 5 to the first temporary fixing sheet 10 is larger than the adhesive force F1 of the coated optical semiconductor element 5 to the first temporarily fixed sheet 10 after processing. Since it is high, as shown in FIG. 2I, the coated optical semiconductor element 5 can be more reliably transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 in the step (4).
  • the wavelength of the light emitted from the optical semiconductor element 1 can be converted.
  • step (3) the groove 3 is filled with the second coating layer 4 so that the upper surface of the first phosphor layer 2 is exposed.
  • the coated optical semiconductor element 5 that emits the light it has can be obtained. Further, it is possible to obtain the light emitting device 51 that emits light having upward directivity.
  • the step (3) is performed by the method using the differential pressure (step (ii) to step (iv)).
  • step (ii) the differential pressure
  • step (iv) the differential pressure
  • the second coating layer 4 can be formed in the groove 3 while the upper surface of the upper first phosphor layer 52 is covered with the protective sheet 6 without using the differential pressure.
  • the covering material 43 is poured into a mold having a protective sheet 6 on the surface, and then the first covering element assembly 41 shown in FIG.
  • the second coating layer 4 is molded so that the phosphor layer 52 is in contact with the protective sheet 6.
  • the second coating layer 4 is an optical functional layer containing a light reflecting component and / or a light absorbing component.
  • the second coating layer 4 of this modification may be a transparent layer made of only a resin and does not contain any light-reflecting component or light-absorbing component.
  • step (3) the groove 3 is filled with the second coating layer 4 so that the upper surface of the upper first phosphor layer 52 is exposed.
  • the groove 3 is filled with the second coating layer 4 so as to cover the upper surface of the upper first phosphor layer 52, as shown in FIG. 5C.
  • a plurality of optical semiconductor elements 1 temporarily fixed to the upper surface of the first temporary fixing sheet 10 with a space therebetween are formed by the first phosphor layer 2.
  • Step (2) for coating so that the first phosphor layer 2 is in direct contact with the upper surface of the first temporary fixing sheet 10 exposed from the plurality of optical semiconductor elements 1, and adjacent optical semiconductor elements
  • Step (3) for providing a groove 3 opened upward in the first phosphor layer 2 located between 1 and the second covering layer 4 is filled in the groove 3
  • Step (3) see FIGS.
  • step (3) first, the second coating layer 4 formed in a substantially flat plate shape is prepared from the coating material 43 described above.
  • the thickness L9 of the second coating layer 4 is, for example, 50 ⁇ m or more, preferably 75 ⁇ m or more, more preferably 100 ⁇ m or more, and for example, 2500 ⁇ m or less.
  • the second coating layer 4 is subjected to, for example, pressure bonding, preferably thermocompression bonding (hot pressing), with respect to the first covering element assembly 41 and the first temporary fixing sheet 10.
  • pressure bonding preferably thermocompression bonding (hot pressing)
  • the conditions for pressure bonding are appropriately adjusted depending on the type of resin contained in the coating material.
  • the second coating layer 4 covers the upper first phosphor layer 52 while filling the groove 3.
  • the second coating layer 4 is also disposed above the groove 3.
  • a second covering element assembly 29 including a plurality of optical semiconductor elements 1, one first phosphor layer 2, and one second covering layer 4 is obtained.
  • the second covering layer 4 in the second covering element assembly 29 has a shape extending along the surface direction. Specifically, the upper surface of the second coating layer 4 has a flat surface extending along the surface direction. On the other hand, the lower surface of the second cover layer 4 corresponds to the groove 3 and protrudes downward 45, covers the upper surface of the upper first phosphor layer 52, and is recessed 46 opened downward. Is integrated.
  • step (3) thereafter, as shown in FIG. 6D, the first phosphor layer 2 and the second coating layer 4 corresponding to the grooves 3 are cut. Specifically, the bottom portion 36 and the protruding portion 45 of the second coating layer 4 are cut by a cutting device such as a dicing saw.
  • the coated optical semiconductor element 5 including one optical semiconductor element 1, one first phosphor layer 2, and one second coating layer 4 is supported by the first temporary fixing sheet 10. ,can get.
  • the thickness z of the second coating layer 4 positioned above the upper first phosphor layer 52 is set to be relatively thin as shown in FIG.
  • it is 1000 ⁇ m or less, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and for example, 1 ⁇ m or more, preferably 10 ⁇ m or more.
  • the upper surface of the upper first phosphor layer 52, the side surface of the first phosphor layer 2, and the upper surface of the bottom portion 36 are covered with the second coating layer 4.
  • the coated optical semiconductor element 5 is transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 in the step (5), and then onto the substrate 50 as shown in FIG. Flip chip mounting. Thereby, the light emitting device 51 is obtained.
  • step (3) the second coating layer 4 is filled in the groove 3 so as to cover the upper surface of the upper first phosphor layer 52.
  • a part of the light emitted upward from the optical semiconductor element 1 is wavelength-converted by the upper first phosphor layer 52 and then passes through the second coating layer 4 so that the light is mixed appropriately. The Therefore, it is possible to obtain the coated optical semiconductor element 5 having excellent optical characteristics and the light emitting device 51 having excellent optical characteristics.
  • the thickness z of the second coating layer 4 positioned on the upper side of the upper first phosphor layer 52 is set to be relatively thin.
  • the upper first phosphor layer is, for example, The thickness z of the second coating layer 4 located on the upper side of 52 is set to be relatively thick.
  • the thickness z of the second coating layer 4 positioned on the upper side of the upper first phosphor layer 52 is, for example, 5 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more. 500 ⁇ m or less.
  • the coated optical semiconductor element 5 and the light emitting device 51 may emit uniform light. it can.
  • the phosphor is not contained in the second coating layer 4.
  • the phosphor is contained in the second phosphor layer 84 as an example of the second coating layer. That is, both the first phosphor layer 2 and the second phosphor layer 84 contain a phosphor.
  • the first phosphor layer 2 contains a red phosphor
  • the second phosphor layer 84 contains a green phosphor.
  • the second phosphor layer 84 of the third embodiment and the fourth embodiment has the same shape and structure as the second coating layer 4 of the first embodiment and the second embodiment.
  • the 2nd fluorescent substance layer 84 contains resin and fluorescent substance which are contained in an above-described coating composition.
  • the content ratio of the phosphor is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 80 parts by mass or less, preferably 50 parts by mass with respect to 100 parts by mass of the resin. Or less. Further, the content ratio of the phosphor is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, for example, 90% by mass or less, based on the total mass of the resin and the phosphor. Preferably, it is 80 mass% or less.
  • the body is, for example, 0.1 or more, preferably 0.5 or more, and is, for example, 10 or less, preferably 2 or less, based on mass.
  • the coated optical semiconductor element 5 obtained by the manufacturing method of the third embodiment covers the optical semiconductor element 1, the upper surface and the side surface of the optical semiconductor element 1, and the first phosphor having the bottom 36.
  • the layer 2 includes a second phosphor layer 84 that covers the side surface of the first phosphor layer 2 and the top surface of the bottom portion 36.
  • the width ⁇ of the second phosphor layer 84 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the thickness L7 of the second phosphor layer 84 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the coated optical semiconductor element 5 obtained by the manufacturing method of the fourth embodiment covers the optical semiconductor element 1, the upper surface and the side surface of the optical semiconductor element 1, and has a bottom portion 36.
  • the phosphor layer 2, and the second phosphor layer 84 covering the upper surface (including the upper surface of the bottom 36) and the side surface of the first phosphor layer 2 are provided.
  • the upper surface of the second phosphor layer 84 is a flat surface extending in the surface direction.
  • the lower surface of the second phosphor layer 84 has a protrusion 45 and a recess 46.
  • the width ⁇ of the second phosphor layer 84 is the same as that in the third embodiment.
  • the thickness z of the second phosphor layer 84 positioned on the upper side of the upper first phosphor layer 52 is set to be relatively thick, for example, specifically, for example, 10 ⁇ m or more, preferably 25 ⁇ m or more, more preferably , 50 ⁇ m or more, and for example, 2000 ⁇ m or less.
  • the light emitted upward from the optical semiconductor element 1 is wavelength-converted by the upper first phosphor layer 52.
  • the The light emitted from the optical semiconductor element 1 toward the side is sequentially wavelength-converted by the first phosphor layer 2 and the second phosphor layer 84. Therefore, it is possible to obtain the coated optical semiconductor element 5 having excellent light emission efficiency, and thus the light emitting device 51 having excellent light emission efficiency.
  • the coated optical semiconductor element 5 obtained according to the fourth embodiment As shown in FIG. 9, according to the coated optical semiconductor element 5 obtained according to the fourth embodiment, the light emitted upward and laterally from the optical semiconductor element 1 is emitted from the first phosphor layer 2 and the first phosphor layer 2. The wavelength is sequentially converted by the two phosphor layers 84. Therefore, it is possible to obtain the coated optical semiconductor element 5 excellent in light uniformity and light emission efficiency, and thus the light emitting device 51 excellent in light emission efficiency.
  • the phosphor is contained in the first phosphor layer 2 as an example of the first coating layer.
  • the phosphor is not included in the first coating layer 82. That is, the first coating layer 82 is a transparent layer that does not contain a phosphor.
  • the second phosphor layer 84 is a phosphor layer containing a phosphor.
  • the second phosphor layer 84 contains a yellow phosphor.
  • the first covering layer 82 of the fifth embodiment and the sixth embodiment has the same shape and structure as the first phosphor layer 2 of the first embodiment and the second embodiment.
  • the 1st coating layer 82 consists of an above-described transparent resin composition (resin composition which does not contain fluorescent substance). Therefore, the 1st coating layer 82 is a transparent layer which has transparency.
  • step (2) in the step (2), a first covering element assembly including a plurality of optical semiconductor elements 1 and a first covering layer 82 covering them and having grooves 3 is provided.
  • a body 41 (not shown in FIGS. 1B and 1C) is obtained with the first temporary fixing sheet 10 supported.
  • the second phosphor layer 84 has the same shape and structure as the second coating layer 4 of the first embodiment and the second embodiment.
  • the 2nd fluorescent substance layer 84 consists of a composition for forming the 2nd fluorescent substance layer 84 same as 3rd Embodiment and 4th Embodiment, ie, contains resin and fluorescent substance.
  • the coated optical semiconductor element 5 obtained by the manufacturing method of the fifth embodiment includes the optical semiconductor element 1 and a first coating layer that covers the upper surface and the side surface of the optical semiconductor element 1 and has a bottom portion 36. 82, a side surface of the first coating layer 82 located on the side of the first coating layer 82, and a second phosphor layer 84 that covers the upper surface of the bottom portion 36.
  • the first covering layer 82 of the coated optical semiconductor element 5 has a portion (upper first covering layer 83, corresponding to the upper first phosphor layer 52 in the first embodiment) located above the optical semiconductor element 1. The upper surface of the upper first covering layer 83 is exposed.
  • the distance ⁇ between the inner surface of the groove 3 and the side surface of the optical semiconductor element 1 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less. It is.
  • the thickness L7 of the second phosphor layer 84 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the coated optical semiconductor element 5 obtained by the manufacturing method of the sixth embodiment covers the optical semiconductor element 1, the upper surface and the side surface of the optical semiconductor element 1, and has a bottom portion 36.
  • a covering layer 82 and a second phosphor layer 84 that covers the upper first covering layer 83 are provided.
  • the width ⁇ of the second phosphor layer 84 is the same as that in the fifth embodiment.
  • the thickness z of the second phosphor layer 84 located on the upper side of the upper first coating layer 83 is set to be relatively thick, for example, specifically, for example, 20 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, and for example, 2000 ⁇ m or less.
  • the light emitted from the optical semiconductor element 1 passes through the first coating layer 82.
  • the light transmitted through the first cover layer 82 to the side is converted in wavelength by the second phosphor layer 84 and then directed obliquely upward. Therefore, the light extraction efficiency can be improved.
  • the coated optical semiconductor element 5 obtained by the sixth embodiment the light emitted from the optical semiconductor element 1 passes through the first coating layer 82.
  • the light transmitted through the first cover layer 82 to the side is converted in wavelength by the second phosphor layer 84 and then directed obliquely upward.
  • a part of the light transmitted upward through the upper first covering layer 83 is wavelength-converted by the second phosphor layer 84 and then travels upward. Therefore, this coated optical semiconductor element 5 is excellent in luminous efficiency.
  • the first temporarily fixed sheet 10 is cited as an example of the temporarily fixed sheet.
  • the first transfer sheet 37 is given as an example of the temporarily fixed sheet.
  • the lower surfaces of the plurality of optical semiconductor elements 1 are temporarily fixed directly to the temporary fixing sheet 10 in the step (1).
  • each of the plurality of optical semiconductor elements 1 is indirectly attached to the temporary fixing sheet 10 via the first phosphor layer 2. Temporarily fix.
  • a step of preparing a first coated element assembly 41 (see FIGS. 15A and 15B), the first coated element assembly 41 is an example of a temporary fixing sheet.
  • (1) see FIG. 15C
  • transfer step (2) see FIG. 15D
  • filling the second cover layer 4 into the groove 3 (3) see FIG. 15C) 16E
  • the step (4) of transferring the coated optical semiconductor element 5 from the first transfer sheet 37 to the second transfer sheet 38 as an example of the transfer sheet see FIG. 16F
  • the process of removing (refer FIG. 16G) is provided.
  • the above steps are sequentially performed.
  • the first covering element assembly 41 is transferred to the first transfer sheet 37.
  • the first transfer sheet 37 is disposed above the first covering element assembly 41, as shown in FIG. 15B.
  • the first transfer sheet 37 is also a temporarily fixing sheet that can temporarily fix the first covering element assembly 41 including the optical semiconductor elements 1 that are arranged at intervals.
  • a transfer sheet similar to the transfer sheet 27 described above can be used as the first transfer sheet 37.
  • the first transfer sheet 37 is pulled down, and the lower surface of the first transfer sheet 37 is brought into contact with the upper surface of the first covering element assembly 41.
  • the first transfer sheet 37 is pulled up with respect to the first temporarily fixed sheet 10.
  • the lower surface of the first covering element assembly 41 is peeled off from the upper surface of the first temporary fixing sheet 10.
  • the first covering element assembly 41 including the plurality of optical semiconductor elements 1 and the first phosphor layer 2 covering them is temporarily fixed to the first transfer sheet 37.
  • the first covering element assembly 41 and the first transfer sheet 37 are turned upside down.
  • the upper surface of the first covering element assembly 41 is exposed while the lower surface of the first covering element assembly 41 supports the first transfer sheet 37.
  • the lower surfaces of the plurality of optical semiconductor elements 1 are supported (temporarily fixed) on the first transfer sheet 37 above the first transfer sheet 37 via the first phosphor layer 2. ing.
  • the upper surface of the optical semiconductor element 1 is exposed.
  • the upper surface of the optical semiconductor element 1 is formed by the bumps described above.
  • the first phosphor layer 2 is interposed between the plurality of optical semiconductor elements 1 and the first transfer sheet 37.
  • the groove 3 opened upward in the first phosphor layer 2 located between the adjacent optical semiconductor elements 1 is formed. Is provided.
  • the groove 3 is opened in the same direction as the bump (upper surface) of the optical semiconductor element 1, specifically, upward.
  • the depth L7 of the groove 3 is set larger than the thickness L1 of the optical semiconductor element 1, for example.
  • the depth L7 of the groove 3 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the second coating layer 4 is then filled into the grooves 3 so as to cover the upper surface (bump) of the optical semiconductor element 1.
  • the first phosphor layer 2 and the second coating layer 4 corresponding to the grooves 3 are cut.
  • the coated optical semiconductor element 5 including one optical semiconductor element 1, one first phosphor layer 2, and one second coating layer 4 is supported (temporarily fixed) on the first transfer sheet 37. It is obtained in the state.
  • the thickness h1 of the second coating layer 4 positioned on the upper side of the optical semiconductor element 1 is, for example, 500 ⁇ m or less, preferably 300 ⁇ m or less, and for example, 1 ⁇ m or more, preferably 10 ⁇ m. That's it.
  • the second coating layer 4 that covers the upper surfaces of the plurality of optical semiconductor elements 1 is removed.
  • the upper end portion of the second coating layer 4 located above the bottom portion 36 is also removed.
  • the pressure-sensitive adhesive sheet is prepared from a pressure-sensitive adhesive, and has a sheet shape continuous in the front-rear direction and the left-right direction.
  • size of a pressure sensitive adhesive sheet is set to the magnitude
  • Examples of pressure sensitive adhesives include acrylic pressure sensitive adhesives, rubber pressure sensitive adhesives, silicone pressure sensitive adhesives, urethane pressure sensitive adhesives, polyacrylamide pressure sensitive adhesives, and the like.
  • the pressure sensitive adhesive sheet may be supported by a support material or the like.
  • the pressure-sensitive adhesive sheet has an adhesive strength at 25 ° C. (180 ° C.
  • peel adhesive strength of, for example, 7.5 (N / 20 mm) or more, preferably 10.0 (N / 20 mm) or more. 100 (N / 20 mm) or less, preferably 20.0 (N / 20 mm) or less.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive sheet (the side opposite to the surface supported by the support material when the pressure-sensitive adhesive sheet supports the support material) Pressure-sensitive adhesion is performed on the upper surface of the coating layer 4, and then the upper end portion of the second coating layer 4 is peeled off. Specifically, first, the pressure-sensitive adhesive sheet is lowered, and then the pressure-sensitive adhesive sheet is pressure-sensitively bonded to the upper end portion of the second coating layer 4, and then the pressure-sensitive adhesive sheet is bonded to the second coating layer. Together with the upper end of 4, it is raised (pulled up).
  • the second coating layer 4 positioned on the upper side of the optical semiconductor element 1 is peeled off at the interface with the upper surface (bump) of the optical semiconductor element 1 and follows the pressure-sensitive adhesive sheet.
  • movement is repeated in multiple times, and thereby the peeling of the upper end part of the 2nd coating layer 4 is completed.
  • the upper end portion of the second coating layer 4 positioned above the bottom portion 36 follows the pressure-sensitive adhesive sheet together with the second coating layer 4 positioned above the optical semiconductor element 1. .
  • a solvent capable of completely or partially dissolving or dispersing the coating resin composition is selected.
  • the solvent include organic solvents and aqueous solvents.
  • the organic solvent include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as toluene, and ethers such as tetrahydrofuran. Is mentioned.
  • alcohol and aromatic hydrocarbon are used.
  • the above solvent is absorbed into a cloth, and the upper surface of the second coating layer 4 is wiped with the cloth. Thereby, the upper end part of the 2nd coating layer 4 is removed.
  • polishing member examples include cloths such as buffs, brushes, and water blasting.
  • the upper surface of the second coating layer 4 is polished with a polishing member. Thereby, the upper end part of the 2nd coating layer 4 is removed.
  • the upper surface of the optical semiconductor element 1, the upper surface of the first phosphor layer 2, and the upper surface of the second coating layer 4 are flush with each other. That is, the upper surface of the optical semiconductor element 1 forms the same plane as the upper surface of the first phosphor layer 2 and the upper surface of the second coating layer 4.
  • the thickness h2 of the second coating layer 4 is, for example, 15 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the coated optical semiconductor element 5 is transferred to the second transfer sheet 38 so that the phantom line in FIG. 16G is referred to, the coated optical semiconductor element 5 is picked up by a collet as shown in FIG. (Not shown) and the like are flip-chip mounted on the substrate 50. Thereby, the light emitting device 51 is obtained.
  • the adhesive force F4 of the plurality of coated optical semiconductor elements 5 to the second transfer sheet 38 is, for example, higher than the adhesive force F3 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 37.
  • the adhesive force F4 of the plurality of coated optical semiconductor elements 5 to the second transfer sheet 38 is higher than the adhesive force F3 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 37, in step (4), the coating force The optical semiconductor element 5 can be reliably transferred from the first transfer sheet 37 to the second transfer sheet 38.
  • the adhesive force F4 of the plurality of coated optical semiconductor elements 5 to the second transfer sheet 38 is, for example, more than 100%, preferably 110% of the adhesive force F3 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 37. % Or more, more preferably 120% or more, and for example, 300% or less.
  • the bottom 36 of the first phosphor layer 2 has the second covering layer 4 filled in the groove 3, and the first transfer sheet 37. Therefore, the second coating layer 4 is prevented from coming into direct contact with the first transfer sheet 37. Therefore, even if the pressure-sensitive adhesive force of the second coating layer 4 is high, the second coating layer 4 can be prevented from adhering to the first transfer sheet 37.
  • the coated optical semiconductor element 5 can be reliably peeled from the first transfer sheet 37 in the step (4).
  • step (4) If the adhesive force F4 of the coated optical semiconductor element 5 to the second transfer sheet 38 is lower than the adhesive force F3 of the coated optical semiconductor element 5 to the first transfer sheet 37 after processing, in step (4).
  • the coated optical semiconductor element 5 is not transferred from the first transfer sheet 37 to the second transfer sheet 38 and is pressure-bonded to the first transfer sheet 37. If the adhesive force F4 of the coated optical semiconductor element 5 to the second transfer sheet 38 is the same as the adhesive force F3 of the coated optical semiconductor element 5 to the processed first transfer sheet 37, in step (4), the coating light
  • the semiconductor element 5 is not reliably transferred from the first transfer sheet 37 to the second transfer sheet 38.
  • the adhesive force F4 of the coated optical semiconductor element 5 to the second transfer sheet 38 is higher than the adhesive force F3 of the coated optical semiconductor element 5 to the first transfer sheet 37 after processing.
  • the coated optical semiconductor element 5 can be more reliably transferred from the first transfer sheet 37 to the second transfer sheet 38.
  • the first phosphor layer 2 has the bottom portion 36, so that light emitted from the optical semiconductor element 1 and directed obliquely upward to the side is transmitted by the bottom portion 36.
  • the wavelength can be converted efficiently. Therefore, it is possible to obtain the coated optical semiconductor element 5 having excellent light extraction efficiency and the light emitting device 51 having excellent light extraction efficiency.
  • the first phosphor layer 2 is provided with a bottom portion 36 that is an overhang portion.
  • the first phosphor layer 2 does not include the bottom portion 36 that is an overhang portion.
  • the bottom portion 36 of the first phosphor layer 2 is used. The process of removing the upper end part containing is provided.
  • the step of removing the upper end portion of the first phosphor layer 2 is performed after the step (4) of transferring the coated optical semiconductor element 5 to the second transfer sheet 38 shown in FIG. 18A.
  • the upper end part of the 2nd coating layer 4 is exposed to the upper side.
  • the upper surface of the second coating layer 4 and the upper surface of the first phosphor layer 2 are flush with each other. That is, the upper surface of the second coating layer 4 and the upper surface of the first phosphor layer 2 form the same plane.
  • the first phosphor layer 2 has a substantially bottomed box shape, and has a shape in which the optical semiconductor element 1 is embedded at the lower end thereof. In other words, the optical semiconductor element 1 is covered at the lower portion and has a shape having a recess that opens downward.
  • the first phosphor layer 2 has an upper surface (upper end surface) exposed on the upper side, a lower surface pressure-bonded to the second transfer sheet 38, and an outer surface that is coated on the inner surface of the second coating layer 4. It has a side surface and an inner surface that covers the upper surface and the side surface of the optical semiconductor element 1.
  • the second coating layer 4 is disposed on the outer side in the surface direction of the first phosphor layer 2 and has a substantially rectangular frame shape.
  • the second covering layer 4 has an upper surface that is flush with the upper surface of the first phosphor layer 2, a lower surface that is flush with the lower surfaces of the first phosphor layer 2 and the optical semiconductor element 1, and outward in the plane direction. It has an exposed outer surface and an inner surface that covers the outer surface of the first phosphor layer 2.
  • the thickness L4 of the upper first phosphor layer 52 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the coated optical semiconductor element 5 is flip-chip mounted on the substrate 50 using a pickup device (not shown) provided with a collet. Thereby, the light emitting device 51 is obtained.
  • the coated optical semiconductor element 5 and the light emitting device 51 since the first phosphor layer 2 does not include the bottom portion 36 (see FIG. 17), leakage of light to the side is suppressed, and upward luminance ( Front luminance) can be improved.
  • blending ratio content ratio
  • physical property values and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. may be replaced with the upper limit values (numerical values defined as “less than” or “less than”) or lower limit values (numbers defined as “greater than” or “exceeded”). it can.
  • Phenyl silicone resin composition Phenyl silicone resin composition A described in Examples of JP-A-2015-073084 Methyl silicone resin composition: trade name “LS1-6140”, manufactured by Nusil Titanium oxide: light reflecting component, trade name “R-706”, average particle size 0.38 ⁇ m, manufactured by Dupont silica filler: inorganic filler, Product name “FB9454”, average particle size 20 ⁇ m, Denka's carbon black: light absorbing particles, product name “MA600”, average particle size 20 nm, Mitsubishi Chemical Corporation yellow phosphor: YAG phosphor, product name “Y468” , YAG: Ce, average particle size 17 ⁇ m, manufactured by Nemoto Lumimaterial, Inc.
  • the first temporary fixing sheet 10 includes a temporary fixing layer 11 made of a double-sided tape and a support layer 12 made of a stainless steel plate.
  • a plate-like first phosphor layer 2 was prepared from a phosphor resin composition containing 15 parts by mass of a yellow phosphor and 100 parts by mass of a phenyl-based silicone resin composition.
  • the thickness L0 of the first phosphor layer 2 was 350 ⁇ m.
  • the first phosphor layer 2 was thermocompression bonded to the plurality of first phosphor layers 2.
  • the thermocompression bonding conditions were 90 ° C. and 10 minutes.
  • the first phosphor layer 2 was in direct contact with the upper surface of the first temporary fixing sheet 10 exposed from the plurality of optical semiconductor elements 1.
  • the thickness L4 of the upper first phosphor layer 52 was 150 ⁇ m, and the thickness L5 of the first phosphor layer 2 located between the adjacent optical semiconductor elements 1 was 300 ⁇ m.
  • Step (2) As shown in FIG. 1C, a groove 3 was provided in the first phosphor layer 2 located between the adjacent optical semiconductor elements 1 by a dicing saw 35 having a thickness of 200 ⁇ m.
  • the width L6 of the groove 3 was 200 ⁇ m, and the depth L7 of the groove 3 was 280 ⁇ m. Further, the thickness L8 of the bottom portion 36 was 20 ⁇ m. The distance ⁇ between the inner side surface of the groove 3 and the side surface of the optical semiconductor element 1 was 100 ⁇ m.
  • a first covering element assembly 41 having a plurality of optical semiconductor elements 1 and a first phosphor layer 2 having grooves 3 was obtained.
  • Step (3) As a method of filling the groove 3 with the second coating layer 4, steps (i) to (v) were sequentially performed.
  • methacryloyloxyethyl isocyanate 13.5 parts by mass of methacryloyloxyethyl isocyanate is added to this, and methacryloyloxyethyl isocyanate (isocyanate group-containing compound) is added to the acrylic polymer to prepare an acrylic polymer having a carbon-carbon double bond. did.
  • an isocyanate-based crosslinking agent (trade name “Coronate L”, manufactured by Nippon Polyurethane Industry Co., Ltd.) with respect to 100 parts by mass of the solid content of the acrylic polymer in a toluene solution of the acrylic polymer, and light Polymerization initiator (trade name “Irgacure 127”, (2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one 2 parts by mass of Ciba Specialty Chemicals Co., Ltd.) was added to prepare a pressure-sensitive adhesive composed of a resin composition into which a carbon-carbon double bond was introduced.
  • an isocyanate-based crosslinking agent trade name “Coronate L”, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • light Polymerization initiator (trade name “Irgacure 127”, (2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl
  • a pressure-sensitive adhesive layer 61 having a thickness of 30 ⁇ m was formed on the surface of the support sheet 62.
  • a pressure-sensitive adhesive layer 61 and a support sheet 62 were provided, and a protective sheet 6 having a thickness of 145 ⁇ m was prepared.
  • the tensile elastic modulus at 25 ° C. of the protective sheet 6 was 3,650 MPa.
  • the pressure-sensitive adhesive layer 61 of the protective sheet 6 was bonded to the upper surface of the upper first phosphor layer 52 using a hand roller. Note that the lower surface of the pressure-sensitive adhesive layer 61 and the bottom surface of the groove 3 were spaced apart.
  • the vacuum pump 20 is operated with the vacuum valve 21 and the atmospheric valve 23 opened, and then the first covering element assembly 41, the first temporary fixing sheet 10 and the protective sheet 6 are installed in the vacuum chamber 18. did.
  • the coating material 43 flowed into the sealed space 7 and the sealed space 7 was filled with the coating material 43. That is, the second coating layer 4 having the same shape as the sealed space 7 and made of the coating material 43 was formed. That is, the second coating layer 4 was filled in the groove 3. And the 2nd covering element aggregate
  • the second coating layer 4 and the bottom portion 36 were then cut along the thickness direction with a 40 ⁇ m thick dicing saw. Thereby, the some covered optical semiconductor element 5 was obtained in the state supported by the 1st temporary fixing sheet 10.
  • FIG. The width ⁇ of the second coating layer 4 was 300 ⁇ m.
  • the dimension of the coated optical semiconductor element 5 was 2440 ⁇ m ⁇ 2440 ⁇ m ⁇ 300 ⁇ m.
  • Step (4) As shown in FIG. 2I, the plurality of coated optical semiconductor elements 5 were transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 made of SPV-224 (manufactured by Nitto Denko Corporation).
  • the coated optical semiconductor element 5 was flip-chip mounted on the substrate 50 to obtain a light emitting device 51.
  • Example 2 In the step (2), except that the thickness L8 of the bottom portion 36 corresponding to the groove 3 was changed as shown in Table 1, the coated optical semiconductor element 5 was obtained in the same manner as in Example 1, and then light emission was performed. Device 51 was obtained.
  • step (2) as shown in FIG. 12A, the same treatment as in Example 1 was performed except that the dicing saw 35 provided an opening 3 ′ penetrating the first phosphor layer 2 in the thickness direction. Thus, a first covering element assembly 41 was obtained. The upper surface of the first temporary fixing sheet 10 was exposed from the opening 3 ′. In addition, the first phosphor layer 2 was not formed with the bottom portion 36 (the overhang portion).
  • step (3) as shown in FIG. 12B, the second coating layer 4 was in direct contact with the upper surface of the first temporary fixing sheet 10 at the opening 3 ′.
  • step (4) as shown in FIG. 12D, the coated optical semiconductor element 5 could not be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
  • Example 4 In the step (3), instead of the method using the differential pressure (steps (ii) to (iv)), except that the second coating layer 4 was formed by molding, the same as in Example 2, The coated optical semiconductor element 5 was obtained, and then the light emitting device 51 was obtained.
  • Example 5 The coated optical semiconductor element 5 was obtained in the same manner as in Example 2 except that 10 parts by mass of carbon black was blended in place of 10 parts by mass of titanium oxide to prepare the coating material 43. Subsequently, the light-emitting device 51 was obtained. Got.
  • Example 7 A coated optical semiconductor element 5 was obtained in the same manner as in Example 4 except that the coating material 43 was prepared without blending titanium oxide, and then a light emitting device 51 was obtained.
  • step (2) as shown in FIG. 13A, the same treatment as in Example 7 was performed except that the dicing saw 35 provided an opening 3 ′ penetrating the first phosphor layer 2 in the thickness direction. Thus, a first covering element assembly 41 was obtained. The upper surface of the first temporary fixing sheet 10 was exposed from the opening 3 ′. In addition, the first phosphor layer 2 was not formed with the bottom portion 36 (the overhang portion).
  • step (3) as shown in FIG. 13B, the second coating layer 4 was in direct contact with the upper surface of the first temporary fixing sheet 10 at the opening 3 ′.
  • step (4) the coated optical semiconductor element 5 could not be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 as shown in FIG. 13D.
  • Example 8 From the phosphor resin composition containing 0.8 parts by mass of the red phosphor and 100 parts by mass of the phenyl silicone resin composition, the plate-shaped first phosphor layer 2 was prepared, and the green phosphor 22 9 except that the coating material 43 was prepared from 100 parts by mass and 100 parts by mass of the methyl silicone resin composition, the coated optical semiconductor element 5 shown in FIG. As shown by the phantom lines in FIG. 9, the light emitting device 51 was obtained.
  • the coated optical semiconductor element 5 includes an optical semiconductor element 1, a first phosphor layer 2 containing a red phosphor and a phenyl silicone resin composition, a green phosphor and a methyl silicone resin composition. And a second phosphor layer 84 containing an object.
  • step (2) as shown in FIG. 14A, the same treatment as in Example 8 was performed except that the dicing saw 35 provided an opening 3 ′ penetrating the first phosphor layer 2 in the thickness direction. Thus, a second covering element assembly 29 was obtained. The upper surface of the first temporary fixing sheet 10 was exposed from the opening 3 ′. In addition, the first phosphor layer 2 was not formed with the bottom portion 36 (the overhang portion).
  • step (3) as shown in FIG. 14B, the second phosphor layer 84 was in direct contact with the upper surface of the first temporary fixing sheet 10 at the opening 3 ′.
  • step (4) as shown in FIG. 14D, the coated optical semiconductor element 5 could not be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
  • Example 9 From the transparent resin composition comprising a phenyl silicone resin composition, a flat first coating layer 82 was prepared, and 100 parts by mass of a methyl silicone resin composition and 15 parts by mass of a yellow phosphor were coated.
  • the coated optical semiconductor element 5 shown in FIG. 11 was obtained in the same manner as in Example 4 except that the material 43 was prepared. Subsequently, as shown by the phantom line in FIG. 11, the light emitting device 51 was obtained. .
  • the coated optical semiconductor element 5 includes an optical semiconductor element 1, a first coating layer 82 (transparent layer) containing a phenyl silicone resin composition, a yellow phosphor, and a methyl silicone resin composition.
  • the 2nd fluorescent substance layer 84 containing is provided.
  • Adhesive force F1 to temporary fixing sheet In each Example and each Comparative Example, the adhesive force F1 of the first covering element assembly 41 with respect to the first temporary fixing sheet 10 after ultraviolet irradiation was measured by a 180 degree peel test.
  • the transferability of the coated optical semiconductor element 5 from the first temporary fixing sheet 10 to the first transfer sheet 27 was evaluated according to the following criteria. ⁇ : The coated optical semiconductor element 5 could be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27. X: The coated optical semiconductor element 5 could not be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
  • the front luminance of the light emitting device 51 was turned on at 300 mA at room temperature using a light distribution measurement system and a spectroscope MCPDPD-9800 manufactured by Otsuka Electronics.
  • the light extraction efficiency of the light-emitting device 51 was evaluated by using an integrating sphere and spectroscope MCPD-9800 manufactured by Otsuka Electronics Co., Ltd., lighting at room temperature and 300 mA, measuring the total luminous flux, and evaluating according to the following criteria. ⁇ : 105 [lm / W] or more ⁇ : 90 [lm / W] or more, less than 105 [lm / W]
  • the coated optical semiconductor element obtained by this manufacturing method is flip-chip mounted on a substrate and used as a light emitting device.

Abstract

[Problem] To provide a method for producing a covered optical semiconductor element, which is reliably capable of separating a covered optical semiconductor element from a temporary fixing sheet. [Solution] A method for producing a covered optical semiconductor element 5, which comprises: a step (1) for preparing a plurality of optical semiconductor elements 1 that are temporarily fixed on the upper surface of a first temporary fixing sheet 10 so as to be separated from each other and a first phosphor layer 2 that covers the plurality of optical semiconductor elements 1 in such a manner that the first phosphor layer 2 is in direct contact with parts of the upper surface of the first temporary fixing sheet 10, said parts being exposed from the plurality of optical semiconductor elements 1; a step (2) for forming a groove 3 in a part of the first phosphor layer 2 positioned between every adjacent optical semiconductor elements 1, said groove 3 being opened at the top; a step (3) for filling at least the groove 3 with a second covering layer 4, thereby obtaining a covered optical semiconductor element 1 that is provided with the optical semiconductor elements 1, the first phosphor layer 2 and the second covering layer 4; and a step (4) for separating the covered optical semiconductor element 1 from the first temporary fixing sheet 10. In the step (3), the first phosphor layer 2 intervenes between the first temporary fixing sheet 10 and the second covering layer 4 filled in the groove 3.

Description

被覆光半導体素子の製造方法Method for manufacturing coated optical semiconductor element
 本発明は、被覆光半導体素子の製造方法に関する。 The present invention relates to a method for manufacturing a coated optical semiconductor element.
 従来より、蛍光体層などの被覆層によって被覆されたLEDを回路基板に実装することが知られている。 Conventionally, it is known to mount an LED covered with a coating layer such as a phosphor layer on a circuit board.
 例えば、粘着シートの上に所定の間隔で整列されたLEDに対して、蛍光体が分散されたセラミックインクを塗布し、続いて、セラミックインクを硬化させることにより、セラミックインク層でLEDを被覆する。その後、隣接するLED間のセラミックインク層を切断分離し、その後、LEDおよびセラミックインク層を粘着シートから剥離し、回路基板にフリップチップ実装する方法が提案されている(例えば、特許文献1参照。)。 For example, a ceramic ink in which a phosphor is dispersed is applied to LEDs arranged at predetermined intervals on an adhesive sheet, and then the ceramic ink is cured to coat the LEDs with a ceramic ink layer. . Thereafter, a method is proposed in which the ceramic ink layer between adjacent LEDs is cut and separated, and then the LED and the ceramic ink layer are peeled off from the adhesive sheet and flip-chip mounted on a circuit board (see, for example, Patent Document 1). ).
 特許文献1に記載の方法では、回路基板にLEDが実装された状態で、さらに、セラミックインク層を透明樹脂で封止している。 In the method described in Patent Document 1, the ceramic ink layer is further sealed with a transparent resin while the LED is mounted on the circuit board.
特開2012-39013号公報JP 2012-39013 A
 しかるに、セラミックインク層を、粘着シートに支持された状態で、封止樹脂などでさらに被覆したい要求がある。その場合に、粘着シートに支持された状態のセラミックインク層を封止樹脂で封止すると、すでに切断分離されたセラミックインク層の隙間に、封止樹脂に充填され、かかる封止樹脂が粘着シートに直接接触する。そうすると、封止樹脂と粘着シートとの粘着力(感圧接着力)が高いため、封止樹脂を、LEDおよびセラミックインク層とともに、粘着シートから剥離できないという不具合がある。 However, there is a demand for further covering the ceramic ink layer with a sealing resin or the like while being supported by the adhesive sheet. In that case, when the ceramic ink layer supported by the pressure-sensitive adhesive sheet is sealed with the sealing resin, the sealing resin is filled in the gap between the already cut and separated ceramic ink layers. Contact directly. If it does so, since the adhesive force (pressure-sensitive adhesive force) of sealing resin and an adhesive sheet is high, there exists a malfunction that sealing resin cannot be peeled from an adhesive sheet with LED and a ceramic ink layer.
 本発明の目的は、被覆光半導体素子を仮固定シートから確実に剥離することのできる、被覆光半導体素子の製造方法を提供することにある。 An object of the present invention is to provide a method for manufacturing a coated optical semiconductor element that can reliably peel the coated optical semiconductor element from the temporary fixing sheet.
 本発明[1]は、仮固定シートの上に互いに間隔を隔てて仮固定された複数の光半導体素子と、複数の前記光半導体素子を、複数の前記光半導体素子から露出する前記仮固定シートの上面に第1被覆層が直接接触するように、被覆する前記第1被覆層とを用意する工程(1)と、隣接する前記光半導体素子の間に位置する前記第1被覆層に、上方に向かって開放される溝を設ける工程(2)と、第2被覆層を少なくとも前記溝に充填して、前記光半導体素子、前記第1被覆層および前記第2被覆層を備える被覆光半導体素子を得る工程(3)と、前記被覆光半導体素子を前記仮固定シートから剥離する工程(4)とを備え、前記工程(3)では、前記第1被覆層が、前記溝に充填された前記第2被覆層と、前記仮固定シートとの間に介在している、被覆光半導体素子の製造方法を含んでいる。 The present invention [1] includes a plurality of optical semiconductor elements temporarily fixed on a temporarily fixing sheet at intervals, and the temporarily fixing sheet exposing the plurality of optical semiconductor elements from the plurality of optical semiconductor elements. A step (1) of preparing the first coating layer to be coated so that the first coating layer is in direct contact with the upper surface of the substrate; and the first coating layer positioned between the adjacent optical semiconductor elements; A step (2) of providing a groove opened toward the surface, and a coated optical semiconductor element comprising the optical semiconductor element, the first coating layer, and the second coating layer by filling at least the second coating layer in the groove And the step (4) of peeling the coated optical semiconductor element from the temporary fixing sheet. In the step (3), the first coating layer is filled in the groove. Interposed between the second covering layer and the temporary fixing sheet. Have include a method of manufacturing a coated optical semiconductor element.
 この方法によれば、工程(3)では、第1被覆層が、溝に充填された第2被覆層と、仮固定シートとの間に介在しているので、第2被覆層が固定シートに直接接触することが防止される。そのため、たとえ、第2被覆層の感圧接着力が高くても、第2被覆層が仮固定シートに接着することを防止することができる。 According to this method, in the step (3), the first coating layer is interposed between the second coating layer filled in the groove and the temporarily fixed sheet, so that the second coating layer is formed on the fixed sheet. Direct contact is prevented. Therefore, even if the pressure-sensitive adhesive force of the second coating layer is high, the second coating layer can be prevented from adhering to the temporary fixing sheet.
 その結果、工程(4)において、被覆光半導体素子を仮固定シートから確実に剥離することができる。 As a result, in the step (4), the coated optical semiconductor element can be reliably peeled from the temporarily fixed sheet.
 本発明[2]は、前記工程(4)では、前記被覆光半導体素子を、前記仮固定シートから転写シートに転写し、前記被覆光半導体素子の前記転写シートに対する接着力が、前記被覆光半導体素子の前記仮固定シートに対する接着力に比べて、高い、[1]に記載の被覆光半導体素子の製造方法を含んでいる。 In the present invention [2], in the step (4), the coated optical semiconductor element is transferred from the temporarily fixed sheet to a transfer sheet, and the adhesive force of the coated optical semiconductor element to the transfer sheet is the coated optical semiconductor. The manufacturing method of the covering optical semiconductor element as described in [1] which is high compared with the adhesive force with respect to the said temporarily fixed sheet | seat of an element is included.
 この方法によれば、被覆光半導体素子の転写シートに対する接着力が、被覆光半導体素子の仮固定シートに対する接着力に比べて、高いので、工程(4)において、被覆光半導体素子を、仮固定シートから転写シートにより一層確実に転写することができる。 According to this method, since the adhesive force of the coated optical semiconductor element to the transfer sheet is higher than the adhesive force of the coated optical semiconductor element to the temporary fixing sheet, in step (4), the coated optical semiconductor element is temporarily fixed. Transfer from the sheet to the transfer sheet can be performed more reliably.
 本発明[3]は、前記第1被覆層は、蛍光体を含有する第1蛍光体層である、[1]または[2]に記載の被覆光半導体素子の製造方法を含んでいる。 The present invention [3] includes the method for manufacturing a coated optical semiconductor element according to [1] or [2], wherein the first coating layer is a first phosphor layer containing a phosphor.
 この方法によれば、第1被覆層は、蛍光体を含有する第1蛍光体層であるので、光半導体素子から発光された光を第1蛍光体層によって、波長変換することができる。 According to this method, since the first coating layer is the first phosphor layer containing the phosphor, the light emitted from the optical semiconductor element can be wavelength-converted by the first phosphor layer.
 本発明[4]は、前記工程(3)では、前記第1蛍光体層の上面を露出させるように、前記第2被覆層を前記溝に充填すること、[3]に記載の被覆光半導体素子の製造方法を含んでいる。 According to the present invention [4], in the step (3), the groove is filled with the second coating layer so as to expose the upper surface of the first phosphor layer, and the coated optical semiconductor according to [3] A device manufacturing method is included.
 この方法において、工程(3)では、第1蛍光体層の上面を露出させるように、被覆層を溝に充填するので、上方への指向性を有する光を発光する被覆光半導体素子を得ることができる。 In this method, in step (3), the coating layer is filled in the groove so as to expose the upper surface of the first phosphor layer, so that a coated optical semiconductor element that emits light having upward directivity is obtained. Can do.
 本発明[5]は、前記工程(3)では、前記第1被覆層の上面を被覆するように、前記第2被覆層を前記溝に充填する、[3]に記載の被覆光半導体素子の製造方法を含んでいる。 According to the invention [5], in the step (3), the groove is filled with the second coating layer so as to cover the upper surface of the first coating layer. Includes manufacturing methods.
 この方法では、第1蛍光体層の上面を被覆するように、被覆層を溝に充填するので、光学特性に優れる被覆光半導体素子を得ることができる。 In this method, since the coating layer is filled in the groove so as to cover the upper surface of the first phosphor layer, a coated optical semiconductor element having excellent optical characteristics can be obtained.
 本発明[6]は、前記第2被覆層は、蛍光体を含有する第2蛍光体層である、[1]~[3]のいずれか一項に記載の被覆光半導体素子の製造方法を含んでいる。 The present invention [6] provides the method for producing a coated optical semiconductor element according to any one of [1] to [3], wherein the second coating layer is a second phosphor layer containing a phosphor. Contains.
 この方法では、第2被覆層は、蛍光体を含有する第2蛍光体層であるので、光半導体素子から発光された光を第2蛍光体層によって、波長変換することができる。 In this method, since the second coating layer is a second phosphor layer containing a phosphor, the wavelength of light emitted from the optical semiconductor element can be converted by the second phosphor layer.
 本発明[7]は、前記工程(3)では、前記第2蛍光体層の上面を被覆するように、前記第2被覆層を前記溝に充填する、[6]に記載の被覆光半導体素子の製造方法を含んでいる。 According to the invention [7], in the step (3), the groove is filled with the second covering layer so as to cover the upper surface of the second phosphor layer. The manufacturing method is included.
 この方法において、工程(3)では、第2蛍光体層の上面を露出させるように、被覆層を溝に充填するので、上方への指向性を有する光を発光する被覆光半導体素子を得ることができる。 In this method, in the step (3), the coating layer is filled in the groove so as to expose the upper surface of the second phosphor layer, so that a coated optical semiconductor element that emits light having upward directivity is obtained. Can do.
 本発明によれば、工程(4)において、被覆光半導体素子を仮固定シートから確実に剥離することができる。 According to the present invention, in the step (4), the coated optical semiconductor element can be reliably peeled from the temporarily fixed sheet.
図1A~図1Eは、本発明の被覆光半導体素子の製造方法の第1実施形態の製造工程図であって、図1Aが、複数の光半導体素子を仮固定シートに配置する工程、図1Bが、第1蛍光体層によって複数の光半導体素子を被覆する工程(1)、図1Cが、隣接する光半導体素子の間に位置する第1蛍光体層に溝を設ける工程(2)、図1Dが、保護シートを第1蛍光体層の上面に配置する工程(i)、図1Eが、仮固定シート、光半導体素子、第1蛍光体層および保護シートを、真空下に配置する工程(ii)、および、被覆材料を配置して、密閉空間を形成する工程(iii)を示す。1A to 1E are manufacturing process diagrams of a first embodiment of a method for manufacturing a coated optical semiconductor element according to the present invention, in which FIG. 1A is a process of arranging a plurality of optical semiconductor elements on a temporary fixing sheet, FIG. Is a step (1) of covering a plurality of optical semiconductor elements with a first phosphor layer, FIG. 1C is a step (2) of providing a groove in the first phosphor layer located between adjacent optical semiconductor elements, and FIG. 1D is a step (i) of disposing a protective sheet on the upper surface of the first phosphor layer, and FIG. 1E is a step of disposing the temporary fixing sheet, the optical semiconductor element, the first phosphor layer, and the protective sheet under vacuum ( ii) and the step (iii) of disposing a coating material to form a sealed space. 図2F~図2Iは、図1Eに引き続き、本発明の被覆光半導体素子の製造方法の第1実施形態の製造工程図であって、図2Fが、被覆材料を密閉空間に流入させる工程(iv)、図2Gが、保護シートを剥離する工程(v)、図2Hが、光半導体素子を個片化する工程、図2Iが、被覆光半導体素子を転写シートに転写する工程(4)を示す。2F to 2I are manufacturing process diagrams of the first embodiment of the method for manufacturing a coated optical semiconductor device of the present invention, following FIG. 1E, in which FIG. 2F is a process of flowing the coating material into the sealed space (iv 2G shows the step (v) for peeling off the protective sheet, FIG. 2H shows the step for separating the optical semiconductor element, and FIG. 2I shows the step (4) for transferring the coated optical semiconductor element to the transfer sheet. . 図3A~図3Cは、第1実施形態の各工程における平面図であり、図3Aは、図1Dに対応する工程(i)の平面図、図3Bは、図1Eに対応する工程(ii)の平面図、図3Cは、図2Fに対応する工程(iii)の平面図である。3A to 3C are plan views in the respective steps of the first embodiment, FIG. 3A is a plan view of step (i) corresponding to FIG. 1D, and FIG. 3B is a step (ii) corresponding to FIG. 1E. FIG. 3C is a plan view of step (iii) corresponding to FIG. 2F. 図4は、図2Iに示す被覆光半導体素子を基板に実装する工程を示す。FIG. 4 shows a process of mounting the coated optical semiconductor element shown in FIG. 2I on a substrate. 図5A~図5Cは、本発明の被覆光半導体素子の製造方法の第2実施形態の製造工程図であって、図5Aが、第1蛍光体層によって複数の光半導体素子を被覆する工程(1)、図5Bが、隣接する光半導体素子の間に位置する第1蛍光体層に溝を設ける工程(2)、図5Cが、第2被覆層を、溝に充填され、上側第1蛍光体層を被覆するように、設ける工程(3)を示す。5A to 5C are manufacturing process diagrams of the second embodiment of the method for manufacturing a coated optical semiconductor element according to the present invention, in which FIG. 5A is a process of covering a plurality of optical semiconductor elements with a first phosphor layer ( 1), FIG. 5B is a step (2) of providing a groove in the first phosphor layer located between the adjacent optical semiconductor elements, and FIG. 5C is a case where the groove is filled with the second coating layer, and the upper first fluorescence. A step (3) of providing the body layer so as to cover the body layer is shown. 図6Dおよび図6Eは、図5Cに引き続き、本発明の被覆光半導体素子の製造方法の第2実施形態の製造工程図であって、図6Dが、光半導体素子を個片化する工程、図6Eが、被覆光半導体素子を転写シートに転写する工程(4)を示す。6D and FIG. 6E are manufacturing process diagrams of the second embodiment of the method for manufacturing the coated optical semiconductor element of the present invention, following FIG. 5C, and FIG. 6D is a process of dividing the optical semiconductor element into individual pieces, FIG. 6E shows the process (4) which transfers a covering optical semiconductor element to a transfer sheet. 図7は、図6Eに示す被覆光半導体素子を基板に実装する工程を示す。FIG. 7 shows a process of mounting the coated optical semiconductor element shown in FIG. 6E on a substrate. 図8は、第3実施形態の製造方法により得られる被覆光半導体素子の断面図を示す。FIG. 8 shows a cross-sectional view of a coated optical semiconductor element obtained by the manufacturing method of the third embodiment. 図9は、第4実施形態の製造方法により得られる被覆光半導体素子の断面図を示す。FIG. 9 shows a cross-sectional view of a coated optical semiconductor element obtained by the manufacturing method of the fourth embodiment. 図10は、第5実施形態の製造方法により得られる被覆光半導体素子の断面図を示す。FIG. 10 shows a cross-sectional view of a coated optical semiconductor element obtained by the manufacturing method of the fifth embodiment. 図11は、第6実施形態の製造方法により得られる被覆光半導体素子の断面図を示す。FIG. 11 is a cross-sectional view of a coated optical semiconductor element obtained by the manufacturing method of the sixth embodiment. 図12A~図12Dは、比較例1の被覆光半導体素子の製造工程図であり、図12Aが、開口部を第1蛍光体層に設ける工程(2)、図12Bが、第2被覆層を設ける工程(3)、図12Cが、第2被覆層を切断する工程、図12Dが、被覆光半導体素子を転写シートに転写する工程(4)を示す。12A to 12D are manufacturing process diagrams of the coated optical semiconductor device of Comparative Example 1. FIG. 12A shows the step (2) of providing an opening in the first phosphor layer, and FIG. 12B shows the second coating layer. Step (3) of providing, FIG. 12C shows a step of cutting the second coating layer, and FIG. 12D shows a step (4) of transferring the coated optical semiconductor element to the transfer sheet. 図13A~図13Dは、比較例2の被覆光半導体素子の製造工程図であり、図13Aが、開口部を第1蛍光体層に設ける工程(2)、図13Bが、第2被覆層を設ける工程(3)、図13Cが、第2被覆層を切断する工程、図13Dが、被覆光半導体素子を転写シートに転写する工程(4)を示す。13A to 13D are manufacturing process diagrams of the coated optical semiconductor element of Comparative Example 2, in which FIG. 13A shows the step (2) of providing an opening in the first phosphor layer, and FIG. 13B shows the second coating layer. Step (3) of providing, FIG. 13C shows a step of cutting the second coating layer, and FIG. 13D shows a step (4) of transferring the coated optical semiconductor element to the transfer sheet. 図14A~図14Dは、比較例3の被覆光半導体素子の製造工程図であり、図14Aが、開口部を第1被覆層に設ける工程(2)、図14Bが、第2蛍光体層を設ける工程(3)、図14Cが、第2蛍光体層を切断する工程、図14Dが、被覆光半導体素子を転写シートに転写する工程(4)を示す。14A to 14D are manufacturing process diagrams of the coated optical semiconductor device of Comparative Example 3, in which FIG. 14A shows the step (2) of providing an opening in the first coating layer, and FIG. 14B shows the second phosphor layer. Step (3) of providing, FIG. 14C shows a step of cutting the second phosphor layer, and FIG. 14D shows a step (4) of transferring the coated optical semiconductor element to the transfer sheet. 図15A~図15Dは、本発明の被覆光半導体素子の製造方法の第7実施形態の製造工程図であって、図15Aが、複数の光半導体素子を仮固定シートに配置する工程、図15Bが、第1蛍光体層によって複数の光半導体素子を被覆する工程(1)、図15Cが、第1被覆素子集合体を第1転写シートに転写する工程、図15Dが、第1蛍光体層に溝を設ける工程(2)を示す。15A to 15D are manufacturing process diagrams of the seventh embodiment of the method for manufacturing a coated optical semiconductor element of the present invention, in which FIG. 15A is a process of arranging a plurality of optical semiconductor elements on a temporary fixing sheet, FIG. FIG. 15C shows the step of coating the plurality of optical semiconductor elements with the first phosphor layer, FIG. 15C shows the step of transferring the first covering element assembly to the first transfer sheet, and FIG. 15D shows the first phosphor layer. Step (2) for providing a groove is shown. 図16E~図16Gは、図15Dに引き続き、本発明の被覆光半導体素子の製造方法の第7実施形態の製造工程図であって、図16Eが、第2被覆層を溝に充填する工程(3)、図16Fが、光半導体素子を個片化する工程、図16Gが、第2被覆層4の上端部を除去する工程を示す。16E to 16G are manufacturing process diagrams of the seventh embodiment of the manufacturing method of the coated optical semiconductor element of the present invention, following FIG. 15D. FIG. 16E illustrates a process of filling the groove with the second coating layer ( 3), FIG. 16F shows a step of separating the optical semiconductor element, and FIG. 16G shows a step of removing the upper end portion of the second coating layer 4. 図17は、図16Gに示す被覆光半導体素子を基板に実装する工程を示す。FIG. 17 shows a process of mounting the coated optical semiconductor element shown in FIG. 16G on a substrate. 図18Aおよび図18Bは、本発明の被覆光半導体素子の製造方法の第8実施形態の製造工程図であって、図18Aが、被覆光半導体素子を第2転写シートに転写する工程、図18Bが、第1蛍光体層の底部を除去する工程を示す。18A and 18B are manufacturing process diagrams of an eighth embodiment of the method for manufacturing a coated optical semiconductor element of the present invention, in which FIG. 18A is a process of transferring the coated optical semiconductor element to a second transfer sheet, FIG. Shows the step of removing the bottom of the first phosphor layer. 図19は、図18Bに示す被覆光半導体素子を基板に実装する工程を示す。FIG. 19 shows a process of mounting the coated optical semiconductor element shown in FIG. 18B on a substrate.
 図1A~図2Iにおいて、紙面上下方向は、上下方向(第1方向、厚み方向)であり、紙面上側が上側(第1方向一方側、厚み方向一方側)、紙面下側が下側(第1方向他方側、厚み方向他方側)である。紙面左右方向は、左右方向(第1方向に直交する第2方向)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。紙厚方向は、前後方向(第1方向および第2方向に直交する第3方向)であり、紙面手前側が前側(第3方向一方側)、紙面奥側が後側(第3方向他方側)である。具体的には、各図の方向矢印に準拠する。 In FIGS. 1A to 2I, the vertical direction of the paper surface is the vertical direction (first direction, thickness direction), the upper side of the paper surface is the upper side (one side in the first direction, the one side in the thickness direction), and the lower side of the paper surface is the lower side (first Direction other side, thickness direction other side). The left and right direction on the paper surface is the left and right direction (second direction orthogonal to the first direction), the left side on the paper surface is the left side (second side in the second direction), and the right side on the paper surface is the right side (the other side in the second direction). The paper thickness direction is the front-rear direction (the third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (the other side in the third direction). is there. Specifically, it conforms to the direction arrow in each figure.
 <第1実施形態>
 1.被覆光半導体素子の製造方法
 本発明の被覆光半導体素子の製造方法の第1実施形態は、仮固定シートの一例としての第1仮固定シート10の上面に互いに間隔を隔てて仮固定された複数の光半導体素子1と、複数の光半導体素子1から露出する第1仮固定シート10の上面に直接接触するように、複数の光半導体素子1を被覆する第1被覆層の一例としての第1蛍光体層2とを用意する工程(1)(図1Aおよび図1B参照)と、隣接する光半導体素子1の間に位置する第1蛍光体層2に、上方に向かって開放される溝3を設ける工程(2)(図1C参照)と、第2被覆層4を溝3に充填して、光半導体素子1、第1蛍光体層2および第2被覆層4を備える被覆光半導体素子5を得る工程(3)(図1D~図2H参照)と、被覆光半導体素子5を、第1仮固定シート10から第1転写シート27に転写する工程(4)(図2I参照)とを備える。
<First Embodiment>
1. Method for Producing Coated Optical Semiconductor Element In the first embodiment of the method for producing a coated optical semiconductor element of the present invention, a plurality of temporary fixed sheets spaced apart from each other on the upper surface of a first temporarily fixed sheet 10 as an example of a temporarily fixed sheet. As an example of a first coating layer that covers the plurality of optical semiconductor elements 1 so as to be in direct contact with the upper surface of the first temporary fixing sheet 10 exposed from the optical semiconductor elements 1 and the plurality of optical semiconductor elements 1. Step (1) of preparing the phosphor layer 2 (see FIGS. 1A and 1B) and a groove 3 opened upward in the first phosphor layer 2 located between the adjacent optical semiconductor elements 1 (2) (see FIG. 1C), and the coated optical semiconductor element 5 including the optical semiconductor element 1, the first phosphor layer 2, and the second coating layer 4 by filling the groove 3 with the second coating layer 4. (3) (refer to FIG. 1D to FIG. 2H) for obtaining the above, and a coated optical semiconductor element 5 is transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 (see FIG. 2I).
 以下、各工程を順次説明する。 Hereafter, each process will be described sequentially.
 1-1.工程(1)
 図1Aおよび図1Bに示すように、工程(1)では、複数の光半導体素子1と、第1蛍光体層2とを用意する。すなわち、第1仮固定シート10の上面に互いに間隔を隔てて仮固定された複数の光半導体素子1と、複数の光半導体素子1から露出する第1仮固定シート10の上面に第1蛍光体層2が直接接触するように、複数の光半導体素子1を被覆する第1蛍光体層2とを用意する。
1-1. Process (1)
As shown in FIGS. 1A and 1B, in step (1), a plurality of optical semiconductor elements 1 and a first phosphor layer 2 are prepared. That is, the plurality of optical semiconductor elements 1 temporarily fixed to the upper surface of the first temporary fixing sheet 10 with a space therebetween, and the first phosphor on the upper surface of the first temporary fixing sheet 10 exposed from the plurality of optical semiconductor elements 1. A first phosphor layer 2 covering a plurality of optical semiconductor elements 1 is prepared so that the layer 2 is in direct contact.
 より具体的には、図1Aに示すように、工程(1)では、まず、複数の光半導体素子1を、第1仮固定シート10の上面に互いに間隔を隔てて仮固定する。 More specifically, as shown in FIG. 1A, in the step (1), first, a plurality of optical semiconductor elements 1 are temporarily fixed to the upper surface of the first temporary fixing sheet 10 at intervals from each other.
 光半導体素子1は、電気エネルギーを光エネルギーに変換する光半導体素子である。光半導体素子は、光半導体素子とは技術分野が異なるトランジスタなどの整流器を含まない。光半導体素子1は、例えば、厚み(上下方向の最大長さ)が面方向長さ(具体的には、左右方向長さおよび前後方向長さ)より短い断面視略矩形状および平面視略矩形状を有している。光半導体素子1の下面の一部は、バンプ(図示せず)によって形成されている。バンプは、基板50(図4参照、後述)の上面に設けられる端子(図4において図示せず)と電気的に接続されるように構成されている。 The optical semiconductor element 1 is an optical semiconductor element that converts electrical energy into optical energy. The optical semiconductor element does not include a rectifier such as a transistor having a technical field different from that of the optical semiconductor element. The optical semiconductor element 1 has, for example, a substantially rectangular shape in cross-sectional view and a substantially rectangular shape in plan view in which the thickness (maximum length in the vertical direction) is shorter than the length in the plane direction (specifically, the length in the left-right direction and the length in the front-rear direction). It has a shape. A part of the lower surface of the optical semiconductor element 1 is formed by bumps (not shown). The bump is configured to be electrically connected to a terminal (not shown in FIG. 4) provided on the upper surface of the substrate 50 (see FIG. 4, described later).
 光半導体素子1としては、具体的には、青色光を発光する青色LED(発光ダイオード素子)が挙げられる。 Specific examples of the optical semiconductor element 1 include a blue LED (light emitting diode element) that emits blue light.
 光半導体素子1の厚み(上下方向長さ)L1は、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。光半導体素子1の幅(左右方向長さおよび前後方向長さ)L2は、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、5000μm以下、好ましくは、2000μm以下である。 The thickness (length in the vertical direction) L1 of the optical semiconductor element 1 is, for example, 10 μm or more, preferably 50 μm or more, and, for example, 1000 μm or less, preferably 500 μm or less. The width (the length in the left-right direction and the length in the front-rear direction) L2 of the optical semiconductor element 1 is, for example, 0.1 μm or more, preferably 0.2 μm or more, and for example, 5000 μm or less, preferably 2000 μm or less. is there.
 第1仮固定シート10は、複数の光半導体素子1を仮固定し、また、その後、第1蛍光体層2によって複数の光半導体素子1をまとめて被覆して封止して、その後、第1蛍光体層2に溝3を形成するための支持部材である。 The first temporarily fixing sheet 10 temporarily fixes the plurality of optical semiconductor elements 1, and then covers and seals the plurality of optical semiconductor elements 1 together with the first phosphor layer 2. 1 is a support member for forming the groove 3 in the phosphor layer 2.
 第1仮固定シート10は、仮固定層11と、支持層12とを備える。 The first temporary fixing sheet 10 includes a temporary fixing layer 11 and a support layer 12.
 仮固定層11は、複数の光半導体素子1を仮固定するために、仮固定層11の上部に設けられる。仮固定層11は、感圧接着層を有しており、感圧接着層は、例えば、感圧接着剤から、左右方向および前後方向に延びる略平板形状に形成されている。感圧接着剤としては、例えば、処理(具体的には、活性エネルギー線の照射など)によって、感圧接着力が低減する感圧接着剤が挙げられる。また、仮固定層11は、1つの感圧接着層と、その感圧接着層の下面に設けられる基材(図示せず)とを有することができる。さらに、仮固定層11は、2つの感圧接着層と、それらの間に介在する基材(図示せず)とを有することもできる。さらに、仮固定層11の厚みは、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、200μm以下、好ましくは、150μm以下である。 The temporary fixing layer 11 is provided on the temporary fixing layer 11 in order to temporarily fix the plurality of optical semiconductor elements 1. The temporary fixing layer 11 has a pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer is formed in, for example, a substantially flat plate shape extending from the pressure-sensitive adhesive in the left-right direction and the front-rear direction. Examples of the pressure-sensitive adhesive include a pressure-sensitive adhesive whose pressure-sensitive adhesive force is reduced by treatment (specifically, irradiation with active energy rays). The temporary fixing layer 11 can have one pressure-sensitive adhesive layer and a base material (not shown) provided on the lower surface of the pressure-sensitive adhesive layer. Further, the temporary fixing layer 11 may have two pressure-sensitive adhesive layers and a base material (not shown) interposed therebetween. Furthermore, the thickness of the temporary fixing layer 11 is, for example, 5 μm or more, preferably 10 μm or more, and for example, 200 μm or less, preferably 150 μm or less.
 支持層12は、仮固定層11を支持するために、仮固定層11の下面に設けられる。支持層12としては、例えば、ポリエチレンフィルム、ポリエステルフィルム(PETなど)などのポリマーフィルム、例えば、セラミクスシート、例えば、金属箔などが挙げられる。好ましくは、ポリマーフィルムが挙げられる。支持層12の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The support layer 12 is provided on the lower surface of the temporary fixing layer 11 in order to support the temporary fixing layer 11. Examples of the support layer 12 include polymer films such as a polyethylene film and a polyester film (such as PET), such as a ceramic sheet, such as a metal foil. Preferably, a polymer film is used. The thickness of the support layer 12 is, for example, 1 μm or more, preferably 10 μm or more, and for example, 2000 μm or less, preferably 1000 μm or less.
 そして、複数の光半導体素子1を、第1仮固定シート10の上面に互いに間隔を隔てた仮固定する。具体的には、複数の光半導体素子1を仮固定層11の上面に、左右方向および前後方向に間隔を隔てて整列配置する。より具体的には、複数の光半導体素子1の下面を、第1仮固定シート10の仮固定層11の上面に接触させる。 Then, the plurality of optical semiconductor elements 1 are temporarily fixed to the upper surface of the first temporary fixing sheet 10 at intervals. Specifically, a plurality of optical semiconductor elements 1 are aligned and arranged on the upper surface of the temporary fixing layer 11 at intervals in the left-right direction and the front-rear direction. More specifically, the lower surfaces of the plurality of optical semiconductor elements 1 are brought into contact with the upper surface of the temporary fixing layer 11 of the first temporary fixing sheet 10.
 隣接する光半導体素子1間の間隔L3は、例えば、0.1mm以上、好ましくは、0.3mm以上であり、また、例えば、3mm以下、好ましくは、2mm以下である。複数の光半導体素子1のピッチP、すなわち、一の光半導体素子1の幅L2と、一の光半導体素子1とそれに隣接する光半導体素子1との間の間隔L3との総和P(=L2+L3)は、例えば、0.3mm以上、好ましくは、0.5mm以上であり、また、例えば、5mm以下、好ましくは、3mm以下である。 The interval L3 between the adjacent optical semiconductor elements 1 is, for example, 0.1 mm or more, preferably 0.3 mm or more, and for example, 3 mm or less, preferably 2 mm or less. The sum P (= L2 + L3) of the pitch P of the plurality of optical semiconductor elements 1, that is, the width L2 of one optical semiconductor element 1 and the interval L3 between one optical semiconductor element 1 and the adjacent optical semiconductor element 1 ) Is, for example, 0.3 mm or more, preferably 0.5 mm or more, and for example, 5 mm or less, preferably 3 mm or less.
 図1Bに示すように、その後、第1蛍光体層2によって、複数の光半導体素子1を、複数の光半導体素子1から露出する第1仮固定シート10の上面に第1蛍光体層2が直接接触するように、被覆する。 As shown in FIG. 1B, the plurality of optical semiconductor elements 1 are then placed on the upper surface of the first temporary fixing sheet 10 exposed from the plurality of optical semiconductor elements 1 by the first phosphor layer 2. Cover in direct contact.
 第1蛍光体層2によって、複数の光半導体素子1を被覆するには、まず、第1蛍光体層2を調製する。 In order to cover the plurality of optical semiconductor elements 1 with the first phosphor layer 2, first, the first phosphor layer 2 is prepared.
 第1蛍光体層2は、平面視において、複数の光半導体素子1を含む寸法を有しており、略矩形平板形状を有している。第1蛍光体層2は、光半導体素子1から発光される青色光の一部を、例えば、黄色光、赤色光、緑色光などに変換する波長変換層である。第1蛍光体層2は、蛍光体樹脂組成物からなる。 The first phosphor layer 2 has a dimension including a plurality of optical semiconductor elements 1 in a plan view, and has a substantially rectangular flat plate shape. The first phosphor layer 2 is a wavelength conversion layer that converts part of the blue light emitted from the optical semiconductor element 1 into, for example, yellow light, red light, green light, and the like. The first phosphor layer 2 is made of a phosphor resin composition.
 蛍光体樹脂組成物は、蛍光体と、透明樹脂組成物とを含有している。 The phosphor resin composition contains a phosphor and a transparent resin composition.
 蛍光体としては、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体、青色光を緑色光に変換することのできる緑色蛍光体などが挙げられる。 Examples of the phosphor include a yellow phosphor capable of converting blue light into yellow light, a red phosphor capable of converting blue light into red light, and a green phosphor capable of converting blue light into green light. Examples include the body.
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。 Examples of the yellow phosphor include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca-α-SiAlON.
 赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。 Examples of the red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
 緑色蛍光体としては、例えば、LuAl12:Ce(LuAG:ルテニウムアルミニウムガーネット)などのガーネット型蛍光体が挙げられる。 The green phosphor, for example, Lu 3 Al 5 O 12: Ce: garnet phosphors (LuAG ruthenium aluminum garnet) and the like.
 このような蛍光体のなかでは、好ましくは、黄色蛍光体単独、または、赤色蛍光体と緑色蛍光体との組み合わせが挙げられる。 Among such phosphors, preferably, a yellow phosphor alone or a combination of a red phosphor and a green phosphor is used.
 蛍光体の形状としては、例えば、球状、板状、針状などが挙げられる。好ましくは、流動性の観点から、球状が挙げられる。 Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape. Preferably, spherical shape is mentioned from a fluid viewpoint.
 蛍光体の最大長さの平均値(球状である場合には、平均粒子径)は、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。 The average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 200 μm or less, preferably 100 μm or less. It is.
 蛍光体の配合割合は、透明樹脂組成物100質量部に対して、例えば、0.1質量部以上、好ましくは、0.5質量部以上であり、例えば、80質量部以下、好ましくは、50質量部以下である。また、蛍光体の配合割合は、蛍光体樹脂組成物に対して、例えば、0.1質量%以上、好ましくは、0.5質量%以上であり、例えば、90質量%以下、好ましくは、80質量%以下である。 The blending ratio of the phosphor is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 80 parts by mass or less, preferably 50 parts by mass with respect to 100 parts by mass of the transparent resin composition. It is below mass parts. The blending ratio of the phosphor is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, for example, 90% by mass or less, preferably 80% by mass with respect to the phosphor resin composition. It is below mass%.
 透明樹脂組成物は、例えば、光半導体素子1を封止するための封止材として使用される透明性の樹脂組成物が挙げられる。具体的には、透明樹脂組成物としては、例えば、熱硬化性樹脂組成物、熱可塑性樹脂組成物、好ましくは、熱硬化性樹脂組成物が挙げられる。 Examples of the transparent resin composition include a transparent resin composition used as a sealing material for sealing the optical semiconductor element 1. Specifically, examples of the transparent resin composition include a thermosetting resin composition and a thermoplastic resin composition, preferably a thermosetting resin composition.
 熱硬化性樹脂組成物としては、例えば、2段反応硬化性樹脂組成物、1段反応硬化性樹脂組成物が挙げられる。 Examples of the thermosetting resin composition include a two-stage reaction curable resin composition and a one-stage reaction curable resin composition.
 2段反応硬化性樹脂組成物は、2つの反応機構を有しており、第1段の反応で、Aステージ状態からBステージ化(半硬化)し、次いで、第2段の反応で、Bステージ状態からCステージ化(完全硬化)することができる。つまり、2段反応硬化性樹脂組成物は、適度の加熱条件によりBステージ状態となることができる熱硬化性樹脂組成物である。ただし、2段反応硬化性樹脂組成物は、強度の加熱によって、Aステージ状態から、Bステージ状態を維持することなく、一度にCステージ状態となることもできる。なお、Bステージ状態は、熱硬化性樹脂組成物が、液状であるAステージ状態と、完全硬化したCステージ状態との間の状態であって、硬化およびゲル化がわずかに進行し、圧縮弾性率がCステージ状態の弾性率よりも小さい半固体または固体状態である。 The two-stage reaction curable resin composition has two reaction mechanisms. In the first stage reaction, the A stage state is changed to B stage (semi-cured), and then in the second stage reaction, B C stage (complete curing) can be performed from the stage state. That is, the two-stage reaction curable resin composition is a thermosetting resin composition that can be in a B stage state under appropriate heating conditions. However, the two-stage reaction curable resin composition can be changed from the A-stage state to the C-stage state at a time without maintaining the B-stage state by intense heating. The B stage state is a state between the A stage state in which the thermosetting resin composition is in a liquid state and the C stage state in which the thermosetting resin composition is completely cured. It is a semi-solid or solid state whose modulus is smaller than the elastic modulus in the C-stage state.
 1段反応硬化性樹脂組成物は、1つの反応機構を有しており、第1段の反応で、Aステージ状態からCステージ化(完全硬化)することができる。なお、1段反応硬化性樹脂組成物は、第1段の反応の途中で、その反応が停止して、Aステージ状態からBステージ状態となることができ、その後のさらなる加熱によって、第1段の反応が再開されて、Bステージ状態からCステージ化(完全硬化)することができる熱硬化性樹脂組成物を含む。つまり、かかる熱硬化性樹脂組成物は、Bステージ状態となることができる熱硬化性樹脂組成物である。一方、1段反応硬化性樹脂組成物は、1段の反応の途中で停止するように制御できず、つまり、Bステージ状態となることができず、一度に、Aステージ状態からCステージ化(完全硬化)する熱硬化性樹脂組成物を含む。 The first-stage reaction curable resin composition has one reaction mechanism, and can be changed from the A-stage state to the C-stage (completely cured) by the first-stage reaction. The first-stage reaction curable resin composition can be changed from the A-stage state to the B-stage state in the middle of the first-stage reaction. The thermosetting resin composition that can be C-staged (completely cured) from the B-stage state is included. That is, this thermosetting resin composition is a thermosetting resin composition that can be in a B-stage state. On the other hand, the first-stage reaction curable resin composition cannot be controlled to stop in the middle of the first-stage reaction, that is, cannot enter the B-stage state, and is changed from the A-stage state to the C-stage ( A thermosetting resin composition that completely cures).
 透明樹脂組成物としては、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。透明樹脂組成物として、好ましくは、シリコーン樹脂が挙げられる。 Examples of the transparent resin composition include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin. As the transparent resin composition, preferably, a silicone resin is used.
 上記した透明樹脂組成物は、同一種類または複数種類のいずれでもよい。 The above-described transparent resin composition may be of the same type or a plurality of types.
 シリコーン樹脂としては、透明性、耐久性、耐熱性、耐光性の観点から、例えば、付加反応硬化型シリコーン樹脂組成物、縮合・付加反応硬化型シリコーン樹脂組成物などのシリコーン樹脂組成物が挙げられる。シリコーン樹脂は、単独で使用してもよく、あるいは、併用することもできる。 Examples of the silicone resin include silicone resin compositions such as an addition reaction curable silicone resin composition and a condensation / addition reaction curable silicone resin composition from the viewpoint of transparency, durability, heat resistance, and light resistance. . Silicone resins may be used alone or in combination.
 付加反応硬化型シリコーン樹脂組成物は、1段反応硬化性樹脂組成物であって、例えば、アルケニル基含有ポリシロキサンと、ヒドロシリル基含有ポリシロキサンと、ヒドロシリル化触媒とを含有する。 The addition reaction curable silicone resin composition is a one-stage reaction curable resin composition and contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
 具体的には、例えば、付加反応硬化型シリコーン樹脂組成物として、Bステージ状態となることができる1段反応硬化性樹脂組成物であるフェニル系シリコーン樹脂組成物、例えば、Bステージ状態となることができない1段反応硬化性樹脂組成物であるメチル系シリコーン樹脂組成物が挙げられる。好ましくは、フェニル系シリコーン樹脂組成物が挙げられる。 Specifically, for example, as an addition reaction curable silicone resin composition, a phenyl silicone resin composition that is a one-stage reaction curable resin composition that can be in a B-stage state, for example, a B-stage state. A methyl silicone resin composition that is a one-stage reaction curable resin composition that cannot be cured. Preferably, a phenyl type silicone resin composition is mentioned.
 付加反応硬化型シリコーン樹脂組成物は、例えば、特開2015-073084号公報などに記載される付加反応硬化型シリコーン樹脂組成物が挙げられる。 Examples of the addition reaction curable silicone resin composition include an addition reaction curable silicone resin composition described in JP-A-2015-073084.
 縮合・付加反応硬化型シリコーン樹脂組成物は、2段反応硬化性樹脂であって、具体的には、例えば、特開2010-265436号公報、特開2013-187227号公報などに記載される第1~第8の縮合・付加反応硬化型シリコーン樹脂組成物、例えば、特開2013-091705号公報、特開2013-001815号公報、特開2013-001814号公報、特開2013-001813号公報、特開2012-102167号公報などに記載されるかご型オクタシルセスキオキサン含有シリコーン樹脂組成物などが挙げられる。 The condensation / addition reaction curable silicone resin composition is a two-stage reaction curable resin, and specifically, for example, those described in JP 2010-265436 A, JP 2013-187227 A, and the like. 1 to 8 condensation / addition reaction curable silicone resin compositions, for example, JP 2013-091705 A, JP 2013-001815 A, JP 2013-001814 A, JP 2013-001813 A, Examples thereof include a cage-type octasilsesquioxane-containing silicone resin composition described in JP2012-102167A.
 なお、付加反応硬化型シリコーン樹脂組成物および縮合・付加反応硬化型シリコーン樹脂組成物は、固体状であって、熱可塑性および熱硬化性を併有する。 The addition reaction curable silicone resin composition and the condensation / addition reaction curable silicone resin composition are solid and have both thermoplasticity and thermosetting properties.
 なお、蛍光体樹脂組成物には、必要に応じて、顔料(フィラーを含む)、シランカップリング剤、老化防止剤、変性剤、界面活性剤、染料、変色防止剤、紫外線吸収剤などの公知の添加物を適宜の割合で添加することができる。 In addition, for the phosphor resin composition, if necessary, known pigments (including fillers), silane coupling agents, anti-aging agents, modifiers, surfactants, dyes, anti-discoloring agents, ultraviolet absorbers, etc. These additives can be added at an appropriate ratio.
 なお、第1蛍光体層2を剥離シート(図示せず)によって、支持して保護することができる。 The first phosphor layer 2 can be supported and protected by a release sheet (not shown).
 図示しない剥離シートは、第1蛍光体層2によって光半導体素子1を封止するまでの間、第1蛍光体層2を保護するために、第1蛍光体層2の裏面(図1Aにおける上面)に剥離可能に貼着されている。剥離シート(図示せず)としては、例えば、ポリエチレンフィルム、ポリエステルフィルム(PETなど)などのポリマーフィルム、例えば、セラミクスシート、例えば、金属箔などが挙げられる。好ましくは、ポリマーフィルムが挙げられる。剥離シート(図示せず)の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 A release sheet (not shown) is used to protect the first phosphor layer 2 until the optical semiconductor element 1 is sealed by the first phosphor layer 2 (the upper surface in FIG. 1A). ) Is detachably attached. As a peeling sheet (not shown), polymer films, such as a polyethylene film and a polyester film (PET etc.), for example, ceramic sheets, for example, metal foil etc. are mentioned, for example. Preferably, a polymer film is used. The thickness of the release sheet (not shown) is, for example, 1 μm or more, preferably 10 μm or more, and for example, 2000 μm or less, preferably 1000 μm or less.
 第1蛍光体層2が、フェニル系シリコーン樹脂組成物(1段反応硬化性樹脂組成物(付加反応硬化型シリコーン樹脂組成物))を含有する場合には、アルケニル基と、ヒドロシリル基とのヒドロシリル化反応が途中まで進行して、一旦、停止させる。 When the first phosphor layer 2 contains a phenyl silicone resin composition (one-step reaction curable resin composition (addition reaction curable silicone resin composition)), hydrosilyl of an alkenyl group and a hydrosilyl group The chemical reaction proceeds halfway and is stopped once.
 光半導体素子1を被覆する前の第1蛍光体層2の厚みL0は、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The thickness L0 of the first phosphor layer 2 before covering the optical semiconductor element 1 is, for example, 10 μm or more, preferably 50 μm or more, and, for example, 2000 μm or less, preferably 1000 μm or less.
 その後、第1蛍光体層2を、複数の光半導体素子1および第1仮固定シート10に対して、圧着する。好ましくは、第1蛍光体層2を、複数の光半導体素子1を支持する剥離シート6に対して、熱圧着(熱プレス)する。 Thereafter, the first phosphor layer 2 is pressure-bonded to the plurality of optical semiconductor elements 1 and the first temporary fixing sheet 10. Preferably, the 1st fluorescent substance layer 2 is thermocompression-bonded (heat press) with respect to the peeling sheet 6 which supports the some optical semiconductor element 1. FIG.
 具体的には、まず、第1蛍光体層2と、複数の光半導体素子1および第1仮固定シート10とを、熱源を備える平板プレスなどに設置する。平板プレスは、図示しないが、平坦な上面を有する下金型と、それの上側に対向配置され、平坦な下面を有する上金型とを備える。 Specifically, first, the first phosphor layer 2, the plurality of optical semiconductor elements 1, and the first temporary fixing sheet 10 are installed in a flat plate press or the like equipped with a heat source. Although not shown, the flat plate press includes a lower mold having a flat upper surface, and an upper mold having a flat lower surface disposed on the upper side thereof.
 そして、平板プレスによって、第1蛍光体層2と、複数の光半導体素子1および第1仮固定シート10とを熱プレスする。 And the 1st fluorescent substance layer 2, the some optical semiconductor element 1, and the 1st temporary fixing sheet 10 are hot-pressed by flat plate press.
 平板プレスにおける温度は、第1蛍光体層2が、付加反応硬化型シリコーン樹脂組成物を含有する場合には、付加反応硬化型シリコーン樹脂組成物の熱可塑温度またはそれ以上であって、好ましくは、付加反応硬化型シリコーン樹脂組成物の熱可塑および熱硬化を一度に実施する観点から、熱硬化温度またはそれ以上であって、具体的には、例えば、60℃以上、好ましくは、80℃以上であり、また、例えば、150℃以下、好ましくは、120℃以下である。 When the first phosphor layer 2 contains an addition reaction curable silicone resin composition, the temperature in the flat plate press is equal to or higher than the thermoplastic temperature of the addition reaction curable silicone resin composition, preferably From the viewpoint of carrying out the thermoplastic and thermosetting of the addition reaction curable silicone resin composition at one time, it is a thermosetting temperature or higher, specifically, for example, 60 ° C or higher, preferably 80 ° C or higher. Also, for example, 150 ° C. or lower, preferably 120 ° C. or lower.
 プレス時間は、例えば、1分間以上、好ましくは、5分間以上であり、また、例えば、60分間以下、好ましくは、20分間以下である。 The pressing time is, for example, 1 minute or more, preferably 5 minutes or more, and for example, 60 minutes or less, preferably 20 minutes or less.
 上記した熱プレスによって、第1蛍光体層2が、熱可塑性および熱硬化性を有するフェニル系シリコーン樹脂組成物を含有する場合には、第1蛍光体層2が可塑化する。引き続き、可塑化した第1蛍光体層2によって、複数の光半導体素子1を埋設する。 When the first phosphor layer 2 contains a phenyl silicone resin composition having thermoplasticity and thermosetting property, the first phosphor layer 2 is plasticized by the above-described hot pressing. Subsequently, a plurality of optical semiconductor elements 1 are embedded with the plasticized first phosphor layer 2.
 このとき、図1Bに示すように、複数の光半導体素子1から露出する仮固定層11の上面に、第1蛍光体層2が直接接触する。つまり、第1蛍光体層2は、光半導体素子1の上面および側面と、仮固定層11から露出する仮固定層11の上面とに、直接接触する。 At this time, as shown in FIG. 1B, the first phosphor layer 2 is in direct contact with the upper surface of the temporary fixing layer 11 exposed from the plurality of optical semiconductor elements 1. That is, the first phosphor layer 2 is in direct contact with the upper surface and side surfaces of the optical semiconductor element 1 and the upper surface of the temporary fixing layer 11 exposed from the temporary fixing layer 11.
 これによって、図1Bに示すように、1つの第1蛍光体層2によって、複数の光半導体素子1を封止する。 Thereby, as shown in FIG. 1B, a plurality of optical semiconductor elements 1 are sealed by one first phosphor layer 2.
 これにより、複数の光半導体素子1と、1つの第1蛍光体層2とを備える第1被覆素子集合体41を、第1仮固定シート10に仮固定された状態で、得る。 Thereby, a first covering element assembly 41 including a plurality of optical semiconductor elements 1 and one first phosphor layer 2 is obtained in a state of being temporarily fixed to the first temporary fixing sheet 10.
 図1Bに示すように、第1被覆素子集合体41において、第1蛍光体層2の上面は、面方向に沿う平坦面を有している。 As shown in FIG. 1B, in the first covering element assembly 41, the upper surface of the first phosphor layer 2 has a flat surface along the surface direction.
 また、第1被覆素子集合体41において、複数の光半導体素子1のそれぞれの下面は、仮固定シート10の上面に直接接触(仮固定)されている。 In the first covering element assembly 41, the lower surfaces of the plurality of optical semiconductor elements 1 are in direct contact (temporarily fixed) with the upper surface of the temporary fixing sheet 10.
 光半導体素子1の上側に位置する第1蛍光体層2(上側第1蛍光体層52)の厚みL4は、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下、より好ましくは、300μm以下である。隣接する光半導体素子1間に位置する第1蛍光体層2の厚みL5は、例えば、15μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、1500μm以下である。 The thickness L4 of the first phosphor layer 2 (upper first phosphor layer 52) located on the upper side of the optical semiconductor element 1 is, for example, 10 μm or more, preferably 50 μm or more, and, for example, 1000 μm or less, preferably Is 500 μm or less, more preferably 300 μm or less. The thickness L5 of the first phosphor layer 2 positioned between the adjacent optical semiconductor elements 1 is, for example, 15 μm or more, preferably 50 μm or more, and for example, 2000 μm or less, preferably 1500 μm or less.
 1-2.工程(2)
 図1Cに示すように、工程(2)では、隣接する光半導体素子1の間に位置する第1蛍光体層2に、上方に向かって開放される溝3を設ける。
1-2. Step (2)
As shown in FIG. 1C, in the step (2), a groove 3 opened upward is provided in the first phosphor layer 2 located between the adjacent optical semiconductor elements 1.
 溝3は、複数の光半導体素子1のそれぞれを仕切るように、平面視略碁盤目状(略井桁状)を有する。 The groove 3 has a substantially grid pattern (substantially a cross-beam shape) in plan view so as to partition each of the plurality of optical semiconductor elements 1.
 具体的には、ダイシングソー35などの切断装置によって、隣接する光半導体素子1の間に位置する第1蛍光体層2をハーフカットする。つまり、隣接する光半導体素子1の間の中央に位置する第1蛍光体層2の上端部および上下方向途中部を切断する。すなわち、隣接する光半導体素子1の間に位置する第1蛍光体層2の下端部を、切断せず、存置させる。 Specifically, the first phosphor layer 2 positioned between adjacent optical semiconductor elements 1 is half-cut by a cutting device such as a dicing saw 35. That is, the upper end portion and the middle portion in the vertical direction of the first phosphor layer 2 located at the center between the adjacent optical semiconductor elements 1 are cut. That is, the lower end portion of the first phosphor layer 2 located between the adjacent optical semiconductor elements 1 is left without being cut.
 詳しくは、切断装置を、第1蛍光体層2の上側から、第1蛍光体層2の上面に進入させ、続いて、切断装置が、第1蛍光体層2の下面に到達する前に、切断を終了させる(寸止めする)。 Specifically, the cutting device enters the upper surface of the first phosphor layer 2 from the upper side of the first phosphor layer 2, and then, before the cutting device reaches the lower surface of the first phosphor layer 2, Terminate cutting (stop dimension).
 これによって、隣接する光半導体素子1の間に位置する第1蛍光体層2に、上方に向かって開口される溝3を設ける。 Thereby, a groove 3 opened upward is provided in the first phosphor layer 2 located between the adjacent optical semiconductor elements 1.
 また、溝3が設けられることにより、第1蛍光体層2には、底部36が設けられる。底部36は、第1蛍光体層2における光半導体素子1の側面を被覆する部分から、面方向外側に張り出す張出部である。底部36の上面は、第1蛍光体層2において光半導体素子1の上面を被覆する部分から一段下側に下がるように位置しており、そのため、底部36の上面と、上記した部分の上面との間に段差が形成されている。 In addition, the bottom portion 36 is provided in the first phosphor layer 2 by providing the groove 3. The bottom portion 36 is an overhanging portion that protrudes outward in the surface direction from a portion covering the side surface of the optical semiconductor element 1 in the first phosphor layer 2. The upper surface of the bottom portion 36 is positioned so as to be lowered one step downward from the portion covering the upper surface of the optical semiconductor element 1 in the first phosphor layer 2. Therefore, the upper surface of the bottom portion 36 and the upper surface of the above-described portion A step is formed between the two.
 溝3の幅L6は、ダイシングソー35の厚みに対応して設定されており、具体的には、例えば、10μm以上、好ましくは、15μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。 The width L6 of the groove 3 is set corresponding to the thickness of the dicing saw 35, specifically, for example, 10 μm or more, preferably 15 μm or more, and, for example, 1000 μm or less, preferably 500 μm. It is as follows.
 溝3の深さL7は、例えば、50μm以上、好ましくは、75μm以上、より好ましくは、100μm以上であり、また、例えば、2000μm以下である。 The depth L7 of the groove 3 is, for example, 50 μm or more, preferably 75 μm or more, more preferably 100 μm or more, and for example, 2000 μm or less.
 底部36の厚みL8(仮固定層11の上面から、底部36の上面までの距離)は、例えば、5μm以上、好ましくは、10μm以上、より好ましくは、25μm以上であり、また、例えば、200μm以下、好ましくは、75μm以下である。底部36の厚みL8の厚みが上記した下限以上であれば、切断装置(具体的には、ダイシングソー35など)による第1蛍光体層2への進入深さの精度を、例えば、少なくとも10μm程度と大きく設定することが許容される。 The thickness L8 of the bottom portion 36 (distance from the upper surface of the temporary fixing layer 11 to the upper surface of the bottom portion 36) is, for example, 5 μm or more, preferably 10 μm or more, more preferably 25 μm or more, and for example, 200 μm or less. Preferably, it is 75 μm or less. If the thickness L8 of the bottom portion 36 is equal to or greater than the above-described lower limit, the accuracy of the depth of penetration into the first phosphor layer 2 by the cutting device (specifically, the dicing saw 35 or the like) is, for example, at least about 10 μm. It is permissible to set a large value.
 底部36の厚みL8の厚みが上記した上限以下であれば、側方への光の漏れを抑制し、また、上方への輝度(正面輝度)を向上させることができる。 If the thickness L8 of the bottom portion 36 is equal to or less than the above-described upper limit, light leakage to the side can be suppressed, and upward luminance (front luminance) can be improved.
 溝3の内側面と、光半導体素子1の側面との距離αは、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The distance α between the inner side surface of the groove 3 and the side surface of the optical semiconductor element 1 is, for example, 50 μm or more, preferably 100 μm or more, and for example, 2000 μm or less, preferably 1000 μm or less.
 1-3.工程(3)
 図1D~図2Hに示すように、工程(3)では、第2被覆層4を溝3に充填する。
1-3. Process (3)
As shown in FIGS. 1D to 2H, in the step (3), the second coating layer 4 is filled into the grooves 3.
 第2被覆層4を溝3に充填する方法は、例えば、保護シート6を第1蛍光体層2の上面に配置する工程(i)(図1D参照)と、第1仮固定シート10、光半導体素子1、第1蛍光体層2および保護シート6を、真空下に配置する工程(ii)(図1E参照)と、被覆材料43を、第1被覆素子集合体41の周囲を囲むように、第1仮固定シート10および保護シート6に接触させて、密閉空間17を形成する工程(iii)(図1E参照)と、被覆材料43を密閉空間17に流入させる工程(iv)(図2F参照)と、保護シート6を剥離する工程(v)(図2G参照)とを備える。工程(i)~工程(v)は、順次実施される。 The method of filling the groove 3 with the second coating layer 4 includes, for example, the step (i) of arranging the protective sheet 6 on the upper surface of the first phosphor layer 2 (see FIG. 1D), the first temporary fixing sheet 10, and the light. The step (ii) (see FIG. 1E) of placing the semiconductor element 1, the first phosphor layer 2 and the protective sheet 6 under vacuum, and the covering material 43 so as to surround the first covering element assembly 41 The process (iii) (refer FIG. 1E) which makes the 1st temporary fixing sheet 10 and the protection sheet 6 contact, and makes the sealing material 17 flow into the sealed space 17 (iv) (FIG. 2F) And a step (v) of peeling off the protective sheet 6 (see FIG. 2G). Step (i) to step (v) are sequentially performed.
 1-3-1.工程(i)
 図1Dおよび図3Aに示すように、工程(i)では、保護シート6を上側第1蛍光体層52の上面に配置する。その際、保護シート6が溝3の上端を閉塞するが、溝3に充填されないように、保護シート6を配置する。
1-3-1. Step (i)
As shown in FIGS. 1D and 3A, in step (i), the protective sheet 6 is disposed on the upper surface of the upper first phosphor layer 52. At that time, the protective sheet 6 closes the upper end of the groove 3, but the protective sheet 6 is arranged so that the groove 3 is not filled.
 保護シート6は、厚み方向に投影したときに、第1被覆素子集合体41を含む略矩形平板形状を有する。また、保護シート6は、厚み方向に投影したときに、第1仮固定シート10に含まれる略矩形平板形状を有する。具体的には、保護シート6は、第1被覆素子集合体41より大きい寸法を有し、かつ、第1仮固定シート10より小さい寸法を有する。 The protective sheet 6 has a substantially rectangular flat plate shape including the first covering element aggregate 41 when projected in the thickness direction. The protective sheet 6 has a substantially rectangular flat plate shape included in the first temporary fixing sheet 10 when projected in the thickness direction. Specifically, the protective sheet 6 has a size larger than the first covering element assembly 41 and a size smaller than the first temporary fixing sheet 10.
 保護シート6は、後述する工程(iii)(図2Fおよび図3C参照)において、被覆材料43が、上側第1蛍光体層52の上面を被覆せず、上側第1蛍光体層52の上面を露出させるためのシートである。保護シート6は、被覆光半導体素子5に対して剥離可能な感圧接着シートである。 In the protective sheet 6, the coating material 43 does not cover the upper surface of the upper first phosphor layer 52 and does not cover the upper surface of the upper first phosphor layer 52 in the step (iii) described later (see FIGS. 2F and 3C). It is a sheet for exposing. The protective sheet 6 is a pressure-sensitive adhesive sheet that can be peeled off from the coated optical semiconductor element 5.
 保護シート6は、感圧接着層61と、感圧接着層61を支持する支持シート62とを備える。 The protective sheet 6 includes a pressure-sensitive adhesive layer 61 and a support sheet 62 that supports the pressure-sensitive adhesive layer 61.
 感圧接着層61は、例えば、感圧接着剤から、略平板形状に形成されている。 The pressure-sensitive adhesive layer 61 is formed in a substantially flat plate shape from, for example, a pressure-sensitive adhesive.
 感圧接着剤としては、例えば、処理(具体的には、活性エネルギー線の照射など)によって、感圧接着力が低減する感圧接着剤が挙げられる。 Examples of the pressure-sensitive adhesive include a pressure-sensitive adhesive whose pressure-sensitive adhesive force is reduced by treatment (specifically, irradiation with active energy rays).
 そのような感圧接着剤としては、例えば、炭素-炭素二重結合が導入された樹脂組成物などが挙げられる。樹脂組成物は、炭素-炭素二重結合を有するポリマーが挙げられる。 Examples of such a pressure-sensitive adhesive include a resin composition into which a carbon-carbon double bond is introduced. Examples of the resin composition include a polymer having a carbon-carbon double bond.
 そのようなポリマーは、例えば、以下の方法によって、調製される。 Such a polymer is prepared, for example, by the following method.
 すなわち、例えば、主ビニルモノマーと、第1官能基を有する副ビニルモノマーとを含有するモノマー成分を、第1官能基が消失しないように、共重合して、第1官能基を有する前駆体ポリマーを調製する。別途、第1官能基と反応することができる第2官能基と、炭素-二重結合とを有する化合物を準備する。その後、この化合物を前駆体ポリマーに配合して、第1官能基と第2官能基とを反応させる。 That is, for example, a precursor polymer having a first functional group is obtained by copolymerizing a monomer component containing a main vinyl monomer and a secondary vinyl monomer having a first functional group so that the first functional group does not disappear. To prepare. Separately, a compound having a second functional group capable of reacting with the first functional group and a carbon-double bond is prepared. Then, this compound is mix | blended with a precursor polymer, and a 1st functional group and a 2nd functional group are made to react.
 第1官能基と第2官能基との組合せとして、例えば、ヒドロキシル基とイソシアネート基との組合せなどが挙げられる。第1官能基として、好ましくは、ヒドロキシル基が挙げられる。第2官能基として、好ましくは、イソシアネート基が挙げられる。 Examples of the combination of the first functional group and the second functional group include a combination of a hydroxyl group and an isocyanate group. The first functional group is preferably a hydroxyl group. As the second functional group, an isocyanate group is preferable.
 主モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート(2EHA/2EHMA)、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、エイコシル(メタ)アクリレートなどの、アルキル部分の炭素数が1~20であるアルキル(メタ)アクリレートが挙げられる。好ましくは、2-エチルヘキシルアクリレート(2EHA)が挙げられる。これらは、単独使用または併用することができる。主モノマーの、モノマー成分における配合割合は、例えば、70質量%以上、好ましくは、90質量%以上であり、また、例えば、99質量%以下である。 Examples of the main monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and s-butyl (meth) ) Acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate (2EHA / 2EHMA), octyl (meth) acrylate, isooctyl (meth) Acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) Chryrate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, nonadecyl (meth) acrylate, eicosyl (meth) acrylate, etc. And alkyl (meth) acrylates in which the alkyl moiety has 1 to 20 carbon atoms. Preferably, 2-ethylhexyl acrylate (2EHA) is used. These can be used alone or in combination. The mixing ratio of the main monomer in the monomer component is, for example, 70% by mass or more, preferably 90% by mass or more, and for example, 99% by mass or less.
 副ビニルモノマーは、主ビニルモノマーとして共重合することができるビニルモノマーである。副ビニルモノマーとしては、例えば、カルボキシ基含有モノマー、エポキシ基含有モノマー、ヒドロキシル基含有モノマー、イソシアネート基含有モノマーなどが挙げられ、好ましくは、ヒドロキシル基含有モノマーが挙げられる。 The secondary vinyl monomer is a vinyl monomer that can be copolymerized as the main vinyl monomer. Examples of the secondary vinyl monomer include a carboxy group-containing monomer, an epoxy group-containing monomer, a hydroxyl group-containing monomer, an isocyanate group-containing monomer, and preferably a hydroxyl group-containing monomer.
 ヒドロキシル基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート(2-HEA/HEMA)、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートなどが挙げられる。好ましくは、2-ヒドロキシエチルアクリレート(2-HEA)が挙げられる。これらは、単独使用または併用することができる。副ビニルモノマーの、モノマー成分における配合割合は、例えば、30質量%以下であり、また、例えば、1質量%以上である。 Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate (2-HEA / HEMA), 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth). And hydroxyalkyl (meth) acrylates such as acrylate. Preferably, 2-hydroxyethyl acrylate (2-HEA) is used. These can be used alone or in combination. The mixing ratio of the secondary vinyl monomer in the monomer component is, for example, 30% by mass or less, and, for example, 1% by mass or more.
 化合物としては、イソシアネート基含有化合物が挙げられ、具体的には、(メタ)アクリロイルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネートなどの、イソシアネート基含有ビニルモノマーが挙げられる。好ましくは、メタクリロイルオキシエチルイソシアネートが挙げられる。 Examples of the compound include isocyanate group-containing compounds, and specific examples include isocyanate groups such as (meth) acryloyl isocyanate, 2- (meth) acryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate. And vinyl-containing monomers. Preferably, methacryloyloxyethyl isocyanate is used.
 化合物の配合割合は、ポリマーにおける二重結合の導入量が、例えば、0.01ミリモル/g以上、好ましくは、0.2ミリモル/g以上となり、また、例えば、10.0ミリモル/g以下、好ましくは、5.0ミリモル/g以下となるように、調整される。 The compounding ratio of the compound is such that the introduction amount of the double bond in the polymer is, for example, 0.01 mmol / g or more, preferably 0.2 mmol / g or more, and, for example, 10.0 mmol / g or less, Preferably, it is adjusted to be 5.0 mmol / g or less.
 前駆体ポリマーを調製するには、上記したモノマー成分を、上記した割合で、重合開始剤の存在下で、例えば、溶液重合させる。 In order to prepare a precursor polymer, for example, the above-described monomer component is solution-polymerized in the above-described ratio in the presence of a polymerization initiator.
 重合開始剤としては、例えば、過酸化物、過硫酸塩、レドックス系開始剤などが挙げられる。これらは、単独使用または併用することができる。好ましくは、過酸化物が挙げられる。過酸化物としては、例えば、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート、モノパーオキシカーボネート、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイドなどが挙げられ、好ましくは、ジアシルジパーオキサイドが挙げられる。 Examples of the polymerization initiator include peroxides, persulfates, and redox initiators. These can be used alone or in combination. Preferably, a peroxide is mentioned. Examples of the peroxide include diacyl peroxide, peroxyester, peroxydicarbonate, monoperoxycarbonate, peroxyketal, dialkyl peroxide, hydroperoxide, ketone peroxide, and preferably diacyl peroxide. Diperoxide is mentioned.
 ジアシルジパーオキサイドとしては、例えば、ジベンゾイルパーオキサイド(BPO)、ジ-p-ニトロベンゾイルパーオキサイド、ジ-p-クロロベンゾイルパーオキサイド、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、ジ-n-オクタノイルパーオキサイド、ジデカノイルパーオキサイド、ジラウロイルパーオキサイドなどが挙げられる。好ましくは、ジベンゾイルパーオキサイド(BPO)が挙げられる。 Examples of the diacyl diperoxide include dibenzoyl peroxide (BPO), di-p-nitrobenzoyl peroxide, di-p-chlorobenzoyl peroxide, di (3,5,5-trimethylhexanoyl) peroxide, Examples thereof include di-n-octanoyl peroxide, didecanoyl peroxide, and dilauroyl peroxide. Preferably, dibenzoyl peroxide (BPO) is used.
 重合開始剤の配合割合は、モノマー成分100質量部に対して、例えば、0.005質量部以上、例えば、1質量部以下である。 The mixing ratio of the polymerization initiator is, for example, 0.005 parts by mass or more, for example, 1 part by mass or less with respect to 100 parts by mass of the monomer component.
 また、溶液重合では、重合溶媒が用いられる。重合溶媒としては、例えば、トルエン、キシレンなど芳香族炭化水素、例えば、ヘキサンなどの脂肪族炭化水素などが挙げられる。好ましくは、芳香族炭化水素が挙げられる。 In the solution polymerization, a polymerization solvent is used. Examples of the polymerization solvent include aromatic hydrocarbons such as toluene and xylene, and aliphatic hydrocarbons such as hexane. Preferably, aromatic hydrocarbon is used.
 そして、主ビニルモノマーと、副ビニルモノマーとを含有するモノマー成分を、副ビニルモノマーの第1官能基が消失しないように、共重合させて、第1官能基を有する前駆体ポリマーを調製する。 Then, a monomer component containing a main vinyl monomer and a sub vinyl monomer is copolymerized so that the first functional group of the sub vinyl monomer does not disappear, thereby preparing a precursor polymer having the first functional group.
 続いて、前駆体ポリマーに、上記した化合物を配合する。好ましくは、ヒドロキシル基を含有する前駆体ポリマーに、イソシアネート基含有化合物を配合して、ヒドロキシル基とイソシアネート基とを反応させて、ウレタン結合を形成する。そして、得られたポリマーには、化合物が有する炭素-炭素二重結合が導入される。 Subsequently, the above-described compound is added to the precursor polymer. Preferably, an isocyanate group-containing compound is blended with a precursor polymer containing a hydroxyl group, and the hydroxyl group and the isocyanate group are reacted to form a urethane bond. And the carbon-carbon double bond which a compound has is introduce | transduced into the obtained polymer.
 その後、ポリマーに、光重合開始剤を配合する。 Then, a photopolymerization initiator is blended into the polymer.
 光重合開始剤は、後述する工程(v)(図2G参照)において活性エネルギー線が感圧接着層61に照射されたときに、ラジカルを発生させて、樹脂組成物に導入された炭素-炭素二重結合を互いに反応させるための光重合触媒である。光重合開始剤の10時間半減期温度は、例えば、20℃以上、好ましくは、50℃以上であり、また、例えば、107℃以下、好ましくは、100℃以下である。 The photopolymerization initiator is a carbon-carbon introduced into the resin composition by generating radicals when the pressure sensitive adhesive layer 61 is irradiated with active energy rays in the step (v) (see FIG. 2G) described later. It is a photopolymerization catalyst for reacting double bonds with each other. The 10-hour half-life temperature of the photopolymerization initiator is, for example, 20 ° C. or more, preferably 50 ° C. or more, and for example, 107 ° C. or less, preferably 100 ° C. or less.
 光重合開始剤としては、例えば、ケタール系光重合開始剤、アセトフェノン系光重合開始剤、ベンゾインエーテル系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤、α-ケトール系光重合開始剤、芳香族スルホニルクロリド系光重合開始剤、光活性オキシム系光重合開始剤、ベンゾイン系光重合開始剤、ベンジル系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤などが挙げられる。これらは、単独使用または併用することができる。好ましくは、チオキサントン系光重合開始剤が挙げられる。チオキサントン系光重合開始剤としては、例えば、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンが挙げられる。好ましくは、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンが挙げられる。 Examples of the photopolymerization initiator include a ketal photopolymerization initiator, an acetophenone photopolymerization initiator, a benzoin ether photopolymerization initiator, an acylphosphine oxide photopolymerization initiator, an α-ketol photopolymerization initiator, an aromatic Group sulfonyl chloride photopolymerization initiator, photoactive oxime photopolymerization initiator, benzoin photopolymerization initiator, benzyl photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, and the like. These can be used alone or in combination. Preferably, a thioxanthone photopolymerization initiator is used. Examples of the thioxanthone photopolymerization initiator include 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4 -[4- (2-Hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one. Preferred examples include 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one.
 光重合開始剤の配合割合は、ポリマー100質量部に対して、例えば、0.1質量部以上、好ましくは、0.5質量部以上であり、また、例えば、10質量部以下、好ましくは、5質量部以下である。 The blending ratio of the photopolymerization initiator is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and for example, 10 parts by mass or less, preferably 100 parts by mass of the polymer. 5 parts by mass or less.
 また、ポリマーには、架橋剤などの添加剤を適宜の割合で配合することができる。架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、メラミン系架橋剤、過酸化物系架橋剤、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、アミン系架橋剤などが挙げられる。好ましくは、イソシアネート系架橋剤が挙げられる。 In addition, additives such as a crosslinking agent can be blended in the polymer at an appropriate ratio. Examples of the crosslinking agent include isocyanate crosslinking agents, epoxy crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, melamine crosslinking agents, peroxide crosslinking agents, urea crosslinking agents, metal alkoxide crosslinking agents, Metal chelate type crosslinking agents, metal salt type crosslinking agents, carbodiimide type crosslinking agents, amine type crosslinking agents and the like can be mentioned. Preferably, an isocyanate type crosslinking agent is mentioned.
 感圧接着層61を形成するには、支持シート62の表面に、感圧接着剤を塗布し、その後、乾燥させる。 In order to form the pressure-sensitive adhesive layer 61, a pressure-sensitive adhesive is applied to the surface of the support sheet 62, and then dried.
 支持シート62としては、例えば、ポリエチレンフィルム、ポリエステルフィルム(PETなど)などのポリマーフィルム、例えば、セラミックスシート、例えば、金属箔などが挙げられる。支持シート62の厚みは、例えば、80μm以上、好ましくは、110μm以上であり、また、例えば、300μm以下、好ましくは、250μm以下である。 Examples of the support sheet 62 include polymer films such as a polyethylene film and a polyester film (such as PET), such as a ceramic sheet, such as a metal foil. The thickness of the support sheet 62 is, for example, 80 μm or more, preferably 110 μm or more, and for example, 300 μm or less, preferably 250 μm or less.
 乾燥温度は、例えば、40℃以上、好ましくは、60℃以上であり、また、例えば、150℃以下、好ましくは、130℃以下である。乾燥温度は、例えば、5分以下である。 The drying temperature is, for example, 40 ° C. or more, preferably 60 ° C. or more, and for example, 150 ° C. or less, preferably 130 ° C. or less. The drying temperature is, for example, 5 minutes or less.
 その後、必要により、感圧接着剤をエージングする。エージング温度は、例えば、25℃以上、好ましくは、40℃以上であり、また、例えば、70℃以下、好ましくは、60℃以下である。エージング時間は、例えば、10時間以上、また、例えば、120時間以下である。 After that, if necessary, age the pressure sensitive adhesive. The aging temperature is, for example, 25 ° C. or more, preferably 40 ° C. or more, and for example, 70 ° C. or less, preferably 60 ° C. or less. The aging time is, for example, 10 hours or more, and for example, 120 hours or less.
 これにより、感圧接着層61が、支持シート62の表面に形成される。 Thereby, the pressure-sensitive adhesive layer 61 is formed on the surface of the support sheet 62.
 感圧接着層61の厚みは、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、250μm以下、好ましくは、100μm以下である。 The thickness of the pressure-sensitive adhesive layer 61 is, for example, 10 μm or more, preferably 20 μm or more, and for example, 250 μm or less, preferably 100 μm or less.
 これにより、感圧接着層61と、感圧接着層61の上面に配置される支持シート62とを備える保護シート6を得る。 Thereby, the protective sheet 6 including the pressure-sensitive adhesive layer 61 and the support sheet 62 disposed on the upper surface of the pressure-sensitive adhesive layer 61 is obtained.
 保護シート6は、図2Fおよび図3Cに示す工程(iii)において、実質的に変形しない程度の剛性および靱性を有する。具体的には、保護シート6の25℃における引張弾性率が、例えば、250MPa以上、好ましくは、500MPa以上、より好ましくは、1000MPa以上であり、また、例えば、20,000MPa以下である。 The protective sheet 6 has rigidity and toughness that do not substantially deform in the step (iii) shown in FIGS. 2F and 3C. Specifically, the tensile elastic modulus at 25 ° C. of the protective sheet 6 is, for example, 250 MPa or more, preferably 500 MPa or more, more preferably 1000 MPa or more, and for example, 20,000 MPa or less.
 その後、保護シート6を、第1被覆素子集合体41に貼り合わせる。具体的には、感圧接着層61を、上側第1蛍光体層52の上面に貼り合わせる。これによって、上側第1蛍光体層52の上面は、保護シート6によって感圧接着されて、保護(被覆)される。 Thereafter, the protective sheet 6 is bonded to the first covering element assembly 41. Specifically, the pressure-sensitive adhesive layer 61 is bonded to the upper surface of the upper first phosphor layer 52. As a result, the upper surface of the upper first phosphor layer 52 is pressure-sensitively bonded by the protective sheet 6 to be protected (covered).
 一方、溝3の底面(底部36の上面)は、保護シート6の下面と、厚み方向に間隔が隔てられている。溝3の底面と、保護シート6の下面との距離L7は、溝3の深さL7と同一である。 On the other hand, the bottom surface of the groove 3 (the upper surface of the bottom portion 36) is spaced from the lower surface of the protective sheet 6 in the thickness direction. A distance L7 between the bottom surface of the groove 3 and the lower surface of the protective sheet 6 is the same as the depth L7 of the groove 3.
 1-3-2.工程(ii)
 図1Eに示すように、工程(ii)では、第1被覆素子集合体41、第1仮固定シート10および保護シート6を、真空下に配置する。例えば、第1被覆素子集合体41、第1仮固定シート10および保護シート6を、真空装置16に配置する。
1-3-2. Step (ii)
As shown in FIG. 1E, in the step (ii), the first covering element assembly 41, the first temporary fixing sheet 10, and the protective sheet 6 are arranged under vacuum. For example, the first covering element assembly 41, the first temporary fixing sheet 10, and the protective sheet 6 are arranged in the vacuum device 16.
 真空装置16は、真空チャンバー18と、真空ライン19と、真空ポンプ20と、真空バルブ21と、大気ライン22と、大気バルブ23と、ステージ(図示せず)とを備える。 The vacuum device 16 includes a vacuum chamber 18, a vacuum line 19, a vacuum pump 20, a vacuum valve 21, an atmospheric line 22, an atmospheric valve 23, and a stage (not shown).
 真空チャンバー18は、第1被覆素子集合体41、第1仮固定シート10および保護シート6を収容できる密閉容器である。 The vacuum chamber 18 is a sealed container that can accommodate the first covering element assembly 41, the first temporary fixing sheet 10, and the protective sheet 6.
 真空ライン19の一端(吸引方向上流側端)は、真空チャンバー18に接続され、真空ライン19の他端(吸引方向下流側端)は、真空ポンプ20に接続されている。 One end (the upstream end in the suction direction) of the vacuum line 19 is connected to the vacuum chamber 18, and the other end (the downstream end in the suction direction) of the vacuum line 19 is connected to the vacuum pump 20.
 真空ポンプ20は、真空ライン19を介して、真空チャンバー18内の空間に連通するように構成されている。 The vacuum pump 20 is configured to communicate with the space in the vacuum chamber 18 via the vacuum line 19.
 真空バルブ21は、真空ライン19の途中に介在している。 The vacuum valve 21 is interposed in the middle of the vacuum line 19.
 大気ライン22は、真空ライン19の途中、具体的には、真空ライン19において真空チャンバー18および真空バルブ21の間の部分から分岐するラインであり、一端が、大気に開放するように構成されている。 The atmospheric line 22 is a line that branches from the middle of the vacuum line 19, specifically, a portion between the vacuum chamber 18 and the vacuum valve 21 in the vacuum line 19, and is configured so that one end is opened to the atmosphere. Yes.
 大気バルブ23は、大気ライン22の途中に介在している。 The atmospheric valve 23 is interposed in the middle of the atmospheric line 22.
 図示しないステージは、真空チャンバー18内に収容されており、略板形状を有している。また、ステージは、吸着機構などの固定部材を有しており、これによって、第1仮固定シート10の下面を吸着(固定)するように構成されている。 A stage (not shown) is accommodated in the vacuum chamber 18 and has a substantially plate shape. Further, the stage has a fixing member such as an adsorption mechanism, and is configured to adsorb (fix) the lower surface of the first temporary fixing sheet 10.
 そして、第1被覆素子集合体41、第1仮固定シート10および保護シート6を、真空チャンバー18内に配置して、真空チャンバー18の気圧を真空圧にする。 Then, the first covering element assembly 41, the first temporary fixing sheet 10, and the protective sheet 6 are arranged in the vacuum chamber 18, and the pressure in the vacuum chamber 18 is set to a vacuum pressure.
 具体的には、まず、真空バルブ21および大気バルブ23を開放する。これによって、真空ポンプ20は、大気ライン22と連通する。この状態で、真空ポンプ20を作動させる。その後、第1被覆素子集合体41、第1仮固定シート10および保護シート6を真空チャンバー18内に、第1仮固定シート10をステージ(図示せず)に固定されるように、設置し、続いて、真空チャンバー18内の空間(チャンバー空間)34内を密閉する。 Specifically, first, the vacuum valve 21 and the atmospheric valve 23 are opened. Thereby, the vacuum pump 20 communicates with the atmospheric line 22. In this state, the vacuum pump 20 is operated. Thereafter, the first covering element assembly 41, the first temporarily fixing sheet 10 and the protective sheet 6 are installed in the vacuum chamber 18 so that the first temporarily fixing sheet 10 is fixed to a stage (not shown), Subsequently, the space (chamber space) 34 in the vacuum chamber 18 is sealed.
 その後、大気バルブ23を閉鎖する。これによって、真空ポンプ20は、真空バルブ21を介して、チャンバー空間24と連通する。すると、チャンバー空間24の気圧は、真空となる。具体的には、チャンバー空間24の気圧(真空圧)は、被覆材料43を密閉空間17に円滑に流入させる観点から、例えば、1.0×10-2MPa以下、好ましくは、1.0×10-3MPa以下であり、また、例えば、第1蛍光体層2におけるボイドの発生をより有効に抑制する観点から、5.5×10-4MPa以上である。 Thereafter, the atmospheric valve 23 is closed. As a result, the vacuum pump 20 communicates with the chamber space 24 via the vacuum valve 21. Then, the atmospheric pressure in the chamber space 24 becomes a vacuum. Specifically, the atmospheric pressure (vacuum pressure) of the chamber space 24 is, for example, 1.0 × 10 −2 MPa or less, preferably 1.0 × from the viewpoint of smoothly flowing the coating material 43 into the sealed space 17. 10 -3 and in MPa or less, and is, for example, from more effectively suppressing the generation of voids in the first phosphor layer 2 is 5.5 × 10 -4 MPa or more.
 1-3-3.工程(iii)
 図2Fおよび図3Cに示すように、工程(iii)では、被覆材料43を、第1被覆素子集合体41の周囲を囲むように、第1仮固定シート10および保護シート6に接触させて、密閉空間17を形成する。
1-3-3. Step (iii)
As shown in FIG. 2F and FIG. 3C, in step (iii), the covering material 43 is brought into contact with the first temporarily fixing sheet 10 and the protective sheet 6 so as to surround the first covering element assembly 41, A sealed space 17 is formed.
 被覆材料43は、常温(25℃)で流動性を有する被覆組成物からなる。 The coating material 43 is made of a coating composition having fluidity at normal temperature (25 ° C.).
 被覆組成物は、例えば、光反射性成分および/または光吸収性成分と、樹脂とを含有する。 The coating composition contains, for example, a light reflecting component and / or a light absorbing component and a resin.
 光反射性成分としては、例えば、Ti,Zr,Nb,Alからなる群から選択される1種の酸化物、例えば、AlNおよび/またはMgFなどの粒子(光反射性粒子)が挙げられる。具体的には、光反射性成分としては、TiO,ZrO,Nb,Al,MgF,AlN,SiOからなる群から選択される少なくとも1種である。高い光反射性を確保する観点から、好ましくは、TiO,ZrO,Nb,Alが挙げられ、より好ましくは、TiOが挙げられる。 Examples of the light reflective component include one kind of oxide selected from the group consisting of Ti, Zr, Nb, and Al, for example, particles such as AlN and / or MgF (light reflective particles). Specifically, the light reflective component is at least one selected from the group consisting of TiO 2 , ZrO 2 , Nb 2 O 5 , Al 2 O 3 , MgF, AlN, and SiO 2 . From the viewpoint of ensuring high light reflectivity, TiO 2 , ZrO 2 , Nb 2 O 5 , and Al 2 O 3 are preferable, and TiO 2 is more preferable.
 光反射性粒子の平均粒子径は、例えば、0.1μm以上、好ましくは、0.15μm以上であり、また、例えば、80μm以下、好ましくは、50μm以下である。 The average particle diameter of the light reflecting particles is, for example, 0.1 μm or more, preferably 0.15 μm or more, and for example, 80 μm or less, preferably 50 μm or less.
 光反射性成分の配合割合は、被覆組成物に対して、例えば、5質量%以上、好ましくは、70質量%以下である。また、光反射性成分の、樹脂100質量部に対する配合割合は、例えば、3質量部以上、好ましくは、5質量部以上であり、また、例えば、50質量部以下、好ましくは、40質量部以下である。 The blending ratio of the light-reflecting component is, for example, 5% by mass or more, preferably 70% by mass or less with respect to the coating composition. The blending ratio of the light-reflective component to 100 parts by mass of the resin is, for example, 3 parts by mass or more, preferably 5 parts by mass or more, and for example, 50 parts by mass or less, preferably 40 parts by mass or less. It is.
 光吸収性成分としては、例えば、顔料、染料などが挙げられ、光吸収性の観点から、好ましくは、カーボンブラックなどの光吸収性粒子が挙げられる。光吸収性粒子の平均粒子径は、例えば、10nm以上、好ましくは、15nm以上であり、また、例えば、100nm以下、好ましくは、50nm以下である。 Examples of the light-absorbing component include pigments and dyes. From the viewpoint of light-absorbing property, light-absorbing particles such as carbon black are preferable. The average particle size of the light-absorbing particles is, for example, 10 nm or more, preferably 15 nm or more, and for example, 100 nm or less, preferably 50 nm or less.
 光吸収性成分の配合割合は、被覆組成物に対して、例えば、0.1質量%以上、例えば、10質量%以下である。また、光吸収性成分の、樹脂100質量部に対する配合割合は、例えば、0.1質量部以上、好ましくは、0.5質量部以上であり、また、例えば、30質量部以下、好ましくは、25質量部以下である。 The blending ratio of the light absorbing component is, for example, 0.1% by mass or more, for example, 10% by mass or less with respect to the coating composition. The blending ratio of the light absorbing component to 100 parts by mass of the resin is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and for example, 30 parts by mass or less, preferably 25 parts by mass or less.
 樹脂としては、例えば、熱可塑性樹脂、例えば、熱硬化性樹脂、活性エネルギー線硬化性樹脂などの硬化性樹脂が挙げられ、好ましくは、硬化性樹脂が挙げられ、より好ましくは、耐熱性の観点から、好ましくは、熱硬化性樹脂が挙げられる。 Examples of the resin include thermoplastic resins, for example, curable resins such as thermosetting resins and active energy ray curable resins, preferably curable resins, and more preferably from the viewpoint of heat resistance. Therefore, preferably, a thermosetting resin is used.
 熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂などが挙げられる。耐光性の観点から、好ましくは、シリコーン樹脂が挙げられる。シリコーン樹脂としては、例えば、特開2015-073084号公報に開示されるメチル系シリコーン樹脂組成物が挙げられる。 Examples of the thermosetting resin include a silicone resin, an epoxy resin, and an acrylic resin. From the viewpoint of light resistance, preferably, a silicone resin is used. Examples of the silicone resin include a methyl silicone resin composition disclosed in JP-A-2015-073084.
 樹脂の配合割合は、被覆組成物に対して、例えば、20質量%以上、好ましくは、30質量%以上であり、また、例えば、95質量%以下、好ましくは、90質量%以下である。 The blending ratio of the resin is, for example, 20% by mass or more, preferably 30% by mass or more, and, for example, 95% by mass or less, preferably 90% by mass or less with respect to the coating composition.
 また、被覆組成物は、例えば、シリカ、ガラスなどの無機フィラーを適宜の割合で配合することができる。さらに、被覆組成物は、例えば、Ag,Cuなどの金属材料や、ダイヤモンド、AlNなどを適宜の割合で配合することもできる。 Further, the coating composition can be blended with an inorganic filler such as silica or glass at an appropriate ratio. Furthermore, the coating composition can also contain, for example, a metal material such as Ag or Cu, diamond, AlN, or the like at an appropriate ratio.
 一方、第1実施形態において、被覆組成物は、蛍光体を含有しない。 On the other hand, in the first embodiment, the coating composition does not contain a phosphor.
 被覆組成物を調製するには、上記した各成分を上記した割合で配合して混合する。 In order to prepare the coating composition, the above-described components are mixed and mixed in the above-described proportions.
 被覆組成物の常温(25℃)における粘度は、例えば、1Pa・s以上、好ましくは、2Pa・s以上であり、また、例えば、50Pa・s以下、好ましくは、40Pa・s以下である。被覆組成物の粘度は、E型粘度計で測定される。 The viscosity of the coating composition at normal temperature (25 ° C.) is, for example, 1 Pa · s or more, preferably 2 Pa · s or more, and for example, 50 Pa · s or less, preferably 40 Pa · s or less. The viscosity of the coating composition is measured with an E-type viscometer.
 被覆組成物の粘度が上記した下限以上であれば、光反射性成分および/または光吸収性成分が沈降することを抑制することができる。被覆組成物の粘度が上記した上限以下であれば、第1蛍光体層2におけるボイドの発生を抑制することができる。 If the viscosity of the coating composition is equal to or higher than the lower limit described above, it is possible to suppress the precipitation of the light reflecting component and / or the light absorbing component. If the viscosity of the coating composition is equal to or less than the above upper limit, generation of voids in the first phosphor layer 2 can be suppressed.
 被覆材料43を、第1被覆素子集合体41の周囲を囲むように、第1仮固定シート10および保護シート6に接触させるには、例えば、真空注入装置(真空ディスペンサ)39、真空印刷機、描画装置などの塗布装置によって、被覆材料43を、保護シート6の周端縁の下面と、それに対向する第1仮固定シート10の上面との間に、塗布する。好ましくは、真空ディスペンサ39を用いて、被覆材料43を塗布する。真空ディスペンサ39は、上下方向に延び、下方に向かうに従って断面積が小さくなるノズル40と、ノズル40に接続されるタンク(図示せず)とを備える。 In order to bring the coating material 43 into contact with the first temporary fixing sheet 10 and the protective sheet 6 so as to surround the first coating element assembly 41, for example, a vacuum injection device (vacuum dispenser) 39, a vacuum printing machine, The coating material 43 is applied between the lower surface of the peripheral edge of the protective sheet 6 and the upper surface of the first temporary fixing sheet 10 facing it by an application device such as a drawing device. Preferably, the coating material 43 is applied using a vacuum dispenser 39. The vacuum dispenser 39 includes a nozzle 40 that extends in the vertical direction and has a cross-sectional area that decreases in the downward direction, and a tank (not shown) connected to the nozzle 40.
 なお、上記した塗布装置は、上記した真空装置16に予め組み込まれており、具体的には、真空チャンバー18内に設置されている。また、被覆材料43を、図1Dおよび図3B(ハッチング部分)に示すように、第1被覆素子集合体41が配置される領域の周囲において、平面視略矩形枠(額縁)形状となるように、被覆材料43を塗布する。被覆材料43が有する枠(額縁)形状は、保護シート6の周方向に沿って、途中で途切れない、連続形状である。 Note that the above-described coating apparatus is incorporated in the vacuum apparatus 16 in advance, and specifically, is installed in the vacuum chamber 18. Further, as shown in FIGS. 1D and 3B (hatched portion), the covering material 43 is formed in a substantially rectangular frame (frame) shape in plan view around the area where the first covering element assembly 41 is disposed. The coating material 43 is applied. The frame (frame) shape of the covering material 43 is a continuous shape that is not interrupted along the circumferential direction of the protective sheet 6.
 また、被覆材料43は、絶縁板12の上面から上側に向かって盛り上がる断面形状を有している。 The covering material 43 has a cross-sectional shape that rises upward from the upper surface of the insulating plate 12.
 被覆材料43の塗布量は、次に説明する密閉空間17の体積と同一またはそれより大きい体積に設定されており、具体的には、容量基準で、密閉空間17の体積に対して、例えば、100%以上、好ましくは、110%以上、より好ましくは、120%以上であり、また、例えば、200%以下である。 The coating amount of the coating material 43 is set to be equal to or larger than the volume of the sealed space 17 described below. Specifically, for example, with respect to the volume of the sealed space 17 on a volume basis, for example, 100% or more, preferably 110% or more, more preferably 120% or more, and for example, 200% or less.
 被覆材料43によって密閉された空間は、密閉空間17を形成する。 The space sealed by the coating material 43 forms a sealed space 17.
 密閉空間17は、溝3を含む空間であって、被覆材料43と、保護シート6と、第1仮固定シート10と、第1蛍光体層2(第1被覆素子集合体41)とにより区画される空間である。 The sealed space 17 is a space including the groove 3, and is defined by the coating material 43, the protective sheet 6, the first temporary fixing sheet 10, and the first phosphor layer 2 (first covering element assembly 41). Space.
 密閉空間17の気圧は、チャンバー空間24の上記した気圧と同一である。 The pressure in the sealed space 17 is the same as the pressure in the chamber space 24 described above.
 1-3-4.工程(iv)
 工程(iv)では、図2Fに示すように、チャンバー空間24(密閉空間17の外側におけるチャンバー空間24)の気圧を大気圧にする。
1-3-4. Step (iv)
In step (iv), as shown in FIG. 2F, the atmospheric pressure in the chamber space 24 (the chamber space 24 outside the sealed space 17) is set to atmospheric pressure.
 具体的には、まず、真空バルブ21を閉鎖し、その後、大気バルブ23を開放する。 Specifically, first, the vacuum valve 21 is closed, and then the atmospheric valve 23 is opened.
 これにより、チャンバー空間24が、大気ライン22を介して、大気に開放される。すると、大気が大気ライン22を介してチャンバー空間24に一気に流入するので、チャンバー空間24の気圧が大気圧になる。 Thereby, the chamber space 24 is opened to the atmosphere via the atmosphere line 22. Then, since the atmosphere flows into the chamber space 24 through the atmosphere line 22 at a stretch, the pressure in the chamber space 24 becomes atmospheric pressure.
 一方、密閉空間17の気圧は、真空圧のままである。そのため、密閉空間17の気圧は、チャンバー空間24の気圧より低くなる。つまり、密閉空間17およびチャンバー空間24において、差圧が生じる。差圧は、チャンバー空間24の気圧から密閉空間17の気圧を差し引いた圧力差([チャンバー空間24の気圧]-[密閉空間17の気圧])であり、具体的には、例えば、0.095MPa以上、好ましくは、0.096MPa以上、より好ましくは、0.097MPa以上であり、また、例えば、0.1MPa以下である。 On the other hand, the air pressure in the sealed space 17 remains the vacuum pressure. Therefore, the pressure in the sealed space 17 is lower than the pressure in the chamber space 24. That is, a differential pressure is generated in the sealed space 17 and the chamber space 24. The differential pressure is a pressure difference obtained by subtracting the air pressure in the sealed space 17 from the air pressure in the chamber space 24 ([atmospheric pressure in the chamber space 24] − [atmospheric pressure in the sealed space 17]), and specifically, for example, 0.095 MPa. As mentioned above, Preferably, it is 0.096 MPa or more, More preferably, it is 0.097 MPa or more, for example, it is 0.1 MPa or less.
 上記した差圧が生じると、図2Fに示すように、密閉空間17に被覆材料43が流入し、密閉空間17が被覆材料43によって充填される。 When the above-described differential pressure occurs, the coating material 43 flows into the sealed space 17 and the sealed space 17 is filled with the coating material 43 as shown in FIG. 2F.
 これによって、被覆材料43は、上側第1蛍光体層52の上面を露出させるように、溝3に充填される。 Thereby, the coating material 43 is filled in the groove 3 so that the upper surface of the upper first phosphor layer 52 is exposed.
 これによって、密閉空間17と同一形状を有し、被覆材料43からなる第2被覆層4が形成される。つまり、溝3に第2被覆層4が充填される。溝3に充填された第2被覆層4の厚みL7は、溝3の深さL7と同一である。 Thereby, the second covering layer 4 having the same shape as the sealed space 17 and made of the covering material 43 is formed. That is, the groove 3 is filled with the second coating layer 4. The thickness L7 of the second coating layer 4 filled in the groove 3 is the same as the depth L7 of the groove 3.
 これにより、複数の光半導体素子1、第1蛍光体層2と、第2被覆層4とを備える第2被覆素子集合体29を、第1仮固定シート10および保護シート6により支持された(挟まれた)状態で、得る。第2被覆素子集合体29は、産業上利用可能なデバイスであり、好ましくは、複数の光半導体素子1と、1つの第1蛍光体層2と、1つの第2被覆層4とのみからなる。 Thereby, the 2nd covering element aggregate | assembly 29 provided with the some optical semiconductor element 1, the 1st fluorescent substance layer 2, and the 2nd coating layer 4 was supported by the 1st temporary fixing sheet 10 and the protection sheet 6 ( Get in the (pinched) state. The second covering element assembly 29 is an industrially available device, and preferably includes only a plurality of optical semiconductor elements 1, one first phosphor layer 2, and one second covering layer 4. .
 その後、第2被覆素子集合体29を、第1仮固定シート10および保護シート6とともに、真空チャンバー18から取り出す。 Thereafter, the second covering element assembly 29 is taken out of the vacuum chamber 18 together with the first temporary fixing sheet 10 and the protective sheet 6.
 1-3-5.工程(v)
 工程(v)では、図2Gに示すように、第2被覆層4が硬化性樹脂を含有する場合には、硬化性樹脂を硬化させる。具体的には、硬化性樹脂が熱硬化性樹脂であれば、第2被覆層4を加熱する。
1-3-5. Step (v)
In the step (v), as shown in FIG. 2G, when the second coating layer 4 contains a curable resin, the curable resin is cured. Specifically, if the curable resin is a thermosetting resin, the second coating layer 4 is heated.
 その後、図2Gの矢印で示すように、保護シート6を第2被覆素子集合体29から剥離する。 Thereafter, as shown by the arrow in FIG. 2G, the protective sheet 6 is peeled off from the second covering element assembly 29.
 具体的には、まず、上記した活性エネルギー線を保護シート6に照射して、保護シート6の感圧接着力を低減させる。続いて、保護シート6を、上側第1蛍光体層52の上面と、第2被覆層4の上面とから、引き剥がす。 Specifically, first, the active energy ray described above is irradiated onto the protective sheet 6 to reduce the pressure-sensitive adhesive force of the protective sheet 6. Subsequently, the protective sheet 6 is peeled off from the upper surface of the upper first phosphor layer 52 and the upper surface of the second coating layer 4.
 これによって、上側第1蛍光体層52の上面と、第2被覆層4の上面とは、上側に向かって露出する露出面となる。第2被覆層4の上面は、上側第1蛍光体層52の上面と面一に形成されている。 Thereby, the upper surface of the upper first phosphor layer 52 and the upper surface of the second coating layer 4 become exposed surfaces exposed upward. The upper surface of the second coating layer 4 is formed flush with the upper surface of the upper first phosphor layer 52.
 これにより、上面が露出された第2被覆素子集合体29を、第1仮固定シート10に支持された状態で得る。 Thereby, the second covering element assembly 29 with the upper surface exposed is obtained in a state of being supported by the first temporary fixing sheet 10.
 その後、図2Hに示すように、第2被覆素子集合体29の第2被覆層4とそれに対応する第1蛍光体層2とを切断して、光半導体素子1を個片化する。具体的には、ダイシングソーなどの切断装置によって、第2被覆層4と、溝3に対応する第1蛍光体層2(底部36)とを厚み方向に沿って切断する。 Thereafter, as shown in FIG. 2H, the second covering layer 4 of the second covering element assembly 29 and the corresponding first phosphor layer 2 are cut to separate the optical semiconductor element 1 into pieces. Specifically, the second coating layer 4 and the first phosphor layer 2 (bottom portion 36) corresponding to the groove 3 are cut along the thickness direction by a cutting device such as a dicing saw.
 これによって、1つの光半導体素子1と、1つの第1蛍光体層2と、1つの第2被覆層4とを備える被覆光半導体素子5が、第1仮固定シート10に支持された状態で、得られる。被覆光半導体素子5は、産業上利用可能なデバイスであり、好ましくは、1つの光半導体素子1と、1つの第1蛍光体層2と、1つの第2被覆層4とのみからなる。 Thus, the coated optical semiconductor element 5 including one optical semiconductor element 1, one first phosphor layer 2, and one second coating layer 4 is supported by the first temporary fixing sheet 10. ,can get. The coated optical semiconductor element 5 is an industrially available device, and preferably includes only one optical semiconductor element 1, one first phosphor layer 2, and one second coating layer 4.
 詳しくは、被覆光半導体素子5は、光半導体素子1と、光半導体素子1の上面および側面を被覆し、底部36を有する第1蛍光体層2と、第1蛍光体層2の側方に位置し、第1蛍光体層2の側面、および、底部36の上面を被覆する第2被覆層4とを備える。 Specifically, the coated optical semiconductor element 5 covers the optical semiconductor element 1, the first phosphor layer 2 that covers the top and side surfaces of the optical semiconductor element 1 and has a bottom 36, and the side of the first phosphor layer 2. And a second covering layer 4 that covers the side surface of the first phosphor layer 2 and the top surface of the bottom portion 36.
 図4が参照されるように、第2被覆層4の幅βは、底部36の長さβと同一である。第2被覆層4の幅βは、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 As shown in FIG. 4, the width β of the second coating layer 4 is the same as the length β of the bottom 36. The width β of the second coating layer 4 is, for example, 10 μm or more, preferably 50 μm or more, and for example, 2000 μm or less, preferably 1000 μm or less.
 1-4.工程(4)
 図2Iに示すように、工程(4)では、被覆光半導体素子5を、第1仮固定シート10から第1転写シート27に転写する。
1-4. Step (4)
As shown in FIG. 2I, in the step (4), the coated optical semiconductor element 5 is transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
 具体的には、図2Hに示すように、まず、複数の被覆光半導体素子5の上方に、第1転写シート27に配置する。その後、第1転写シート27を引き下げて、第1転写シート27の下面を、複数の被覆光半導体素子5の上面(上側第1蛍光体層52の上面および第2被覆層4の上面)に接触させる。 Specifically, as shown in FIG. 2H, first, the first transfer sheet 27 is disposed above the plurality of coated optical semiconductor elements 5. Thereafter, the first transfer sheet 27 is pulled down, and the lower surface of the first transfer sheet 27 comes into contact with the upper surfaces of the plurality of coated optical semiconductor elements 5 (the upper surface of the upper first phosphor layer 52 and the upper surface of the second coating layer 4). Let
 第1転写シート27としては、公知の転写シートが挙げられ、例えば、SPVシリーズ(日東電工社製)などが挙げられる。 Examples of the first transfer sheet 27 include known transfer sheets, such as SPV series (manufactured by Nitto Denko Corporation).
 複数の被覆光半導体素子5の第1転写シート27に対する接着力F2は、複数の被覆光半導体素子5の第1仮固定シート10に対する接着力F1に比べて、例えば、高い。複数の被覆光半導体素子5の第1転写シート27に対する接着力F2が複数の被覆光半導体素子5の第1仮固定シート10に対する接着力F1に比べて高い場合には、工程(4)において、被覆光半導体素子5を、第1仮固定シート10から第1転写シート27に確実に転写することができる。 The adhesive force F2 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 27 is, for example, higher than the adhesive force F1 of the plurality of coated optical semiconductor elements 5 to the first temporary fixing sheet 10. When the adhesive force F2 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 27 is higher than the adhesive force F1 of the plurality of coated optical semiconductor elements 5 to the first temporary fixing sheet 10, in step (4), The coated optical semiconductor element 5 can be reliably transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
 複数の被覆光半導体素子5の転写シート27に対する接着力F2は、複数の被覆光半導体素子5の仮固定シート10に対する接着力F1に対して、例えば、100%超過、好ましくは、110%以上、より好ましくは、120%以上であり、また、例えば、300%以下である。 The adhesive force F2 of the plurality of coated optical semiconductor elements 5 to the transfer sheet 27 is, for example, more than 100%, preferably 110% or more, with respect to the adhesive force F1 of the plurality of coated optical semiconductor elements 5 to the temporary fixing sheet 10. More preferably, it is 120% or more, for example, 300% or less.
 具体的には、複数の被覆光半導体素子5の第1転写シート27に対する接着力F2は、例えば、0.2N/20mm以上、好ましくは、0.3N/20mm以上、より好ましくは、0.4N/20mm以上であり、また、例えば、3.0N/20mm以下である。接着力F2の測定方法は、後の実施例で説明される。 Specifically, the adhesive force F2 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 27 is, for example, 0.2 N / 20 mm or more, preferably 0.3 N / 20 mm or more, more preferably 0.4 N. / 20 mm or more, and for example, 3.0 N / 20 mm or less. A method for measuring the adhesive force F2 will be described in a later example.
 なお、複数の被覆光半導体素子5の第1仮固定シート10に対する接着力F1は、複数の被覆光半導体素子5の、処理(活性エネルギー線の照射)後の第1仮固定シート10に対する接着力F1であって、具体的には、例えば、0.4N/20mm以下、好ましくは、0.2N/20mm以下、より好ましくは、0.15N/20mm以下であり、また、例えば、0.01N/20mm以上である。複数の被覆光半導体素子5の、処理後の第1仮固定シート10に対する接着力F1の測定方法は、後の実施例で説明される。 The adhesive force F1 of the plurality of coated optical semiconductor elements 5 to the first temporary fixing sheet 10 is the adhesive force of the plurality of coated optical semiconductor elements 5 to the first temporary fixing sheet 10 after processing (irradiation with active energy rays). F1, specifically, for example, 0.4 N / 20 mm or less, preferably 0.2 N / 20 mm or less, more preferably 0.15 N / 20 mm or less, and for example, 0.01 N / It is 20 mm or more. The measuring method of the adhesive force F1 with respect to the 1st temporary fixing sheet 10 after a process of the some covering optical semiconductor element 5 is demonstrated by a subsequent Example.
 次いで、第1転写シート27を第1仮固定シート10に対して引き上げる。これによって、被覆光半導体素子5の下面が、第1仮固定シート10の上面から引き剥がされる。具体的には、光半導体素子1の下面と、第1蛍光体層2の底部36の下面とが、仮固定層11の上面から、引き剥がされる。 Next, the first transfer sheet 27 is pulled up with respect to the first temporarily fixed sheet 10. Thereby, the lower surface of the coated optical semiconductor element 5 is peeled off from the upper surface of the first temporary fixing sheet 10. Specifically, the lower surface of the optical semiconductor element 1 and the lower surface of the bottom portion 36 of the first phosphor layer 2 are peeled off from the upper surface of the temporary fixing layer 11.
 これにより、光半導体素子1と、第1蛍光体層2と、第2被覆層4とを備える被覆光半導体素子5を第1転写シート27に転写する。 Thereby, the coated optical semiconductor element 5 including the optical semiconductor element 1, the first phosphor layer 2, and the second coating layer 4 is transferred to the first transfer sheet 27.
 図4に示すように、その後、被覆光半導体素子5を、基板50に実装する。 As shown in FIG. 4, the coated optical semiconductor element 5 is then mounted on the substrate 50.
 具体的には、被覆光半導体素子5を基板50に対してフリップチップ実装する。すなわち、被覆光半導体素子5の光半導体素子1のバンプ(図示せず)を、基板50の端子(図示せず)と電気的に接続させる。 Specifically, the coated optical semiconductor element 5 is flip-chip mounted on the substrate 50. That is, the bumps (not shown) of the optical semiconductor element 1 of the coated optical semiconductor element 5 are electrically connected to the terminals (not shown) of the substrate 50.
 これによって、図4に示すように、基板50と、基板50に実装される被覆光半導体素子5とを備える発光装置51が得られる。詳しくは、発光装置51は、基板50と、基板50に実装された光半導体素子1と、光半導体素子1の側面を被覆し、底部36を有する第1蛍光体層2と、第1蛍光体層2の側面、および、底部36の上面を被覆する第2被覆層4とを備える。底部36の下面は、基板50の上面と接触している。 Thereby, as shown in FIG. 4, a light emitting device 51 including the substrate 50 and the coated optical semiconductor element 5 mounted on the substrate 50 is obtained. Specifically, the light emitting device 51 includes a substrate 50, the optical semiconductor element 1 mounted on the substrate 50, a first phosphor layer 2 that covers a side surface of the optical semiconductor element 1 and has a bottom 36, and a first phosphor. And a second covering layer 4 covering the side surface of the layer 2 and the upper surface of the bottom portion 36. The bottom surface of the bottom portion 36 is in contact with the top surface of the substrate 50.
 この発光装置51では、基板50から供給される電気によって、光半導体素子1が発光する。光半導体素子1で発光された光の一部は、第1蛍光体層2によって、波長変換される。波長変換された光のうち、上方に向かう光は、そのまま、上側に照射される。とりわけ、光半導体素子1から側方に向かって発光された光は、底部36によって十分に波長変換された光と、第1蛍光体層2において底部36の上側部分によって波長変換された光とが、適度に混合される。 In the light emitting device 51, the optical semiconductor element 1 emits light by electricity supplied from the substrate 50. A part of the light emitted from the optical semiconductor element 1 is wavelength-converted by the first phosphor layer 2. Of the light whose wavelength has been converted, the light traveling upward is irradiated on the upper side as it is. In particular, the light emitted from the optical semiconductor element 1 toward the side includes light that has been sufficiently wavelength-converted by the bottom portion 36 and light that has been wavelength-converted by the upper portion of the bottom portion 36 in the first phosphor layer 2. , Moderately mixed.
 1-5.第1実施形態の作用効果
 そして、この方法によれば、図2Fに示すように、工程(3)では、第1蛍光体層2の底部36が、溝3に充填された第2被覆層4と、第1仮固定シート10との間に介在しているので、第2被覆層4が第1仮固定シート10に直接接触することが防止される。そのため、たとえ、第2被覆層4の感圧接着力が高くても、第2被覆層4が第1仮固定シート10に接着することを防止することができる。
1-5. Effects of First Embodiment According to this method, as shown in FIG. 2F, in step (3), the second coating layer 4 in which the bottom 36 of the first phosphor layer 2 is filled in the groove 3 is used. And the first temporary fixing sheet 10, the second covering layer 4 is prevented from coming into direct contact with the first temporary fixing sheet 10. Therefore, even if the pressure-sensitive adhesive force of the second coating layer 4 is high, the second coating layer 4 can be prevented from adhering to the first temporary fixing sheet 10.
 その結果、図2Iに示すように、工程(4)において、被覆光半導体素子5を第1仮固定シート10から確実に剥離することができる。 As a result, as shown in FIG. 2I, the coated optical semiconductor element 5 can be reliably peeled from the first temporary fixing sheet 10 in the step (4).
 また、被覆光半導体素子5の第1仮固定シート10に対する接着力F2が、被覆光半導体素子5の、処理後の第1仮固定シート10に対する接着力F1に比べて、低ければ、工程(4)において、被覆光半導体素子5が、第1仮固定シート10から第1転写シート27に転写されず、第1仮固定シート10に感圧接着された状態となる。被覆光半導体素子5の第1仮固定シート10に対する接着力F2が、被覆光半導体素子5の、処理後の第1仮固定シート10に対する接着力F1と同一であれば、工程(4)において、被覆光半導体素子5が、第1仮固定シート10から第1転写シート27に確実に転写されない。 If the adhesive force F2 of the coated optical semiconductor element 5 to the first temporarily fixing sheet 10 is lower than the adhesive force F1 of the coated optical semiconductor element 5 to the first temporarily fixed sheet 10 after processing, the process (4 ), The coated optical semiconductor element 5 is not transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 but is pressure-bonded to the first temporary fixing sheet 10. If the adhesive force F2 of the coated optical semiconductor element 5 to the first temporary fixing sheet 10 is the same as the adhesive force F1 of the coated optical semiconductor element 5 to the first temporarily fixed sheet 10 after processing, in step (4), The coated optical semiconductor element 5 is not reliably transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
 しかし、この方法によれば、被覆光半導体素子5の第1仮固定シート10に対する接着力F2が、被覆光半導体素子5の、処理後の第1仮固定シート10に対する接着力F1に比べて、高いので、図2Iに示すように、工程(4)において、被覆光半導体素子5を、第1仮固定シート10から第1転写シート27により一層確実に転写することができる。 However, according to this method, the adhesive force F2 of the coated optical semiconductor element 5 to the first temporary fixing sheet 10 is larger than the adhesive force F1 of the coated optical semiconductor element 5 to the first temporarily fixed sheet 10 after processing. Since it is high, as shown in FIG. 2I, the coated optical semiconductor element 5 can be more reliably transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 in the step (4).
 この方法によれば、第1蛍光体層2は、蛍光体を含有するので、光半導体素子1から発光された光を、波長変換することができる。 According to this method, since the first phosphor layer 2 contains the phosphor, the wavelength of the light emitted from the optical semiconductor element 1 can be converted.
 この方法において、図2Fに示すように、工程(3)では、第1蛍光体層2の上面を露出させるように、第2被覆層4を溝3に充填するので、上方への指向性を有する光を発光する被覆光半導体素子5を得ることができる。さらには、上方への指向性を有する光を発光する発光装置51を得ることができる。 In this method, as shown in FIG. 2F, in step (3), the groove 3 is filled with the second coating layer 4 so that the upper surface of the first phosphor layer 2 is exposed. The coated optical semiconductor element 5 that emits the light it has can be obtained. Further, it is possible to obtain the light emitting device 51 that emits light having upward directivity.
 <第1実施形態の変形例>
 第1実施形態では、工程(3)を、差圧を利用する方法(工程(ii)~工程(iv))によって、実施しているが、例えば、図1Dおよび図2Gが参照されるように、差圧を利用せず、上側第1蛍光体層52の上面を保護シート6で被覆しながら、溝3に第2被覆層4を形成することもできる。
<Modification of First Embodiment>
In the first embodiment, the step (3) is performed by the method using the differential pressure (step (ii) to step (iv)). For example, as shown in FIGS. 1D and 2G The second coating layer 4 can be formed in the groove 3 while the upper surface of the upper first phosphor layer 52 is covered with the protective sheet 6 without using the differential pressure.
 詳しくは、この変形例では、表面に保護シート6が設けられた金型に、被覆材料43を流し込み、その後、図1Cに示される第1被覆素子集合体41を上下反転させて、上側第1蛍光体層52が保護シート6に接触するように、第2被覆層4をモールド成形する。 Specifically, in this modification, the covering material 43 is poured into a mold having a protective sheet 6 on the surface, and then the first covering element assembly 41 shown in FIG. The second coating layer 4 is molded so that the phosphor layer 52 is in contact with the protective sheet 6.
 また、第1実施形態では、第2被覆層4は、光反射性成分および/または光吸収性成分を含有する光学機能層である。 In the first embodiment, the second coating layer 4 is an optical functional layer containing a light reflecting component and / or a light absorbing component.
 しかし、この変形例の第2被覆層4は、光反射性成分および光吸収性成分のいずれをも含有せず、樹脂のみからなる透明層であっていてもよい。 However, the second coating layer 4 of this modification may be a transparent layer made of only a resin and does not contain any light-reflecting component or light-absorbing component.
 <第2実施形態>
 第2実施形態において、上記した第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
Second Embodiment
In the second embodiment, the same members and steps as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 第1実施形態では、図1E~図2Gに示すように、工程(3)において、上側第1蛍光体層52の上面を露出させるように、第2被覆層4を溝3に充填している。 In the first embodiment, as shown in FIGS. 1E to 2G, in step (3), the groove 3 is filled with the second coating layer 4 so that the upper surface of the upper first phosphor layer 52 is exposed. .
 しかし、第2実施形態では、図5Cに示すように、上側第1蛍光体層52の上面を被覆するように、第2被覆層4を溝3に充填する。 However, in the second embodiment, the groove 3 is filled with the second coating layer 4 so as to cover the upper surface of the upper first phosphor layer 52, as shown in FIG. 5C.
 本発明の被覆光半導体素子の製造方法の第2実施形態は、第1仮固定シート10の上面に互いに間隔を隔てて仮固定された複数の光半導体素子1を、第1蛍光体層2によって、複数の光半導体素子1から露出する第1仮固定シート10の上面に第1蛍光体層2が直接接触するように、被覆する工程(1)(図5A参照)と、隣接する光半導体素子1の間に位置する第1蛍光体層2に、上方に向かって開放される溝3を設ける工程(2)(図5B参照)と、第2被覆層4を溝3に充填して、光半導体素子1、第1蛍光体層2および第2被覆層4を備える被覆光半導体素子5を得る工程(3)(図5Cおよび図6D参照)と、被覆光半導体素子5を、第1仮固定シート10から第1転写シート27に転写する工程(4)(図6E参照)とを備える。 In the second embodiment of the method for manufacturing a coated optical semiconductor element according to the present invention, a plurality of optical semiconductor elements 1 temporarily fixed to the upper surface of the first temporary fixing sheet 10 with a space therebetween are formed by the first phosphor layer 2. (1) (see FIG. 5A) for coating so that the first phosphor layer 2 is in direct contact with the upper surface of the first temporary fixing sheet 10 exposed from the plurality of optical semiconductor elements 1, and adjacent optical semiconductor elements Step (2) (see FIG. 5B) of providing a groove 3 opened upward in the first phosphor layer 2 located between 1 and the second covering layer 4 is filled in the groove 3, Step (3) (see FIGS. 5C and 6D) of obtaining a coated optical semiconductor element 5 including the semiconductor element 1, the first phosphor layer 2, and the second coating layer 4, and the first temporary fixing of the coated optical semiconductor element 5 (4) (see FIG. 6E) for transferring from the sheet 10 to the first transfer sheet 27. .
 工程(3)では、まず、上記した被覆材料43から、略平板形状に形成された第2被覆層4を調製する。 In step (3), first, the second coating layer 4 formed in a substantially flat plate shape is prepared from the coating material 43 described above.
 第2被覆層4の厚みL9は、例えば、50μm以上、好ましくは、75μm以上、より好ましくは、100μm以上であり、また、例えば、2500μm以下である。 The thickness L9 of the second coating layer 4 is, for example, 50 μm or more, preferably 75 μm or more, more preferably 100 μm or more, and for example, 2500 μm or less.
 その後、第2被覆層4を、第1被覆素子集合体41および第1仮固定シート10に対して、例えば、圧着、好ましくは、熱圧着(熱プレス)する。 Thereafter, the second coating layer 4 is subjected to, for example, pressure bonding, preferably thermocompression bonding (hot pressing), with respect to the first covering element assembly 41 and the first temporary fixing sheet 10.
 圧着(熱圧着)の条件は、被覆材料に含有される樹脂の種類によって、適宜調整される。 The conditions for pressure bonding (thermocompression bonding) are appropriately adjusted depending on the type of resin contained in the coating material.
 これによって、第2被覆層4は、溝3に充填されつつ、上側第1蛍光体層52を被覆する。また、第2被覆層4は、溝3の上方にも配置される。これによって、複数の光半導体素子1と、1つの第1蛍光体層2と、1つの第2被覆層4とを備える第2被覆素子集合体29が得られる。 Thereby, the second coating layer 4 covers the upper first phosphor layer 52 while filling the groove 3. The second coating layer 4 is also disposed above the groove 3. As a result, a second covering element assembly 29 including a plurality of optical semiconductor elements 1, one first phosphor layer 2, and one second covering layer 4 is obtained.
 第2被覆素子集合体29における第2被覆層4は、面方向に沿って延びる形状を有する。具体的には、第2被覆層4の上面は、面方向に沿って延びる平坦面を有する。一方、第2被覆層4の下面は、溝3に対応して、下方に突出する突出部45と、上側第1蛍光体層52の上面を被覆し、下方に向かって開放される凹部46とを一体的に有する。 The second covering layer 4 in the second covering element assembly 29 has a shape extending along the surface direction. Specifically, the upper surface of the second coating layer 4 has a flat surface extending along the surface direction. On the other hand, the lower surface of the second cover layer 4 corresponds to the groove 3 and protrudes downward 45, covers the upper surface of the upper first phosphor layer 52, and is recessed 46 opened downward. Is integrated.
 工程(3)では、その後、図6Dに示すように、溝3に対応する第1蛍光体層2および第2被覆層4を切断する。具体的には、底部36、および、第2被覆層4の突出部45を、ダイシングソーなどの切断装置によって、切断する。 In step (3), thereafter, as shown in FIG. 6D, the first phosphor layer 2 and the second coating layer 4 corresponding to the grooves 3 are cut. Specifically, the bottom portion 36 and the protruding portion 45 of the second coating layer 4 are cut by a cutting device such as a dicing saw.
 これによって、1つの光半導体素子1と、1つの第1蛍光体層2と、1つの第2被覆層4とを備える被覆光半導体素子5が、第1仮固定シート10に支持された状態で、得られる。 Thus, the coated optical semiconductor element 5 including one optical semiconductor element 1, one first phosphor layer 2, and one second coating layer 4 is supported by the first temporary fixing sheet 10. ,can get.
 被覆光半導体素子5において、上側第1蛍光体層52の上側に位置する第2被覆層4の厚みzは、図7が参照されるように、比較的薄く設定されており、具体的には、例えば、1000μm以下、好ましくは、500μm以下、より好ましくは、300μm以下であり、また、例えば、1μm以上、好ましくは、10μm以上である。 In the coated optical semiconductor element 5, the thickness z of the second coating layer 4 positioned above the upper first phosphor layer 52 is set to be relatively thin as shown in FIG. For example, it is 1000 μm or less, preferably 500 μm or less, more preferably 300 μm or less, and for example, 1 μm or more, preferably 10 μm or more.
 被覆光半導体素子5では、第2被覆層4によって、上側第1蛍光体層52の上面と、第1蛍光体層2の側面と、底部36の上面とが、被覆されている。 In the coated optical semiconductor element 5, the upper surface of the upper first phosphor layer 52, the side surface of the first phosphor layer 2, and the upper surface of the bottom portion 36 are covered with the second coating layer 4.
 そして、被覆光半導体素子5を、図6Eに示すように、工程(5)において、第1仮固定シート10から第1転写シート27に転写し、その後、図7に示すように、基板50にフリップチップ実装する。これによって、発光装置51を得る。 Then, as shown in FIG. 6E, the coated optical semiconductor element 5 is transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 in the step (5), and then onto the substrate 50 as shown in FIG. Flip chip mounting. Thereby, the light emitting device 51 is obtained.
 <第2実施形態の作用効果>
 第2実施形態によっても、第1実施形態と同様の作用効果を奏することができる。
<Effects of Second Embodiment>
Also according to the second embodiment, the same operational effects as those of the first embodiment can be obtained.
 さらに、第2実施形態によれば、図5Cに示すように、工程(3)において、上側第1蛍光体層52の上面を被覆するように、第2被覆層4を溝3に充填するので、光半導体素子1から上方に発光された光は、一部が、上側第1蛍光体層52によって波長変換され、その後、第2被覆層4を通過するので、それらの光が適度に混合される。そのため、光学特性に優れる被覆光半導体素子5、および、光学特性に優れる発光装置51を得ることができる。 Furthermore, according to the second embodiment, as shown in FIG. 5C, in step (3), the second coating layer 4 is filled in the groove 3 so as to cover the upper surface of the upper first phosphor layer 52. A part of the light emitted upward from the optical semiconductor element 1 is wavelength-converted by the upper first phosphor layer 52 and then passes through the second coating layer 4 so that the light is mixed appropriately. The Therefore, it is possible to obtain the coated optical semiconductor element 5 having excellent optical characteristics and the light emitting device 51 having excellent optical characteristics.
 <第2実施形態の変形例>
 第2実施形態では、上側第1蛍光体層52の上側に位置する第2被覆層4の厚みzを、比較的薄く設定しているが、この変形例では、例えば、上側第1蛍光体層52の上側に位置する第2被覆層4の厚みzを比較的厚く設定する。上側第1蛍光体層52の上側に位置する第2被覆層4の厚みzは、具体的には、例えば、5μm以上、好ましくは、50μm以上、より好ましくは、100μm以上であり、また、例えば、500μm以下である。
<Modification of Second Embodiment>
In the second embodiment, the thickness z of the second coating layer 4 positioned on the upper side of the upper first phosphor layer 52 is set to be relatively thin. In this modification, for example, the upper first phosphor layer is, for example, The thickness z of the second coating layer 4 located on the upper side of 52 is set to be relatively thick. Specifically, the thickness z of the second coating layer 4 positioned on the upper side of the upper first phosphor layer 52 is, for example, 5 μm or more, preferably 50 μm or more, more preferably 100 μm or more. 500 μm or less.
 上側第1蛍光体層52の上側に位置する第2被覆層4の厚みzが上記した下限以上であれば、被覆光半導体素子5、および、発光装置51は、均一な光を発光することができる。 If the thickness z of the second coating layer 4 positioned on the upper side of the upper first phosphor layer 52 is equal to or more than the lower limit, the coated optical semiconductor element 5 and the light emitting device 51 may emit uniform light. it can.
 <第3実施形態および第4実施形態>
 第3実施形態および第4実施形態において、上記した第1実施形態および第2実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
<Third Embodiment and Fourth Embodiment>
In 3rd Embodiment and 4th Embodiment, about the member and process similar to 1st Embodiment and 2nd Embodiment mentioned above, the same referential mark is attached | subjected and the detailed description is abbreviate | omitted.
 第1実施形態および第2実施形態では、蛍光体を第2被覆層4に含有させていない。 In the first embodiment and the second embodiment, the phosphor is not contained in the second coating layer 4.
 しかし、第3実施形態および第4実施形態では、図8および図9が参照されるように、蛍光体を、第2被覆層の一例としての第2蛍光体層84に含有させる。つまり、第1蛍光体層2および第2蛍光体層84は、ともに、蛍光体を含有する。好ましくは、第1蛍光体層2が、赤色蛍光体を含有し、第2蛍光体層84が、緑色蛍光体を含有する。 However, in the third embodiment and the fourth embodiment, as shown in FIGS. 8 and 9, the phosphor is contained in the second phosphor layer 84 as an example of the second coating layer. That is, both the first phosphor layer 2 and the second phosphor layer 84 contain a phosphor. Preferably, the first phosphor layer 2 contains a red phosphor, and the second phosphor layer 84 contains a green phosphor.
 第3実施形態および第4実施形態の第2蛍光体層84は、第1実施形態および第2実施形態の第2被覆層4と同様の形状および構造を有している。第2蛍光体層84は、上記した被覆組成物に含有される樹脂と、蛍光体とを含有する。蛍光体の含有割合は、樹脂100質量部に対して、例えば、0.1質量部以上、好ましくは、0.5質量部以上であり、また、例えば、80質量部以下、好ましくは、50質量部以下である。また、蛍光体の含有割合は、樹脂および蛍光体の総質量に対して、例えば、0.1質量%以上、好ましくは、0.5質量%以上であり、また、例えば、90質量%以下、好ましくは、80質量%以下である。 The second phosphor layer 84 of the third embodiment and the fourth embodiment has the same shape and structure as the second coating layer 4 of the first embodiment and the second embodiment. The 2nd fluorescent substance layer 84 contains resin and fluorescent substance which are contained in an above-described coating composition. The content ratio of the phosphor is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 80 parts by mass or less, preferably 50 parts by mass with respect to 100 parts by mass of the resin. Or less. Further, the content ratio of the phosphor is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, for example, 90% by mass or less, based on the total mass of the resin and the phosphor. Preferably, it is 80 mass% or less.
 第1蛍光体層2に含まれる蛍光体の、第2蛍光体層84に含まれる蛍光体に対する含有割合(第1蛍光体層2に含まれる蛍光体/第2蛍光体層84に含まれる蛍光体)は、質量基準で、例えば、0.1以上、好ましくは、0.5以上であり、また、例えば、10以下、好ましくは、2以下である。 Content ratio of phosphor contained in first phosphor layer 2 to phosphor contained in second phosphor layer 84 (phosphor contained in first phosphor layer 2 / fluorescence contained in second phosphor layer 84) The body) is, for example, 0.1 or more, preferably 0.5 or more, and is, for example, 10 or less, preferably 2 or less, based on mass.
 図8に示すように、第3実施形態の製造方法により得られる被覆光半導体素子5は、光半導体素子1と、光半導体素子1の上面および側面を被覆し、底部36を有する第1蛍光体層2と、第1蛍光体層2の側面、および、底部36の上面を被覆する第2蛍光体層84とを備える。 As shown in FIG. 8, the coated optical semiconductor element 5 obtained by the manufacturing method of the third embodiment covers the optical semiconductor element 1, the upper surface and the side surface of the optical semiconductor element 1, and the first phosphor having the bottom 36. The layer 2 includes a second phosphor layer 84 that covers the side surface of the first phosphor layer 2 and the top surface of the bottom portion 36.
 第3実施形態において、第2蛍光体層84の幅βは、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 In the third embodiment, the width β of the second phosphor layer 84 is, for example, 10 μm or more, preferably 50 μm or more, and, for example, 2000 μm or less, preferably 1000 μm or less.
 第2蛍光体層84の厚みL7は、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The thickness L7 of the second phosphor layer 84 is, for example, 50 μm or more, preferably 100 μm or more, and, for example, 2000 μm or less, preferably 1000 μm or less.
 また、図9に示すように、第4実施形態の製造方法により得られる被覆光半導体素子5は、光半導体素子1と、光半導体素子1の上面および側面を被覆し、底部36を有する第1蛍光体層2と、第1蛍光体層2の上面(底部36の上面を含む)および側面を被覆する第2蛍光体層84とを備える。第2蛍光体層84の上面は、面方向に延びる平坦面である。第2蛍光体層84の下面は、突出部45および凹部46を有する。 Also, as shown in FIG. 9, the coated optical semiconductor element 5 obtained by the manufacturing method of the fourth embodiment covers the optical semiconductor element 1, the upper surface and the side surface of the optical semiconductor element 1, and has a bottom portion 36. The phosphor layer 2, and the second phosphor layer 84 covering the upper surface (including the upper surface of the bottom 36) and the side surface of the first phosphor layer 2 are provided. The upper surface of the second phosphor layer 84 is a flat surface extending in the surface direction. The lower surface of the second phosphor layer 84 has a protrusion 45 and a recess 46.
 第4実施形態において、第2蛍光体層84の幅βは、第3実施形態におけるそれと同一である。上側第1蛍光体層52の上側に位置する第2蛍光体層84の厚みzは、例えば、比較的厚く設定され、具体的には、例えば、10μm以上、好ましくは、25μm以上、より好ましくは、50μm以上であり、また、例えば、2000μm以下である。 In the fourth embodiment, the width β of the second phosphor layer 84 is the same as that in the third embodiment. The thickness z of the second phosphor layer 84 positioned on the upper side of the upper first phosphor layer 52 is set to be relatively thick, for example, specifically, for example, 10 μm or more, preferably 25 μm or more, more preferably , 50 μm or more, and for example, 2000 μm or less.
 <第3実施形態および第4実施形態の作用効果>
 第3実施形態および第4実施形態によっても、上記した各実施形態と同様の作用効果を奏することができる。
<Effects of Third Embodiment and Fourth Embodiment>
According to the third embodiment and the fourth embodiment, the same operational effects as those of the above-described embodiments can be obtained.
 図8に示すように、第3実施形態により得られた被覆光半導体素子5によれば、光半導体素子1から上方に向かって発光された光は、上側第1蛍光体層52によって波長変換される。また、光半導体素子1から側方に向かって発光された光は、第1蛍光体層2および第2蛍光体層84によって、順次波長変換される。そのため、発光効率に優れた被覆光半導体素子5、ひいては、発光効率に優れた発光装置51を得ることができる。 As shown in FIG. 8, according to the coated optical semiconductor element 5 obtained by the third embodiment, the light emitted upward from the optical semiconductor element 1 is wavelength-converted by the upper first phosphor layer 52. The The light emitted from the optical semiconductor element 1 toward the side is sequentially wavelength-converted by the first phosphor layer 2 and the second phosphor layer 84. Therefore, it is possible to obtain the coated optical semiconductor element 5 having excellent light emission efficiency, and thus the light emitting device 51 having excellent light emission efficiency.
 図9に示すように、第4実施形態により得られた被覆光半導体素子5によれば、光半導体素子1から上方および側方に向かって発光された光は、第1蛍光体層2および第2蛍光体層84によって、順次波長変換される。そのため、光の均一性および発光効率に優れた被覆光半導体素子5、ひいては、発光効率に優れた発光装置51を得ることができる。 As shown in FIG. 9, according to the coated optical semiconductor element 5 obtained according to the fourth embodiment, the light emitted upward and laterally from the optical semiconductor element 1 is emitted from the first phosphor layer 2 and the first phosphor layer 2. The wavelength is sequentially converted by the two phosphor layers 84. Therefore, it is possible to obtain the coated optical semiconductor element 5 excellent in light uniformity and light emission efficiency, and thus the light emitting device 51 excellent in light emission efficiency.
 <第5実施形態および第6実施形態>
 第5実施形態および第6実施形態において、上記した第1実施形態~第4実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
<5th Embodiment and 6th Embodiment>
In the fifth embodiment and the sixth embodiment, the same members and processes as those in the first to fourth embodiments described above are denoted by the same reference numerals, and detailed description thereof is omitted.
 第3実施形態および第4実施形態では、蛍光体を、第1被覆層の一例としての第1蛍光体層2に含有させている。 In the third embodiment and the fourth embodiment, the phosphor is contained in the first phosphor layer 2 as an example of the first coating layer.
 しかし、第5実施形態および第6実施形態では、蛍光体を、第1被覆層82に含有させない。つまり、第1被覆層82は、蛍光体を含有しない透明層である。 However, in the fifth and sixth embodiments, the phosphor is not included in the first coating layer 82. That is, the first coating layer 82 is a transparent layer that does not contain a phosphor.
 一方、第2蛍光体層84は、蛍光体を含有する蛍光体層である。好ましくは、第2蛍光体層84は、黄色蛍光体を含有する。 On the other hand, the second phosphor layer 84 is a phosphor layer containing a phosphor. Preferably, the second phosphor layer 84 contains a yellow phosphor.
 第5実施形態および第6実施形態の第1被覆層82は、図10および図11に示すように、第1実施形態および第2実施形態の第1蛍光体層2と同様の形状および構造を有している。第1被覆層82は、上記した透明樹脂組成物(蛍光体を含有しない樹脂組成物)からなる。そのため、第1被覆層82は、透明性を有する透明層である。 As shown in FIGS. 10 and 11, the first covering layer 82 of the fifth embodiment and the sixth embodiment has the same shape and structure as the first phosphor layer 2 of the first embodiment and the second embodiment. Have. The 1st coating layer 82 consists of an above-described transparent resin composition (resin composition which does not contain fluorescent substance). Therefore, the 1st coating layer 82 is a transparent layer which has transparency.
 なお、図1Bおよび図1Cが参照されるように、工程(2)では、複数の光半導体素子1と、それらを被覆し、溝3を有する第1被覆層82とを備える第1被覆素子集合体41(図1Bおよび図1Cにおいて図示されず)が、第1仮固定シート10が支持された状態で得られる。 1B and 1C, in step (2), in the step (2), a first covering element assembly including a plurality of optical semiconductor elements 1 and a first covering layer 82 covering them and having grooves 3 is provided. A body 41 (not shown in FIGS. 1B and 1C) is obtained with the first temporary fixing sheet 10 supported.
 第2蛍光体層84は、第1実施形態および第2実施形態の第2被覆層4と同様の形状および構造を有している。第2蛍光体層84は、第3実施形態および第4実施形態と同じ第2蛍光体層84を形成するための組成物からなり、つまり、樹脂と蛍光体とを含有する。 The second phosphor layer 84 has the same shape and structure as the second coating layer 4 of the first embodiment and the second embodiment. The 2nd fluorescent substance layer 84 consists of a composition for forming the 2nd fluorescent substance layer 84 same as 3rd Embodiment and 4th Embodiment, ie, contains resin and fluorescent substance.
 図10に示すように、第5実施形態の製造方法により得られる被覆光半導体素子5は、光半導体素子1と、光半導体素子1の上面および側面を被覆し、底部36を有する第1被覆層82と、第1被覆層82の側方に位置する第1被覆層82の側面、および、底部36の上面を被覆する第2蛍光体層84とを備える。被覆光半導体素子5の第1被覆層82は、光半導体素子1の上側に位置する部分(上側第1被覆層83。第1実施形態における上側第1蛍光体層52に対応。)を有し、上側第1被覆層83の上面を露出している。 As shown in FIG. 10, the coated optical semiconductor element 5 obtained by the manufacturing method of the fifth embodiment includes the optical semiconductor element 1 and a first coating layer that covers the upper surface and the side surface of the optical semiconductor element 1 and has a bottom portion 36. 82, a side surface of the first coating layer 82 located on the side of the first coating layer 82, and a second phosphor layer 84 that covers the upper surface of the bottom portion 36. The first covering layer 82 of the coated optical semiconductor element 5 has a portion (upper first covering layer 83, corresponding to the upper first phosphor layer 52 in the first embodiment) located above the optical semiconductor element 1. The upper surface of the upper first covering layer 83 is exposed.
 第5実施形態において、溝3の内側面と、光半導体素子1の側面との距離αは、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。第2蛍光体層84の厚みL7は、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 In the fifth embodiment, the distance α between the inner surface of the groove 3 and the side surface of the optical semiconductor element 1 is, for example, 50 μm or more, preferably 100 μm or more, and, for example, 2000 μm or less, preferably 1000 μm or less. It is. The thickness L7 of the second phosphor layer 84 is, for example, 50 μm or more, preferably 100 μm or more, and for example, 2000 μm or less, preferably 1000 μm or less.
 また、図11に示すように、第6実施形態の製造方法により得られる被覆光半導体素子5は、光半導体素子1と、光半導体素子1の上面および側面を被覆し、底部36を有する第1被覆層82と、上側第1被覆層83を被覆する第2蛍光体層84とを備える。 As shown in FIG. 11, the coated optical semiconductor element 5 obtained by the manufacturing method of the sixth embodiment covers the optical semiconductor element 1, the upper surface and the side surface of the optical semiconductor element 1, and has a bottom portion 36. A covering layer 82 and a second phosphor layer 84 that covers the upper first covering layer 83 are provided.
 第6実施形態において、第2蛍光体層84の幅βは、第5実施形態におけるそれと同一である。上側第1被覆層83の上側に位置する第2蛍光体層84の厚みzは、例えば、比較的厚く設定され、具体的には、例えば、20μm以上、好ましくは、50μm以上、より好ましくは、100μm以上であり、また、例えば、2000μm以下である。 In the sixth embodiment, the width β of the second phosphor layer 84 is the same as that in the fifth embodiment. The thickness z of the second phosphor layer 84 located on the upper side of the upper first coating layer 83 is set to be relatively thick, for example, specifically, for example, 20 μm or more, preferably 50 μm or more, more preferably 100 μm or more, and for example, 2000 μm or less.
 <第5実施形態および第6実施形態の作用効果>
 第5実施形態および第6実施形態によっても、上記した各実施形態と同様の作用効果を奏することができる。
<Operational Effects of Fifth Embodiment and Sixth Embodiment>
Also according to the fifth embodiment and the sixth embodiment, the same operational effects as those of the above-described embodiments can be obtained.
 図10に示すように、第5実施形態により得られた被覆光半導体素子5によれば、光半導体素子1から発光された光は、第1被覆層82を透過する。第1被覆層82を側方に向かって透過した光は、第2蛍光体層84によって、波長変換された後、上方斜め側方に向かう。そのため、光の取出効率を向上させることができる。 As shown in FIG. 10, according to the coated optical semiconductor element 5 obtained according to the fifth embodiment, the light emitted from the optical semiconductor element 1 passes through the first coating layer 82. The light transmitted through the first cover layer 82 to the side is converted in wavelength by the second phosphor layer 84 and then directed obliquely upward. Therefore, the light extraction efficiency can be improved.
 図11に示すように、第6実施形態により得られた被覆光半導体素子5によれば、光半導体素子1から発光された光は、第1被覆層82を透過する。第1被覆層82を側方に向かって透過した光は、第2蛍光体層84によって、波長変換された後、上方斜め側方に向かう。また、上側第1被覆層83を上方に向かって透過した光は、その一部が、第2蛍光体層84によって波長変換された後、上方に向かう。そのため、この被覆光半導体素子5は、発光効率に優れる。 As shown in FIG. 11, according to the coated optical semiconductor element 5 obtained by the sixth embodiment, the light emitted from the optical semiconductor element 1 passes through the first coating layer 82. The light transmitted through the first cover layer 82 to the side is converted in wavelength by the second phosphor layer 84 and then directed obliquely upward. In addition, a part of the light transmitted upward through the upper first covering layer 83 is wavelength-converted by the second phosphor layer 84 and then travels upward. Therefore, this coated optical semiconductor element 5 is excellent in luminous efficiency.
 <第7実施形態>
 第7実施形態において、上記した第1実施形態~第6実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
<Seventh embodiment>
In the seventh embodiment, members and steps similar to those in the first to sixth embodiments described above are given the same reference numerals, and detailed descriptions thereof are omitted.
 第1実施形態では、仮固定シートの一例として、第1仮固定シート10を挙げている。一方、第7実施形態では、図15Cに示すように、仮固定シートの一例として、第1転写シート37を挙げる。 In the first embodiment, the first temporarily fixed sheet 10 is cited as an example of the temporarily fixed sheet. On the other hand, in the seventh embodiment, as shown in FIG. 15C, the first transfer sheet 37 is given as an example of the temporarily fixed sheet.
 また、第1実施形態では、図1Aおよび図1Bに示すように、工程(1)において、複数の光半導体素子1のそれぞれの下面を仮固定シート10に直接仮固定している。 In the first embodiment, as shown in FIGS. 1A and 1B, the lower surfaces of the plurality of optical semiconductor elements 1 are temporarily fixed directly to the temporary fixing sheet 10 in the step (1).
 一方、第7実施形態では、工程(1)において、図15Cに示すように、複数の光半導体素子1のそれぞれを、第1蛍光体層2を介して、間接的に、仮固定シート10に仮固定する。 On the other hand, in the seventh embodiment, in the step (1), as shown in FIG. 15C, each of the plurality of optical semiconductor elements 1 is indirectly attached to the temporary fixing sheet 10 via the first phosphor layer 2. Temporarily fix.
 本発明の被覆光半導体素子の製造方法の第7実施形態は、第1被覆素子集合体41を用意する工程(図15Aおよび図15B参照)、第1被覆素子集合体41を仮固定シートの一例としての第1転写シート37に転写する工程(1)(図15C参照)、溝3を設ける工程(2)(図15D参照)、第2被覆層4を溝3に充填する工程(3)(図16E参照)、被覆光半導体素子5を第1転写シート37から転写シートの一例としての第2転写シート38に転写する工程(4)(図16F参照)、第2被覆層4の一部を除去する工程(図16G参照)を備える。第7実施形態では、上記した各工程が順次実施される。 In the seventh embodiment of the method for manufacturing a coated optical semiconductor element of the present invention, a step of preparing a first coated element assembly 41 (see FIGS. 15A and 15B), the first coated element assembly 41 is an example of a temporary fixing sheet. (1) (see FIG. 15C), transfer step (2) (see FIG. 15D), and filling the second cover layer 4 into the groove 3 (3) (see FIG. 15C) 16E), the step (4) of transferring the coated optical semiconductor element 5 from the first transfer sheet 37 to the second transfer sheet 38 as an example of the transfer sheet (see FIG. 16F), and a part of the second coating layer 4 The process of removing (refer FIG. 16G) is provided. In the seventh embodiment, the above steps are sequentially performed.
 図15Cに示すように、工程(1)では、第1被覆素子集合体41を第1転写シート37に転写する。第1被覆素子集合体41を第1転写シート37に転写するには、図15Bが参照されるように、まず、第1被覆素子集合体41の上方に第1転写シート37を配置する。第1転写シート37は、互いに間隔を隔てて配置された光半導体素子1を含む第1被覆素子集合体41を仮固定できる仮固定シートでもある。第1転写シート37としては、上記した転写シート27と同様の転写シートが挙げられる。 As shown in FIG. 15C, in the step (1), the first covering element assembly 41 is transferred to the first transfer sheet 37. In order to transfer the first covering element assembly 41 to the first transfer sheet 37, first, the first transfer sheet 37 is disposed above the first covering element assembly 41, as shown in FIG. 15B. The first transfer sheet 37 is also a temporarily fixing sheet that can temporarily fix the first covering element assembly 41 including the optical semiconductor elements 1 that are arranged at intervals. As the first transfer sheet 37, a transfer sheet similar to the transfer sheet 27 described above can be used.
 その後、第1転写シート37を引き下げて、第1転写シート37の下面を、第1被覆素子集合体41の上面に接触させる。 Thereafter, the first transfer sheet 37 is pulled down, and the lower surface of the first transfer sheet 37 is brought into contact with the upper surface of the first covering element assembly 41.
 次いで、第1転写シート37を第1仮固定シート10に対して引き上げる。これにより、第1被覆素子集合体41の下面が、第1仮固定シート10の上面から引き剥がされる。これにより、複数の光半導体素子1と、それらを被覆する第1蛍光体層2とを備える第1被覆素子集合体41が、第1転写シート37に仮固定される。その後、図15Cに示すように、第1被覆素子集合体41および第1転写シート37を上下反転させる。 Next, the first transfer sheet 37 is pulled up with respect to the first temporarily fixed sheet 10. Thereby, the lower surface of the first covering element assembly 41 is peeled off from the upper surface of the first temporary fixing sheet 10. Thereby, the first covering element assembly 41 including the plurality of optical semiconductor elements 1 and the first phosphor layer 2 covering them is temporarily fixed to the first transfer sheet 37. Thereafter, as shown in FIG. 15C, the first covering element assembly 41 and the first transfer sheet 37 are turned upside down.
 これにより、第1被覆素子集合体41は、その下面が第1転写シート37が支持された状態で、上面が露出する。第1被覆素子集合体41において、複数の光半導体素子1の下面は、第1蛍光体層2を介して、第1転写シート37の上側において、第1転写シート37に支持(仮固定)されている。また、第1被覆素子集合体41において、光半導体素子1の上面が露出する。なお、第1被覆素子集合体41において、光半導体素子1の上面は、上記したバンプによって形成されている。また、第1蛍光体層2は、複数の光半導体素子1と、第1転写シート37との間に介在している。 Thereby, the upper surface of the first covering element assembly 41 is exposed while the lower surface of the first covering element assembly 41 supports the first transfer sheet 37. In the first covering element assembly 41, the lower surfaces of the plurality of optical semiconductor elements 1 are supported (temporarily fixed) on the first transfer sheet 37 above the first transfer sheet 37 via the first phosphor layer 2. ing. In the first covering element assembly 41, the upper surface of the optical semiconductor element 1 is exposed. In the first covering element assembly 41, the upper surface of the optical semiconductor element 1 is formed by the bumps described above. The first phosphor layer 2 is interposed between the plurality of optical semiconductor elements 1 and the first transfer sheet 37.
 図15Dに示すように、工程(2)では、第1被覆素子集合体41において、隣接する光半導体素子1の間に位置する第1蛍光体層2に、上方に向かって開放される溝3を設ける。 As shown in FIG. 15D, in the step (2), in the first covering element assembly 41, the groove 3 opened upward in the first phosphor layer 2 located between the adjacent optical semiconductor elements 1 is formed. Is provided.
 溝3は、光半導体素子1のバンプ(上面)と同じ方向、具体的には、上側に向かって開放される。 The groove 3 is opened in the same direction as the bump (upper surface) of the optical semiconductor element 1, specifically, upward.
 溝3の深さL7は、光半導体素子1の厚みL1に対して、例えば、大きく設定されている。具体的には、溝3の深さL7は、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The depth L7 of the groove 3 is set larger than the thickness L1 of the optical semiconductor element 1, for example. Specifically, the depth L7 of the groove 3 is, for example, 50 μm or more, preferably 100 μm or more, and for example, 2000 μm or less, preferably 1000 μm or less.
 図16Eに示すように、次いで、光半導体素子1の上面(バンプ)を被覆するように、第2被覆層4を溝3に充填する。 As shown in FIG. 16E, the second coating layer 4 is then filled into the grooves 3 so as to cover the upper surface (bump) of the optical semiconductor element 1.
 その後、図16Fに示すように、溝3に対応する第1蛍光体層2および第2被覆層4を切断する。 Thereafter, as shown in FIG. 16F, the first phosphor layer 2 and the second coating layer 4 corresponding to the grooves 3 are cut.
 これによって、1つの光半導体素子1と、1つの第1蛍光体層2と、1つの第2被覆層4とを備える被覆光半導体素子5が、第1転写シート37に支持(仮固定)された状態で、得られる。 Thus, the coated optical semiconductor element 5 including one optical semiconductor element 1, one first phosphor layer 2, and one second coating layer 4 is supported (temporarily fixed) on the first transfer sheet 37. It is obtained in the state.
 被覆光半導体素子5において、光半導体素子1の上側に位置する第2被覆層4の厚みh1は、例えば、500μm以下、好ましくは、300μm以下であり、また、例えば、1μm以上、好ましくは、10μm以上である。 In the coated optical semiconductor element 5, the thickness h1 of the second coating layer 4 positioned on the upper side of the optical semiconductor element 1 is, for example, 500 μm or less, preferably 300 μm or less, and for example, 1 μm or more, preferably 10 μm. That's it.
 その後、図16Gに示すように、第2被覆層4の上端部を除去する。 Thereafter, as shown in FIG. 16G, the upper end portion of the second coating layer 4 is removed.
 具体的には、複数の光半導体素子1のそれぞれの上面を被覆する第2被覆層4を除去する。これとともに、底部36の上側に位置する第2被覆層4の上端部も除去する。 Specifically, the second coating layer 4 that covers the upper surfaces of the plurality of optical semiconductor elements 1 is removed. At the same time, the upper end portion of the second coating layer 4 located above the bottom portion 36 is also removed.
 第2被覆層4の上端部を除去するには、例えば、図示しないが、(1)感圧接着シートを用いる方法、例えば、図示しないが、(2)溶媒を用いる方法、例えば、図示しないが、(3)研磨部材を用いる方法などが採用される。以下、各方法を説明する。 In order to remove the upper end portion of the second coating layer 4, for example, although not shown, (1) a method using a pressure-sensitive adhesive sheet, for example, not shown, (2) a method using a solvent, for example, not shown. (3) A method using a polishing member is employed. Each method will be described below.
  (1)感圧接着シートを用いる方法
 感圧接着シートは、感圧接着剤から調製されており、前後方向および左右方向に連続するシート形状を有している。感圧接着シートの大きさは、例えば、感圧接着シートを、厚み方向に投影したときに、複数の第2被覆層4の上端部を含むことができる大きさに設定されている。感圧接着剤としては、例えば、アクリル系感圧接着剤、ゴム系感圧接着剤、シリコーン系感圧接着剤、ウレタン系感圧接着剤、ポリアクリルアミド系感圧接着剤などが挙げられる。また、感圧接着シートは、支持材などで支持されていてもよい。感圧接着シートの25℃における粘着力(180℃剥離接着力)は、例えば、7.5(N/20mm)以上、好ましくは、10.0(N/20mm)以上であり、また、例えば、100(N/20mm)以下、好ましくは、20.0(N/20mm)以下である。
(1) Method using pressure-sensitive adhesive sheet The pressure-sensitive adhesive sheet is prepared from a pressure-sensitive adhesive, and has a sheet shape continuous in the front-rear direction and the left-right direction. The magnitude | size of a pressure sensitive adhesive sheet is set to the magnitude | size which can contain the upper end part of the some 2nd coating layer 4, for example, when a pressure sensitive adhesive sheet is projected in the thickness direction. Examples of pressure sensitive adhesives include acrylic pressure sensitive adhesives, rubber pressure sensitive adhesives, silicone pressure sensitive adhesives, urethane pressure sensitive adhesives, polyacrylamide pressure sensitive adhesives, and the like. The pressure sensitive adhesive sheet may be supported by a support material or the like. The pressure-sensitive adhesive sheet has an adhesive strength at 25 ° C. (180 ° C. peel adhesive strength) of, for example, 7.5 (N / 20 mm) or more, preferably 10.0 (N / 20 mm) or more. 100 (N / 20 mm) or less, preferably 20.0 (N / 20 mm) or less.
 感圧接着シートを用いる方法では、感圧接着シートの感圧接着面(感圧接着シートが支持材が支持されている場合には、支持材によって支持される面に対する逆側面)を、第2被覆層4の上面に感圧接着し、続いて、第2被覆層4の上端部を引き剥がす。具体的には、まず、感圧接着シートを下降させ、続いて、感圧接着シートを第2被覆層4の上端部に対して感圧接着し、その後、感圧接着シートを第2被覆層4の上端部とともに、上昇させる(引き上げる)。 In the method using the pressure-sensitive adhesive sheet, the pressure-sensitive adhesive surface of the pressure-sensitive adhesive sheet (the side opposite to the surface supported by the support material when the pressure-sensitive adhesive sheet supports the support material) Pressure-sensitive adhesion is performed on the upper surface of the coating layer 4, and then the upper end portion of the second coating layer 4 is peeled off. Specifically, first, the pressure-sensitive adhesive sheet is lowered, and then the pressure-sensitive adhesive sheet is pressure-sensitively bonded to the upper end portion of the second coating layer 4, and then the pressure-sensitive adhesive sheet is bonded to the second coating layer. Together with the upper end of 4, it is raised (pulled up).
 光半導体素子1の上側に位置する第2被覆層4は、光半導体素子1の上面(バンプ)との界面で剥離し、感圧接着シートに追従する。 The second coating layer 4 positioned on the upper side of the optical semiconductor element 1 is peeled off at the interface with the upper surface (bump) of the optical semiconductor element 1 and follows the pressure-sensitive adhesive sheet.
 なお、第2被覆層4の上端部の剥離が一回で完了しない時には、上記動作を複数回繰り返し、これによって第2被覆層4の上端部の剥離を完了させる。このとき、第2被覆層4において、底部36の上側に位置する第2被覆層4の上端部も、光半導体素子1の上側に位置する第2被覆層4とともに、感圧接着シートに追従する。 In addition, when peeling of the upper end part of the 2nd coating layer 4 is not completed at once, the said operation | movement is repeated in multiple times, and thereby the peeling of the upper end part of the 2nd coating layer 4 is completed. At this time, in the second coating layer 4, the upper end portion of the second coating layer 4 positioned above the bottom portion 36 follows the pressure-sensitive adhesive sheet together with the second coating layer 4 positioned above the optical semiconductor element 1. .
  (2)溶媒を用いる方法
 溶媒としては、例えば、被覆樹脂組成物を完全または部分的に溶解または分散させることができる溶媒が選択される。具体的には、溶媒としては、有機溶媒、水系溶媒が挙げられる。有機溶媒としては、例えば、メタノール、エタノールなどのアルコール、例えば、アセトン、メチルエチルケトンなどのケトン、例えば、ヘキサンなどの脂肪族炭化水素、例えば、トルエンなどの芳香族炭化水素、例えば、テトラヒドロフランなどのエーテルなどが挙げられる。好ましくは、アルコール、芳香族炭化水素が挙げられる。
(2) Method using a solvent As the solvent, for example, a solvent capable of completely or partially dissolving or dispersing the coating resin composition is selected. Specifically, examples of the solvent include organic solvents and aqueous solvents. Examples of the organic solvent include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as toluene, and ethers such as tetrahydrofuran. Is mentioned. Preferably, alcohol and aromatic hydrocarbon are used.
 この方法では、具体的には、上記を溶媒を布に吸収させ、その布によって、第2被覆層4の上面を拭く。これによって、第2被覆層4の上端部が除去される。 In this method, specifically, the above solvent is absorbed into a cloth, and the upper surface of the second coating layer 4 is wiped with the cloth. Thereby, the upper end part of the 2nd coating layer 4 is removed.
  (3)研磨部材を用いる方法
 研磨部材としては、バフなどの布、ブラシ、ウォーターブラストなどが挙げられる。
(3) Method of using polishing member Examples of the polishing member include cloths such as buffs, brushes, and water blasting.
 研磨部材によって、第2被覆層4の上面を研磨する。これによって、第2被覆層4の上端部が除去される。 The upper surface of the second coating layer 4 is polished with a polishing member. Thereby, the upper end part of the 2nd coating layer 4 is removed.
 これによって、光半導体素子1の上面と、第1蛍光体層2の上面と、第2被覆層4の上面とが、面一となる。つまり、光半導体素子1の上面は、第1蛍光体層2の上面、および、第2被覆層4の上面と同一平面を形成する。 Thereby, the upper surface of the optical semiconductor element 1, the upper surface of the first phosphor layer 2, and the upper surface of the second coating layer 4 are flush with each other. That is, the upper surface of the optical semiconductor element 1 forms the same plane as the upper surface of the first phosphor layer 2 and the upper surface of the second coating layer 4.
 これによって、第2被覆層4の厚みh2は、例えば、15μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 Thereby, the thickness h2 of the second coating layer 4 is, for example, 15 μm or more, preferably 50 μm or more, and, for example, 2000 μm or less, preferably 1000 μm or less.
 そして、被覆光半導体素子5を、図16Gの仮想線が参照されるように、第2転写シート38に転写した後、図17に示すように、被覆光半導体素子5を、コレットを備えるピックアップ装置(図示せず)などを用いて、基板50にフリップチップ実装する。これによって、発光装置51を得る。 Then, after the coated optical semiconductor element 5 is transferred to the second transfer sheet 38 so that the phantom line in FIG. 16G is referred to, the coated optical semiconductor element 5 is picked up by a collet as shown in FIG. (Not shown) and the like are flip-chip mounted on the substrate 50. Thereby, the light emitting device 51 is obtained.
 複数の被覆光半導体素子5の第2転写シート38に対する接着力F4は、複数の被覆光半導体素子5の第1転写シート37に対する接着力F3に比べて、例えば、高い。複数の被覆光半導体素子5の第2転写シート38に対する接着力F4が複数の被覆光半導体素子5の第1転写シート37に対する接着力F3に比べて高い場合には、工程(4)において、被覆光半導体素子5を、第1転写シート37から第2転写シート38に確実に転写することができる。 The adhesive force F4 of the plurality of coated optical semiconductor elements 5 to the second transfer sheet 38 is, for example, higher than the adhesive force F3 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 37. When the adhesive force F4 of the plurality of coated optical semiconductor elements 5 to the second transfer sheet 38 is higher than the adhesive force F3 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 37, in step (4), the coating force The optical semiconductor element 5 can be reliably transferred from the first transfer sheet 37 to the second transfer sheet 38.
 複数の被覆光半導体素子5の第2転写シート38に対する接着力F4は、複数の被覆光半導体素子5の第1転写シート37に対する接着力F3に対して、例えば、100%超過、好ましくは、110%以上、より好ましくは、120%以上であり、また、例えば、300%以下である。 The adhesive force F4 of the plurality of coated optical semiconductor elements 5 to the second transfer sheet 38 is, for example, more than 100%, preferably 110% of the adhesive force F3 of the plurality of coated optical semiconductor elements 5 to the first transfer sheet 37. % Or more, more preferably 120% or more, and for example, 300% or less.
 <第7実施形態の作用効果>
 第7実施形態によっても、第2実施形態と同様の作用効果を奏することができる。
<Effects of Seventh Embodiment>
Also according to the seventh embodiment, the same operational effects as those of the second embodiment can be achieved.
 そして、この方法によれば、図16Eに示すように、工程(3)では、第1蛍光体層2の底部36が、溝3に充填された第2被覆層4と、第1転写シート37との間に介在しているので、第2被覆層4が第1転写シート37に直接接触することが防止される。そのため、たとえ、第2被覆層4の感圧接着力が高くても、第2被覆層4が第1転写シート37に接着することを防止することができる。 Then, according to this method, as shown in FIG. 16E, in the step (3), the bottom 36 of the first phosphor layer 2 has the second covering layer 4 filled in the groove 3, and the first transfer sheet 37. Therefore, the second coating layer 4 is prevented from coming into direct contact with the first transfer sheet 37. Therefore, even if the pressure-sensitive adhesive force of the second coating layer 4 is high, the second coating layer 4 can be prevented from adhering to the first transfer sheet 37.
 その結果、図16Fおよび図16Gに示すように、工程(4)において、被覆光半導体素子5を第1転写シート37から確実に剥離することができる。 As a result, as shown in FIGS. 16F and 16G, the coated optical semiconductor element 5 can be reliably peeled from the first transfer sheet 37 in the step (4).
 また、被覆光半導体素子5の第2転写シート38に対する接着力F4が、被覆光半導体素子5の、処理後の第1転写シート37に対する接着力F3に比べて、低ければ、工程(4)において、被覆光半導体素子5が、第1転写シート37から第2転写シート38に転写されず、第1転写シート37に感圧接着された状態となる。被覆光半導体素子5の第2転写シート38に対する接着力F4が、被覆光半導体素子5の、処理後の第1転写シート37に対する接着力F3と同一であれば、工程(4)において、被覆光半導体素子5が、第1転写シート37から第2転写シート38に確実に転写されない。 If the adhesive force F4 of the coated optical semiconductor element 5 to the second transfer sheet 38 is lower than the adhesive force F3 of the coated optical semiconductor element 5 to the first transfer sheet 37 after processing, in step (4). The coated optical semiconductor element 5 is not transferred from the first transfer sheet 37 to the second transfer sheet 38 and is pressure-bonded to the first transfer sheet 37. If the adhesive force F4 of the coated optical semiconductor element 5 to the second transfer sheet 38 is the same as the adhesive force F3 of the coated optical semiconductor element 5 to the processed first transfer sheet 37, in step (4), the coating light The semiconductor element 5 is not reliably transferred from the first transfer sheet 37 to the second transfer sheet 38.
 しかし、この方法によれば、被覆光半導体素子5の第2転写シート38に対する接着力F4が、被覆光半導体素子5の、処理後の第1転写シート37に対する接着力F3に比べて、高いので、図16Gに示すように、工程(4)において、被覆光半導体素子5を、第1転写シート37から第2転写シート38により一層確実に転写することができる。 However, according to this method, the adhesive force F4 of the coated optical semiconductor element 5 to the second transfer sheet 38 is higher than the adhesive force F3 of the coated optical semiconductor element 5 to the first transfer sheet 37 after processing. As shown in FIG. 16G, in the step (4), the coated optical semiconductor element 5 can be more reliably transferred from the first transfer sheet 37 to the second transfer sheet 38.
 また、図17に示すように、この被覆光半導体素子5では、第1蛍光体層2が底部36を有するので、光半導体素子1から発光され、上方斜め側方に向かう光を、底部36によって、効率的に波長変換することができる。そのため、光の取出効率に優れる被覆光半導体素子5、さらには、光の取出効率に優れる発光装置51を得ることができる。 Further, as shown in FIG. 17, in this coated optical semiconductor element 5, the first phosphor layer 2 has the bottom portion 36, so that light emitted from the optical semiconductor element 1 and directed obliquely upward to the side is transmitted by the bottom portion 36. The wavelength can be converted efficiently. Therefore, it is possible to obtain the coated optical semiconductor element 5 having excellent light extraction efficiency and the light emitting device 51 having excellent light extraction efficiency.
 <第8実施形態>
 第8実施形態において、上記した第1実施形態~第7実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
<Eighth Embodiment>
In the eighth embodiment, members and steps similar to those in the first to seventh embodiments described above are given the same reference numerals, and detailed descriptions thereof are omitted.
 第7実施形態では、図17に示すように、第1蛍光体層2に張出部である底部36を設けている。 In the seventh embodiment, as shown in FIG. 17, the first phosphor layer 2 is provided with a bottom portion 36 that is an overhang portion.
 第8実施形態では、図19に示すように、第1蛍光体層2は、張出部である底部36を備えない。 In the eighth embodiment, as shown in FIG. 19, the first phosphor layer 2 does not include the bottom portion 36 that is an overhang portion.
 本発明の被覆光半導体素子の製造方法の第8実施形態は、第7実施形態に備えられる各工程の他に、図18Aおよび図18Bに示すように、第1蛍光体層2において、底部36を含む上端部を除去する工程を備える。 In the eighth embodiment of the method for manufacturing a coated optical semiconductor element of the present invention, in addition to the steps included in the seventh embodiment, as shown in FIGS. 18A and 18B, the bottom portion 36 of the first phosphor layer 2 is used. The process of removing the upper end part containing is provided.
 第1蛍光体層2の上端部を除去する工程は、図18Aに示す、被覆光半導体素子5を第2転写シート38に転写する工程(4)の後に実施される。 The step of removing the upper end portion of the first phosphor layer 2 is performed after the step (4) of transferring the coated optical semiconductor element 5 to the second transfer sheet 38 shown in FIG. 18A.
 図18Bに示すように、第1蛍光体層2の上端部を除去する工程では、第7実施形態において第2被覆層4の上端部を除去する方法と同様の方法が採用される。 As shown in FIG. 18B, in the step of removing the upper end portion of the first phosphor layer 2, a method similar to the method of removing the upper end portion of the second coating layer 4 in the seventh embodiment is employed.
 これによって、第1蛍光体層2において底部36を含む上端部が除去される。 Thereby, the upper end portion including the bottom portion 36 in the first phosphor layer 2 is removed.
 すると、第2被覆層4の上端部が、上側に露出される。第2被覆層4の上面と、第1蛍光体層2の上面とは、面一になる。つまり、第2被覆層4の上面と、第1蛍光体層2の上面とは、同一平面を形成する。 Then, the upper end part of the 2nd coating layer 4 is exposed to the upper side. The upper surface of the second coating layer 4 and the upper surface of the first phosphor layer 2 are flush with each other. That is, the upper surface of the second coating layer 4 and the upper surface of the first phosphor layer 2 form the same plane.
 第1蛍光体層2は、略有底箱形状を有し、また、その下端部に光半導体素子1が埋設された形状を有する。つまり、下部に光半導体素子1を被覆しており、下方に向かって開放される凹部を有する形状を有する。具体的には、第1蛍光体層2は、上側に露出する上面(上端面)と、第2転写シート38に感圧接着する下面と、第2被覆層4の内側面に被覆される外側面と、光半導体素子1の上面および側面を被覆する内面とを有する。 The first phosphor layer 2 has a substantially bottomed box shape, and has a shape in which the optical semiconductor element 1 is embedded at the lower end thereof. In other words, the optical semiconductor element 1 is covered at the lower portion and has a shape having a recess that opens downward. Specifically, the first phosphor layer 2 has an upper surface (upper end surface) exposed on the upper side, a lower surface pressure-bonded to the second transfer sheet 38, and an outer surface that is coated on the inner surface of the second coating layer 4. It has a side surface and an inner surface that covers the upper surface and the side surface of the optical semiconductor element 1.
 第2被覆層4は、第1蛍光体層2の面方向外側に配置されており、略矩形枠形状を有する。第2被覆層4は、第1蛍光体層2の上面と面一である上面と、第1蛍光体層2および光半導体素子1の下面と面一である下面と、面方向外側に向かって露出する外側面と、第1蛍光体層2の外側面を被覆する内側面とを有する。 The second coating layer 4 is disposed on the outer side in the surface direction of the first phosphor layer 2 and has a substantially rectangular frame shape. The second covering layer 4 has an upper surface that is flush with the upper surface of the first phosphor layer 2, a lower surface that is flush with the lower surfaces of the first phosphor layer 2 and the optical semiconductor element 1, and outward in the plane direction. It has an exposed outer surface and an inner surface that covers the outer surface of the first phosphor layer 2.
 上側第1蛍光体層52の厚みL4は、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The thickness L4 of the upper first phosphor layer 52 is, for example, 10 μm or more, preferably 50 μm or more, and, for example, 2000 μm or less, preferably 1000 μm or less.
 その後、図19に示すように、被覆光半導体素子5を、コレットを備えるピックアップ装置(図示せず)などを用いて、基板50にフリップチップ実装する。これによって、発光装置51を得る。 Thereafter, as shown in FIG. 19, the coated optical semiconductor element 5 is flip-chip mounted on the substrate 50 using a pickup device (not shown) provided with a collet. Thereby, the light emitting device 51 is obtained.
 <第8実施形態の作用効果>
 第8実施形態によっても、第7実施形態と同様の作用効果を奏することができる。
<Effects of Eighth Embodiment>
Also according to the eighth embodiment, the same operational effects as those of the seventh embodiment can be achieved.
 また、被覆光半導体素子5および発光装置51では、第1蛍光体層2が底部36(図17参照)を備えないので、側方への光の漏れを抑制し、また、上方への輝度(正面輝度)を向上させることができる。 Further, in the coated optical semiconductor element 5 and the light emitting device 51, since the first phosphor layer 2 does not include the bottom portion 36 (see FIG. 17), leakage of light to the side is suppressed, and upward luminance ( Front luminance) can be improved.
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Specific numerical values such as blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. may be replaced with the upper limit values (numerical values defined as “less than” or “less than”) or lower limit values (numbers defined as “greater than” or “exceeded”). it can.
 まず、各成分を詳説する。 First, each component will be explained in detail.
 フェニル系シリコーン樹脂組成物:特開2015-073084号公報の実施例に記載のフェニル系シリコーン樹脂組成物A
 メチル系シリコーン樹脂組成物:商品名「LS1-6140」、Nusil社製
 酸化チタン:光反射性成分、商品名「R-706」、平均粒子径0.38μm、Dupont社製
 シリカフィラー:無機フィラー、商品名「FB9454」、平均粒子径20μm、デンカ社製
 カーボンブラック:光吸収性粒子、商品名「MA600」、平均粒子径20nm、三菱化学社製
 黄色蛍光体:YAG蛍光体、商品名「Y468」、YAG:Ce、平均粒子径17μm、ネモト・ルミマテリアル社製
 赤色蛍光体:CASN蛍光体、商品名「ER6238」、CaAlSiN:Eu、平均粒子径15μm、Intematix社製
 緑色蛍光体:LuAG蛍光体:商品名「LP-6956」、LuAl12:Ce、平均粒子径15μm、LWB社製
  (第1実施形態に対応する実施例および比較例)
  実施例1
 工程(1):図1Aに示すように、厚みL1が150μm、幅L2が1140μmである青色LEDからなる光半導体素子1を、第1仮固定シート10の上面に、間隔L3 300μm(ピッチP1440μm)を隔てて、複数整列配置した。第1仮固定シート10は、両面テープからなる仮固定層11と、ステンレス板からなる支持層12とを備えている。
Phenyl silicone resin composition: Phenyl silicone resin composition A described in Examples of JP-A-2015-073084
Methyl silicone resin composition: trade name “LS1-6140”, manufactured by Nusil Titanium oxide: light reflecting component, trade name “R-706”, average particle size 0.38 μm, manufactured by Dupont silica filler: inorganic filler, Product name “FB9454”, average particle size 20 μm, Denka's carbon black: light absorbing particles, product name “MA600”, average particle size 20 nm, Mitsubishi Chemical Corporation yellow phosphor: YAG phosphor, product name “Y468” , YAG: Ce, average particle size 17 μm, manufactured by Nemoto Lumimaterial, Inc. Red phosphor: CASN phosphor, trade name “ER6238”, CaAlSiN 3 : Eu, average particle size 15 μm, manufactured by Intematix Green phosphor: LuAG phosphor : trade name "LP-6956", Lu 3 Al 5 O 12: Ce, average particle size 15 [mu] m, LWB Ltd. (Examples and Comparative Examples corresponding to the first embodiment)
Example 1
Step (1): As shown in FIG. 1A, an optical semiconductor element 1 made of a blue LED having a thickness L1 of 150 μm and a width L2 of 1140 μm is disposed on the upper surface of the first temporary fixing sheet 10 with an interval L3 of 300 μm (pitch P1440 μm). A plurality of rows were arranged in a row. The first temporary fixing sheet 10 includes a temporary fixing layer 11 made of a double-sided tape and a support layer 12 made of a stainless steel plate.
 次いで、黄色蛍光体15質量部、および、フェニル系シリコーン樹脂組成物100質量部を含有する蛍光体樹脂組成物から、平板状の第1蛍光体層2を調製した。第1蛍光体層2の厚みL0は、350μmであった。 Next, a plate-like first phosphor layer 2 was prepared from a phosphor resin composition containing 15 parts by mass of a yellow phosphor and 100 parts by mass of a phenyl-based silicone resin composition. The thickness L0 of the first phosphor layer 2 was 350 μm.
 その後、図1Bに示すように、第1蛍光体層2を複数の第1蛍光体層2に対して、熱圧着した。熱圧着の条件は、90℃、10分間であった。これによって、複数の光半導体素子1から露出する第1仮固定シート10の上面に、第1蛍光体層2が直接接触した。 Thereafter, as shown in FIG. 1B, the first phosphor layer 2 was thermocompression bonded to the plurality of first phosphor layers 2. The thermocompression bonding conditions were 90 ° C. and 10 minutes. As a result, the first phosphor layer 2 was in direct contact with the upper surface of the first temporary fixing sheet 10 exposed from the plurality of optical semiconductor elements 1.
 上側第1蛍光体層52の厚みL4は150μmであり、隣接する光半導体素子1間に位置する第1蛍光体層2の厚みL5は300μmであった。 The thickness L4 of the upper first phosphor layer 52 was 150 μm, and the thickness L5 of the first phosphor layer 2 located between the adjacent optical semiconductor elements 1 was 300 μm.
 工程(2):図1Cに示すように、厚み200μmのダイシングソー35によって、隣接する光半導体素子1の間に位置する第1蛍光体層2に、溝3を設けた。 Step (2): As shown in FIG. 1C, a groove 3 was provided in the first phosphor layer 2 located between the adjacent optical semiconductor elements 1 by a dicing saw 35 having a thickness of 200 μm.
 溝3の幅L6は200μmであり、溝3の深さL7は、280μmであった。また、底部36の厚みL8は、20μmであった。溝3の内側面と、光半導体素子1の側面との距離αは、100μmであった。 The width L6 of the groove 3 was 200 μm, and the depth L7 of the groove 3 was 280 μm. Further, the thickness L8 of the bottom portion 36 was 20 μm. The distance α between the inner side surface of the groove 3 and the side surface of the optical semiconductor element 1 was 100 μm.
 複数の光半導体素子1と、溝3を有する第1蛍光体層2とを備える第1被覆素子集合体41を得た。 A first covering element assembly 41 having a plurality of optical semiconductor elements 1 and a first phosphor layer 2 having grooves 3 was obtained.
 工程(3):第2被覆層4を溝3に充填する方法として、工程(i)~工程(v)を順次実施した。 Step (3): As a method of filling the groove 3 with the second coating layer 4, steps (i) to (v) were sequentially performed.
  工程(i):まず、感圧接着剤を調製した。 Step (i): First, a pressure sensitive adhesive was prepared.
 すなわち、温度計、攪拌機、窒素導入管を備えた反応容器に、2-エチルヘキシルアクリレート(2EHA)100質量部と、2-ヒドロキシエチルアクリレート(2-HEA)12.6質量部と、ジベンゾイルパーオキサイド(BPO、重合開始剤)(商品名「ナイパーBW」、日油社製)0.25質量部とを、トルエン(重合溶媒)に投入して、窒素ガス気流下60℃で、モノマー成分を共重合させた。これにより、アクリル系ポリマーの45質量%トルエン溶液を得た。これにメタクリロイルオキシエチルイソシアネート13.5質量部を配合して、メタクリロイルオキシエチルイソシアネート(イソシアネート基含有化合物)をアクリル系ポリマーに対して付加反応させ、炭素-炭素二重結合を有するアクリル系ポリマーを調製した。また、上記アクリル系ポリマーのトルエン溶液に、アクリル系ポリマーの固形分100質量部に対して、イソシアネート系架橋剤(商品名「コロネートL」、日本ポリウレタン工業社製)0.1質量部と、光重合開始剤(商品名「イルガキュア127」、(2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、チバ・スペシャルティ・ケミカルズ社製)2質量部とを添加した。これによって、炭素-炭素二重結合が導入された樹脂組成物からなる感圧接着剤を調製した。 That is, in a reaction vessel equipped with a thermometer, a stirrer, and a nitrogen introduction tube, 100 parts by mass of 2-ethylhexyl acrylate (2EHA), 12.6 parts by mass of 2-hydroxyethyl acrylate (2-HEA), dibenzoyl peroxide (BPO, polymerization initiator) (trade name “Nyper BW”, manufactured by NOF Corporation) 0.25 part by mass was added to toluene (polymerization solvent), and the monomer components were combined at 60 ° C. under a nitrogen gas stream. Polymerized. This obtained the 45 mass% toluene solution of the acrylic polymer. 13.5 parts by mass of methacryloyloxyethyl isocyanate is added to this, and methacryloyloxyethyl isocyanate (isocyanate group-containing compound) is added to the acrylic polymer to prepare an acrylic polymer having a carbon-carbon double bond. did. In addition, 0.1 parts by mass of an isocyanate-based crosslinking agent (trade name “Coronate L”, manufactured by Nippon Polyurethane Industry Co., Ltd.) with respect to 100 parts by mass of the solid content of the acrylic polymer in a toluene solution of the acrylic polymer, and light Polymerization initiator (trade name “Irgacure 127”, (2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one 2 parts by mass of Ciba Specialty Chemicals Co., Ltd.) was added to prepare a pressure-sensitive adhesive composed of a resin composition into which a carbon-carbon double bond was introduced.
 続いて、感圧接着剤を、厚み125μmのPETフィルム(大三紙業社製)からなる支持シート62の表面に塗布した後、120℃で3分間乾燥し、さらに50℃で24時間、エージングした。これにより、厚み30μmの感圧接着層61を、支持シート62の表面に形成した。 Subsequently, the pressure-sensitive adhesive was applied to the surface of a support sheet 62 made of a 125 μm thick PET film (Daisan Paper Industry Co., Ltd.), then dried at 120 ° C. for 3 minutes, and further aged at 50 ° C. for 24 hours. did. As a result, a pressure-sensitive adhesive layer 61 having a thickness of 30 μm was formed on the surface of the support sheet 62.
 これにより、感圧接着層61と、支持シート62とを備え、厚み145μmの保護シート6を準備した。なお、保護シート6の25℃における引張弾性率は、3,650MPaであった。 Thereby, a pressure-sensitive adhesive layer 61 and a support sheet 62 were provided, and a protective sheet 6 having a thickness of 145 μm was prepared. The tensile elastic modulus at 25 ° C. of the protective sheet 6 was 3,650 MPa.
 その後、図1Dに示すように、保護シート6の感圧接着層61を、上側第1蛍光体層52の上面に、ハンドローラを用いて、貼り合せた。なお、感圧接着層61の下面と、溝3の底面とは、間隔が隔てられた。 Thereafter, as shown in FIG. 1D, the pressure-sensitive adhesive layer 61 of the protective sheet 6 was bonded to the upper surface of the upper first phosphor layer 52 using a hand roller. Note that the lower surface of the pressure-sensitive adhesive layer 61 and the bottom surface of the groove 3 were spaced apart.
  工程(ii):図1Eに示すように、真空チャンバー18、真空ライン19、真空ポンプ20、真空バルブ21、大気ライン22、大気バルブ23と、被覆材料43を充填した真空ディスペンサ39とを装備した真空装置16を準備した。 Step (ii): As shown in FIG. 1E, a vacuum chamber 18, a vacuum line 19, a vacuum pump 20, a vacuum valve 21, an atmospheric line 22, an atmospheric valve 23, and a vacuum dispenser 39 filled with a coating material 43 were provided. A vacuum device 16 was prepared.
 続いて、真空バルブ21および大気バルブ23を開放した状態で、真空ポンプ20を作動させ、その後、第1被覆素子集合体41、第1仮固定シート10および保護シート6を真空チャンバー18内に設置した。 Subsequently, the vacuum pump 20 is operated with the vacuum valve 21 and the atmospheric valve 23 opened, and then the first covering element assembly 41, the first temporary fixing sheet 10 and the protective sheet 6 are installed in the vacuum chamber 18. did.
 続いて、チャンバー空間24内を密閉し、次いで、大気バルブ23を閉鎖した。すると、チャンバー空間24の気圧は、6.6×10-4MPaになった。 Subsequently, the inside of the chamber space 24 was sealed, and then the atmospheric valve 23 was closed. Then, the atmospheric pressure in the chamber space 24 became 6.6 × 10 −4 MPa.
  工程(iii):メチル系シリコーン樹脂組成物100質量部、酸化チタン10質量部、シリカフィラー100質量部からなる被覆材料43を調製した。 Step (iii): A coating material 43 consisting of 100 parts by mass of a methyl silicone resin composition, 10 parts by mass of titanium oxide, and 100 parts by mass of silica filler was prepared.
 次いで、図1Eに示すように、真空ディスペンサ39のノズル41から、被覆材料43 1.3mL(密閉空間7の体積の142%)を、保護シート6の周端縁の下面と、それに対向する第1仮固定シート10の上面との間に、塗布した。これによって、密閉空間7を形成した。 Next, as shown in FIG. 1E, 1.3 mL of the coating material 43 (142% of the volume of the sealed space 7) is applied from the nozzle 41 of the vacuum dispenser 39 to the lower surface of the peripheral edge of the protective sheet 6 and the first surface facing it. 1 It apply | coated between the upper surfaces of the temporary fixing sheet 10. FIG. Thereby, the sealed space 7 was formed.
  工程(iv):次いで、図2Fに示すように、真空バルブ21を閉鎖し、その後、大気バルブ23を開放した。これによって、チャンバー空間24の気圧を大気圧にした。 Step (iv): Next, as shown in FIG. 2F, the vacuum valve 21 was closed, and then the atmospheric valve 23 was opened. As a result, the pressure in the chamber space 24 was set to atmospheric pressure.
 すると、密閉空間7に被覆材料43が流入し、密閉空間7が被覆材料43によって充填された。つまり、密閉空間7と同一形状を有し、被覆材料43からなる第2被覆層4が形成された。すなわち、第2被覆層4が溝3に充填された。そして、複数の光半導体素子1、第1蛍光体層2と、第2被覆層4とを備える第2被覆素子集合体29が得られた。 Then, the coating material 43 flowed into the sealed space 7 and the sealed space 7 was filled with the coating material 43. That is, the second coating layer 4 having the same shape as the sealed space 7 and made of the coating material 43 was formed. That is, the second coating layer 4 was filled in the groove 3. And the 2nd covering element aggregate | assembly 29 provided with the some optical semiconductor element 1, the 1st fluorescent substance layer 2, and the 2nd coating layer 4 was obtained.
 その後、第1仮固定シート10、第2被覆素子集合体29および保護シート6を、真空チャンバー18から取り出した。 Thereafter, the first temporary fixing sheet 10, the second covering element assembly 29 and the protective sheet 6 were taken out from the vacuum chamber 18.
  工程(v):次いで、図2Gに示すように、第2被覆素子集合体29および保護シート6を、熱風循環式乾燥機に投入して、150℃で2時間加熱することによって、第2被覆層4を完全硬化させた。 Step (v): Next, as shown in FIG. 2G, the second covering element assembly 29 and the protective sheet 6 are put into a hot-air circulating dryer and heated at 150 ° C. for 2 hours to thereby form the second covering Layer 4 was fully cured.
 その後、活性エネルギー線を保護シート6に照射して、感圧接着層61の感圧接着力を低減させた。続いて、保護シート6を、図2Gの矢印で示すように、上側第1蛍光体層52の上面と、第2被覆層4の上面とから、引き剥がした。 Thereafter, active energy rays were applied to the protective sheet 6 to reduce the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer 61. Subsequently, the protective sheet 6 was peeled off from the upper surface of the upper first phosphor layer 52 and the upper surface of the second coating layer 4 as indicated by arrows in FIG. 2G.
 図2Hに示すように、その後、厚み40μmのダイシングソーにより、第2被覆層4と、底部36とを厚み方向に沿って切断した。これにより、複数の被覆光半導体素子5を、第1仮固定シート10に支持された状態で、得た。第2被覆層4の幅βは、300μmであった。被覆光半導体素子5の寸法は、2440μm×2440μm×300μmであった。 As shown in FIG. 2H, the second coating layer 4 and the bottom portion 36 were then cut along the thickness direction with a 40 μm thick dicing saw. Thereby, the some covered optical semiconductor element 5 was obtained in the state supported by the 1st temporary fixing sheet 10. FIG. The width β of the second coating layer 4 was 300 μm. The dimension of the coated optical semiconductor element 5 was 2440 μm × 2440 μm × 300 μm.
 工程(4):図2Iに示すように、複数の被覆光半導体素子5を、第1仮固定シート10から、SPV-224(日東電工社製)からなる第1転写シート27に転写した。 Step (4): As shown in FIG. 2I, the plurality of coated optical semiconductor elements 5 were transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 made of SPV-224 (manufactured by Nitto Denko Corporation).
 発光装置の製造:
 その後、被覆光半導体素子5を基板50にフリップチップ実装して、発光装置51を得た。
Manufacturing of light emitting devices:
Thereafter, the coated optical semiconductor element 5 was flip-chip mounted on the substrate 50 to obtain a light emitting device 51.
  実施例2および3
 工程(2)において、溝3に対応する底部36の厚みL8を、表1の通りに変更した以外は、実施例1と同様に処理して、被覆光半導体素子5を得、続いて、発光装置51を得た。
Examples 2 and 3
In the step (2), except that the thickness L8 of the bottom portion 36 corresponding to the groove 3 was changed as shown in Table 1, the coated optical semiconductor element 5 was obtained in the same manner as in Example 1, and then light emission was performed. Device 51 was obtained.
 比較例1
 工程(2)では、図12Aに示すように、ダイシングソー35によって、第1蛍光体層2に、その厚み方向を貫通する開口部3’を設けた以外は、実施例1と同様に処理して、第1被覆素子集合体41を得た。開口部3’から、第1仮固定シート10の上面が露出していた。また、第1蛍光体層2には、底部36(張出部)が形成されていなかった。
Comparative Example 1
In step (2), as shown in FIG. 12A, the same treatment as in Example 1 was performed except that the dicing saw 35 provided an opening 3 ′ penetrating the first phosphor layer 2 in the thickness direction. Thus, a first covering element assembly 41 was obtained. The upper surface of the first temporary fixing sheet 10 was exposed from the opening 3 ′. In addition, the first phosphor layer 2 was not formed with the bottom portion 36 (the overhang portion).
 工程(3)では、図12Bに示すように、第2被覆層4は、開口部3’において、第1仮固定シート10の上面に直接接触していた。 In step (3), as shown in FIG. 12B, the second coating layer 4 was in direct contact with the upper surface of the first temporary fixing sheet 10 at the opening 3 ′.
 そして、工程(4)では、図12Dに示すように、被覆光半導体素子5を、第1仮固定シート10から第1転写シート27に転写することができなかった。 In step (4), as shown in FIG. 12D, the coated optical semiconductor element 5 could not be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
  (第2実施形態に対応する実施例)
  実施例4
 工程(3)において、差圧を利用する方法(工程(ii)~工程(iv))に代えて、モールド成形によって、第2被覆層4を形成した以外は、実施例2と同様にして、被覆光半導体素子5を得、続いて、発光装置51を得た。
(Example corresponding to the second embodiment)
Example 4
In the step (3), instead of the method using the differential pressure (steps (ii) to (iv)), except that the second coating layer 4 was formed by molding, the same as in Example 2, The coated optical semiconductor element 5 was obtained, and then the light emitting device 51 was obtained.
  実施例5および6
 酸化チタン10質量部に代えて、カーボンブラック10質量部を配合して、被覆材料43を調製した以外は、実施例2と同様にして、被覆光半導体素子5を得、続いて、発光装置51を得た。
Examples 5 and 6
The coated optical semiconductor element 5 was obtained in the same manner as in Example 2 except that 10 parts by mass of carbon black was blended in place of 10 parts by mass of titanium oxide to prepare the coating material 43. Subsequently, the light-emitting device 51 was obtained. Got.
  実施例7
 酸化チタンを配合せずに、被覆材料43を調製した以外は、実施例4と同様にして、被覆光半導体素子5を得、続いて、発光装置51を得た。
Example 7
A coated optical semiconductor element 5 was obtained in the same manner as in Example 4 except that the coating material 43 was prepared without blending titanium oxide, and then a light emitting device 51 was obtained.
  比較例2
 工程(2)では、図13Aに示すように、ダイシングソー35によって、第1蛍光体層2に、その厚み方向を貫通する開口部3’を設けた以外は、実施例7と同様に処理して、第1被覆素子集合体41を得た。開口部3’から、第1仮固定シート10の上面が露出していた。また、第1蛍光体層2には、底部36(張出部)が形成されていなかった。
Comparative Example 2
In step (2), as shown in FIG. 13A, the same treatment as in Example 7 was performed except that the dicing saw 35 provided an opening 3 ′ penetrating the first phosphor layer 2 in the thickness direction. Thus, a first covering element assembly 41 was obtained. The upper surface of the first temporary fixing sheet 10 was exposed from the opening 3 ′. In addition, the first phosphor layer 2 was not formed with the bottom portion 36 (the overhang portion).
 工程(3)では、図13Bに示すように、第2被覆層4は、開口部3’において、第1仮固定シート10の上面に直接接触していた。 In step (3), as shown in FIG. 13B, the second coating layer 4 was in direct contact with the upper surface of the first temporary fixing sheet 10 at the opening 3 ′.
 そして、工程(4)では、図13Dに示すように、被覆光半導体素子5を、第1仮固定シート10から第1転写シート27に転写することができなかった。 In step (4), the coated optical semiconductor element 5 could not be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27 as shown in FIG. 13D.
  (第4実施形態に対応する実施例および比較例)
  実施例8
 赤色蛍光体0.8質量部、および、フェニル系シリコーン樹脂組成物100質量部を含有する蛍光体樹脂組成物から、平板状の第1蛍光体層2を調製した点、および、緑色蛍光体22質量部、および、メチル系シリコーン樹脂組成物100質量部から、被覆材料43を調製した点以外は、実施例4と同様に処理して、図9に示す被覆光半導体素子5を得、続いて、図9の仮想線に示すように、発光装置51を得た。
(Examples and comparative examples corresponding to the fourth embodiment)
Example 8
From the phosphor resin composition containing 0.8 parts by mass of the red phosphor and 100 parts by mass of the phenyl silicone resin composition, the plate-shaped first phosphor layer 2 was prepared, and the green phosphor 22 9 except that the coating material 43 was prepared from 100 parts by mass and 100 parts by mass of the methyl silicone resin composition, the coated optical semiconductor element 5 shown in FIG. As shown by the phantom lines in FIG. 9, the light emitting device 51 was obtained.
 図9に示すように、被覆光半導体素子5は、光半導体素子1と、赤色蛍光体およびフェニル系シリコーン樹脂組成物を含有する第1蛍光体層2と、緑色蛍光体およびメチル系シリコーン樹脂組成物を含有する第2蛍光体層84とを備えている。 As shown in FIG. 9, the coated optical semiconductor element 5 includes an optical semiconductor element 1, a first phosphor layer 2 containing a red phosphor and a phenyl silicone resin composition, a green phosphor and a methyl silicone resin composition. And a second phosphor layer 84 containing an object.
  比較例3
 工程(2)では、図14Aに示すように、ダイシングソー35によって、第1蛍光体層2に、その厚み方向を貫通する開口部3’を設けた以外は、実施例8と同様に処理して、第2被覆素子集合体29を得た。開口部3’から、第1仮固定シート10の上面が露出していた。また、第1蛍光体層2には、底部36(張出部)が形成されていなかった。
Comparative Example 3
In step (2), as shown in FIG. 14A, the same treatment as in Example 8 was performed except that the dicing saw 35 provided an opening 3 ′ penetrating the first phosphor layer 2 in the thickness direction. Thus, a second covering element assembly 29 was obtained. The upper surface of the first temporary fixing sheet 10 was exposed from the opening 3 ′. In addition, the first phosphor layer 2 was not formed with the bottom portion 36 (the overhang portion).
 工程(3)では、図14Bに示すように、第2蛍光体層84は、開口部3’において、第1仮固定シート10の上面に直接接触していた。 In step (3), as shown in FIG. 14B, the second phosphor layer 84 was in direct contact with the upper surface of the first temporary fixing sheet 10 at the opening 3 ′.
 そして、工程(4)では、図14Dに示すように、被覆光半導体素子5を、第1仮固定シート10から第1転写シート27に転写することができなかった。 In step (4), as shown in FIG. 14D, the coated optical semiconductor element 5 could not be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
  (第6実施形態に対応する実施例)
  実施例9
 フェニル系シリコーン樹脂組成物からなる透明樹脂組成物から、平板状の第1被覆層82を調製した点、および、メチル系シリコーン樹脂組成物100質量部、および、黄色蛍光体15質量部から、被覆材料43を調製した点以外は、実施例4と同様に処理して、図11に示す被覆光半導体素子5を得、続いて、図11の仮想線に示すように、発光装置51を得た。
(Example corresponding to the sixth embodiment)
Example 9
From the transparent resin composition comprising a phenyl silicone resin composition, a flat first coating layer 82 was prepared, and 100 parts by mass of a methyl silicone resin composition and 15 parts by mass of a yellow phosphor were coated. The coated optical semiconductor element 5 shown in FIG. 11 was obtained in the same manner as in Example 4 except that the material 43 was prepared. Subsequently, as shown by the phantom line in FIG. 11, the light emitting device 51 was obtained. .
 図11に示すように、被覆光半導体素子5は、光半導体素子1と、フェニル系シリコーン樹脂組成物を含有する第1被覆層82(透明層)と、黄色蛍光体およびメチル系シリコーン樹脂組成物を含有する第2蛍光体層84とを備えている。 As shown in FIG. 11, the coated optical semiconductor element 5 includes an optical semiconductor element 1, a first coating layer 82 (transparent layer) containing a phenyl silicone resin composition, a yellow phosphor, and a methyl silicone resin composition. The 2nd fluorescent substance layer 84 containing is provided.
  (評価)
 下記の項目について評価した。それらの結果を表1~表4に記載する。
(Evaluation)
The following items were evaluated. The results are shown in Tables 1 to 4.
  (仮固定シートに対する接着力F1)
 各実施例および各比較例において、第1被覆素子集合体41の、紫外線照射後の第1仮固定シート10に対する接着力F1を、180度剥離試験により、測定した。
(Adhesive force F1 to temporary fixing sheet)
In each Example and each Comparative Example, the adhesive force F1 of the first covering element assembly 41 with respect to the first temporary fixing sheet 10 after ultraviolet irradiation was measured by a 180 degree peel test.
  (転写シートに対する接着力)
 各実施例および各比較例において、被覆光半導体素子5の第1転写シート27に対する接着力F1を、180度剥離試験により、測定した。
(Adhesive strength to transfer sheet)
In each Example and each Comparative Example, the adhesive force F1 of the coated optical semiconductor element 5 to the first transfer sheet 27 was measured by a 180 degree peel test.
  (転写シートへの転写性)
  被覆光半導体素子5の、第1仮固定シート10から第1転写シート27への転写性を、下記の基準に従って評価した。
○:被覆光半導体素子5を、第1仮固定シート10から第1転写シート27への転写できた。
×:被覆光半導体素子5を、第1仮固定シート10から第1転写シート27への転写できなかった。
(Transferability to transfer sheet)
The transferability of the coated optical semiconductor element 5 from the first temporary fixing sheet 10 to the first transfer sheet 27 was evaluated according to the following criteria.
○: The coated optical semiconductor element 5 could be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
X: The coated optical semiconductor element 5 could not be transferred from the first temporary fixing sheet 10 to the first transfer sheet 27.
  (正面輝度)
 発光装置51における正面輝度は、大塚電子社製、配光測定システムおよび分光器MCPDPD-9800を用い、常温、300mAで点灯させた。
(Front brightness)
The front luminance of the light emitting device 51 was turned on at 300 mA at room temperature using a light distribution measurement system and a spectroscope MCPDPD-9800 manufactured by Otsuka Electronics.
 発光した光をLED光源から316mm離れた距離に積分球を設置し、正面光(0°方向)の光量を、比較例1を100としたときに、90以上を○、90未満を×と判定した。 When an integrating sphere is installed at a distance of 316 mm away from the LED light source and the amount of front light (in the direction of 0 °) is set to 100 as Comparative Example 1, the light emitted is determined as ○, and less than 90 is determined as ×. did.
  (視認性)
 被覆光半導体素子5における視認性は、LED光源を使用し、縦20mm、横20mmのアルファベット文字A~Zの表示板を作成し、任意の文字を表示させた。表示した文字を3mの距離から読み取り、識別できた人が100人中70人以上であれば「○」、識別できた人が70人未満であれば「×」と判定した。
(Visibility)
For the visibility of the coated optical semiconductor element 5, an LED light source was used, display panels of alphabet letters A to Z having a length of 20 mm and a width of 20 mm were created, and arbitrary characters were displayed. The displayed characters were read from a distance of 3 m and judged as “◯” if 70 or more of 100 people could be identified, and “x” if less than 70 people could be identified.
  (光の取出効率)
 発光装置51の光の取出効率は、大塚電子社製、積分球および分光器MCPD-9800を用い、常温、300mAで点灯させ、全光束を測定し、下記の基準に従って評価した。
◎:105[lm/W]以上
○:90[lm/W]以上、105[lm/W]未満
(Light extraction efficiency)
The light extraction efficiency of the light-emitting device 51 was evaluated by using an integrating sphere and spectroscope MCPD-9800 manufactured by Otsuka Electronics Co., Ltd., lighting at room temperature and 300 mA, measuring the total luminous flux, and evaluating according to the following criteria.
◎: 105 [lm / W] or more ○: 90 [lm / W] or more, less than 105 [lm / W]
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
この製造方法により得られた被覆光半導体素子は、基板にフリップチップ実装されて、発光装置として用いられる。 The coated optical semiconductor element obtained by this manufacturing method is flip-chip mounted on a substrate and used as a light emitting device.
1     光半導体素子
2     第1蛍光体層(第1被覆層の一例)
3     溝
4     第2被覆層
5     被覆光半導体素子
10   第1仮固定シート(仮固定シートの一例)
27   転写シート
37   第1転写シート(仮固定シートの一例)
38   第2転写シート38(転写シートの一例)
82   第1被覆層
84   第2蛍光体層(第2被覆層の一例)
 
DESCRIPTION OF SYMBOLS 1 Optical semiconductor element 2 1st fluorescent substance layer (an example of 1st coating layer)
3 Groove 4 Second Covering Layer 5 Covered Optical Semiconductor Element 10 First Temporary Fixing Sheet (Example of Temporary Fixing Sheet)
27 Transfer sheet 37 First transfer sheet (an example of a temporary fixing sheet)
38 Second transfer sheet 38 (an example of a transfer sheet)
82 1st coating layer 84 2nd fluorescent substance layer (an example of 2nd coating layer)

Claims (7)

  1.  仮固定シートの上に互いに間隔を隔てて仮固定された複数の光半導体素子と、複数の前記光半導体素子から露出する前記仮固定シートの上面に第1被覆層が直接接触するように、複数の前記光半導体素子を被覆する前記第1被覆層とを用意する工程(1)と、
     隣接する前記光半導体素子の間に位置する前記第1被覆層に、上方に向かって開放される溝を設ける工程(2)と、
     第2被覆層を少なくとも前記溝に充填して、前記光半導体素子、前記第1被覆層および前記第2被覆層を備える被覆光半導体素子を得る工程(3)と、
     前記被覆光半導体素子を前記仮固定シートから剥離する工程(4)と
    を備え、
     前記工程(3)では、前記第1被覆層が、前記溝に充填された前記第2被覆層と、前記仮固定シートとの間に介在していることを特徴とする、被覆光半導体素子の製造方法。
    A plurality of optical semiconductor elements temporarily fixed on the temporary fixing sheet with a space therebetween, and a plurality of first coating layers so as to directly contact the upper surfaces of the temporary fixing sheets exposed from the plurality of optical semiconductor elements. Preparing the first coating layer for coating the optical semiconductor element of (1),
    A step (2) of providing a groove opened upward in the first covering layer located between the adjacent optical semiconductor elements;
    A step (3) of obtaining a coated optical semiconductor element comprising the optical semiconductor element, the first coating layer, and the second coating layer by filling at least the second coating layer into the groove;
    A step (4) of peeling the coated optical semiconductor element from the temporarily fixed sheet;
    In the step (3), the first covering layer is interposed between the second covering layer filled in the groove and the temporary fixing sheet. Production method.
  2.  前記工程(4)では、前記被覆光半導体素子を、前記仮固定シートから転写シートに転写し、
     前記被覆光半導体素子の前記転写シートに対する接着力が、前記被覆光半導体素子の前記仮固定シートに対する接着力に比べて、高いことを特徴とする、請求項1に記載の被覆光半導体素子の製造方法。
    In the step (4), the coated optical semiconductor element is transferred from the temporarily fixed sheet to a transfer sheet,
    2. The coated optical semiconductor element according to claim 1, wherein an adhesive force of the coated optical semiconductor element to the transfer sheet is higher than an adhesive force of the coated optical semiconductor element to the temporary fixing sheet. Method.
  3.  前記第1被覆層は、蛍光体を含有する第1蛍光体層であることを特徴とする、請求項1または2に記載の被覆光半導体素子の製造方法。 3. The method for manufacturing a coated optical semiconductor element according to claim 1, wherein the first coating layer is a first phosphor layer containing a phosphor.
  4.  前記工程(3)では、前記第1蛍光体層の上面を露出させるように、前記第2被覆層を前記溝に充填することを特徴とする、請求項3に記載の被覆光半導体素子の製造方法。 4. The coated optical semiconductor device according to claim 3, wherein in the step (3), the groove is filled with the second coating layer so as to expose an upper surface of the first phosphor layer. Method.
  5.  前記工程(3)では、前記第1被覆層の上面を被覆するように、前記第2被覆層を前記溝に充填することを特徴とする、請求項3に記載の被覆光半導体素子の製造方法。 4. The method of manufacturing a coated optical semiconductor element according to claim 3, wherein, in the step (3), the groove is filled with the second coating layer so as to cover an upper surface of the first coating layer. .
  6.  前記第2被覆層は、蛍光体を含有する第2蛍光体層であることを特徴とする、請求項1に記載の被覆光半導体素子の製造方法。 The method for manufacturing a coated optical semiconductor element according to claim 1, wherein the second coating layer is a second phosphor layer containing a phosphor.
  7.  前記工程(3)では、前記第2蛍光体層の上面を被覆するように、前記第2被覆層を前記溝に充填することを特徴とする、請求項6に記載の被覆光半導体素子の製造方法。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
    7. The coated optical semiconductor device according to claim 6, wherein in the step (3), the groove is filled with the second coating layer so as to cover the upper surface of the second phosphor layer. Method.

















PCT/JP2015/085268 2014-12-17 2015-12-16 Method for producing covered optical semiconductor element WO2016098825A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014255110 2014-12-17
JP2014-255110 2014-12-17
JP2015-217792 2015-11-05
JP2015217792A JP2016119454A (en) 2014-12-17 2015-11-05 Fluorescent material layer coated optical semiconductor element and manufacturing method of the same
JP2015-243519 2015-12-14
JP2015243519A JP6543564B2 (en) 2015-12-14 2015-12-14 Method of manufacturing coated optical semiconductor device

Publications (1)

Publication Number Publication Date
WO2016098825A1 true WO2016098825A1 (en) 2016-06-23

Family

ID=56126709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085268 WO2016098825A1 (en) 2014-12-17 2015-12-16 Method for producing covered optical semiconductor element

Country Status (1)

Country Link
WO (1) WO2016098825A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120299017A1 (en) * 2011-05-24 2012-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Batwing led with remote phosphor configuration
JP2014168035A (en) * 2012-06-29 2014-09-11 Nitto Denko Corp Sealing layer covered semiconductor element, manufacturing method of the same, and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120299017A1 (en) * 2011-05-24 2012-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Batwing led with remote phosphor configuration
JP2014168035A (en) * 2012-06-29 2014-09-11 Nitto Denko Corp Sealing layer covered semiconductor element, manufacturing method of the same, and semiconductor device

Similar Documents

Publication Publication Date Title
US8946983B2 (en) Phosphor-containing sheet, LED light emitting device using the same, and method for manufacturing LED
JP6762736B2 (en) A method for manufacturing an optical semiconductor device with a light reflecting layer and an optical semiconductor element with a light reflecting layer and a phosphor layer.
JP6641997B2 (en) Laminated body and method for manufacturing light emitting device using the same
TWI693730B (en) Manufacturing method of light-emitting device
US20140339582A1 (en) Resin sheet laminate, method for manufacturing the same and method for manufacturing led chip with phosphor-containing resin sheet
TW201419590A (en) Phosphor layer-covered optical semiconductor element, producing method thereof, optical semiconductor device, and producing method thereof
WO2015033824A1 (en) Wavelength conversion sheet, sealed optical semiconductor element and optical semiconductor element device
WO2014014008A1 (en) Production method for sealing layer-coated semiconductor element and semiconductor device
JP2014022704A (en) Phosphor containing resin sheet and light-emitting device and manufacturing method thereof
JP6313165B2 (en) Thermosetting sealing resin sheet, sealing sheet with separator, semiconductor device, and method for manufacturing semiconductor device
CN111670231B (en) Film-like adhesive and sheet for semiconductor processing
WO2016148019A1 (en) Method for producing optical semiconductor element with light reflecting layer and method for producing optical semiconductor element with light reflecting layer and phosphor layer
JP6543564B2 (en) Method of manufacturing coated optical semiconductor device
JP6497072B2 (en) Laminated body and method of manufacturing light emitting device using the same
WO2015033890A1 (en) Optical-semiconductor-element sealing composition, optical-semiconductor-element sealing molded article, optical-semiconductor-element sealing sheet, optical semiconductor device, and sealed optical semiconductor element
WO2017086206A1 (en) Manufacturing methods for sealed semiconductor element and semiconductor device
JP7155245B2 (en) Die bonding film, dicing die bonding sheet, and method for manufacturing semiconductor chip
WO2017047246A1 (en) Sealed optical semiconductor element and method for manufacturing light emitting device
JP2016208033A (en) Manufacturing method of encapsulated semiconductor element and semiconductor device
JP2013252637A (en) Fluorescent substance sheet laminate
WO2015029664A1 (en) Method for producing sealed semiconductor element and method for manufacturing semiconductor device
JP7032052B2 (en) Silicone resin film and its manufacturing method, and semiconductor device manufacturing method
WO2016098825A1 (en) Method for producing covered optical semiconductor element
TWI691102B (en) Manufacturing method of coated optical semiconductor element
JP2017079325A (en) Coated element member manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870027

Country of ref document: EP

Kind code of ref document: A1