WO2016098464A1 - Ledランプ - Google Patents

Ledランプ Download PDF

Info

Publication number
WO2016098464A1
WO2016098464A1 PCT/JP2015/080689 JP2015080689W WO2016098464A1 WO 2016098464 A1 WO2016098464 A1 WO 2016098464A1 JP 2015080689 W JP2015080689 W JP 2015080689W WO 2016098464 A1 WO2016098464 A1 WO 2016098464A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
heat sink
led lamp
substrate
led substrate
Prior art date
Application number
PCT/JP2015/080689
Other languages
English (en)
French (fr)
Inventor
孝佳 今成
清輝 岩崎
勇太 小林
Original Assignee
岩崎電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社 filed Critical 岩崎電気株式会社
Publication of WO2016098464A1 publication Critical patent/WO2016098464A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/67Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • F21V31/03Gas-tight or water-tight arrangements with provision for venting

Definitions

  • the present invention relates to an LED lamp, and more particularly to a bulb-type LED lamp having an LED cooling mechanism.
  • LED lamps using light emitting diodes are widely used.
  • LEDs light emitting diodes
  • the LED lamp has an advantage of having a high luminous efficiency as compared with the discharge lamp, but has a disadvantage that the luminous efficiency is lowered when the LED is heated to a high temperature. Therefore, an LED cooling mechanism for cooling the LED is provided in order to prevent the LED from becoming hot. Examples of the LED cooling mechanism include a heat sink and a cooling fan.
  • Patent Document 1 describes an example of a bulb-type LED lamp.
  • This LED lamp has a hexagonal cylindrical heat sink, and an LED substrate is mounted on the outer surface thereof. Radiation fins are provided inside the heat sink.
  • a high performance heat sink with good heat conduction characteristics and heat dissipation characteristics is required.
  • high performance heat sinks have a relatively large profile and weight.
  • the LED substrate is attached to the heat sink with screws or the like. As a result, the LED lamp becomes larger and its weight increases.
  • the weight of the heat sink is reduced, not only the heat conduction characteristics and the heat radiation characteristics are deteriorated, but also the operation of mounting the heat sink on the LED substrate becomes relatively difficult. Therefore, in the light bulb-type LED lamp, there is a demand for facilitating the process of assembling the heat sink and the LED substrate together with reducing the weight of the heat sink.
  • An object of the present invention is to facilitate a process of assembling a heat sink and an LED substrate in a light bulb type LED lamp.
  • the inventors of the present application have conceived a structure in which a heat sink is attached to the LED substrate instead of attaching the LED substrate to the heat sink with screws or the like. As a result, it has been found that the process of assembling the heat sink and the LED substrate can be facilitated while simultaneously reducing the weight of the heat sink.
  • a light bulb-type LED lamp having a base, an LED substrate on which an LED element is mounted, and a heat sink attached to the LED substrate, the end portions of the heat sink and the LED substrate are sandwiched between clips. It may be fixed.
  • the heat sink may be formed by bending a single plate-like member.
  • the heat sink and the LED substrate may be further fixed by rivets.
  • the LED substrate is formed in a cylindrical shape having a polygonal cross section
  • the heat sink is mounted on the inner side of the LED substrate
  • a through hole is formed on the inner side of the heat sink.
  • the heat sink may include a plurality of heat radiation fins extending so as to protrude into the through hole.
  • the height of the fin may be reduced from the center of the inner side surface of the LED substrate toward both sides.
  • the LED lamp includes a cooling fan disposed between the base and the heat sink, and the cooling fan, the heat sink, and the LED substrate are along a central axis of the lamp that passes through the base. It may be arranged.
  • the LED substrate may have a thin long hole or a slit at the corner of the polygon.
  • the LED lamp has a light-transmitting cover that covers the LED substrate and has an air discharge hole on the top side, and the cooling air from the cooling fan is disposed inside the heat sink.
  • the long hole may flow into the space between the LED board and the cover via the slit.
  • the LED substrate may be formed by bending a rectangular substrate along a bent portion.
  • the process of assembling the heat sink and the LED substrate can be facilitated.
  • FIG. 1A is a perspective view illustrating a configuration example of an LED lamp according to the present embodiment.
  • FIG. 1B is a perspective view illustrating a configuration example of the LED lamp according to the present embodiment.
  • FIG. 2 is an exploded perspective view of the LED lamp according to the present embodiment.
  • FIG. 3 is a perspective view for explaining the structure of the LED unit and the spacer of the LED lamp according to the present embodiment.
  • FIG. 4 is an explanatory diagram illustrating a cooling air flow in the LED lamp according to the present embodiment.
  • FIG. 5 is an explanatory diagram illustrating the structure of the LED unit of the LED lamp according to the present embodiment.
  • FIG. 6A is an explanatory diagram illustrating an example of the structure of the LED substrate of the LED unit of the LED lamp according to the present embodiment.
  • FIG. 6B is an explanatory diagram illustrating an example of the structure of the LED substrate of the LED unit of the LED lamp according to the present embodiment.
  • FIG. 6C is an explanatory diagram illustrating an example of the structure of the LED substrate of the LED unit of the LED lamp according to the present embodiment.
  • FIG. 7 is an explanatory view illustrating an example of the structure of the heat sink of the LED unit of the LED lamp according to the present embodiment.
  • FIG. 8A is an explanatory diagram illustrating an example of a clip structure of the LED unit of the LED lamp according to the present embodiment.
  • FIG. 8B is an explanatory diagram illustrating an example of a clip structure of the LED unit of the LED lamp according to the present embodiment.
  • FIG. 9A is an explanatory diagram illustrating an example of a method for assembling the LED substrate of the LED unit of the LED lamp according to the present embodiment.
  • FIG. 9B is an explanatory diagram illustrating an example of a method for assembling the LED substrate of the LED unit of the LED lamp according to the present embodiment.
  • FIG. 9C is an explanatory diagram illustrating an example of the structure of the fixing portion of the LED substrate and the heat sink of the LED unit of the LED lamp according to the present embodiment.
  • the LED lamp 10 includes a base 13, a connecting member 19 connected to the base 13, a case 20 attached to the connecting member 19, and a cylindrical transparent piece attached to the case 20. And a light cover 41.
  • An LED unit 30 is disposed inside the cover 41.
  • the LED lamp according to this embodiment is a so-called bulb type.
  • the base side the direction toward the base 13 or the direction close to the base 13 along the central axis of the lamp passing through the base 13
  • the opposite will be referred to as the top side.
  • the housing 20 includes a cylindrical portion 21 on the base side, a fan storage portion 23 on the top side, and an air intake portion 24 therebetween.
  • the cylindrical portion 21 and the fan accommodating portion 23 have a substantially cylindrical outer surface, and the outer diameter of the fan accommodating portion 23 is larger than the outer diameter of the cylindrical portion 21.
  • the cylindrical outer surfaces of the cylindrical portion 21 and the fan storage portion 23 may be inclined along the axial direction so that the outer diameter slightly decreases toward the base side.
  • the air intake 24 has an opening for taking in cooling air.
  • the LED lamp 10 further includes a ring-shaped vibration isolating member 14 that covers a part of the base 13 and the connecting member 19.
  • the LED lamp includes a cover 41, an LED unit 30, a spacer 18, a cooling fan 15, a circular circuit board 27, a housing 20, a connection member 19, a base 13, and a vibration isolation member 14.
  • a plurality of air discharge holes 42 are formed at the top side end of the cover 41.
  • the air discharge holes 42 are arranged concentrically so as to surround the central axis of the LED lamp.
  • the structures of the LED unit 30, the spacer 18, and the cooling fan 15 will be described later.
  • the cooling fan 15 may typically be an axial fan having a motor and rotating blades provided around the motor.
  • the motor may be a direct current brushless motor.
  • the housing 20 includes a base-side cylindrical portion 21, a top-side air intake portion 24, and an intermediate fan storage portion 23.
  • the air intake portion 24 is provided with a plurality of air inlets 242 along the circumferential direction.
  • the circuit board 27 is disposed in the air intake portion 24 of the housing 20.
  • the circuit board 27 includes a lamp protection circuit that stops the supply of current to the LED element when the temperature of the LED element rises, and a fan drive circuit that supplies a direct current to the cooling fan 15.
  • the cooling fan 15 is disposed in the fan storage portion 23 of the housing 20.
  • the spacer 18 is attached to the fan storage portion 23 of the housing 20.
  • the spacer 18 is made of resin.
  • the LED unit 30 is mounted so as to engage with the spacer 18.
  • the cover 41 is mounted so as to cover the LED unit 30.
  • the LED unit 30 includes an LED substrate 31 formed in a cylindrical shape and a heat sink 32 attached to the inner surface thereof.
  • the LED substrate 31 is disposed so as to be parallel to and surround the central axis of the LED lamp.
  • the LED substrate 31 includes a cylindrical wiring substrate 311 and a plurality of LED elements 312 mounted on the outer surface thereof.
  • the heat sink 32 is attached in close contact with the inner surface of the LED substrate 31 so as to be in surface contact.
  • the heat sink 32 has a plurality of heat radiation fins 322.
  • the fins 322 extend along the central axis of the LED lamp.
  • the shape of the fin 322 is not particularly limited.
  • a through hole 33 through which an air flow passes is formed inside the heat sink 32.
  • the heat sink 32 is manufactured by sequentially bending one rectangular thin metal plate member.
  • the heat sink 32 is made of a metal having high thermal conductivity, for example, copper, aluminum alloy, stainless steel, or the like.
  • the LED substrate 31 is formed in a cylindrical body having a regular octagonal cross section.
  • the LED substrate 31 is not limited to the illustrated example, and may be formed in a cylindrical body having a regular polygon other than a regular octagon in cross section.
  • the LED substrate 31 is formed by bending one plate-like rectangular LED substrate in order along the seven bent portions 319 and forming it into a cylindrical shape. Accordingly, a gap 31A is formed between both edges of the cylindrical LED substrate.
  • the LED substrate 31 has thin elongated holes 315 along the seven bent portions 319.
  • the LED substrate 31 and the heat sink 32 are fixed by a clip 35 at the top side end (upper end in FIG. 3). Further, the LED substrate 31 and the heat sink 32 are fixed by a rivet 37 at a substantially central position in the axial direction.
  • the clips 35 and rivets 37 are provided at a total of eight locations for each surface of the regular octahedron.
  • the spacer 18 includes a center member 181 and an annular member 183 around the center member 181.
  • the central member 181 and the annular member 183 are connected by a radial support member 185.
  • An annular through hole 186 is formed between the center member 181 and the annular member 183.
  • the center member 181 includes a circular member 181A provided on the top side end surface and a cylindrical member 181B that supports the circular member 181A.
  • the annular member 183 has an annular top side end surface 183A and a cylindrical inner surface 183B.
  • An engaging member 187 is provided on the top side end surface 183A.
  • the through hole 186 of the spacer 18 has a cross-sectional area that increases from the base side to the top side. At least one of the cylindrical inner surface 183B of the annular member 183 and the cylindrical member 181B of the center member 181 is inclined along the axial direction. In the illustrated example, the diameter of the cylindrical inner surface 183B of the annular member 183 increases toward the top side. Furthermore, the outer diameter of the cylindrical member 181B of the center member 181 may be increased toward the top side.
  • the cooling fan 15 has a central cylindrical motor 151 and a cylindrical member 153 around it, and an annular through-hole 156 is formed between them. A rotating blade is disposed in the through hole 156.
  • the motor 151 and the cylindrical member 153 are connected by a radial support member 155.
  • the motor 151 of the cooling fan 15 and the central member 181 of the spacer 18 have corresponding shapes and dimensions and are arranged to align along the central axis of the lamp.
  • the motor 151 of the cooling fan 15 and the circular member 181A of the central member 181 of the spacer 18 may be formed to have the same outer diameter.
  • the end surface on the base side of the motor 151 of the cooling fan 15 and the cylindrical member 181B of the central member 181 of the spacer 18 may be formed to have the same outer diameter.
  • the support member 155 of the cooling fan 15 and the support member 185 of the spacer 18 have corresponding shapes and dimensions, and are arranged in alignment along the central axis of the lamp.
  • the spacer 18 includes four support members 185.
  • the through hole 156 of the cooling fan 15 and the through hole 186 of the spacer 18 have corresponding shapes and dimensions, and are arranged in alignment along the central axis of the lamp.
  • the top opening of the through hole 156 of the cooling fan 15 and the base opening of the through hole 186 of the spacer 18 may be formed to have the same shape.
  • a continuous tubular air flow path is formed by the through hole 156 of the cooling fan 15 and the through hole 186 of the spacer 18. This air flow path is connected to a through hole 33 inside the heat sink 32.
  • the LED unit 30 is mounted on the annular member 183 of the spacer 18.
  • the base end (lower end in FIG. 3) of the LED substrate 31 is in contact with the top end surface 183A of the annular member 183 of the spacer 18 and is held by the engaging member 187.
  • the engaging member 187 may have a claw shape as illustrated, but may have another shape.
  • the inventors of the present application diligently studied a preferable shape of the central member 181 of the spacer 18.
  • the inventor of the present application prepares a spacer 18 having a tubular center member 181 and a spacer 18 having a bottomed cylindrical container-shaped center member 181, and is mounted on the LED lamp shown in FIG. Went.
  • the use of the spacer 18 with the bottomed cylindrical container-shaped center member 181 is more effective for cooling the motor 151 of the cooling fan 15 than when the spacer 18 with the tubular center member 181 is used.
  • the case where the circular member 181A is provided on the top side of the cylindrical member 181B in the central member 181 was compared with the case where it was provided on the base side.
  • the center member 181 is formed in a bottomed cylindrical container shape having a circular member 181A and a cylindrical member 181B as shown in FIG.
  • FIG. 4 shows a cross-sectional structure along the axial direction of the LED lamp according to the present embodiment.
  • the base side end portion of the cover 41 is connected to the top side end surface of the fan storage portion 23 of the housing 20.
  • the LED unit 30, the spacer 18, and the cooling fan 15 are disposed in a space formed by the cover 41 and the fan storage portion 23.
  • the LED unit 30, the spacer 18, and the cooling fan 15 are arranged in alignment along the central axis of the lamp.
  • the fins 322 of the heat sink 32 extend along the axial direction from the base side end of the heat sink 32 to the top side end.
  • the spacer 18 is disposed between the cooling fan 15 and the heat sink 32. That is, a space for arranging the spacer 18 is formed between the cooling fan 15 and the heat sink 32. In the present embodiment, a space is provided between the cooling fan 15 and the heat sink 32, and the spacer 18 is disposed in this space to prevent heat from the heat sink 32 from being transmitted to the motor 151 of the cooling fan 15. Is done.
  • the inner diameter of the through hole 33 of the heat sink 32 is larger than the outer diameter of the through hole 156 of the cooling fan 15. That is, there is a difference between the cross section of the through hole 33 of the heat sink 32 and the cross section of the through hole 156 of the cooling fan 15.
  • the spacer 18 has a function of reducing this difference. As shown in the figure, the cylindrical inner surface 183B of the annular member 183 of the spacer 18 is inclined, and its diameter increases from the base side to the top side. That is, the cross section of the through hole 186 of the spacer 18 increases from the base side to the top side.
  • the difference between the cross section of the through hole 33 of the heat sink 32 and the cross section of the through hole 156 of the cooling fan 15 is alleviated by a change in the cross section of the through hole 186 of the spacer 18.
  • the cooling air generated by the cooling fan 15 can be efficiently guided to the through hole 33 of the heat sink 32.
  • the air intake portion 24 of the housing 20 includes a plurality of support members 241 that bridge the cylindrical portion 21 and the fan storage portion 23. An air inlet 242 is formed between these support members 241.
  • the support member 241 has a substantially triangular shape, and a virtual conical surface that includes the outer surface of the hypotenuse in common is formed.
  • the fan housing part 23 of the housing 20 has a cylindrical part 23A and a bottom part 23B. An air suction hole 231 is formed in the bottom surface portion 23B.
  • the path of the air flow for cooling the LED lamp according to this embodiment will be described. Arrows indicate the path of the cooling air flow.
  • the through hole 33 and the air discharge hole 42 of the cover 41 are arranged in alignment along the axial direction of the lamp, and form one continuous air flow passage. Further, the through hole 33 of the heat sink 32, the long hole 315 and the gap 31A (FIG. 3) of the LED substrate 31, the space 43 between the cover 41 and the LED substrate 31, and the air discharge hole 42 of the cover 41 are arranged along the axis of the lamp. One continuous air flow passage is formed around.
  • the cooling air flow generated by the cooling fan 15 is guided to the through hole 33 of the heat sink 32 via the through hole 186 of the spacer 18.
  • heat exchange is performed.
  • the cooling air takes heat away from the heat sink 32 and its temperature rises.
  • the air having a relatively high temperature after cooling passes through the through hole 33 and is discharged from an air discharge hole 42 provided at the top side end of the cover 41.
  • the wiring board 311 and the LED element 312 are cooled by the cooling air flowing into the space 43.
  • the space through which the cooling air passes forms a sealed space except for the air intake port 242 of the air intake portion 24 of the housing 20 and the air discharge hole 42 of the cover 41. Therefore, all the cooling air introduced from the external space efficiently passes through the through holes 33 and the space 43 of the heat sink 32 and is used for cooling the heat sink 32 and the LED substrate 31. Therefore, the heat sink 32 and the LED substrate 31 in surface contact with the heat sink 32 can be efficiently cooled. Thus, the heat sink 32 and the LED substrate 31 are prevented from being heated up.
  • the LED substrate 31 is formed by bending one plate-like rectangular LED substrate in order along the seven bent portions 319 and forming it into a cylindrical shape. Accordingly, a gap 31A is formed between both edges of the cylindrical LED substrate.
  • the LED substrate 31 has thin elongated holes 315 along the seven bent portions 319.
  • a hole 313 is formed in each of the central portions of the eight surfaces of the LED substrate 31.
  • the heat sink 32 of the present embodiment includes a mounting portion 321 having a flat mounting surface and a plurality of thin plate-like heat radiation fins 322 extending perpendicularly from the mounting portion 321, and between adjacent fins 322.
  • a recess 324 is formed.
  • a hole 323 is formed near the center of the mounting portion 321.
  • a total of eight heat sinks 32 are provided for each of the eight surfaces of the LED substrate 31.
  • the heat sink 32 is disposed so as not to block the long hole 315 of the LED substrate 31.
  • a single integrated heat sink in which eight heat sinks 32 are integrated may be used. When an integrated heat sink is used, it is bent in order at seven locations and formed into a cylindrical shape.
  • the integrated heat sink may have a long hole similar to the long hole 315 of the LED substrate 31 along the seven bent portions 319. Details of the structure and manufacturing method of the heat sink 32 will be described later.
  • the LED substrate 31 and the heat sink 32 are fixed by a clip 35 at a top side end (upper end in FIG. 5).
  • the clip 35 may have any structure or shape as long as it can be fixed with the edge of the LED substrate 31 and the heat sink 32 interposed therebetween.
  • the clip 35 fixes the LED substrate 31 and the heat sink 32 with a spring force.
  • the spring force is generated by a leaf spring or a wire spring. Details of the clip 35 will be described later.
  • the LED substrate 31 and the heat sink 32 are fixed by a rivet 37 at a substantially central position in the axial direction.
  • the rivet 37 passes through the hole 313 of the LED substrate 31 and the hole 323 of the heat sink 32.
  • the clips 35 and rivets 37 are provided at a total of eight locations for each surface of the regular octahedron.
  • the LED substrate 31 of the LED unit 30 of the present embodiment will be described with reference to FIGS. 6A, 6B, and 6C.
  • the LED substrate 31 includes a wiring substrate 311 and LED elements 312.
  • the LED substrate 31 is configured to form a cylindrical body having a regular octagonal cross section. Therefore, the LED substrate 31 includes eight segments, and a rivet hole 313 is formed in each segment. Further, seven bent portions 319 (FIG. 3) are formed between adjacent segments. In the LED substrate 31 of the present embodiment, these bent portions 319 are formed with long holes 315 or notched slits 317 extending to the edges.
  • FIG. 3 In the LED substrate shown in FIG.
  • a long hole 315 is formed in each bent portion 319, and in the LED substrate shown in FIG. 6B, a slit 317 is formed in each bent portion 319.
  • the long holes 315 or the slits 317 are alternately formed in the bent portions 319.
  • the heat sink 32 includes a mounting portion 321 having a flat mounting surface and a plurality of heat radiation fins 322 extending vertically from the mounting portion 321. A recess 324 is formed between the fins 322.
  • the heat sink 32 is manufactured by sequentially bending one rectangular thin metal plate-like member.
  • the number of fins 322 is not particularly limited. In the illustrated example, the number is 6, but it may be less or more.
  • the height T of the fins 322 may be different. For example, as shown in the figure, the height of the fins at the center may be larger than the heights of the fins on both sides.
  • the interval L between the adjacent fins 322 may be the same or different. In the case of manufacturing an integrated heat sink including eight heat sinks, similarly, a longer one rectangular thin metal plate-like member is sequentially bent and manufactured.
  • the clip 35 is formed by bending a single metal plate member.
  • the clip 35 has a back portion 351 and claw portions 352 and 353 extending on both sides thereof, and has a substantially U-shaped cross section.
  • the two claw portions 352 and 353 generate a pinching force using a leaf spring.
  • the first claw portion 352 has one elongated shape, but the second claw portion 353 includes three portions.
  • the clip 35 sandwiches the end portions of the LED substrate 31 and the heat sink 32, the first claw portion 352 presses the LED substrate 31, and the second claw portion 353 presses the heat sink 32.
  • the three portions of the second claw portion 353 press the concave portion 324 of the fin 322.
  • an example of a structure using a leaf spring has been described as an example of the clip 35, but a structure using a wire spring may be used.
  • FIG. 9A, FIG. 9B, and FIG. 9C the example of the assembly method of the LED unit 30 of this embodiment is demonstrated.
  • eight heat sinks 32, one flat LED substrate 31, and eight rivets 37 are prepared.
  • the LED substrate 31 has a rivet hole 313 and a long hole 315.
  • a V-groove 319A is formed on the surface where the LED element 312 is not mounted as shown in the figure.
  • the V groove 319A and the long hole 315 are formed along the bent portion 319 (FIG. 3).
  • a heat sink 32 is attached to each of the eight segments of the LED substrate 31.
  • the width or shape of the heat sink 32 is set so that the long hole 315 of the LED substrate 31 is not blocked by the heat sink.
  • the rivet 37 is inserted into the hole 313 of the LED substrate 31 and the hole 323 (FIG. 5) of the heat sink 32 and pressed. Thus, the heat sink 32 is fixed to the LED substrate 31 by the rivets 37.
  • FIG. 9B eight clips 35 are prepared.
  • the clip 35 fixes the end of the LED substrate 31 and the end of the heat sink 32.
  • FIG. 9C schematically shows the ends of the LED substrate 31 and the heat sink 32 fixed by the clip 35.
  • the first claw portion 352 of the clip 35 presses the wiring board 311 of the LED substrate, and the second claw portion 353 of the clip 35 presses the mounting portion 321 of the heat sink 32.
  • the LED board 31 is bent along the seven bent portions 319, whereby the cylindrical LED unit 30 shown in FIG. 3 is formed.

Abstract

電球型のLEDランプにおいて、ヒートシンクとLED基板を組み立てる工程を容易化する。口金と、LED素子が実装されたLED基板と、前記LED基板に装着されヒートシンクと、を有する電球型のLEDランプにおいて、前記ヒートシンクと前記LED基板の端部はクリップに挟まれて固定されている、としてよい。前記LEDランプにおいて、前記ヒートシンクは1枚の板状部材を折り曲げることによって形成されている、としてよい。

Description

LEDランプ
 本発明は、LEDランプに関し、特に、LED冷却機構を備えた電球型のLEDランプに関する。
 発光ダイオード(以下、LED:Light Emitting Diode)を光源とするLEDランプが広く普及している。近年、LEDランプの用途の拡大に伴って、LEDランプの高出力化及び高電力化が求められている。LEDランプは、放電ランプと比較して高い発光効率を有する利点があるが、LEDが高温化すると、発光効率が低下する欠点がある。そこで、LEDの高温化を防止するために、LEDを冷却するためのLED冷却機構が設けられる。LED冷却機構として、例えば、ヒートシンクと冷却ファンがある。
 特許文献1には、電球型のLEDランプの例が記載されている。このLEDランプは、六角形の筒状体のヒートシンクを有し、その外側面にLED基板が装着されている。ヒートシンクの内側には放熱フィンが設けられている。
特開2012-156036号公報
 LEDランプの発光効率を高めるには、熱伝導特性及び放熱特性が良好な高性能のヒートシンクが必要である。一般に、高性能のヒートシンクは比較的大きな外形及び重量を有する。従来の技術では、ヒートシンクにねじ等によりLED基板を装着する。そのためLEDランプが大型化し且つその重量が大きくなる。ヒートシンクを軽量化すると、熱伝導特性及び放熱特性が低下するばかりでなく、ヒートシンクをLED基板に装着する作業が比較的困難となる。従って、電球型のLEDランプでは、ヒートシンクの軽量化と共に、ヒートシンクとLED基板を組み立てる工程の容易化が求められている。
 本発明の目的は、電球型のLEDランプにおいて、ヒートシンクとLED基板を組み立てる工程を容易化することにある。
 本願の発明者は、ヒートシンクにねじ等によりLED基板を装着する代わりに、LED基板にヒートシンクを装着する構造を着想した。それによって、ヒートシンクの軽量化を図ると同時に、ヒートシンクとLED基板を組み立てる工程の容易化することができることを見出した。
 本実施形態によると、口金と、LED素子が実装されたLED基板と、前記LED基板に装着されヒートシンクと、を有する電球型のLEDランプにおいて、前記ヒートシンクと前記LED基板の端部はクリップに挟まれて固定されている、としてよい。
 本実施形態によると、前記LEDランプにおいて、前記ヒートシンクは1枚の板状部材を折り曲げることによって形成されている、としてよい。
 本実施形態によると、前記LEDランプにおいて、前記ヒートシンクと前記LED基板は更にリベットによって固定されている、としてよい。
 本実施形態によると、前記LEDランプにおいて、前記LED基板は多角形の断面を有し筒状に形成され、前記ヒートシンクは前記LED基板の内側に装着され、前記ヒートシンクの内側には貫通孔が形成され、前記ヒートシンクは、前記貫通孔内に突出するように延びる複数の放熱用のフィンを有する、としてよい。
 本実施形態によると、前記LEDランプにおいて、前記フィンの高さは、前記LED基板の内側面の中央から両側に向かって小さくなっている、としてよい。
 本実施形態によると、前記LEDランプにおいて、前記口金と前記ヒートシンクの間に配置された冷却ファンを有し、前記冷却ファンと前記ヒートシンクと前記LED基板は前記口金を通るランプの中心軸線に沿って配置されている、としてよい。
 本実施形態によると、前記LEDランプにおいて、前記LED基板は前記多角形の角部にて細い長孔は又はスリットを有する、としてよい。
 本実施形態によると、前記LEDランプにおいて、前記LED基板を覆い、トップ側に空気排出孔を備えた透光性のカバーを有し、前記冷却ファンからの冷却用空気は、前記ヒートシンクの内側の貫通孔に導かれ前記カバーの空気排出孔を経由して外部に放出されると同時に、前記長孔は又はスリットを経由して前記LED基板と前記カバーの間の空間に流入する、としてよい。
 本実施形態によると、前記LEDランプにおいて、前記LED基板は1枚の長方形の基板を折り曲げ部に沿って折り曲げて形成された、としてよい。
 本発明によれば、電球型のLEDランプにおいて、ヒートシンクとLED基板を組み立てる工程の容易化することができる。
図1Aは、本実施形態に係るLEDランプの構成例を説明する斜視図である。 図1Bは、本実施形態に係るLEDランプの構成例を説明する斜視図である。 図2は、本実施形態に係るLEDランプの分解斜視図である。 図3は、本実施形態に係るLEDランプのLEDユニット及びスペーサの構造を説明する斜視図である。 図4は、本実施形態に係るLEDランプにおける冷却用空気流を説明する説明図である。 図5は、本実施形態に係るLEDランプのLEDユニットの構造を説明する説明図である。 図6Aは、本実施形態に係るLEDランプのLEDユニットのLED基板の構造の例を説明する説明図である。 図6Bは、本実施形態に係るLEDランプのLEDユニットのLED基板の構造の例を説明する説明図である。 図6Cは、本実施形態に係るLEDランプのLEDユニットのLED基板の構造の例を説明する説明図である。 図7は、本実施形態に係るLEDランプのLEDユニットのヒートシンクの構造の例を説明する説明図である。 図8Aは、本実施形態に係るLEDランプのLEDユニットのクリップの構造の例を説明する説明図である。 図8Bは、本実施形態に係るLEDランプのLEDユニットのクリップの構造の例を説明する説明図である。 図9Aは、本実施形態に係るLEDランプのLEDユニットのLED基板を組み立てる方法の例を説明する説明図である。 図9Bは、本実施形態に係るLEDランプのLEDユニットのLED基板を組み立てる方法の例を説明する説明図である。 図9Cは、本実施形態に係るLEDランプのLEDユニットのLED基板とヒートシンクの固定部分の構造の例を説明する説明図である。
 以下、本発明に係るLEDランプの実施形態に関して、添付の図面を参照しながら詳細に説明する。なお、図中、同一の要素に対しては同一の参照符号を付して、重複した説明を省略する。
 図1A及び図1Bを参照して本実施形態に係るLEDランプの例を説明する。図1Aに示すように、LEDランプ10は、口金13と、口金13に接続された連結部材19と、連結部材19に装着された筐体20と、筐体20に取り付けられた円筒状の透光性のカバー41とを有する。カバー41の内部には、LEDユニット30が配置される。本実施形態に係るLEDランプは所謂電球型である。以下に、口金13を通るランプの中心軸線に沿って、口金13に向かう方向又は口金13に近い方を口金側と称し、その反対をトップ側と称する。
 筐体20は、口金側の円筒部21とトップ側のファン収納部23とその間の空気取り入れ部24を含む。円筒部21及びファン収納部23は略円筒状外面を有し、ファン収納部23の外径は、円筒部21の外径より大きい。尚、円筒部21及びファン収納部23の円筒状外面は、口金側に向かって外径が僅かに減少するように軸線方向に沿って傾斜してもよい。空気取り入れ部24は冷却用空気を取り入れるための開口を有する。図1Bに示すように、LEDランプ10は、更に、口金13及び連結部材19の一部を覆うリング状の防振部材14を有する。
 図2を参照して、本実施形態に係るLEDランプ10の内部構造を詳細に説明する。LEDランプは、カバー41、LEDユニット30、スペーサ18、冷却ファン15、円形の回路基板27、筐体20、連結部材19、口金13及び防振部材14を有する。カバー41のトップ側端部には複数の空気排出孔42が形成される。空気排出孔42は、LEDランプの中心軸線を囲むように同心的に配置される。LEDユニット30、スペーサ18及び冷却ファン15の構造については後に説明する。冷却ファン15は、典型的にはモータと、その周囲に設けられた回転羽根を有する軸流ファンであってよい。モータは、直流ブラシレスモータであってよい。
 筐体20は、口金側の円筒部21、トップ側の空気取り入れ部24、及び、中間のファン収納部23を含む。空気取り入れ部24には複数の空気吸入口242が円周方向に沿って設けられている。回路基板27は、筐体20の空気取り入れ部24に配置されている。回路基板27は、LED素子の温度が上昇した場合にLED素子への電流の供給を止めるランプ保護回路と冷却ファン15に直流電流を供給するファン駆動回路を備える。冷却ファン15は、筐体20のファン収納部23内に配置される。スペーサ18は、筐体20のファン収納部23に装着される。スペーサ18は樹脂製である。更に、スペーサ18に係合するようにLEDユニット30が装着される。こうして、回路基板27、冷却ファン15、スペーサ18及びLEDユニット30が装着されると、LEDユニット30を覆うようにカバー41が装着される。
 図3を参照してLEDユニット30とスペーサ18と冷却ファン15の構造の例を説明する。LEDユニット30は、筒状に形成されたLED基板31と、その内面に装着されたヒートシンク32を有する。LED基板31は、LEDランプの中心軸線に平行に且つそれを囲むように配置される。LED基板31は、筒状の配線基板311とその外面に装着された複数のLED素子312を有する。
 ヒートシンク32は、LED基板31の内面に面接触するように密着して装着される。ヒートシンク32は複数の放熱用のフィン322を有する。フィン322はLEDランプの中心軸線に沿って延びている。フィン322の形状は特に限定されない。ヒートシンク32の内側に、空気流が通るための貫通孔33が形成される。ヒートシンク32は1枚の長方形の薄い金属製の板状部材を順に折り曲げて製造する。ヒートシンク32は、熱伝導性が高い金属、例えば、銅、アルミニウム合金、ステンレス鋼等によって構成される。
 図示の例では、LED基板31は、断面が正八角形の筒状体に形成される。しかしながら、本実施形態では、LED基板31は、図示の例に限定されるものではなく、断面が正八角形以外の正多角形の筒状体に形成されてよい。LED基板31は、1枚の板状の長方形のLED基板を7つの折り曲げ部319に沿って順に折り曲げて筒状に成形することにより形成される。従って、筒状のLED基板の両縁の間に、隙間31Aが形成される。LED基板31は、7つの折り曲げ部319に沿って細い長孔315を有する。
 LED基板31とヒートシンク32は、トップ側端部(図3では上側端部)にてクリップ35によって固定される。更に、LED基板31とヒートシンク32は、軸線方向の略中央の位置にてリベット37によって固定される。クリップ35及びリベット37は、正八面体の各面毎に、合計8箇所にて設けられている。
 スペーサ18は、中心部材181とその周囲の環状部材183とを有する。中心部材181と環状部材183は、放射状の支持部材185によって接続されている。中心部材181と環状部材183の間に環状の貫通孔186が形成されている。中心部材181は、トップ側端面に設けられた円形部材181Aとそれを支持する円筒部材181Bを有する。環状部材183は、環状のトップ側端面183Aと円筒状内面183Bとを有する。トップ側端面183Aに係合部材187が設けられている。
 スペーサ18の貫通孔186は、口金側からトップ側に向かって断面積が大きくなっている。環状部材183の円筒状内面183Bと中心部材181の円筒部材181Bの少なくとも一方は、軸線方向に沿って傾斜している。図示の例では、環状部材183の円筒状内面183Bの径は、トップ側に向かって増大している。更に、中心部材181の円筒部材181Bの外径を、トップ側に向かって増大させてもよい。
 冷却ファン15は、中心の円筒状のモータ151とその周囲の円筒状部材153とを有し、両者の間に、環状の貫通孔156が形成されている。貫通孔156に回転羽根が配置されている。モータ151と円筒状部材153は、放射状の支持部材155によって接続されている。
 冷却ファン15のモータ151とスペーサ18の中心部材181は、対応した形状及び寸法を有し、ランプの中心軸線に沿って整合するように配置される。例えば、冷却ファン15のモータ151とスペーサ18の中心部材181の円形部材181Aは、同一の外径を有するように形成されてよい。更に、冷却ファン15のモータ151とスペーサ18の中心部材181の円筒部材181Bの口金側端面は、同一の外径を有するように形成され
てよい。
 冷却ファン15の支持部材155とスペーサ18の支持部材185は、対応した形状及び寸法を有し、ランプの中心軸線に沿って整合して配置されている。例えば、冷却ファン15が4本の支持部材155を備える場合には、スペーサ18は4本の支持部材185を備える。
 冷却ファン15の貫通孔156とスペーサ18の貫通孔186は、対応した形状及び寸法を有し、ランプの中心軸線に沿って整合して配置される。例えば、冷却ファン15の貫通孔156のトップ側開口部とスペーサ18の貫通孔186の口金側開口部は、同一形状を有するように形成されてよい。冷却ファン15の貫通孔156とスペーサ18の貫通孔186によって連続した管状の空気流路が形成される。この空気流路は、ヒートシンク32の内側の貫通孔33に接続されている。
 LEDユニット30は、スペーサ18の環状部材183に装着される。LED基板31の口金側端部(図3では下側端部)は、スペーサ18の環状部材183のトップ側端面183Aに当接し、且つ、係合部材187によって保持される。係合部材187は図示のような爪状であってもよいが他の形状であってもよい。
 本願の発明者は、スペーサ18の中心部材181の好ましい形状を鋭意検討した。本願の発明者は、管状の中心部材181を備えたスペーサ18と、有底の円筒容器状の中心部材181を備えたスペーサ18を用意し、図2に示したLEDランプに装着し、点灯試験を行った。その結果、管状の中心部材181を備えたスペーサ18を用いる場合より、有底の円筒容器状の中心部材181を備えたスペーサ18を用いる場合のほうが、冷却ファン15のモータ151の冷却に有効であることを見出した。更に、中心部材181において円形部材181Aを円筒部材181Bのトップ側に設けた場合と、口金側に設けた場合を比較した。その結果、円形部材181Aを円筒部材181Bのトップ側に設けたほうが、冷却ファン15のモータ151の冷却に有利であることを見出した。そこで、本実施形態では、中心部材181は、図3に示すように、円形部材181Aと円筒部材181Bを有する有底の円筒容器状に形成した。
 図4を参照して、本実施形態に係るLEDランプの空冷システムを説明する。図4は、本実施形態に係わるLEDランプの軸線方向に沿った断面構造を示す。カバー41の口金側端部は、筐体20のファン収納部23のトップ側端面に接続されている。カバー41とファン収納部23によって形成される空間内に、LEDユニット30、スペーサ18及び冷却ファン15が配置されている。LEDユニット30、スペーサ18及び冷却ファン15は、ランプの中心軸線に沿って整合して配置されている。ヒートシンク32のフィン322は、ヒートシンク32の口金側端部からトップ側端部まで軸線方向に沿って延びている。
 本実施形態では、冷却ファン15とヒートシンク32の間にスペーサ18が配置されている。即ち、冷却ファン15とヒートシンク32の間に、スペーサ18を配置するための空間が形成されている。本実施形態では、冷却ファン15とヒートシンク32の間に空間を設け、更に、この空間にスペーサ18を配置することによって、ヒートシンク32からの熱が冷却ファン15のモータ151に伝達されることが阻止される。
 ヒートシンク32の貫通孔33の内径は、冷却ファン15の貫通孔156の外径より大きい。即ち、ヒートシンク32の貫通孔33の断面と、冷却ファン15の貫通孔156の断面の間に差異がある。スペーサ18は、この差異を緩和する機能を有する。図示のように、スペーサ18の環状部材183の円筒状内面183Bは傾斜しており、その径は、口金側からトップ側に向かって大きくなっている。即ち、スペーサ18の貫通孔186の断面は、口金側からトップ側に向かって大きくなっている。従って、ヒートシンク32の貫通孔33の断面と、冷却ファン15の貫通孔156の断面の間に差異は、スペーサ18の貫通孔186の断面の変化によって緩和されている。本実施形態では、スペーサ18を設けることによって、冷却ファン15によって生成された冷却用空気は、効率的にヒートシンク32の貫通孔33に導くことができる。
 筐体20の空気取り入れ部24は、円筒部21とファン収納部23を架橋する複数の支持部材241を有する。これらの支持部材241の間に空気吸入口242が形成されている。支持部材241は略三角形状であり、その斜辺の外面を共通に含む仮想の円錐面が形成される。筐体20のファン収納部23は円筒部23Aと底面部23Bを有する。底面部23Bには、空気吸入孔231が形成されている。
 本実施形態に係るLEDランプの冷却用空気流の経路を説明する。矢印は、冷却用空気流の経路を示す。筐体20の空気取り入れ部24の空気吸入口242、筐体20のファン収納部23の底面部23Bの空気吸入孔231、冷却ファン15の貫通孔156、スペーサ18の貫通孔186、ヒートシンク32の貫通孔33、及び、カバー41の空気排出孔42は、ランプの軸線方向に沿って整合して配置されており、1つの連続した空気流通路を形成する。更に、ヒートシンク32の貫通孔33、LED基板31の長孔315及び隙間31A(図3)、カバー41とLED基板31の間の空間43、及び、カバー41の空気排出孔42は、ランプの軸線の周りに1つの連続した空気流通路を形成する。
 冷却ファン15を回転させると、先ず、環状の貫通孔156に軸線方向の冷却用空気流が形成される。このとき、筐体20の空気取り入れ部24の空気吸入口242を介して外部空間から比較的温度が低い冷却用空気が取り入れられる。この冷却用空気は、ファン収納部23の底面部23Bの空気吸入孔231を経由して、冷却ファン15の貫通孔156に導かれる。冷却ファン15のモータ151は、外部空間からの比較的温度が低い冷却用空気によって冷却されるから、モータ151の潤滑油の劣化に起因する冷却ファン15の性能低下を回避することができる。
 筐体20の空気取り入れ部24の空気吸入口242を介して取り入れられた冷却用空気は、回路基板27が配置される空間に流入する。それによって、空気取り入れ部24に配置された回路基板27は効率的に常に放熱される。そのため回路部品等の高温化に起因した劣化及び誤作動を防止することができる。
 冷却ファン15によって生成された冷却用空気流は、スペーサ18の貫通孔186を経由して、ヒートシンク32の貫通孔33に導かれる。冷却用空気がヒートシンク32に接触すると熱交換が行われる。冷却用空気はヒートシンク32より熱を奪い、その温度が高くなる。この冷却後の比較的温度が高い空気は、貫通孔33を通ってカバー41のトップ側端部に設けられた空気排出孔42より排出される。
 ヒートシンク32の貫通孔33に導かれた冷却用空気の一部は、LED基板31の長孔315及び隙間31A(図3)を経由して、カバー41とLED基板31の間の空間43に流入し、LED基板31のトップ側端部を超えて空気排出孔42より排出される。従って、カバー41とLED基板31の間の空間43の空気は、常に、新しい冷却用空気によって置換される。空間43に流入した冷却用空気によって、配線基板311及びLED素子312が冷却される。
 本実施形態によると、冷却用空気が通る空間は、筐体20の空気取り入れ部24の空気吸入口242とカバー41の空気排出孔42とを除いて密閉空間を形成している。従って、外部空間から導入された冷却用空気は全て効率的に、ヒートシンク32の貫通孔33及び空間43内を通過し、ヒートシンク32及びLED基板31の冷却に使用される。従って、ヒートシンク32及びそれに面接触しているLED基板31を効率的に冷却することができる。こうして、ヒートシンク32及びLED基板31が高温化されることが防止される。
 図5を参照して本実施形態のLEDユニット30におけるヒートシンク32の取付け構造の例を詳細に説明する。上述のように、本実施形態では、LED基板31は、1枚の板状の長方形のLED基板を7つの折り曲げ部319に沿って順に折り曲げて筒状に成形することにより形成される。従って、筒状のLED基板の両縁の間に、隙間31Aが形成される。LED基板31は、7つの折り曲げ部319に沿って細い長孔315を有する。LED基板31の8つの面の中央部には、それぞれ孔313が形成されている。
 ヒートシンク32の構造を説明する。本実施形態のヒートシンク32は、平坦な装着面を備えた装着部321と、装着部321より垂直に延びる複数の細い板状の放熱用のフィン322とを有し、隣接するフィン322の間に凹部324が形成されている。装着部321の中央付近には孔323が形成されている。ヒートシンク32はLED基板31の8つの面毎に、合計8個、設けられる。ここで、ヒートシンク32は、LED基板31の長孔315を塞がないように配置される。8個のヒートシンクを用いる代わりに、8個のヒートシンク32を一体化した1個の一体型のヒートシンクを用いてもよい。一体型のヒートシンクを用いる場合には、それを7か所にて順に折り曲げて筒状に成形する。一体型のヒートシンクは、7か所の折り曲げ部319に沿って、LED基板31の長孔315と同様な長孔を有してもよい。ヒートシンク32の構造及び製造方法の詳細は後に説明する。
 LED基板31とヒートシンク32は、トップ側端部(図5では上側端部)にてクリップ35によって固定される。クリップ35は、LED基板31とヒートシンク32の縁を挟んで固定することができれば、どのような構造又は形状であってもよい。クリップ35はLED基板31とヒートシンク32をばね力によって挟んで固定する。ばね力は板ばね又は線ばねによって生成される。クリップ35の詳細は後に説明する。LED基板31とヒートシンク32は、軸線方向の略中央の位置にてリベット37によって固定される。リベット37は、LED基板31の孔313とヒートシンク32の孔323を貫通している。クリップ35及びリベット37は、正八面体の各面毎に、合計8箇所にて設けられている。
 図6A、図6B及び図6Cを参照して、本実施形態のLEDユニット30のLED基板31の例を説明する。ここでは、LED基板31を折り曲げて筒状に形成する前の平坦な状態を示す。LED基板31は、配線基板311とLED素子312を有する。本例では、LED基板31は、断面が正八角形の筒状体を形成するように構成される。そのため、LED基板31は8個のセグメントを含み、各セグメントにはリベット用の孔313が形成されている。また、隣接するセグメント間に7個の折り曲げ部319(図3)が形成されている。本実施形態のLED基板31では、これらの折り曲げ部319には、長孔315、又は、縁まで延びる切り欠き状のスリット317が形成されている。図6Aに示すLED基板では、各折り曲げ部319に長孔315が形成され、図6Bに示すLED基板では、各折り曲げ部319にスリット317が形成されている。図6Cに示すLED基板では、各折り曲げ部319に長孔315又はスリット317が交互に形成されている。
 図7を参照して、本実施形態によるヒートシンク32の構造及び製造方法を更に詳細に説明する。ヒートシンク32は、平坦な装着面を備えた装着部321と、装着部321より垂直に延びる複数の放熱用のフィン322とを有する。フィン322の間に凹部324が形成されている。本実施形態によると、ヒートシンク32は1枚の長方形の薄い金属製の板状部材を順に折り曲げて製造する。フィン322の個数は特に限定されない。図示の例では、6個であるが、それより少なくてもよく、又は、それより多くてもよい。フィン322の高さTは異なってよい。例えば、図示のように、中央部のフィンの高さを両側のフィンの高さより大きくしてよい。隣接するフィン322の間隔Lは同一であってもよいが異なってもよい。尚、8個のヒートシンクを含む一体型のヒートシンクを製造する場合には、同様に、更に長い1枚の長方形の薄い金属製の板状部材を順に折り曲げて製造する。
 図8A及び図8Bを参照して本実施形態によるクリップ35の構造及び製造方法を更に詳細に説明する。クリップ35は1枚の金属製の板状部材を折り曲げて形成される。クリップ35は背中部351と、その両側に延びる爪部352、353を有し、断面が略U字形である。2つの爪部352、353は板ばねを利用した挟み力を生成する。第1の爪部352は1つの細長い形状であるが、第2の爪部353は3つの部分からなる。クリップ35によって、LED基板31とヒートシンク32の端部を挟むとき、第1の爪部352はLED基板31を押え、第2の爪部353はヒートシンク32を押える。第2の爪部353の3つの部分は、フィン322の凹部324を押える。ここでは、クリップ35の例として、板ばねを利用した構造の例を説明したが、線ばねを利用した構造であってもよい。
 図9A、図9B及び図9Cを参照して、本実施形態のLEDユニット30の組立方法の例を説明する。図9Aに示すように、8個のヒートシンク32と、1個の平板状のLED基板31と、8個のリベット37を用意する。LED基板31には、リベット用の孔313と長孔315が形成されている。更に、LED素子312が装着されていない面に、図示のようにV溝319Aが形成されている。V溝319Aと長孔315は、折り曲げ部319(図3)に沿って形成されている。
 LED基板31の8個のセグメントの各々にヒートシンク32を装着する。LED基板31の長孔315が、ヒートシンクによって塞がれることがないように、ヒートシンク32の幅又は形状が設定される。LED基板31の孔313とヒートシンク32の孔323(図5)にリベット37を挿通し、それを押圧する。こうして、リベット37によって、LED基板31にヒートシンク32が固定される。
 図9Bに示すように、8個のクリップ35を用意する。クリップ35によって、LED基板31の端部とヒートシンク32の端部を固定する。図9Cは、クリップ35によって固定された、LED基板31及びヒートシンク32の端部を模式的に示す。クリップ35の第1の爪部352はLED基板の配線基板311を押え、クリップ35の第2の爪部353はヒートシンク32の装着部321を押える。最後に、LED基板31を7つの折り曲げ部319に沿って折り曲げることによって、図3に示した筒状のLEDユニット30が形成される。
 以上、本実施形態に係るLEDランプについて説明したが、これらは例示であって、本発明の範囲を制限するものではない。当業者が、本実施形態に対して容易になしえる追加・削除・変更・改良等は、本発明の範囲内である。本発明の技術的範囲は、添付の請求の範囲の記載によって定められる。
10…LEDランプ、13…口金、14…防振部材、15…冷却ファン、18…スペーサ、19…連結部材、20…筐体、21…円筒部、23…ファン収納部、23A…円筒部、23B…底面部、24…空気取り入れ部、27…回路基板、30…LEDユニット、31…LED基板、31A…隙間、32…ヒートシンク、33…貫通孔、35…クリップ、37…リベット、41…カバー、42…空気排出孔、151…モータ、153…円筒状部材、155…支持部材、156…貫通孔、181…中心部材、181A…円形部材、181B…円筒部材、183…環状部材、183A…トップ側端面、183B…円筒状内面、185…支持部材、186…貫通孔、187…係合部材、231…空気吸入孔、241…支持部材、242…空気吸入口、311…配線基板、312…LED素子、313…孔、315…長孔、317…スリット、319…折り曲げ部、319A…V溝、321…装着部、322…フィン、323…孔、324…凹部、351…背中部、352、353…爪部

Claims (9)

  1.  口金と、
     LED素子が実装されたLED基板と、
     前記LED基板に装着されヒートシンクと、を有する電球型のLEDランプにおいて、
     前記ヒートシンクと前記LED基板の端部はクリップに挟まれて固定されていることを特徴とするLEDランプ。
  2.  請求項1記載のLEDランプにおいて、
     前記ヒートシンクは1枚の板状部材を折り曲げることによって形成されていることを特徴とするLEDランプ。
  3.  請求項1または2記載のLEDランプにおいて、
     前記ヒートシンクと前記LED基板は更にリベットによって固定されていることを特徴とするLEDランプ。
  4.  請求項1から3のいずれか1項記載のLEDランプにおいて、
     前記LED基板は多角形の断面を有し筒状に形成され、
     前記ヒートシンクは前記LED基板の内側に装着され、前記ヒートシンクの内側には貫通孔が形成され、
     前記ヒートシンクは、前記貫通孔内に突出するように延びる複数の放熱用のフィンを有することを特徴とするLEDランプ。
  5.  請求項4記載のLEDランプにおいて、
     前記フィンの高さは、前記LED基板の内側面の中央から両側に向かって小さくなっていることを特徴とするLEDランプ。
  6.  請求項4又は5記載のLEDランプにおいて、
     前記口金と前記ヒートシンクの間に配置された冷却ファンを有し、
     前記冷却ファンと前記ヒートシンクと前記LED基板は前記口金を通るランプの中心軸線に沿って配置されていることを特徴とするLEDランプ。
  7.  請求項6記載のLEDランプにおいて、
    前記LED基板は前記多角形の角部にて細い長孔は又はスリットを有することを特徴とするLEDランプ。
  8.  請求項7記載のLEDランプにおいて、
     前記LED基板を覆い、トップ側に空気排出孔を備えた透光性のカバーを有し、
     前記冷却ファンからの冷却用空気は、前記ヒートシンクの内側の貫通孔に導かれ前記カバーの空気排出孔を経由して外部に放出されると同時に、前記長孔は又はスリットを経由して前記LED基板と前記カバーの間の空間に流入することを特徴とするLEDランプ。
  9.  請求項4から8のいずれか1項記載のLEDランプにおいて、
     前記LED基板は1枚の長方形の基板を折り曲げ部に沿って折り曲げて形成されたことを特徴とするLEDランプ。
PCT/JP2015/080689 2014-12-18 2015-10-30 Ledランプ WO2016098464A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-256031 2014-12-18
JP2014256031A JP2016115645A (ja) 2014-12-18 2014-12-18 Ledランプ

Publications (1)

Publication Number Publication Date
WO2016098464A1 true WO2016098464A1 (ja) 2016-06-23

Family

ID=56126365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080689 WO2016098464A1 (ja) 2014-12-18 2015-10-30 Ledランプ

Country Status (2)

Country Link
JP (1) JP2016115645A (ja)
WO (1) WO2016098464A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10865974B2 (en) 2017-06-08 2020-12-15 Signify Holding B.V. Solid state lighting lamp
CN112212308A (zh) * 2019-07-09 2021-01-12 达纳加拿大公司 用于电子设备的多侧面热管理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207353245U (zh) * 2017-09-11 2018-05-11 王定锋 一种金属多面体的led封装模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091562A2 (en) * 2008-01-15 2009-07-23 Philip Premysler Omnidirectional led light bulb
JP2011070860A (ja) * 2009-09-24 2011-04-07 Nakamura Mfg Co Ltd 電球形led照明灯の放熱体およびその形成方法
US20120268936A1 (en) * 2011-04-19 2012-10-25 Cree, Inc. Heat sink structures, lighting elements and lamps incorporating same, and methods of making same
JP2012216516A (ja) * 2011-04-01 2012-11-08 Yadent Co Ltd 照明装置
JP2013524412A (ja) * 2010-03-26 2013-06-17 ソーラーコー カンパニー リミテッド Led照明モジュール及びこれを用いた照明ランプ
JP2014507048A (ja) * 2011-01-11 2014-03-20 コーニンクレッカ フィリップス エヌ ヴェ 照明装置
JP3190968U (ja) * 2014-02-27 2014-06-05 立誠實業股▲ふん▼有限公司 照明具の散熱装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091562A2 (en) * 2008-01-15 2009-07-23 Philip Premysler Omnidirectional led light bulb
JP2011070860A (ja) * 2009-09-24 2011-04-07 Nakamura Mfg Co Ltd 電球形led照明灯の放熱体およびその形成方法
JP2013524412A (ja) * 2010-03-26 2013-06-17 ソーラーコー カンパニー リミテッド Led照明モジュール及びこれを用いた照明ランプ
JP2014507048A (ja) * 2011-01-11 2014-03-20 コーニンクレッカ フィリップス エヌ ヴェ 照明装置
JP2012216516A (ja) * 2011-04-01 2012-11-08 Yadent Co Ltd 照明装置
US20120268936A1 (en) * 2011-04-19 2012-10-25 Cree, Inc. Heat sink structures, lighting elements and lamps incorporating same, and methods of making same
JP3190968U (ja) * 2014-02-27 2014-06-05 立誠實業股▲ふん▼有限公司 照明具の散熱装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10865974B2 (en) 2017-06-08 2020-12-15 Signify Holding B.V. Solid state lighting lamp
CN112212308A (zh) * 2019-07-09 2021-01-12 达纳加拿大公司 用于电子设备的多侧面热管理装置

Also Published As

Publication number Publication date
JP2016115645A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
AU2016204938B2 (en) Heat dissipater with axial and radial air aperture and application device thereof
JP4677013B2 (ja) 照明装置とその熱放散構造
EP2378184B1 (en) Lamp assembly
JP5975303B2 (ja) Ledランプ及びそれに使用するヒートシンク
EP2295853B1 (en) Light Emitting Diode Lamp Structure
US10962215B2 (en) Active radiator with omnidirectional air convection and stage lighting fixture using the same
JP6041158B2 (ja) Ledランプ
EP2444724A1 (en) LED bulb
JP5943242B2 (ja) Ledランプ
JP6125675B2 (ja) 照明デバイス及び照明器具
WO2016103914A1 (ja) Ledランプ
JP2016115649A (ja) Ledランプ
WO2016098464A1 (ja) Ledランプ
CN103827579A (zh) 散热装置以及具有该散热装置的照明设备
JP6425131B2 (ja) Ledランプ
RU2644109C2 (ru) Осветительное устройство и светильник
CN101639163B (zh) 灯具
CN106322305B (zh) 一种led防爆灯
WO2013114246A1 (en) Heat dissipating structure and lighting device
CN220453607U (zh) 一种led照明设备
CN108332069B (zh) Led灯具
JP6179821B2 (ja) 照明器具
JP2023120163A (ja) 照明装置
TWI392830B (zh) 發光二極體燈具
KR20160119560A (ko) 적층형 히트싱크 및 이를 적용한 엘이디 램프 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869672

Country of ref document: EP

Kind code of ref document: A1