WO2016095848A1 - 光子晶体全光学d触发器 - Google Patents

光子晶体全光学d触发器 Download PDF

Info

Publication number
WO2016095848A1
WO2016095848A1 PCT/CN2015/097847 CN2015097847W WO2016095848A1 WO 2016095848 A1 WO2016095848 A1 WO 2016095848A1 CN 2015097847 W CN2015097847 W CN 2015097847W WO 2016095848 A1 WO2016095848 A1 WO 2016095848A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
optical
signal input
input end
signal
Prior art date
Application number
PCT/CN2015/097847
Other languages
English (en)
French (fr)
Inventor
欧阳征标
余铨强
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2016095848A1 publication Critical patent/WO2016095848A1/zh
Priority to US15/626,206 priority Critical patent/US10151963B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/42Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3511Self-focusing or self-trapping of light; Light-induced birefringence; Induced optical Kerr-effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the invention relates to a two-dimensional photonic crystal, an optical D flip-flop.
  • a photonic crystal is a material structure in which dielectric materials are periodically arranged in space, and is usually composed of two or more kinds of artificial crystals having materials having different dielectric constants.
  • All-optical logic devices mainly include optical amplifier-based logic devices, nonlinear ring mirror logic devices, Sagnac interferometric logic devices, ring cavity logic devices, multimode interference logic devices, coupled optical waveguide logic devices, and photoisomerization.
  • Logic devices, polarization switching optical logic devices, transmission grating optical logic devices, etc. These optical logic devices have a large common disadvantage for the development of large-scale integrated optical paths.
  • quantum optical logic devices nanomaterial optical logic devices, and photonic crystal optical logic devices that meet the size requirements of large-scale photonic integrated optical paths, but for modern fabrication processes, quantum light Logic devices and nanomaterial optical logic devices have great difficulties in fabrication, while photonic crystal optical logic devices have a competitive advantage in the fabrication process.
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a photonic crystal all-optical synchronous D flip-flop with simple structure, strong anti-interference ability and easy integration with other optical logic elements.
  • the present invention adopts the following technical solutions:
  • the photonic crystal full optical synchronous D flip-flop of the present invention comprises a light gate switch, a photonic crystal structure unit, a built-in or external reference light source, a built-in or external absorption load; and the photonic crystal structure unit
  • the first signal of the photonic crystal structure unit is a clock signal input end, and the clock signal input end is connected with a clock control signal CP; the photon is connected by a signal input end; a photo signal output end;
  • the second port of the crystal structure unit is an intermediate signal input end, and the intermediate signal input end is connected to the first intermediate signal output end of the switch unit;
  • the signal D is connected to the first signal input end of the optical switch unit; a built-in or external absorption load is connected to the second intermediate signal output end of the optical switch unit; a built-in or external reference light source and
  • the second signal input end of the optical switch unit is connected; the second signal input end is a reference light input end, and the reference light input end is connected to an output end of a built-in
  • the photonic crystal structural unit is a two-dimensional photonic crystal cross-waveguide nonlinear cavity, and the two-dimensional photonic crystal cross-waveguide nonlinear cavity center is composed of twelve rectangular high refractive index linear dielectric rods and a square nonlinear dielectric rod.
  • the longitudinal and transverse waveguide directions are aligned in a one-dimensional photonic crystal, and the central square nonlinear dielectric rod is attached to four adjacent rectangular linear dielectric rods.
  • the central square nonlinear dielectric rod is a Kerr-type nonlinear material, which is weak.
  • the dielectric constant under light conditions is 7.9, and the dielectric constant of the high refractive index linear dielectric rod is equal to the dielectric constant of the nonlinear dielectric rod under low light conditions.
  • the high refractive index linear dielectric rod is composed of a two-dimensional photonic crystal "ten" cross-waveguide four-port network, and two mutually orthogonal quasi-one-dimensional photonic crystal structures are placed in the two waveguide directions through the center of the cross-waveguide;
  • the middle portion of the waveguide is provided with an intermediate dielectric column, which is a nonlinear material;
  • the quasi-one-dimensional photonic crystal structure and the intermediate dielectric column constitute a waveguide defect cavity.
  • the photonic crystal is an array structure of (2k+1) ⁇ (2k+1), and k is an integer of 3 or more.
  • the switch is a 2 ⁇ 2 optical strobe switch, which includes a clock signal CP control terminal. a first signal input end, a second signal input end, a first intermediate signal output end and a second intermediate signal output end; the first signal input end is a system signal input end; the second signal The input is the reference light input.
  • the high refractive index linear dielectric rod of the two-dimensional photonic crystal has a circular, elliptical, triangular or polygonal cross section.
  • the refractive index of the dielectric column in the quasi-one-dimensional photonic crystal of the cross-waveguide is 3.4 or greater than 2.
  • the cross section of the intermediate medium column is square, polygonal, circular or elliptical.
  • the cross-sectional shape of the dielectric column in the quasi-one-dimensional photonic crystal of the cross-waveguide is rectangular, polygonal, circular or elliptical.
  • the background fill material of the two-dimensional photonic crystal includes air and a low refractive index medium having a refractive index of less than 1.4.
  • the photonic crystal all-optical D flip-flop of the present invention can be widely used in the field of electronics. Compared with the prior art, it has the following positive effects.
  • the all-optical synchronous D flip-flop has a compact structure, high and low logic output contrast, fast response, and easy integration with other optical logic components.
  • Photonic crystal logic device can directly perform all-optical "AND”, “OR”, “NO” and other logic functions. It is the core device for all-optical calculation. It has compact structure, strong anti-interference ability and fast calculation speed.
  • the D flip-flop is also called a sustain-blocking edge D flip-flop, which can reduce the degree of interference of the electronic circuit, enhance the reliability of the circuit, and have a high frequency.
  • Figure 1 is a view showing the structure of a photonic crystal all-optical D flip-flop of the present invention.
  • optical switch unit 01 first signal input terminal 11 second signal input terminal 12 first intermediate signal output terminal 13 second intermediate signal output terminal 14 photonic crystal structure unit 02 clock signal input terminal 21 intermediate signal input terminal 22 idle port 23 output terminal 24 circular high refractive index linear dielectric rod 25 first rectangular high refractive index linear dielectric rod 26 second rectangular high refractive index linear dielectric rod 27 central nonlinear dielectric rod 28 built-in or external absorption load 03 clock control signal CP built-in or external reference light source 04 reference light E logic signal D
  • FIG. 2 is a basic logic functional waveform diagram of the photonic crystal structural unit shown in FIG. 1 with a lattice constant d of 1 ⁇ m and an operating wavelength of 2.976 ⁇ m.
  • FIG. 3 is a logic functional waveform diagram of an all-optical synchronous D flip-flop that has a lattice constant d of 1 ⁇ m and an operating wavelength of 2.976 ⁇ m.
  • FIG. 4 is a logic functional waveform diagram of the all-optical synchronous D flip-flop in which the lattice constant d of the present invention is 0.5208 ⁇ m and the operating wavelength is 1.55 ⁇ m.
  • FIG. 5 is a logic function truth table implemented by the two-dimensional photonic crystal cross-waveguide nonlinear cavity shown in FIG. 1.
  • the present invention consists of an optical switch unit 01, a photonic crystal structure unit 02, a built-in or external absorbing load 03, and a built-in or external
  • the reference light source 04 is composed, the optical switch unit 01, the first signal input terminal 11, the second signal input terminal 12, the first intermediate signal output terminal 13, the second intermediate signal output terminal 14, and the optical switch unit 01 is a clock
  • the signal CP controlled 2 ⁇ 2 optical strobe switch is used for controlling the selection of a certain logic signal for output, and is used as an input of the next-stage photonic crystal structural unit, and the first signal input end 11 of the optical switch unit 01 inputs the logic signal D.
  • the second signal input terminal 12 of the switch is connected, the second signal input terminal 12 is a reference light input end, and the reference light input end is connected to the output end of a built-in or external reference light source 04.
  • the second signal input terminal 12 is connected to the reference light source 04, the first intermediate signal output terminal 13 is connected to the intermediate signal input terminal 22 of the photonic crystal structure unit 02, and the second signal output terminal 14 is connected to the absorbing load 03, and the absorbing load is used for Absorbing the light wave entering therein;
  • the clock control signal CP is connected to a two-branch waveguide input end, one output end of the two-branch waveguide is connected to the clock signal control end of the optical gate switch 01, and the other output end is connected to the photonic crystal structure unit
  • the photonic crystal structure unit 02 is composed of two signal input ends, one signal output end and one idle port;
  • the first port of the photonic crystal structure unit 02 is a clock signal input end 21, and the clock signal input end 21 is connected to the clock control signal CP;
  • the second port is an intermediate signal input end, and the intermediate signal input end 22 is connected to the first intermediate signal output end 13 of the optical strobe
  • the photonic crystal structural unit 02 is a two-dimensional photonic crystal nonlinear cavity, and the predetermined logic function can be realized according to the logic operation characteristics of the two-dimensional photonic crystal nonlinear cavity and the mutual cooperation of the above-mentioned unit devices.
  • the center of the nonlinear cavity of the two-dimensional photonic crystal cross-waveguide is composed of twelve rectangular high-refractive-index linear dielectric rods and a square nonlinear dielectric rod aligned in the longitudinal and transverse directions of the waveguide.
  • One-dimensional photonic crystal arrangement, central square nonlinear medium The rod is attached to four adjacent rectangular linear dielectric rods, and the high refractive index linear dielectric rod is composed of a two-dimensional photonic crystal "ten" cross-waveguide four-port network, and two orthogonal axes are placed along the two waveguide directions through the center of the cross-waveguide.
  • the two-dimensional photonic crystal array has a lattice constant d and an array number of 11 ⁇ 11.
  • the invention is based on the photonic band gap characteristic, the quasi-one-dimensional photonic crystal defect state, the tunneling effect and the optical Kerr nonlinear effect of the two-dimensional photonic crystal cross-waveguide nonlinear cavity shown by 02 in Fig. 1, through the optical switch, etc.
  • the cooperation of the unit devices enables a full-light synchronous D flip-flop function.
  • the basic principle of the photonic crystal nonlinear cavity in the present invention is introduced: the two-dimensional photonic crystal provides a photonic band gap with a certain bandwidth, and the light wave whose wavelength falls within the band gap can propagate in the designed optical path in the photonic crystal.
  • the working wave of the device The length is set to a wavelength in the photonic band gap; the quasi-one-dimensional photonic crystal structure disposed at the center of the cross-waveguide combined with the nonlinear effect of the central nonlinear dielectric rod provides a defect mode, when the input light wave satisfies a certain light intensity, The defect state mode is shifted to the operating frequency of the system, the structure produces a tunneling effect, and the signal is output from the output.
  • FIG. 2 is a logic output waveform diagram of the two-dimensional photonic crystal cross-waveguide nonlinear cavity of the present invention.
  • the clock signal input terminal 21 and the intermediate signal input terminal 22 respectively input waveform signals as shown in FIG. 2, the figure can be obtained.
  • the logic output waveform below. According to the logical operation characteristic shown in FIG.
  • the all-optical synchronous D flip-flop function can be realized by the connection of the unit device such as the optical switch and the cooperation of the clock control signal CP.
  • the work steps are as follows:
  • the input signal is output to the absorbing load 03 at the second intermediate signal output terminal 14 of the optical switch unit 01, and the input signal of the optical switch strobing the second signal input terminal 12 is outputted to the first intermediate signal output terminal 13 of the optical switch, and Projected to the intermediate signal input 22 of the photonic crystal structure unit 02. Therefore, the input signal of the intermediate signal input terminal 22 of the photonic crystal structure unit 02 is equal to the input signal of the second signal input terminal 12.
  • the second intermediate signal output terminal 14 outputs to the absorbing load 03; the input signal of the optical switch strobe first signal input terminal 11 is outputted to the first intermediate signal output terminal 13 of the optical switch, and is projected to the photonic crystal structure unit 02.
  • Intermediate signal input terminal 22 Therefore, the input signal of the intermediate signal input terminal 22 of the photonic crystal structure unit 02 is equal to the input signal of the first signal input terminal 11.
  • the all-optical synchronous D flip-flop function can be realized by controlling the clock signal CP of the clock signal input terminal.
  • the photonic crystal structure of the device of the present invention may adopt an array structure of (2k+1) ⁇ (2k+1), and k is an integer of 3 or more.
  • Two embodiments are given below with reference to the accompanying drawings.
  • the design and simulation results are given by taking an 11 ⁇ 11 array structure and a lattice constant d of 1 ⁇ m and 0.5208 ⁇ m, respectively.
  • the system output can be set to 1 or 0. That is, the output signal 24 of the system will now follow the logic input signal D.
  • the lattice constant d is 1 ⁇ m
  • the operating wavelength is 2.976 ⁇ m
  • the circular high refractive index linear dielectric rod 25 is made of silicon (Si) material
  • the refractive index is 3.4
  • the radius is 0.18 ⁇ m
  • the first rectangular height is high.
  • the refractive index linear dielectric rod 26 has a refractive index of 3.4, a long side of 0.613 ⁇ m, and a short side of 0.162 ⁇ m
  • the second rectangular high refractive index linear dielectric rod 27 has a dielectric constant and a dielectric rod under low light conditions.
  • the electric constant is uniform, and the size of the second rectangular high refractive index linear dielectric rod 27 is the same as that of the first rectangular high refractive index linear dielectric rod 26; the central nonlinear dielectric rod 28 is made of a Kerr type nonlinear material with a side length of 1.5 ⁇ m.
  • the dielectric constant under low light conditions is 7.9, the third-order nonlinear coefficient is 1.33*10 -2 ⁇ m 2 /V 2 , and the adjacent rectangular linear dielectric rods are separated by 0.2668 ⁇ m.
  • the lattice constant d 0.5208 ⁇ m, the working wavelength is 1.55 ⁇ m, the radius of the circular high refractive index linear dielectric rod 25 is 0.093744 ⁇ m; the long side of the first rectangular high refractive index linear dielectric rod 26 is 0.3192504 ⁇ m, and the short side is 0.0843696
  • the size of the second rectangular high refractive index linear dielectric rod 27 is the same as the size of the first rectangular high refractive index linear dielectric rod 26; the center square nonlinear dielectric rod 28 has a side length of 0.7812 ⁇ m and a third-order nonlinear coefficient of 1.33. *10 -2 ⁇ m 2 /V 2 ; two adjacent rectangular linear dielectric rods are separated by 0.13894944 ⁇ m.
  • the device of the present invention can achieve the same logic function under different lattice constants and corresponding working wavelengths by scaling, and the logic function conforms to the logic characteristics of the synchronous D flip-flop.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光子晶体全光学D触发器,它包括一个光子晶体结构单元(02)、一个光开关单元(01)、一个内置或外置的参考光源(04)、一个内置或外置的吸收负载(03);光子晶体结构单元(02)由两个信号输入端(21,22),一个信号输出端(24)及一个闲置端口(23)组成;光子晶体结构单元(02)的时钟信号输入端(21)与时钟控制信号CP连接;光子晶体结构单元(02)的中间信号输入端(22)与光开关单元(01)的第一中间信号输出端(13)连接;逻辑信号D与光开关单元(01)的第一信号输入端(11)连接;吸收负载(03)与光开关单元(01)的第二中间信号输出端(14)连接;参考光源(04)与光开关单元(01)的第二信号输入端(12)连接;第二信号输入端(12)为参考光输入端,参考光输入端与一个参考光源(04)的输出端连接。该技术方案结构紧凑,易与其他光学逻辑元件进行集成。

Description

光子晶体全光学D触发器 技术领域
本发明涉及二维光子晶体、光学D触发器。
背景技术
1987年,美国Bell实验室的E.Yablonovitch在讨论如何抑制自发辐射和Princeton大学的S.John在讨论光子区域各自独立地提出了光子晶体(Photonic Crystal)的概念。光子晶体是一种介电材料在空间中呈周期性排列的物质结构,通常由两种或两种以上具有不同介电常数材料构成的人工晶体。
随着光子晶体的提出和深入研究,人们可以更灵活、更有效地控制光子在光子晶体材料中的运动。在与传统半导体工艺和集成电路技术相结合下,人们通过设计与制造光子晶体及其器件不断的往全光处理飞速迈进,光子晶体成为了光子集成的突破口。1999年12月,美国权威杂志《科学》将光子晶体评为1999年十大科学进展之一,也成为了当今科学研究领域的一个研究热点。
全光逻辑器件主要包括基于光放大器的逻辑器件、非线性环形镜逻辑器件、萨格纳克干涉式逻辑器件、环形腔逻辑器件、多模干涉逻辑器件、耦合光波导逻辑器件、光致异构逻辑器件、偏振开关光逻辑器件、传输光栅光逻辑器件等。这些光逻辑器件对于发展大规模集成光路来说都有体积大的共同缺点。随着近年来科学技术的 提高,人们还发展研究出了量子光逻辑器件、纳米材料光逻辑器件和光子晶体光逻辑器件,这些逻辑器件都符合大规模光子集成光路的尺寸要求,但对于现代的制作工艺来说,量子光逻辑器件与纳米材料光逻辑器件在制作上存在很大的困难,而光子晶体光逻辑器件则在制作工艺上具有竞争优势。
近年来,光子晶体逻辑器件是一个备受瞩目的研究热点,它极有可能在不久将来取代目前正广泛使用的电子逻辑器件。
在实现全光计算的进程中,基于“与”、“或”、“非”、“异或”等光子晶体逻辑功能器件已经被成功设计研究,而实现全光计算的目标仍需要各种各样复杂的逻辑元器件。
发明内容
本发明的目的是克服现有技术中的不足,提供一种结构简单,抗干扰能力强、易于与其他光学逻辑元件集成的光子晶体全光学同步D触发器。
为了解决上述存在的技术问题,本发明通过下述技术方案:
本发明的光子晶体全光学同步D触发器包括一个光选通开关、一个光子晶体结构单元、、一个内置或者外置的参考光源、一个内置或者外置的吸收负载;所述的光子晶体结构单元由两个信号输入端,一个信号输出端及一个闲置端口组成;所述的光子晶体结构单元的第一端口为时钟信号输入端,该时钟信号输入端与时钟控制信号CP连接;所述的光子晶体结构单元的第二端口为中间信号输入端,该中间信号输入端与开关单元的第一中间信号输出端连接;逻 辑信号D与所述光开关单元的第一信号输入端连接;一个内置或者外置的吸收负载与所述光开关单元的第二中间信号输出端连接;一个内置或者外置的参考光源与所述光开关单元的第二信号输入端连接;所述的第二信号输入端为参考光输入端,该参考光输入端与一个内置或者外置的参考光源的输出端连接。
所述的光子晶体结构单元为一个二维光子晶体交叉波导非线性腔,该二维光子晶体交叉波导非线性腔中心由十二根长方形高折射率线性介质杆与一根正方形非线性介质杆在纵、横两个波导方向呈准一维光子晶体排列,中心正方形非线性介质杆与相邻的四根长方形线性介质杆相贴,该中心正方形非线性介质杆为克尔型非线性材料,弱光条件下的介电常数为7.9,所述高折射率线性介质杆的介电常数与非线性介质杆弱光条件下的介电常数相等。
所述的高折射率线性介质杆由二维光子晶体“十”字交叉波导四端口网络构成,通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在所述交叉波导的中部设置有中间介质柱,该中间介质柱为非线性材料;所述准一维光子晶体结构与中间介质柱构成波导缺陷腔。
所述光子晶体为(2k+1)×(2k+1)的阵列结构,k为大于等于3的整数。
所述的开关为2×2光选通开关,其包括一个时钟信号CP控制端, 一个第一信号输入端、一个第二信号输入端、一个第一中间信号输出端和一个第二中间信号输出端;所述的第一信号输入端为系统信号输入端;所述的第二信号输入端为参考光输入端。
所述二维光子晶体的高折射率线性介质杆的横截面为圆形、椭圆形、三角形或者多边形。
所述交叉波导的准一维光子晶体中的介质柱的折射率为3.4或者大于2的值。
所述中间介质柱的横截面为正方形、多边形、圆形或者椭圆形。
所述交叉波导的准一维光子晶体中的介质柱的横截面形状为矩形、多边形、圆形或者椭圆形。
所述二维光子晶体的背景填充材料包括空气和折射率小于1.4的低折射率介质。
本发明的光子晶体全光学D触发器可广泛应用于电子领域。它与现有技术相比,有如下的积极效果。
1.全光学的同步D触发器具有结构紧凑,高、低逻辑输出对比度高,响应速度快,且易与其他光学逻辑元件进行集成。
2.光子晶体逻辑器件可直接进行全光的“与”、“或”、“非”等逻辑功能,是实现全光计算的核心器件,具有结构紧凑、抗干扰能力强、运算速度快。
3.D触发器也称为维持-阻塞边沿D触发器,它能使电子电路受干扰度降低,增强电路可靠性,频率高。
附图说明
图1示出本发明的光子晶体全光学D触发器结构图。
图中:光开关单元01第一信号输入端11第二信号输入端12第一中间信号输出端13第二中间信号输出端14光子晶体结构单元02时钟信号输入端21中间信号输入端22闲置端口23输出端24圆形高折射率线性介质杆25第一长方形高折射率线性介质杆26第二长方形高折射率线性介质杆27中心非线性介质杆28内置或者外置的吸收负载03时钟控制信号CP内置或者外置的参考光源04参考光E逻辑信号D
图2为图1所示光子晶体结构单元在晶格常数d为1μm,工作波长为2.976μm的基本逻辑功能波形图。
图3为本发明的晶格常数d为1μm,工作波长为2.976μm实现全光学的同步D触发器的逻辑功能波形图。
图4为本发明的晶格常数d为0.5208μm,工作波长为1.55μm实现全光同步D触发器的逻辑功能波形图。
图5为图1所示二维光子晶体交叉波导非线性腔实现的逻辑功能真值表。
具施实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:参照图1,本发明由一个光开关单元01、一个光子晶体结构单元02、一个内置或者外置的吸波负载03及一个内置或者外置的参考光源04组成,光开关单元01,第一信号输入端11、第二信号输入端12、第一中间信号输出端13、第二中间信号输出端14,光开关单元01为一个由时钟信号CP控制的2×2光选通开关,用于控制选择某一逻辑信号进行输出,并作为下一级光子晶体结构单元的输入,光开关单元01的第一信号输入端11输入逻辑信号D,逻辑信号D连接光开关单元01的第一信号输入端11,内置或者外置的参考光源04,输出参考光E,E=1,参考光源04连接参考光E,输出参考光E与光选通开关的第二信号输入端12相连接,第二信号输入端12为参考光输入端,参考光输入端与一个内置或者外置的参考光源04的输出端连接,即第二信号输入端12连接参考光源04,第一中间信号输出端13连接光子晶体结构单元02的中间信号输入端22,第二信号输出端14连接吸波负载03,吸波负载用于吸收进入其内的光波;时钟控制信号CP连接到一个二分支波导输入端,所述二分支波导的一个输出端连接光选通开关01的时钟信号控制端,另一个输出端连接光子晶体结构单元02的时钟信号输入端21;光子晶体结构单元02由两个信号输入端,一个信号输出端及一个闲置端口组成;光子晶体结构单元02的第一端口为时钟信号输入端21,时钟信号输入端21与时钟控制信号CP连接;光子晶体结构单元02的 第二端口为中间信号输入端,中间信号输入端22连接光选通开关的第一中间信号输出端13;时钟控制信号CP用于控制参考光E与逻辑信号D于光开关单元01的第一中间信号输出端13或者第二中间信号输出端14输出。
光子晶体结构单元02为一个二维光子晶体非线性腔,根据该二维光子晶体非线性腔自身的逻辑运算特性及上述单元器件的相互配合,即可实现既定的逻辑功能。二维光子晶体交叉波导非线性腔中心由十二根长方形高折射率线性介质杆与一根正方形非线性介质杆在纵、横两个波导方向呈准一维光子晶体排列,中心正方形非线性介质杆与相邻的四根长方形线性介质杆相贴,高折射率线性介质杆由二维光子晶体“十”字交叉波导四端口网络构成,通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在所述交叉波导的中部设置有中间介质柱,该中央介质柱为非线性材料;所述准一维光子晶体结构与中间介质柱构成波导缺陷腔。二维光子晶体阵列晶格常数为d,阵列数为11×11。
本发明基于图1中的02所示二维光子晶体交叉波导非线性腔所具有的光子带隙特性、准一维光子晶体缺陷态、隧穿效应及光克尔非线性效应,通过光开关等单元器件的配合可实现全光的同步D触发器功能。首先介绍本发明中光子晶体非线性腔的基本原理:二维光子晶体提供一个具有一定带宽的光子带隙,波长落在该带隙内的光波可在光子晶体内所设计好的光路中传播,因此将器件的工作波 长设置为光子带隙中的某一波长;交叉波导中心所设置的准一维光子晶体结构结合中心非线性介质杆的非线性效应提供了一个缺陷态模式,当输入光波满足一定光强时,使得该缺陷态模式偏移至系统的工作频率,结构产生隧穿效应,信号从输出端输出。
当晶格常数d=1μm,工作波长为2.976μm,参照图1中光子晶体结构单元02所示的二维光子晶体交叉波导非线性腔,以时钟信号输入端21与中间信号输入端22为信号输入端,时钟信号输入端21端输入信号A,中间信号输入端22输入信号B。如图2所示本发明的二维光子晶体交叉波导非线性腔的逻辑输出波形图,当时钟信号输入端21与中间信号输入端22分别输入如图2所示的波形信号可得出该图下方的逻辑输出波形。根据图2所示的逻辑运算特性可得出图5所示该结构的逻辑运算真值表。图5中C为现态Qn,Y为输出端的信号输出,即次态Qn+1。根据该真值表可得出结构的逻辑表达式:
Y=AB+BC  (1)
Qn+1=AB+BQn  (2)
根据上述二维光子晶体交叉波导非线性腔的基本逻辑特性,通过光开关等单元器件的连接及时钟控制信号CP的配合即可实现全光学的同步D触发器功能。工作步骤如下:
当CP=0时,光子晶体结构单元02的时钟信号输入端21的输入信号A与CP同步,A=CP=0;同时,光开关选通第一信号输入端11 的输入信号于光开关单元01的第二中间信号输出端14输出至吸波负载03,光开关选通第二信号输入端12的输入信号于光开关的第一中间信号输出端13输出,并投射到光子晶体结构单元02的中间信号输入端22。因此,光子晶体结构单元02的中间信号输入端22的输入信号等于第二信号输入端12的输入信号。
当CP=1时,光子晶体结构单元02的时钟信号输入端21的输入信号A与CP同步,A=CP=1;同时,光开关选通第二中间信号输入端12的输入信号于光开关的第二中间信号输出端14输出至吸波负载03;光开关选通第一信号输入端11的输入信号于光开关的第一中间信号输出端13输出,并投射到光子晶体结构单元02的中间信号输入端22。因此,光子晶体结构单元02的中间信号输入端22的输入信号等于第一信号输入端11的输入信号。
在上述单元器件的连接与配合工作下,通过时钟信号输入端的时钟信号CP控制即可实现全光学的同步D触发器功能。
本发明器件的光子晶体结构可以采用(2k+1)×(2k+1)的阵列结构,k为大于等于3的整数。下面结合附图给出两个实施例,在实施例中以11×11阵列结构,晶格常数d分别以1μm及0.5208μm为例给出设计和模拟结果。
当CP=1时,光子晶体结构单元02的时钟信号输入端21的输入信号A与时钟控制信号CP同步,A=CP=1;同时,光选通开关01第二信号输入端12的参考光E于第二中间输出端14输出至吸波负载03;光开关选通01第一信号输入端11的输入逻辑信号D于光选 通开关01的第一中间信号输出端13输出,并投射至光子晶体结构单元02的中间信号输入端22,即光子晶体结构单元02的中间信号输入端22的输入信号B=D,由式子(2)可得到
Qn+1=D  (3)
若D=1则Qn+1=1;若D=0则Qn+1=0,根据输入信号D取值不同,系统输出既可以置1,也可以置0。即此时系统的输出信号24将跟随逻辑输入信号D。
当CP=0时,光子晶体结构单元02的时钟信号输入端21的输入信号A与时钟控制信号CP同步,A=CP=0;同时,光开关选通01第一信号输入端11的逻辑信号D于第二中间信号输出端14输出至吸波负载03;光开关选通01第二信号输入端12的参考光E于第一中间信号输出端13输出,并投射至光子晶体结构单元02的中间信号输入端22,即光子晶体结构单元02的中间信号输入端22的输入信号B=E=1,由式子(2)可得到
Qn+1=Qn  (4)
可见,在CP=0,无论信号D如何变化,系统锁存上一时刻的系统输出值。即此时系统输出信号24将锁存上一时刻系统的逻辑输出量。
实施例1
结合上述逻辑特性,在晶格常数d为1μm,工作波长为2.976μm,圆形高折射率线性介质杆25,采用硅(Si)材料,折射率为3.4,半径为0.18μm;第一长方形高折射率线性介质杆26,折 射率为3.4,长边为0.613μm,短边为0.162μm;第二长方形高折射率线性介质杆27,其介电常数与非线性介质杆弱光条件下的介电常数一致,第二长方形高折射率线性介质杆27的尺寸与第一长方形高折射率线性介质杆26的尺寸一致;中心非线性介质杆28采用克尔型非线性材料,边长为1.5μm,弱光条件下的介电常数为7.9,三阶非线性系数为1.33*10-2μm2/V2;两两相邻的长方形线性介质杆相距0.2668μm。如图3所示,在上述尺寸参数下,令D输入如图波形信号,在时钟信号CP控制下,可得出该图下方的系统输出波形图。可见,系统输出在CP=1时跟随D信号,CP=0时锁存上一时刻输出信号。
实施例2
晶格常数d=0.5208μm,工作波长为1.55μm,圆形高折射率线性介质杆25的半径为0.093744μm;第一长方形高折射率线性介质杆26的长边为0.3192504μm,短边为0.0843696μm;第二长方形高折射率线性介质杆27的尺寸与第一长方形高折射率线性介质杆26的尺寸一致;中心正方形非线性介质杆28的边长为0.7812μm,三阶非线性系数为1.33*10-2μm2/V2;两两相邻的长方形线性介质杆相距0.13894944μm。如图4所示,在上述尺寸参数下,令D输入如图波形信号,在时钟信号CP控制下,可得出该图下方的系统输出波形图。由图4所示的输入与输出的逻辑关系可知,本发明通过尺寸缩放后,同样可实现实施例1中相同的逻辑特性: 在时钟信号CP控制下,系统输出在CP=1时跟随D信号,CP=0时锁存上一时刻输出信号。
可见,本发明器件通过缩放,可在不同晶格常数及相应工作波长下实现同样的逻辑功能,该逻辑功能符合同步D触发器的逻辑特性。
以上所述本发明在具体实施方式及应用范围均有改进之处,不应当理解为对本发明限制。

Claims (10)

  1. 一种光子晶体全光学D触发器,其特征在于:其包括一个光开关单元、一个光子晶体结构单元、一个内置或者外置的参考光源、一个内置或者外置的吸收负载;所述的光子晶体结构单元由两个信号输入端,一个信号输出端及一个闲置端口组成;所述的光子晶体结构单元的第一端口为时钟信号输入端,该时钟信号输入端与时钟控制信号CP连接;所述的光子晶体结构单元的第二端口为中间信号输入端,该中间信号输入端与所述光开关单元的第一中间信号输出端连接;逻辑信号D与所述光开关单元的第一信号输入端连接;所述内置或者外置的吸收负载与所述光开关单元的第二中间信号输出端连接;所述内置或者外置的参考光源与所述光开关单元的第二信号输入端连接;所述的第二信号输入端为参考光输入端,该参考光输入端与一个内置或者外置的参考光源的输出端连接。
  2. 按照权利要求1所述的光子晶体全光学D触发器,其特征在于:所述的光子晶体结构单元为一个二维光子晶体交叉波导非线性腔,该二维光子晶体交叉波导非线性腔中心由十二根长方形高折射率线性介质杆与一根正方形非线性介质杆在纵、横两个波导方向呈准一维光子晶体排列,中心正方形非线性介质杆与相邻的四根长方形线性介质杆相贴,该中心正方形非线性介质杆为克尔型非线性材料,弱光条件下的介电常数为7.9,所述高折射率线性介质杆的介电常数与非线性介质杆弱光条件下的介电常数相等。
  3. 按照权利要求2所述的光子晶体全光学D触发器,其特征在于:所述的高折射率线性介质杆由二维光子晶体“十”字交叉波导四端口网络构成,通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在所述交叉波导的中部设置有中间介质柱,该中间介质柱为非线性材料;所述准一维光子晶体结构与中间介质柱构成波导缺陷腔。
  4. 按照权利要求1所述的光子晶体全光学D触发器,其特征在于:所述光子晶体为(2k+1)×(2k+1)的阵列结构,k为大于等于3的整数。
  5. 按照权利要求1所述的光子晶体全光学D触发器,其特征在于:所述的开关为2×2光选通开关,其包括一个时钟信号CP控制端、一个第一信号输入端、一个第二信号输入端、一个第一中间信号输出端和一个第二中间信号输出端;所述的第一信号输入端为系统信号输入端;所述的第二信号输入端为参考光输入端。
  6. 按照权利要求2所述的光子晶体全光学D触发器,其特征在于:所述二维光子晶体的高折射率线性介质杆的横截面为圆形、椭圆形、三角形或者多边形。
  7. 按照权利要求3所述的光子晶体全光学D触发器,其特征在于:所述交叉波导的准一维光子晶体中的介质柱的折射率为3.4或者大于2的值。
  8. 按照权利要求3所述的光子晶体全光学D触发器,其特征在于:所述中间介质柱的横截面为正方形、多边形、圆形或者椭圆形。
  9. 按照权利要求3所述的光子晶体全光学D触发器,其特征在于:所述交叉波导的准一维光子晶体中的介质柱的横截面形状为矩形、多边形、圆形或者椭圆形。
  10. 按照权利要求1所述的光子晶体全光学D触发器,其特征在于:所述二维光子晶体的背景填充材料包括空气和折射率小于1.4的低折射率介质。
PCT/CN2015/097847 2014-12-19 2015-12-18 光子晶体全光学d触发器 WO2016095848A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/626,206 US10151963B2 (en) 2014-12-19 2017-06-19 Photonic crystal all-optical d-type flip-flop

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410799752.9 2014-12-19
CN201410799752.9A CN104485928B (zh) 2014-12-19 2014-12-19 光子晶体全光学d触发器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/626,206 Continuation US10151963B2 (en) 2014-12-19 2017-06-19 Photonic crystal all-optical d-type flip-flop

Publications (1)

Publication Number Publication Date
WO2016095848A1 true WO2016095848A1 (zh) 2016-06-23

Family

ID=52760444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097847 WO2016095848A1 (zh) 2014-12-19 2015-12-18 光子晶体全光学d触发器

Country Status (3)

Country Link
US (1) US10151963B2 (zh)
CN (1) CN104485928B (zh)
WO (1) WO2016095848A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485928B (zh) * 2014-12-19 2017-01-18 欧阳征标 光子晶体全光学d触发器
CN106199828B (zh) * 2016-07-26 2019-06-28 深圳大学 超快微波导Sagnac环全光触发器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072519A1 (en) * 2001-10-17 2003-04-17 Bolanos Miguel Holgado Photonic device, optical logic circuit incorporting the photonic device and method of manufacturing thereof
US20050152429A1 (en) * 2003-10-15 2005-07-14 Axel Scherer Laser-based optical switches and logic
UA24198U (en) * 2007-01-15 2007-06-25 Univ Kherson Nat Technical Integrated optical d trigger
CN101251701A (zh) * 2008-01-02 2008-08-27 深圳大学 “十”字波导光子晶体光学“或”、“非”、“异或”逻辑门的实现方法
CN201897676U (zh) * 2010-08-03 2011-07-13 福建师范大学 一种带有六边形单个光子晶体微环结构的光逻辑门
CN102156375A (zh) * 2011-04-13 2011-08-17 清华大学 一种光逻辑门
CN102323707A (zh) * 2011-09-26 2012-01-18 北京邮电大学 一种基于干涉原理的光子晶体全光异或逻辑门结构
CN103901537A (zh) * 2014-03-21 2014-07-02 深圳大学 基于光子晶体波导的十字红外偏振光桥
CN104485928A (zh) * 2014-12-19 2015-04-01 欧阳征标 光子晶体全光学d触发器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072547B2 (en) * 2002-06-18 2006-07-04 Massachusetts Institute Of Technology Waveguide coupling into photonic crystal waveguides
US7480319B2 (en) * 2003-10-15 2009-01-20 California Institute Of Technology Optical switches and logic and methods of implementation
US7409131B2 (en) * 2006-02-14 2008-08-05 Coveytech, Llc All-optical logic gates using nonlinear elements—claim set V
CN102012600B (zh) * 2010-01-29 2012-11-07 深圳大学 二维光子晶体可控式“与/或”逻辑门
CN102043261B (zh) * 2010-08-31 2013-07-03 深圳大学 光子晶体磁光环行器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072519A1 (en) * 2001-10-17 2003-04-17 Bolanos Miguel Holgado Photonic device, optical logic circuit incorporting the photonic device and method of manufacturing thereof
US20050152429A1 (en) * 2003-10-15 2005-07-14 Axel Scherer Laser-based optical switches and logic
UA24198U (en) * 2007-01-15 2007-06-25 Univ Kherson Nat Technical Integrated optical d trigger
CN101251701A (zh) * 2008-01-02 2008-08-27 深圳大学 “十”字波导光子晶体光学“或”、“非”、“异或”逻辑门的实现方法
CN201897676U (zh) * 2010-08-03 2011-07-13 福建师范大学 一种带有六边形单个光子晶体微环结构的光逻辑门
CN102156375A (zh) * 2011-04-13 2011-08-17 清华大学 一种光逻辑门
CN102323707A (zh) * 2011-09-26 2012-01-18 北京邮电大学 一种基于干涉原理的光子晶体全光异或逻辑门结构
CN103901537A (zh) * 2014-03-21 2014-07-02 深圳大学 基于光子晶体波导的十字红外偏振光桥
CN104485928A (zh) * 2014-12-19 2015-04-01 欧阳征标 光子晶体全光学d触发器

Also Published As

Publication number Publication date
US20170285441A1 (en) 2017-10-05
CN104485928A (zh) 2015-04-01
CN104485928B (zh) 2017-01-18
US10151963B2 (en) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2016095852A1 (zh) 光子晶体全光多步延迟自与变换逻辑门
WO2016095840A1 (zh) 光子晶体全光多步延迟与变换逻辑门
WO2016095846A1 (zh) 光子晶体记忆式全光或与逻辑门
WO2016095842A1 (zh) 光学时钟发生器
WO2016095848A1 (zh) 光子晶体全光学d触发器
WO2016095844A1 (zh) 高对比度光子晶体与逻辑门
WO2016095847A1 (zh) 高对比度光子晶体"或"、"非"、"异或"逻辑门
WO2016095849A1 (zh) 光子晶体全光与变换逻辑门
WO2016095845A1 (zh) 光子晶体全光学抗干扰自锁触发开关
WO2016095850A1 (zh) 光子晶体全光自与变换逻辑门
WO2016095853A1 (zh) 光子晶体全光或变换逻辑门
WO2016095851A1 (zh) 光子晶体全光自或变换逻辑门
WO2016095843A1 (zh) 光子晶体全光多步延迟或变换逻辑门
WO2016095841A1 (zh) 光子晶体全光多步延迟自或变换逻辑门

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869355

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15869355

Country of ref document: EP

Kind code of ref document: A1