WO2016095850A1 - 光子晶体全光自与变换逻辑门 - Google Patents

光子晶体全光自与变换逻辑门 Download PDF

Info

Publication number
WO2016095850A1
WO2016095850A1 PCT/CN2015/097849 CN2015097849W WO2016095850A1 WO 2016095850 A1 WO2016095850 A1 WO 2016095850A1 CN 2015097849 W CN2015097849 W CN 2015097849W WO 2016095850 A1 WO2016095850 A1 WO 2016095850A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
logic
logic gate
signal
signal input
Prior art date
Application number
PCT/CN2015/097849
Other languages
English (en)
French (fr)
Inventor
欧阳征标
余铨强
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2016095850A1 publication Critical patent/WO2016095850A1/zh
Priority to US15/626,256 priority Critical patent/US10338312B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/1213Constructional arrangements comprising photonic band-gap structures or photonic lattices

Definitions

  • the invention relates to two-dimensional photonic crystals, optical and logic gates
  • a photonic crystal is a material structure in which dielectric materials are periodically arranged in space, and is usually composed of two or more kinds of artificial crystals having materials having different dielectric constants.
  • All-optical logic devices mainly include optical amplifier-based logic devices, nonlinear ring mirror logic devices, Sagnac interferometric logic devices, ring cavity logic devices, multimode interference logic devices, coupled optical waveguide logic devices, and photoisomerization.
  • Logic devices, polarization switching optical logic devices, transmission grating optical logic devices, etc. These optical logic devices have a large common disadvantage for the development of large-scale integrated optical paths.
  • Quantum optical logic devices, nanomaterial optical logic devices, and photonic crystal optical logic devices have also been developed. These logic devices meet the size requirements of large-scale photonic integrated optical paths, but for modern fabrication processes, quantum optical logic devices Nanomaterial optical logic devices have great difficulties in fabrication, while photonic crystal optical logic devices have a competitive advantage in the fabrication process.
  • Photonic crystal logic devices have been a hot research topic, and it is very likely to replace the widely used electronic logic devices in the near future.
  • Photonic crystal logic devices can directly perform all-optical "AND”, “OR”, and “NO” logic functions, and are the core devices for all-optical calculation.
  • Photonic crystal logic devices based on “and” and “or” Photonic crystal logic devices such as “non” and “exclusive or” have been successfully designed and studied, and the goal of achieving all-optical calculation still requires a variety of complex logic components.
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a photonic crystal all-optical self-conversion logic gate which is compact in structure, strong in anti-interference ability, and easy to integrate with other optical logic elements.
  • the photonic crystal all-optical self-transform logic gate of the present invention is composed of a photonic crystal structure unit, a non-logic gate and a D flip-flop unit; the clock control signal CP is connected through the input end of a two-branch waveguide, and the two outputs thereof Connected to the input of the non-logic gate and the clock signal input of the photonic crystal structure unit; the output of the non-logic gate is connected to the clock signal input of the D flip-flop unit; the photonic crystal structure unit The signal output terminal is connected to the D signal input terminal of the D flip-flop unit; the logic input signal X is connected to the logic signal input terminal of the photonic crystal structure unit.
  • the photonic crystal structural unit is a two-dimensional photonic crystal cross-waveguide nonlinear cavity, which is composed of a high-refractive-index dielectric rod to form a two-dimensional photonic crystal "ten" cross-waveguide four-port network, and the left end and the lower end of the four-port network
  • the upper end and the right end are respectively a clock signal input end, a logic signal input end, a signal output end, and an idle end; and two mutually orthogonal quasi-one-dimensional photonic crystal structures are placed along the two waveguide directions through the cross-fork waveguide center; in the middle of the cross-waveguide
  • an intermediate medium column which is a non-linear material, the intermediate medium column has a square, a polygonal, a circular or an elliptical cross section; a rectangular linear rod that is close to the central nonlinear rod and close to the signal output end
  • the dielectric constant is equal to the dielectric constant of the central nonlinear rod under low light conditions; the quasi-one-dimensional photonic
  • the D flip-flop unit is composed of a clock signal input end, a D signal input end and a system output end; the input signal of the D signal input end is equal to the output signal of the output end of the photonic crystal structure unit.
  • the two-dimensional photonic crystal is a (2k+1) ⁇ (2k+1) structure, where k is a positive integer greater than or equal to 3.
  • the high refractive index dielectric column of the two-dimensional photonic crystal has a circular, elliptical, triangular or polygonal cross section.
  • the background filling material of the two-dimensional photonic crystal is air or a low refractive index medium having a refractive index of less than 1.4.
  • the refractive index of the dielectric column in the quasi-one-dimensional photonic crystal in the cross-waveguide is 3.4 or greater, and the cross-sectional shape of the dielectric column in the quasi-one-dimensional photonic crystal is rectangular, polygonal, circular or Oval.
  • FIG. 1 is a structural diagram of a photonic crystal all-optical self-transform logic gate of the present invention.
  • FIG. 4 is a logic function truth table of the two-dimensional photonic crystal cross-waveguide nonlinear cavity shown in FIG. 1.
  • photonic crystal structure unit 01 clock signal input terminal 11 logic signal input terminal 12 idle terminal 13 signal output terminal 14 circular high refractive index linear dielectric rod 15 first rectangular high refractive index linear dielectric rod 16 second rectangular high refractive index Linear dielectric rod 17 central nonlinear dielectric rod 18 logic input signal X clock control signal CP non-logic gate 02D trigger unit 03 clock signal input terminal 31D signal input terminal 32 system signal output terminal 33
  • the photonic crystal all-optical self-transform logic gate of the present invention is composed of a photonic crystal structure unit 01, a non-logic gate 02 and a D flip-flop unit 03;
  • the photonic crystal structure unit 01 is a two-dimensional photon.
  • a crystal cross-waveguide nonlinear cavity which is disposed at the rear end of the optical switch unit, the background filling material of the two-dimensional photonic crystal is air, or a low refractive index medium having a refractive index of less than 1.4, and a high refractive index of the two-dimensional photonic crystal
  • the cross section of the dielectric column is circular, and it can also be elliptical, triangular or polygonal.
  • the two-dimensional photonic crystal cross-waveguide nonlinear cavity is composed of a high-refractive-index dielectric rod to form a two-dimensional photonic crystal "ten" cross-waveguide four-port network.
  • the four-port network has a four-port photonic crystal structure, the left end is a clock signal input end, the lower end is a logic signal input end, the upper end is a signal output end, and the right end is an idle end; the cross waveguide center is placed along two waveguide directions.
  • a quasi-one-dimensional photonic crystal structure orthogonal to each other wherein the cross section of the dielectric column in the quasi-one-dimensional photonic crystal is rectangular, and may also be Use a polygon, a circle or an ellipse with a refractive index of 3.4 or a value greater than 2.
  • An intermediate dielectric column is provided in the middle of the crossed waveguide, and the intermediate dielectric column is a nonlinear material, and the intermediate dielectric column has a square cross section. Polygonal, circular or elliptical shapes may also be used, and the quasi-one-dimensional photonic crystal structure and the intermediate dielectric column constitute a waveguide defect cavity.
  • the two-dimensional photonic crystal array has a lattice constant d and an array number of 11 ⁇ 11;
  • the circular high refractive index linear dielectric rod 15 is made of silicon (Si) material, has a refractive index of 3.4 and a radius of 0.18 d;
  • the linear dielectric rod 16 has a refractive index of 3.4, a long side of 0.613d, and a short side of 0.162d.
  • the second rectangular high refractive index linear dielectric rod 17 has a dielectric constant and a dielectric constant under a low dielectric condition of a nonlinear dielectric rod.
  • the size of the second rectangular high refractive index linear dielectric rod 17 is equal to the size of the first rectangular high refractive index linear dielectric rod 16;
  • the central square nonlinear dielectric rod 18 is a Kerr type nonlinear material having a side length of 1.5d.
  • the dielectric constant under low light conditions is 7.9, and the third-order nonlinear coefficient is 1.33*10 -2 ⁇ m 2 /V 2 .
  • the center of the nonlinear cavity of the two-dimensional photonic crystal cross-waveguide is composed of twelve rectangular high-linear dielectric rods and a square nonlinear dielectric rod aligned in the longitudinal and transverse directions of the two waveguides.
  • the central nonlinear dielectric rod and phase The adjacent four rectangular linear dielectric rods are attached with a distance of 0, and the adjacent rectangular linear dielectric rods are spaced apart by 0.2668 d.
  • the dielectric constant of a rectangular linear rod close to the central nonlinear rod and close to the signal output end is The central nonlinear rod has the same dielectric constant under low light conditions.
  • the D flip-flop unit is composed of a clock signal input end, a D signal input end and a system output end; the clock control signal CP is input through the input end of a two-branch waveguide, and one end of the output is connected to the input end of the non-logic gate 02, The other end is connected to the clock signal input terminal 11 of the photonic crystal structure unit 01; the input signal of the clock signal input terminal 11 of the photonic crystal structure unit 01 is synchronized with the CP; the output of the non-logic gate 02 and the clock signal input of the D flip-flop unit 03 The terminal 31 is connected; the clock signal input terminal 31 of the D flip-flop unit 03 is synchronized with the clock signal CP; the non-logic gate is disposed between the clock signal CP input terminal and the D flip-flop unit, and the non-logic gate is used for the clock signal The CP performs a non-logic operation and is projected to the clock signal input terminal 31 of the D flip-flop unit 03; the signal output terminal 14 of the photonic crystal structure unit 01 is connected to
  • the invention is based on the photonic band gap characteristic, the quasi-one-dimensional photonic crystal defect state, the tunneling effect and the optical Kerr nonlinear effect of the two-dimensional photonic crystal cross-waveguide nonlinear cavity shown in FIG. 1, and can be controlled by the clock signal CP. Achieve self-transformation logic function of all-optical logic signals.
  • the basic principle of the photonic crystal nonlinear cavity in the present invention is introduced: the two-dimensional photonic crystal provides a photonic band gap with a certain bandwidth, and the light wave whose wavelength falls within the band gap can propagate in the designed optical path in the photonic crystal.
  • the operating wavelength of the device is set to a certain wavelength in the photonic band gap;
  • the quasi-one-dimensional photonic crystal structure disposed at the center of the cross-waveguide combined with the nonlinear effect of the central nonlinear dielectric rod provides a defect state mode when the input light wave satisfies
  • the defect state mode is shifted to the operating frequency of the system, the structure generates a tunneling effect, and the signal is output from the output terminal 14.
  • the clock signal input terminal 11 and the intermediate signal input terminal 12 are signal input terminals, ports. 11 input signal A, port 12 input signal B.
  • the logic output waveform diagram of the two-dimensional photonic crystal cross-waveguide nonlinear cavity of the present invention when the port 11 and the port 12 are respectively input with the waveform signals as shown in FIG. 2, the logic output waveform below the figure can be obtained.
  • the logical operation truth table of the structure shown in FIG. 4 can be obtained.
  • C is the current state Q n
  • Y is the signal output of the output terminal 14 of the photonic crystal structural unit 01, that is, the secondary state Q n+1 .
  • the logical expression of the structure can be derived:
  • the logic output of the above stage is used as a logic input to realize a predetermined logic function.
  • the photonic crystal structure of the device of the present invention may adopt an array structure of (2k+1) ⁇ (2k+1), and k is an integer of 3 or more.
  • k is an integer of 3 or more.
  • a clock control signal CP needs to be introduced into the system.
  • +1) Performs an AND operation with the stored signal X(n) of the system at the previous moment.
  • the logic input signal of the logic signal input terminal 12 is X(n+1), and the output of the port 14 is obtained by the equation (2).
  • the output of the output port 14 of the photonic crystal structure unit 01 is equal to the input of the D signal input terminal 32 of the D flip-flop unit 05.
  • the input signal of the D signal input terminal 32 can be derived from the equation (6) and the equation (7).
  • the device of the present invention can implement the self-transformation logic function of the logic signal.
  • the lattice constant d of the photonic crystal structural unit 01 is 1 ⁇ m; the radius of the circular high refractive index linear dielectric rod 15 is 0.18 ⁇ m; the long side of the first rectangular high refractive index linear dielectric rod 16 is 0.613 ⁇ m, the short side is 0.162 ⁇ m; the size of the second rectangular high refractive index linear dielectric rod 17 is the same as the size of the first rectangular high refractive index linear dielectric rod 16; the center square nonlinear dielectric rod 18 has a side length of 1.5 ⁇ m, The third-order nonlinear coefficient is 1.33*10 -2 ⁇ m 2 /V 2 ; the adjacent rectangular linear dielectric rods are separated by 0.2668 ⁇ m.
  • the device of the present invention achieves the same logic function at different lattice constants and corresponding operating wavelengths by scaling.
  • the auto-and-transform logic gate function of the all-optical logic signal can be realized by controlling the clock signal CP of the clock signal input end.
  • a self-convolution operation of a single logic signal can be defined, and the self-and logical operation of the above logic signal is a logical signal self-convolution operation.
  • the logic signal realized by the invention plays an important role from the implementation of the autocorrelation transformation or the self-convolution operation of the logic function with the transformation logic function.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光子晶体全光自与变换逻辑门,它由一个光子晶体结构单元(01)、一个非逻辑门(02)和一个D触发器单元(03)组成;时钟控制信号(CP)通过一个二分支波导的输入端连接,其两个输出端分别与非逻辑门(02)的输入端和光子晶体结构单元(01)的时钟信号输入端(11)连接;所述非逻辑门(02)的输出端与D触发器单元(03)的时钟信号输入端(31)连接;所述光子晶体结构单元(01)的信号输出端(14)与D触发器单元(03)的D信号输入端(32)连接;逻辑输入信号X与光子晶体结构单元(01)的逻辑信号输入端(12)连接。该逻辑门结构紧凑、运算速度快、抗干扰能力强、而且易与其它光学逻辑元件实现集成。

Description

光子晶体全光自与变换逻辑门 技术领域
本发明涉及二维光子晶体、光学与逻辑门
背景技术
1987年,美国Bell实验室的E.Yablonovitch在讨论如何抑制自发辐射和Princeton大学的S.John在讨论光子区域各自独立地提出了光子晶体(Photonic Crystal)的概念。光子晶体是一种介电材料在空间中呈周期性排列的物质结构,通常由两种或两种以上具有不同介电常数材料构成的人工晶体。
随着光子晶体的提出和深入研究,人们可以更灵活、更有效地控制光子在光子晶体材料中的运动。在与传统半导体工艺和集成电路技术相结合下,人们通过设计与制造光子晶体及其器件不断的往全光处理飞速迈进,光子晶体成为了光子集成的突破口。1999年12月,美国权威杂志《科学》将光子晶体评为1999年十大科学进展之一,也成为了当今科学研究领域的一个研究热点。
全光逻辑器件主要包括基于光放大器的逻辑器件、非线性环形镜逻辑器件、萨格纳克干涉式逻辑器件、环形腔逻辑器件、多模干涉逻辑器件、耦合光波导逻辑器件、光致异构逻辑器件、偏振开关光逻辑器件、传输光栅光逻辑器件等。这些光逻辑器件对于发展大规模集成光路来说都有体积大的共同缺点。随着近年来科学技术的提高,人们 还发展研究出了量子光逻辑器件、纳米材料光逻辑器件和光子晶体光逻辑器件,这些逻辑器件都符合大规模光子集成光路的尺寸要求,但对于现代的制作工艺来说,量子光逻辑器件与纳米材料光逻辑器件在制作上存在很大的困难,而光子晶体光逻辑器件则在制作工艺上具有竞争优势。
近年来,光子晶体逻辑器件是一个备受瞩目的研究热点,它极有可能在不久将来取代目前正广泛使用的电子逻辑器件。光子晶体逻辑器件可直接进行全光的“与”、“或”、“非”等逻辑功能,是实现全光计算的核心器件,在全光计算的进程中,基于“与”、“或”、“非”、“异或”等光子晶体逻辑功能器件已经被成功设计研究,而实现全光计算的目标仍需要各种各样复杂的逻辑元器件。
发明内容
本发明的目的是克服现有技术中的不足,提供一种结构紧凑、抗干扰能力强,且易与其它光学逻辑元件实现集成的光子晶体全光自与变换逻辑门。
本发明的目的通过下列技术方案予以实现。
本发明的光子晶体全光自与变换逻辑门由一个光子晶体结构单元、一个非逻辑门和一个D触发器单元组成;时钟控制信号CP通过一个二分支波导的输入端连接,其两个输出端分别与非逻辑门的输入端和光子晶体结构单元的时钟信号输入端连接;所述非逻辑门的输出端与D触发器单元的时钟信号输入端连接;所述光子晶体结构单元 的信号输出端与D触发器单元的D信号输入端连接;逻辑输入信号X与光子晶体结构单元的逻辑信号输入端连接。
所述光子晶体结构单元为一个二维光子晶体交叉波导非线性腔,它由高折射率介质杆构成二维的光子晶体“十”字交叉波导四端口网络,所述四端口网络的左端、下端、上端、右端分别为时钟信号输入端、逻辑信号输入端、信号输出端、闲置端;通过交叉叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在交叉波导的中部设置中间介质柱,该中间介质柱为非线性材料,所述中间介质柱的横截面为正方形、多边形、圆形或者椭圆形;紧贴中心非线性杆且靠近信号输出端的一根矩形线性杆的介电常数与中心非线性杆在弱光条件下的介电常数相等;所述的准一维光子晶体结构与中间介质柱构成波导缺陷腔。
所述D触发器单元由一个时钟信号输入端、一个D信号输入端和一个系统输出端组成;所述D信号输入端的输入信号与光子晶体结构单元输出端的输出信号相等。
所述二维光子晶体为(2k+1)×(2k+1)结构,其中k为大于等于3的正整数。
所述二维光子晶体的高折射率介质柱的横截面为圆形、椭圆形、三角形或者多边形。
所述二维光子晶体的背景填充材料为空气或者折射率小于1.4的低折射率介质。
所述交叉波导中的准一维光子晶体中的介质柱的折射率为3.4或者大于2的值,且所述准一维光子晶体中的介质柱的横截面形状为矩形、多边形、圆形或者椭圆形。
本发明与现有技术相比的积极有益效果是:
1.结构紧凑,易于制作;
2.抗干扰能力强,易与其它光学逻辑元件集成;
3.具有高、低逻辑输出对比度高,运算速度快。
附图说明
图1为本发明的光子晶体全光自与变换逻辑门的结构图。
图2为图1所示光子晶体结构单元在晶格常数d=1μm,工作波长为2.976μm的基本逻辑功能波形图。
图3为本发明的光子晶体全光自与变换逻辑门在晶格常数d=1μm,工作波长为2.976μm的逻辑信号自与变换的逻辑功能波形图。
图4为图1所示二维光子晶体交叉波导非线性腔的逻辑功能真值表。
图中:光子晶体结构单元01时钟信号输入端11逻辑信号输入端12闲置端13信号输出端14圆形高折射率线性介质杆15第一长方形高折射率线性介质杆16第二长方形高折射率线性介质杆17中心非线性介质杆18逻辑输入信号X时钟控制信号CP非逻辑门02D触发器单元03时钟信号输入端31D信号输入端32系统信号输出端33
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
如图1所示,本发明的光子晶体全光自与变换逻辑门由一个光子晶体结构单元01、一个非逻辑门02和一个D触发器单元03组成;光子晶体结构单元01为一个二维光子晶体交叉波导非线性腔,其设置在所述光开关单元的后端,二维光子晶体的背景填充材料为空气,也可以采用折射率小于1.4的低折射率介质,二维光子晶体的高折射率介质柱的横截面为圆形,也可以采用椭圆形、三角形或者多边形,二维光子晶体交叉波导非线性腔由高折射率介质杆构成二维的光子晶体“十”字交叉波导四端口网络,该四端口网络具有一种四端口的光子晶体结构,左端为时钟信号输入端、下端为逻辑信号输入端、上端为信号输出端、右端为闲置端;通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构,所述准一维光子晶体中的介质柱的横截面为矩形,也可以采用多边形、圆形或者椭圆形,其折射率为3.4,也可以为大于2的值,在交叉波导的中部设置中间介质柱,中间介质柱为非线性材料,该中间介质柱的横截面为正方形,也可以采用多边形、圆形或者椭圆形,准一维光子晶体结构与中间介质柱构成波导缺陷腔。二维光子晶体阵列晶格常数为d,阵列数为11×11;圆形高折射率线性介质杆15采用硅(Si)材料,折射率为3.4,半径为0.18d;第一长方形高折射率线性介质杆16,折射率为3.4,长边为0.613d,短边为0.162d;第二长方形高折射率线性介质杆17,其介电常数与非线性介质杆弱光条件下的介电常数一致,第二长方形高 折射率线性介质杆17的尺寸与第一长方形高折射率线性介质杆16的尺寸相等;中心正方形非线性介质杆18采用克尔型非线性材料,边长为1.5d,弱光条件下的介电常数为7.9,三阶非线性系数为1.33*10-2μm2/V2。二维光子晶体交叉波导非线性腔中心由十二根长方形高线性介质杆与一根正方形非线性介质杆在纵、横两个波导方向呈准一维光子晶体排列,中心非线性介质杆与相邻的四根长方形线性介质杆相贴,距离为0,而两两相邻的长方形线性介质杆相距0.2668d,紧贴中心非线性杆且靠近信号输出端的一根矩形线性杆的介电常数与中心非线性杆在弱光条件下的介电常数相等。D触发器单元由一个时钟信号输入端、一个D信号输入端和一个系统输出端组成;时钟控制信号CP通过一个二分支波导的输入端输入,其输出的一端连接非逻辑门02的输入端,另一端连接光子晶体结构单元01的时钟信号输入端11;光子晶体结构单元01的时钟信号输入端11的输入信号与CP同步;非逻辑门02的输出端与D触发器单元03的时钟信号输入端31连接;D触发器单元03的时钟信号输入端31与时钟信号CP同步;所述的非逻辑门设置在时钟信号CP输入端与D触发器单元之间,非逻辑门用于对时钟信号CP进行非逻辑运算,并投射到D触发器单元03的时钟信号输入端31;光子晶体结构单元01的信号输出端14与D触发器单元03的D信号输入端32连接;逻辑输入信号X与光子晶体结构单元01的逻辑信号输入端12连接,即光子晶体结构单元的逻辑信号输入端的输入信号等于逻辑信号X;光子晶体结构单元01以时钟信号CP和逻辑信号X作为输入信号,其输出信号由光 子晶体结构单元01的端口14输出,并投射到D触发器单元03的D信号输入端32;D触发器单元03以时钟信号CP和光子晶体结构单元01的信号输出端14的输出信号作为输入,最终由D触发器单元03的系统信号输出端33输出,D触发器单元03的系统信号输出端33即为本发明的光子晶体全光自与变换逻辑门的系统输出端。
本发明基于图1所示二维光子晶体交叉波导非线性腔所具有的光子带隙特性、准一维光子晶体缺陷态、隧穿效应及光克尔非线性效应,通过时钟信号CP的控制可实现全光逻辑信号的自与变换逻辑功能。首先介绍本发明中光子晶体非线性腔的基本原理:二维光子晶体提供一个具有一定带宽的光子带隙,波长落在该带隙内的光波可在光子晶体内所设计好的光路中传播,因此将器件的工作波长设置为光子带隙中的某一波长;交叉波导中心所设置的准一维光子晶体结构结合中心非线性介质杆的非线性效应提供了一个缺陷态模式,当输入光波满足一定光强时,使得该缺陷态模式偏移至系统的工作频率,结构产生隧穿效应,信号从输出端14输出。
当晶格常数d=1μm,工作波长为2.976μm,参照图1中的01所示的二维光子晶体交叉波导非线性腔,时钟信号输入端11与中间信号输入端12为信号输入端,端口11输入信号A,端口12输入信号B。如图2所示本发明的二维光子晶体交叉波导非线性腔的逻辑输出波形图,当端口11与端口12分别输入如图2所示的波形信号可得出该图下方的逻辑输出波形。根据图2所示的逻辑运算特性可得出图4所示该结构的逻辑运算真值表。图4中C为现态Qn,Y为光子晶体 结构单元01输出端14的信号输出,即次态Qn+1。根据该真值表可得出结构的逻辑表达式:
Y=AB+BC  (1)
Qn+1=AB+BQn  (2)
根据上述二维光子晶体交叉波导非线性腔自身的基本逻辑运算特性,以上一级的逻辑输出作为逻辑输入以实现既定的逻辑功能。
本发明器件的光子晶体结构可以采用(2k+1)×(2k+1)的阵列结构,k为大于等于3的整数。下面结合附图给出的实施例,在实施例中以11×11阵列结构,晶格常数d=1μm为例给出设计和模拟结果。
在式(2)中令A=1有
Qn+1=B  (3)
在式(2)中令A=0有
Qn+1=BQn  (4)
可见,在tn时刻将信号X输入到光子晶体结构单元01的逻辑信号输入端12,即B=X;同时,令11端口的输入信号A=1,则tn时刻的逻辑输入信号X(tn)将被存储在光路中;然后,在tn+1时刻,令11端口的输入信号A=0,逻辑信号输入端12的逻辑输入信号为X(tn+1),则有系统输出为
Qn+1=X(tn+1)X(tn)  (5)
为此,需要在系统中引入一个时钟控制信号CP,当CP=1时,系统存储该时刻的逻辑输入信号X(n);当CP=0时,系统将此时的逻辑输入信号X(n+1)与上一时刻系统的存储信号X(n)做与运算。
通过时钟信号CP控制使其工作如下:
在tn时刻,令CP=1,光子晶体结构单元01的时钟信号输入端11的逻辑输入信号与CP同步,即A=CP=1。此时,逻辑信号输入端12的逻辑输入信号为X(n),由式子(2)可得出此时端口14的输出为
Qn+1=X(n)  (6)
在tn时刻,令CP=0,01光子晶体结构单元01的时钟信号输入端11的逻辑输入信号与CP同步,即A=CP=0。此时,逻辑信号输入端12的逻辑输入信号为X(n+1),由式子(2)可得出此时端口14的输出为
Qn+1=X(n+1)X(n)  (7)
光子晶体结构单元01的输出端口14的输出等于D触发器单元05的D信号输入端32的输入,由式子(6)与式子(7)可得出D信号输入端32的输入信号在CP=1时,D=X(n);CP=0时,D=X(n+1)X(n).
由于D触发器单元03的时钟信号输入端31与非逻辑门02的输出连接,因此D触发器在CP=0时,系统输出跟随输入信号D;CP=1时,系统输出保持上一时刻的输入信号D。由此可得出本发明器件的系统输出端口33的输出在CP=0时,Qn+1=X(n+1)X(n);在下一时刻 CP=1时,系统输出保持上一时刻的输出,即在一个时钟周期内的系统输出为
Qn+1=X(n+1)X(n)  (8)
可见,本发明器件可实现逻辑信号的自与变换逻辑功能。
当器件工作波长为2.976μm,光子晶体结构单元01的晶格常数d为1μm;圆形高折射率线性介质杆15的半径为0.18μm;第一长方形高折射率线性介质杆16的长边为0.613μm,短边为0.162μm;第二长方形高折射率线性介质杆17的尺寸与第一长方形高折射率线性介质杆16的尺寸一致;中心正方形非线性介质杆18的边长为1.5μm,三阶非线性系数为1.33*10-2μm2/V2;两两相邻的长方形线性介质杆相距0.2668μm。在上述尺寸参数下,当信号X(n)如图3所示波形输入,在时钟信号CP控制下,可得出该图下方的系统输出波形图。可见,系统将逻辑输入量X(n+1)与上一时刻的逻辑输入量X(n)作与逻辑运算。即实现了对逻辑信号的自与变换逻辑功能。
结合图3,本发明器件通过缩放,可在不同晶格常数及相应工作波长下实现同样的逻辑功能。
综上可知,在所述非逻辑门和D触发器的配合下,通过时钟信号输入端的时钟信号CP控制即可实现全光逻辑信号的自与变换逻辑门功能。
在集成光路的逻辑信号处理中,可定义一种单一逻辑信号的自卷积运算,而上述逻辑信号的自与逻辑运算即为逻辑信号自卷积运算的 基本运算。本发明实现的逻辑信号自与变换逻辑功能对逻辑变量的自相关变换或自卷积运算的实现起着重要应用。
以上所述本发明在具体实施方式及应用范围均有改进之处,不应当理解为对本发明限制。

Claims (7)

  1. 一种光子晶体全光自与变换逻辑门,其特征在于:它由一个光子晶体结构单元、一个非逻辑门和一个D触发器单元组成;时钟控制信号CP通过一个二分支波导的输入端连接,其两个输出端分别与非逻辑门的输入端和光子晶体结构单元的时钟信号输入端连接;所述非逻辑门的输出端与D触发器单元的时钟信号输入端连接;所述光子晶体结构单元的信号输出端与D触发器单元的D信号输入端连接;逻辑输入信号X与光子晶体结构单元的逻辑信号输入端连接。
  2. 按照权利要求1所述的光子晶体全光自与变换逻辑门,其特征在于:所述光子晶体结构单元为一个二维光子晶体交叉波导非线性腔,它由高折射率介质杆构成二维的光子晶体“十”字交叉波导四端口网络,所述四端口网络的左端、下端、上端、右端分别为时钟信号输入端、逻辑信号输入端、信号输出端、闲置端;通过交叉叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在交叉波导的中部设置中间介质柱,该中间介质柱为非线性材料,所述中间介质柱的横截面为正方形、多边形、圆形或者椭圆形;紧贴中心非线性杆且靠近信号输出端的一根矩形线性杆的介电常数与中心非线性杆在弱光条件下的介电常数相等;所述的准一维光子晶体结构与中间介质柱构成波导缺陷腔。
  3. 按照权利要求1所述的光子晶体全光自与变换逻辑门,其特征在于:所述D触发器单元由一个时钟信号输入端、一个D信号输入端和一个系统输出端组成;所述D信号输入端的输入信号与光子晶体结构单元输出端的输出信号相等。
  4. 按照权利要求2所述的光子晶体全光自与变换逻辑门,其特征在于:所述二维光子晶体为(2k+1)×(2k+1)结构,其中k为大于等于3的正整数。
  5. 按照权利要求2所述的光子晶体全光自与变换逻辑门,其特征在于:所述二维光子晶体的高折射率介质柱的横截面为圆形、椭圆形、三角形或者多边形。
  6. 按照权利要求2所述的光子晶体全光自与变换逻辑门,其特征在于:所述二维光子晶体的背景填充材料为空气或者折射率小于1.4的低折射率介质。
  7. 按照权利要求2所述的光子晶体全光自与变换逻辑门,其特征在于:所述交叉波导中的准一维光子晶体中的介质柱的折射率为3.4或者大于2的值,且所述准一维光子晶体中的介质柱的横截面形状为矩形、多边形、圆形或者椭圆形。
PCT/CN2015/097849 2014-12-19 2015-12-18 光子晶体全光自与变换逻辑门 WO2016095850A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/626,256 US10338312B2 (en) 2014-12-19 2017-06-19 Photonic crystal all-optical self-and-transformation logic gate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410796527.XA CN104483800B (zh) 2014-12-19 2014-12-19 光子晶体全光自与变换逻辑门
CN201410796527.X 2014-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/626,256 Continuation US10338312B2 (en) 2014-12-19 2017-06-19 Photonic crystal all-optical self-and-transformation logic gate

Publications (1)

Publication Number Publication Date
WO2016095850A1 true WO2016095850A1 (zh) 2016-06-23

Family

ID=52758363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097849 WO2016095850A1 (zh) 2014-12-19 2015-12-18 光子晶体全光自与变换逻辑门

Country Status (3)

Country Link
US (1) US10338312B2 (zh)
CN (1) CN104483800B (zh)
WO (1) WO2016095850A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483800B (zh) * 2014-12-19 2021-05-07 深圳大学 光子晶体全光自与变换逻辑门

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033009A1 (en) * 2002-04-25 2004-02-19 Marin Soljacic Optimal bistable switching in non-linear photonic crystals
CN101251701A (zh) * 2008-01-02 2008-08-27 深圳大学 “十”字波导光子晶体光学“或”、“非”、“异或”逻辑门的实现方法
CN102156375A (zh) * 2011-04-13 2011-08-17 清华大学 一种光逻辑门
CN104483800A (zh) * 2014-12-19 2015-04-01 欧阳征标 光子晶体全光自与变换逻辑门

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060062507A1 (en) * 2003-04-23 2006-03-23 Yanik Mehmet F Bistable all optical devices in non-linear photonic crystals
JP2009527020A (ja) * 2006-02-14 2009-07-23 コービーテック,リミティド ライアビリティ カンパニー 非線形素子を使用したすべて光学的な論理ゲート
JP4870706B2 (ja) * 2008-03-26 2012-02-08 日本電信電話株式会社 光双安定素子及びメモリ安定化方法
CN102012600B (zh) * 2010-01-29 2012-11-07 深圳大学 二维光子晶体可控式“与/或”逻辑门
CN104536236B (zh) * 2014-12-19 2021-05-07 深圳大学 光子晶体全光多步延迟与变换逻辑门
CN104483801B (zh) * 2014-12-19 2017-01-11 欧阳征标 光子晶体全光多步延迟自与变换逻辑门
CN104483804B (zh) * 2014-12-19 2017-04-12 欧阳征标 光子晶体全光与变换逻辑门

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033009A1 (en) * 2002-04-25 2004-02-19 Marin Soljacic Optimal bistable switching in non-linear photonic crystals
CN101251701A (zh) * 2008-01-02 2008-08-27 深圳大学 “十”字波导光子晶体光学“或”、“非”、“异或”逻辑门的实现方法
CN102156375A (zh) * 2011-04-13 2011-08-17 清华大学 一种光逻辑门
CN104483800A (zh) * 2014-12-19 2015-04-01 欧阳征标 光子晶体全光自与变换逻辑门

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, QIANG ET AL.: "All-Optical Half Adder Based on Cross Structures in Two-Dimensional Photonic Crystals", OPTICS EXPRESS, vol. 16, no. 23, 10 November 2008 (2008-11-10), pages 18996 - 18997 *

Also Published As

Publication number Publication date
CN104483800B (zh) 2021-05-07
US10338312B2 (en) 2019-07-02
US20170293079A1 (en) 2017-10-12
CN104483800A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2016095840A1 (zh) 光子晶体全光多步延迟与变换逻辑门
US10338454B2 (en) Optical clock generator
WO2016095852A1 (zh) 光子晶体全光多步延迟自与变换逻辑门
WO2016095846A1 (zh) 光子晶体记忆式全光或与逻辑门
US20170351157A1 (en) High-contrast photonic crystal "or," "not" and "xor" logic gate
WO2016095849A1 (zh) 光子晶体全光与变换逻辑门
WO2016095848A1 (zh) 光子晶体全光学d触发器
WO2016095845A1 (zh) 光子晶体全光学抗干扰自锁触发开关
WO2016095850A1 (zh) 光子晶体全光自与变换逻辑门
US10473854B2 (en) High-contrast photonic crystal “and” logic gate
WO2016095851A1 (zh) 光子晶体全光自或变换逻辑门
WO2016095853A1 (zh) 光子晶体全光或变换逻辑门
WO2016095841A1 (zh) 光子晶体全光多步延迟自或变换逻辑门
WO2016095843A1 (zh) 光子晶体全光多步延迟或变换逻辑门

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869357

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15869357

Country of ref document: EP

Kind code of ref document: A1