WO2016095847A1 - 高对比度光子晶体"或"、"非"、"异或"逻辑门 - Google Patents

高对比度光子晶体"或"、"非"、"异或"逻辑门 Download PDF

Info

Publication number
WO2016095847A1
WO2016095847A1 PCT/CN2015/097846 CN2015097846W WO2016095847A1 WO 2016095847 A1 WO2016095847 A1 WO 2016095847A1 CN 2015097846 W CN2015097846 W CN 2015097846W WO 2016095847 A1 WO2016095847 A1 WO 2016095847A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
logic gate
waveguide
port
contrast
Prior art date
Application number
PCT/CN2015/097846
Other languages
English (en)
French (fr)
Inventor
欧阳征标
余铨强
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2016095847A1 publication Critical patent/WO2016095847A1/zh
Priority to US15/626,218 priority Critical patent/US20170351157A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1223Basic optical elements, e.g. light-guiding paths high refractive index type, i.e. high-contrast waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3511Self-focusing or self-trapping of light; Light-induced birefringence; Induced optical Kerr-effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the present invention relates to two-dimensional photonic crystals, nonlinear optics, optical logic gates.
  • a photonic crystal is a material structure in which dielectric materials are periodically arranged in space, and is usually composed of two or more kinds of artificial crystals having materials having different dielectric constants.
  • All-optical logic devices mainly include optical amplifier-based logic devices, nonlinear ring mirror logic devices, Sagnac interferometric logic devices, ring cavity logic devices, multimode interference logic devices, coupled optical waveguide logic devices, and photoisomerization.
  • Logic devices, polarization switching optical logic devices, transmission grating optical logic devices, etc. These optical logic devices have a large common disadvantage for the development of large-scale integrated optical paths.
  • Quantum optical logic devices, nanomaterial optical logic devices, and photonic crystal optical logic devices have also been developed. These logic devices meet the size requirements of large-scale photonic integrated optical paths, but for modern fabrication processes, quantum optical logic devices Nanomaterial optical logic devices have great difficulties in fabrication, while photonic crystal optical logic devices have a competitive advantage in the fabrication process.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a high-contrast photonic crystal "or”, “non”, “exclusive OR” with compact structure, high logic output and high contrast and easy integration with other photonic crystal logic devices.
  • Logic gate
  • the present invention adopts the following technical solutions:
  • the high-contrast photonic crystal "or”, “non”, “exclusive OR” logic gate of the present invention is a six-port two-dimensional photonic crystal comprising a nonlinear cavity unit and a "ten" word waveguide logic gate unit;
  • the high-contrast photonic crystal OR gate is composed of a reference light input terminal, two idle light output terminals, two system signal input terminals, and a system signal output terminal;
  • the high-contrast photonic crystal "non-” logic The gate is composed of two reference light input terminals, two idle light output terminals, a system signal input terminal and a system signal output terminal;
  • the high-contrast photonic crystal "exclusive OR” logic gate is composed of a reference light input terminal, two An idle light output end, two system signal input ends and a system signal output end;
  • the "ten" word waveguide logic gate unit is provided with different input or output ports;
  • the nonlinear cavity unit and the The "ten" word waveguide logic gate unit is coupled.
  • the nonlinear cavity unit is a two-dimensional photonic crystal cross-waveguide nonlinear cavity.
  • the nonlinear cavity unit is composed of a reference light input terminal, an intermediate signal input terminal, a signal output terminal and an idle port.
  • the intermediate signal input end of the nonlinear cavity unit is respectively connected to the output end of the "NO” gate or the exclusive OR gate of the "Ten” word logic gate unit.
  • An intermediate signal input of the non-linear cavity unit is coupled to an output of an OR gate of the "Ten” word logic gate unit.
  • the nonlinear cavity unit is composed of a high refractive index linear dielectric column to form a two-dimensional photonic crystal "ten" cross-waveguide four-port network, and the left end of the four-port network is a reference light input end, and the lower end is an intermediate signal input end.
  • the upper end is the system signal output end, and the right end is the idle port;
  • two mutually orthogonal quasi-one-dimensional photonic crystal structures are placed along the two waveguide directions through the center of the cross waveguide;
  • a dielectric column is disposed in the middle of the cross waveguide, and the dielectric column is a nonlinear material.
  • the cross section of the dielectric column is square, polygonal, circular or elliptical; the dielectric constant of a rectangular linear rod close to the central nonlinear rod and close to the signal output end and the central nonlinear rod under low light conditions
  • the dielectric constant is equal; the quasi-one-dimensional photonic crystal structure and the nonlinear dielectric column constitute a waveguide defect cavity.
  • the refractive index of the dielectric column in the quasi-one-dimensional photonic crystal in the crossed waveguide of the nonlinear cavity unit is 3.4 or greater, and the cross-sectional shape of the dielectric column in the quasi-one-dimensional photonic crystal is rectangular.
  • the "ten” word waveguide logic gate unit is a “ten” word waveguide photonic crystal "or”, “non”, “exclusive OR” logic gate; the “ten” word waveguide logic gate unit has two inputs, An idle port and a signal output.
  • the "ten" word logic gate unit is a four-port waveguide network photonic crystal, and the right end and the lower end of the four port network are respectively a reference light input end and a signal light input end or two signal input ends.
  • the left end and the upper end are respectively an idle port or a signal output end; and a cross-center of the four-port network is provided with a circular dielectric column.
  • the right end and the lower end of the four-port network are respectively a reference light input end and a signal light input end or two signal input ends, and the left end and the upper end are respectively idle ports or signal output ends;
  • the high refractive index linear medium column of the two-dimensional photonic crystal has a circular, triangular, polygonal or elliptical cross section.
  • the background filling material of the two-dimensional photonic crystal is air or a low refractive index medium having a refractive index lower than 1.4.
  • the two-dimensional photonic crystal is an array structure of (2m+1) ⁇ (2n+1), m is an integer greater than or equal to 5, and n is an integer greater than or equal to 8.
  • the photonic crystal logic device of the present invention can be widely applied to optical communication bands by scaling the structure. Compared with the prior art, it has the following positive effects:
  • Photonic crystal logic devices can directly perform all-optical "AND”, “OR”, “NO” and other logic functions, and are the core devices for all-optical calculation.
  • the present invention can realize not only high-contrast photonic crystal "or", “non-”, “exclusive OR” logic gate functions, but also high and low logic output contrast through the amplitude conversion characteristics of the nonlinear cavity.
  • FIG. 1 is a structural view of a "non" gate and an exclusive OR gate of a high contrast photonic crystal of the present invention.
  • Nonlinear cavity unit 01 "Ten” word waveguide logic gate unit 02 High contrast photonic crystal "Non” gate reference light input 1 Signal input 2 Idle light output port 3 Reference light input terminal 4 System signal output terminal 5 idle Light output port 6 High contrast photonic crystal XOR signal input 1 Signal input 2 Idle light output port 3 Reference light input 4 System signal output 5 Idle light output port 6 First rectangular high refractive index linear medium Column 11 second rectangular high refractive index linear medium column 12 square nonlinear medium column 13 circular high refractive index linear medium column 14 circular linear medium column 15
  • FIG. 2 is a structural view of an "or" gate of a high contrast photonic crystal of the present invention.
  • Nonlinear cavity unit 01 "Ten” word waveguide logic gate unit 02 signal input terminal 1 signal input terminal 2 idle light output port 3 reference light input terminal 4 system signal output terminal 5 idle light output port 6 idle light output port 7
  • First rectangular high refractive index linear medium column 11 second rectangular high refractive index linear medium column 12 square nonlinear medium column 13 circular high refractive index linear medium column 14 circular linear medium column 15
  • FIG. 3 is a two-element structural diagram of the "or”, “non-”, and exclusive-OR logic gates of the high-contrast photonic crystal of the present invention.
  • FIG. 4 is a basic logic function waveform diagram of the output of the signal output terminal 5 of the nonlinear cavity unit 01 shown in FIG. 3(b).
  • FIG. 5 is a waveform diagram of a high-contrast "non-" logic operation function realized by the "non-" gate of the high-contrast photonic crystal shown in FIG. 1.
  • FIG. 6 is a waveform diagram of a high-contrast XOR logic operation realized by the exclusive-OR gate of the high-contrast photonic crystal shown in FIG. 1.
  • FIG. 7 is a waveform diagram of a high contrast OR logic function implemented by the OR gate of the high contrast photonic crystal shown in FIG. 2.
  • FIG. 8 is a table showing the relationship between the input and output of the "non” logic gate of the "ten” word logic gate unit shown in FIG. 3(a).
  • Fig. 9 is a table showing the relationship of the exclusive OR logic gate input and output of the "ten" word logic gate unit shown in Fig. 3(a).
  • Figure 10 is a diagram showing the OR logic input/output relationship of the "ten" word logic gate unit shown in Figure 3(a).
  • Figure 11 is a logical function truth table of the nonlinear cavity unit shown in Figure 3(b).
  • the high-contrast photonic crystal "or”, “non”, “exclusive OR” logic gate of the present invention is a six-port two-dimensional photonic crystal comprising a nonlinear cavity unit 01 and a "ten" word Waveguide logic gate unit 02; high contrast photonic crystal "non”, exclusive OR logic gate shown in Figure 1, high contrast photonic crystal “non” logic gate consists of two reference light inputs, two idle light outputs, A system signal input terminal and a system signal output terminal; the high-contrast photonic crystal "exclusive OR” logic gate is composed of a reference light input terminal, two idle light output terminals, two system signal input terminals and a system signal output terminal.
  • the high-contrast photonic crystal OR gate shown in Figure 2 consists of a reference light input, two idle light outputs, two system signal inputs, and a system signal output.
  • the "ten” word waveguide logic gate unit 02 is a "ten” word waveguide photonic crystal optical "or”, “non”, “exclusive OR” logic gate, as shown in Fig. 3(a), which can perform logical operations on the input signal.
  • the "or”, “non”, and “exclusive OR” logic functions can be realized by setting different input or output ports;
  • the "ten” word waveguide logic gate unit is a four-port waveguide network photonic crystal, "ten” word
  • the waveguide logic gate unit is composed of two input ends, an idle port and a signal output end; the right end and the lower end of the four-port network are respectively a reference light input end and a signal light input end or two signal input ends, and the left end and the upper end are respectively An idle port or a signal output end;
  • a circular dielectric column is arranged near the center of the "ten" cross-waveguide of the four-port network, and the center of the "ten” cross-waveguide symmetry center is the origin (0, 0), then the center circular medium The
  • port 1 and port 2 are used as signal input terminals
  • port 7 is used as a signal output port
  • port 3 is an idle port.
  • the unit implements an exclusive-OR logic operation function of two input signals. As shown in Figure 9.
  • the unit implements the OR logic function of the two input signals, such as Figure 10 shows.
  • the nonlinear cavity unit 01 is a two-dimensional photonic crystal cross-waveguide nonlinear cavity as shown in Fig. 3(b). According to its own logic operation characteristics, the logic output of the above stage is used as a logic input to realize a predetermined logic function.
  • the nonlinear cavity unit 01 is composed of a reference light input end, an intermediate signal input end, a signal output end and an idle port; the nonlinear cavity unit 01 is composed of a high refractive index linear dielectric column to form a two-dimensional photonic crystal "ten" word.
  • Cross-waveguide four-port network the left end of the four-port network is the reference light input end, the lower end is the intermediate signal input end, the upper end is the system signal output end, and the right end is the idle port; in the figure, the two-dimensional photonic crystal array lattice constant is d, The number of arrays is 11 ⁇ 11; the nonlinear cavity unit 01 as shown in FIG.
  • the left end of the four-port network is The reference optical input end and the lower end are intermediate signal input ends, the upper end is a system signal output end, and the right end is an idle port; two mutually orthogonal quasi-one-dimensional photonic crystal structures are placed along the two waveguide directions through the center of the cross waveguide; in the middle of the cross waveguide Provided with a dielectric column, the dielectric column is a non-linear material, the cross section of the dielectric column is square, polygonal, circular or elliptical; Heart and nonlinear rod The dielectric constant of a rectangular linear rod near the signal output end is equal to the dielectric constant of the central nonlinear rod under low light conditions; the quasi-one-dimensional photonic crystal structure and the nonlinear dielectric column constitute a waveguide defect cavity; two-dimensional photons The center of the nonlinear cavity of the crystal cross-waveguide
  • the two-dimensional photonic crystals are aligned in the longitudinal and transverse directions.
  • the square nonlinear dielectric column is adjacent to each other.
  • the four rectangular linear dielectric columns are attached with a distance of 0, and the adjacent rectangular linear dielectric columns are separated by 0.2668d;
  • the first rectangular high refractive index linear dielectric column 11 of the nonlinear cavity unit 01 has a refractive index of 3.4.
  • the second rectangular high refractive index linear dielectric column 12 has a dielectric constant of 7.9, and its dielectric constant is consistent with the dielectric constant of the nonlinear dielectric column under low light conditions;
  • the central square nonlinear dielectric column 13 of the nonlinear cavity unit 01 is used.
  • Kerr-type nonlinear material the dielectric constant under low light conditions is 7.9;
  • the circular high refractive index linear dielectric column 14 is made of silicon (Si) material and has a refractive index of 3.4.
  • the invention is based on the photonic band gap characteristic, the quasi-one-dimensional photonic crystal defect state, the tunneling effect and the optical Kerr nonlinear effect of the photonic crystal nonlinear cavity unit 01 shown in Fig. 3(b), combined with Fig. 3(a)
  • the illustrated "Ten"-waveguide logic gate unit 02 has logic operation features that enable high-contrast photonic crystal "or", “non”, “exclusive OR” logic gate functions.
  • the basic principle of the photonic crystal nonlinear cavity unit 01 in the present invention the two-dimensional photonic crystal shown in FIG. 3(b) provides a photonic band gap having a certain bandwidth, and the wavelength of light falling in the band gap can be in the photonic crystal.
  • the optical path is designed to propagate in the optical path, so the operating wavelength of the device is set to a certain wavelength in the photonic band gap; the quasi-one-dimensional photonic crystal structure provided at the center of the cross-waveguide combined with the nonlinear effect of the square nonlinear dielectric column provides One deficiency In the trap mode, when the input light wave satisfies a certain light intensity, the defect state mode is shifted to the operating frequency of the system, the structure generates a tunneling effect, and the signal is output from the output terminal 5.
  • the port 4 inputs the signal A
  • the port 8 inputs the signal B.
  • 4 is a logic output waveform diagram of the output of the signal output terminal 5 of the two-dimensional photonic crystal nonlinear cavity unit 01 of the present invention.
  • the port 4 and the port 8 respectively input the signals of the signal A and the signal B as shown in FIG. Signal, you can get the logic output waveform below the figure.
  • the logical operation truth table of the structure shown in FIG. 11 can be obtained.
  • C is the current state Q n
  • Y is the signal output of the output terminal 5 of the nonlinear cavity unit, that is, the secondary state Q n+1 .
  • the "ten" word logic gate unit shown in Fig. 3(a) is coupled as a “non” logic gate structure to the nonlinear cavity unit shown in Fig. 3(b), as shown in Fig. 3(a).
  • the output terminal 7 of the ten-word waveguide "non-" logic gate is connected to the input terminal 8 (intermediate signal input terminal) of the nonlinear cavity unit shown in FIG. 3(b), that is, the output signal of the "non-" logic gate is regarded as non-
  • the input signal of the input terminal 8 of the linear cavity unit is as shown in FIG.
  • FIG. 1 can realize the exclusive-OR logic operation function of two input signals.
  • formula (3) with formula (4), the input with the same structure as shown in Fig. 1 can be obtained, and the "non-" logic operation function and the exclusive-OR logic operation function can be realized respectively.
  • FIG. 3(a) When the "ten" word logic gate unit shown in FIG. 3(a) is coupled as an OR logic gate structure to the nonlinear cavity unit shown in FIG. 3(b), FIG. 3(a)
  • the output terminal 3 of the illustrated "ten" word waveguide OR logic gate is connected to the input terminal 8 (intermediate signal input terminal) of the nonlinear cavity unit shown in Fig. 3(b), that is, the OR logic gate
  • the output signal serves as the input signal to the input terminal 8 of the nonlinear cavity unit, as shown in FIG.
  • FIG. 3(a) When the "ten" word logic gate unit shown in FIG. 3(a) is coupled as an OR logic gate structure to the nonlinear cavity unit shown in FIG. 3(b), FIG. 3(a)
  • the output terminal 3 of the illustrated "ten” word waveguide OR logic gate is connected to the input terminal 8 (intermediate signal input terminal) of the nonlinear cavity unit shown in Fig. 3(b), that is, the OR logic gate
  • the output signal serves as the
  • Fig. 2 can realize the OR logic operation function of two input signals.
  • the photonic crystal structure of the device of the present invention adopts an array structure of (2m+1) ⁇ (2n+1), m is an integer greater than or equal to 5, and n is an integer greater than or equal to 8.
  • m is an integer greater than or equal to 5
  • n is an integer greater than or equal to 8.
  • the lattice constant d 1 ⁇ m, the operating wavelength is 2.976 ⁇ m, the radius of the circular high refractive index linear dielectric column 14 is 0.18 ⁇ m; the long side of the first rectangular high refractive index linear dielectric column 11 is 0.613 ⁇ m.
  • the short side is 0.162 ⁇ m; the size of the second rectangular high refractive index linear dielectric column 12 is the same as the size of the first rectangular high refractive index linear medium column 11; the square nonlinear dielectric column 13 has a side length of 1.5 ⁇ m, and the third order is non-
  • the linear coefficient is 1.33*10 -2 ⁇ m 2 /V 2 ; the adjacent rectangular linear dielectric columns are separated by 0.2668 ⁇ m; the circular nonlinear dielectric column 15 has a radius of 0.292 ⁇ m.
  • the contrast photonic crystal "non" logic operation output signal, as shown in Output 1 of Figure 5, has a high and low logic contrast of greater than 10 dB.
  • the lattice constant d 0.5208 ⁇ m
  • the operating wavelength is 1.55 ⁇ m
  • the radius of the circular high refractive index linear dielectric column 14 is 0.0937 ⁇ m
  • the length of the first rectangular high refractive index linear dielectric column 11 The side is 0.3193 ⁇ m and the short side is 0.0844 ⁇ m
  • the size of the second rectangular high refractive index linear dielectric column 12 is identical to the size of the first rectangular high refractive index linear dielectric column 11
  • the side length of the square nonlinear dielectric column 13 is 0.7812 ⁇ m
  • the third-order nonlinear coefficient is 1.33*10 -2 ⁇ m 2 /V 2 ; the adjacent rectangular linear dielectric columns are separated by 0.1389 ⁇ m; the circular nonlinear dielectric column 15 has a radius of 0.0937 ⁇ m.
  • the output signal, as shown in Output 2 of Figure 5, has a high and low logic contrast of greater than 21 dB.
  • the structure shown in FIG. 1 can realize the high-contrast photonic crystal "non-" logic operation function, and can adjust the working wavelength to the optical communication band by scaling.
  • the lattice constant d 1 ⁇ m, the operating wavelength is 2.976 ⁇ m, the radius of the circular high refractive index linear dielectric column 14 is 0.18 ⁇ m; the long side of the first rectangular high refractive index linear dielectric column 11 is 0.613 ⁇ m.
  • the short side is 0.162 ⁇ m; the size of the second rectangular high refractive index linear dielectric column 12 is the same as the size of the first rectangular high refractive index linear medium column 11; the square nonlinear dielectric column 13 has a side length of 1.5 ⁇ m, and the third order is non-
  • the linear coefficient is 1.33*10 -2 ⁇ m 2 /V 2 ; the adjacent rectangular linear dielectric columns are separated by 0.2668 ⁇ m; the circular nonlinear dielectric column 15 has a radius of 0.292 ⁇ m.
  • Output 1 of Figure 6 the high and low logic contrast of the output signal is greater than 19dB.
  • the lattice constant d 0.5208 ⁇ m
  • the operating wavelength is 1.55 ⁇ m
  • the radius of the circular high refractive index linear dielectric column 14 is 0.0937 ⁇ m
  • the length of the first rectangular high refractive index linear dielectric column 11 The side is 0.3193 ⁇ m and the short side is 0.0844 ⁇ m
  • the size of the second rectangular high refractive index linear dielectric column 12 is identical to the size of the first rectangular high refractive index linear dielectric column 11
  • the side length of the square nonlinear dielectric column 13 is 0.7812 ⁇ m
  • the third-order nonlinear coefficient is 1.33*10 -2 ⁇ m 2 /V 2 ; the adjacent rectangular linear dielectric columns are separated by 0.1389 ⁇ m; the circular nonlinear dielectric column 15 has a radius of 0.0937 ⁇ m.
  • the high and low logic contrast of the output signal is greater than 23dB.
  • the structure shown in FIG. 1 can realize the high-contrast photonic crystal "exclusive OR" logic operation function, and can adjust the working wavelength to the optical communication band by scaling.
  • the structure shown in FIG. 1 can realize a high-contrast photonic crystal "non” gate and a high-contrast photonic crystal "exclusive OR” gate by different settings on the input end.
  • the lattice constant d 1 ⁇ m, the operating wavelength is 2.976 ⁇ m, the radius of the circular high refractive index linear dielectric column 14 is 0.18 ⁇ m; the long side of the first rectangular high refractive index linear dielectric column 11 is 0.613 ⁇ m.
  • the short side is 0.162 ⁇ m; the size of the second rectangular high refractive index linear dielectric column 12 is the same as the size of the first rectangular high refractive index linear medium column 11; the square nonlinear dielectric column 13 has a side length of 1.5 ⁇ m, and the third order is non-
  • the linear coefficient is 1.33*10 -2 ⁇ m 2 /V 2 ; the adjacent rectangular linear dielectric columns are separated by 0.2668 ⁇ m; the circular nonlinear dielectric column 15 has a radius of 0.292 ⁇ m.
  • the lattice constant d 0.5208 ⁇ m
  • the operating wavelength is 1.55 ⁇ m
  • the radius of the circular high refractive index linear dielectric column 14 is 0.0937 ⁇ m
  • the length of the first rectangular high refractive index linear dielectric column 11 The side is 0.3193 ⁇ m and the short side is 0.0844 ⁇ m
  • the size of the second rectangular high refractive index linear dielectric column 12 is identical to the size of the first rectangular high refractive index linear dielectric column 11
  • the side length of the square nonlinear dielectric column 13 is 0.7812 ⁇ m
  • the third-order nonlinear coefficient is 1.33*10 -2 ⁇ m 2 /V 2 ; the adjacent rectangular linear dielectric columns are separated by 0.1389 ⁇ m; the circular nonlinear dielectric column 15 has a radius of 0.0937 ⁇ m.
  • the OR logic output signal, as shown in Output 2 of Figure 7, has a high and low logic contrast of greater than 17 dB.
  • the structure shown in FIG. 2 can realize a high-contrast photonic crystal OR logic operation function, and can adjust the working wavelength to the optical communication band by scaling.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种高对比度光子晶体"或"、"非"、"异或"逻辑门为一种六端口的二维光子晶体,包括一个非线性腔单元(01)和一个十字波导逻辑门单元(02)。高对比度光子晶体"或"逻辑门由一个参考光输入端(4)、两个闲置光输出端(6、7)、两个系统信号输入端(1、2)和一个系统信号输出端(5)组成。高对比度光子晶体"非"逻辑门由两个参考光输入端(1、4)、两个闲置光输出端(3、6)、一个系统信号输入端(2)和一个系统信号输出端(5)组成。高对比度光子晶体"异或"逻辑门由一个参考光输入端(4)、两个闲置光输出端(3、6)、两个系统信号输入端(1、2)和一个系统信号输出端(5)组成。十字波导逻辑门单元(02)设置有不同的输入或输出端口。非线性腔单元(01)与十字波导逻辑门单元(02)耦合连接。该光子晶体结构易与其它光子晶体器件实现集成。

Description

高对比度光子晶体“或”、“非”、“异或”逻辑门 技术领域
本发明涉及二维光子晶体、非线性光学、光学逻辑门。
背景技术
1987年,美国Bell实验室的E.Yablonovitch在讨论如何抑制自发辐射和Princeton大学的S.John在讨论光子区域各自独立地提出了光子晶体(Photonic Crystal)的概念。光子晶体是一种介电材料在空间中呈周期性排列的物质结构,通常由两种或两种以上具有不同介电常数材料构成的人工晶体。
随着光子晶体的提出和深入研究,人们可以更灵活、更有效地控制光子在光子晶体材料中的运动。在与传统半导体工艺和集成电路技术相结合下,人们通过设计与制造光子晶体及其器件不断的往全光处理飞速迈进,光子晶体成为了光子集成的突破口。1999年12月,美国权威杂志《科学》将光子晶体评为1999年十大科学进展之一,也成为了当今科学研究领域的一个研究热点。
全光逻辑器件主要包括基于光放大器的逻辑器件、非线性环形镜逻辑器件、萨格纳克干涉式逻辑器件、环形腔逻辑器件、多模干涉逻辑器件、耦合光波导逻辑器件、光致异构逻辑器件、偏振开关光逻辑器件、传输光栅光逻辑器件等。这些光逻辑器件对于发展大规模集成光路来说都有体积大的共同缺点。随着近年来科学技术的提高,人们 还发展研究出了量子光逻辑器件、纳米材料光逻辑器件和光子晶体光逻辑器件,这些逻辑器件都符合大规模光子集成光路的尺寸要求,但对于现代的制作工艺来说,量子光逻辑器件与纳米材料光逻辑器件在制作上存在很大的困难,而光子晶体光逻辑器件则在制作工艺上具有竞争优势。
近年来,光子晶体逻辑器件是一个备受瞩目的研究热点,它极有可能在不久将来取代目前正广泛使用的电子逻辑器件。
发明内容
本发明的目的是克服现有技术中的不足,提供一种结构紧凑、高低逻辑输出对比度高、易与其它光子晶体逻辑器件集成的高对比度光子晶体“或”、“非”、“异或”逻辑门。
为了解决上述存在的技术问题,本发明采用下列技术方案:
本发明的高对比度光子晶体“或”、“非”、“异或”逻辑门为一种六端口的二维光子晶体,包括一个非线性腔单元和一个“十”字波导逻辑门单元;所述的高对比度光子晶体“或”逻辑门由一个参考光输入端、两个闲置光输出端、两个系统信号输入端和一个系统信号输出端组成;所述的高对比度光子晶体“非”逻辑门由两个参考光输入端、两个闲置光输出端、一个系统信号输入端和一个系统信号输出端组成;所述的高对比度光子晶体“异或”逻辑门由一个参考光输入端、两个闲置光输出端、两个系统信号输入端和一个系统信号输出端组成;所述的“十”字波导逻辑门单元设置有不同的输入或输出端口;所述的非线性腔单元与所述的“十”字波导逻辑门单元耦合连接。
所述的非线性腔单元为一个二维光子晶体交叉波导非线性腔。
所述的非线性腔单元由一个参考光输入端、一个中间信号输入端、一个信号输出端和一个闲置端口组成。
所述非线性腔单元的中间信号输入端分别与所述“十”字波导逻辑门单元的“非”门、“异或”门的输出端相连接。
所述非线性腔单元的中间信号输入端与所述“十”字波导逻辑门单元的“或”门的输出端相连接。
所述的非线性腔单元由高折射率线性介质柱构成二维的光子晶体“十”字交叉波导四端口网络,所述四端口网络的左端为参考光输入端、下端为中间信号输入端、上端为系统信号输出端、右端为闲置端口;通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在交叉波导的中部设置有介质柱,该介质柱为非线性材料,所述介质柱的横截面为正方形、多边形、圆形或者椭圆形;紧贴中心非线性杆且靠近信号输出端的一根矩形线性杆的介电常数与中心非线性杆在弱光条件下的介电常数相等;所述准一维光子晶体结构与非线性介质柱构成波导缺陷腔。
所述非线性腔单元的交叉波导中的准一维光子晶体中的介质柱的折射率为3.4或者大于2的值,且所述准一维光子晶体中的介质柱的横截面形状为矩形。
所述的“十”字波导逻辑门单元为一个“十”字波导光子晶体“或”、“非”、“异或”逻辑门;该“十”字波导逻辑门单元由两个输入端、一个闲置端口和一个信号输出端组成。
所述的“十”字波导逻辑门单元为一个四端口的波导网络的光子晶体,所述四端口网络的右端、下端分别为一个参考光输入端和一个信号光输入端或两个信号输入端,左端、上端分别为闲置端口或信号输出端;所述四端口网络的交叉中心设置有一根圆形介质柱。所述四端口网络的右端、下端分别为一个参考光输入端和一个信号光输入端或两个信号输入端,左端、上端分别为闲置端口或信号输出端;
所述二维光子晶体的高折射率线性介质柱的横截面为圆形、三角形、多边形或者椭圆形。
所述二维光子晶体的背景填充材料为空气或者折射率低于1.4的低折射率介质。
所述的二维光子晶体为(2m+1)×(2n+1)的阵列结构,m为大于等于5的整数,n为大于等于8的整数。
本发明的光子晶体逻辑器件通过对结构的缩放,可广泛应用于光通信波段。它与现有技术相比,有如下积极效果:
1.结构紧凑、易与其它光子晶体逻辑器件进行集成。
2.光子晶体逻辑器件可以直接进行全光的“与”、“或”、“非”等逻辑功能,是实现全光计算的核心器件。
3.本发明通过非线性腔的幅值变换特性不仅能够实现高对比度的光子晶体“或”、“非”、“异或”逻辑门功能,而且高、低逻辑输出对比度高。
4.抗干扰能力强、运算速度快。
附图说明
图1为本发明的高对比度光子晶体“非”门、“异或”门的结构图。
图中:非线性腔单元01“十”字波导逻辑门单元02高对比度光子晶体“非”门的参考光输入端1信号输入2闲置光输出端口3参考光输入端4系统信号输出端5闲置光输出端口6高对比度光子晶体“异或”门的信号输入端1信号输入端2闲置光输出端口3参考光输入端4系统信号输出端5闲置光输出端口6第一长方形高折射率线性介质柱11第二长方形高折射率线性介质柱12正方形非线性介质柱13圆形高折射率线性介质柱14圆形线性介质柱15
图2为本发明的高对比度光子晶体“或”门的结构图。
图中:非线性腔单元01“十”字波导逻辑门单元02信号输入端1信号输入端2闲置光输出端口3参考光输入端4系统信号输出端5闲置光输出端口6闲置光输出端口7第一长方形高折射率线性介质柱11第二长方形高折射率线性介质柱12正方形非线性介质柱13圆形高折射率线性介质柱14圆形线性介质柱15
图3为本发明的高对比度光子晶体“或”、“非”、“异或”逻辑门的两个单元结构图。
图(a):“十”字波导逻辑门单元02“非”逻辑门的参考光输入端1信号光输入端2闲置端口3信号输出端7“十”字波导逻辑门单元02“异或”逻辑门的信号输入端1信号输入端2闲置端口3信 号输出端7“十”字波导逻辑门单元02“或”逻辑门的信号输入端1信号输入端2信号输出端3闲置端口7
图(b):非线性腔单元01的参考光输入端4中间信号输入端8信号输出端5闲置光输出端6
图4为图3(b)所示非线性腔单元01的信号输出端5输出的基本逻辑功能波形图。
图5为图1所示的高对比度光子晶体“非”门实现的高对比度“非”逻辑运算功能波形图。
图6为图1所示的高对比度光子晶体“异或”门实现的高对比度“异或”逻辑运算功能波形图。
图7为图2所示的高对比度光子晶体“或”门实现的高对比度“或”逻辑运算功能波形图。
图8为图3(a)所示“十”字波导逻辑门单元的“非”逻辑门输入输出关系表。
图9为图3(a)所示“十”字波导逻辑门单元的“异或”逻辑门输入输出关系表。
图10为图3(a)所示“十”字波导逻辑门单元的“或”逻辑门输入输出关系表。
图11为图3(b)所示的非线性腔单元的逻辑功能真值表。
具体实施方式
本发明的高对比度光子晶体“或”、“非”、“异或”逻辑门为一种六端口的二维光子晶体,包括一个非线性腔单元01和一个“十”字 波导逻辑门单元02;图1所示的高对比度光子晶体“非”、“异或”逻辑门,高对比度光子晶体“非”逻辑门由两个参考光输入端、两个闲置光输出端、一个系统信号输入端和一个系统信号输出端组成;高对比度光子晶体“异或”逻辑门由一个参考光输入端、两个闲置光输出端、两个系统信号输入端和一个系统信号输出端组成;图2所示的高对比度光子晶体“或”逻辑门由一个参考光输入端、两个闲置光输出端、两个系统信号输入端和一个系统信号输出端组成。
“十”字波导逻辑门单元02如图3(a)所示,为一个“十”字波导光子晶体光学“或”、“非”、“异或”逻辑门,可对输入信号进行逻辑运算,通过设置不同的输入或者输出端口能分别实现“或”、“非”、“异或”逻辑功能;“十”字波导逻辑门单元为一个四端口的波导网络的光子晶体,“十”字波导逻辑门单元由两个输入端、一个闲置端口和一个信号输出端构成;四端口网络的右端、下端分别为参考光输入端和信号光输入端或者两个信号输入端,左端、上端分别为闲置端口或者信号输出端;四端口网络的“十”字交叉波导中心附近设置了一根圆形介质柱,设“十”字交叉波导对称中心为原点(0,0),则中心圆形介质柱圆心位置为(-0.188*d,-0.188*d),半径为0.292*d。
如图3(a)所示,以端口1作为参考光输入端,输入参考光E(E=P0),端口2作为信号光输入端,端口7作为信号输出端,端口3为闲置端口,则该单元实现输入信号的“非”逻辑运算功能,如图8所示。
如图3(a)所示,以端口1及端口2作为信号输入端,端口7作为信号输出端,端口3为闲置端口,则该单元实现两个输入信号的“异或”逻辑运算功能,如图9所示。
如图3(a)所示,以端口1及端口2作为信号输入端,端口3作为信号输出端,端口7为闲置端口,则该单元实现两个输入信号的“或”逻辑运算功能,如图10所示。
可见,图3(a)所示的“十”字波导逻辑门单元实现逻辑输入信号的“非”、“异或”、“或”逻辑运算功能。
非线性腔单元01如图3(b)所示,为一个二维光子晶体交叉波导非线性腔,根据其自身的逻辑运算特性,以上一级的逻辑输出作为逻辑输入以实现既定的逻辑功能。非线性腔单元01由一个参考光输入端、一个中间信号输入端、一个信号输出端和一个闲置端口构成;非线性腔单元01由高折射率线性介质柱构成二维的光子晶体“十”字交叉波导四端口网络,四端口网络的左端为参考光输入端、下端为中间信号输入端、上端为系统信号输出端、右端为闲置端口;图中二维光子晶体列阵晶格常数为d,阵列数为11×11;如图1中所示的非线性腔单元01由高折射率线性介质柱构成二维的光子晶体“十”字交叉波导四端口网络,所述四端口网络的左端为参考光输入端、下端为中间信号输入端、上端为系统信号输出端、右端为闲置端口;通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在交叉波导的中部设置有介质柱,该介质柱为非线性材料,所述介质柱的横截面为正方形、多边形、圆形或者椭圆形;紧贴中心非线性杆且 靠近信号输出端的一根矩形线性杆的介电常数与中心非线性杆在弱光条件下的介电常数相等;所述准一维光子晶体结构与非线性介质柱构成波导缺陷腔;二维光子晶体交叉波导非线性腔中心由十二根长方形高折射率线性介质柱与一根正方形非线性介质柱在纵、横两个波导方向呈准一维光子晶体排列,正方形非线性介质柱与相邻的四根长方形线性介质柱相贴,距离为0,而两两相邻的长方形线性介质柱相距0.2668d;非线性腔单元01的第一长方形高折射率线性介质柱11的折射率为3.4,第二长方形高折射率线性介质柱12的介电常数为7.9,其介电常数与非线性介质柱弱光条件下的介电常数一致;非线性腔单元01的中心正方形非线性介质柱13采用克尔型非线性材料,,弱光条件下的介电常数为7.9;圆形高折射率线性介质柱14采用硅(Si)材料,折射率为3.4。
本发明基于图3(b)所示光子晶体非线性腔单元01所具有的光子带隙特性、准一维光子晶体缺陷态、隧穿效应及光克尔非线性效应,结合图3(a)所示的“十”字波导逻辑门单元02所具有的逻辑运算特性,实现高对比度的光子晶体“或”、“非”、“异或”逻辑门功能。
本发明中光子晶体非线性腔单元01的基本原理:如图3(b)所示的二维光子晶体提供一个具有一定带宽的光子带隙,波长落在该带隙内的光波可在光子晶体内所设计好的光路中传播,因此将器件的工作波长设置为光子带隙中的某一波长;交叉波导中心所设置的准一维光子晶体结构结合正方形非线性介质柱的非线性效应提供了一个缺 陷态模式,当输入光波满足一定光强时,使得该缺陷态模式偏移至系统的工作频率,结构产生隧穿效应,信号从输出端5输出。
当晶格常数d=1μm,工作波长为2.976μm,参照图3(b)所示的二维光子晶体交叉波导非线性腔单元01,端口4输入信号A,端口8输入信号B。如图4所示为本发明的二维光子晶体非线性腔单元01的信号输出端5输出的逻辑输出波形图,当端口4与端口8分别输入如图4所示的信号A与信号B波形信号,可得到该图下方的逻辑输出波形。根据图4所示的逻辑运算特性可得到图11所示该结构的逻辑运算真值表。图11中C为现态Qn,Y为非线性腔单元输出端5的信号输出,即次态Qn+1。根据该真值表可得到非线性腔单元的逻辑表达式:
Y=AB+BC  (1)
Qn+1=AB+BQn  (2)
图3(a)所示的“十”字波导逻辑门单元作为“非”逻辑门结构与图3(b)所示的非线性腔单元进行耦合连接时,图3(a)所示的“十”字波导“非”逻辑门的输出端7与图3(b)所示的非线性腔单元的输入端8(中间信号输入端)相连接,即“非”逻辑门的输出信号作为非线性腔单元输入端8的输入信号,如图1所示。图1中,当端口1与端口4分别输入参考光E1与E2(E1=E2=1),端口2输入信号S1,则根据“十”字波导逻辑门单元02的“非”逻辑门的逻 辑运算特性和非线性腔单元01的逻辑表达式(2),可得到图1所示结构的输出端5的输出为:
Figure PCTCN2015097846-appb-000001
其中,
Figure PCTCN2015097846-appb-000002
即为高对比度的“非”逻辑信号,图1所示结构可实现输入信号的“非”逻辑运算功能。
同理,图3(a)所示的“十”字波导逻辑门单元作为“异或”逻辑门结构与图3(b)所示的非线性腔单元进行耦合连接时,图3(a)所示的“十”字波导“异或”逻辑门的输出端7与图3(b)所示的非线性腔单元的输入端8(中间信号输入端)相连接,即“异或”逻辑门的输出信号作为非线性腔单元输入端8的输入信号,如图1所示。图1中,当端口4输入参考光E(E=1),端口1输入信号C1,端口2输入信号C2,则根据“十”字波导逻辑门单元02的“异或”逻辑门的逻辑运算特性和非线性腔单元01的逻辑表达式(2),可得到图1所示结构的输出端5的输出为:
Figure PCTCN2015097846-appb-000003
可见,图1所示结构可实现两个输入信号的“异或”逻辑运算功能。结合公式(3)与公式(4)可得到图1所示的同一结构设置不同的输入,可分别实现“非”逻辑运算功能和“异或”逻辑运算功能。
同理,图3(a)所示的“十”字波导逻辑门单元作为“或”逻辑门结构与图3(b)所示的非线性腔单元进行耦合连接时,图3(a)所示的“十”字波导“或”逻辑门的输出端3与图3(b)所示的非线性腔单元的输入端8(中间信号输入端)相连接,即“或”逻辑门 的输出信号作为非线性腔单元输入端8的输入信号,如图2所示。图2中,当端口4输入参考光E(E=1),端口1输入信号D1,端口2输入信号D2,则根据“十”字波导逻辑门单元02的“或”逻辑门的逻辑运算特性和非线性腔单元01的逻辑表达式(2),可得到图2所示结构的输出端5的输出为:
Qn+1=D1+D2  (5)
可见,图2所示结构可实现两个输入信号的“或”逻辑运算功能。
本发明器件的光子晶体结构采用(2m+1)×(2n+1)的阵列结构,m为大于等于5的整数,n为大于等于8的整数。下面结合附图给出两个实施例,在实施例中以11×17阵列结构,二维光子晶体阵列的晶格常数d分别以1μm及0.5208μm为例给出设计和模拟结果。
实施例1
参照图1所示,晶格常数d=1μm,工作波长为2.976μm,圆形高折射率线性介质柱14的半径为0.18μm;第一长方形高折射率线性介质柱11的长边为0.613μm,短边为0.162μm;第二长方形高折射率线性介质柱12的尺寸与第一长方形高折射率线性介质柱11的尺寸一致;正方形非线性介质柱13的边长为1.5μm,三阶非线性系数为1.33*10-2μm2/V2;两两相邻的长方形线性介质柱相距0.2668μm;圆形非线性介质柱15的半径为0.292μm。
参照图1所示结构,端口1和端口4分别输入参考光E1和E2,其中E1=E2=1;端口2输入如图5所示Input Signal信号,可得到高 对比度光子晶体“非”逻辑运算输出信号,如图5中Output 1所示,其输出信号的高低逻辑对比度大于10dB。
同理,参照图1所示,晶格常数d=0.5208μm,工作波长为1.55μm,圆形高折射率线性介质柱14的半径为0.0937μm;第一长方形高折射率线性介质柱11的长边为0.3193μm,短边为0.0844μm;第二长方形高折射率线性介质柱12的尺寸与第一长方形高折射率线性介质柱11的尺寸一致;正方形非线性介质柱13的边长为0.7812μm,三阶非线性系数为1.33*10-2μm2/V2;两两相邻的长方形线性介质柱相距0.1389μm;圆形非线性介质柱15的半径为0.0937μm。
参照图1所示结构,端口1和端口4分别输入参考光E1和E2,其中E1=E2=1;端口2输入如图5所示Input Signal信号,可得到高对比度光子晶体“非”逻辑运算输出信号,如图5中Output 2所示,其输出信号的高低逻辑对比度大于21dB。
可见,图1所示结构可实现高对比度的光子晶体“非”逻辑运算功能,且可通过缩放将工作波长调至光通信波段。
实施例2
参照图1所示,晶格常数d=1μm,工作波长为2.976μm,圆形高折射率线性介质柱14的半径为0.18μm;第一长方形高折射率线性介质柱11的长边为0.613μm,短边为0.162μm;第二长方形高折射率线性介质柱12的尺寸与第一长方形高折射率线性介质柱11的尺寸一致;正方形非线性介质柱13的边长为1.5μm,三阶非线性系数为 1.33*10-2μm2/V2;两两相邻的长方形线性介质柱相距0.2668μm;圆形非线性介质柱15的半径为0.292μm。
参照图1所示结构,端口4输入参考光E,E=1;端口1与端口2分别输入如图6所示Port1和Port2信号,可得到高对比度光子晶体“异或”逻辑运算输出信号,如图6中Output 1所示,其输出信号的高低逻辑对比度大于19dB。
同理,参照图1所示,晶格常数d=0.5208μm,工作波长为1.55μm,圆形高折射率线性介质柱14的半径为0.0937μm;第一长方形高折射率线性介质柱11的长边为0.3193μm,短边为0.0844μm;第二长方形高折射率线性介质柱12的尺寸与第一长方形高折射率线性介质柱11的尺寸一致;正方形非线性介质柱13的边长为0.7812μm,三阶非线性系数为1.33*10-2μm2/V2;两两相邻的长方形线性介质柱相距0.1389μm;圆形非线性介质柱15的半径为0.0937μm。
参照图1所示结构,端口4输入参考光E,E=1;端口1与端口2分别输入如图6所示Port1和Port2信号,可得到高对比度光子晶体“异或”逻辑运算输出信号,如图6中Output 2所示,其输出信号的高低逻辑对比度大于23dB。
可见,图1所示结构可实现高对比度的光子晶体“异或”逻辑运算功能,且可通过缩放将工作波长调至光通信波段。
通过对比实施例1可得到,图1所示结构可通过对输入端的不同设置,可以分别实现高对比度的光子晶体“非”门和高对比度的光子晶体“异或”门。
实施例3
参照图2所示,晶格常数d=1μm,工作波长为2.976μm,圆形高折射率线性介质柱14的半径为0.18μm;第一长方形高折射率线性介质柱11的长边为0.613μm,短边为0.162μm;第二长方形高折射率线性介质柱12的尺寸与第一长方形高折射率线性介质柱11的尺寸一致;正方形非线性介质柱13的边长为1.5μm,三阶非线性系数为1.33*10-2μm2/V2;两两相邻的长方形线性介质柱相距0.2668μm;圆形非线性介质柱15半径的为0.292μm。
参照图2所示结构,端口4输入参考光E,E=1;端口1与端口2分别输入如图7所示Port1和Port2信号,可得到高对比度光子晶体“或”逻辑运算输出信号,如图7中Output 1所示,其输出信号的高低逻辑对比度大于19dB。
同理,参照图1所示,晶格常数d=0.5208μm,工作波长为1.55μm,圆形高折射率线性介质柱14的半径为0.0937μm;第一长方形高折射率线性介质柱11的长边为0.3193μm,短边为0.0844μm;第二长方形高折射率线性介质柱12的尺寸与第一长方形高折射率线性介质柱11的尺寸一致;正方形非线性介质柱13的边长为0.7812μm,三阶非线性系数为1.33*10-2μm2/V2;两两相邻的长方形线性介质柱相距0.1389μm;圆形非线性介质柱15半径的为0.0937μm。
参照图2所示结构,端口4输入参考光E,E=1;端口1与端口2分别输入如图7所示Port1和Port2信号,可得到高对比度光子晶体 “或”逻辑运算输出信号,如图7中Output 2所示,其输出信号的高低逻辑对比度大于17dB。
可见,图2所示结构可实现高对比度的光子晶体“或”逻辑运算功能,且可通过缩放将工作波长调至光通信波段。
以上所述本发明在具体实施方式及应用范围均有改进之处,不应当理解为对本发明限制。

Claims (10)

  1. 一种高对比度光子晶体“或”、“非”、“异或”逻辑门,其特征在于:它为一种六端口的二维光子晶体,包括一个非线性腔单元和一个“十”字波导逻辑门单元;所述的高对比度光子晶体“或”逻辑门由一个参考光输入端、两个闲置光输出端、两个系统信号输入端和一个系统信号输出端组成;所述的高对比度光子晶体“非”逻辑门由两个参考光输入端、两个闲置光输出端、一个系统信号输入端和一个系统信号输出端组成;所述的高对比度光子晶体“异或”逻辑门由一个参考光输入端、两个闲置光输出端、两个系统信号输入端和一个系统信号输出端组成;所述的“十”字波导逻辑门单元设置有不同的输入或输出端口;所述的非线性腔单元与所述的“十”字波导逻辑门单元耦合连接。
  2. 按照权利要求1所述的高对比度光子晶体“或”、“非”、“异或”逻辑门,其特征在于:所述的非线性腔单元为一个二维光子晶体交叉波导非线性腔;它由一个参考光输入端、一个中间信号输入端、一个信号输出端和一个闲置端口组成。
  3. 按照权利要求1所述的高对比度光子晶体“或”、“非”、“异或”逻辑门,其特征在于:所述非线性腔单元的中间信号输入端分别与所述“十”字波导逻辑门单元的“非”门、“异或”门的输出端相连接。
  4. 按照权利要求1所述的高对比度光子晶体“或”、“非”及“异或”逻辑门,其特征在于:所述非线性腔单元的中间信号输入端与所述“十”字波导逻辑门单元的“或”门的输出端相连接。
  5. 按照权利要求1所述的高对比度光子晶体“或”、“非”、“异或”逻辑门,其特征在于:所述的非线性腔单元由高折射率线性介质柱构成二维的光子晶体“十”字交叉波导四端口网络,所述四端口网络的左端为参考光输入端、下端为中间信号输入端、上端为系统信号输出端、右端为闲置端口;通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在交叉波导的中部设置有介质柱,该介质柱为非线性材料,所述介质柱的横截面为正方形、多边形、圆形或者椭圆形;紧贴中心非线性杆且靠近信号输出端的一根矩形线性杆的介电常数与中心非线性杆在弱光条件下的介电常数相等;所述准一维光子晶体结构与非线性介质柱构成波导缺陷腔。
  6. 按照权利要求1所述的高对比度光子晶体“或”、“非”、“异或”逻辑门,其特征在于:所述非线性腔单元的交叉波导中的准一维光子晶体中的介质柱的折射率为3.4或者大于2的值,且所述准一维光子晶体中的介质柱的横截面形状为矩形。
  7. 按照权利要求1所述的高对比度光子晶体“或”、“非”、“异或”逻辑门,其特征在于:所述的“十”字波导逻辑门单元为一个“十”字波导光子晶体“或”、“非”、“异或”逻辑门;该“十”字波导逻辑门单元由两个输入端、一个闲置端口和一个信号输出端组成。
  8. 按照权利要求1所述的高对比度光子晶体“或”、“非”、“异或”逻辑门,其特征在于:所述的“十”字波导逻辑门单元为一个四端口的波导网络的光子晶体,所述四端口网络的右端、下端分别为一个参考光输入端和一个信号光输入端或两个信号输入端,左端、上端 分别为闲置端口或信号输出端;所述四端口网络的交叉中心设置有一根圆形介质柱。所述四端口网络的右端、下端分别为一个参考光输入端和一个信号光输入端或两个信号输入端,左端、上端分别为闲置端口或信号输出端。
  9. 按照权利要求1或5所述的高对比度光子晶体“或”、“非”、“异或”逻辑门,其特征在于:所述二维光子晶体的高折射率线性介质柱的横截面为圆形、多边形、三角形或者椭圆形。
  10. 按照权利要求1或5所述的高对比度光子晶体“或”、“非”、“异或”逻辑门,其特征在于:所述二维光子晶体的背景填充材料为空气或者折射率低于1.4的低折射率介质。
PCT/CN2015/097846 2014-12-19 2015-12-18 高对比度光子晶体"或"、"非"、"异或"逻辑门 WO2016095847A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/626,218 US20170351157A1 (en) 2014-12-19 2017-06-19 High-contrast photonic crystal "or," "not" and "xor" logic gate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410797514.4A CN104536234B (zh) 2014-12-19 2014-12-19 高对比度光子晶体“或”、“非”、“异或”逻辑门
CN201410797514.4 2014-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/626,218 Continuation US20170351157A1 (en) 2014-12-19 2017-06-19 High-contrast photonic crystal "or," "not" and "xor" logic gate

Publications (1)

Publication Number Publication Date
WO2016095847A1 true WO2016095847A1 (zh) 2016-06-23

Family

ID=52851782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097846 WO2016095847A1 (zh) 2014-12-19 2015-12-18 高对比度光子晶体"或"、"非"、"异或"逻辑门

Country Status (3)

Country Link
US (1) US20170351157A1 (zh)
CN (1) CN104536234B (zh)
WO (1) WO2016095847A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536234B (zh) * 2014-12-19 2017-11-14 欧阳征标 高对比度光子晶体“或”、“非”、“异或”逻辑门
CN104849806B (zh) * 2015-05-27 2017-10-03 欧阳征标 基于十字连杆与旋转空心正方柱的二维正方晶格光子晶体
CN113242037B (zh) * 2021-03-26 2024-04-09 江苏大学 一种基于拓扑绝缘体的宽频带声逻辑门

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050163419A1 (en) * 2003-10-15 2005-07-28 Axel Scherer Optical switches and logic and methods of implementation
US20060062507A1 (en) * 2003-04-23 2006-03-23 Yanik Mehmet F Bistable all optical devices in non-linear photonic crystals
CN101251701A (zh) * 2008-01-02 2008-08-27 深圳大学 “十”字波导光子晶体光学“或”、“非”、“异或”逻辑门的实现方法
CN102012600A (zh) * 2010-01-29 2011-04-13 深圳大学 二维光子晶体可控式“与/或”逻辑门
CN102226862A (zh) * 2006-02-14 2011-10-26 科维特克有限公司 使用非线性元件的全光逻辑门
CN102591093A (zh) * 2012-02-21 2012-07-18 深圳大学 基于非线性效应的光子晶体交叉波导超短单脉冲光发生器
CN104536234A (zh) * 2014-12-19 2015-04-22 欧阳征标 高对比度光子晶体“或”、“非”、“异或”逻辑门

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050157974A1 (en) * 2003-10-15 2005-07-21 Axel Scherer Optical switching and logic systems and methods
US7443902B2 (en) * 2003-10-15 2008-10-28 California Institute Of Technology Laser-based optical switches and logic
US7351601B2 (en) * 2003-10-15 2008-04-01 California Institute Of Technology Methods of forming nanocavity laser structures
US7409131B2 (en) * 2006-02-14 2008-08-05 Coveytech, Llc All-optical logic gates using nonlinear elements—claim set V
CN1885074A (zh) * 2006-07-05 2006-12-27 东南大学 基于光子晶体的高性能紧凑型平面光波光路器件
KR20080036794A (ko) * 2006-10-24 2008-04-29 함병승 광양자로직게이트
US7760970B2 (en) * 2007-10-11 2010-07-20 California Institute Of Technology Single photon absorption all-optical modulator in silicon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060062507A1 (en) * 2003-04-23 2006-03-23 Yanik Mehmet F Bistable all optical devices in non-linear photonic crystals
US20050163419A1 (en) * 2003-10-15 2005-07-28 Axel Scherer Optical switches and logic and methods of implementation
CN102226862A (zh) * 2006-02-14 2011-10-26 科维特克有限公司 使用非线性元件的全光逻辑门
CN101251701A (zh) * 2008-01-02 2008-08-27 深圳大学 “十”字波导光子晶体光学“或”、“非”、“异或”逻辑门的实现方法
CN102012600A (zh) * 2010-01-29 2011-04-13 深圳大学 二维光子晶体可控式“与/或”逻辑门
CN102591093A (zh) * 2012-02-21 2012-07-18 深圳大学 基于非线性效应的光子晶体交叉波导超短单脉冲光发生器
CN104536234A (zh) * 2014-12-19 2015-04-22 欧阳征标 高对比度光子晶体“或”、“非”、“异或”逻辑门

Also Published As

Publication number Publication date
US20170351157A1 (en) 2017-12-07
CN104536234A (zh) 2015-04-22
CN104536234B (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
Moniem All-optical XNOR gate based on 2D photonic-crystal ring resonators
WO2016050178A1 (zh) 一种紧凑型六端口光子晶体环行器
WO2016095842A1 (zh) 光学时钟发生器
WO2016095847A1 (zh) 高对比度光子晶体"或"、"非"、"异或"逻辑门
WO2016095840A1 (zh) 光子晶体全光多步延迟与变换逻辑门
WO2016095844A1 (zh) 高对比度光子晶体与逻辑门
WO2016095852A1 (zh) 光子晶体全光多步延迟自与变换逻辑门
WO2016095846A1 (zh) 光子晶体记忆式全光或与逻辑门
WO2016095845A1 (zh) 光子晶体全光学抗干扰自锁触发开关
Liaghati-Rad et al. High-speed all-optical 2-bit multiplier based on photonic crystal structure
WO2016095849A1 (zh) 光子晶体全光与变换逻辑门
WO2016095848A1 (zh) 光子晶体全光学d触发器
Yan et al. Photonic crystal terahertz wave logic AND-XOR gate
WO2016095850A1 (zh) 光子晶体全光自与变换逻辑门
WO2016095853A9 (zh) 光子晶体全光或变换逻辑门
WO2016095841A1 (zh) 光子晶体全光多步延迟自或变换逻辑门
WO2016095843A1 (zh) 光子晶体全光多步延迟或变换逻辑门
WO2016095851A1 (zh) 光子晶体全光自或变换逻辑门
Ren et al. High efficiency asymmetric light transmission based on photonic crystal heterointerface optimization
Kottos et al. Taming the flow of light via Parity-Time Symmetry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869354

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 12205A DATED 28/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15869354

Country of ref document: EP

Kind code of ref document: A1