WO2016095844A1 - 高对比度光子晶体与逻辑门 - Google Patents

高对比度光子晶体与逻辑门 Download PDF

Info

Publication number
WO2016095844A1
WO2016095844A1 PCT/CN2015/097842 CN2015097842W WO2016095844A1 WO 2016095844 A1 WO2016095844 A1 WO 2016095844A1 CN 2015097842 W CN2015097842 W CN 2015097842W WO 2016095844 A1 WO2016095844 A1 WO 2016095844A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
nonlinear
logic gate
waveguide
dielectric
Prior art date
Application number
PCT/CN2015/097842
Other languages
English (en)
French (fr)
Inventor
欧阳征标
余铨强
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2016095844A1 publication Critical patent/WO2016095844A1/zh
Priority to US15/626,212 priority Critical patent/US10473854B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/1213Constructional arrangements comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the invention relates to two-dimensional photonic crystals, optical and logic gates
  • a photonic crystal is a material structure in which dielectric materials are periodically arranged in space, and is usually composed of two or more kinds of artificial crystals having materials having different dielectric constants.
  • All-optical logic devices mainly include optical amplifier-based logic devices, nonlinear ring mirror logic devices, Sagnac interferometric logic devices, ring cavity logic devices, multimode interference logic devices, coupled optical waveguide logic devices, and photoisomerization.
  • Logic devices, polarization switching optical logic devices, transmission grating optical logic devices, etc. These optical logic devices have a large common disadvantage for the development of large-scale integrated optical paths. With the advancement of science and technology in recent years, people Quantum optical logic devices, nanomaterial optical logic devices, and photonic crystal optical logic devices have also been developed.
  • Nanomaterial optical logic devices have great difficulties in fabrication, while photonic crystal optical logic devices have a competitive advantage in the fabrication process.
  • photonic crystal logic devices have been a hot research topic, and it is very likely to replace the widely used electronic logic devices in the near future.
  • the invention overcomes the deficiencies in the prior art and provides a high-contrast photonic crystal and logic gate with compact structure, high logic output and high contrast, and easy integration with other photonic crystal devices.
  • the present invention adopts the following technical solutions:
  • the high-contrast photonic crystal and logic gate of the present invention is a five-port two-dimensional photonic crystal comprising a nonlinear cavity unit and a Y-type and logic gate unit; it consists of a reference light input terminal and two system signal input terminals. And a idle signal terminal and a system signal output terminal; the nonlinear cavity unit is coupled to the Y-type and logic gate unit.
  • the nonlinear cavity unit of the nonlinear cavity unit is a two-dimensional photonic crystal cross-waveguide nonlinear cavity; the nonlinear cavity unit is composed of a reference light input end, an intermediate signal input end, an idle end, and a system signal output. End composition.
  • the Y-type and logic gate unit are composed of two signal input terminals and one intermediate signal output terminal.
  • the two-dimensional photonic crystal cross-waveguide nonlinear cavity is composed of a two-dimensional photonic crystal "cross" cross-waveguide four-port network composed of a high refractive index dielectric column, and the left end of the four-port network is a reference light input end, and the lower end is an intermediate signal.
  • the upper end is a system signal output end, and the right end is an idle port; two mutually orthogonal quasi-one-dimensional photonic crystal structures are placed along the two waveguide directions through the center of the cross waveguide; a dielectric column is disposed in the middle of the cross waveguide, and the dielectric column is a non-linear material having a rectangular, polygonal, circular or elliptical cross section with a refractive index of 3.4 or greater; a rectangular linear close to the central nonlinear rod and close to the signal output
  • the dielectric constant of the rod is equal to the dielectric constant of the central nonlinear rod under low light conditions; the quasi-one-dimensional photonic crystal structure and the nonlinear dielectric column constitute a waveguide defect cavity.
  • the center of the two-dimensional photonic crystal cross-waveguide nonlinear cavity is composed of twelve rectangular high-linear dielectric columns and a rectangular nonlinear dielectric column aligned in the longitudinal and transverse directions of the two waveguides, and the rectangular nonlinear medium is arranged.
  • the column is attached to four adjacent rectangular linear media columns with a distance of 0, and two adjacent rectangular linear media columns are spaced apart by 0.2668 d.
  • the photonic crystal and the logic gate are a photonic crystal structure of a three-port waveguide network, wherein the lower end of the three-port network is respectively two signal input ends, and the upper end is an intermediate signal output end; the intersection of the three-port waveguides is set.
  • a dielectric column of a nonlinear material the dielectric column being a circular nonlinear dielectric column; the radius of the nonlinear dielectric column being the same as the radius of other linear media columns.
  • the intermediate signal input end of the nonlinear cavity unit is connected to the intermediate signal output end of the Y-type and logic gate unit.
  • the cross section of the high refractive index linear medium column of the two-dimensional photonic crystal is circular, elliptical, polygonal or triangular.
  • the background filling material of the two-dimensional photonic crystal is air or a low refractive index medium having a refractive index lower than 1.4.
  • the two-dimensional photonic crystal is an array structure of (2m+1) ⁇ (2n+1), m is an integer greater than or equal to 4, and n is an integer greater than or equal to 7.
  • the photonic crystal logic device of the present invention is widely used in the optical communication band. Compared with the prior art, it has the following positive effects:
  • Photonic crystal logic devices can directly perform all-optical "AND”, “OR”, “NO” and other logic functions, and are the core devices for all-optical calculation.
  • the present invention not only enables high-contrast photonic crystal and logic gate functions through the amplitude conversion characteristics of the nonlinear cavity, but also has high and low logic output contrast.
  • FIG. 1 is a structural view of a high contrast photonic crystal and a logic gate of the present invention.
  • Nonlinear cavity unit 01 Y-type and logic gate unit 02 Reference light input terminal 11 System signal input terminal 12 System signal input terminal 13 Idle terminal 14 System signal output terminal 15 First rectangular high refractive index linear dielectric column 16 Second Rectangular high refractive index linear dielectric column 17 Rectangular nonlinear dielectric column 18 Circular high refractive index linear dielectric column 19 Circular nonlinear dielectric column 20
  • Fig. 2(a) is a structural diagram of the Y-type and logic gate unit 02 shown in Fig. 1.
  • Fig. 2(b) is a structural view of the nonlinear cavity unit 01 shown in Fig. 1.
  • reference light input terminal 11 intermediate signal input terminal 31 idle port 14 signal output port 15
  • FIG. 3 is a basic logic function waveform diagram of FIG. 2(b).
  • Figure 4 is the output signal waveform Output1 of Figure 2 (a);
  • Figure 4 is the logic signal output waveform Output2 of Figure 1;
  • Figure 4 is the logic signal output waveform Output3 of Figure 1;
  • Figure 5 is a logical operation truth table of Figure 2(b).
  • the high-contrast photonic crystal and logic gate of the present invention is a five-port photonic crystal including a nonlinear cavity unit 01 and a Y-type and logic gate unit 02; it is composed of a reference light input terminal, Two system signal input terminals, one system signal output terminal and one idle terminal; the nonlinear cavity unit 01 is a two-dimensional photonic crystal cross-waveguide nonlinear cavity, and according to its own logic operation characteristic, the logic output of the above one stage As a logic input to achieve the established logic function; Y-type and logic gate unit 02, is a three-port Y-type photonic crystal structure, Y-type and logic gate unit 02 performs logical operations on the input signal, Y-type and logic gate The unit 02 is composed of two signal input ends and an intermediate signal output end.
  • the photonic crystal and the logic gate 02 are a photonic crystal structure of a three-port waveguide network.
  • the lower end of the three-port network is respectively two signal input ends, and the upper end is the middle.
  • a dielectric column of a nonlinear material is disposed at the intersection of the three-port waveguides.
  • the mass column is a circular nonlinear medium column; the radius of the nonlinear medium column is the same as the radius of the linear medium column.
  • the nonlinear cavity unit 01 is a two-dimensional photonic crystal cross-waveguide nonlinear cavity, which consists of a two-dimensional photonic crystal "cross" cross-waveguide four-port network composed of a high refractive index dielectric column, and the left end of the four-port network is a reference light input end.
  • the lower end is an intermediate signal input end, the upper end is a system signal output end, and the right end is an idle end end; two mutually orthogonal quasi-one-dimensional photonic crystal structures are placed along the two waveguide directions through the center of the cross waveguide; and a dielectric column is disposed in the middle of the cross waveguide.
  • the dielectric column is a non-linear material.
  • the cross section of the nonlinear dielectric column is square, polygonal, circular or elliptical with a refractive index of 3.4 or greater; a close to the central nonlinear rod and close to the signal output.
  • the dielectric constant of a rectangular linear rod is equal to the dielectric constant of a central nonlinear rod under low light conditions; the quasi-one-dimensional photonic crystal structure and the nonlinear dielectric column constitute a waveguide defect cavity; the center of the nonlinear cavity of the two-dimensional photonic crystal cross-waveguide is composed of Twelve rectangular high-refractive-index linear media columns and a rectangular nonlinear dielectric column are quasi-one-dimensional photons in the longitudinal and transverse directions
  • the first rectangular high refractive index linear dielectric column 16 at the center of the cross-guide nonlinear cavity, the refractive index of which is 3.4, the second rectangular high refractive index linear dielectric column 17, the dielectric constant and the low dielectric condition of the nonlinear dielectric column The dielectric constants are uniform; the adjacent
  • the rectangular nonlinear dielectric column is attached to the adjacent four rectangular linear dielectric columns with a distance of 0;
  • the circular high-refractive-index linear dielectric column 19 of the crossed waveguide nonlinear cavity is made of silicon (Si) material and is refracted.
  • the rate is 3.4;
  • the nonlinear dielectric column 20 of the Y-type and logic gate elements is circular, and a Kerr-type nonlinear material is used, and the dielectric constant under low light conditions is 5.
  • the invention realizes high-contrast photonic crystal and logic function based on photonic band gap characteristics, quasi-one-dimensional photonic crystal defect state, tunneling effect and optical Kerr nonlinear effect of the photonic crystal structure shown in FIG.
  • the basic principle of the photonic crystal nonlinear cavity in the present invention is introduced: the two-dimensional photonic crystal provides a photonic band gap with a certain bandwidth, and the light wave whose wavelength falls within the band gap can propagate in the designed optical path in the photonic crystal.
  • the working wavelength of the device is set to a certain wavelength in the photonic band gap;
  • the quasi-one-dimensional photonic crystal structure set at the center of the cross-waveguide combined with the nonlinear effect of the rectangular nonlinear dielectric column provides a defect state mode when the input light wave satisfies
  • the defect state mode is shifted to the operating frequency of the system, the structure generates a tunneling effect, and the signal is output from the output terminal 15.
  • FIG. 2 is a logic output waveform diagram of the two-dimensional photonic crystal cross-waveguide nonlinear cavity of the present invention.
  • the logic output waveform below the figure can be obtained.
  • the logical operation truth table of the structure shown in FIG. 5 can be obtained.
  • C is the current state Q n
  • Y is the signal output of the output terminal 15 of the nonlinear cavity unit, that is, the secondary state Q n+1 .
  • the nonlinear cavity unit 01 is coupled to the Y-type and the logic gate unit 02, that is, the intermediate signal input terminal 31 of the nonlinear cavity unit 01 and the intermediate signal output terminal 32 of the Y-type and logic gate unit 02 are connected to each other, and the Y-type is set.
  • the AND logic output signal of the AND gate unit 02 is G, that is, the AND signal output signal G of the Y-type AND logic gate unit 02 serves as an input signal to the intermediate signal input terminal 31 of the nonlinear cavity unit 01.
  • system output port 15 will output a high contrast AND logic signal G.
  • the two-dimensional photonic crystal of the device of the present invention adopts an array structure of (2m+1) ⁇ (2n+1), m is an integer of 4 or more, and n is an integer of 7 or more.
  • Two embodiments are given below with reference to the accompanying drawings.
  • the design and simulation results are given by taking a 17 ⁇ 27 array structure and a lattice constant d of 1 ⁇ m and 0.5208 ⁇ m, respectively.
  • the lattice constant d 1 ⁇ m, the operating wavelength is 2.976 ⁇ m, the radius of the circular high refractive index linear medium column 19 is 0.18 ⁇ m; the long side of the first rectangular high refractive index linear medium column 16 is 0.613 ⁇ m, and the short side is 0.162 ⁇ m.
  • the size of the second rectangular high refractive index linear dielectric column 17 is the same as the size of the first rectangular high refractive index linear dielectric column 16; the rectangular nonlinear dielectric column 18 has a side length of 1.5 ⁇ m and a third-order nonlinear coefficient of 1.33*10 -2 ⁇ m 2 /V 2 ; two adjacent rectangular linear dielectric columns are separated by 0.2668 ⁇ m; the circular nonlinear dielectric column 20 has a radius of 0.18 ⁇ m, and the third-order nonlinear coefficient is 1*10 -4 ⁇ m 2 /V 2 .
  • the signal input terminal 12 and the signal input terminal 13 input the signal C and the signal D, respectively.
  • the signal C and the signal D waveform are as shown in FIG. 4, and the output signal of the intermediate signal output terminal 32 of the Y-type and logic gate unit 02 can be obtained as shown in Output 1 of FIG. If the logic output whose logic amplitude output is lower than 0.5*P 0 is set to logic 0, the logic output higher than 0.5*P 0 is set to logic 1.
  • the logic 1 output amplitude of the intermediate signal output terminal 32 of the Y-type and logic gate unit 02 is about 1.88*P 0
  • the logic 0 output amplitude is about 0.47*P 0 (except that both inputs are 0). )
  • its high and low logic contrast is about 6dB.
  • the structure of the present invention can be obtained by coupling the intermediate signal output terminal 32 of the Y-type and logic gate unit 02 shown in FIG. 2(a) to the intermediate signal input terminal 31 of the nonlinear cavity unit 01 shown in FIG. 2(b).
  • the signal C and the signal D are input to the signal input terminal 12 and the signal input terminal 13, respectively.
  • the signal C and the signal D are as shown in FIG.
  • the logic output waveform at a working wavelength of 2.976 ⁇ m is shown in Output 2. It can be seen that the logic 1 of the system output 15 oscillates in the high amplitude range and continually converges to the amplitude of 2.125*P 0; the amplitude of the logic 0 of the system output 15 is about 0.006*P 0 , and the low logic amplitude is well obtained. Suppression.
  • the high and low logic contrast of system output 15 is above 25 dB.
  • the lattice constant d 0.5208 ⁇ m, the working wavelength is 1.55 ⁇ m, the radius of the circular high refractive index linear medium column 19 is 0.0937 ⁇ m; the rectangular high refractive index linear medium column 16 has a long side of 0.3193 ⁇ m and a short side of 0.0844 ⁇ m;
  • the size of the rectangular high refractive index linear dielectric column 17 is the same as that of the rectangular high refractive index linear dielectric column 16;
  • the rectangular nonlinear dielectric column 18 has a side length of 0.7812 ⁇ m and a third-order nonlinear coefficient of 1.33*10 -2 ⁇ m 2 / V 2 ; two adjacent rectangular linear dielectric columns are separated by 0.1389 ⁇ m; the circular nonlinear dielectric column 20 has a radius of 0.0937 ⁇ m, and the third-order nonlinear coefficient is 1*10 -4 ⁇ m 2 /V 2 .
  • the signal C and the signal D are input to the signal input terminal 12 and the signal input terminal 13, respectively.
  • the signal C and the signal D are as shown in FIG. 4, and the high contrast photonic crystal and gate in the lattice constant of the present invention can be obtained.
  • the high and low logic contrast of system output 15 is higher than 24 dB.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种高对比度光子晶体与逻辑门,为一种五端口的二维光子晶体,包括一个非线性腔单元(01)和一个Y型与逻辑门单元(02)。它由一个参考光输入端(11)、两个系统信号输入端(12,13)、一个闲置端(14)和一个系统信号输出端(15)组成。非线性腔单元(01)与Y型与逻辑门单元(02)耦合连接。高对比度光子晶体与逻辑门结构简单紧凑,易与其它光子晶体器件进行集成,可实现高对比度的光子晶体与逻辑门功能,高、低逻辑输出对比度高,广泛应用于光通信波段。

Description

高对比度光子晶体与逻辑门 技术领域
本发明涉及二维光子晶体、光学与逻辑门
背景技术
1987年,美国Bell实验室的E.Yablonovitch在讨论如何抑制自发辐射和Princeton大学的S.John在讨论光子区域各自独立地提出了光子晶体(Photonic Crystal)的概念。光子晶体是一种介电材料在空间中呈周期性排列的物质结构,通常由两种或两种以上具有不同介电常数材料构成的人工晶体。
随着光子晶体的提出和深入研究,人们可以更灵活、更有效地控制光子在光子晶体材料中的运动。在与传统半导体工艺和集成电路技术相结合下,人们通过设计与制造光子晶体及其器件不断的往全光处理飞速迈进,光子晶体成为了光子集成的突破口。1999年12月,美国权威杂志《科学》将光子晶体评为1999年十大科学进展之一,也成为了当今科学研究领域的一个研究热点。
全光逻辑器件主要包括基于光放大器的逻辑器件、非线性环形镜逻辑器件、萨格纳克干涉式逻辑器件、环形腔逻辑器件、多模干涉逻辑器件、耦合光波导逻辑器件、光致异构逻辑器件、偏振开关光逻辑器件、传输光栅光逻辑器件等。这些光逻辑器件对于发展大规模集成光路来说都有体积大的共同缺点。随着近年来科学技术的提高,人们 还发展研究出了量子光逻辑器件、纳米材料光逻辑器件和光子晶体光逻辑器件,这些逻辑器件都符合大规模光子集成光路的尺寸要求,但对于现代的制作工艺来说,量子光逻辑器件与纳米材料光逻辑器件在制作上存在很大的困难,而光子晶体光逻辑器件则在制作工艺上具有竞争优势。近年来,光子晶体逻辑器件是一个备受瞩目的研究热点,它极有可能在不久将来取代目前正广泛使用的电子逻辑器件。
发明内容
本发明克服了现有技术中的不足,提供一种结构紧凑,高低逻辑输出对比度高,易与其它光子晶体器件集成的高对比度光子晶体与逻辑门。
为了解决上述存在的技术问题,本发明采用下列技术方案:
本发明的高对比度光子晶体与逻辑门为一种五端口的二维光子晶体,包括一个非线性腔单元和一个Y型与逻辑门单元;它由一个参考光输入端、两个系统信号输入端、一个闲置端和一个系统信号输出端构组成;所述的非线性腔单元与所述的Y型与逻辑门单元耦合连接。
所述非线性腔单元所述的非线性腔单元为一个二维光子晶体交叉波导非线性腔;该非线性腔单元由一个参考光输入端、一个中间信号输入端、一个闲置端和系统信号输出端组成。
所述的Y型与逻辑门单元由两个信号输入端和一个中间信号输出端组成。
所述的二维光子晶体交叉波导非线性腔由高折射率介质柱组成二维的光子晶体“十字”交叉波导四端口网络,所述四端口网络的左端为参考光输入端,下端为中间信号输入端,上端为系统信号输出端,右端为闲置端口;通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在交叉波导的中部设置有介质柱,该介质柱为非线性材料,所述非线性介质柱的横截面为矩形、多边形、圆形或者椭圆形,其折射率为3.4或者大于2的值;紧贴中心非线性杆且靠近信号输出端的一根长方形线性杆的介电常数与中心非线性杆在弱光条件下的介电常数相等;所述准一维光子晶体结构与非线性介质柱构成波导缺陷腔。
所述的二维光子晶体交叉波导非线性腔中心由十二根长方形高线性介质柱与一根矩形非线性介质柱在纵、横两个波导方向呈准一维光子晶体排列,矩形非线性介质柱与相邻的四根长方形线性介质柱相贴,距离为0,而两两相邻的长方形线性介质柱相距0.2668d。
所述的光子晶体与逻辑门为三端口波导网络的光子晶体结构,所述三端口网络的下端分别为两个信号输入端,上端为中间信号输出端;所述三端口波导的交汇处设置了一根非线性材料的介质柱,该介质柱为圆形非线性介质柱;所述非线性介质柱的半径与其它线性介质柱半径相同。
所述非线性腔单元的中间信号输入端与所述Y型与逻辑门单元的中间信号输出端相连接。
所述二维光子晶体的高折射率线性介质柱的横截面采用圆形、椭圆形、多边形或者三角形。
所述二维光子晶体的背景填充材料为空气或者折射率低于1.4的低折射率介质。
所述的二维光子晶体为(2m+1)×(2n+1)的阵列结构,m为大于等于4的整数,n为大于等于7的整数。
本发明的光子晶体逻辑器件广泛应用于光通信波段。它与现有技术相比,有如下积极效果:
1.结构紧凑、易与其它光子晶体器件进行集成。
2.光子晶体逻辑器件可以直接进行全光的“与”、“或”、“非”等逻辑功能,是实现全光计算的核心器件。
3.本发明通过非线性腔的幅值变换特性不仅能够实现高对比度的光子晶体与逻辑门功能,而且高、低逻辑输出对比度高。
4.抗干扰能力强、运算速度快。
附图说明
图1为本发明的高对比度光子晶体与逻辑门的结构图。
图中:非线性腔单元01 Y型与逻辑门单元02 参考光输入端11 系统信号输入端12 系统信号输入端13 闲置端14 系统信号输出端15 第一长方形高折射率线性介质柱16 第二长方形高折射率线性介质柱17 矩形非线性介质柱18 圆形高折射率线性介质柱19 圆形非线性介质柱20
图2(a)为图1所示的Y型与逻辑门单元02结构图。
图中:信号输入端12 信号输入端13 中间信号输出端32
图2(b)为图1所示的非线性腔单元01结构图。
图中:参考光输入端11 中间信号输入端31 闲置端口14 信号输出端口15
图3为图2(b)的基本逻辑功能波形图。
图4为图2(a)的输出信号波形Output1;
图4为图1的逻辑信号输出波形Output2;
图4为图1的逻辑信号输出波形Output3;
图5为图2(b)的逻辑运算真值表。
具体实施方式
如图1所示,本发明的高对比度光子晶体与逻辑门为一种五端口的光子晶体,包括一个非线性腔单元01和一个Y型与逻辑门单元02;它由一个参考光输入端、两个系统信号输入端、一个系统信号输出端和一个闲置端组成;非线性腔单元01,为一个二维光子晶体交叉波导非线性腔,根据其自身的逻辑运算特性,以上一级的逻辑输出作为逻辑输入以实现既定的逻辑功能;Y型与逻辑门单元02,为一种三端口的Y型光子晶体结构,Y型与逻辑门单元02对输入信号进行与逻辑运算,Y型与逻辑门单元02由两个信号输入端和一个中间信号输出端组成,光子晶体与逻辑门02为一种三端口波导网络的光子晶体结构,三端口网络的下端分别为两个信号输入端,上端为中间信号输出端;三端口波导的交汇处设置了一根非线性材料的介质柱,该介 质柱为圆形非线性介质柱;非线性介质柱的半径与线性介质柱的半径相同。
非线性腔单元01为一个二维光子晶体交叉波导非线性腔,它由高折射率介质柱组成二维的光子晶体“十字”交叉波导四端口网络,四端口网络的左端为参考光输入端,下端为中间信号输入端,上端为系统信号输出端,右端为闲置端;通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在交叉波导的中部设置有介质柱,该介质柱为非线性材料,非线性介质柱的横截面为正方形、多边形、圆形或者椭圆形,其折射率为3.4或者大于2的值;紧贴中心非线性杆且靠近信号输出端的一根矩形线性杆的介电常数与中心非线性杆在弱光条件下的介电常数相等;准一维光子晶体结构与非线性介质柱构成波导缺陷腔;二维光子晶体交叉波导非线性腔中心由十二根长方形高折射率线性介质柱与一根矩形非线性介质柱在纵、横两个波导方向呈准一维光子晶体排列,交叉波导非线性腔中心的第一长方形高折射率线性介质柱16,其折射率为3.4、第二长方形高折射率线性介质柱17,其介电常数与非线性介质柱弱光条件下的介电常数一致;两两相邻的长方形线性介质柱相距0.2668d;交叉波导非线性腔的中心矩形非线性介质柱18,采用克尔型非线性材料,弱光条件下的介电常数为7.9,矩形非线性介质柱与相邻的四根长方形线性介质柱相贴,距离为0;交叉波导非线性腔的圆形高折射率线性介质柱19,采用硅(Si)材料,其折射率为3.4;Y型与逻辑门单元的非线性介质柱20为圆形,采用克尔型非线性材料,弱光条件下的介电常数为5。
本发明基于图1所示光子晶体结构所具有的光子带隙特性、准一维光子晶体缺陷态、隧穿效应及光克尔非线性效应实现高对比度光子晶体与逻辑功能。首先介绍本发明中光子晶体非线性腔的基本原理:二维光子晶体提供一个具有一定带宽的光子带隙,波长落在该带隙内的光波可在光子晶体内所设计好的光路中传播,因此将器件的工作波长设置为光子带隙中的某一波长;交叉波导中心所设置的准一维光子晶体结构结合矩形非线性介质柱的非线性效应提供了一个缺陷态模式,当输入光波满足一定光强时,使得该缺陷态模式偏移至系统的工作频率,结构产生隧穿效应,信号从输出端15输出。
当晶格常数d=1μm,工作波长为2.976μm,参照图2(b)所示的二维光子晶体交叉波导非线性腔,端口11输入信号A,端口31输入信号B。如图2所示本发明的二维光子晶体交叉波导非线性腔的逻辑输出波形图,当端口11与端口31分别输入如图3所示的波形信号可得到该图下方的逻辑输出波形。根据图3所示的逻辑运算特性可得到图5所示该结构的逻辑运算真值表。图5中C为现态Qn,Y为非线性腔单元输出端15的信号输出,即次态Qn+1。根据该真值表可得到非线性腔单元的逻辑表达式:
Y=AB+BC   (1)
Qn+1=AB+BQn   (2)
参照图2(a)所示的光子晶体Y型与逻辑门光子晶体结构,端口12输入信号C,端口13输入信号D,端口32输出信号波形如图4 所示的Output1。将非线性腔单元01与Y型与逻辑门单元02进行耦合连接,即非线性腔单元01的中间信号输入端31与Y型与逻辑门单元02的中间信号输出端32相互连接,设Y型与逻辑门单元02的与逻辑输出信号为G,即Y型与逻辑门单元02的与逻辑输出信号G作为非线性腔单元01的中间信号输入端31的输入信号。此时,高对比度光子晶体与逻辑门的参考光输入端11输入参考光E=1,由式2可得到,
Qn+1=G   (3)
最终,系统输出端口15将输出高对比度的与逻辑信号G。
本发明器件的二维光子晶体采用(2m+1)×(2n+1)的阵列结构,m为大于等于4的整数,n为大于等于7的整数。下面结合附图给出两个实施例,在实施例中以17×27阵列结构,晶格常数d分别以1μm及0.5208μm为例给出设计和模拟结果。
实施例1
晶格常数d=1μm,工作波长为2.976μm,圆形高折射率线性介质柱19的半径为0.18μm;第一长方形高折射率线性介质柱16的长边为0.613μm,短边为0.162μm;第二长方形高折射率线性介质柱17的尺寸与第一长方形高折射率线性介质柱16的尺寸一致;矩形非线性介质柱18的边长为1.5μm,三阶非线性系数为1.33*10-2μm2/V2;两两相邻的长方形线性介质柱相距0.2668μm;圆形非线性介质柱20的半径为0.18μm,三阶非线性系数为1*10-4μm2/V2
参照图2(a)所示结构,信号输入端12和信号输入端13分别输入信号C和信号D。其中,信号C与信号D波形如图4所示,可得到Y型与逻辑门单元02的中间信号输出端32的输出信号如图4中Output 1所示。若将逻辑幅值输出低于0.5*P0的逻辑输出设为逻辑0,高于0.5*P0的逻辑输出设为逻辑1。可得到,Y型与逻辑门单元02的中间信号输出端32的逻辑1输出幅值约为1.88*P0,而逻辑0输出幅值约为0.47*P0(除两输入皆为0的情况),其高低逻辑的对比度约为6dB。将图2(a)所示的Y型与逻辑门单元02的中间信号输出端32与图2(b)所示非线性腔单元01的中间信号输入端31进行耦合连接,可得到本发明结构如图1所示。同理,在信号输入端12和信号输入端13分别输入信号C和信号D,信号C与信号D如图4所示,可得到本发明的高对比度光子晶体与门在晶格常数d=1μm,工作波长为2.976μm时的逻辑输出波形如Output 2所示。可见,系统输出15的逻辑1在高幅值区间振荡,并不断向2.125*P0的幅值收敛;系统输出15的逻辑0的幅值约为0.006*P0,低逻辑幅值得到了很好的抑制。系统输出15的高低逻辑对比度高于25dB。
实施例2
晶格常数d=0.5208μm,工作波长为1.55μm,圆形高折射率线性介质柱19的半径为0.0937μm;长方形高折射率线性介质柱16的长边为0.3193μm,短边为0.0844μm;长方形高折射率线性介质柱17的尺寸与长方形高折射率线性介质柱16的尺寸一致;矩形非线性介质柱18的边长为0.7812μm,三阶非线性系数为1.33*10-2μm2/V2;两 两相邻的长方形线性介质柱相距0.1389μm;圆形非线性介质柱20的半径为0.0937μm,三阶非线性系数为1*10-4μm2/V2
如图1所示,在信号输入端12和信号输入端13分别输入信号C和信号D,信号C与信号D如图4所示,可得到本发明的高对比度光子晶体与门在晶格常数d=0.5208μm,工作波长为1.55μm时的逻辑输出波形如Output 3所示。可见,系统输出15的逻辑1的幅值沿2.05*P0振荡,并逐渐趋于稳定;系统输出15的逻辑0的幅值约为0.008*P0,低逻辑幅值得到了很好的抑制。系统输出15的高低逻辑对比度高于24dB。
以上所述本发明在具体实施方式及应用范围均有改进之处,不应当理解为对本发明限制。

Claims (10)

  1. 一种高对比度光子晶体与逻辑门,其特征在于:它为一种五端口的二维光子晶体,包括一个非线性腔单元和一个Y型与逻辑门单元;它由一个参考光输入端、两个系统信号输入端、一个闲置端和一个系统信号输出端组成;所述的非线性腔单元与所述的Y型与逻辑门单元耦合连接。
  2. 按照权利要求1所述的高对比度光子晶体与逻辑门,其特征在于:所述的非线性腔单元为一个二维光子晶体交叉波导非线性腔;该非线性腔单元由一个参考光输入端,一个中间信号输入端,一个闲置端和系统信号输出端组成。
  3. 按照权利要求1所述的高对比度光子晶体与逻辑门,其特征在于:所述的Y型与逻辑门单元由两个信号输入端和一个中间信号输出端组成。
  4. 按照权利要求1所述的高对比度光子晶体与逻辑门,其特征在于:所述非线性腔单元的中间信号输入端与所述Y型与逻辑门单元的中间信号输出端相连接。
  5. 按照权利要求1所述的高对比度光子晶体与逻辑门,其特征在于:所述的二维光子晶体交叉波导非线性腔由高折射率介质柱组成二维的光子晶体“十字”交叉波导四端口网络,所述四端口网络的左端为参考光输入端,下端为中间信号输入端,上端为系统信号输出端,右端为闲置端;通过交叉波导中心沿两波导方向放置两相互正交的准一维光子晶体结构;在交叉波导的中部设置有介质柱,该介质柱为非线性材料,所述非线性介质柱的横截面为正方形、多边形、圆形或者 椭圆形,其折射率为3.4或者大于2的值;紧贴中心非线性杆且靠近信号输出端的一根矩形线性杆的介电常数与中心非线性杆在弱光条件下的介电常数相等;所述准一维光子晶体结构与非线性介质柱构成波导缺陷腔。
  6. 按照权利要求1所述的高对比度光子晶体与逻辑门,其特征在于:所述的二维光子晶体交叉波导非线性腔中心由十二根长方形高折射率线性介质柱与一根正方形非线性介质柱在纵、横两个波导方向呈准一维光子晶体排列,正方形非线性介质柱与相邻的四根长方形线性介质柱相贴,距离为0,而两两相邻的长方形线性介质柱相距0.2668d。
  7. 按照权利要求1所述的高对比度光子晶体与逻辑门,其特征在于:所述的光子晶体与逻辑门为一种三端口波导网络的光子晶体结构,所述三端口网络的下端分别为两个信号输入端,上端为中间信号输出端;所述三端口波导的交汇处设置了一根非线性材料的介质柱,该介质柱为圆形非线性介质柱;所述非线性介质柱的半径与线性介质柱的半径相同。
  8. 按照权利要求1或4所述的高对比度光子晶体与逻辑门,其特征在于:所述二维光子晶体的高折射率线性介质柱的横截面为圆形、椭圆形、多边形或者三角形。
  9. 按照权利要求1或4所述的高对比度光子晶体与逻辑门,其特征在于:所述二维光子晶体的背景填充材料为空气或者折射率低于1.4的低折射率介质。
  10. 按照权利要求1或4所述的高对比度光子晶体与逻辑门,其特征在于:所述的二维光子晶体为(2m+1)×(2n+1)的阵列结构,m为大于等于4的整数,n为大于等于7的整数。
PCT/CN2015/097842 2014-12-19 2015-12-18 高对比度光子晶体与逻辑门 WO2016095844A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/626,212 US10473854B2 (en) 2014-12-19 2017-06-19 High-contrast photonic crystal “and” logic gate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410799867.8A CN104503186B (zh) 2014-12-19 2014-12-19 高对比度光子晶体与逻辑门
CN201410799867.8 2014-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/626,212 Continuation US10473854B2 (en) 2014-12-19 2017-06-19 High-contrast photonic crystal “and” logic gate

Publications (1)

Publication Number Publication Date
WO2016095844A1 true WO2016095844A1 (zh) 2016-06-23

Family

ID=52944590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097842 WO2016095844A1 (zh) 2014-12-19 2015-12-18 高对比度光子晶体与逻辑门

Country Status (3)

Country Link
US (1) US10473854B2 (zh)
CN (1) CN104503186B (zh)
WO (1) WO2016095844A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503186B (zh) * 2014-12-19 2018-04-27 欧阳征标 高对比度光子晶体与逻辑门
CN114815052B (zh) * 2022-04-21 2023-06-09 上海大学 一种交叉波导结构的光子晶体光学路由器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060062507A1 (en) * 2003-04-23 2006-03-23 Yanik Mehmet F Bistable all optical devices in non-linear photonic crystals
CN101251701A (zh) * 2008-01-02 2008-08-27 深圳大学 “十”字波导光子晶体光学“或”、“非”、“异或”逻辑门的实现方法
US7480319B2 (en) * 2003-10-15 2009-01-20 California Institute Of Technology Optical switches and logic and methods of implementation
CN101416107A (zh) * 2006-02-14 2009-04-22 科维特克有限公司 使用非线性元件的全光逻辑门
CN102012600A (zh) * 2010-01-29 2011-04-13 深圳大学 二维光子晶体可控式“与/或”逻辑门
CN102591093A (zh) * 2012-02-21 2012-07-18 深圳大学 基于非线性效应的光子晶体交叉波导超短单脉冲光发生器
CN104503186A (zh) * 2014-12-19 2015-04-08 欧阳征标 高对比度光子晶体与逻辑门

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7657188B2 (en) * 2004-05-21 2010-02-02 Coveytech Llc Optical device and circuit using phase modulation and related methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060062507A1 (en) * 2003-04-23 2006-03-23 Yanik Mehmet F Bistable all optical devices in non-linear photonic crystals
US7480319B2 (en) * 2003-10-15 2009-01-20 California Institute Of Technology Optical switches and logic and methods of implementation
CN101416107A (zh) * 2006-02-14 2009-04-22 科维特克有限公司 使用非线性元件的全光逻辑门
CN101251701A (zh) * 2008-01-02 2008-08-27 深圳大学 “十”字波导光子晶体光学“或”、“非”、“异或”逻辑门的实现方法
CN102012600A (zh) * 2010-01-29 2011-04-13 深圳大学 二维光子晶体可控式“与/或”逻辑门
CN102591093A (zh) * 2012-02-21 2012-07-18 深圳大学 基于非线性效应的光子晶体交叉波导超短单脉冲光发生器
CN104503186A (zh) * 2014-12-19 2015-04-08 欧阳征标 高对比度光子晶体与逻辑门

Also Published As

Publication number Publication date
CN104503186B (zh) 2018-04-27
US20170307820A1 (en) 2017-10-26
US10473854B2 (en) 2019-11-12
CN104503186A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
US10036905B2 (en) Compact six-port photonic crystal circulator
Moniem All-optical XNOR gate based on 2D photonic-crystal ring resonators
Sivaranjani et al. Photonic crystal based all-optical half adder: a brief analysis
WO2016095842A1 (zh) 光学时钟发生器
WO2015035853A1 (zh) 光子晶体全光学可调谐滤波器
WO2016050183A1 (zh) 一种引入补偿柱的高传输率和高隔离度的三端口光环行器
WO2016095840A1 (zh) 光子晶体全光多步延迟与变换逻辑门
WO2016095847A1 (zh) 高对比度光子晶体"或"、"非"、"异或"逻辑门
WO2016095846A1 (zh) 光子晶体记忆式全光或与逻辑门
WO2016095844A1 (zh) 高对比度光子晶体与逻辑门
WO2016095852A1 (zh) 光子晶体全光多步延迟自与变换逻辑门
WO2016095845A1 (zh) 光子晶体全光学抗干扰自锁触发开关
WO2016095848A1 (zh) 光子晶体全光学d触发器
WO2016095849A1 (zh) 光子晶体全光与变换逻辑门
WO2016095850A1 (zh) 光子晶体全光自与变换逻辑门
WO2016095853A9 (zh) 光子晶体全光或变换逻辑门
CN103955025B (zh) 用于光学延迟线的环联分形拓扑结构微环阵列
WO2016095841A1 (zh) 光子晶体全光多步延迟自或变换逻辑门
WO2016095851A1 (zh) 光子晶体全光自或变换逻辑门
WO2016095843A1 (zh) 光子晶体全光多步延迟或变换逻辑门
Ren et al. High efficiency asymmetric light transmission based on photonic crystal heterointerface optimization
He et al. Evanescent wave spectral singularities in non-Hermitian photonics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869351

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15869351

Country of ref document: EP

Kind code of ref document: A1