WO2016095512A1 - 液晶光栅及其制作方法、显示装置 - Google Patents

液晶光栅及其制作方法、显示装置 Download PDF

Info

Publication number
WO2016095512A1
WO2016095512A1 PCT/CN2015/084174 CN2015084174W WO2016095512A1 WO 2016095512 A1 WO2016095512 A1 WO 2016095512A1 CN 2015084174 W CN2015084174 W CN 2015084174W WO 2016095512 A1 WO2016095512 A1 WO 2016095512A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
transparent electrode
shaped transparent
liquid crystal
substrate
Prior art date
Application number
PCT/CN2015/084174
Other languages
English (en)
French (fr)
Inventor
陈玉琼
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/908,298 priority Critical patent/US10324338B2/en
Publication of WO2016095512A1 publication Critical patent/WO2016095512A1/zh
Priority to US16/397,840 priority patent/US10795217B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0322Arrangements comprising two or more independently controlled crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/15Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 periodic

Definitions

  • Embodiments of the present invention relate to a liquid crystal grating, a method of fabricating the same, and a display device.
  • the naked eye 3D display device includes a display panel and a liquid crystal grating.
  • the liquid crystal grating may be located in front of the display panel for rendering the display screen of the naked-eye 3D display device with a 3D effect.
  • the liquid crystal grating 1' includes a first substrate 2', a liquid crystal molecule layer 3', and a second substrate 4'.
  • a wide strip-shaped transparent electrode 5' is disposed at equal intervals on the first substrate 2', and a narrow strip-shaped transparent electrode 6' is disposed between adjacent wide strip-shaped transparent electrodes 5'.
  • a plate-shaped transparent electrode 7' is provided on the second substrate 4'. The voltage of the narrow strip-shaped transparent electrode 6' is the same as the voltage of the plate-shaped transparent electrode 7'.
  • the liquid crystal molecules at the position corresponding to the wide strip-shaped transparent electrode 5' in the liquid crystal molecule layer 3' are deflected. That is, at this time, the liquid crystal molecules are arranged in the direction perpendicular to the second substrate 4' along the long axis, so that the light does not pass through the liquid crystal grating 1', thereby forming the light-shielding stripes.
  • the liquid crystal molecular layer 3' and the adjacent wide strip-shaped transparent electrode 5' are not deflected, so that the light can pass through the liquid crystal grating 1', thereby forming a light-transmitting stripe.
  • the liquid crystal grating 1' is located in front of the display panel 8', and the liquid crystal grating 1' is alternately provided with a light-transmitting stripe 9' and a light-shielding stripe 10', so that the left-eye 11' can only see the left-eye image.
  • the right eye 12' can only see the right eye picture, so that the display screen presents a 3D effect.
  • the alignment direction of the liquid crystal molecules adjacent to the first substrate 2' in the liquid crystal molecule layer 3' has a certain angle with the first substrate 2'. Therefore, the direction of the electric field between one edge 13' of the wide strip-shaped transparent electrode 5' and the plate-shaped transparent electrode 7' (indicated by a broken line) and the direction of arrangement of liquid crystal molecules outside the edge 13' have a large angle.
  • the deflection state of the liquid crystal molecules located outside the edge 13' is affected by the electric field to cause the liquid crystal molecules to deviate from the alignment direction, so that the transmittance of the light at the position is too low, and is significantly lower than the transmission of light at the two sides thereof. rate. At this time, black streaks appear in the area indicated by the dotted line frame, which makes the display device display poor.
  • At least one embodiment of the present invention provides a liquid crystal grating, a manufacturing method thereof, and a display device, which can improve black streaking.
  • At least one embodiment of the present invention provides a liquid crystal grating including a first substrate, a second substrate, and a liquid crystal molecular layer between the first substrate and the second substrate, wherein the first substrate is provided a plate-shaped transparent electrode, the second substrate is sequentially provided with a second transparent conductive layer, a transparent insulating layer and a first transparent conductive layer;
  • the first transparent conductive layer includes a first strip-shaped transparent electrode and a second strip-shaped transparent electrode which are spaced apart from each other, and a gap between the adjacent first strip-shaped transparent electrode and the second strip-shaped transparent electrode ;
  • the second transparent conductive layer includes spaced apart third strip-shaped transparent electrodes.
  • the third strip-shaped transparent electrode is correspondingly disposed at an edge position of the first strip-shaped transparent electrode.
  • a projection of the third strip-shaped transparent electrode on the second substrate overlaps with a projection of the first strip-shaped transparent electrode on the second substrate.
  • the voltage of the second strip-shaped transparent electrode and the voltage of the third strip-shaped transparent electrode are the same as the voltage of the plate-shaped transparent electrode, and are different from the voltage of the first strip-shaped transparent electrode.
  • one side of the third strip-shaped transparent electrode overlaps one side of one of the first strip-shaped transparent electrodes, and the other side extends up to the edge of the next one of the first strip-shaped transparent electrodes.
  • the other side of the third strip-shaped transparent electrode extends to a position between the one of the first strip-shaped transparent electrodes and the second strip-shaped transparent electrode adjacent thereto.
  • the width of the first strip-shaped transparent electrode is 419.32 ⁇ m
  • the width of the second strip-shaped transparent electrode is 84.83 ⁇ m.
  • the width of the third strip-shaped transparent electrode is 3 ⁇ m
  • the width of the third strip-shaped transparent electrode overlapping the first strip-shaped transparent electrode is 1.15 ⁇ m.
  • the other side of the third strip-shaped transparent electrode extends to a region where the second strip-shaped transparent electrode adjacent to the one of the first strip-shaped transparent electrodes is located.
  • the other side of the third strip-shaped transparent electrode extends between the second strip-shaped transparent electrode adjacent to the one of the first strip-shaped transparent electrodes and the next first strip-shaped transparent electrode Area.
  • the other side of the third strip-shaped transparent electrode extends to the next first strip-shaped transparent The location of the edge of the electrode.
  • one side of the third strip-shaped transparent electrode is located at the edge of the edge of one first strip-shaped transparent electrode, and the other side extends up to the edge of the next first strip-shaped transparent electrode.
  • one side of the third strip-shaped transparent electrode has a gap between the edge of the one first strip-shaped transparent electrode, and the other side extends up to the edge of the next one of the first strip-shaped transparent electrodes.
  • the width of the gap is within 1 ⁇ m.
  • the width of the first strip-shaped transparent electrode is larger than the width of the second strip-shaped transparent electrode and the third strip-shaped transparent electrode.
  • At least one embodiment of the present invention provides a display device comprising the liquid crystal grating of any of the above.
  • At least one embodiment of the present invention also provides a method for fabricating a liquid crystal grating, the method comprising:
  • first transparent conductive layer on the second substrate on which the transparent insulating layer is formed, and forming a pattern including a first strip-shaped transparent electrode and a second strip-shaped transparent electrode by a patterning process, the first strip shape
  • the transparent electrode and the second strip-shaped transparent electrode are spaced apart from each other, and a gap is formed between the adjacent first strip-shaped transparent electrode and the second strip-shaped transparent electrode;
  • Liquid crystal is dropped on the first substrate or the second substrate, and the first substrate and the second substrate are paired to form a liquid crystal grating.
  • the voltage of the second strip-shaped transparent electrode and the voltage of the third strip-shaped transparent electrode are the same as the voltage of the plate-shaped transparent electrode, and are different from the voltage of the first strip-shaped transparent electrode.
  • Figure 1 is a schematic cross-sectional view of a liquid crystal grating
  • FIG. 2 is a schematic diagram showing the principle of a liquid crystal grating to render a display screen with a 3D effect
  • FIG. 3 is a schematic diagram showing a principle of a liquid crystal grating causing black streaks on a display screen
  • FIG. 4 is a schematic cross-sectional view showing a first liquid crystal grating according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the principle of improving a black stripe phenomenon by a third strip-shaped transparent electrode according to an embodiment of the invention.
  • FIG. 6 is a partial cross-sectional view showing a second liquid crystal grating according to an embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view showing a third liquid crystal grating according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the simulation of the transmittance of the area A in FIG. 4 according to an embodiment of the present invention.
  • FIG. 9 is a partial cross-sectional view showing a fourth liquid crystal grating according to an embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view showing a fifth liquid crystal grating according to an embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view showing a sixth liquid crystal grating according to an embodiment of the present invention.
  • FIG. 12 is a partial cross-sectional view showing a seventh liquid crystal grating according to an embodiment of the present invention.
  • FIG. 13 is a partial cross-sectional view showing an eighth liquid crystal grating according to an embodiment of the present invention.
  • FIG. 14 is a flow chart of a method for fabricating a liquid crystal grating according to an embodiment of the present invention.
  • first substrate first substrate
  • second substrate second substrate
  • plate-shaped transparent electrode second transparent conductive layer
  • 41 third strip-shaped transparent electrode
  • 5 transparent insulating layer
  • 6 first transparent conductive layer
  • 61 first strip-shaped transparent electrode
  • 62 second strip-shaped transparent electrode
  • 7 liquid crystal molecular layer.
  • the liquid crystal grating includes a first substrate 1 , a second substrate 2 , and a liquid crystal molecular layer 7 between the first substrate 1 and the second substrate 2 . .
  • a plate-shaped transparent electrode 3 is provided on the first substrate 1.
  • the second transparent substrate 4, the transparent insulating layer 5, and the first transparent conductive layer 6 are sequentially disposed on the second substrate 2.
  • the first transparent conductive layer 6 includes each other
  • the first strip-shaped transparent electrode 61 and the second strip-shaped transparent electrode 62 are disposed at intervals, and a gap is formed between the adjacent first strip-shaped transparent electrode 61 and the second strip-shaped transparent electrode 62.
  • the second transparent conductive layer 4 includes a third strip-shaped transparent electrode 41 that is spaced apart.
  • the third strip-shaped transparent electrode 41 may be disposed at an edge position of the first strip-shaped transparent electrode 61. But it is not limited to this.
  • the projection of the third strip-shaped transparent electrode 41 on the second substrate may overlap with the projection of the first strip-shaped transparent electrode 61 on the second substrate.
  • the third strip-shaped transparent electrode 41 is not in the same layer as the first strip-shaped transparent electrode 61, and the transparent insulating layer 5 is disposed between the layer in which the third strip-shaped transparent electrode 41 is located and the layer in which the first strip-shaped transparent electrode 61 is located.
  • the overlap here means, for example, that the projection on the second substrate has an overlapping portion.
  • the projection of the third strip-shaped transparent electrode 41 on the second substrate and the projection of the first strip-shaped transparent electrode 61 on the second substrate may not overlap. That is, the projection of the third strip-shaped transparent electrode 41 on the second substrate and the projection of the first strip-shaped transparent electrode 61 on the second substrate may not have overlapping portions.
  • the voltage of the second strip-shaped transparent electrode 62 and the voltage of the third strip-shaped transparent electrode 41 are the same as those of the plate-shaped transparent electrode 3, and are different from the voltage of the first strip-shaped transparent electrode 61. That is, the voltage applied to the second strip-shaped transparent electrode 62 and the voltage applied to the third strip-shaped transparent electrode 41 are the same as the voltage applied to the plate-shaped transparent electrode 3, and the voltage applied to the first strip-shaped transparent electrode 61. different.
  • the alignment direction of the liquid crystal molecules adjacent to the second substrate 4' in the liquid crystal molecule layer 3' has a certain angle with the second substrate 4'. Therefore, the direction of the electric field (indicated by a broken line) between one edge 13' of the wide strip-shaped transparent electrode 5' on the second substrate 4' and the plate-like transparent electrode 7' and the arrangement direction of the liquid crystal molecules outside the edge 13'.
  • the larger inter-angles cause the liquid crystal molecules located outside the edge 13' to be deviated from the alignment direction by the electric field, resulting in the light being impermeable, so that black stripes are formed on the display screen corresponding to the area indicated by the dashed box.
  • the second substrate 2 has a third strip-shaped transparent electrode 41 disposed at intervals, and the voltage of the second strip-shaped transparent electrode 62 and the voltage of the third strip-shaped transparent electrode 41 are The voltage of the plate-shaped transparent electrode 3 is the same and is different from the voltage of the first strip-shaped transparent electrode 61. Therefore, when there is an electric field between the first strip-shaped transparent electrode 61 and the plate-shaped transparent electrode 3, there is also an electric field between the third strip-shaped transparent electrode 41 and the first strip-shaped transparent electrode 61, and the two electric fields are in the vertical direction.
  • the force of the component on the liquid crystal molecules can cancel each other, so that the liquid crystal molecules are not deflected, so that the electric field pair between the first strip-shaped transparent electrode 61 and the plate-shaped transparent electrode 3 can be reduced outside the first strip-shaped transparent electrode 61.
  • the deflection state of the liquid crystal molecules causes the light to pass through. Further, there is no electric field between the third strip-shaped transparent electrode 41 and the second strip-shaped transparent electrode 62 and between the third strip-shaped transparent electrode 41 and the plate-shaped transparent electrode 3. Therefore, the third strip-shaped transparent electrode 41 does not affect the deflection state of other liquid crystal molecules. Therefore, the liquid crystal grating can improve the black streak phenomenon, thereby improving the display effect of the display device.
  • the embodiment of the present invention provides three ways of setting the third strip-shaped transparent electrode 41.
  • one side of the third strip-shaped transparent electrode 41 overlaps one side of one first strip-shaped transparent electrode 61, and the other side extends up to the next first strip-shaped transparent electrode.
  • the edge of 61 For example, the width of the region where one side of the third strip-shaped transparent electrode 41 overlaps with one side of the first strip-shaped transparent electrode 61 should be controlled within 1.2 ⁇ m, at which time the third strip-shaped transparent electrode 41 and the first strip shape
  • the electric field between the transparent electrodes 61 does not affect the deflection of the liquid crystal molecules at the position where the first strip-shaped transparent electrode 61 is located, and reduces one side of the first strip-shaped transparent electrode 61 and the plate-shaped transparent electrode 3 The effect of the electric field on the liquid crystal molecules.
  • one side of the third strip-shaped transparent electrode 41 is located at the edge of the edge of the first strip-shaped transparent electrode 61, and the other side extends to the next second strip-shaped transparent electrode.
  • the edge of 62 For example, the other side of the third strip-shaped transparent electrode 41 extends up to the edge of the next first strip-shaped transparent electrode 61.
  • a third arrangement as shown in FIG. 7, has a gap between one side of the third strip-shaped transparent electrode 41 and the edge of one of the first strip-shaped transparent electrodes 61, and the other side and the next second strip-shaped transparent electrode There is a gap between the edges of 62.
  • the other side of the third strip-shaped transparent electrode 41 extends up to the edge of the next first strip-shaped transparent electrode 61.
  • the width of the gap between one side of the third strip-shaped transparent electrode 41 and the edge of one of the first strip-shaped transparent electrodes 61 is within 1 ⁇ m so that the third strip-shaped transparent electrode 41 and the first strip-shaped transparent electrode 61 The electric field between them can reduce the influence of the electric field between the one side of the first strip-shaped transparent electrode 61 and the plate-shaped transparent electrode 3 on the liquid crystal molecules.
  • the third strip-shaped transparent electrode 41 can also adopt other arrangement manners as long as the electric field between the one side of the first strip-shaped transparent electrode 61 and the plate-shaped transparent electrode 3 can be reduced.
  • the influence of the molecule is sufficient, and this is not limited.
  • the first arrangement of the embodiment of the present invention is more advantageous for improving the black streaking phenomenon.
  • the embodiment of the present invention provides the following four specifics of “the other side of the third strip-shaped transparent electrode 41 extends to the edge of the next first strip-shaped transparent electrode 61”. situation:
  • the other side of the third strip-shaped transparent electrode 41 extends to a first strip-shaped transparent electrode 61 and a second strip adjacent to the one strip-shaped transparent electrode 61.
  • the width of the third strip-shaped transparent electrode 41 can be set as small as possible.
  • the width of the third strip-shaped transparent electrode 41 can also be determined according to actual needs. This is not limited.
  • the width of the first strip-shaped transparent electrode 61 may be 419.32 ⁇ m, and the width of the second strip-shaped transparent electrode 62 may be 84.83 ⁇ m.
  • the width of the third strip-shaped transparent electrode 41 is 3 ⁇ m, and the width of the third strip-shaped transparent electrode 41 overlapping the first strip-shaped transparent electrode 61 is 1.15 ⁇ m.
  • the transmittance of the light in the area A in FIG. 4 is as shown in FIG. 8, wherein the abscissa indicates the position, the ordinate indicates the transmittance of the light, and the area indicated by the broken line corresponds to the black streak appearing in the conventional technique. The area of the phenomenon. It can be clearly seen from Fig.
  • the transmittance of light gradually changes, and the transmittance of light at each position is lower than the transmittance of light at the left position, which is higher than
  • the transmittance of light at the right position is such that the transmittance of light at a certain position is lower than the transmittance of light at the two sides.
  • the arrangement of the third strip-shaped transparent electrode 41 can eliminate the influence of the electric field between the one side of the first strip-shaped transparent electrode 61 and the plate-shaped transparent electrode 3 on the liquid crystal molecules, so that the light can be normally transmitted, thereby eliminating Black streak phenomenon.
  • the transmittance of light is increased, the display brightness of the display screen can be improved.
  • the other side of the third strip-shaped transparent electrode 41 extends to a region where the second strip-shaped transparent electrode 62 adjacent to the first strip-shaped transparent electrode 61 is located.
  • the other side of the third strip-shaped transparent electrode 41 extending to the second strip-shaped transparent electrode 62 adjacent to the first strip-shaped transparent electrode 61 may include: as shown in FIG.
  • the other side of the third strip-shaped transparent electrode 41 extends to the middle portion of the second strip-shaped transparent electrode 62 adjacent to the first strip-shaped transparent electrode 61, or, as shown in FIG. 10, the third strip is transparent
  • the other side of the electrode 41 extends to the second strip-shaped transparent electrode 62 adjacent to the first strip-shaped transparent electrode 61
  • the other side of the third strip-shaped transparent electrode 41 extends to the second strip-shaped transparent electrode 62 adjacent to a first strip-shaped transparent electrode 61 and the next first strip The area between the transparent electrodes 61.
  • the other side of the third strip-shaped transparent electrode 41 extends to the position where the edge of the next first strip-shaped transparent electrode 61 is located. At this time, the other side of the third strip-shaped transparent electrode 41 does not overlap the edge of the next first strip-shaped transparent electrode 61.
  • the transmittance of light in the first case is high. That is, the other side of the third strip-shaped transparent electrode 41 extends to a region between a first strip-shaped transparent electrode 61 and a second strip-shaped transparent electrode 62 adjacent to the one first strip-shaped transparent electrode 61. At this time, the width of the third strip-shaped transparent electrode 41 is small, and thus the transmittance of light is high, so that the display brightness of the display screen is high.
  • the "the other side of the third strip-shaped transparent electrode 41 extending to the edge of the next first strip-shaped transparent electrode 61" in the first arrangement may include other cases as long as The influence of the electric field between the one side of the first strip-shaped transparent electrode 61 and the plate-shaped transparent electrode 3 on the liquid crystal molecules can be reduced. This is not limited.
  • the specific case of “the other side of the third strip-shaped transparent electrode 41 extending to the edge of the next first strip-shaped transparent electrode 61” may refer to the first type.
  • the corresponding situation in the setting mode will not be described here.
  • the width of the first strip-shaped transparent electrode 61 is larger than the width of the second strip-shaped transparent electrode 62 and the third strip-shaped transparent electrode 41, which is advantageous for the display screen to exhibit a 3D effect.
  • the material of the first strip-shaped transparent electrode 61, the second strip-shaped transparent electrode 62, and the third strip-shaped transparent electrode 41 may be, for example, indium tin oxide.
  • Embodiments of the present invention provide a liquid crystal grating including a first substrate, a second substrate, and a liquid crystal molecular layer between the first substrate and the second substrate, and the plate is transparent on the first substrate.
  • An electrode, a second transparent conductive layer, a transparent insulating layer and a first transparent conductive layer are sequentially disposed on the second substrate;
  • the first transparent conductive layer comprises a first strip-shaped transparent electrode and a second strip-shaped transparent electrode which are spaced apart from each other, and the phase There is a gap between the adjacent first strip-shaped transparent electrode and the second strip-shaped transparent electrode, and the second transparent conductive layer includes spaced-apart third strip-shaped transparent electrodes.
  • the voltage of the second strip-shaped transparent electrode and the voltage of the third strip-shaped transparent electrode are the same as the voltage of the plate-shaped transparent electrode, and the first The voltage of the strip-shaped transparent electrode is different, so that when there is an electric field between the first strip-shaped transparent electrode and the plate-shaped transparent electrode, there is also an electric field between the third strip-shaped transparent electrode and the first strip-shaped transparent electrode, and the two electric fields are The force in the vertical direction of the liquid crystal molecules can cancel each other out so that the liquid crystal molecules are not deflected. Therefore, the influence of the electric field between the first strip-shaped transparent electrode and the plate-shaped transparent electrode on the deflection state of the liquid crystal molecules located outside the first strip-shaped transparent electrode can be reduced, so that the light can be transmitted.
  • the third strip-shaped transparent electrode does not deflect the other liquid crystal molecules.
  • the effect is that the liquid crystal grating can improve the black streak phenomenon, thereby improving the display effect of the display device.
  • an embodiment of the present invention further provides a display device including the liquid crystal grating in the above embodiment.
  • the display device may be: a display device such as a liquid crystal panel, an OLED panel (organic electroluminescent diode display panel), and a tablet computer, a television set, a notebook computer, a mobile phone, a watch, a digital camera, a navigator, etc. including the display device. Any product or part that has a naked-eye 3D display function.
  • the embodiment of the present invention further provides a method for fabricating a liquid crystal grating according to the first embodiment. As shown in FIG. 14, the method includes the following steps.
  • Step S1401 forming a transparent conductive layer on the first substrate, and forming a pattern including a plate-shaped transparent electrode through a patterning process.
  • Step S1402 forming a second transparent conductive layer on the second substrate, and forming a pattern including the third strip-shaped transparent electrodes spaced apart by a patterning process.
  • Step S1403 forming a transparent insulating layer on the second substrate on which the second transparent conductive layer is formed.
  • Step S1404 forming a first transparent conductive layer on the second substrate on which the transparent insulating layer is formed, and forming a pattern including the first strip-shaped transparent electrode and the second strip-shaped transparent electrode through a patterning process.
  • first strip-shaped transparent electrode 61 and the second strip-shaped transparent electrode 62 are spaced apart from each other, and a gap is formed between the adjacent first strip-shaped transparent electrode 61 and the second strip-shaped transparent electrode 62.
  • the voltage of the second strip-shaped transparent electrode 62 and the voltage of the third strip-shaped transparent electrode 41 are the same as those of the plate-shaped transparent electrode 3, and are different from the voltage of the first strip-shaped transparent electrode 61.
  • Step S1405 Drop liquid crystal on the first substrate or the second substrate, and pair the first substrate and the second substrate to form a liquid crystal grating.
  • An embodiment of the present invention provides a method for fabricating a liquid crystal grating.
  • the liquid crystal grating produced by the method for fabricating the liquid crystal grating includes a third strip-shaped transparent electrode disposed at intervals, and a voltage of the second strip-shaped transparent electrode and a third
  • the voltage of the strip-shaped transparent electrode is the same as the voltage of the plate-shaped transparent electrode, and is different from the voltage of the first strip-shaped transparent electrode, so that when there is an electric field between the first strip-shaped transparent electrode and the plate-shaped transparent electrode, the third strip is There is also an electric field between the transparent electrode and the first strip-shaped transparent electrode, and the force of the two electric fields in the vertical direction on the liquid crystal molecules can cancel each other out. Thereby, liquid crystal molecules are not deflected.
  • the influence of the electric field between the first strip-shaped transparent electrode and the plate-shaped transparent electrode on the deflection state of the liquid crystal molecules located outside the first strip-shaped transparent electrode can be reduced, so that the light can be transmitted.
  • the third strip-shaped transparent electrode and the second strip-shaped transparent electrode, and between the third strip-shaped transparent electrode and the plate-shaped transparent electrode are no electric field between the third strip-shaped transparent electrode and the second strip-shaped transparent electrode, and between the third strip-shaped transparent electrode and the plate-shaped transparent electrode. Therefore, the third strip-shaped transparent electrode does not affect the deflection state of other liquid crystal molecules. Therefore, the liquid crystal grating can improve the black streak phenomenon, thereby improving the display effect of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶光栅及其制作方法、显示装置。该液晶光栅包括相对设置的第一基板(1)、第二基板(2)以及液晶分子层(7),第一基板(1)上设有板状透明电极(3),第二基板(2)上依次设有第二透明导电层(4)、透明绝缘层(5)和第一透明导电层(6);第一透明导电层(6)包括相互间隔设置的第一条状透明电极(61)和第二条状透明电极(62),相邻的第一条状透明电极(61)和第二条状透明电极(62)之间具有间隙;第二透明导电层(4)包括间隔设置的第三条状透明电极(41)。该液晶光栅可以改善黑色条纹现象。

Description

液晶光栅及其制作方法、显示装置 技术领域
本发明实施例涉及一种液晶光栅及其制作方法、显示装置。
背景技术
裸眼3D显示装置包括显示面板和液晶光栅。液晶光栅可位于显示面板前,用于使裸眼3D显示装置的显示画面呈现3D效果。
如图1所示,液晶光栅1’包括第一基板2’、液晶分子层3’和第二基板4’。第一基板2’上等间隔设置有宽条状透明电极5’,相邻宽条状透明电极5’之间设置有窄条状透明电极6’。第二基板4’上设置有板状透明电极7’。窄条状透明电极6’的电压与板状透明电极7’的电压相同。当宽条状透明电极5’和板状透明电极7’之间有电场时,液晶分子层3’中与宽条状透明电极5’相对应位置处的液晶分子发生偏转。即此时液晶分子沿长轴垂直于第二基板4’的方向排列,使光线不能通过液晶光栅1’,从而形成遮光条纹。由于相邻宽条状透明电极5’之间的窄条状透明电极6’的电压与板状透明电极7’的电压相同,因而液晶分子层3’中与相邻宽条状透明电极5’之间的间隙相对应的液晶分子不发生偏转,使光线可通过液晶光栅1’,从而形成透光条纹。
如图2所示,液晶光栅1’位于显示面板8’前,液晶光栅1’上交替设置有透光条纹9’和遮光条纹10’,从而使得左眼11’仅能看到左眼画面,右眼12’仅能看到右眼画面,从而使显示画面呈现3D效果。
发明人发现,如图3所示,液晶分子层3’中邻近第一基板2’的液晶分子的排列方向与第一基板2’之间具有一定的夹角。因而,宽条状透明电极5’的一个边缘13’与板状透明电极7’之间的电场方向(虚线表示)与位于边缘13’外侧的液晶分子的排列方向之间具有较大的夹角,位于边缘13’外侧的液晶分子的偏转状态会受到电场的影响而使液晶分子偏离排列方向,使该位置处光线的透过率过低,并且明显低于其两侧位置处光线的透过率。此时虚线框所示区域会出现黑色条纹现象,使得显示装置的显示效果不佳。
发明内容
本发明至少一实施例提供一种液晶光栅及其制作方法、显示装置,可以改善黑色条纹现象。
本发明至少一实施例提供一种液晶光栅包括相对设置的第一基板、第二基板,以及位于所述第一基板和所述第二基板之间的液晶分子层,所述第一基板上设有板状透明电极,所述第二基板上依次设有第二透明导电层、透明绝缘层和第一透明导电层;
所述第一透明导电层包括相互间隔设置的第一条状透明电极和第二条状透明电极,相邻的所述第一条状透明电极和所述第二条状透明电极之间具有间隙;
所述第二透明导电层包括间隔设置的第三条状透明电极。
例如,所述第三条状透明电极对应设置于所述第一条状透明电极的边缘位置处。
例如,所述第三条状透明电极在所述第二基板上的投影与所述第一条状透明电极在所述第二基板上的投影重叠。
例如,所述第二条状透明电极的电压以及所述第三条状透明电极的电压与所述板状透明电极的电压相同,且与所述第一条状透明电极的电压不同。
例如,所述第三条状透明电极的一侧与一个所述第一条状透明电极的一侧重叠,另一侧最多延伸至下一个所述第一条状透明电极的边缘。
例如,所述第三条状透明电极的另一侧伸至所述一个所述第一条状透明电极和与其相邻的第二条状透明电极之间的位置处。
例如,所述第一条状透明电极的宽度为419.32μm,所述第二条状透明电极的宽度为84.83μm。
例如,所述第三条状透明电极的宽度为3μm,所述第三条状透明电极与所述第一条状透明电极相重叠的宽度为1.15μm。
例如,所述第三条状透明电极的另一侧延伸至与所述一个所述第一条状透明电极相邻的所述第二条状透明电极所在的区域。
例如,所述第三条状透明电极的另一侧延伸至与所述一个所述第一条状透明电极相邻的第二条状透明电极和所述下一个第一条状透明电极之间的区域。
例如,所述第三条状透明电极的另一侧延伸至所述下一个第一条状透明 电极的边缘所在的位置。
例如,所述第三条状透明电极的一侧位于一个第一条状透明电极的边缘所在的位置,另一侧最多延伸至下一个第一条状透明电极的边缘。
例如,所述第三条状透明电极的一侧与所述一个第一条状透明电极的边缘之间具有间隙,另一侧最多延伸至下一个所述第一条状透明电极的边缘。
例如,所述间隙的宽度在1μm以内。
例如,所述第一条状透明电极的宽度大于所述第二条状透明电极和所述第三条状透明电极的宽度。
本发明至少一实施例还提供一种显示装置,包括以上任一所述的液晶光栅。
本发明至少一实施例还提供一种液晶光栅的制作方法,该方法包括:
在第一基板上形成透明导电层,经过构图工艺形成包括板状透明电极的图形;
在第二基板上形成第二透明导电层,经过构图工艺形成包括间隔设置的第三条状透明电极的图形;
在形成了所述第二透明导电层的所述第二基板上,形成透明绝缘层;
在形成了所述透明绝缘层的所述第二基板上,形成第一透明导电层,经过构图工艺形成包括第一条状透明电极和第二条状透明电极的图形,所述第一条状透明电极和所述第二条状透明电极相互间隔设置,相邻的第一条状透明电极和第二条状透明电极之间具有间隙;
在所述第一基板或者所述第二基板上滴注液晶,将所述第一基板和所述第二基板对盒,以形成所述液晶光栅。
例如,所述第二条状透明电极的电压以及所述第三条状透明电极的电压与所述板状透明电极的电压相同,且与所述第一条状透明电极的电压不同。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种液晶光栅的截面示意图;
图2为一种液晶光栅使显示画面呈现3D效果的原理示意图;
图3为一种液晶光栅使显示画面上出现黑色条纹的原理示意图;
图4为本发明实施例中第一种液晶光栅的截面示意图;
图5为本发明实施例中第三条状透明电极改善黑色条纹现象的原理示意图;
图6为本发明实施例中第二种液晶光栅的部分截面示意图;
图7为本发明实施例中第三种液晶光栅的部分截面示意图;
图8为本发明实施例中图4中A区域的透过率的模拟示意图;
图9为本发明实施例中第四种液晶光栅的部分截面示意图;
图10为本发明实施例中第五种液晶光栅的部分截面示意图;
图11为本发明实施例中第六种液晶光栅的部分截面示意图;
图12为本发明实施例中第七种液晶光栅的部分截面示意图;
图13为本发明实施例中第八种液晶光栅的部分截面示意图;
图14为本发明实施例中液晶光栅的制作方法的流程图。
附图标记:
1—第一基板;2—第二基板;3—板状透明电极;4—第二透明导电层;41—第三条状透明电极;5—透明绝缘层;6—第一透明导电层;61—第一条状透明电极;62—第二条状透明电极;7—液晶分子层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本发明实施例提供一种液晶光栅,如图4所示,该液晶光栅包括相对设置的第一基板1、第二基板2以及位于第一基板1和第二基板2之间的液晶分子层7。第一基板1上设有板状透明电极3。第二基板2上依次设有第二透明导电层4、透明绝缘层5和第一透明导电层6。第一透明导电层6包括相互 间隔设置的第一条状透明电极61和第二条状透明电极62,相邻的第一条状透明电极61和第二条状透明电极62之间具有间隙。第二透明导电层4包括间隔设置的第三条状透明电极41。
例如,第三条状透明电极41可对应设置于第一条状透明电极61的边缘位置处。但不限于此。
例如,第三条状透明电极41在第二基板上的投影可与第一条状透明电极61在第二基板上的投影重叠。第三条状透明电极41与第一条状透明电极61不在同一层,第三条状透明电极41所在的层与第一条状透明电极61所在的层之间设置有透明绝缘层5。此处的重叠例如是指在第二基板上的投影具有重叠部分。
需要说明的是,第三条状透明电极41在第二基板上的投影与第一条状透明电极61在第二基板上的投影也可不重叠。即,第三条状透明电极41在第二基板上的投影与第一条状透明电极61在第二基板上的投影也可不具有重叠部分。
例如,第二条状透明电极62的电压以及第三条状透明电极41的电压与板状透明电极3的电压相同,且与第一条状透明电极61的电压不同。即,向第二条状透明电极62施加的电压以及向第三条状透明电极41施加的电压与向板状透明电极3施加的电压相同,且与向第一条状透明电极61施加的电压不同。
通常,如图3所示,液晶分子层3’中邻近第二基板4’的液晶分子的排列方向与第二基板4’之间具有一定的夹角。因而第二基板4’上的宽条状透明电极5’的一个边缘13’与板状透明电极7’之间的电场(虚线表示)的方向与位于边缘13’外侧的液晶分子的排列方向之间具有较大的夹角,会使得位于边缘13’外侧的液晶分子受到电场的影响而偏离排列方向,导致光线无法透过,从而使得虚线框所示的区域对应的显示画面上形成黑色条纹。
而如图5所示,本发明实施例中第二基板2上具有间隔设置的第三条状透明电极41,并且第二条状透明电极62的电压以及第三条状透明电极41的电压与板状透明电极3的电压相同,且与第一条状透明电极61的电压不同。从而当第一条状透明电极61与板状透明电极3之间有电场时,第三条状透明电极41和第一条状透明电极61之间也有电场,上述两个电场在竖直方向的 分量对液晶分子的作用力可以相互抵消,从而不会使液晶分子发生偏转,因而可以减少第一条状透明电极61与板状透明电极3之间的电场对位于第一条状透明电极61外侧的液晶分子的偏转状态产生的影响,使得光线能够透过。并且,第三条状透明电极41与第二条状透明电极62之间、以及第三条状透明电极41与板状透明电极3之间无电场。因此第三条状透明电极41不会对其他液晶分子的偏转状态产生影响。因而该液晶光栅可以改善黑色条纹现象,进而改善显示装置的显示效果。
例如,本发明实施例提供第三条状透明电极41的三种设置方式。
第一种设置方式,如图4所示,第三条状透明电极41的一侧与一个第一条状透明电极61的一侧重叠,另一侧最多延伸至下一个第一条状透明电极61的边缘。例如,第三条状透明电极41的一侧与一个第一条状透明电极61的一侧重叠的区域的宽度应该控制在1.2μm以内,此时第三条状透明电极41与第一条状透明电极61之间的电场,既不会对第一条状透明电极61所在位置处的液晶分子的偏转产生影响,又可减少第一条状透明电极61的一侧与板状透明电极3之间的电场对液晶分子的影响。
第二种设置方式,如图6所示,第三条状透明电极41的一侧位于一个第一条状透明电极61的边缘所在的位置,另一侧延伸至下一个第二条状透明电极62的边缘。例如,第三条状透明电极41的另一侧最多延伸至下一个第一条状透明电极61的边缘。
第三种设置方式,如图7所示,第三条状透明电极41的一侧与一个第一条状透明电极61的边缘之间具有间隙,另一侧与下一个第二条状透明电极62的边缘之间具有间隙。例如,第三条状透明电极41的另一侧最多延伸至下一个第一条状透明电极61的边缘。例如,第三条状透明电极41的一侧与一个第一条状透明电极61的边缘之间的间隙的宽度在1μm以内,以使第三条状透明电极41与第一条状透明电极61之间的电场可减小第一条状透明电极61的一侧与板状透明电极3之间的电场对液晶分子的影响。
当然,除上述三种设置方式外,第三条状透明电极41还可以采用其他设置方式,只要可以减小第一条状透明电极61的一侧与板状透明电极3之间的电场对液晶分子的影响即可,对此不作限定。
在上述第三条状透明电极41的三种设置方式中,当三条状透明电极41 的一侧与一个第一条状透明电极61的一侧重叠的情况下,改善黑色条纹现象的效果最佳。因此,本发明实施例第一种设置方式更利于改善黑色条纹现象。进一步地,在第一种设置方式的基础上,本发明实施例提供“第三条状透明电极41的另一侧最多延伸至下一个第一条状透明电极61的边缘”的以下四种具体情形:
第一种情形,如图4所示,第三条状透明电极41的另一侧延伸至一个第一条状透明电极61和与上述一个第一条状透明电极61相邻的第二条状透明电极62之间。例如,在可减小第一条状透明电极61的一侧与板状透明电极3之间的电场对液晶分子的影响的条件下,第三条状透明电极41的宽度可设置的尽量小,以增加光线透过率,当然,第三条状透明电极41的宽度也可根据实际需求确定。对此不作限定。
例如,在第一种情形中,第一条状透明电极61的宽度可为419.32μm,第二条状透明电极62的宽度可为84.83μm。此时,第三条状透明电极41的宽度为3μm,第三条状透明电极41与第一条状透明电极61相重叠的宽度为1.15μm。此时,图4中A区域的光线的透过率如图8所示,其中,横坐标表示位置,纵坐标表示光线的透过率,虚线框所示的区域对应于通常技术中出现黑色条纹现象的区域。从图8中明显可以看出,在该区域内,光线的透过率逐渐变化,每一个位置处的光线的透过率均低于其左侧位置处的光线的透过率,高于其右侧位置处的光线的透过率,没有某个位置处光线的透过率低于其两侧位置处光线的透过率的现象出现。此时,第三条状透明电极41的设置可消除第一条状透明电极61的一侧与板状透明电极3之间的电场对液晶分子的影响,使光线可以正常透过,从而可以消除黑色条纹现象。同时,由于光线的透过率增加,还可提高显示画面的显示亮度。
第二种情形,如图9-图11所示,第三条状透明电极41的另一侧延伸至与一个第一条状透明电极61相邻的第二条状透明电极62所在的区域。
在第二种情形中,第三条状透明电极41的另一侧延伸至与一个第一条状透明电极61相邻的第二条状透明电极62所在的区域可包括:如图9所示,第三条状透明电极41的另一侧延伸至与一个第一条状透明电极61相邻的第二条状透明电极62的中间部分,或者,如图10所示,第三条状透明电极41的另一侧延伸至与一个第一条状透明电极61相邻的第二条状透明电极62的 一个边缘,或者,如图11所示,第三条状透明电极41的另一侧延伸至与一个第一条状透明电极61相邻的第二条状透明电极62的另一个边缘。
第三种情形,如图12所示,第三条状透明电极41的另一侧延伸至与一个第一条状透明电极61相邻的第二条状透明电极62和下一个第一条状透明电极61之间的区域。
第四种情形,如图13所示,第三条状透明电极41的另一侧延伸至下一个第一条状透明电极61的边缘所在的位置。此时第三条状透明电极41的另一侧与下一个第一条状透明电极61的边缘不重叠。
在上述四种情形中,第一种情形光线的透过率较高。即第三条状透明电极41的另一侧延伸至一个第一条状透明电极61和与上述一个第一条状透明电极61相邻的第二条状透明电极62之间的区域。此时第三条状透明电极41的宽度较小,因而光线的透过率较高,使得显示画面的显示亮度较高。
当然,除上述四种情形外,第一种设置方式中的“第三条状透明电极41的另一侧最多延伸至下一个第一条状透明电极61的边缘”还可包括其他情形,只要可以减小第一条状透明电极61的一侧与板状透明电极3之间的电场对液晶分子的影响即可。对此不作限定。
此外,第二种设置方式和第三种设置方式中的“第三条状透明电极41的另一侧最多延伸至下一个第一条状透明电极61的边缘”的具体情形可参考第一种设置方式中的相应情形,此处不再赘述。
例如,第一条状透明电极61的宽度大于第二条状透明电极62和第三条状透明电极41的宽度,有利于显示画面呈现3D效果。并且,第一条状透明电极61、第二条状透明电极62和第三条状透明电极41的材质例如可为氧化铟锡。
本发明实施例提供一种液晶光栅,该液晶光栅包括相对设置的第一基板、第二基板,以及位于第一基板和第二基板之间的液晶分子层,第一基板上设有板状透明电极,第二基板上依次设有第二透明导电层、透明绝缘层和第一透明导电层;第一透明导电层包括相互间隔设置的第一条状透明电极和第二条状透明电极,相邻的第一条状透明电极和第二条状透明电极之间具有间隙,第二透明导电层包括间隔设置的第三条状透明电极。由于第二条状透明电极的电压以及第三条状透明电极的电压与板状透明电极的电压相同,且与第一 条状透明电极的电压不同,从而当第一条状透明电极与板状透明电极之间有电场时,第三条状透明电极和第一条状透明电极之间也有电场,上述两个电场在竖直方向的分场对液晶分子的作用力可以相互抵消,从而不会使液晶分子发生偏转。因而可以减小第一条状透明电极与板状透明电极之间的电场对位于第一条状透明电极外侧的液晶分子的偏转状态产生的影响,使得光线能够透过。并且第三条状透明电极与第二条状透明电极之间、以及第三条状透明电极与板状透明电极之间无电场,因此第三条状透明电极不会对其他液晶分子的偏转状态产生影响,因而该液晶光栅可以改善黑色条纹现象,进而改善显示装置的显示效果。
此外,本发明实施例还提供一种显示装置,该显示装置包括以上实施方式中的液晶光栅。例如,该显示装置可以为:液晶面板、OLED面板(有机电致发光二极管显示面板)等显示器件以及包括这些显示器件的平板电脑、电视机、笔记本电脑、手机、手表、数码相机、导航仪等任何具有裸眼3D显示功能的产品或部件。
实施例二
本发明实施例还提供一种如实施例一所述的液晶光栅的制作方法,如图14所示,该方法包括以下步骤。
步骤S1401、在第一基板上形成透明导电层,经过构图工艺形成包括板状透明电极的图形。
步骤S1402、在第二基板上形成第二透明导电层,经过构图工艺形成包括间隔设置的第三条状透明电极的图形。
步骤S1403、在形成了第二透明导电层的第二基板上,形成透明绝缘层。
步骤S1404、在形成了透明绝缘层的第二基板上,形成第一透明导电层,经过构图工艺形成包括第一条状透明电极和第二条状透明电极的图形。
例如,第一条状透明电极61和第二条状透明电极62相互间隔设置,相邻的第一条状透明电极61和第二条状透明电极62之间具有间隙。
例如,第二条状透明电极62的电压以及第三条状透明电极41的电压与板状透明电极3的电压相同,且与第一条状透明电极61的电压不同。
步骤S1405、在第一基板或者第二基板上滴注液晶,将第一基板和第二基板对盒,以形成液晶光栅。
本发明实施例提供一种液晶光栅的制作方法,由于由上述液晶光栅的制作方法制作的液晶光栅中,包括间隔设置的第三条状透明电极,并且第二条状透明电极的电压以及第三条状透明电极的电压与板状透明电极的电压相同,且与第一条状透明电极的电压不同,从而当第一条状透明电极与板状透明电极之间有电场时,第三条状透明电极和第一条状透明电极之间也有电场,上述两个电场在竖直方向的分量对液晶分子的作用力可以相互抵消。从而不会使液晶分子发生偏转。因而可以减小第一条状透明电极与板状透明电极之间的电场对位于第一条状透明电极外侧的液晶分子的偏转状态产生的影响,使得光线能够透过。并且第三条状透明电极与第二条状透明电极之间、以及第三条状透明电极与板状透明电极之间无电场。因此第三条状透明电极不会对其他液晶分子的偏转状态产生影响。因而该液晶光栅可以改善黑色条纹现象,进而改善显示装置的显示效果。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
本专利申请要求于2014年12月16日递交的中国专利申请第201410784528.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (18)

  1. 一种液晶光栅,包括相对设置的第一基板、第二基板,以及位于所述第一基板和所述第二基板之间的液晶分子层,所述第一基板上设有板状透明电极,其中,所述第二基板上依次设有第二透明导电层、透明绝缘层和第一透明导电层;
    所述第一透明导电层包括相互间隔设置的第一条状透明电极和第二条状透明电极,相邻的所述第一条状透明电极和所述第二条状透明电极之间具有间隙;
    所述第二透明导电层包括间隔设置的第三条状透明电极。
  2. 根据权利要求1所述的液晶光栅,其中,所述第三条状透明电极对应设置于所述第一条状透明电极的边缘位置处。
  3. 根据权利要求1或2所述的液晶光栅,其中,所述第三条状透明电极在所述第二基板上的投影与所述第一条状透明电极在所述第二基板上的投影重叠。
  4. 根据权利要求1-3任一项所述的液晶光栅,其中,所述第二条状透明电极的电压以及所述第三条状透明电极的电压与所述板状透明电极的电压相同,且与所述第一条状透明电极的电压不同。
  5. 根据权利要求1所述的液晶光栅,其中,所述第三条状透明电极的一侧与一个所述第一条状透明电极的一侧重叠,另一侧最多延伸至下一个所述第一条状透明电极的边缘。
  6. 根据权利要求5所述的液晶光栅,其中,所述第三条状透明电极的另一侧延伸至所述一个所述第一条状透明电极和与其相邻的第二条状透明电极之间的位置处。
  7. 根据权利要求6所述的液晶光栅,其中,所述第一条状透明电极的宽度为419.32μm,所述第二条状透明电极的宽度为84.83μm。
  8. 根据权利要求7所述的液晶光栅,其中,所述第三条状透明电极的宽度为3μm,所述第三条状透明电极与所述第一条状透明电极相重叠的宽度为1.15μm。
  9. 根据权利要求5所述的液晶光栅,其中,所述第三条状透明电极的另 一侧延伸至与所述一个所述第一条状透明电极相邻的第二条状透明电极所在的区域。
  10. 根据权利要求5所述的液晶光栅,其中,所述第三条状透明电极的另一侧延伸至与所述一个所述第一条状透明电极相邻的第二条状透明电极和所述下一个第一条状透明电极之间的区域。
  11. 根据权利要求5所述的液晶光栅,其中,所述第三条状透明电极的另一侧延伸至所述下一个第一条状透明电极的边缘所在的位置。
  12. 根据权利要求1所述的液晶光栅,其中,所述第三条状透明电极的一侧位于一个第一条状透明电极的边缘所在的位置,另一侧最多延伸至下一个第一条状透明电极的边缘。
  13. 根据权利要求1所述的液晶光栅,其中,所述第三条状透明电极的一侧与所述一个第一条状透明电极的边缘之间具有间隙,另一侧最多延伸至下一个所述第一条状透明电极的边缘。
  14. 根据权利要求13所述的液晶光栅,其中,所述间隙的宽度在1μm以内。
  15. 根据权利要求1-14任一项所述的液晶光栅,其中,所述第一条状透明电极的宽度大于所述第二条状透明电极和所述第三条状透明电极的宽度。
  16. 一种显示装置,包括如权利要求1-15任一项所述的液晶光栅。
  17. 一种液晶光栅的制作方法,包括如下步骤:
    在第一基板上形成透明导电层,经过构图工艺形成包括板状透明电极的图形;
    在第二基板上形成第二透明导电层,经过构图工艺形成包括间隔设置的第三条状透明电极的图形;
    在形成了所述第二透明导电层的所述第二基板上,形成透明绝缘层;
    在形成了所述透明绝缘层的所述第二基板上,形成第一透明导电层,经过构图工艺形成包括第一条状透明电极和第二条状透明电极的图形,所述第一条状透明电极和所述第二条状透明电极相互间隔设置,相邻的第一条状透明电极和第二条状透明电极之间具有间隙;
    在所述第一基板或者所述第二基板上滴注液晶,将所述第一基板和所述第二基板对盒,以形成所述液晶光栅。
  18. 根据权利要求17所述的液晶光栅的制作方法,其中,所述第二条状透明电极的电压以及所述第三条状透明电极的电压与所述板状透明电极的电压相同,且与所述第一条状透明电极的电压不同。
PCT/CN2015/084174 2014-12-16 2015-07-16 液晶光栅及其制作方法、显示装置 WO2016095512A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/908,298 US10324338B2 (en) 2014-12-16 2015-07-16 Liquid crystal grating and fabrication method thereof, and naked eye 3D display device
US16/397,840 US10795217B2 (en) 2014-12-16 2019-04-29 Liquid crystal grating and fabrication method thereof, and naked eye 3D display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410784528.2 2014-12-16
CN201410784528.2A CN104460132B (zh) 2014-12-16 2014-12-16 液晶光栅及其制作方法、显示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/908,298 A-371-Of-International US10324338B2 (en) 2014-12-16 2015-07-16 Liquid crystal grating and fabrication method thereof, and naked eye 3D display device
US16/397,840 Continuation US10795217B2 (en) 2014-12-16 2019-04-29 Liquid crystal grating and fabrication method thereof, and naked eye 3D display device

Publications (1)

Publication Number Publication Date
WO2016095512A1 true WO2016095512A1 (zh) 2016-06-23

Family

ID=52906427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084174 WO2016095512A1 (zh) 2014-12-16 2015-07-16 液晶光栅及其制作方法、显示装置

Country Status (3)

Country Link
US (2) US10324338B2 (zh)
CN (1) CN104460132B (zh)
WO (1) WO2016095512A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460132B (zh) 2014-12-16 2017-11-07 京东方科技集团股份有限公司 液晶光栅及其制作方法、显示装置
CN105866965B (zh) * 2016-06-07 2019-09-10 昆山龙腾光电有限公司 立体显示装置及立体显示方法
CN106155447A (zh) * 2016-07-14 2016-11-23 深圳市唯酷光电有限公司 电容屏及液晶手写装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110316A1 (en) * 2008-11-04 2010-05-06 Chiu-Jung Huang Stereoscopic display device
CN103323986A (zh) * 2012-03-21 2013-09-25 株式会社东芝 液晶光学装置和图像显示设备
CN103424941A (zh) * 2013-08-06 2013-12-04 京东方科技集团股份有限公司 液晶光栅及其制造方法、驱动方法和光学相控阵装置
CN103454825A (zh) * 2013-09-30 2013-12-18 深圳超多维光电子有限公司 液晶透镜及2d/3d图像显示装置
CN104460132A (zh) * 2014-12-16 2015-03-25 京东方科技集团股份有限公司 液晶光栅及其制作方法、显示装置
CN204269998U (zh) * 2014-12-16 2015-04-15 京东方科技集团股份有限公司 液晶光栅及显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924876B2 (en) * 2000-02-25 2005-08-02 Sharp Kabushiki Kaisha Liquid crystal display device
JP2005316330A (ja) * 2004-04-30 2005-11-10 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
KR101085132B1 (ko) * 2004-12-24 2011-11-18 엘지디스플레이 주식회사 수평 전계 박막 트랜지스터 기판 및 그 제조 방법
KR101087568B1 (ko) * 2004-12-30 2011-11-28 엘지디스플레이 주식회사 입체영상표시장치용 패러랙스 베리어 액정패널 및 그제조방법
CN102062977A (zh) * 2010-11-09 2011-05-18 华映视讯(吴江)有限公司 视差光栅、调整视差光栅之透光率的方法与立体显示器
JP5286349B2 (ja) * 2010-12-27 2013-09-11 株式会社東芝 屈折率分布型液晶光学素子および画像表示装置
CN102540494A (zh) * 2012-03-20 2012-07-04 福建华映显示科技有限公司 立体显示装置
US20130250168A1 (en) 2012-03-23 2013-09-26 Lockheed Martin Corporation System, method and computer software product for exposure control of an imaging device using flash lamp pulses
CN102707515B (zh) * 2012-05-03 2013-10-09 北京京东方光电科技有限公司 液晶光栅、其制备方法、3d显示器件及3d显示装置
CN102789103A (zh) * 2012-08-10 2012-11-21 京东方科技集团股份有限公司 液晶光栅及显示装置
TWI471608B (zh) * 2012-09-03 2015-02-01 Wintek Corp 裸眼與眼鏡可切換式立體顯示裝置
US9785016B2 (en) 2013-08-06 2017-10-10 Boe Technology Group Co., Ltd. Liquid crystal grating, manufacturing method and drive method thereof, and optical phased array device
US9591298B2 (en) 2013-09-30 2017-03-07 Superd Co. Ltd. System and method for two-dimensional (2D) and three-dimensional (3D) display
CN103676362A (zh) * 2013-12-18 2014-03-26 京东方科技集团股份有限公司 液晶光栅基板、液晶光栅及显示装置
CN103913909B (zh) * 2013-12-31 2017-01-25 厦门天马微电子有限公司 一种像素单元及其制造方法和tft阵列基板、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110316A1 (en) * 2008-11-04 2010-05-06 Chiu-Jung Huang Stereoscopic display device
CN103323986A (zh) * 2012-03-21 2013-09-25 株式会社东芝 液晶光学装置和图像显示设备
CN103424941A (zh) * 2013-08-06 2013-12-04 京东方科技集团股份有限公司 液晶光栅及其制造方法、驱动方法和光学相控阵装置
CN103454825A (zh) * 2013-09-30 2013-12-18 深圳超多维光电子有限公司 液晶透镜及2d/3d图像显示装置
CN104460132A (zh) * 2014-12-16 2015-03-25 京东方科技集团股份有限公司 液晶光栅及其制作方法、显示装置
CN204269998U (zh) * 2014-12-16 2015-04-15 京东方科技集团股份有限公司 液晶光栅及显示装置

Also Published As

Publication number Publication date
CN104460132A (zh) 2015-03-25
US20160342039A1 (en) 2016-11-24
CN104460132B (zh) 2017-11-07
US10324338B2 (en) 2019-06-18
US20190317371A1 (en) 2019-10-17
US10795217B2 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
US9874770B2 (en) Display device
US9293481B2 (en) Array substrate, and dual view field display device and manufacturing method thereof
US10133131B2 (en) Curved display device
US10274740B2 (en) Display module comprising liquid crystal lens, method for controlling display module, and display device
US9389719B2 (en) Touch screen, method for manufacturing the same, 3D display apparatus
TWI581038B (zh) 液晶顯示面板
WO2016145978A1 (zh) 阵列基板及其制作方法以及显示装置
KR102153664B1 (ko) 액정표시장치
WO2016004685A1 (zh) 液晶面板及双视液晶显示装置
CN104503159B (zh) 液晶面板及其制备方法
US10795217B2 (en) Liquid crystal grating and fabrication method thereof, and naked eye 3D display device
WO2016065798A1 (zh) 阵列基板及其制造方法、显示装置
JP6573467B2 (ja) 画像表示装置及び液晶パネル
JP2016109968A (ja) 表示装置
WO2015018157A1 (zh) 阵列基板、彩膜基板、显示装置及取向层的制作方法
TW201539040A (zh) 立體顯示裝置
US9869869B2 (en) Multiple view liquid crystal display
WO2018045819A1 (zh) 3d显示装置及其制备方法
JP2014021865A (ja) タッチパネル付液晶表示装置及びタッチパネル付液晶表示装置の製造方法
US20190025639A1 (en) Display substrate, manufacturing method thereof, and display apparatus
US9507224B2 (en) Display panel
WO2021036874A1 (zh) 阵列基板、控光面板和显示装置
WO2018033012A1 (zh) 对盒基板、液晶显示面板及其亮点消除方法
JP2014153637A5 (zh)
US20180136505A1 (en) Pixel structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14908298

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.11.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15869023

Country of ref document: EP

Kind code of ref document: A1