WO2016093663A1 - 부분 산화 그래핀 및 이의 제조 방법 - Google Patents

부분 산화 그래핀 및 이의 제조 방법 Download PDF

Info

Publication number
WO2016093663A1
WO2016093663A1 PCT/KR2015/013606 KR2015013606W WO2016093663A1 WO 2016093663 A1 WO2016093663 A1 WO 2016093663A1 KR 2015013606 W KR2015013606 W KR 2015013606W WO 2016093663 A1 WO2016093663 A1 WO 2016093663A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphite
pogf
partially oxidized
high pressure
Prior art date
Application number
PCT/KR2015/013606
Other languages
English (en)
French (fr)
Inventor
손권남
이미진
권원종
박세호
유광현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580061384.0A priority Critical patent/CN107001047A/zh
Priority to US15/518,525 priority patent/US20170217775A1/en
Priority to EP15867284.0A priority patent/EP3190084A4/en
Publication of WO2016093663A1 publication Critical patent/WO2016093663A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes

Definitions

  • the present invention relates to partial graphene oxide and a method for producing the same.
  • Graphene is a semimetallic material having a thickness corresponding to a carbon atom layer in an arrangement in which carbon atoms are connected in a hexagonal shape by sp2 bonds in two dimensions. Recently, as a result of evaluating the characteristics of the graphene sheet having a single layer of carbon atoms, it has been reported that the electron mobility can exhibit very good electrical conductivity of about 50, 000 cuiVVs or more. In addition, graphene is characterized by structural, chemical stability and excellent thermal conductivity. In addition, it is easy to process one-dimensional black and two-dimensional nanopatterns made of carbon, which is a relatively light element.
  • the latter method may further require a process such as using and treating an intercalation compound, and thus, the overall process may be complicated, the yield may not be high enough, and the economic efficiency of the process may be reduced. Furthermore, in this method it is not easy to obtain large area graphene sheets or flakes. Due to the problems of these methods, in recent years, a method of manufacturing graphene by peeling the carbon layers included in graphite by a milling method using ultrasonic irradiation or a ball mill in the state of dispersing graphite or the like in a liquid state has been most applied.
  • the present invention is to provide a method for producing graphene, which can produce a graphene of uniform size with excellent efficiency, using high pressure homogenization.
  • the present invention provides a partial graphite oxide that satisfies the following conditions:
  • the elemental ratio of oxygen to carbon (0 / C atomi c rat i o) is 5 to 203 ⁇ 4, the average size (lateral si ze) is 100 nm to 20,
  • the present invention provides a step of passing the feed solution containing the partially oxidized graphite, the high pressure homogenizer comprising a micro-channel having a diameter of the micrometer scale connecting the inlet and the outlet, the inlet and the outlet And wherein the partially oxidized graphite has an element ratio of oxygen to carbon (0 / C atomi c rat io) of 5 to 20%.
  • the term 'graphite' used in the present invention is a substance, also called abyss or quartz, which is a mineral belonging to a hexagonal system having a crystal structure such as crystal, and is a material having a dark color and metallic luster.
  • Graphite has a plate-like structure, and one layer of graphite is referred to as 'graphene' to be manufactured in the present invention, and thus graphite becomes a main raw material of graphene production.
  • the present invention uses a high pressure homogenization method as described below.
  • the high pressure homogenization method is excellent in graphene peeling efficiency because it can apply a strong shear force to the graphite, but there is a problem that the peeling efficiency is lowered if the graphite in the feed solution used for high pressure homogenization is not sufficiently dispersed.
  • the interlayer spacing of graphite is wider than pure graphite.
  • a method of oxidizing graphite with a strong acid and introducing oxygen-funct ional groups such as hydroxy, epoxide, or carboxyl groups in the basal plane and edge to weaken and exfoliate graphene interlayer attraction is known.
  • oxygen-funct ional groups such as hydroxy, epoxide, or carboxyl groups in the basal plane and edge to weaken and exfoliate graphene interlayer attraction.
  • the graphene oxide (graphene oxi de) prepared by the above method almost disappears the inherent characteristics of graphene, such as high electrical conductivity, it is necessary to additionally perform a thermal or chemical reduction process in a post process. Limitations in production and application have been shown.
  • partially oxidized graphite instead of the graphite oxide as described above, partially oxidized graphite is used.
  • the term 'partially oxidized graphite' refers to graphite having an element ratio of oxygen to carbon (0 / C atomi c rat io) of 5 to 20%, and graphite as a strong acid as in Hummer's method. It is distinguished from graphite oxide having an element ratio of 25 to 50% of oxygen to carbon produced by oxidation.
  • the reason for using partial oxide instead of graphite oxide in the present invention is as follows.
  • graphene exfoliated from partially oxidized graphite can maintain a substantial portion of graphene inherent properties, such as high electrical conductivity, compared to graphene exfoliated from graphite oxide. Therefore, there is an advantage that the reduction process after graphene peeling is not necessary.
  • the interlayer attraction is weak due to the oxygen—funct ional group introduced into the partially oxidized graphite, which is advantageous for graphene exfoliation by high pressure homogenization and very few defects during exfoliation. There is an advantage that occurs.
  • the degree of oxidation can be easily controlled by adjusting the oxidation conditions of the partially graphite oxide as described below.
  • the oxygen-functional group of the exfoliated graphene forms a repulsive force between the graphenes and thus has excellent dispersibility in various organic solvents. May not be used.
  • a general graphene dispersion solution should use a dispersant (for example, polyvinylpyrrolidone), the graphene film prepared with such a dispersion solution is a factor that increases the sheet resistance by generating a contact resistance between the graphene.
  • a dispersant for example, polyvinylpyrrolidone
  • the present invention will be described in detail. Partially oxidized graphite
  • Partially graphite oxide according to the present invention which is a raw material for the production of partially graphene oxide, has an oxygen ratio of carbon (0 / C atomic ratio) of 5 to 20%.
  • the elemental ratio of oxygen to carbon may be immediately determined by elemental analysis measurement by combust ion or X-ray photoelectron spectrometry analysis.
  • the partially oxidized graphite may be prepared by oxidizing pure graphite (pristine graphite) with at least one acidic solution selected from the group consisting of nitric acid or sulfuric acid.
  • the acidic solution is a mixed solution of nitric acid and sulfuric acid, and nitric acid and sulfuric acid are preferably mixed in a volume ratio of 4: 1 to 1: 4 (nitric acid: sulfuric acid).
  • the acidic solution is a mild oxidation compared to the conventional Huer er's method As conditions, the element ratio of oxygen to carbon can be adjusted within the said range. Oxygen-funct ional groups are introduced into the graphite by the oxidation, thereby weakening the interlayer attraction of the graphite and widening the interlayer spacing. In addition, the degree of oxidation of graphite is affected by silver oxide and oxidation time.
  • the oxidation temperature is. It is preferable that it is 60-1KTC.
  • the oxidation time is preferably 2 to 30 hours.
  • the method may further include recovering and drying the partially oxidized graphite.
  • the recovery step may be carried out by centrifugation, reduced pressure filtration or pressure filtration.
  • the drying step may be carried out by vacuum drying at a temperature of about 30 to 200 ° C. Feed solution
  • the term 'feed solution 1 refers to a solution containing the partially graphite oxide, which is added to a high pressure homogenizer to be described later.
  • the concentration of the partially graphite oxide in the feed solution is preferably 0.05 to 100 mg / mL. If it is less than 0.05 mg / mL concentration is too low, the graphene peeling efficiency is lowered, if it is more than 100 mg / mL concentration is too high may cause problems such as blocking the flow path of the high pressure homogenizer.
  • High pressure homogenization of the feed solution to peel off the graphene from the expanded graphite in the feed solution means that a high pressure is applied to a microchannel having a diameter of a micrometer scale, and a strong shear force is applied to a material passing therethrough.
  • high pressure homogenization is carried out using a high pressure homogenizer which comprises an inlet, an outlet and a microchannel having a diameter of micrometer scale, connecting between the inlet and the outlet.
  • the interlayer attraction is weak due to the oxygen- funct ional group introduced into the partially oxidized graphite, which is advantageous for graphene peeling by high pressure homogenization compared to pure graphite.
  • the fine flow path has a diameter of 50 to 300.
  • the feed solution is preferably introduced into the inlet of the high pressure homogenizer under pressure application of 500 to 3000 bar to pass through the micro-channel.
  • the feed solution passing through the micro-channel can be re-injected into the inlet of the high pressure homogenizer, thereby further peeling off the graphene.
  • the re-insertion process may be performed by repeating 2 to 10 times.
  • the re-feeding process may be performed by using the high pressure homogenizer repeatedly used, or using a plurality of high pressure homogenizers.
  • the re-insertion process may be performed separately for each process, or may be performed continuously.
  • it may further comprise the step of recovering and drying the graphene from the graphene dispersion recovered in the outlet.
  • the recovery step may be carried out by centrifugation, reduced pressure filtration or pressure filtration.
  • the drying step may be carried out by vacuum drying at a temperature of about 30 to 20CTC.
  • the partial graphene oxide prepared according to the present invention has an elemental ratio of oxygen to carbon (0 / C atomi c rat io) of 5 to 20%, which is supported by the elemental ratio of oxygen to carbon of the partial graphite oxide used. .
  • the elemental ratio of oxygen to carbon in the partial graphene oxide can be immediately determined by elemental analysis (combust ion) or XPS analysis (X-ray photoelectron spectrometry analys is). Since the oxygen-funct ional group of the partially graphene oxide forms a repulsive force between graphenes, dispersibility for various organic solvents is excellent. Accordingly, there is an advantage that the dispersant may not be used in graphene applications.
  • the graphene oxide prepared according to the present invention is characterized in that the ratio of D / G according to the Raman spectrum is 0.2 to 0.5.
  • the ratio of D / G according to the Raman spectrum is a result of measuring the low crystalline carbon (di sordered carbon), which means the sp3 / sp2 carbon ratio. Therefore, the larger the D / G ratio value, the higher the degree of change of sp2 carbon of pure graphene into sp3 carbon, which means that the inherent characteristics of pure graphene are weakened.
  • D / G ratio of about 1 indicates a yes not have the specific properties of the pin, such as high electrical conductivity ⁇ .
  • the graphene oxide of the present invention exhibits significantly smaller D / G values than the graphene oxide, and thus maintains a substantial portion of graphene inherent characteristics.
  • the graphene oxide prepared according to the present invention is characterized in that the average size (l ateral size) is 100 nm to 20; At this time, when the particle size of the partial graphene oxide (l ateral si ze) is viewed in the plane having the largest area of each particle of the graphene oxide, a straight line connecting any two points on the plane of each particle It can be defined as the longest distance of the distance.
  • the graphene oxide prepared in accordance with the present invention is characterized in that the thickness is 0.34 nm to 30 nm.
  • the thickness of the partially graphene oxide refers to the number of layers of graphene.
  • graphene peeling efficiency is high, graphene having about 90 layers of layers may be manufactured in a single layer (s ingl el ayer). Can be.
  • the partially prepared graphene oxide may be redispersed in various solvents and used for various purposes.
  • the oxygen-funct ional group is partially oxidized
  • a repulsive force between the graphene excellent dispersibility in various organic solvents may not use a dispersant when used in various applications. Therefore, it is possible to avoid a decrease in graphene properties due to the use of a dispersant, such as an increase in sheet resistance in the graphene film.
  • the conductive paste composition, the conductive ink composition, the heat dissipation substrate forming composition, the electrically conductive composite, the EMI shielding composite or the battery conductive material or slurry, etc. can be used for the use of the existing graphene. have. ⁇
  • Partial graphene oxide and a method for producing the same according to the present invention by high pressure homogenization of the partially oxidized graphite, it is excellent in the peeling efficiency and maintains the graphene inherent properties even in the absence of a post-penetration reduction process, as well as dispersibility in an organic solvent It is excellent in that it can be applied to various fields. [Brief Description of Drawings]
  • FIG. 1 is a raw material BNB90 used in the embodiment of the present invention (FIG. 1 (a) and (b)) and the prepared poGF-75-20 (Fig. 1 (c) and (d)), poGF 90-16 ( The results of XRD spectra of FIGS. 1 (e) and (d)) and poGF 95-3 (FIGS. 1 (g) and (h)) are shown.
  • Fig. 3 shows G-10 (Fig. 3 (a) and (b)) ( poGF-75-20-10 (Fig. 3 (c) and (d)), poGF prepared in Comparative Examples and Examples of the present invention. -85-20-10 ( Figures 3 (e) and (f)), poGF-95-2 ( Figures 3 (g) and (h); ) , and poGF-95_3-10 ( Figures 3 (0 and SEM image of (j)) is shown.
  • FIG. 4 poGF-75-20-10 (Fig. 4 (a) and (b)), poGF-85-20-10 (Fig. 4 (c) and (d)) prepared in the embodiment of the present invention .
  • TEM images of poGF-95-20-10 (Figs. 4 (e) and (f)) and poGF-95-3-10 (Figs. 4 (g) and (h)) are shown.
  • Fig. 6 shows the XPS analysis results of G-10 prepared in Comparative Examples and Examples of the present invention (Fig. 6 (a)) and poGF-75-20-10 (Fig. 6 (b)).
  • 6 (c) shows a table of atomic ratios for each carbon and oxygen.
  • FIG. 7 is poGF-75-20-10 (Fig. 7 (a)), poGF-85-2 (Fig. 7 (b)), poGF-95-20-10 (prepared in Examples of the present invention).
  • Fig. 7 (c)) and the Raman spectrum measurement results of poGF-95-3-10 (Fig. 7 (d)) are shown.
  • FIG. 8 is poGF-75-20-1 (Figs. 8 (a) and 8 (b)) prepared in Comparative Examples and Examples of the present invention, poGF-75-20-3 (Figs. 8 (c) and 8). (d)), poGF-75-20-5 ( Figures 8 (e) and 8 (f)), poGF-75-20-7 ( Figures 8 (g) and 8 (h)), poGF-75-20 SEM images of -10 (Figs. 8G) and 8 (j) and G-10 Figs. 8 (k) and 8 (1)) are shown.
  • Fig. 10 shows poGF-85-20-10 (Fig. 10 (a)), poGF-95-2 ()-10 (Fig. 10 (b)) and poGF-95-3- prepared in Examples of the present invention.
  • the results of visual observation of the degree of redispersion in various solvents of FIG. 10 (FIG. 10 (c)) are shown.
  • Each of the partially oxidized graphite prepared in step 1 was dispersed in 500 mL of distilled water to prepare a partially oxidized graphite feed solution having a concentration of 5 mg / mL.
  • the feed solution was fed to the inlet of the high pressure homogenizer.
  • the high pressure homogenizer has a structure including an inlet of a raw material, an outlet of a peeling result, and a microchannel having a diameter of a micrometer scale between the inlet and the outlet.
  • the feed solution was introduced while applying a high pressure of 1,600 bar through the inlet, and a high shear force was applied while passing through a microchannel having a diameter of 75 kPa.
  • the XRD spectra of the raw material BNB90 and the prepared poGF-75-20, poGF-90-16 and poGF-95-3 used in step 1 of the above example were measured, and the results are shown in FIG. 1.
  • Pure graphite is partially oxidized in a mixed solution of sulfuric acid and nitric acid, and oxygen-functional groups are introduced into graphite by partially oxidizing the basal lanes and edges of graphite. Accordingly, as shown in FIG. 1, a peak shift was observed at a low angle at the initial peak position (26.35 ° ) of BNB90 by the introduced oxygen-function l group or the intercalation of acid ions, and broadening of FWHM was also observed. In addition, as the reaction temperature increases from 75 ° C (Figs.
  • Experimental Example 2 SEM images of the raw material BNB90 and the prepared poGF-75-20 and poGF-95-3 used in Step 1 of the above example were observed, and the results are shown in FIG. 2. As shown in FIG. 2, the partial oxide graphite (FIGS. 2 (c) to 2 (f)) exhibited a somewhat expanded state compared to BNB90 (FIGS. 2 (a) and (b)). Therefore, similarly to the results of Experimental Example 1, it can be confirmed that the interval between the sheets of the partially graphite oxide widened. Experimental Example 3
  • the G-10, poGF-75-20-10, poGF-85--20-10, poGF-95-20-10, and poGF-95-3-10 prepared in Comparative Examples and Examples were prepared by Si wafer. SEM images were observed after drop-casting and drying on the top, and the results are shown in FIG. 3. As shown in Figure 3 (a) and (b), when pure graphite is applied to high pressure homogenization without a dispersant, the surface roughness was observed by the less peeled graphite chunk. On the other hand, as shown in Figure 3 (c) to (j), the partially oxidized graphite is reduced the attraction between the sheets due to the high pressure homogenization is easier, less graphite chunk less peeled to observe the surface roughness is lower It became.
  • the poGF-75 GF 20-10 prepared in Example 5 was diluted 5 times, treated with oxygen-pl asma, spin-coated on a Si wafer, and AFM was measured. The results are shown in FIG. 5. The thicknesses of the graphenes measured at positions 1, 2, and 3 shown in FIG. From this, the overall graphene thickness is expected to be about 5-10 ⁇ .
  • Graphene particle sizes (lateral size) of -1, GP-3, GP-5, GP-7 and GP-10 were analyzed, and the results are shown in FIG. 9.
  • FIG. 9 when high pressure homogenization is applied to pure graphite once, bimodal particle distribution is shown. This is because exfoliation is uniform due to partial rupture of the graphene layer due to the large interlayer attraction of pure graphite. Does not happen.
  • GP-10 34.557 2.305 In general, in the case of peroxide graphene oxide manufactured by Hummer 's method, it shows the characteristics of the insulator, and thus additional thermal or chemical reduction process is required to give electrical conductivity. However, the graphene peeled from the partially oxidized graphite as shown in the present invention can maintain a substantial portion of the electrical conductivity, as shown in Table 5, but showed a low sheet res stance, although the difference depending on the degree of oxidation. In addition, in the case of GP-10, the use of a dispersant is necessary to prepare a stable dispersion solution, and the dispersant increases the sheet resistance of the graphene film by generating contact resistance between graphene, which is shown in Table 5 above.
  • the graphene peeled from the partially oxidized graphite as in the present invention can produce a stable dispersion solution without the use of a dispersant, so that the contact resistance problem caused by the dispersant does not occur, as shown in Table 5 above the low sheet res i Can represent stance.
  • Experimental Example 13
  • PoGF-85-20-10, poGF-95-20-10 and poGF ⁇ 95-3-10 prepared in Example were vacuum filtered to recover graphene and dried at 55 ° C. for 2 days.
  • 1.0 g of each dried graphene was added to 3 mL of the solvent shown in Table 6, followed by bath soni cat ion for 1 hour, and the degree of redispersion was visually observed.
  • the visual criterion was determined based on the amount of graphene not dispersed on the bottom after bath soni cat ion, and the results are shown in FIG. 10 and Table 6 below. Table 6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 부분 산화 그래핀 및 이의 제조 방법에 관한 것으로, 부분 산화 그라파이트를 고압 균질화하여 부분 산화 그래핀을 제조함으로써, 박리 효율이 우수하고 박리 후 환원 공정을 사용하지 않음에도 그래핀 고유의 특성을 유지할 뿐만 아니라 유기 용매에 분산성이 우수하여 다양한 분야에 응용할 수 있다는 특징이 있다.

Description

【발명의 명칭】
부분 산화 그래핀 및 이의 제조 방법
【관련 출원 (들)과의 상호 인용】
본 출원은 2014년 12월 12일자 한국 특허 출원 제 10-2014- 0179764호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
【기술분야】
본 발명은 부분 산화 그래핀 및 이의 제조 방법에 관한 것이다.
【배경기술】
그래핀은 탄소 원자들이 2차원 상에서 sp2 결합에 의한 6각형 모양으로 연결된 배열을 이루면서 탄소 원자층에 대응하는 두께를 갖는 반 금속성 물질이다. 최근, 한 층의 탄소 원자층을 갖는 그래핀 시트의 특성을 평가한 결과, 전자의 이동도가 약 50 , 000 cuiVVs 이상으로서 매우 우수한 전기 전도도를 나타낼 수 있음이 보고된 바 있다. 또한, 그래핀은 구조적, 화학적 안정성 및 뛰어난 열 전도도의 특징을 가지고 있다. 뿐만 아니라 상대적으로 가벼운 원소인 탄소만으로 이루어져 1차원 흑은 2차원 나노패턴을 가공하기가 용이하다. 이러한 전기적, 구조적, 화학적, 경제적 특성으로 인하여 그래핀은 향후 실리콘 기반' 반도체 기술 및 투명전극을 대체할 수 있을 것으로 예측되며, 특히 우수한 기계적 물성으로 유연한 전자소자 분야에 응용이 가능할 것으로 기대된다. 이러한 그래핀의 많은 장점 및 뛰어난 특성으로 인해, 그라파이트 등 탄소계 소재로부터 그래핀을 보다 효과적으로 양산할 수 있는 다양한 방법이 제안 또는 연구되어 왔다. 특히, 그래핀의 우수한 특성이 더욱 극적으로 발현될 수 있도록, 보다 얇은 두께 및 대면적을 갖는 그래핀 시트 또는 플레이크를 용이하게 제조할 수 있는 방법에 관한 연구가 다양하게 이루어져 왔다. 이러한 기존의 그래핀 제조 방법에는 다음과 같은 것들이 있다. 먼저, 테이프를 사용하는 등 물리적인 방법으로 그라파이트로부터 그래핀 시트를 박리하는 방법이 알려져 있다. 그러나, 이러한 방법은 대량 생산 방식에 부적합하며, 박리 수율 또한 매우 낮다. 그라파이트를 산화하는 등의 화학적인 방법으로 박리하거나, 그라파이트의 탄소 층간에 산, 염기, 금속 등을 삽입한 인터칼레이션 화합물 ( int ercal at i on compound)로부터 박리시킨 그래핀 또는 이의 산화물을 얻는 방법이 알려져 있다. 그러나, 전자의 방법은 그라파이트를 산화하여 박리를 진행하고, 이로부터 얻어진 그래핀 산화물을 다시 환원하여 그래핀을 얻는 과정에서, 최종 제조된 그래핀 상에 다수의 결함이 발생할 수 있다. 이는 최종 제조된 그래핀의 특성에 악영향을 미칠 수 있다. 그리고, 후자의 방법 역시 인터칼레이션 화합물을 사용 및 처리하는 등의 공정이 추가로 필요하여 전체적인 공정이 복잡해지고 수율이 충분히 높지 않으며 공정의 경제성이 떨어질 수 있다. 더 나아가, 이러한 방법에서는 대면적의 그래핀 시트 또는 플레이크를 얻기가 용이하지 않다. 이러한 방법들의 문제점으로 인해, 최근에는 그라파이트 등을 액상 분산시킨 상태에서, 초음파 조사 또는 볼밀 등을 사용한 밀링 방법으로 그라파이트에 포함된 탄소 층들을 박리하여 그래핀을 제조하는 방법이 가장 많이 적용되고 있다. 그러나, 이러한 방법들 역시 층분히 얇은 두께 및 대면적을 갖는 그래핀을 얻기가 어렵거나, 박리 과정에서 그래핀 상에 많은 결함이 발생하거나, 박리 수율이 층분치 못하게 되는 등의 문제점이 있었다. 이로 인해, 보다 얇은 두께 및 대면적을 갖는 그래핀 시트 또는 플레이크를 보다 높은 수율로 용이하게 제조할 수 있는 제조 방법이 계속적으로 요구되고 있다.
【발명의 내용】 【해결하려는 과제】
본 발명은 고압 균질화를 이용하여, 균일한 크기의 그래핀을 우수한 효율로 제조할 수 있는, 그래핀의 제조 방법을 제공하기 위한 것이다.
【과제의 해결 수단】
상기 과제를 해결하기 위하여, 본 발명은 하기의 조건을 만족하는 부분 산화 그라파이트를 제공한다:
산소 대 탄소의 원소비 (0/C atomi c rat i o)가 5 내지 20¾이고, 평균 크기 ( lateral si ze)가 100 nm 내지 20 이고,
두께가 0.34 nm 내지 30 nm인,
부분 산화 그래핀.
. 또한, 본 발명은 부분 산화 그라파이트를 포함하는 피드 용액을, 유입부와 유출부와, 유입부와 유출부 사이를 연결하며 마이크로미터 스케일의 직경을 갖는 미세 유로를 포함하는 고압 균질기에 통과시키는 단계를 포함하고, 상기 부분 산화 그라파이트는 산소 대 탄소의 원소비 (0/C atomi c rat io)가 5 내지 20%인, 상기 부분 산화 그래핀의 제조 방법을 제공한다. 본 발명에서 사용하는 용어 '그라파이트 '는, 혹연 또는 석묵이라고도 불리는 물질로서, 수정과 같은 결정구조를 가지는 육방정계에 속하는 광물이며, 혹색을 띠며 금속 광택을 가지는 물질이다. 그라파이트는 판상 구조를 가지는데, 그라파이트의 한겹을 본 발명에서 제조하고자 하는 '그래핀 '이라고 하며, 따라서 그라파이트는 그래핀 제조의 주원료가 된다. 그라파이트로부터 그래핀을 박리하기 위해서는, 적충된 그래핀 간의 π - π 상호 작용을 극복할 수 있는 에너지를 가하여야 하는데, 본 발명에서는 후술할 바와 같이 고압 균질화 방법을 사용한다. 고압 균질화 방법은 강한 전단력을 그라파이트에 가할 수 있어 그래핀 박리 효율이 우수하지만, 고압 균질화에 사용하는 피드 용액 내 그라파이트가 충분히 분산되지 않으면 박리 효율이 떨어지는 문제가 있다. 한편, 고압 균질화의 박리 효율을 높이기 위해서는 그라파이트의 층간 간격이 순수한 그라파이트 보다 넓은 것이 바람직하다. 종래 Hummer ' s method와 같이, 그라파이트를 강산으로 산화시켜 basal plane과 edge에 다량의 하이드록시, 에폭사이드 또는 카르복시기와 같이 oxygen-funct ional group을 도입하여 그래핀 층간 인력을 약화시켜 박리시키는 방법이 알려져 있었다. 그러나, 상기 방법으로 제조되는 산화 그래핀 (graphene oxi de)은 높은 전기전도도와 같은 그래핀 고유의 특성이 대부분 사라지기 때문에, 후공정으로 열적 또는 화학적으로 환원하는 과정이 추가로 필요하여 그래핀의 생산 및 응용에 한계를 나타내었다. 이에 본 발명에서는 상기와 같은 산화 그라파이트 대신, 부분 산화 그라파이트를 사용한다. 본 발명에서 사용하는 용어 '부분 산화 그라파이트'는, 산소 대 탄소의 원소비 (0/C atomi c rat i o)가 5 내지 20%인 그라파이트를 의미하는 것으로, Hummer ' s method와 같이 그라파이트를 강산으로 산화시켜 제조되는 산소 대 탄소의 원소비 25 내지 50%인 산화 그라파이트와 구분된다. 본 발명에서 산화 그라파이트 대신 부분 산화 그라파이트를 사용하는 이유는 다음과 같다. 먼저, 부분 산화 그라파이트로부터 박리된 그래핀은 산화 그라파이트로부터 박리된 그래핀에 비하여 그래핀 고유의 특성, 예컨대 높은 전기 전도도를 상당 부분 유지할 수 있다. 따라서, 그래핀 박리 후 환원 공정이 필요하지 않다는 이점이 있다. 또한, 부분 산화 그라파이트에 도입된 oxygen— funct ional group에 의하여 층간 인력이 약하기 때문에, 순수한 그라파이트에 비하여 고압 균질화에 의한 그래핀 박리에 유리하고 박리시 defect가 매우 적게 발생한다는 이점이 있다. 또한, 후술할 바와 같이 부분 산화 그라파이트의 산화 조건을 조절하여 산화 정도를 쉽게 조절할 수 있다. 또한, 부분 산화 그라파이트에서 박리된 그래핀 또한 부분 산화된 상태이기 때문에, 박리된 그래핀의 oxygen-functional group이 그래핀 간의 반발력을 형성하여 다양한 유기 용매에 분산성이 우수하여 그래핀 웅용시 분산제를 사용하지 않을 수 있다. 예컨대, 일반적인 그래핀 분산 용액은 분산제 (예컨대, 폴리비닐피롤리돈)를 사용하여야 하는데, 이러한 분산 용액으로 제조한 그래핀 필름은 분산제가 그래핀 간의 접촉 저항을 발생시켜 sheet resistance를 높이는 요인이 되는데, 본 발명에서는 이러한 분산제의 사용 없이도 안정적인 그래핀 분산 용액을 제조할 수 있다. 이하, 본 발명을 구체적으로 상세히 설명한다. 부분산화그라파이트
본 발명에 따른 부분 산화 그라파이트는, 부분 산화 그래핀 제조의 원료가 되는 것으로, 산소 대 탄소의 원소비 (0/C atomic ratio)가 5 내지 20%이다. 상기 산소 대 탄소의 원소비는 면소에 의한 원소 분석 (elemental analysis measurement by combust ion) 또는 XPS 분석 (X_ray photoelectron spectrometry analysis)로 즉정할 수 있다. 상기 부분 산화 그라파이트는, 순수한 그라파이트 (pristine graphite)를 질산 또는 황산으로 구성되는 군으로부터 선택되는 어느 하나 이상의 산성 용액으로 산화시켜 제조할 수 있다. 바람직하게는 상기 산성 용액은 질산 및 황산의 흔합 용액이고, 질산 및 황산을 4:1 내지 1:4의 부피비 (질산 :황산)로 흔합한 것이 바람직하다 . 상기 산성 용액은 종래 Hu醒 er's method에 비하여 온화한 산화 조건으로서 산소 대 탄소의 원소비를 상기 범위 내에서 조절할 수 있다. 상기 산화에 의하여 그라파이트에 oxygen- funct ional group이 도입되며, 이에 따라 그라파이트의 층간 인력이 약해져 층간 간격이 넓어지게 된다. 또한, 그라파이트의 산화 정도는 산화 은도 및 산화 시간에 영향을 받는다. 산화 온도가 높을수록, 또한 산화 시간이 길수록 그라파이트의 산화 정도가 높아진다. 본 발명에서는 산소 대 탄소의 원소비를 상기 범위 내에서 조절하기 위하여, 산화 온도는 . 60 내지 1KTC인 것이 바람직하다. 또한, 산화 시간은 2 내지 30시간인 것이 바람직하다. 상기 산화 반응이 종료된 후에는, 부분 산화 그라파이트를 회수 및 건조하는 단계를 추가로 포함할 수도 있다. 상기 회수 단계는 원심 분리, 감압 여과 또는 가압 여과로 진행될 수 있다. 또, 상기 건조 단계는 약 30 내지 200°C의 온도 하에 진공 건조하여 수행할 수 있다. 피드 용액
본 발명에서 사용하는 용어 '피드 용액1이란, 상기 부분 산화 그라파이트를 포함하는 용액으로서, 후술할 고압 균질기에 투입하는 용액을 의미한다. 상기 피드 용액 내 상기 부분 산화 그라파이트의 농도는 0.05 내지 100 mg/mL가 바람직하다. 0.05 mg/mL 미만에서는 농도가 너무 낮아 그래핀 박리 효율이 떨어지고, 100 mg/mL 초과에서는 농도가 너무 높아 고압 균질기의 유로를 막는 등의 문제가 발생할 수 있다. 상기 피드 용액의 용매로는 물, NMP(N-Methyl-2-pyrrondone) , 아세톤, DMF(N,N-dimethyl fonTiamide) , DMS0(Dimethyl sul foxi de) , CHP(Cyc lohexyl-pyrrol idinone) , N12P(N-dodecyl-pyrrol idone) , 벤질 벤조에이트, N8P(N-0ctyl-pyrrol idone), DMEU(dimethyl-imidazol idinone), 사이클로핵사논, DMA(dimethylacetamide) , NMF(N-Methyl Formamide) , 브로모벤젠, 클로로포름 , 클로로벤젠, 벤조니트릴 , 퀴놀린, 벤질 에테르, 에탄올, 이소프로필알코을, 메탄을, 부탄올, 2-에록시 에탄올, 2-부톡시 에탄올, 2-메록시 프로판올, THF(tetrahydrofuran) , 에틸렌글리콜, 피리딘, N-비닐피를리돈, 메틸에틸케톤 (부탄온) , 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으며, 바람직하게는 물을 사용할 수 있다. 앞서 설명한 바와 같이, 상기 부분 산화 그라파이트에 도입된 oxygen-funct i onal group에 의하여 그래핀 간의 반발력을 형성하기 때문에, 피드 용액 내 분산 정도가 우수하다. 따라서, 특별히 분산제를 사용하지 않더라도 고압 균질화의 피드 용액으로 층분히 사용할 수 있다. 고압균질화
상기 피드 용액을 고압 균질화시켜 피드 용액 내 팽창 그라파이트로부터 그래핀을 박리하는 단계이다. 상기 '고압 균질화 (high pressure homogeni zat i on) '는, 마이크로미터 스케일의 직경을 갖는 미세 유로에 고압을 가하여, 이를 통과하는 물질에 강한 전단력 (shear force)을 가하는 것을 의미한다. 일반적으로, 고압 균질화는 유입부와, 유출부와, 유입부와 유출부 사이를 연결하며 마이크로미터 스케일의 직경을 갖는 미세 유로를 포함하는 고압 균질기를 사용하여 수행된다. 앞서 설명한 바와 같이, 부분 산화 그라파이트에 도입된 oxygen- funct ional group에 의하여 층간 인력이 약하기 때문에, 순수한 그라파이트에 비하여 고압 균질화에 의한 그래핀 박리에 유리하다. 또한, 층간 인력이 약하여 그래핀 층이 박리될 때 파열되지 않으므로, 대면적의 그래핀 박리가 가능하다. 상기 미세 유로는 50 내지 300 의 직경을 갖는 것이 바람직하다. 또한, 상기 피드 용액은 500 내지 3000 bar의 압력 인가 하에 상기 고압 균질기의 유입부로 유입되어 미세 유로를 통과하는 것이 바람직하다. 또한, 상기 미세 유로를 통과한 피드 용액을 고압 균질기의 유입부로 재투입할 수 있으며, 이에 따라 그래핀을 추가로 박리할 수 있다. 상기 재투입 과정은 2회 내지 10회 반복하여 수행할 수 있다. 상기 재투입 과정은 사용한 고압 균질기를 반복해서 사용하거나, 또는 복수의 고압 균질기를 、사용하여 수행할 수 있다. 또한, 상기 재투입 과정은 과정별로 구분하여 수행하거나, 또는 연속적으로 수행할 수 있다. 한편, 상기 유출부에서 회수한 그래핀 분산액으로부터 그래핀을 회수 및 건조하는 단계를 추가로 포함할 수도 있다. 상기 회수 단계는 원심 분리, 감압 여과 또는 가압 여과로 진행될 수 있다. 또, 상기 건조 단계는 약 30 내지 20CTC의 온도 하에 진공 건조하여 수행할 수 있다. 부분산화그래핀
상기 본 발명에 따라 제조되는 부분 산화 그래핀은, 산소 대 탄소의 원소비 (0/C atomi c rat io)가 5 내지 20%이며, 이는 사용한 부분 산화 그라파이트의 산소 대 탄소의 원소비에 대옹된다. 부분 산화 그라파이트와 마찬가지로, 부분 산화 그래핀의 산소 대 탄소의 원소비는 연소에 의한 원소 분석 (elemental analysi s measurement by combust ion) 또는 XPS 분석 (X-ray photoelectron spectrometry analys i s )로 즉정할 수 있다. 상기 부분 산화 그래핀의 oxygen-funct ional group이 그래핀 간의 반발력을 형성하기 때문에, 다양한 유기 용매에 대한 분산성이 우수하다. 이에 따라 그래핀 응용시 분산제를 사용하지 않을 수 있다는 이점이 있다. 또한, 상기 본 발명에 따라 제조되는 부분 산화 그래핀은 라만 스펙트럼에 따른 D/G의 비율이 0. 12 내지 0.5라는 특징이 있다. 일반적으로 라만 스펙트럼에 따른 D/G의 비율은 저결정질 탄소 (di sordered carbon)의 측정 결과로서, sp3/sp2 탄소비를 의미한다. 따라서, D/G 비율 값이 클수록 순수 그래핀의 sp2 탄소가 sp3 탄소로 변화된 정도가 높다는 것을 의미하며, 이는 순수 그래핀 고유의 특성이 약화되었음을 의미한다. Hummer 1 s method에 의하여 제조되는 산화 그래핀의 경우, D/G 비율이 약 1을 나타내며 그래핀 고유의 특성, 예컨대 높은 전기 전도도를 가지고 있지 않다. 반면, 본 발명의 부분 산화 그래핀은 이보다 현저히 작은 D/G 값을 나타내며, 따라서 그래핀 고유의 특성을 상당 부분 유지하고 있다. 또한, 상기 본 발명에 따라 제조되는 부분 산화 그래핀은 평균 크기 ( l ateral si ze)가 100 nm 내지 20 ;圆이라는 특징이 있다. 이때, 상기 부분 산화 그래핀의 '크기 ( l ateral s i ze) '란, 부분 산화 그래핀의 각 입자를 가장 넓은 면적을 갖는 평면상에서 보았을 때, 각 입자의 평면상의 임의의 두 점을 연결하는 직선 거리 중 최장 거리로 정의할 수 있다. 앞서 설명한 바와 같이, 부분 산화 그라파이트는 층간 인력이 약하여 그래핀 층이 박리될 때 파열되지 않으므로, 상기와 같은 대면적의 그래핀 박리가 가능하다. 또한, 본 발명에 따라 제조되는 부분 산화 그래핀은 두께가 0.34 nm 내지 30 nm이라는 특징이 있다. 상기 부분 산화 그래핀의 두께는 그래핀의 층 수를 의미하는 것으로, 본 발명에서는 그래핀 박리 효율이 높기 때문에, 단일층 (s ingl e l ayer )에서 약 90충의 층 수를 가지는 그래핀을 제조할 수 있다. 상기 제조되는 부분 산화 그래핀을 다양한 용매에 재분산시켜 다양한 용도로 활용할 수 있다. 특히, oxygen-funct ional group이 부분 산화 그래핀 간의 반발력을 형성하여 다양한 유기 용매에 분산성이 우수하여 다양한 용도로 활용시 분산제를 사용하지 않을 수 있다. 따라서, 분산제 사용에 따른 그래핀 특성의 저하, 예컨대 그래핀 필름에서의 sheet resistance의 증가를 피할 수 있다. 상기 부분 산화 그래핀의 웅용 분야로는, 전도성 페이스트 조성물, 전도성 잉크 조성물, 방열 기판 형성용 조성물, 전기전도성 복합체, EMI 차페용 복합체 또는 전지용 도전재 또는 슬러리 등, 기존 그래핀의 사용 용도로 활용할 수 있다. ·
【발명의 효과】
본 발명에 따른 부분 산화 그래핀 및 이의 제조 방법은, 부분 산화 그라파이트를 고압 균질화함으로써, 박리 효율이 우수하고 박리 후 환원 공정을 사용하지 않음에도 그래핀 고유의 특성을 유지할 뿐만 아니라 유기 용매에 분산성이 우수하여 다양한 분야에 응용할 수 있다는 특징이 있다. 【도면의 간단한 설명】
도 1은, 본 발명의 실시예에 사용한 원료 물질인 BNB90 도 1(a) 및 (b)) 및 제조된 poGF-75-20(도 1(c) 및 (d)), poGF 90-16(도 1(e) 및 (d)) 및 poGF 95-3(도 1(g) 및 (h))의 XRD 스펙트럼을 측정한 결과를 나타낸 것이다.
도 2는, 본 발명의 실시예에 사용한 원료 물질인 BNB90(도 2(a) 및
(b)) 및 제조된 poGF-75-20(도 2(c) 및 (d)) 및 poGF-95-3(도 2(e) 및 (d))의 SEM 이미지를 나타낸 것이다.
도 3은, 본 발명의 비교예 및 실시예에서 제조한 G-10(도 3(a) 및 (b))( poGF-75-20-10(도 3(c) 및 (d)), poGF-85-20-10(도 3(e) 및 (f)), poGF-95— 2으 10(도 3(g) 및 (h);), 및 poGF-95_3-10(도 3(0 및 (j))의 SEM 이미지를 나타낸 것이다.
도 4는, 본 발명의 실시예에서 제조한 poGF-75-20-10(도 4(a) 및 (b)), poGF-85-20-10(도 4(c) 및 (d))ᅳ. poGF-95-20-10(도 4(e) 및 (f)) 및 poGF-95— 3— 10(도 4(g) 및 (h))의 TEM 이미지를 나타낸 것이다.
도 5는, 본 발명의 실시예에서 제조한 poGF-75-20-10의 AFM 측정 결과를 나타낸 것이다.
도 6은, 본 발명의 비교예 및 실시예에서 제조한 G-10 도 6(a)) 및 poGF-75-20-10(도 6(b))의 XPS 분석 결과를 나타낸 것.이다. 또한, 도 6(c)는 각 탄소 및 산소별 원자 비율을 표로 나타낸 것이다.
도 7은, 본 발명의 실시예에서 제조한 poGF-75-20-10(도 7(a)), poGF-85-2으 10(도 7(b)), poGF-95-20-10(도 7(c)) 및 poGF-95-3-10(도 7(d))의 라만 스펙트럼 측정 결과를 나타낸 것이다.
도 8은, 본 발명의 비교예 및 실시예에서 제조한 poGF— 75-20-1 (도 8(a) 및 8(b)), poGFᅳ 75-20— 3(도 8(c) 및 8(d)), poGF-75-20-5(도 8(e) 및 8(f)), poGF-75-20-7(도 8(g) 및 8(h)), poGF-75-20-10(도 8G) 및 8(j)) 및 G-10 도 8(k) 및 8(1))의 SEM 이미지를 나타낸 것이다.
도 9는, 본 발명의 실시예 및 비교예에서 제조한 poGF-75-2으 1, poGF-75-20-3, poGF-75-20-5 , poGF-75-2으 7, poGF-75-20-10, GP-1, GP-3, GP-5, GP-7 및 GP-10의 그래핀 입자 크기 (lateral size)를 분석한 결과를 나타낸 것이다.
도 10은, 본 발명의 실시예에서 제조한 poGF-85-20-10(도 10(a)), poGF-95-2()-10(도 10(b)) 및 poGF-95-3-10(도 10(c))의 다양한 용매에서의 재분산 정도를 육안으로 관찰한 결과를 나타낸 것이다.
'【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다. 실시예
단계 1
순수 그라파이트 (pristine graphite, BNB90) 2.5 g을 ice-cooled 황산 및 질산의 흔합 용액 (황산 대 질산의 부피비 =3:1) 262.5 mL에 넣고 약 500 rpm으로 교반하였다. 이를 오일 배쓰에서 하기 표 1과 같은 은도와 시간으로 반응시켜 순수 그라파이트를 부분 산화시켰다. 반응 완료 후, 상온으로 넁각시킨 다음, ice-cooled 증류수 1L에 서서히 넣었다. 증류수로 희석된 반웅 용액을 진공 여과하여 부분 산화 그라파이트를 회수하고, 100 °c 오븐에서 하룻밤 동안 건조하였다. 반웅 온도 및 반웅 시간에 따라 제조된 부분 산화 그라파이트를 ' poGF- (반응온도) - (반응시간) '으로 하기 표 1과 같이 명명하였다.
【표 1】
Figure imgf000014_0001
단계 2
상기 단계 1에서 제조한 부분 산화 그라파이트 각각을 증류수 500 mL에 분산시켜 농도 5 mg/mL의 부분 산화 그라파이트 피드 용액을 제조하였다. 상기 피드 용액을 고압 균질기의 유입부로 공급하였다. 상기 고압 균질기는 원료의 유입부와, 박리 결과물의 유출부와, 상기 유입부와 유출부 사이를 연결하며 마이크로미터 스케일의 직경을 갖는 미세 유로를 포함하는 구조를 가지고 있다. 상기 유입부를 통하여 1 , 600 bar의 고압을 인가하면서 상기 피드 용액을 유입시켜, 75 卿의 직경을 갖는 미세 유로를 통과시키면서 높은 전단력 (shear force)이 인가되도록 하였다. 유출부로부터 일정량의 샘플을 취하고, 상기 샘플을 제외한 나머지는 고압 균질기의 유입부로 재투입하여 상기 고압 균질화 과정을 반복하였다. 이러한 과정을 계속 반복하였으며, 각각 유출부로부터 취한 샘플을 ' poGF- (반응온도) - (반응시간) - (고압 균질기 통과횟수) '로 명명하였다. 예컨대, poGF-75-20로 고압 균질화 과정을 5회 반복한 경우, 유출부로부터 취한 샘플을 ' poGF-75-20-5 '로 명명하였다. 비교예
순수 그라파이트 (pr i st ine graphi te , BNB90)를 증류수 500 mL에 분산시켜 농도 5 mg/mL의 그라파이트 피드 용액을 제조하였다. 상기 피드 용액을 상기 실시예의 단계 2와 동일하게 고압균질화 과정을 수행하였고, 각 샘플을 'G— (고압 균질기 통과횟수)'로 명명하였다. 또한, 순수 그라파이트 (pristine graphite, BNB90)를 PVP (폴리비닐피를리돈, 중량 평균 분자량: 58K) 0.5 g이 녹아 있는 증류수 500 mL에 분산시켜 농도 5 mg/mL의 그라파이트 피드 용액을 제조하였다. 상기 피드 용액을 상기 실시예의 단계 2와 동일하게 고압균질화 과정을 수행하였고, 각 샘플을 'GP- (고압 균질기 통과흿수)'로 명명하였다. 실험예 1
상기 실시예의 단계 1에서 사용한 원료 물질인 BNB90 및 제조된 poGF-75-20, poGF-90-16 및 poGF-95— 3의 XRD 스펙트럼을 측정하여, 그 결과를 도 1에 나타내었다. 순수 그라파이트를 황산 및 질산의 흔합 용액에서 부분 산화하여, 그라파이트의 basal lane 및 edge를 부분적으로 산화하여 oxygen- functional group이 그라파이트에 도입된다. 이에 따라 도 1에 나타난 바와 같이, 도입된 oxygen- function l group이나 산이온의 intercalation 등에 의하여 BNB90의 초기 peak position(26.35° )에서 low angle로 피크 시프트가 관찰되고, 또한 FWHM의 broadening이 관찰되었다. 또한, 반응 온도가 75°C (도 1(c) 및 1(d))에서 90°C (도 1(e) 및 1(f))로 증가함에 따라 부분 산화 정도가 증가하여 피크 시프트도 더 많이 발생하였다. 반응 시간을 20시간 (도 1(e) 및 1(f))에서 3시간 (도 1(g) 및 1(h))로 단축할 경우, 부분 산화 정도가 감소하여 피크 시프트는 덜 발생하였다. 따라서, 상기 결과로부터 부분 산화에 의한 oxygen-functional group의 도입으로 그라파이트의 시트 간 간격을 넓게 하여 그라파이트의 시트 간 인력을 감소시킬 수 있음을 확인할 수 있다. 실험예 2 상기 실시예의 단계 1에서 사용한 원료 물질인 BNB90 및 제조된 poGF-75-20 및 poGF-95-3의 SEM 이미지를 관찰하였으며, 그 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이, BNB90(도 2(a) 및 (b) )와 비교하면 부분 산화 그라파이트 (도 2(c) 내지 도 2( f ) )는 다소 팽창된 상태를 나타내었다. 따라서, 앞서 실험예 1의 결과와 마찬가지로, 부분 산화 그라파이트의 시트 간 간격이 넓어졌음을 확인할 수 있다. 실험예 3
상기 비교예 및 실시예에서 제조한 G-10 , poGF-75-20-10 , poGF-85- - 20-10, poGF-95-20-10 , 및 poGF-95-3-10 각각을 Si wafer 위에 drop- cast ing하고 건조한 후 SEM 이미지를 관찰하였으며, 그 결과를 도 3에 나타내었다. 도 3(a) 및 (b)에 나타난 바와 같이, 순수 그라파이트를 분산제 없이 고압 균질화에 적용한 경우, 덜 박리된 그라파이트 chunk에 의하여 표면 거칠기가 높게 관찰되었다. 반면, 도 3(c) 내지 (j )에 나타난 바와 같이, 부분 산화된 그라파이트는 시트 간 인력이 감소하여 고압 균질화에 의한 박리가 더 용이하여, 덜 박리된 그라파이트 chunk가 감소하여 표면 거칠기가 낮게 관찰되었다. 또한ᅳ G-10의 경우 박리된 그래핀 표면에 oxygenᅳ funct ional group이 없어 재웅집되는 현상이 관찰되나, 부분 산화 그라파이트를 사용한 경우에는 oxygen- funct ional group에 의한 반발력에 의하여 재응집 없이 안정적인 분산 상태가 유지되었다. 실험예 4
상기 실시예에서 제조한 poGF-75-20-10 , poGF-85-20-10 , poGF-95-20- 10 , 및 poGF— 95-3-10 각각을 10배 회석한 후, Lacey carbon TEM Cu gr i d 위에 dropᅳ cast ing한 후에 건조한 후 TEM 이미지를 관찰하였으며, 그 결과를 도 4에 나타내었다. 도 4에 나타난 바와 같이, 부분 산화 그라파이트를 고압 균질화하여 a few layers의 두께를 갖는 그래핀이 제조되었음을 확인할 수 있었다. 실시예 5
상기 실시예에서 제조한 poGF-75ᅳ 20-10을 5배 희석하고, oxygen- pl asma 처리한 다음, Si wafer 위에 스핀 코팅하고 AFM을 측정하였으며, 그 결과를 도 5에 나타내었다. 도 5에 표시된 1, 2 및 3의 위치에서 측정된 그래핀의 두께는 각각 6.052 nm , 5.260 舰, 4.363 通로 측정되었다. 이로부터 전체적인 그래핀의 두께는 약 5-10皿로 예상된다. 실시예 6
상기 실시예에서 제조한 poGF-75-20-10 , poGF-85-20-10 , poGF-95ᅳ 20- 10 , 및 poGF-95ᅳ 3-10 각각의 원소 함량을 분석하였으며, 그 결과를 하기 표 2에 나타내었다.
【표 2】
Figure imgf000017_0001
상기 표 2에 나타난 바와 같이, 반웅 온도가 증가할수록 산화 정도 (0/C atomi c rat io)가 8.50%에서 12.57%로 약 1.5배 증가함을 확인할 수 있었다. 또한, 같은 반웅 온도 (95°C )에서는 반웅 시간이 증가할수록 산화 정도가 8.27%에서 12.57%로 증가함을 확인할 수 있었다. 상기 결과로부터 부분 산화 반응 조건을 조절함으로써 산화 정도를 용이하게 조절할 수 있음을 확인할 수 있었다. 실험예 7
상기 비교예 및 상기 실시예에서 제조한 G-10 및 poGF-75-20-10의
XPS 분석으로부터, 생성되는 oxygen-funct ional group의 종류와 그 산화도를 분석하였으며, 그 결과를 도 6에 나타내었다. 도 6에 나타난 바와 같이, 주로 생성되는 oxygen-funct ional group은 에폭사이드와 카르복시기인 것을 확인할 수 있었다. 또한, 앞서 실험예 6과 마찬가지로 부분 산화에 의하여 생성되는 탄소의 011^ ( %의 비율 ( (C2+C3)/C1)이 G-10에 비하여 약 6배 높게 나타났으며, 결과적으로 부분 산화에 의하여 효과적으로 oxygen- funct ional group이 도입됨을 확인할 수 있었다. 실시예 8
상기 비교예 및 상기 실시예에서 제조한 G- 10, poGF-75-20-10 , poGF- 85-20-10 , poGF-95-20-10 및 poGF—95— 3-10의 XPS 원소 정량 분석을 하였으며, 그 결과를 하기 표 3에 나타내었다.
【표 3】
Figure imgf000018_0001
상기 표 3에 나타난 바와 같이, 산화 반응 온도가 증가함에 따라 산소 대 탄소의 원소비는 G-10의 1.94%에서 12. 11%까지 약 5.4 내지 6.2배 증가하였다. 또한 산화 반응 시간이 줄어들 경우 산소 대 탄소의 원소비는 12. 11%에서 9.65%로 감소하였다. 따라서, 실험예 6의 원소 분석 결과와 마찬가지로 산화 반응 조건에 따라 산화도가 조절될 수 있음을 확인할 수 있었다. 실험예 9 .
상기 비교예 및 실시예에서 제조한 G-10 , poGF-75-20-10 , poGF-85-
20-10 , poGF-95-20-10 , 및 poGF-95—3— 10의 라만 스펙트럼을 측정하였으며, 그 결과를 도 7에 나타내었으며, 이로부터 계산된 D/G 비율을 하기 표 4에 나타내었다.
【표 4】
Figure imgf000019_0001
종래 알려진 Hummer ' s 제조법에 의하여 제조되는 산화 그라파이트는 라만 스펙트럼의 D/G 비율이 약 1.0에 가까을 정도로 많은 defect가 발생하고, 이러한 산화 그라파이트는 전기 전도성을 상실하게 된다. 그러나 상기 표 4와 같이 부분 산화 그라파이트를 고압 균질화할 경우 산화 그라파이트 대비 매우 적은 D/G rat i o를 나타내고 따라서 defect가 적음을 확인할 수 있다. 또한, 이는 후술할 실험예 12와 같이 이러한 그래핀으로 제조한 필름은 전기 전도도가 높게 나타나는 원인이 된다. 실험예 10
상기 실시예 및 비교예에서 제조한 poGF-75-20— 1, poGF-75-20-3 , poGF-75-20-5 , poGF-75— 20-7, poGF-75-20-10 및 G-10 각각을 Si wafer 위에 drop-cast ing하고 건조한 후 SEM 이미지를 관찰하였으며, 그 결과를 도 8에 나타내었다. 도 8에 나타난 바와 같이, 부분 산화 그라파이트를 고압 균질화로 박리한 경우 1회의 고압 균질화를 적용한 경우에도 G-10에 비하여 보다 우수한 박리 효과가 나타났음을 확인할 수 있었다. 실험예 11
상기 실시예 및 비교예에서 제조한 poGF-75-20-1 , poGF-75-20-3 , poGF-75-20-5 , poGF-75-20-7 , poGF-75-20-10 , GP-1 , GP-3 , GP-5 , GP-7 및 GP-10 각각의 그래핀 입자 크기 ( lateral si ze)를 분석하였으며, 그 결과를 도 9에 나타내었다. 상기 도 9에 나타난 바와 같이, 순수 그라파이트에 고압 균질화를 1회 적용한 경우 bimodal한 입자 분포를 나타내는데, 이는 순수 그라^이트의 층간 인력이 크기 때문에 그래핀 층이 부분 파열되면서 박리가 일어나기 때문에 박리가 균일하게 일어나지 않는다. 반면 부분 산화 그라파이트에 고압 균질화를 1회 적용한 경우 이러한 현상이 관찰되지 않았는데, 이는 부분 산화 그라파이트의 층간 인력이 작아져 그래핀 층이 부분 파열되지 않고 박리가 일어나기 때문이다. 또한, 고압 균질화를 10회 적용한 후 그래핀의 평균 입자 크기 ( l ateral si ze)를 비교하면, GP-10( 1.89 )에 비하여 poGF-75— 20— 10(5.84 zm)가 현저히 크다는 것을 확인할 수 있었다. 상기 결과로부터 부분 산화 그라파이트를 고압 균질화에 적용할 경우 보다 대면적의 그래핀을 박리할 수 있음을 확인할 수 있었다. 실험예 12
상기 실시예 및 비교예에서 제조한 poGF-75-20-10 , poGF-85-2으 10, poGF-95-20-10 , poGF-95-3-10 및 GP-10 각각을 그래핀 농도가 0.2 mg/tnL가 되도록 희석한 다음, 희석액 31.5 tnL를 MO membrane (200 nm pore , 지름 4.5 cm)에 진공 여과하고 55°C에서 2일 동안 건조시켰다. 상기 M0 membrane을 4—point一 probe로 sheet res i stance를 즉정하였으며, 그 결과를 하기 표 5에 나타내었다.
【표 5】
Figure imgf000020_0001
poGF-95-20-10 32.985 2. 143
poGF-95-3-10 10.458 0.226
GP-10 34.557 2.305 일반적으로 Hummer ' s method로 제조되는 과산화된 그래핀 옥사이드의 경우 절연체의 특성을 나타내므로, 전기 전도성을 주기 위하여 추가적으로 열적 또는 화학적인 환원 과정이 필요하다. 그러나, 본 발명과 같이 부분 산화 그라파이트에서 박리된 그래핀은 전기 전도성을 상당 부분 유지할 수 있으며 , 상기 표 5에 나타난 바와 같이 산화 정도에 따라 차이가 있으나 대체로 낮은 sheet res i stance를 나타내었다. 또한, GP-10의 경우 안정적인 분산 용액을 제조하기 위하여 분산제의 사용이 필수적인데, 분산제는 그래핀 간의 접촉 저항을 발생시켜 그래핀 필름의 sheet res i stance를 증가시키며, 이는 상기 표 5에 나타난 GP- 10으로부터도 확인할 수 있다. 반면, 본 발명과 같이 부분 산화 그라파이트에서 박리된 그래핀은 분산제의 사용 없이 안정적인 분산 용액을 제조할 수 있으며, 따라서 분산제에 의한 접촉 저항 문제가 발생하지 않아 상기 표 5에 나타난 바와 같이 낮은 sheet res i stance를 나타낼 수 있다. 실험예 13
상기 실시예에서 제조한 poGF-85-20-10 , poGF-95-20-10 및 poGFᅳ 95- 3-10 각각을 진공 여과하여 그래핀을 회수하고 55°C에서 2일 동안 건조시켰다. 각 건조된 그래핀 1.0 g을 하기 표 6의 용매 3 mL에 넣고 1시간 동안 bath soni cat ion하고, 재분산 정도를 육안으로 관찰하였다. 육안 판단의 기준은 bath soni cat ion 후 바닥에 분산되지 않은 그래핀 잔량을 통하여 판단하였으며, 그 결과를 도 10 및 하기 표 6에 나타내었다. 【표 6】
Figure imgf000021_0001
상기 도 10 및 표 6에 나타난 바와 같이, 산화 정도에 따라 다양한 극성 유기 용매에 대한 분산성이 높아짐을 확인할 수 있었다. 특히, 물, NMP, DMF, DMS0 등의 극성 유기 용매에 대한 분산성이 우수하였고, poGF- 95-20—10의 경우 EtOH, IPA, Acetone, THF 등에서도 분산성이 우수하였다. 상기 결과로부터 산화 정도를 조절하여 그래핀의 용매 분산성을 조절할 수 있음을 확인할 수 있었다.

Claims

【특허청구범위】
【청구항 1】
산소 대 탄소의 원소비 (0/C atomic ratio)가 5 내지 20%이고, 평균 크기 (lateral size)가 100 nm 내지 20 이고,
두께가 0.34皿 내지 30 nm인,
부분 산화 그래핀.
【청구항 2
거 U항에 있어서,
상기 부분 산화 그래핀의 라만 스펙트럼에 따른 D/G의 비율이 0.12 내지 0.5인 것을 특징으로 하는,
부분 산화 그래핀.
【청구항 3]
부분 산화 그라파이트를 포함하는 피드 용액을, 유입부와, 유출부와, 유입부와 유출부 사이를 연결하며 마이크로미터 스케일의 직경을 갖는 미세 유로를 포함하는 고압 균질기에 통과시키는 단계를 포함하고,
상기 부분 산화 그라파이트는 산소 대 탄소의 원소비 (0/C atomic ratio)가 5 내지 20%인,
부분 산화 그래핀 쎄조 방법 .
【청구항 4】
거 13항에 있어서,
상기 부분 산화 그라파이트는, 순수한 그라파이트 (pristine graphite)를 질산 및 황산으로 구성되는 군으로부터 선택되는 어느 하나 이상의 산성 용액으로 산화시켜 제조되는 것을 특징으로 하는,
그래핀 제조 방법 .
【청구항 5]
게 4항에 있어서 상기 산화 시간은 2 내지 30시간인 것을 특징으로 하는, 그래핀 제조 방법.
【청구항 6】
제 3항에 있어서,
상기 피드 용액 내 부분 산화 그라파이트의 농도는 0.05 내지 100 mg/mL 인 것을 특징으로 하는,
제조 방법 .
【청구항 7】
게 3항에 있어서,
상기 피드 용액의 용매는 물, NMP(N-Methy卜 2-pyrrolidone), 아세톤, DMF(N,N-dimethylformamide), DMS0(Dimethyl sulfoxide), CHP(Cyclohexyl- pyrrolidinone), N12P(N-dodecyl-pyrrol idone) , 벤질 벤조에이트, N8P(N- Octyl-pyrrol idone) , DMEU(dimethyl-imidazol idinone) , 사이클로핵사논, DMA(dimethylacetamide), NMF(N-Methyl Formamide), 브로모벤젠, 클로로포름, 클로로벤젠, 벤조니트릴, 퀴놀린, 벤질 에테르, 에탄올, 이소프로필알코을, 메탄을, 부탄을, 2-에록시 에탄올, 2-부록시 에탄을, 2- 메특시 프로판올, THF(tetrahydrofuran), 에틸렌글리콜, 피리딘, N- 비닐피를리돈, 메틸에틸케톤 (부탄은), 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는,
제조 방법 .
【청구항 8】
제 3항에 있어서,
상기 피드 용액 내 부분 산화 그라파이트는 전단력의 인가 하에 상기 미세 유로를 통과하면서 박리되어 그래핀이 제조되는 것을 특징으로 하는, 제조 방법 .
【청구항 9]
제 3항에 있어서,
상기 미세 유로는 50 내지 300 卿의 직경을 갖는 것을 특징으로 하는 제조 방법 .
【청구항 10]
제 3항에 있어서,
상기 피드 용액은 500 내지 3000 bar의 압력 인가 하에 상기 고압 균질기의 유입부로 유입되어 미세 유로를 통과하는 것을 특징으로 하는, 제조 방법 .
【청구항 11】
제 3항에 있어서,
상기 유출부에서 회수되는 회수물을 상기 고압 균질기에 통과시키는 단계를 1회 내지 9회 추가로 반복 수행하는 것을 특징으로 하는,
제조 방법 .
【청구항 12】
제 3항에 있어서,
상기 제조되는 그래핀의 평균 두께는 0.34 내지 30 nm인 것을 특징으로 하는,
제조 방법 .
【청구항 13】
제 3항에 있어서,
상기 제조되는 그래핀의 평균 크기 ( lateral s i ze)는 100 nm 내지 20 μ ηι인 것을 특징으로 하는,
제조 방법 .
PCT/KR2015/013606 2014-12-12 2015-12-11 부분 산화 그래핀 및 이의 제조 방법 WO2016093663A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580061384.0A CN107001047A (zh) 2014-12-12 2015-12-11 部分氧化石墨烯及其制备方法
US15/518,525 US20170217775A1 (en) 2014-12-12 2015-12-11 Partially oxidized graphene and method for preparing same
EP15867284.0A EP3190084A4 (en) 2014-12-12 2015-12-11 Partially oxidized graphene and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0179764 2014-12-12
KR1020140179764A KR20160071939A (ko) 2014-12-12 2014-12-12 부분 산화 그래핀 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2016093663A1 true WO2016093663A1 (ko) 2016-06-16

Family

ID=56107758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013606 WO2016093663A1 (ko) 2014-12-12 2015-12-11 부분 산화 그래핀 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US20170217775A1 (ko)
EP (1) EP3190084A4 (ko)
KR (1) KR20160071939A (ko)
CN (1) CN107001047A (ko)
WO (1) WO2016093663A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879337B (zh) * 2017-11-14 2023-12-26 常州第六元素材料科技股份有限公司 制备氧化石墨烯的方法及其设备
CN107857257B (zh) * 2017-11-23 2019-11-19 深圳市大族元亨光电股份有限公司 单层石墨烯分散液的制备方法
US11411222B2 (en) * 2018-01-26 2022-08-09 Korea Advanced Institute Of Science And Technology Conductive agent, slurry for forming electrode including same, electrode, and lithium secondary battery manufactured using same
CN108628038B (zh) * 2018-06-28 2021-02-26 京东方科技集团股份有限公司 发光晶体管及其发光方法、阵列基板和显示装置
CA3115550A1 (en) * 2018-10-08 2020-04-16 University Of Wollongong Dispersible edge functionalised graphene platelets
KR102123592B1 (ko) 2018-10-11 2020-06-16 국방과학연구소 Hemt 소자 및 이의 제조 방법
GB2581355B (en) * 2019-02-13 2022-11-30 Altered Carbon Ltd Aqueous ink comprising polyvinyl pyrrolidone and graphene material
WO2020229882A1 (en) * 2019-05-16 2020-11-19 Arcelormittal A method for the manufacture of reduced graphene oxide from expanded kish graphite
KR20210053059A (ko) * 2019-11-01 2021-05-11 주식회사 엘지화학 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
CN113845110A (zh) * 2020-06-28 2021-12-28 东丽先端材料研究开发(中国)有限公司 防腐涂料用氧化石墨烯及其制备方法,和防腐涂料
US20220264775A1 (en) * 2020-11-17 2022-08-18 The Regents Of The University Of California Electromagnetic and thermal shields with low-dimensional materials
KR20220125032A (ko) 2021-03-04 2022-09-14 국방과학연구소 Hemt 소자 및 이의 제조 방법
CN114572969B (zh) * 2022-02-11 2023-08-18 中国科学技术大学先进技术研究院 微流控反应系统及制备还原氧化石墨烯的方法
CN114572977B (zh) * 2022-02-11 2023-07-18 中国科学技术大学先进技术研究院 光谱监测制备氧化石墨烯的系统及方法
CN115139578A (zh) * 2022-06-08 2022-10-04 安徽宇航派蒙健康科技股份有限公司 石墨烯导热膜及其制备方法
CN115057435B (zh) * 2022-08-03 2023-07-21 山东海科创新研究院有限公司 一种循环利用浓硫酸制备氧化石墨烯的方法及其所得产品的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110189452A1 (en) * 2009-07-31 2011-08-04 Vorbeck Materials Corp. Crosslinked Graphene and Graphite Oxide
KR20130060661A (ko) * 2011-11-30 2013-06-10 한국전기연구원 양이온-파이 상호작용에 의해 고농도 분산된 산화 그래핀 환원물 및 그 제조방법
US20130266501A1 (en) * 2011-07-05 2013-10-10 Rutgers, The State University Of New Jersey Direct Production of Large and Highly Conductive Low-Oxygen Graphene Sheets and Monodispersed Low-Oxygen Graphene Nanosheets
US20140079932A1 (en) * 2012-09-04 2014-03-20 The Trustees Of Princeton University Nano-graphene and nano-graphene oxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216541B2 (en) * 2008-09-03 2012-07-10 Nanotek Instruments, Inc. Process for producing dispersible and conductive nano graphene platelets from non-oxidized graphitic materials
US9162894B2 (en) * 2011-04-28 2015-10-20 Ningbo Institute Of Material Technology And Engineering, Chinese Academy Of Sciences Method for preparing graphene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110189452A1 (en) * 2009-07-31 2011-08-04 Vorbeck Materials Corp. Crosslinked Graphene and Graphite Oxide
US20130266501A1 (en) * 2011-07-05 2013-10-10 Rutgers, The State University Of New Jersey Direct Production of Large and Highly Conductive Low-Oxygen Graphene Sheets and Monodispersed Low-Oxygen Graphene Nanosheets
KR20130060661A (ko) * 2011-11-30 2013-06-10 한국전기연구원 양이온-파이 상호작용에 의해 고농도 분산된 산화 그래핀 환원물 및 그 제조방법
US20140079932A1 (en) * 2012-09-04 2014-03-20 The Trustees Of Princeton University Nano-graphene and nano-graphene oxide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190084A4 *
YI, MIN ET AL.: "A Fluid Dynamics Route for Producing Graphene and its Analogues", CHINESE SCIENCE BUILETIN, vol. 59, no. 16, 4 April 2014 (2014-04-04), pages 1794 - 1799, XP008180820 *

Also Published As

Publication number Publication date
US20170217775A1 (en) 2017-08-03
KR20160071939A (ko) 2016-06-22
EP3190084A4 (en) 2017-12-13
EP3190084A1 (en) 2017-07-12
CN107001047A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2016093663A1 (ko) 부분 산화 그래핀 및 이의 제조 방법
KR101666478B1 (ko) 그래핀의 제조 방법과, 그래핀의 분산 조성물
TWI543932B (zh) 石墨烯之製備方法
EP2616392B1 (en) Electrochemical process for synthesis of graphene
Dao et al. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene
KR101818703B1 (ko) 고속 균질화 전처리 및 고압 균질화를 이용한 그래핀의 제조 방법
WO2015099457A1 (ko) 그래핀의 제조 방법
WO2015099378A1 (ko) 그래핀의 제조 방법과, 그래핀의 분산 조성물
KR20210098961A (ko) 분산가능한 에지 관능화된 그래핀 플레이틀렛
KR102068258B1 (ko) 그래핀의 제조 방법
JP7252260B2 (ja) 電極グラファイトスクラップから酸化グラフェンを製造するための方法
KR102086764B1 (ko) 그래핀의 제조 방법
Das et al. A Comparative Analysis of Structural and Electrochemical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) Synthesized by Using Hummer's and Modified Hummer's Method.
US10619249B2 (en) Method for producing noble metal nanocomposites
Lavanya et al. Synthesis and characterization of nickel oxide/graphene sheet/graphene ribbon composite
KR20200068955A (ko) 산화그래핀의 분급 방법 및 그에 의해 분급된 산화그래핀
JP6805440B2 (ja) 層状物質を改質する方法およびそのための装置、ならびに改質されたグラファイトおよびそれを用いた二次電池用電極材料
Al-Timimi et al. Preparation of graphene with few layers and large scalability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867284

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015867284

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015867284

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15518525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE