WO2016093180A1 - フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置 - Google Patents

フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置 Download PDF

Info

Publication number
WO2016093180A1
WO2016093180A1 PCT/JP2015/084212 JP2015084212W WO2016093180A1 WO 2016093180 A1 WO2016093180 A1 WO 2016093180A1 JP 2015084212 W JP2015084212 W JP 2015084212W WO 2016093180 A1 WO2016093180 A1 WO 2016093180A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
fluororesin
coating film
peak
measurement data
Prior art date
Application number
PCT/JP2015/084212
Other languages
English (en)
French (fr)
Inventor
陽司 中島
直文 大島
佐藤 秀一
雄介 菅原
一裕 新田
豪明 荒井
潔 笠原
俊 齋藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201580067801.2A priority Critical patent/CN107110836B/zh
Publication of WO2016093180A1 publication Critical patent/WO2016093180A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather

Definitions

  • the present invention relates to a fluororesin paint or fluororesin coating film evaluation method, an evaluation information calculation device, an evaluation information presentation system, and a terminal device.
  • fluororesin coating films are superior in weather resistance compared to other resin coating films.
  • the fluororesin paint and the fluororesin coating film differ in the weather resistance obtained depending on the composition.
  • the component of the fluororesin coating film is a pyrolysis gas chromatography method (hereinafter also referred to as pyrolysis GC method, GC is an abbreviation for Gas Chromatography) or pyrolysis gas chromatography mass spectrometry (hereinafter pyrolysis GC / MS). MS is an abbreviation for Mass Spectrometry).
  • pyrolysis GC method a pyrolysis gas chromatography method
  • MS pyrolysis gas chromatography mass spectrometry
  • MS is an abbreviation for Mass Spectrometry
  • component analysis by the pyrolysis GC method and pyrolysis GC / MS method it is necessary to find the components of the fluororesin from a plurality of peaks appearing in the chromatogram (in the pyrolysis GC / MS method, mass chromatogram). That is, it is difficult for those who have little experience in component analysis to analyze the components of the fluororesin paint or the fluororesin coating film. Therefore
  • Patent Document 1 discloses a method of identifying a thermal decomposition product of a sample polymer using a database that stores a retention index related to a known polymer.
  • the retention index obtained by pyrolysis gas chromatography or pyrolysis gas chromatography mass spectrometry does not necessarily match the retention index recorded in the database.
  • the identification support system disclosed in Patent Document 1 supports the identification of a sample polymer by calculating the degree of match between the sample polymer and the known polymer. Therefore, when a degree of matching that can be confident that the fluororesin paint or fluororesin coating film is a known paint or coating film is not obtained, depending on the method disclosed in Patent Document 1, the fluororesin paint or fluorine The weather resistance of the resin coating cannot be evaluated.
  • An object of the present invention is to provide a fluororesin paint or a fluororesin coating film that can evaluate the weather resistance of the fluororesin paint or the fluororesin paint film even when it is difficult to identify the fluororesin paint or the fluororesin paint film.
  • An evaluation method, an evaluation information calculation device, an evaluation information presentation system, and a terminal device are provided.
  • the first aspect is a measurement data acquisition step for acquiring measurement data of a sample that is a fluororesin paint or a fluororesin coating film by pyrolysis gas chromatography or pyrolysis gas chromatography mass spectrometry, and recorded in a storage device Based on the data relating to the peak of the thermal decomposition product derived from the structural unit based on at least one of vinyl ester and vinyl ether and the measurement data, the presence or absence and amount of the structural unit based on at least one of vinyl ester and vinyl ether in the sample Based on the specific monomer estimation step for estimating at least one, the data on the peak of the thermal decomposition product derived from the structural unit based on the monomer having a fluorine atom recorded in the storage device, and the measurement data, fluorine of the sample Fluorine atom content estimation to estimate atom content And step is the evaluation method of a fluorine resin paint or a fluororesin coating films having an evaluation step of evaluating the sample based on the estimated result and the fluor
  • the second aspect is the spectral data obtained by spectroscopically analyzing the light absorbed or emitted by the known fluororesin paint or the known fluororesin coating film recorded in the storage device in the first aspect or Measurement data of fluororesin paint or known fluororesin coating film by pyrolysis gas chromatography or pyrolysis gas chromatography mass spectrometry, spectral data obtained by spectroscopic analysis of light absorbed or emitted by the sample, or acquisition of measurement data
  • a similarity specifying step for specifying a similarity with the measurement data acquired in the step, and in the evaluation step, an estimation result of the specific monomer estimation step, a specification result of the similarity specification step, and a fluorine atom content Evaluation method of fluororesin paint or fluororesin coating film to evaluate the sample based on It is.
  • the third aspect further includes a similar paint specifying step for specifying the known fluororesin paint or the known fluororesin coating film having the highest degree of similarity specified in the similarity specifying step in the second aspect. And having the estimation result of the specific monomer estimation step and the fluorine atom content in the evaluation step, the known fluororesin paint specified by the similar paint specification step or the vinyl ester and vinyl ether of the known fluororesin coating film.
  • a fluororesin paint or a fluororesin coating film evaluation method for evaluating the sample by comparing the presence / absence and / or amount of a structural unit based on at least one of the above and the fluorine atom content.
  • a fourth aspect is any one of the first to third aspects, wherein the measurement data is measurement data obtained by pyrolysis gas chromatography mass spectrometry of the sample, and the data relating to the peak includes a peak.
  • This is a method for evaluating a fluororesin paint or a fluororesin coating film including a physical quantity related to the mass of the pyrolysis product to be produced and a threshold of peak intensity.
  • a fifth aspect is any one of the first to third aspects, wherein the measurement data is measurement data obtained by pyrolysis gas chromatography of the sample, and the data related to the peak is heat that causes a peak.
  • This is a method for evaluating a fluororesin paint or a fluororesin coating film including the time at which a decomposition product is detected and a threshold of peak intensity.
  • a sixth aspect is a peak of a thermal decomposition product derived from a structural unit based on a monomer having the fluorine atom in the measurement data in the fluorine atom content estimation step. This is a method for evaluating a fluororesin coating material or a fluororesin coating film, which estimates the fluorine atom content of the sample based on an intensity threshold.
  • a seventh aspect is the fluororesin paint or fluororesin coating according to any one of the first to sixth aspects, wherein the fluorine atom-containing monomer is at least one of tetrafluoroethylene and chlorotrifluoroethylene. This is a film evaluation method.
  • an eighth aspect is any one of the first to seventh aspects, wherein the fluororesin paint or the fluororesin coating film is a road bridge, a footbridge, a waterway bridge, a water pipe bridge, an overpass bridge, an overland bridge, a railway bridge.
  • the fluororesin paint or the fluororesin coating film is a waterway bridge, a railway bridge, a chimney, a tank, a power transmission tower, a communication tower, an antenna, a pillar, an outer wall of a building structure, a rooftop, and a building member.
  • the tenth aspect includes a measurement data acquisition unit that acquires measurement data of a sample that is a fluororesin paint or a fluororesin coating film by pyrolysis gas chromatography or pyrolysis gas chromatography mass spectrometry, and vinyl ester and vinyl ether.
  • Specific monomer peak storage device for storing data related to the peak of the thermal decomposition product derived from the structural unit based on at least one of the above, and data related to the peak of the thermal decomposition product derived from the structural unit based on the monomer having a fluorine atom And the sample based on the measurement data and the data related to the peak of the thermal decomposition product derived from the structural unit based on at least one of vinyl ester and vinyl ether recorded in the specific monomer peak storage device Vinyl esters and vinyl ethers A specific monomer estimator for estimating the presence / absence and / or amount of a constituent unit based on at least one, and a peak of a thermal decomposition product derived from a constituent unit based on a monomer having a fluorine atom recorded in the fluorine peak storage device It is an information calculation apparatus for evaluation provided with the fluorine atom content estimation part which estimates the fluorine atom content of the sample based on data and the measurement data.
  • an eleventh aspect is the recording part according to the tenth aspect, wherein the specific monomer peak storage device records new data relating to a peak of a thermal decomposition product derived from a structural unit based on at least one of vinyl ester and vinyl ether. It is the information calculation device for evaluation further provided with.
  • a twelfth aspect includes the evaluation information calculation apparatus according to the tenth aspect or the eleventh aspect and a terminal apparatus, and the terminal apparatus is configured to measure the sample by pyrolysis gas chromatography or pyrolysis gas chromatography mass spectrometry.
  • a measurement data generation unit that generates measurement data, a transmission unit that transmits the measurement data to the evaluation information calculation device, and a structural unit based on at least one of vinyl ester and vinyl ether from the evaluation information calculation device
  • a receiving unit that receives information on the estimation result of at least one of the presence / absence and amount and the fluorine atom content, and a presentation unit that presents information used for evaluation of the sample based on the information received by the receiving unit It is the information presentation system for evaluation with which it is provided.
  • a thirteenth aspect includes a measurement data generation unit that generates measurement data of a sample that is a fluororesin paint or a fluororesin coating film by pyrolysis gas chromatography or pyrolysis gas chromatography mass spectrometry, and the measurement data From the transmitter for transmitting to the evaluation information calculation device and the evaluation information calculation device of the tenth or eleventh aspect, at least one of the presence and the amount of the structural unit based on at least one of vinyl ester and vinyl ether in the sample
  • the terminal device includes a receiving unit that receives information on an estimation result and a fluorine atom content, and a presentation unit that presents information used for evaluating the sample based on the information received by the receiving unit.
  • a measurement data generation step for generating measurement data of a sample that is a fluororesin paint or a fluororesin coating film by pyrolysis gas chromatography or pyrolysis gas chromatography mass spectrometry; From the transmitting step for transmitting to the evaluation information calculation device, and from the evaluation information calculation device of the tenth or eleventh aspect, at least one of the presence and amount and the amount of the structural unit based on at least one of vinyl ester and vinyl ether in the sample
  • An evaluation method for a fluororesin paint or a fluororesin coating film comprising: a reception step for receiving information on an estimation result and a fluorine atom content; and an evaluation step for evaluating the sample based on the received information.
  • the weather resistance of the fluororesin paint or the fluororesin coating can be evaluated even when it is difficult to identify the fluororesin paint or the fluororesin coating.
  • FIG. 1 is a schematic diagram illustrating a configuration of an evaluation information presentation system 1 according to the first embodiment.
  • the evaluation information presentation system 1 provides information used for evaluating the sample S that is a fluororesin paint or a fluororesin coating film based on Raman spectroscopy and pyrolysis GC / MS.
  • the information presentation system for evaluation 1 is similar to a known fluororesin paint or fluororesin coating film and the sample S, vinyl ester, vinyl ether, tetrafluoroethylene (hereinafter also referred to as TFE) of the sample S.
  • TFE vinyl ester, vinyl ether, tetrafluoroethylene
  • CTFE chlorotrifluoroethylene
  • the evaluation information presentation system 1 includes a terminal device 10 and an evaluation information calculation device 20.
  • the terminal device 10 and the evaluation information calculation device 20 are connected via a network N.
  • An example of the network N is the Internet.
  • the terminal device 10 performs an analysis process related to the Raman spectroscopy and an analysis process related to the pyrolysis GC / MS method on the sample S. Further, the terminal device 10 displays information used for the evaluation of the sample S generated by the evaluation information calculation device 20.
  • the evaluator E who evaluates the sample S evaluates the weather resistance of the sample S based on the information displayed on the terminal device 10. Since the evaluator E evaluates the sample S collected at the site where the fluororesin paint is used, the terminal device 10 is preferably portable.
  • the evaluation information calculation device 20 calculates information used for the evaluation of the sample S based on the measurement data generated by the terminal device 10.
  • FIG. 2 is a schematic diagram illustrating a configuration of the terminal device 10 according to the first embodiment.
  • the terminal device 10 includes a storage space 101, a Raman spectroscopic device 102, a pyrolysis GC / MS device 103, a calculation device 104, a communication device 105, and a display device 106.
  • the storage space 101 is a space for storing the sample S.
  • the Raman spectroscopic device 102 measures scattered light of the sample S due to Raman scattering.
  • the Raman spectroscopic device 102 passes through a laser device 121 that irradiates a sample S accommodated in the accommodation space 101 with laser light, a filter 122 that allows light scattered by Raman scattering out of light scattered by the sample S of the laser light, and a filter 122.
  • a detector 124 for detecting the intensity of the light dispersed by the monochromator 123.
  • the Raman spectroscopic device 102 is an example of a measurement data generation unit.
  • the filter 122 May cut scattered light due to Rayleigh scattering.
  • the pyrolysis GC / MS apparatus 103 generates a mass chromatogram of the sample S.
  • the pyrolysis GC / MS device 103 includes a pyrolysis device 131, a gas chromatograph 132, and a mass spectrometer 133.
  • the thermal decomposition apparatus 131 thermally decomposes the sample S by heating the sample S accommodated in the accommodation space 101.
  • the gas chromatograph 132 separates the thermal decomposition product of the sample S.
  • the mass spectrometer 133 ionizes the decomposition product eluted from the gas chromatograph 132 and measures the peak intensity for each m / z value.
  • the m / z value is an example of a physical quantity related to mass.
  • the pyrolysis GC / MS device 103 is an example of a measurement data generation unit.
  • the computing device 104 generates measurement data based on the measurement results of the Raman spectroscopic device 102 and the pyrolysis GC / MS device 103.
  • the communication device 105 transmits the measurement data generated by the arithmetic device 104 to the evaluation information calculation device 20 via the network N. Further, the communication device 105 receives the evaluation information from the evaluation information calculation device 20 via the network N.
  • the communication device 105 is an example of a transmission unit and a reception unit.
  • the display device 106 displays the evaluation information received by the communication device 105.
  • the display device 106 is an example of a presentation unit.
  • FIG. 3 is a schematic diagram illustrating a configuration of the evaluation information calculation apparatus 20 according to the first embodiment.
  • the evaluation information calculation apparatus 20 includes a measurement data acquisition unit 201, a database 202, a recording unit 203, an identification unit 204, an ester estimation unit 205, an ether estimation unit 206, a fluoroolefin estimation unit 207, and an evaluation information output unit 208.
  • the measurement data acquisition unit 201 acquires measurement data of the sample S measured by the Raman spectroscopy method and pyrolysis GC / MS method measured by the terminal device 10 via the network N.
  • the database 202 stores a paint table 221, an ester peak table 222, an ether peak table 223, and a fluorine peak table 224.
  • the paint table 221 includes Raman spectra data of known fluororesin paints and fluororesin coating films that are recognized to have a certain weather resistance, presence / absence of vinyl ester, vinyl ether, TFE, and CTFE, and vinyl ester, vinyl ether, TFE, CTFE. And the fluorine atom content and the weather resistance rank.
  • the ester peak table 222 stores data relating to peaks of thermal decomposition products derived from structural units based on vinyl esters.
  • the database 202 is an example of an ester peak storage device that stores data relating to the peak of the thermal decomposition product derived from the structural unit based on the vinyl ester.
  • the ether peak table 223 stores data relating to peaks of thermal decomposition products derived from structural units based on vinyl ether. That is, the database 202 is an example of an ether peak storage device that stores data related to the peak of the thermal decomposition product derived from the structural unit based on vinyl ether.
  • the ester peak table 222 and the ether peak table 223 are both examples of specific monomer peak storage devices.
  • the fluorine peak table 224 stores data relating to the peak of the thermal decomposition product derived from the structural unit based on the fluoroolefin (monomer having a fluorine atom). That is, the database 202 is an example of a fluorine peak storage device that stores data relating to the peak of the thermal decomposition product derived from the structural unit based on the monomer having a fluorine atom. In the present embodiment, the data relating to the peak of the thermal decomposition product is data in which the m / z value of the thermal decomposition product is associated with the threshold value of the peak intensity.
  • the database 202 is an example of a storage device.
  • the peak intensity threshold is a threshold for determining whether or not a peak exists in the mass chromatogram by comparing with the intensity appearing in the mass chromatogram.
  • the peak intensity threshold is represented by a ratio with respect to a reference peak, for example.
  • the recording unit 203 includes Raman spectrum data of fluororesin paint or fluororesin coating newly recognized as having a certain weather resistance, presence / absence of vinyl ester, vinyl ether, TFE and CTFE, vinyl ester, vinyl ether, TFE, CTFE and The input of the fluorine atom content and the weather resistance rank is received, and the data is recorded in the paint table 221.
  • the recording unit 203 receives input of new data related to the peak of the thermal decomposition product derived from the structural unit based on the vinyl ester, and records the data in the ester peak table 222.
  • the recording unit 203 receives input of new data related to the peak of the thermal decomposition product derived from the structural unit based on vinyl ether, and records the data in the ether peak table 223.
  • the identification unit 204 compares the measurement data of the sample S obtained by the Raman spectroscopy obtained by the measurement data acquisition unit 201 with the Raman spectrum data stored in the paint table 221, and the sample S is a known fluororesin paint or fluororesin coating. It is determined whether or not it is a film.
  • the ester estimation unit 205 uses the measurement data of the sample S obtained by the pyrolysis GC / MS method acquired by the measurement data acquisition unit 201 and the peak of the pyrolysis product derived from the structural unit based on the vinyl ester stored in the ester peak table 222. It is compared with such data, and it is determined whether or not the sample S contains a structural unit based on vinyl ester.
  • the ester estimation unit 205 estimates the content of the structural unit based on the vinyl ester in the sample S.
  • the ether estimation unit 206 relates to the measurement data of the sample S by the pyrolysis GC / MS method acquired by the measurement data acquisition unit 201 and the peak of the pyrolysis product derived from the structural unit based on vinyl ether stored in the ether peak table 223. The data is compared to determine whether or not the sample S contains a structural unit based on vinyl ether.
  • the ether estimation unit 206 estimates the content of the structural unit based on vinyl ether in the sample S. That is, the ester estimation unit 205 and the ether estimation unit 206 are both examples of the specific monomer estimation unit.
  • the fluoroolefin estimation unit 207 uses the measurement data of the sample S obtained by the pyrolysis GC / MS method acquired by the measurement data acquisition unit 201 and the peak of the pyrolysis product derived from the structural unit based on TFE stored in the fluorine peak table 224. This data is compared with the data, and it is determined whether or not the sample S includes a structural unit based on TFE. In addition, the fluoroolefin estimation unit 207 estimates the content of the structural unit based on TFE in the sample S.
  • the fluoroolefin estimation unit 207 includes the measurement data of the sample S obtained by the pyrolysis GC / MS method acquired by the measurement data acquisition unit 201 and the pyrolysis product derived from the structural unit based on CTFE stored in the fluorine peak table 224. It is compared with the data concerning the peak, and it is determined whether or not the sample S includes a structural unit based on CTFE. In addition, the fluoroolefin estimation unit 207 estimates the content of the structural unit based on CTFE in the sample S.
  • the fluoroolefin estimation unit 207 uses the measurement data of the sample S obtained by the pyrolysis GC / MS method acquired by the measurement data acquisition unit 201 and the data related to the peak of the pyrolysis product derived from the structural unit based on TFE and CTFE. Based on this, the fluorine atom content of sample S is estimated.
  • the evaluation information output unit 208 transmits the calculation results of the identification unit 204, ester estimation unit 205, ether estimation unit 206, and fluoroolefin estimation unit 207 to the terminal device 10 via the network N.
  • FIG. 4 is a flowchart showing the operation of the terminal device 10 according to the first embodiment.
  • 5, 6 and 7 are flowcharts showing the operation of the evaluation information calculation apparatus 20 according to the first embodiment.
  • the evaluator E goes to the site where the fluororesin paint is used with the terminal device 10 and collects a sample S that is a fluororesin paint or a fluororesin coating film.
  • the evaluator E stores the collected sample S in the storage space 101 of the terminal device 10.
  • the evaluator E activates the terminal device 10 when the sample S is accommodated in the accommodation space 101.
  • the laser device 121 irradiates the sample S accommodated in the accommodation space 101 with laser light (step S101 in FIG. 4). At this time, as the sample S accommodated in the accommodating space 101, the accuracy of the obtained spectrum data is improved by using the sample S from which at least one of the solvent, the pigment, and other additives has been previously removed by the component separation process. Can be made.
  • the terminal device 10 may generate spectrum data for both the sample S from which the additive has been removed and the sample S from which the additive has not been removed. When the sample S is irradiated with laser light, a plurality of types of scattered light are generated from the sample S.
  • the sample S is irradiated with laser light to generate scattered light due to Rayleigh scattering, scattered light due to Raman scattering, and other scattered light.
  • the scattered light enters the monochromator 123 through the filter 122.
  • the filter 122 passes the scattered light due to the Raman scattering among the scattered light, the scattered light due to the Raman scattering is incident on the monochromator 123.
  • the light incident on the monochromator 123 is split for each wavelength. The split light enters the detector.
  • the detector 124 detects the intensity of the light incident from the monochromator 123, and generates spectral data indicating the relationship between the wavelength and the light intensity (step S102).
  • the arithmetic device 104 acquires spectrum data that is measurement data from the detector 124, and transmits the spectrum data to the evaluation information calculation device 20 via the communication device 105 (step S103).
  • the measurement data acquisition unit 201 of the evaluation information calculation device 20 receives the spectrum data (step S201 in FIG. 5).
  • the identifying unit 204 calculates the similarity between the received spectrum data and each of the plurality of spectrum data recorded in the paint table 221 (step S202).
  • the similarity of spectrum data can be obtained, for example, by a peak position difference and a peak intensity ratio.
  • the identification unit 204 refers to the paint table 221 and identifies a known paint or paint film having the highest degree of similarity in spectrum data (step S204).
  • the identification unit 204 determines whether or not the similarity of the spectrum data with the specified known paint or coating film is within a predetermined doubt range (step S204).
  • the doubt range is a range of values that are equal to or less than the maximum value of similarity and greater than a threshold value that determines that the sample S does not match any known paint or coating film.
  • the doubt range is a range of similarity in which the sample S may match a known paint or coating film.
  • the evaluation information output unit 208 determines the highest similarity among the spectrum data. The higher one is transmitted to the terminal device 10 (step S205).
  • the evaluation information output unit 208 determines the similarity of the spectrum data. The highest one of them and an instruction to acquire the chromatogram of the sample S are transmitted to the terminal device 10 (step S206).
  • the communication device 105 of the terminal device 10 receives the similarity (step S104 in FIG. 4).
  • the arithmetic device 104 displays the similarity received by the communication device 105 on the display device 106 (step S105).
  • the evaluator E evaluates the weather resistance of the sample S based on the similarity displayed on the display device 106. Specifically, if the evaluator E is out of the doubt range (below the threshold), the sample S does not match any of the known paints and coatings that are recognized as having a certain weather resistance. Evaluate that S does not have a certain weather resistance. The evaluator E holds the evaluation of the weather resistance of the sample S when the similarity is within the doubt range.
  • the arithmetic device 104 determines whether or not the communication device 105 has received an instruction to acquire chromatograms of the standard agent and the sample S together with the similarity of the spectrum data (step S106).
  • the standard agent for example, substances containing structural units based on TFE, CTFE, specific vinyl ester, and specific vinyl ether, and the contents of which are known, and known compounds such as specific monomers can be used. If the arithmetic unit 104 determines that an instruction to acquire chromatograms of the standard agent and the sample S has not been received (step S106: NO), the processing ends. This is because the evaluator E can evaluate the weather resistance of the sample S only by displaying the similarity because the similarity is not in the doubt range.
  • step S106 determines that the instruction to acquire the chromatogram of the standard agent and the sample S has been received (step S106: YES)
  • the thermal decomposition apparatus 131 is activated and the standard agent accommodated in the accommodating space 101 is removed.
  • Heat step S107).
  • the standard agent is thermally decomposed by heating and introduced into the gas chromatograph 132.
  • the gas chromatograph 132 separates the thermal decomposition products of the standard agent.
  • the mass spectrometer 133 ionizes the thermal decomposition product eluted from the gas chromatograph 132 and measures the peak intensity for each m / z value.
  • the mass spectrometer 133 produces
  • the arithmetic unit 104 acquires a mass chromatogram that is measurement data from the mass spectrometer 133 and transmits the mass chromatogram to the evaluation information calculation unit 20 via the communication unit 105 (step S109).
  • the evaluator E takes out the standard agent from the storage space 101 and puts the sample S into the storage space 101.
  • the arithmetic unit 104 activates the thermal decomposition apparatus 131 and heats the sample S stored in the storage space 101 (step S110).
  • the accuracy of the obtained chromatogram is improved by using the sample S from which at least one of the solvent, the pigment, and other additives has been previously removed by the component separation process.
  • the terminal device 10 may generate chromatograms for both the sample S from which the additive has been removed and the sample S from which the additive has not been removed.
  • the sample S is thermally decomposed by heating and introduced into the gas chromatograph 132.
  • the gas chromatograph 132 separates the thermal decomposition product of the sample S.
  • the mass spectrometer 133 ionizes the thermal decomposition product eluted from the gas chromatograph 132 and measures the peak intensity for each m / z value. Thereby, the mass spectrometer 133 produces
  • the m / z range to be measured by the mass spectrometer 133 is, for example, in the range of 10 to 1000.
  • the arithmetic unit 104 acquires a mass chromatogram that is measurement data from the mass spectrometer 133, and transmits the mass chromatogram to the evaluation information calculation unit 20 via the communication unit 105 (step S112).
  • the measurement data acquisition unit 201 of the evaluation information calculation device 20 receives the mass chromatogram (step S207 in FIG. 5).
  • the fluoroolefin estimation unit 207 specifies the m / z value and peak intensity threshold of the specific compound from the fluorine peak table 224.
  • the fluoroolefin estimating unit 207 specifies the peak intensity of the mass chromatogram of the standard agent associated with the m / z value at which the specific compound appears (step S208). That is, the fluoroolefin estimation unit 207 specifies the intensity of a specific peak (for example, a peak related to TFE and CTFE) in the standard agent.
  • the fluoroolefin estimation unit 207 creates a calibration curve of the peak position and peak intensity of the specific compound (step S209). That is, the fluoroolefin estimation unit 207 derives a sensitivity correction coefficient for correcting the detection sensitivity for each analysis of the pyrolysis GC / MS apparatus 103.
  • the measurement data acquisition unit 201 corrects the mass chromatogram by multiplying the peak intensity of the acquired mass chromatogram of the sample S by the sensitivity correction coefficient derived by the fluoroolefin estimation unit 207.
  • the ester estimation unit 205 specifies the m / z value (peak position) and the peak intensity threshold value for each thermal decomposition product derived from the vinyl ester-based structural unit from the ester peak table 222 (FIG. 6). Step S210).
  • the ester estimation unit 205 determines whether or not there is a peak exceeding the specified peak intensity threshold in the mass chromatogram associated with the m / z value for each specified thermal decomposition product. (Step S211).
  • step S211: YES the sample estimation unit 205 determines that the sample S includes a structural unit based on vinyl ester.
  • step S212 determines that there is no one kind of thermal decomposition product having a peak exceeding the peak intensity threshold.
  • step S211: NO the ester estimation unit 205 determines that there is no one kind of thermal decomposition product having a peak exceeding the peak intensity threshold. It is determined that there is not (step S213).
  • the ether estimation unit 206 specifies the m / z value and the peak intensity threshold value for each thermal decomposition product derived from the structural unit based on vinyl ether from the ether peak table 223 (step S214).
  • the ether estimation unit 206 determines whether or not a peak exceeding the specified peak intensity threshold exists in the mass chromatogram associated with the m / z value for each specified thermal decomposition product. (Step S215).
  • step S215 determines that one or more types of thermal decomposition products having peaks exceeding the peak intensity threshold are present (step S215: YES)
  • the ether estimation unit 206 determines that the structural unit based on vinyl ether is included in the sample S ( Step S215).
  • the sample S does not include a structural unit based on vinyl ether. Is determined (step S217).
  • the fluoroolefin estimation unit 207 specifies the threshold value of the m / z value and the peak intensity for each thermal decomposition product derived from the structural unit based on TFE from the fluorine peak table 224 (step S218).
  • the fluoroolefin estimating unit 207 determines whether or not there is a peak exceeding the specified peak intensity threshold in the mass chromatogram associated with the m / z value for each specified thermal decomposition product. (Step S219).
  • step S219: YES When the fluoroolefin estimating unit 207 determines that there is a thermal decomposition product having a peak exceeding the threshold value of the peak intensity (step S219: YES), the fluoroolefin estimating unit 207 determines that the structural unit based on TFE is included in the sample S (step S220). ). On the other hand, when the fluoroolefin estimating unit 207 determines that there is no thermal decomposition product having a peak exceeding the peak intensity threshold value (step S219: NO), the sample S determines that the structural unit based on TFE is not included. (Step S221).
  • the fluoroolefin estimating unit 207 specifies the m / z value and the peak intensity threshold value for each thermal decomposition product derived from the structural unit based on CTFE from the fluorine peak table 224 (step S222).
  • the fluoroolefin estimating unit 207 determines whether or not there is a peak exceeding the specified peak intensity threshold in the mass chromatogram associated with the m / z value for each specified thermal decomposition product. (Step S223).
  • the fluoroolefin estimation unit 207 determines that there is a thermal decomposition product having a peak exceeding the threshold value of the peak intensity (step S223: YES).
  • the fluoroolefin estimation unit 207 determines that the structural unit based on CTFE is included in the sample S (step S224).
  • the fluoroolefin estimating unit 207 determines that there is no pyrolysis product having a peak exceeding the peak intensity threshold value (step S223: NO)
  • the sample S determines that the constituent unit based on CTFE is not included. (Step S225).
  • the evaluation information output unit 208 outputs the estimated presence / absence of each structural unit, the presence / absence of each known structural unit, and the name of the known paint or coating film having the highest degree of similarity to the terminal device 10 (step S10). S226).
  • the fluoroolefin estimation unit 207 determines the peak intensity of the mass chromatogram of the sample S associated with the m / z value specified in steps S218 and S222 and the peak intensity of the mass chromatogram of the standard agent specified in step S208. Based on the ratio, the constituent unit based on TFE and CTFE of the sample S and the content of fluorine atoms are estimated (step S227 in FIG. 7). Specifically, for example, the fluoroolefin estimating unit 207 multiplies the TFE and CTFE contents of the standard agent by the ratio of the peak intensity of the mass chromatogram of the standard agent and the peak intensity of the mass chromatogram of the sample S. The contents of TFE and CTFE of sample S are estimated. In addition, the fluoroolefin estimating unit 207 estimates the fluorine atom content by multiplying the specified TFE content and CTFE content by a predetermined coefficient and adding them together.
  • the ester estimation unit 205 determines the vinyl of the sample S based on the ratio between the peak intensity specified in step S210 and the intensity of a specific peak (for example, a specific vinyl ester monomer) in the standard agent specified in step S208.
  • the content of the structural unit based on the ester is estimated (step S228).
  • the ether estimation unit 206 is based on the vinyl ether of the sample S based on the ratio between the peak intensity specified in step S214 and the intensity of a specific peak (for example, a specific vinyl ether monomer) in the standard agent specified in step S208.
  • the content of the structural unit is estimated (step S229).
  • the evaluation information output unit 208 transmits the estimation results obtained by the ester estimation unit 205, the ether estimation unit 206, and the fluoroolefin estimation unit 207 to the terminal device 10 as evaluation information (step S230).
  • the communication device 105 of the terminal device 10 receives the evaluation information (step S114 in FIG. 4).
  • the arithmetic device 104 displays the evaluation information received by the communication device 105 on the display device 106 (step S115), and ends the processing.
  • the evaluator E evaluates the weather resistance of the sample S based on the evaluation information displayed on the display device 106.
  • the evaluator E matches the presence or absence of vinyl ester, vinyl ether, TFE, and CTFE in the sample S and the known paint or coating film most similar to the sample S, and the vinyl ester, vinyl ether, When the errors in the contents of TFE, CTFE and fluorine atoms are within a certain value, it is evaluated that the sample S has a certain weather resistance.
  • the evaluator E evaluates the weather resistance of the sample S in detail based on the weather resistance rank of the sample S.
  • sample S and the known paint or coating film most similar to sample S have the same or no vinyl ester, vinyl ether, TFE, and CTFE, or vinyl ester, vinyl ether, TFE, CTFE, and fluorine atoms
  • the content error is larger than a certain value, it is evaluated that the sample S does not have a certain weather resistance.
  • the weather resistance rank will be described below.
  • the weather resistance of the fluororesin coating material and the fluororesin coating film is obtained when the C—F bond energy of the fluoroolefin is greater than the ultraviolet energy. Accordingly, the greater the fluorine atom content of the sample S, the better the weather resistance, and the smaller the fluorine atom content of the sample S, the poorer the weather resistance.
  • the fluorine atom content in the fluororesin coating and the fluororesin coating is preferably 20% by mass or more based on the solid content (100% by mass) of the fluororesin coating from the point that a fluororesin coating having excellent weather resistance can be formed. 22 mass% or more is more preferable, and 24 mass% or more is further more preferable.
  • the fluororesin paint or fluororesin coating film has a structural unit based on vinyl ether and does not have a structural unit based on vinyl ester
  • the structural unit based on fluoroolefin and vinyl ether The structural units based on are regularly arranged alternately. Therefore, the structural unit based on vinyl ether that is weak against ultraviolet rays is sandwiched between the structural units based on fluoroolefins that are strong against ultraviolet rays, and the structural units based on vinyl ether are difficult to hit. Therefore, the fluororesin paint and fluororesin coating film having a structural unit based on vinyl ether have a relatively high weather resistance rank.
  • the fluororesin paint or fluororesin coating film has a structural unit based on vinyl ester
  • the structural unit based on fluoroolefin and the structural unit based on vinyl ester are randomly selected in the fluororesin paint or fluororesin coating film. Arranged in close proximity. Therefore, a structural unit based on a vinyl ester that is weak against ultraviolet rays is easily exposed to ultraviolet light, and a bond portion between the structural units based on vinyl ester is likely to be cut. Therefore, the fluororesin paint and fluororesin coating film having a structural unit based on vinyl ester have a relatively low weather resistance rank.
  • the fluororesin paint or fluororesin coating film evaluation method determines whether or not the sample S contains a structural unit based on at least one of vinyl ester and vinyl ether, and the fluorine atom of the sample S Sample S is evaluated based on the content.
  • the evaluator E can evaluate the weather resistance of the sample S even when it is difficult to identify the fluororesin paint or the fluororesin coating film.
  • the fluororesin paint or fluororesin coating film evaluation method when it is difficult to identify the sample S based on the scattered light due to Raman scattering, the sample S has at least one of vinyl ester and vinyl ether.
  • the sample S is evaluated on the basis of whether or not the constituent unit is included and the fluorine atom content of the sample S.
  • FIG. 8 is a schematic block diagram illustrating a configuration of the terminal device 10 according to the second embodiment.
  • the terminal device 10 according to the present embodiment includes a detector 134 instead of the mass spectrometer 133 according to the first embodiment.
  • the detector 134 detects the time-series intensity of the thermal decomposition product eluted from the gas chromatograph 132. That is, the detector 134 generates a chromatograph of the sample S.
  • FIG. 9 is a schematic block diagram showing the configuration of the evaluation information calculation apparatus 20 according to the second embodiment.
  • the evaluation information calculation apparatus 20 according to the present embodiment further includes a reference specifying unit 209 in addition to the configuration of the first embodiment.
  • the information stored in the ester peak table 222, the ether peak table 223, and the fluorine peak table 224 according to the present embodiment is different from that of the first embodiment.
  • the operations of the ester estimation unit 205, the ether estimation unit 206, and the fluoroolefin estimation unit 207 according to this embodiment are different from those of the first embodiment.
  • the ester peak table 222 stores data related to peaks of thermal decomposition products derived from structural units based on vinyl esters.
  • the ether peak table 223 stores data relating to peaks of thermal decomposition products derived from structural units based on vinyl ether.
  • the fluorine peak table 224 stores data relating to the peak of the thermal decomposition product derived from the structural unit based on the fluoroolefin.
  • the data relating to the peak of the thermal decomposition product is data in which the time at which the peak of the thermal decomposition product appears and the threshold value of the peak intensity are associated with each other.
  • the time at which the peak of the pyrolysis product appears is represented by the elapsed time from the time when the pyrolysis product of the sample S is introduced into the gas chromatograph, for example.
  • the reference specifying unit 209 obtains a chromatogram related to the standard agent whose peak time is known from the terminal device 10, and the time when the peak actually appears in the chromatogram and the peak recorded in the database 202 are obtained. Identify the difference from the time of appearance.
  • the standard agent for example, any monomer stored in the ester peak table 222, the ether peak table 223 or the fluorine peak table 224 can be used. Other molecules not stored in the ester peak table 222, the ether peak table 223, and the fluorine peak table 224 may be used as the standard agent.
  • the database 202 needs to store in advance the time at which the peak of the standard agent appears.
  • the ester estimating unit 205 corrects the time when the peak of the thermal decomposition product derived from the structural unit based on the vinyl ester stored in the ester peak table 222 appears based on the time specified by the reference specifying unit 209.
  • the ester estimation unit 205 determines whether or not there is a peak between a predetermined time before and after the time obtained by the correction in the chromatogram acquired by the measurement data acquisition unit 201, so that the vinyl ester is present in the sample S. Whether or not a structural unit based on the formula is included, and the amount of the structural unit based on vinyl ester is estimated.
  • the ether estimation unit 206 corrects the time at which the peak of the thermal decomposition product derived from the structural unit based on vinyl ether stored in the ether peak table 223 appears based on the time specified by the reference specification unit 209.
  • the ether estimation unit 206 determines whether or not there is a peak between a predetermined time before and after the time obtained by the correction in the chromatogram acquired by the measurement data acquisition unit 201, so that the sample S has vinyl ether. Estimate whether or not a constituent unit based is included and the amount of constituent unit based on vinyl ether.
  • the fluoroolefin estimating unit 207 corrects the time when the peak of the thermal decomposition product derived from the structural unit based on the fluoroolefin stored in the fluorine peak table 224 appears based on the time specified by the reference specifying unit 209.
  • the fluoroolefin estimation unit 207 determines the TFE, CTFE, and fluorine of the sample S based on the intensity of the peak existing between a predetermined time before and after the time obtained by the correction in the chromatogram acquired by the measurement data acquisition unit 201. Estimate the presence and content of atoms.
  • the same effects as those of the first embodiment can be obtained based on the Raman spectroscopy and the pyrolysis GC method.
  • FIG. 10 is a schematic block diagram illustrating a configuration of the terminal device 10 according to the third embodiment.
  • the terminal device 10 according to the present embodiment does not include the Raman spectroscopic device 102 according to the first embodiment.
  • the computing device 104 according to the present embodiment identifies the sample S and a known paint or coating film based on the mass chromatogram output from the pyrolysis GC / MS device 103.
  • the configuration of the arithmetic device 104 according to the present embodiment is the same as that of the first embodiment.
  • the information stored in the paint table 221 and the operation of the identification unit 204 are different from those in the first embodiment.
  • the paint table 221 shows the mass chromatogram of a known paint or coating film, the presence or absence of vinyl ester, vinyl ether, TFE and CTFE, the content of vinyl ester, vinyl ether, TFE, CTFE and fluorine atoms, and the weather resistance rank.
  • the identification unit 204 specifies the similarity between the mass chromatogram stored in the paint table 221 and the mass chromatogram acquired by the measurement data acquisition unit 201, and based on the similarity, the sample S is a known paint or It is judged whether it is a coating film.
  • the similarity between the mass chromatograms can be determined, for example, by the similarity of the ratios of peak intensities when a certain peak included in a known mass chromatogram is taken as a reference. Further, for example, the similarity between mass chromatograms may be calculated based on a multivariate analysis method such as a PCA score plot method, a Volcano Plot analysis, or a hierarchical cluster analysis.
  • the same effects as those of the first embodiment can be obtained without using spectral analysis such as Raman spectroscopy.
  • the evaluation information presentation system 1 according to the present embodiment is based on the chromatogram according to the pyrolysis GC method as in the second embodiment, instead of the identification based on the mass chromatogram according to the pyrolysis GC / MS method. Identification may be performed.
  • the evaluation information presentation system 1 according to another embodiment may perform identification by spectroscopic analysis as in the first embodiment or the second embodiment, and may further perform identification according to a chromatograph. Further, the evaluation information presentation system 1 according to another embodiment may evaluate the sample S based only on identification based on the chromatogram, and may not compare the presence or absence or amount of each structural unit. .
  • the information presentation system 1 for evaluation replaces Raman spectroscopy with infrared spectroscopy, near infrared spectroscopy, ultraviolet spectroscopy, visible spectroscopy, laser induced breakdown spectroscopy (LIBS).
  • Sample S may be identified based on a spectrum obtained from Laser-Induced Breakdown Spectroscopy. Further, the sample S may be identified based on a combination of a plurality of spectra obtained by a plurality of the spectroscopic methods.
  • the Raman spectroscopic device 102 described above is an example of a spectroscopic unit that generates spectral data by splitting light absorbed or emitted by the sample S. That is, the Raman spectroscopic device 102 described above is an example of an identification information generation unit that generates identification information used for identifying the sample S.
  • the evaluation information presentation system 1 does not perform spectroscopic analysis, and does not perform structural analysis based on a chromatogram obtained by pyrolysis GC method or pyrolysis GC / MS method.
  • the sample S may be evaluated by estimating at least one of presence / absence and amount. In this case, since the evaluation information presentation system 1 cannot identify the known paint or coating film having the highest similarity, the sample S is compared with all the known paints or coating films to obtain the sample. Evaluate S.
  • the evaluation information presentation system 1 sequentially performs identification by spectroscopic analysis, determination of the presence / absence of each structural unit, and determination of the amount of each structural unit, but is not limited thereto.
  • the evaluation information presentation system 1 according to another embodiment performs a parallel analysis of identification by spectroscopic analysis, determination of the presence / absence of each structural unit, and determination of the amount of each structural unit, and a sample obtained by each analysis.
  • the sample S may be evaluated by comprehensively considering the similarity between S and a known paint or coating film.
  • Comprehensive evaluation refers to, for example, determining whether or not the value obtained by adding each similarity is greater than or equal to a threshold, and determining whether or not the value obtained by multiplying each similarity is greater than or equal to the threshold. A determination as to whether or not all the similarities are equal to or greater than a predetermined threshold can be given. Further, for example, the evaluation information presentation system 1 according to another embodiment may generate multidimensional data combining a chromatogram and a spectrum, and calculate a similarity based on the multidimensional data.
  • the evaluation information presentation system 1 is derived from trace components in addition to the presence / absence of vinyl ester, vinyl ether, TFE and CTFE, and the content of vinyl ester, vinyl ether, TFE, CTFE and fluorine atom.
  • the sample S may be evaluated in consideration of the presence or absence of the peak or the content.
  • the evaluation information presentation system 1 may include an evaluation unit that evaluates the sample S in the evaluation information calculation device 20, and the evaluation information calculation device 20 may evaluate the sample S.
  • the terminal device 10 displays the evaluation result by the evaluation unit instead of the evaluation information.
  • the terminal device 10 and the evaluation information calculation device 20 may be directly connected without going through the network N.
  • the evaluation information calculation device 20 by mounting the evaluation information calculation device 20 on a notebook PC, the sample S can be analyzed and evaluated even in an area where connection to the network N is not possible.
  • the terminal device 10 may present the evaluation information not by display by the display device 106 but by printing, voice, or other output means.
  • the evaluation information presentation system 1 includes, as evaluation information, a weather resistance index value of the sample S, whether the sample S satisfies a predetermined standard, or the sample S has a certain weather resistance. The determination result of whether or not may be presented. Further, the evaluator E according to another embodiment does not evaluate whether or not the sample S has a certain weather resistance, but evaluates whether or not the weather resistance index value of the sample S or the sample S satisfies a predetermined standard. You may do it.
  • the evaluation information presentation system 1 may not present the determination result as to whether or not the sample S includes a structural unit based on vinyl ether as evaluation information.
  • the fluororesin paint and the fluororesin coating film generally contain at least one of a structural unit based on vinyl ester and a structural unit based on vinyl ether. Therefore, it can be estimated that the determination result that the structural unit based on vinyl ester is not included in the sample S is equivalent to the determination result that the structural unit based on vinyl ether is included in the sample S. Therefore, the evaluator E can evaluate the weather resistance of the sample S even when the evaluation information presentation system 1 does not present the determination result as to whether or not the structural unit based on vinyl ether is included in the sample S.
  • the evaluation information presentation system 1 may not present the determination result as to whether or not the sample S includes a structural unit based on vinyl ester as evaluation information.
  • the fluororesin paint and the fluororesin coating film may include a structural unit based on vinyl ester and a structural unit based on vinyl ether
  • the evaluation information presentation system 1 includes a structural unit based on vinyl ester in the sample S. It is preferable to present a determination result of whether or not it is included.
  • the evaluation information calculation apparatus 20 is derived from the structural unit derived from the monomer having a fluorine atom and the data related to the peak of the thermal decomposition product derived from the structural unit based on the vinyl ester, instead of the database 202.
  • Another storage device that stores data relating to the peak of the thermal decomposition product of may be provided. That is, the storage device may be one in which data is managed by a file system that does not have a data operation function.
  • the recording unit 203, the identification unit 204, the ester estimation unit 205, the ether estimation unit 206, and the fluoroolefin estimation unit 207 which are applications for processing data, need to have a data operation function.
  • the above-described evaluation information calculation device 20 is mounted on a computer having a CPU, a main storage device, an auxiliary storage device, and an interface.
  • the operation of each processing unit described above is stored in the auxiliary storage device in the form of a program.
  • the CPU reads the program from the auxiliary storage device, develops it in the main storage device, and executes the above processing according to the program.
  • the CPU constructs the above-described database 202 in the auxiliary storage device when the program is executed for the first time.
  • the auxiliary storage device is an example of a tangible medium that is not temporary.
  • Other examples of the non-temporary tangible medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory connected via an interface.
  • the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device.
  • difference file difference program
  • the fluororesin paint to be evaluated contains a fluororesin (A).
  • the fluororesin paint may contain an organic solvent (B) and other paint blending components (C) as necessary.
  • Fluororesin (A) As a fluororesin (A), what is necessary is just a fluororesin used for a well-known fluororesin coating material.
  • a fluororesin coating film having excellent weather resistance can be formed, a structural unit based on the fluoroolefin (a1), a structural unit based on the monomer (a2) having a crosslinkable group, a fluorine atom and A fluoroolefin copolymer (A1) comprising a structural unit based on the monomer (a3) having no crosslinkable group is preferred.
  • Fluoroolefin (a1) The number of fluorine atoms contained in the fluoroolefin (a1) is preferably 2 or more, more preferably 2 to 6, and further preferably 3 to 4. When the number of fluorine atoms is 2 or more, a fluororesin coating film having excellent weather resistance can be formed.
  • fluoroolefin (a1) examples include TFE, CTFE, vinylidene fluoride, hexafluoropropylene and the like, and TFE or CTFE is preferable from the viewpoint that a fluororesin coating film having excellent weather resistance can be formed. That is, the database 202 which concerns on embodiment mentioned above memorize
  • a fluoroolefin (a1) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the monomer (a2) is a monomer having a crosslinkable group.
  • a functional group having active hydrogen hydroxyl group, carboxyl group, amino group, etc.
  • hydrolyzable silyl group alkoxysilyl group, etc.
  • a monomer (a21) represented by the following formula is preferable because a fluororesin coating film having excellent weather resistance can be formed.
  • CH 2 CX 1 (CH 2 ) n1 -Q 1 -R 1 -Y X 1 is a hydrogen atom or a methyl group, n1 is 0 or 1, Q 1 is an oxygen atom, —C (O) O— or —O (O) C—, and R 1 Is an alkylene group having 2 to 20 carbon atoms which may have a branched structure or a ring structure, and Y is a crosslinkable functional group.
  • Y is preferably a hydroxyl group, a carboxyl group or an amino group, more preferably a hydroxyl group.
  • R 1 is preferably a linear alkylene group. The alkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • Q 1 is preferably an oxygen atom.
  • the monomer (a21) is roughly classified into a monomer having an ether bond and a monomer having an ester bond.
  • Examples of the monomer having an ether bond include hydroxyalkyl vinyl ethers and hydroxyalkyl allyl ethers.
  • Examples of the monomer having an ester bond include vinyl hydroxyalkanoates, allyl hydroxyalkanoates, hydroxyalkyl acrylates, hydroxyalkyl methacrylates, and the like.
  • hydroxyalkyl vinyl ethers examples include 2-hydroxyethyl vinyl ether, hydroxymethyl vinyl ether, 4-hydroxybutyl vinyl ether (hereinafter also referred to as HBVE), and the like.
  • hydroxyalkyl allyl ethers examples include hydroxyethyl allyl ether.
  • hydroxyalkyl acrylates and hydroxyalkyl methacrylates include hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • the monomer (a21) is preferably a monomer having an ether bond, more preferably a hydroxyalkyl vinyl ether, and particularly preferably HBVE from the viewpoint that a fluororesin coating film having excellent weather resistance can be formed.
  • a monomer (a2) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a monomer (a3) is a monomer which does not have a fluorine atom and a crosslinkable group.
  • a monomer (a31) represented by the following formula is preferable because a fluororesin coating film having excellent weather resistance can be formed.
  • CH 2 CX 2 (CH 2 ) n2 -Q 2 -R 2 Where X 2 is a hydrogen atom or a methyl group, n2 is 0 or 1, Q 2 is an oxygen atom, —C (O) O— or —O (O) C—, and R 2 Is an alkyl group having 2 to 20 carbon atoms which may have a branched structure or a ring structure.
  • the monomer (a31) is roughly classified into a monomer having an ether bond and a monomer having an ester bond.
  • Examples of the monomer having an ether bond include alkyl vinyl ethers and alkyl allyl ethers.
  • Examples of the monomer having an ester bond include vinyl alkanoates, vinyl arylcarboxylates, allyl alkanoates, alkyl acrylates, alkyl methacrylates, and the like.
  • alkyl vinyl ethers examples include ethyl vinyl ether (hereinafter also referred to as EVE), cyclohexyl vinyl ether (hereinafter also referred to as CHVE), 2-ethylhexyl vinyl ether, and the like.
  • EVE ethyl vinyl ether
  • CHVE cyclohexyl vinyl ether
  • 2-ethylhexyl vinyl ether examples include vinyl alkanoates.
  • vinyl arylcarboxylates examples include vinyl benzoate.
  • a monomer (a3) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Composition unit ratio The proportion of the structural unit based on the fluoroolefin (a1) is preferably from 30 to 70 mol%, more preferably from 40 to 60 mol%, based on the total structural units (100 mol%) of the fluoroolefin copolymer (A1). 45 to 55 mol% is more preferable. If the ratio of the structural unit based on fluoroolefin (a1) is 30 mol% or more, a fluororesin coating film having excellent weather resistance can be formed. If the ratio of the structural unit based on fluoroolefin (a1) is 70 mol% or less, it is excellent in the solubility to an organic solvent or a diluent.
  • the total proportion of the structural unit based on the monomer (a2) and the structural unit based on the monomer (a3) is 70 to 30 mol% of all the structural units (100 mol%) of the fluoroolefin copolymer (A1). 60 to 40 mol% is more preferable, and 55 to 45 mol% is more preferable.
  • the proportion of the structural unit based on the monomer (a21) is preferably 5 to 40 mol%, more preferably 8 to 35 mol%, of all the structural units (100 mol%) of the fluoroolefin copolymer (A1).
  • the proportion of the structural unit based on the monomer (a21) is 5 mol% or more, a sufficient amount of crosslinkable groups are introduced into the fluoroolefin copolymer (A1) to obtain a highly hard fluororesin coating film.
  • the ratio of the structural unit based on the monomer (a21) is 40 mol% or less, even if it is a high solid content type, a sufficiently low viscosity can be maintained as a solution of the fluoroolefin copolymer (A1).
  • the proportion of the structural unit based on the monomer (a31) is preferably more than 0 mol% and 45 mol% or less, and preferably 3 to 35 mol% in the total structural units (100 mol%) of the fluoroolefin copolymer (A1). More preferred is 5 to 30 mol%.
  • the proportion of the structural unit based on the monomer (a31) is 45 mol% or less, a sufficient amount of crosslinkable groups for obtaining a fluororesin coating film having excellent weather resistance and high hardness is contained in the fluoroolefin copolymer (A1). ) Introduced in.
  • the ratio of the structural unit based on the other monomer is Of the total structural units (100 mol%) of the fluoroolefin copolymer (A1), 20 mol% or less is preferable, and 10 mol% or less is more preferable.
  • fluoro olefin copolymer (A1) As a commercial item of a fluoro olefin copolymer (A1), the following are mentioned, for example. Lumiflon (registered trademark) series (LF200, LF100, LF710, etc.) manufactured by Asahi Glass Co., Ltd. Zaffle (registered trademark) GK series (GK-500, GK-510, GK-550, GK-570, GK-580, etc.) manufactured by Daikin Industries, Ltd.
  • Lumiflon (registered trademark) series LF200, LF100, LF710, etc.
  • Zaffle registered trademark
  • GK series GK-500, GK-510, GK-550, GK-570, GK-580, etc.
  • Zeffle® GK-570 is a TFE / hydroxyethyl allyl ether / vinyl versatate / vinyl benzoate / vinyl acetate copolymer
  • Zeffle® GK-580 is TFE / hydroxyethyl allyl.
  • Fluorate (registered trademark) series manufactured by DIC K-700, K-702, K-703, K-704, K-705, K-707, etc.
  • Fluonate® K-705 is a CTFE / HBVE / EVE / vinyl versatate copolymer.
  • ETERFLON series (E-4101, E-41011, E-4102, E-41021, E-4261A, E-4262A, E-42631, E-4102A, E-41041, E-41111, E-, manufactured by Eternal Chemical 4261A etc.).
  • ETERFLON E-4101 is a CTFE / HBVE / CHVE / EVE copolymer.
  • Organic solvent (B) examples include aromatic hydrocarbon solvents, ketone solvents, ester solvents, third organic solvents in the Industrial Safety and Health Act, alcohol solvents, ether ester solvents, and the like.
  • the organic solvent (B) a solvent corresponding to the PRTR method and HAPs regulations, that is, an organic solvent having no aromatic ring is preferable from the viewpoint of reducing the environmental load.
  • category of the organic solvent by the occupational safety and health law is also preferable.
  • ketone solvents, ether ester solvents that do not comply with the PRTR method and HAPs regulations; paraffinic solvents or naphthenic solvents classified as the third organic solvents in the Industrial Safety and Health Act are preferable.
  • aromatic hydrocarbon solvent examples include toluene, xylene, ethylbenzene, aromatic petroleum naphtha, tetralin, turpentine oil, Solvesso (registered trademark) # 100 (manufactured by Exxon Chemical Co.), Solvesso (registered trademark) # 150 (Exxon Chemical Company) Product).
  • ketone solvent acetone, methyl ethyl ketone, methyl amyl ketone, methyl isobutyl ketone, ethyl isobutyl ketone, diisobutyl ketone, cyclohexanone, and isophorone are preferable.
  • ester solvent methyl acetate, ethyl acetate, n-propyl acetate, isobutyl acetate, and tert-butyl acetate are preferable.
  • Class 3 organic solvents in the Industrial Safety and Health Act are gasoline, coal tar naphtha (including solvent naphtha), petroleum ether, petroleum naphtha, petroleum benzine, turpentine oil, mineral spirit (mineral thinner, petroleum spirit, white spirit and A solvent consisting of one or more selected from the group consisting of mineral terpenes).
  • mineral spirits including mineral thinner, petrolium spirit, white spirit and mineral turpentine
  • the flash point is room temperature or higher.
  • alcohol solvent those having 4 or less carbon atoms are preferable, and specifically, ethanol, tert-butyl alcohol, and iso-propyl alcohol are preferable.
  • ether ester solvent ethyl 3-ethoxypropionate, propylene glycol monomethyl ether acetate, and methoxybutyl acetate are preferable.
  • An organic solvent (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the organic solvent (B) is preferably such that the solid content concentration of the fluororesin coating is 20 to 100% by mass, and more preferably 40 to 100% by mass.
  • paint ingredients (C) examples include curing agents, colorants, resins other than the fluororesin (A), silane coupling agents, ultraviolet absorbers, curing accelerators, light stabilizers, matting agents, and the like. It is done. Two or more of these may be used in combination.
  • the curing agent is preferably at least one selected from the group consisting of isocyanate curing agents, blocked isocyanate curing agents, and amino resin curing agents.
  • non-yellowing isocyanates hexamethylene diisocyanate, isophorone diisocyanate, etc.
  • blocked isocyanate curing agent those obtained by blocking the isocyanate group of the isocyanate curing agent with caprolactam, isophorone, ⁇ -diketone or the like are preferable.
  • the amino resin curing agent is a curing agent obtained by polycondensation of amines (melamine, methylolmelamine, guanamine, urea, etc.) and aldehydes (formaldehyde, etc.).
  • amino resin-based curing agents include melamine resin-based curing agents, guanamine resin-based curing agents, urea resin-based curing agents, sulfoamide resin-based curing agents, and aniline resin-based curing agents.
  • the amount of the curing agent is preferably 1 to 100 parts by mass and more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the fluororesin (A) in the fluororesin paint. If a hardening
  • Colorant examples include inorganic pigments (carbon black, titanium oxide, etc.) having good weather resistance, organic pigments (phthalocyanine blue, phthalocyanine green, quinacridone red, indanthrene orange, isoindolinone yellow, etc.), dyes, and the like. .
  • resins As other resin, the well-known resin mix
  • the fluororesin coating film is formed by applying a fluororesin paint to the surface of an article and drying it.
  • the coating method include spray coating, air spray coating, brush coating, dipping method, roll coating, and flow coating.
  • Materials to be painted include inorganic substances (concrete, natural stone, glass, metal (iron, stainless steel, aluminum, copper, brass, titanium, etc.)), organic substances (plastic, rubber, adhesive, wood, etc.), organic Examples thereof include inorganic composite materials (fiber reinforced plastic, resin reinforced concrete, fiber reinforced concrete, and the like).
  • Examples of articles to be painted include transportation equipment, civil engineering structures, industrial equipment, building members, road members, communication equipment, power generation devices, electric parts, electronic parts, and plastic molded products.
  • Examples of transportation equipment include automobiles, ships, trains, aircraft (airplanes, helicopters, etc.) exterior and internal products.
  • Examples of civil engineering structures include bridges (road bridges, waterway bridges, railway bridges, overpass bridges, overland bridges, pedestrian bridges, etc.), steel towers (power transmission towers, communication towers, etc.), and hydroworks structures (dams, etc.).
  • a road bridge is a bridge where a road is installed. In other words, even a bridge belonging to an overpass, an overland bridge or the like is included in the road bridge if the road is installed.
  • a composite bridge in which both a road and a railway are installed is included in the road bridge.
  • the overpass or overpass to be painted may be an overpass or overpass where no road is installed.
  • industrial equipment include sheet materials (waterproof material sheets, tent sites, etc.) and water facilities (tanks, pipes, hot water heaters, pools, etc.).
  • building members include exterior members (outside walls of building structures, rooftops, railings, signboards, bricks, chimneys, etc.) and interior members (handrails, factory floors, pillars, etc.).
  • Examples of road members include median strips, guardrails, and sound barriers.
  • An example of communication equipment is an antenna.
  • Examples of the power generation device include a solar cell (a solar cell module surface sheet, a solar cell module backsheet, etc.), a wind power generation device (wind power generation tower, wind power generation nacelle, wind power generation blade), and a solar thermal power generation device.
  • a solar cell a solar cell module surface sheet, a solar cell module backsheet, etc.
  • a wind power generation device wind power generation tower, wind power generation nacelle, wind power generation blade
  • solar thermal power generation device a solar thermal power generation device.
  • Information presentation system for evaluation 10 terminal device, 20 information calculation device for evaluation, 101 storage space, 102 Raman spectroscopic device, 103 pyrolysis GC / MS device, 104 arithmetic device, 105 communication device, 106 display device, 121 laser device , 122 filter, 123 monochromator, 124 detector, 131 pyrolysis device, 132 gas chromatograph, 133 mass spectrometer, 134 detector, 201 measurement data acquisition unit, 202 database, 203 recording unit, 204 identification unit, 205 ester determination Part, 206 ether determination part, 207 fluorine atom content estimation part, 208 information output part for evaluation, 209 reference identification part, 221 spectrum table, 222 ester peak table, 223 ether peak table, 224 Fluorine Peak Table, S samples, N networks, E evaluator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

 フッ素樹脂塗料またはフッ素樹脂塗膜の耐候性を評価する。 評価用情報算出装置20は、試料Sに係るクロマトグラムを取得する。評価用情報算出装置20は、ビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位由来の熱分解生成物のピークに係るデータとクロマトグラムとに基づいて、試料Sにビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方を推定する。評価用情報算出装置20は、フッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピークに係るデータとクロマトグラムとに基づいて、試料Sのフッ素原子含量を推定する。評価者Eは、ビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方とフッ素原子含量とに基づいて試料Sを評価する。

Description

フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置
 本発明は、フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置に関する。
 一般にフッ素樹脂塗膜は、他の樹脂塗膜に比べて耐候性に優れている。他方、フッ素樹脂塗料およびフッ素樹脂塗膜は、組成によって得られる耐候性が異なる。
 フッ素樹脂塗膜の成分は、熱分解ガスクロマトグラフィ法(以下、熱分解GC法とも記す。GCは、Gas Chromatographyの略である。)または熱分解ガスクロマトグラフィ質量分析法(以下、熱分解GC/MS法とも記す。MSは、Mass Spectrometryの略である。)によって分析される。熱分解GC法および熱分解GC/MS法による成分分析は、クロマトグラム(熱分解GC/MS法においては、マスクロマトグラム。)に現れる複数のピークから、フッ素樹脂の成分を見出す必要がある。つまり、成分分析の経験の浅い者にとって、フッ素樹脂塗料またはフッ素樹脂塗膜の成分を分析することは困難である。そのため、塗装に用いられているフッ素樹脂塗料の耐候性を塗装現場で評価することは困難である。
 特許文献1には、既知ポリマーに係る保持指標を記憶するデータベースを用いて、試料ポリマーの熱分解生成物を同定する方法が開示されている。
特開平5-93719号公報
 熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法によって求められる保持指標は、必ずしもデータベースに記録された保持指標と一致するとは限らない。特許文献1に開示された同定支援システムは、試料ポリマーと既知ポリマーとのマッチ度を算出することで、試料ポリマーの同定を支援する。
 そのため、フッ素樹脂塗料またはフッ素樹脂塗膜が既知の塗料または塗膜であると確信できる程度のマッチ度が得られない場合、特許文献1に開示された方法によっては、該フッ素樹脂塗料または該フッ素樹脂塗膜の耐候性を評価できない。
 本発明の目的は、フッ素樹脂塗料またはフッ素樹脂塗膜の同定が困難である場合にも、該フッ素樹脂塗料または該フッ素樹脂塗膜の耐候性を評価できる、フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置を提供する。
 第1の態様は、フッ素樹脂塗料またはフッ素樹脂塗膜である試料の、熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データを取得する計測データ取得ステップと、記憶装置に記録されたビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位由来の熱分解生成物のピークに係るデータと前記計測データとに基づいて、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方を推定する特定モノマー推定ステップと、記憶装置に記録されたフッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピークに係るデータと前記計測データとに基づいて、前記試料のフッ素原子含量を推定するフッ素原子含量推定ステップと、前記特定モノマー推定ステップの推定結果と前記フッ素原子含量とに基づいて前記試料を評価する評価ステップとを有するフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 また、第2の態様は、第1の態様において、記憶装置に記録された、既知のフッ素樹脂塗料または既知のフッ素樹脂塗膜が吸収または放射する光を分光して得られるスペクトルデータまたは既知のフッ素樹脂塗料または既知のフッ素樹脂塗膜の熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データと、前記試料が吸収または放射する光を分光して得られるスペクトルデータまたは前記計測データ取得ステップで取得した前記計測データとの類似度を特定する類似度特定ステップをさらに有し、前記評価ステップで、前記特定モノマー推定ステップの推定結果と前記類似度特定ステップの特定結果と前記フッ素原子含量とに基づいて前記試料を評価するフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 また、第3の態様は、第2の態様において、前記類似度特定ステップで特定した類似度が最も高い前記既知のフッ素樹脂塗料または前記既知のフッ素樹脂塗膜を特定する類似塗料特定ステップをさらに有し、前記評価ステップで、前記特定モノマー推定ステップの推定結果および前記フッ素原子含量と、前記類似塗料特定ステップが特定した前記既知のフッ素樹脂塗料または前記既知のフッ素樹脂塗膜のビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方、ならびにフッ素原子含量とを比較することで、前記試料を評価するフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 また、第4の態様は、第1から第3の何れかの態様において、前記計測データが、前記試料の熱分解ガスクロマトグラフィ質量分析法による計測データであり、前記ピークに係るデータが、ピークを生じる熱分解生成物の質量に係る物理量とピーク強度の閾値を含むフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 また、第5の態様は、第1から第3の何れかの態様において、前記計測データが、前記試料の熱分解ガスクロマトグラフィ法による計測データであり、前記ピークに係るデータが、ピークを生じる熱分解生成物が検出される時刻とピーク強度の閾値を含むフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 また、第6の態様は、第1から第5の何れかの態様において、前記フッ素原子含量推定ステップで、前記計測データにおける前記フッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピーク強度の閾値に基づいて、前記試料のフッ素原子含量を推定するフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 また、第7の態様は、第1から第6の何れかの態様において、前記フッ素原子を有するモノマーが、テトラフルオロエチレンまたはクロロトリフルオロエチレンの少なくとも何れか一方であるフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 また、第8の態様は、第1から第7の何れかの態様において、前記フッ素樹脂塗料または前記フッ素樹脂塗膜が、道路橋、歩道橋、水路橋、水管橋、跨線橋、陸上橋、鉄道橋、煙突、タンク、送電塔、通信塔、アンテナ、柱、建築構造物外壁、屋上床、建築部材、レンガ、風力発電タワー、風力発電ナセル、風力発電ブレード、ダム、プール、工場床、コピー部品、太陽電池部品、太陽熱発電装置、熱温水器、看板、手摺、高欄、防音壁、自動車外装、自動車内部製品、船舶、電車、飛行機、ヘリコプター、テント地、またはプラスチック成型品に塗布されるフッ素樹脂塗料、または道路橋、歩道橋、水路橋、水管橋、跨線橋、陸上橋、鉄道橋、煙突、タンク、送電塔、通信塔、アンテナ、柱、建築構造物外壁、屋上床、建築部材、レンガ、風力発電タワー、風力発電ナセル、風力発電ブレード、ダム、プール、工場床、コピー部品、太陽電池部品、太陽熱発電装置、熱温水器、看板、手摺、高欄、防音壁、自動車外装、自動車内部製品、船舶、電車、飛行機、ヘリコプター、テント地、またはプラスチック成型品に設けられたフッ素樹脂塗膜であるフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 また、第9の態様は、前記フッ素樹脂塗料または前記フッ素樹脂塗膜が、水路橋、鉄道橋、煙突、タンク、送電塔、通信塔、アンテナ、柱、建築構造物外壁、屋上床、建築部材、レンガ、風力発電タワー、風力発電ナセル、風力発電ブレード、ダム、プール、工場床、コピー部品、太陽電池部品、太陽熱発電装置、熱温水器、看板、手摺、高欄、防音壁、自動車外装、自動車内部製品、船舶、電車、飛行機、ヘリコプター、テント地、またはプラスチック成型品に塗布されるフッ素樹脂塗料、または水路橋、鉄道橋、煙突、タンク、送電塔、通信塔、アンテナ、柱、建築構造物外壁、屋上床、建築部材、レンガ、風力発電タワー、風力発電ナセル、風力発電ブレード、ダム、プール、工場床、コピー部品、太陽電池部品、太陽熱発電装置、熱温水器、看板、手摺、高欄、防音壁、自動車外装、自動車内部製品、船舶、電車、飛行機、ヘリコプター、テント地、またはプラスチック成型品に設けられたフッ素樹脂塗膜であるフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 また、第10の態様は、フッ素樹脂塗料またはフッ素樹脂塗膜である試料の、熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データを取得する計測データ取得部と、ビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位由来の熱分解生成物のピークに係るデータを記憶する特定モノマーピーク記憶装置と、フッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピークに係るデータを記憶するフッ素ピーク記憶装置と、前記特定モノマーピーク記憶装置に記録されたビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位由来の熱分解生成物のピークに係るデータと前記計測データとに基づいて、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方を推定する特定モノマー推定部と、前記フッ素ピーク記憶装置に記録されたフッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピークに係るデータと前記計測データとに基づいて、前記試料のフッ素原子含量を推定するフッ素原子含量推定部とを備える評価用情報算出装置である。
 また、第11の態様は、第10の態様において、前記特定モノマーピーク記憶装置にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位由来の熱分解生成物のピークに係る新たなデータを記録する記録部をさらに備える評価用情報算出装置である。
 また、第12の態様は、第10または第11の態様の評価用情報算出装置と端末装置とを備え、前記端末装置が、熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による前記試料の計測データを生成する計測データ生成部と、前記計測データを前記評価用情報算出装置に送信する送信部と、前記評価用情報算出装置から、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方の推定結果およびフッ素原子含量とに関する情報を受信する受信部と、前記受信部が受信した情報に基づいて、前記試料の評価に用いられる情報を提示する提示部とを備える評価用情報提示システムである。
 また、第13の態様は、フッ素樹脂塗料またはフッ素樹脂塗膜である試料の、熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データを生成する計測データ生成部と、前記計測データを評価用情報算出装置に送信する送信部と、前記第10または第11の態様の評価用情報算出装置から、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方の推定結果およびフッ素原子含量とに関する情報を受信する受信部と、前記受信部が受信した情報に基づいて、前記試料の評価に用いられる情報を提示する提示部とを備える端末装置である。
 また、第14の態様は、フッ素樹脂塗料またはフッ素樹脂塗膜である試料の、熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データを生成する計測データ生成ステップと、前記計測データを評価用情報算出装置に送信する送信ステップと、前記第10または第11の態様の評価用情報算出装置から、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方の推定結果およびフッ素原子含量とに関する情報を受信する受信ステップと、受信した前記情報に基づいて前記試料を評価する評価ステップとを有するフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法である。
 上記態様のうち少なくとも1つの態様によれば、フッ素樹脂塗料またはフッ素樹脂塗膜の同定が困難である場合にも、該フッ素樹脂塗料または該フッ素樹脂塗膜の耐候性を評価できる。
第1の実施形態に係る評価用情報提示システム1の構成を示す概略図である。 第1の実施形態に係る端末装置10の構成を示す概略図である。 第1の実施形態に係る評価用情報算出装置20の構成を示す概略図である。 第1の実施形態に係る端末装置10の動作を示すフローチャートである。 第1の実施形態に係る評価用情報算出装置20の動作を示すフローチャートである。 第1の実施形態に係る評価用情報算出装置20の動作を示すフローチャートである。 第1の実施形態に係る評価用情報算出装置20の動作を示すフローチャートである。 第2の実施形態に係る端末装置10の構成を示す概略ブロック図である。 第2の実施形態に係る評価用情報算出装置20の構成を示す概略ブロック図である。 第3の実施形態に係る端末装置10の構成を示す概略ブロック図である。
 以下、図面を参照しながら実施形態について詳しく説明する。
《第1の実施形態》
 図1は、第1の実施形態に係る評価用情報提示システム1の構成を示す概略図である。
 本実施形態に係る評価用情報提示システム1は、ラマン分光法および熱分解GC/MS法に基づいてフッ素樹脂塗料またはフッ素樹脂塗膜である試料Sの評価に用いられる情報を提供する。具体的には、評価用情報提示システム1は、既知のフッ素樹脂塗料またはフッ素樹脂塗膜と試料Sとの類似度、試料Sのビニルエステル、ビニルエーテル、テトラフルオロエチレン(以下、TFEとも記す。)およびクロロトリフルオロエチレン(以下、CTFEとも記す。)の有無、ならびに、試料Sのビニルエステル、ビニルエーテル、TFE、CTFE、およびフッ素原子の含量を提示する。
 評価用情報提示システム1は、端末装置10と評価用情報算出装置20とを備える。端末装置10と評価用情報算出装置20とは、ネットワークNを介して接続される。ネットワークNの例としては、インターネットが挙げられる。
 端末装置10は、試料Sについてラマン分光法に係る分析処理および熱分解GC/MS法に係る分析処理を行う。また端末装置10は、評価用情報算出装置20が生成した、試料Sの評価に用いられる情報を表示する。試料Sを評価する評価者Eは、端末装置10に表示された情報に基づいて、試料Sの耐候性を評価する。評価者Eは、フッ素樹脂塗料が用いられる現場において採取された試料Sを評価するため、端末装置10は、携帯可能であることが好ましい。評価用情報算出装置20は、端末装置10が生成した計測データに基づいて、試料Sの評価に用いられる情報を算出する。
 図2は、第1の実施形態に係る端末装置10の構成を示す概略図である。
 端末装置10は、収容スペース101、ラマン分光装置102、熱分解GC/MS装置103、演算装置104、通信装置105、および表示装置106を備える。
 収容スペース101は、試料Sを収容する空間である。
 ラマン分光装置102は、試料Sのラマン散乱による散乱光を計測する。ラマン分光装置102は、収容スペース101に収容された試料Sにレーザ光を照射するレーザ装置121、レーザ光の試料Sによる散乱光のうちラマン散乱による散乱光を通過させるフィルタ122、フィルタ122を通過した散乱光を複数の周波数の光に分光するモノクロメータ123およびモノクロメータ123が分光した光の強度を検出する検出器124を備える。ラマン分光装置102は、計測データ生成部の一例である。
 レーザ光の試料Sによる散乱光のうちラマン散乱による散乱光およびレイリー散乱による散乱光以外の他の散乱光の強度が、ラマン散乱による散乱光の計測に影響を与えない程度に小さい場合、フィルタ122は、レイリー散乱による散乱光をカットするものであってもよい。
 熱分解GC/MS装置103は、試料Sのマスクロマトグラムを生成する。熱分解GC/MS装置103は、熱分解装置131、ガスクロマトグラフ132、および質量分析装置133を備える。熱分解装置131は、収容スペース101に収容された試料Sを加熱することで、試料Sを熱分解する。ガスクロマトグラフ132は、試料Sの熱分解生成物を分離する。質量分析装置133は、ガスクロマトグラフ132から溶出した分解生成物をイオン化し、m/z値ごとのピーク強度を計測する。m/z値は、質量に係る物理量の一例である。熱分解GC/MS装置103は、計測データ生成部の一例である。
 演算装置104は、ラマン分光装置102および熱分解GC/MS装置103の計測結果に基づいて計測データを生成する。
 通信装置105は、演算装置104によって生成された計測データを、ネットワークNを介して評価用情報算出装置20に送信する。また通信装置105は、ネットワークNを介して評価用情報算出装置20から評価用情報を受信する。通信装置105は、送信部および受信部の一例である。
 表示装置106は、通信装置105が受信した評価用情報を表示する。表示装置106は、提示部の一例である。
 図3は、第1の実施形態に係る評価用情報算出装置20の構成を示す概略図である。
 評価用情報算出装置20は、計測データ取得部201、データベース202、記録部203、同定部204、エステル推定部205、エーテル推定部206、フルオロオレフィン推定部207、および評価用情報出力部208を備える。
 計測データ取得部201は、端末装置10が計測したラマン分光法および熱分解GC/MS法による試料Sの計測データをネットワークNを介して取得する。
 データベース202は、塗料テーブル221、エステルピークテーブル222、エーテルピークテーブル223、およびフッ素ピークテーブル224を記憶する。
 塗料テーブル221は、一定の耐候性を有すると認められる既知のフッ素樹脂塗料およびフッ素樹脂塗膜のラマンスペクトルデータと、ビニルエステル、ビニルエーテル、TFEおよびCTFEの有無と、ビニルエステル、ビニルエーテル、TFE、CTFEおよびフッ素原子の含量と、耐候性のランクとを格納する。エステルピークテーブル222は、ビニルエステルに基づく構成単位由来の熱分解生成物のピークに係るデータを格納する。つまり、データベース202は、ビニルエステルに基づく構成単位由来の熱分解生成物のピークに係るデータを記憶するエステルピーク記憶装置の一例である。エーテルピークテーブル223は、ビニルエーテルに基づく構成単位由来の熱分解生成物のピークに係るデータを格納する。つまり、データベース202は、ビニルエーテルに基づく構成単位由来の熱分解生成物のピークに係るデータを記憶するエーテルピーク記憶装置の一例である。エステルピークテーブル222およびエーテルピークテーブル223は、いずれも特定モノマーピーク記憶装置の一例である。フッ素ピークテーブル224は、フルオロオレフィン(フッ素原子を有するモノマー)に基づく構成単位由来の熱分解生成物のピークに係るデータを格納する。つまり、データベース202は、フッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピークに係るデータを記憶するフッ素ピーク記憶装置の一例である。本実施形態において熱分解生成物のピークに係るデータとは、熱分解生成物のm/z値とピーク強度の閾値とを関連付けたデータである。データベース202は、記憶装置の一例である。ピーク強度の閾値とは、マスクロマトグラムに表れる強度との比較により該マスクロマトグラムにピークが存在するか否かを判定するための閾値である。ピーク強度の閾値は、たとえば、基準ピークに対する比によって表される。
 記録部203は、一定の耐候性を有すると新たに認められたフッ素樹脂塗料またはフッ素樹脂塗膜のラマンスペクトルデータ、ビニルエステル、ビニルエーテル、TFEおよびCTFEの有無、ビニルエステル、ビニルエーテル、TFE、CTFEおよびフッ素原子の含量、ならびに耐候性のランクの入力を受け付け、該データを塗料テーブル221に記録する。記録部203は、ビニルエステルに基づく構成単位由来の熱分解生成物のピークに係る新たなデータの入力を受け付け、該データをエステルピークテーブル222に記録する。記録部203は、ビニルエーテルに基づく構成単位由来の熱分解生成物のピークに係る新たなデータの入力を受け付け、該データをエーテルピークテーブル223に記録する。
 同定部204は、計測データ取得部201が取得したラマン分光法による試料Sの計測データと塗料テーブル221に格納されたラマンスペクトルデータとを比較し、試料Sが既知のフッ素樹脂塗料またはフッ素樹脂塗膜であるか否かを判定する。
 エステル推定部205は、計測データ取得部201が取得した熱分解GC/MS法による試料Sの計測データとエステルピークテーブル222に格納されたビニルエステルに基づく構成単位由来の熱分解生成物のピークに係るデータとを比較し、試料Sにビニルエステルに基づく構成単位が含まれるか否かを判定する。またエステル推定部205は、試料Sにおけるビニルエステルに基づく構成単位の含量を推定する。
 エーテル推定部206は、計測データ取得部201が取得した熱分解GC/MS法による試料Sの計測データとエーテルピークテーブル223に格納されたビニルエーテルに基づく構成単位由来の熱分解生成物のピークに係るデータとを比較し、試料Sにビニルエーテルに基づく構成単位が含まれるか否かを判定する。またエーテル推定部206は、試料Sにおけるビニルエーテルに基づく構成単位の含量を推定する。
 つまり、エステル推定部205およびエーテル推定部206は、いずれも特定モノマー推定部の一例である。
 フルオロオレフィン推定部207は、計測データ取得部201が取得した熱分解GC/MS法による試料Sの計測データとフッ素ピークテーブル224に格納されたTFEに基づく構成単位由来の熱分解生成物のピークに係るデータとを比較し、試料SにTFEに基づく構成単位が含まれるか否かを判定する。またフルオロオレフィン推定部207は、試料SにおけるTFEに基づく構成単位の含量を推定する。
 また、フルオロオレフィン推定部207は、計測データ取得部201が取得した熱分解GC/MS法による試料Sの計測データとフッ素ピークテーブル224に格納されたCTFEに基づく構成単位由来の熱分解生成物のピークに係るデータとを比較し、試料SにCTFEに基づく構成単位が含まれるか否かを判定する。またフルオロオレフィン推定部207は、試料SにおけるCTFEに基づく構成単位の含量を推定する。
 また、フルオロオレフィン推定部207は、計測データ取得部201が取得した熱分解GC/MS法による試料Sの計測データとTFEおよびCTFEに基づく構成単位由来の熱分解生成物のピークに係るデータとに基づいて、試料Sのフッ素原子含量を推定する。
 評価用情報出力部208は、同定部204、エステル推定部205、エーテル推定部206およびフルオロオレフィン推定部207の算出結果を、ネットワークNを介して端末装置10に送信する。
 次に、本実施形態に係る評価用情報提示システム1を用いたフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法について説明する。
 図4は、第1の実施形態に係る端末装置10の動作を示すフローチャートである。図5、図6および図7は、第1の実施形態に係る評価用情報算出装置20の動作を示すフローチャートである。
 評価者Eは、端末装置10を携えてフッ素樹脂塗料が用いられる現場に赴き、フッ素樹脂塗料またはフッ素樹脂塗膜である試料Sを採取する。評価者Eは、採取した試料Sを端末装置10の収容スペース101に収容する。評価者Eは、試料Sを収容スペース101に収容すると、端末装置10を起動させる。
 端末装置10が起動すると、レーザ装置121は、収容スペース101に収容された試料Sにレーザ光を照射する(図4のステップS101)。このとき収容スペース101に収容される試料Sとして、予め成分分離処理により、溶媒、顔料、およびその他の添加物の少なくとも1つを除去されたものを用いることで、得られるスペクトルデータの精度を向上させることができる。また、端末装置10は、添加物を除去した試料Sと除去しない試料Sの両方についてスペクトルデータを生成してもよい。レーザ光が試料Sに照射されると、試料Sから複数種類の散乱光が生じる。具体的には、試料Sへのレーザ光の照射によりレイリー散乱による散乱光、ラマン散乱による散乱光、およびその他の散乱光が生じる。散乱光は、フィルタ122を通ってモノクロメータ123へ入射する。このとき、フィルタ122は、散乱光のうちラマン散乱による散乱光を通過させるため、モノクロメータ123には、ラマン散乱による散乱光が入射する。モノクロメータ123に入射した光は波長ごとに分光される。分光された光は、検出器に入射する。
 検出器124は、モノクロメータ123から入射した光の強度を検出し、波長と光の強度との関係を示すスペクトルデータを生成する(ステップS102)。次に、演算装置104は、検出器124から計測データであるスペクトルデータを取得し、通信装置105を介して該スペクトルデータを評価用情報算出装置20に送信する(ステップS103)。
 端末装置10がスペクトルデータを送信すると、評価用情報算出装置20の計測データ取得部201は、該スペクトルデータを受信する(図5のステップS201)。次に、同定部204は、受信したスペクトルデータと塗料テーブル221に記録された複数のスペクトルデータそれぞれとの類似度を算出する(ステップS202)。スペクトルデータの類似度は、たとえば、ピーク位置の差およびピーク強度の比によって求めることができる。
 次に、同定部204は、塗料テーブル221を参照し、スペクトルデータの類似度が最も高い既知の塗料または塗膜を特定する(ステップS204)。次に、同定部204は、特定した既知の塗料または塗膜とのスペクトルデータの類似度が所定の疑義範囲内にあるか否かを判定する(ステップS204)。疑義範囲とは、類似度の最大値以下、かつ試料Sがいずれの既知の塗料および塗膜とも一致しないと判断する閾値より大きい値の範囲である。つまり、疑義範囲とは、試料Sが既知の塗料または塗膜と一致している可能性がある類似度の範囲である。
 同定部204が、スペクトルデータの類似度のうち最も高いものが所定の疑義範囲内にないと判定した場合(ステップS204:NO)、評価用情報出力部208は、スペクトルデータの類似度のうち最も高いものを、端末装置10に送信する(ステップS205)。
 他方、同定部204が、スペクトルデータの類似度のうち最も高いものが所定の疑義範囲内にあると判定した場合(ステップS204:YES)、評価用情報出力部208は、スペクトルデータの類似度のうち最も高いものと、試料Sのクロマトグラムの取得指示とを、端末装置10に送信する(ステップS206)。
 評価用情報算出装置20がスペクトルデータの類似度を送信すると、端末装置10の通信装置105は、該類似度を受信する(図4のステップS104)。次に、演算装置104は、通信装置105が受信した類似度を表示装置106に表示させる(ステップS105)。評価者Eは、表示装置106に表示された類似度に基づいて、試料Sの耐候性を評価する。具体的には、評価者Eは、類似度が疑義範囲外(閾値以下)である場合、試料Sが一定の耐候性を有すると認められる既知の塗料および塗膜のいずれとも一致しないため、試料Sが一定の耐候性を有しないと評価する。評価者Eは、類似度が疑義範囲内である場合、試料Sの耐候性の評価を保留する。
 次に、演算装置104は、通信装置105がスペクトルデータの類似度とともにスタンダード剤と試料Sのクロマトグラムの取得指示を受信したか否かを判定する(ステップS106)。スタンダード剤としては、たとえばTFEやCTFE、特定ビニルエステル、特定ビニルエーテルに基づく構成単位を含み、かつこれらの含量が既知である物質や、特定のモノマーなどの既知化合物を用いることができる。演算装置104は、スタンダード剤と試料Sのクロマトグラムの取得指示を受信していないと判定した場合(ステップS106:NO)、処理を終了する。これは、類似度が疑義範囲にないため、類似度の表示のみにより評価者Eが試料Sの耐候性を評価できるためである。
 他方、演算装置104は、スタンダード剤と試料Sのクロマトグラムの取得指示を受信したと判定した場合(ステップS106:YES)、熱分解装置131を起動させ、収容スペース101に収容されたスタンダード剤を加熱させる(ステップS107)。スタンダード剤は、加熱により熱分解され、ガスクロマトグラフ132に導入される。ガスクロマトグラフ132は、スタンダード剤の熱分解生成物を分離する。質量分析装置133は、ガスクロマトグラフ132から溶出した熱分解生成物をイオン化し、m/z値ごとのピーク強度を計測する。これにより、質量分析装置133は、m/z値ごとのマスクロマトグラムを生成する(ステップS108)。
 次に、演算装置104は、質量分析装置133から計測データであるマスクロマトグラムを取得し、通信装置105を介して該マスクロマトグラムを評価用情報算出装置20に送信する(ステップS109)。
 演算装置104がスタンダード剤のマスクロマトグラムを送信すると、評価者Eは、収容スペース101からスタンダード剤を取り出し、収容スペース101に試料Sを入れる。収容スペース101に試料Sが入れられると、演算装置104は、熱分解装置131を起動させ、収容スペース101に収容された試料Sを加熱させる(ステップS110)。このとき収容スペース101に収容される試料Sとして、予め成分分離処理により、溶媒、顔料、およびその他の添加物の少なくとも1つを除去されたものを用いることで、得られるクロマトグラムの精度を向上させることができる。また、端末装置10は、添加物を除去した試料Sと除去しない試料Sの両方についてクロマトグラムを生成してもよい。試料Sは、加熱により熱分解され、ガスクロマトグラフ132に導入される。ガスクロマトグラフ132は、試料Sの熱分解生成物を分離する。質量分析装置133は、ガスクロマトグラフ132から溶出した熱分解生成物をイオン化し、m/z値ごとのピーク強度を計測する。これにより、質量分析装置133は、m/z値ごとのマスクロマトグラムを生成する(ステップS111)。質量分析装置133による計測の対象となるm/zの範囲は、たとえば10以上1000以下の範囲である。
 次に、演算装置104は、質量分析装置133から計測データであるマスクロマトグラムを取得し、通信装置105を介して該マスクロマトグラムを評価用情報算出装置20に送信する(ステップS112)。
 端末装置10がスタンダード剤および試料Sのマスクロマトグラムを送信すると、評価用情報算出装置20の計測データ取得部201は、該マスクロマトグラムを受信する(図5のステップS207)。次に、フルオロオレフィン推定部207は、フッ素ピークテーブル224から、特定化合物のm/z値およびピーク強度の閾値を特定する。フルオロオレフィン推定部207は、特定化合物が出現するm/z値に関連付けられたスタンダード剤のマスクロマトグラムのピーク強度を特定する(ステップS208)。つまり、フルオロオレフィン推定部207は、スタンダード剤における特定のピーク(例えばTFEおよびCTFEに係るピーク)の強度を特定する。次に、フルオロオレフィン推定部207は、特定化合物のピーク位置およびピーク強度の検量線を作成する(ステップS209)。つまり、フルオロオレフィン推定部207は、熱分解GC/MS装置103の分析毎の検出感度を補正するための感度補正係数を導き出す。
 計測データ取得部201は、取得した試料Sのマスクロマトグラムのピーク強度に、フルオロオレフィン推定部207が導き出した感度補正係数を乗算することで、マスクロマトグラムを補正する。次に、エステル推定部205は、エステルピークテーブル222から、ビニルエステルに基づく構成単位由来の熱分解生成物毎の、m/z値(ピーク位置)およびピーク強度の閾値を特定する(図6のステップS210)。次に、エステル推定部205は、特定した熱分解生成物毎のm/z値に関連付けられたマスクロマトグラムの中に、特定したピーク強度の閾値を超えるピークが存在するか否かを判定する(ステップS211)。
 エステル推定部205は、ピーク強度の閾値を超えるピークを有する熱分解生成物が1種類以上存在すると判定した場合(ステップS211:YES)、試料Sにビニルエステルに基づく構成単位が含まれると判定する(ステップS212)。他方、エステル推定部205は、ピーク強度の閾値を超えるピークを有する熱分解生成物が1種類も存在しないと判定した場合(ステップS211:NO)、試料Sにビニルエステルに基づく構成単位が含まれないと判定する(ステップS213)。
 次に、エーテル推定部206は、エーテルピークテーブル223から、ビニルエーテルに基づく構成単位由来の熱分解生成物毎の、m/z値およびピーク強度の閾値を特定する(ステップS214)。次に、エーテル推定部206は、特定した熱分解生成物毎のm/z値に関連付けられたマスクロマトグラムの中に、特定したピーク強度の閾値を超えるピークが存在するか否かを判定する(ステップS215)。
 エーテル推定部206は、ピーク強度の閾値を超えるピークを有する熱分解生成物が1種類以上存在すると判定した場合(ステップS215:YES)、試料Sにビニルエーテルに基づく構成単位が含まれると判定する(ステップS215)。他方、エーテル推定部206は、ピーク強度の閾値を超えるピークを有する熱分解生成物が1種類も存在しないと判定した場合(ステップS215:NO)、試料Sにビニルエーテルに基づく構成単位が含まれないと判定する(ステップS217)。
 次に、フルオロオレフィン推定部207は、フッ素ピークテーブル224から、TFEに基づく構成単位由来の熱分解生成物毎の、m/z値およびピーク強度の閾値を特定する(ステップS218)。次に、フルオロオレフィン推定部207は、特定した熱分解生成物毎のm/z値に関連付けられたマスクロマトグラムの中に、特定したピーク強度の閾値を超えるピークが存在するか否かを判定する(ステップS219)。
 フルオロオレフィン推定部207は、ピーク強度の閾値を超えるピークを有する熱分解生成物が存在すると判定した場合(ステップS219:YES)、試料SにTFEに基づく構成単位が含まれると判定する(ステップS220)。他方、フルオロオレフィン推定部207は、ピーク強度の閾値を超えるピークを有する熱分解生成物が存在しないと判定した場合(ステップS219:NO)、試料SにTFEに基づく構成単位が含まれないと判定する(ステップS221)。
 次に、フルオロオレフィン推定部207は、フッ素ピークテーブル224から、CTFEに基づく構成単位由来の熱分解生成物毎の、m/z値およびピーク強度の閾値を特定する(ステップS222)。次に、フルオロオレフィン推定部207は、特定した熱分解生成物毎のm/z値に関連付けられたマスクロマトグラムの中に、特定したピーク強度の閾値を超えるピークが存在するか否かを判定する(ステップS223)。
 フルオロオレフィン推定部207は、ピーク強度の閾値を超えるピークを有する熱分解生成物が存在すると判定した場合(ステップS223:YES)、試料SにCTFEに基づく構成単位が含まれると判定する(ステップS224)。他方、フルオロオレフィン推定部207は、ピーク強度の閾値を超えるピークを有する熱分解生成物が存在しないと判定した場合(ステップS223:NO)、試料SにCTFEに基づく構成単位が含まれないと判定する(ステップS225)。
 評価用情報出力部208は、推定した各構成単位の有無と、既知の各構成単位の有無と、類似度が最も高い既知の塗料または塗膜の名称とを、端末装置10に出力する(ステップS226)。
 次に、フルオロオレフィン推定部207は、ステップS218およびS222で特定したm/z値に関連付けられた試料Sのマスクロマトグラムのピーク強度と、ステップS208で特定したスタンダード剤のマスクロマトグラムのピーク強度の比に基づいて、試料SのTFEおよびCTFEに基づく構成単位ならびにフッ素原子の含量を推定する(図7のステップS227)。具体的には、例えばフルオロオレフィン推定部207は、スタンダード剤のTFEおよびCTFEの含量に、スタンダード剤のマスクロマトグラムのピーク強度と試料Sのマスクロマトグラムのピーク強度との比を乗算することで、試料SのTFE、CTFEの含量を推定する。また、フルオロオレフィン推定部207は、特定したTFEの含量とCTFEの含量に所定の係数を乗算して合算することで、フッ素原子の含量を推定する。
 次に、エステル推定部205は、ステップS210で特定したピーク強度と、ステップS208で特定したスタンダード剤における特定のピーク(例えば、特定ビニルエステルモノマー)の強度との比に基づいて、試料Sのビニルエステルに基づく構成単位の含量を推定する(ステップS228)。また、エーテル推定部206は、ステップS214で特定したピーク強度と、ステップS208で特定したスタンダード剤における特定のピーク(例えば、特定ビニルエーテルモノマー)の強度との比に基づいて、試料Sのビニルエーテルに基づく構成単位の含量を推定する(ステップS229)。そして、評価用情報出力部208は、エステル推定部205、エーテル推定部206およびフルオロオレフィン推定部207による推定結果を評価用情報として端末装置10に送信する(ステップS230)。
 ステップS227またはステップS230により評価用情報算出装置20が評価用情報を送信すると、端末装置10の通信装置105は、該評価用情報を受信する(図4のステップS114)。次に、演算装置104は、通信装置105が受信した評価用情報を表示装置106に表示させ(ステップS115)、処理を終了する。
 評価者Eは、表示装置106に表示された評価用情報に基づいて、試料Sの耐候性を評価する。具体的には、評価者Eは、試料Sと、該試料Sと最も類似する既知の塗料または塗膜とで、ビニルエステル、ビニルエーテル、TFEおよびCTFEの有無が一致し、かつビニルエステル、ビニルエーテル、TFE、CTFEおよびフッ素原子の含量の誤差が一定値以内である場合に、試料Sが一定の耐候性を有すると評価する。また、評価者Eは、試料Sの耐候性ランクに基づいて、該試料Sの耐候性について詳細に評価する。他方、試料Sと、該試料Sと最も類似する既知の塗料または塗膜とで、ビニルエステル、ビニルエーテル、TFEおよびCTFEの有無が一致しない場合、またはビニルエステル、ビニルエーテル、TFE、CTFEおよびフッ素原子の含量の誤差が一定値より大きい場合に、試料Sが一定の耐候性を有しないと評価する。
 以下に、耐候性のランクについて説明する。
 フッ素樹脂塗料およびフッ素樹脂塗膜の耐候性は、フルオロオレフィンのC-F結合エネルギーの大きさが、紫外線エネルギーより大きいことで得られるものである。したがって、試料Sのフッ素原子含量が大きいほど耐候性に優れ、試料Sのフッ素原子含量が小さいほど耐候性に劣る。フッ素樹脂塗料およびフッ素樹脂塗膜中のフッ素原子含量は、耐候性に優れるフッ素樹脂塗膜を形成できる点から、フッ素樹脂塗料の固形分(100質量%)に対して、20質量%以上が好ましく、22質量%以上がより好ましく、24質量%以上がさらに好ましい。
 フッ素樹脂塗料またはフッ素樹脂塗膜が、ビニルエーテルに基づく構成単位を有し、かつビニルエステルに基づく構成単位を有しない場合、フッ素樹脂塗料またはフッ素樹脂塗膜においては、フルオロオレフィンに基づく構成単位とビニルエーテルに基づく構成単位とが規則的に交互に配列している。そのため、紫外線に弱いビニルエーテルに基づく構成単位が紫外線に強いフルオロオレフィンに基づく構成単位に挟まれて隠れる形となり、ビニルエーテルに基づく構成単位に紫外線が当たりにくい。したがって、ビニルエーテルに基づく構成単位を有するフッ素樹脂塗料およびフッ素樹脂塗膜は、耐候性のランクが相対的に高くなる。
 一方、フッ素樹脂塗料またはフッ素樹脂塗膜が、ビニルエステルに基づく構成単位を有する場合、フッ素樹脂塗料またはフッ素樹脂塗膜においては、フルオロオレフィンに基づく構成単位とビニルエステルに基づく構成単位とがランダムに近い状態で配列している。そのため、紫外線に弱いビニルエステルに基づく構成単位が紫外線にさらされやすく、ビニルエステルに基づく構成単位同士の結合部分が切断されやすい。したがって、ビニルエステルに基づく構成単位を有するフッ素樹脂塗料およびフッ素樹脂塗膜は、耐候性のランクが相対的に低くなる。
 このように、本実施形態に係るフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法によれば、試料Sにビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位が含まれるか否かと、試料Sのフッ素原子含量とに基づいて試料Sを評価する。これにより、評価者Eは、フッ素樹脂塗料またはフッ素樹脂塗膜の同定が困難である場合にも、試料Sの耐候性を評価することができる。
 また本実施形態に係るフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法によれば、ラマン散乱による散乱光に基づく試料Sの同定が困難である場合に、試料Sにビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位が含まれるか否かと、試料Sのフッ素原子含量とに基づいて試料Sを評価する。これにより、評価者Eは、フッ素樹脂塗料またはフッ素樹脂塗膜を同定できる場合、該同定結果に基づいて試料Sの耐候性を評価することができる。
 《第2の実施形態》
 本実施形態に係る評価用情報提示システム1は、ラマン分光法および熱分解GC法に基づいてフッ素樹脂塗料またはフッ素樹脂塗膜である試料Sの評価に用いられる情報を提供する。
 図8は、第2の実施形態に係る端末装置10の構成を示す概略ブロック図である。
 本実施形態に係る端末装置10は、第1の実施形態の質量分析装置133に代えて検出器134を備える。検出器134は、ガスクロマトグラフ132から溶出する熱分解生成物の時系列の強度を検出する。つまり、検出器134は、試料Sのクロマトグラフを生成する。
 図9は、第2の実施形態に係る評価用情報算出装置20の構成を示す概略ブロック図である。
 本実施形態に係る評価用情報算出装置20は、第1の実施形態の構成に加え、基準特定部209をさらに備える。また、本実施形態に係るエステルピークテーブル222、エーテルピークテーブル223およびフッ素ピークテーブル224が格納する情報は、第1の実施形態と異なる。また、本実施形態に係るエステル推定部205、エーテル推定部206およびフルオロオレフィン推定部207の動作は、第1の実施形態と異なる。
 エステルピークテーブル222は、ビニルエステルに基づく構成単位由来の熱分解生成物のピークに係るデータを格納する。エーテルピークテーブル223は、ビニルエーテルに基づく構成単位由来の熱分解生成物のピークに係るデータを格納する。フッ素ピークテーブル224は、フルオロオレフィンに基づく構成単位由来の熱分解生成物のピークに係るデータを格納する。本実施形態において熱分解生成物のピークに係るデータとは、熱分解生成物のピークが出現する時刻とピーク強度の閾値とを関連付けたデータである。熱分解生成物のピークが出現する時刻は、たとえば試料Sの熱分解生成物をガスクロマトグラフに導入した時刻からの経過時間によって表される。
 基準特定部209は、端末装置10からピークが出現する時刻が既知のスタンダード剤に係るクロマトグラムを取得し、該クロマトグラムに実際にピークが出現している時刻とデータベース202に記録されたピークが出現する時刻との差を特定する。スタンダード剤としては、たとえばエステルピークテーブル222、エーテルピークテーブル223またはフッ素ピークテーブル224に格納された任意のモノマーを用いることができる。またエステルピークテーブル222、エーテルピークテーブル223およびフッ素ピークテーブル224に格納されない他の分子をスタンダード剤として用いても良い。この場合、データベース202は、該スタンダード剤のピークが出現する時刻を予め記憶しておく必要がある。
 エステル推定部205は、エステルピークテーブル222に格納されたビニルエステルに基づく構成単位由来の熱分解生成物のピークが出現する時刻を、基準特定部209が特定した時間に基づいて補正する。エステル推定部205は、計測データ取得部201が取得したクロマトグラムのうち、補正によって得られた時刻の前後所定時間の間にピークが存在するか否かを判定することで、試料Sにビニルエステルに基づく構成単位が含まれるか否か、およびビニルエステルに基づく構成単位の量を推定する。
 エーテル推定部206は、エーテルピークテーブル223に格納されたビニルエーテルに基づく構成単位由来の熱分解生成物のピークが出現する時刻を、基準特定部209が特定した時間に基づいて補正する。エーテル推定部206は、計測データ取得部201が取得したクロマトグラムのうち、補正によって得られた時刻の前後所定時間の間にピークが存在するか否かを判定することで、試料Sにビニルエーテルに基づく構成単位が含まれるか否か、およびビニルエーテルに基づく構成単位の量を推定する。
 フルオロオレフィン推定部207は、フッ素ピークテーブル224に格納されたフルオロオレフィンに基づく構成単位由来の熱分解生成物のピークが出現する時刻を、基準特定部209が特定した時間に基づいて補正する。フルオロオレフィン推定部207は、計測データ取得部201が取得したクロマトグラムのうち、補正によって得られた時刻の前後所定時間の間に存在するピークの強度に基づいて、試料SのTFE、CTFEおよびフッ素原子の有無および含量を推定する。
 このように、本実施形態によれば、ラマン分光法および熱分解GC法に基づいて、第1の実施形態と同様の効果を奏することができる。
《第3の実施形態》
 本実施形態に係る評価用情報提示システム1は、分光分析を行わずに、熱分解GC/MS法に基づいてフッ素樹脂塗料またはフッ素樹脂塗膜である試料Sの評価に用いられる情報を提供する。
 図10は、第3の実施形態に係る端末装置10の構成を示す概略ブロック図である。
 本実施形態に係る端末装置10は、第1の実施形態のラマン分光装置102を備えない。他方、本実施形態に係る演算装置104は、熱分解GC/MS装置103が出力するマスクロマトグラムに基づいて、試料Sと既知の塗料または塗膜との同定を行う。本実施形態に係る演算装置104の構成は、第1の実施形態と同じである。他方、塗料テーブル221に格納される情報および同定部204の動作が、第1の実施形態と異なる。
 塗料テーブル221は、既知の塗料または塗膜のマスクロマトグラムと、ビニルエステル、ビニルエーテル、TFEおよびCTFEの有無と、ビニルエステル、ビニルエーテル、TFE、CTFEおよびフッ素原子の含量と、耐候性のランクとを格納する。
 同定部204は、塗料テーブル221に格納されたマスクロマトグラムと、計測データ取得部201が取得したマスクロマトグラムとの類似度を特定し、該類似度に基づいて、試料Sが既知の塗料または塗膜であるか否かを判定する。マスクロマトグラム同士の類似度は、たとえば、既知のマスクロマトグラムに含まれるあるピークを基準にとったときのピーク強度の比の類似度によって判定することができる。またたとえば、PCAスコアプロット法、Volcano Plot解析、階層的クラスター解析などの多変量解析法に基づいて、マスクロマトグラム同士の類似度を算出してもよい。
 このように、本実施形態によれば、ラマン分光法などの分光分析を用いなくても、第1の実施形態と同様の効果を奏することができる。
 本実施形態に係る評価用情報提示システム1は、熱分解GC/MS法に係るマスクロマトグラムに基づく同定に代えて、第2の実施形態と同様に熱分解GC法に係るクロマトグラムに基づいて同定を行ってもよい。
 また、他の実施形態に係る評価用情報提示システム1は、第1の実施形態または第2の実施形態と同様に分光分析による同定を行い、さらにクロマトグラフに係る同定を行ってもよい。
 また、他の実施形態に係る評価用情報提示システム1は、クロマトグラムに基づく同定のみに基づいて試料Sの評価を行い、各構成単位の有無または量の比較を行わないものであってもよい。
 以上、図面を参照して実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 たとえば、他の実施形態に係る評価用情報提示システム1は、ラマン分光法に代えて、赤外分光法、近赤外分光法、紫外分光法、可視分光法、レーザー誘起ブレークダウン分光法(LIBS、Laser-Induced Breakdown Spectroscopy)から得られるスペクトルに基づいて試料Sを同定してもよい。また、複数の上記分光法により得られる複数のスペクトルの組み合わせに基づいて試料Sを同定してもよい。つまり、上述したラマン分光装置102は、試料Sが吸収または放射する光を分光してスペクトルデータを生成する分光部の一例である。つまり、上述したラマン分光装置102は、試料Sの同定に用いる同定用情報を生成する同定用情報生成部の一例である。
 また他の実施形態に係る評価用情報提示システム1は、分光分析を行わず、熱分解GC法または熱分解GC/MS法によるクロマトグラムに基づいてビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方の推定によって、試料Sを評価しても良い。この場合、評価用情報提示システム1は、最も類似度が高い既知の塗料または塗膜を特定することができないため、試料Sと全ての既知の塗料または塗膜との比較を行うことで、試料Sを評価する。
 また上述した実施形態に係る評価用情報提示システム1は、分光分析による同定と、各構成単位の有無の判定と、各構成単位の量の判定とを、順番に行うが、これに限られない。たとえば、他の実施形態に係る評価用情報提示システム1は、分光分析による同定と、各構成単位の有無の判定と、各構成単位の量の判定とを並列実行し、各分析によって得られる試料Sと既知の塗料または塗膜との類似度を総合的に考慮して試料Sを評価してもよい。総合的な評価とは、たとえば、各類似度を加算して得られる値が閾値以上であるか否かの判断、各類似度を乗算して得られる値が閾値以上であるか否かの判断、各類似度が全て所定の閾値以上であるか否かの判断などが挙げられる。またたとえば、他の実施形態に係る評価用情報提示システム1は、クロマトグラムとスペクトルとを組み合わせた多次元データを生成し、当該多次元データに基づいて類似度を算出してもよい。
 また他の実施形態に係る評価用情報提示システム1は、ビニルエステル、ビニルエーテル、TFEおよびCTFEの有無と、ビニルエステル、ビニルエーテル、TFE、CTFEおよびフッ素原子の含量とに加え、さらに微量成分に由来するピークの有無または含量を考慮して試料Sを評価しても良い。
 また他の実施形態に係る評価用情報提示システム1は、評価用情報算出装置20に試料Sを評価する評価部を備え、評価用情報算出装置20が試料Sを評価しても良い。この場合、端末装置10は、評価用情報に代えて、評価部による評価結果を表示する。
 また他の実施形態に係る評価用情報提示システム1は、端末装置10と評価用情報算出装置20とがネットワークNを介さずに直接接続されても良い。たとえば、評価用情報算出装置20がノートPCに実装されることで、ネットワークNへの接続ができない地域においても、試料Sを解析し、評価することができる。
 また他の実施形態に係る端末装置10は、表示装置106による表示ではなく、印刷、音声、またはその他の出力手段によって、評価用情報を提示してもよい。
 また他の実施形態に係る評価用情報提示システム1は、評価用情報として、試料Sの耐候性指標値、試料Sが所定の基準を満たすか否か、または試料Sが一定の耐候性を有するか否かの判定結果を提示しても良い。また他の実施形態に係る評価者Eは、試料Sが一定の耐候性を有するか否かの評価でなく、試料Sの耐候性指標値または試料Sが所定の基準を満たすか否かを評価しても良い。
 また他の実施形態に係る評価用情報提示システム1は、試料Sにビニルエーテルに基づく構成単位が含まれるか否かの判定結果を、評価用情報として提示しなくてもよい。フッ素樹脂塗料およびフッ素樹脂塗膜は、一般的に、ビニルエステルに基づく構成単位およびビニルエーテルに基づく構成単位の少なくとも一方を含む。そのため、試料Sにビニルエステルに基づく構成単位が含まれないとの判定結果は、試料Sにビニルエーテルに基づく構成単位が含まれるとの判定結果と等価であると推定することができる。したがって、評価者Eは、評価用情報提示システム1が、試料Sにビニルエーテルに基づく構成単位が含まれるか否かの判定結果を提示しない場合にも、試料Sの耐候性を評価できる。同様に、他の実施形態に係る評価用情報提示システム1は、試料Sにビニルエステルに基づく構成単位が含まれるか否かの判定結果を、評価用情報として提示しなくてもよい。なお、フッ素樹脂塗料およびフッ素樹脂塗膜は、ビニルエステルに基づく構成単位とビニルエーテルに基づく構成単位とを含む場合があるため、評価用情報提示システム1は、試料Sにビニルエステルに基づく構成単位が含まれるか否かの判定結果を提示することが好ましい。
 また他の実施形態に係る評価用情報算出装置20は、データベース202に代えて、ビニルエステルに基づく構成単位由来の熱分解生成物のピークに係るデータと、フッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピークに係るデータとを記憶する他の記憶装置を備えてもよい。つまり、記憶装置は、データの操作機能を有しないファイルシステムによってデータが管理されるものであってもよい。この場合、データを処理するアプリケーションである記録部203、同定部204、エステル推定部205、エーテル推定部206およびフルオロオレフィン推定部207が、データの操作機能を有する必要がある。
 上述の評価用情報算出装置20は、CPU、主記憶装置、補助記憶装置、インタフェースを備えるコンピュータに実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置に記憶されている。CPUは、プログラムを補助記憶装置から読み出して主記憶装置に展開し、該プログラムに従って上記処理を実行する。CPUは、プログラムの初回実行時に、上述したデータベース202を補助記憶装置に構築する。
 少なくとも1つの実施形態において、補助記憶装置は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、インタフェースを介して接続される磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータに配信される場合、配信を受けたコンピュータが該プログラムを主記憶装置に展開し、上記処理を実行しても良い。
 また、該プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、該プログラムは、前述した機能を補助記憶装置に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であっても良い。
《フッ素樹脂塗料》
 評価対象のフッ素樹脂塗料は、フッ素樹脂(A)を含む。フッ素樹脂塗料は、必要に応じて、有機溶媒(B)、他の塗料配合成分(C)を含んでいてもよい。
 (フッ素樹脂(A))
 フッ素樹脂(A)としては、公知のフッ素樹脂塗料に用いられるフッ素樹脂であればよい。
 フッ素樹脂(A)としては、耐候性に優れるフッ素樹脂塗膜を形成できることから、フルオロオレフィン(a1)に基づく構成単位と、架橋性基を有するモノマー(a2)に基づく構成単位と、フッ素原子および架橋性基を有しないモノマー(a3)に基づく構成単位とからなるフルオロオレフィン共重合体(A1)が好ましい。
 フルオロオレフィン(a1):
 フルオロオレフィン(a1)が有するフッ素原子数は、2以上が好ましく、2~6がより好ましく、3~4がさらに好ましい。該フッ素原子数が2以上であれば、耐候性に優れるフッ素樹脂塗膜を形成できる。
 フルオロオレフィン(a1)としては、たとえば、TFE、CTFE、フッ化ビニリデン、ヘキサフルオロプロピレン等が挙げられ、耐候性に優れるフッ素樹脂塗膜を形成できる点から、TFEまたはCTFEが好ましい。つまり、上述した実施形態に係るデータベース202は、少なくともTFEおよびCTFEに基づく構成単位由来の熱分解生成物のピークに係るデータと前記計測データを記憶する。
 フルオロオレフィン(a1)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 モノマー(a2):
 モノマー(a2)は、架橋性基を有するモノマーである。
 架橋性基としては、活性水素を有する官能基(水酸基、カルボキシル基、アミノ基等)、加水分解性シリル基(アルコキシシリル基等)等が好ましい。
 モノマー(a2)としては、耐候性に優れるフッ素樹脂塗膜を形成できる点から、下式で表されるモノマー(a21)が好ましい。
 CH=CX(CHn1-Q-R-Y
 ただし、Xは、水素原子またはメチル基であり、n1は、0または1であり、Qは、酸素原子、-C(O)O-または-O(O)C-であり、Rは、分岐構造または環構造を有していてもよい炭素数2~20のアルキレン基であり、Yは、架橋性官能基である。
 Yとしては、水酸基、カルボキシル基またはアミノ基が好ましく、水酸基がより好ましい。
 Rとしては、直鎖状のアルキレン基が好ましい。該アルキレン基の炭素数は、1~10が好ましく、1~6がより好ましく、2~4がさらに好ましい。
 Qとしては、酸素原子が好ましい。
 モノマー(a21)は、エーテル結合を有するモノマーと、エステル結合を有するモノマーとに大別される。
 エーテル結合を有するモノマーとしては、ヒドロキシアルキルビニルエーテル類、ヒドロキシアルキルアリルエーテル類等が挙げられる。
 エステル結合を有するモノマーとしては、ヒドロキシアルカン酸ビニル類、ヒドロキシアルカン酸アリル類、ヒドロキシアルキルアクリレート類、ヒドロキシアルキルメタクリレート類等が挙げられる。
 ヒドロキシアルキルビニルエーテル類としては、2-ヒドロキシエチルビニルエーテル、ヒドロキシメチルビニルエーテル、4-ヒドロキシブチルビニルエーテル(以下、HBVEとも記す。)等が挙げられる。
 ヒドロキシアルキルアリルエーテル類としては、ヒドロキシエチルアリルエーテル等が挙げられる。
 ヒドロキシアルキルアクリレート類やヒドロキシアルキルメタクリレート類としては、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート等が挙げられる。
 モノマー(a21)としては、耐候性に優れるフッ素樹脂塗膜を形成できる点から、エーテル結合を有するモノマーが好ましく、ヒドロキシアルキルビニルエーテル類がより好ましいく、HBVEが特に好ましい。
 モノマー(a2)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 モノマー(a3):
 モノマー(a3)は、フッ素原子および架橋性基を有しないモノマーである。
 モノマー(a3)としては、耐候性に優れるフッ素樹脂塗膜を形成できる点から、下式で表されるモノマー(a31)が好ましい。
 CH=CX(CHn2-Q-R
 ただし、Xは、水素原子またはメチル基であり、n2は、0または1であり、Qは、酸素原子、-C(O)O-または-O(O)C-であり、Rは分岐構造または環構造を有していてもよい炭素数2~20のアルキル基である。
 モノマー(a31)は、エーテル結合を有するモノマーと、エステル結合を有するモノマーとに大別される。
 エーテル結合を有するモノマーとしては、アルキルビニルエーテル類、アルキルアリルエーテル類等が挙げられる。
 エステル結合を有するモノマーとしては、アルカン酸ビニル類、アリールカルボン酸ビニル類、アルカン酸アリル類、アルキルアクリレート類、アルキルメタクリレート類等が挙げられる。
 アルキルビニルエーテル類としては、エチルビニルエーテル(以下、EVEとも記す。)、シクロヘキシルビニルエーテル(以下、CHVEとも記す。)、2-エチルへキシルビニルエーテル等が挙げられる。
 アルカン酸ビニル類としては、酢酸ビニル、ビニルバーサテート等が挙げられる。
 アリールカルボン酸ビニル類としては、安息香酸ビニル等が挙げられる。
 モノマー(a31)としては、耐候性に優れるフッ素樹脂塗膜を形成できる点から、エーテル結合を有するモノマーが好ましく、アルキルビニルエーテル類がより好ましく、EVE、CHVEがさらに好ましく、CHVEが特に好ましい。
 モノマー(a3)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 構成単位の割合:
 フルオロオレフィン(a1)に基づく構成単位の割合は、フルオロオレフィン共重合体(A1)が有する全構成単位(100モル%)のうち、30~70モル%が好ましく、40~60モル%がより好ましく、45~55モル%がさらに好ましい。フルオロオレフィン(a1)に基づく構成単位の割合が30モル%以上であれば、耐候性に優れるフッ素樹脂塗膜を形成できる。フルオロオレフィン(a1)に基づく構成単位の割合が70モル%以下であれば、有機溶媒や希釈剤への溶解性に優れる。
 モノマー(a2)に基づく構成単位およびモノマー(a3)に基づく構成単位の合計の割合は、フルオロオレフィン共重合体(A1)が有する全構成単位(100モル%)のうち、70~30モル%が好ましく、60~40モル%がより好ましく、55~45モル%がさらに好ましい。
 モノマー(a21)に基づく構成単位の割合は、フルオロオレフィン共重合体(A1)が有する全構成単位(100モル%)のうち、5~40モル%が好ましく、8~35モル%がより好ましい。モノマー(a21)に基づく構成単位の割合が5モル%以上であれば、硬度の高いフッ素樹脂塗膜を得るために充分な量の架橋性基がフルオロオレフィン共重合体(A1)中に導入される。モノマー(a21)に基づく構成単位の割合が40モル%以下であれば、高固形分タイプであっても、フルオロオレフィン共重合体(A1)溶液として充分な低粘度を維持できる。
 モノマー(a31)に基づく構成単位の割合は、フルオロオレフィン共重合体(A1)が有する全構成単位(100モル%)のうち、0モル%超45モル%以下が好ましく、3~35モル%がより好ましく、5~30モル%がさらに好ましい。モノマー(a31)に基づく構成単位を有することによって、得られるフッ素樹脂塗膜の硬度や柔軟性を適宜調整できる。モノマー(a31)に基づく構成単位の割合が45モル%以下であれば、耐候性に優れ、硬度の高いフッ素樹脂塗膜を得るために充分な量の架橋性基がフルオロオレフィン共重合体(A1)中に導入される。
 フルオロオレフィン(a1)に基づく構成単位、モノマー(a21)に基づく構成単位およびモノマー(a31)に基づく構成単位以外の他のモノマーに基づく構成単位を有する場合、他のモノマーに基づく構成単位の割合は、フルオロオレフィン共重合体(A1)が有する全構成単位(100モル%)のうち、20モル%以下が好ましく、10モル%以下がより好ましい。
 フルオロオレフィン共重合体(A1)の市販品としては、たとえば、下記のものが挙げられる。
 旭硝子社製のルミフロン(登録商標)シリーズ(LF200、LF100、LF710等)。
 ダイキン工業社製のゼッフル(登録商標)GKシリーズ(GK-500、GK-510、GK-550、GK-570、GK-580等)。たとえば、ゼッフル(登録商標)GK-570は、TFE/ヒドロキシエチルアリルエーテル/ビニルバーサテート/安息香酸ビニル/酢酸ビニル共重合体であり、ゼッフル(登録商標)GK-580は、TFE/ヒドロキシエチルアリルエーテル/ビニルバーサテート/安息香酸ビニル共重合体である。
 DIC社製のフルオネート(登録商標)シリーズ(K-700、K-702、K-703、K-704、K-705、K-707等)。たとえば、フルオネート(登録商標)K-705は、CTFE/HBVE/EVE/ビニルバーサテート共重合体である。
 Eternal Chemical社製のETERFLONシリーズ(E-4101、E-41011、E-4102、E-41021、E-4261A、E-4262A、E-42631、E-4102A、E-41041、E-41111、E-4261A等)等が挙げられる。たとえば、ETERFLON E-4101は、CTFE/HBVE/CHVE/EVE共重合体である。
 (有機溶媒(B))
 有機溶媒(B)としては、芳香族炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、労働安全衛生法における第三種有機溶剤、アルコール系溶媒、エーテルエステル系溶媒等が挙げられる。
 有機溶媒(B)としては、環境負荷低減の点からは、PRTR法、HAPs規制に対応した溶媒、すなわち、芳香族環を有しない有機溶媒が好ましい。また、労働安全衛生法による有機溶剤の分類において、第三種有機溶剤に分類されている有機溶媒も好ましい。具体的には、PRTR法、HAPs規制に該当しないケトン系溶媒、エーテルエステル系溶媒;労働安全衛生法において第三種有機溶剤に分類されているパラフィン系溶剤またはナフテン系溶剤が好ましい。
 芳香族炭化水素系溶媒としては、トルエン、キシレン、エチルベンゼン、芳香族石油ナフサ、テトラリン、テレピン油、ソルベッソ(登録商標)♯100(エクソン化学社製)、ソルベッソ(登録商標)♯150(エクソン化学社製)が好ましい。ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソブチルケトン、エチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロンが好ましい。エステル系溶媒としては、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソブチル、酢酸tert-ブチルが好ましい。
 労働安全衛生法における第三種有機溶剤は、ガソリン、コールタールナフサ(ソルベントナフサを含む。)、石油エーテル、石油ナフサ、石油ベンジン、テレピン油、ミネラルスピリット(ミネラルシンナー、ペトロリウムスピリット、ホワイトスピリットおよびミネラルターペンを含む。)からなる群から選ばれる1種以上からなる溶剤である。
 労働安全衛生法における第三種有機溶剤としては、引火点が室温以上である点から、ミネラルスピリット(ミネラルシンナー、ペトロリウムスピリット、ホワイトスピリットおよびミネラルターペンを含む。)が好ましい。
 アルコール系溶媒としては、炭素数4以下のものが好ましく、具体的には、エタノール、tert-ブチルアルコール、iso-プロピルアルコールが好ましい。
 エーテルエステル系溶媒としては、3-エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸メトキシブチルが好ましい。
 有機溶媒(B)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 有機溶媒(B)の量は、フッ素樹脂塗料の固形分濃度が20~100質量%となる量が好ましく、40~100質量%となる量がより好ましい。
 (他の塗料配合成分(C))
 他の塗料配合成分(C)としては、硬化剤、着色剤、フッ素樹脂(A)以外の他の樹脂、シランカップリング剤、紫外線吸収剤、硬化促進剤、光安定剤、つや消し剤等が挙げられる。これらは2種以上を併用してもよい。
 硬化剤:
 硬化剤としては、イソシアネート系硬化剤、ブロック化イソシアネート系硬化剤およびアミノ樹脂系硬化剤からなる群から選ばれた少なくとも1種が好ましい。
 イソシアネート系硬化剤としては、無黄変イソシアネート類(ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等)が好ましい。
 ブロック化イソシアネート系硬化剤としては、イソシアネート系硬化剤のイソシアネート基をカプロラクタム、イソホロン、β-ジケトン等でブロックしたものが好ましい。
 アミノ樹脂系硬化剤は、アミン類(メラミン、メチロールメラミン、グアナミン、尿素等)と、アルデヒド類(ホルムアルデヒド等)とを重縮合して得られた硬化剤である。アミノ樹脂系硬化剤としては、メラミン樹脂系硬化剤、グアナミン樹脂系硬化剤、尿素樹脂系硬化剤、スルホアミド樹脂系硬化剤、アニリン樹脂系硬化剤等が挙げられる。
 硬化剤の量は、フッ素樹脂塗料中のフッ素樹脂(A)の100質量部に対して、1~100質量部が好ましく、1~50質量部がより好ましい。硬化剤が1質量部以上であれば、フッ素樹脂塗膜の耐溶剤性に優れ、硬度が充分である。硬化剤が100質量部以下であれば、加工性に優れ、耐衝撃性に優れる。
 着色剤:
 着色剤としては、耐候性のよい無機顔料(カーボンブラック、酸化チタン等)、有機顔料(フタロシアニンブルー、フタロシアニングリーン、キナクリドンレッド、インダンスレンオレンジ、イソインドリノン系イエロー等)、染料等が挙げられる。
 他の樹脂:
 他の樹脂としては、塗料に配合される公知の樹脂が挙げられる。
 たとえば、塗膜の乾燥性を改善するために、セルロースアセテートブチレート、ニトロセルロース等を配合してもよい。また、塗膜の光沢、硬度、塗料の施工性を改良するために、アクリル酸やそのエステル、メタクリル酸やそのエステル等に基づく単位を有する重合体、ポリエステル等を配合してもよい。
《フッ素樹脂塗膜》
 フッ素樹脂塗膜は、物品の表面にフッ素樹脂塗料を塗布し、乾燥させることによって形成される。
 塗装方法としては、スプレー塗装、エアスプレー塗装、はけ塗り、浸漬法、ロールコート、フローコート等の方法が挙げられる。
 塗装される物品の材質としては、無機物(コンクリート、自然石、ガラス、金属(鉄、ステンレス、アルミニウム、銅、真鍮、チタン等)等)、有機物(プラスチック、ゴム、接着剤、木材等)、有機無機複合材(繊維強化プラスチック、樹脂強化コンクリート、繊維強化コンクリート等)が挙げられる。
 塗装される物品としては、輸送用機器、土木構造物、産業機材、建築部材、道路部材、通信機材、発電装置、電気部品、電子部品、プラスチック成型品が挙げられる。輸送用機器の例としては、自動車、船舶、電車、航空機(飛行機、ヘリコプター等)の外装および内部製品が挙げられる。土木構造物の例としては、橋梁(道路橋、水路橋、鉄道橋、跨線橋、陸上橋、歩道橋等)、鉄塔(送電塔、通信塔等)、水工構造物(ダム等)が挙げられる。道路橋とは、道路が設置される橋のことである。つまり、跨線橋や陸上橋等に属する橋であっても、道路が設置された橋であれば、道路橋に含まれる。また、車道が設置される橋のみならず、人が渡る道路の橋である歩道橋も、道路橋に含まれる。また、道路と鉄道との両方が設置された複合橋は、道路橋に含まれる。なお、塗装される跨線橋または陸上橋は、道路が設置されない跨線橋または陸上橋であってもよい。産業機材の例としては、シート材(防水材シート、テント地等)、用水設備(タンク、パイプ、熱温水器、プール等)が挙げられる。建築部材の例としては、外装部材(建築構造物外壁、屋上床、高欄、看板、レンガ、煙突等)、内装部材(手摺、工場床、柱等)が挙げられる。道路部材の例としては、中央分離帯、ガードレール、防音壁が挙げられる。通信機材の例としては、アンテナが挙げられる。発電装置の例としては、太陽電池(太陽電池モジュール用表面シート、太陽電池モジュール用バックシート等)、風力発電装置(風力発電タワー、風力発電ナセル、風力発電ブレード)、太陽熱発電装置が挙げられる。
 なお、2014年12月12日に出願された日本特許出願2014-252465号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1 評価用情報提示システム、10 端末装置、20 評価用情報算出装置、101 収容スペース、102 ラマン分光装置、103 熱分解GC/MS装置、104 演算装置、105 通信装置、106 表示装置、121 レーザ装置、122 フィルタ、123 モノクロメータ、124 検出器、131 熱分解装置、132 ガスクロマトグラフ、133 質量分析装置、134 検出器、201 計測データ取得部、202 データベース、203 記録部、204 同定部、205 エステル判定部、206 エーテル判定部、207 フッ素原子含量推定部、208 評価用情報出力部、209 基準特定部、221 スペクトルテーブル、222 エステルピークテーブル、223 エーテルピークテーブル、224 フッ素ピークテーブル、S 試料、N ネットワーク、E 評価者

Claims (14)

  1.  フッ素樹脂塗料またはフッ素樹脂塗膜である試料の、熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データを取得する計測データ取得ステップと、
     記憶装置に記録されたビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位由来の熱分解生成物のピークに係るデータと前記計測データとに基づいて、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方を推定する特定モノマー推定ステップと、
     記憶装置に記録されたフッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピークに係るデータと前記計測データとに基づいて、前記試料のフッ素原子含量を推定するフッ素原子含量推定ステップと、
     前記特定モノマー推定ステップの推定結果と前記フッ素原子含量とに基づいて前記試料を評価する評価ステップと
     を有するフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
  2.  記憶装置に記録された、既知のフッ素樹脂塗料または既知のフッ素樹脂塗膜が吸収または放射する光を分光して得られるスペクトルデータまたは既知のフッ素樹脂塗料または既知のフッ素樹脂塗膜の熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データと、前記試料が吸収または放射する光を分光して得られるスペクトルデータまたは前記計測データ取得ステップで取得した前記計測データとの類似度を特定する類似度特定ステップをさらに有し、
     前記評価ステップで、前記特定モノマー推定ステップの推定結果と前記類似度特定ステップの特定結果と前記フッ素原子含量とに基づいて前記試料を評価する
     請求項1に記載のフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
  3.  前記類似度特定ステップで特定した類似度が最も高い前記既知のフッ素樹脂塗料または前記既知のフッ素樹脂塗膜を特定する類似塗料特定ステップをさらに有し、
     前記評価ステップで、前記特定モノマー推定ステップの推定結果および前記フッ素原子含量と、前記類似塗料特定ステップが特定した前記既知のフッ素樹脂塗料または前記既知のフッ素樹脂塗膜のビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方、ならびにフッ素原子含量とを比較することで、前記試料を評価する
     請求項2に記載のフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
  4.  前記計測データが、前記試料の熱分解ガスクロマトグラフィ質量分析法による計測データであり、
     前記ピークに係るデータが、ピークを生じる熱分解生成物の質量に係る物理量とピーク強度の閾値を含む
     請求項1から請求項3の何れか1項に記載のフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
  5.  前記計測データが、前記試料の熱分解ガスクロマトグラフィ法による計測データであり、
     前記ピークに係るデータが、ピークを生じる熱分解生成物が検出される時刻とピーク強度の閾値を含む
     請求項1から請求項3の何れか1項に記載のフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
  6.  前記フッ素原子含量推定ステップで、前記計測データにおける前記フッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピーク強度の閾値に基づいて、前記試料のフッ素原子含量を推定する
     請求項1から請求項5の何れか1項に記載のフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
  7.  前記フッ素原子を有するモノマーが、テトラフルオロエチレンまたはクロロトリフルオロエチレンの少なくとも何れか一方である
     請求項1から請求項6の何れか1項に記載のフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
  8.  前記フッ素樹脂塗料または前記フッ素樹脂塗膜が、
     道路橋、歩道橋、水路橋、水管橋、跨線橋、陸上橋、鉄道橋、煙突、タンク、送電塔、通信塔、アンテナ、柱、建築構造物外壁、屋上床、建築部材、レンガ、風力発電タワー、風力発電ナセル、風力発電ブレード、ダム、プール、工場床、コピー部品、太陽電池部品、太陽熱発電装置、熱温水器、看板、手摺、高欄、防音壁、自動車外装、自動車内部製品、船舶、電車、飛行機、ヘリコプター、テント地、またはプラスチック成型品に塗布されるフッ素樹脂塗料、
     または道路橋、歩道橋、水路橋、水管橋、跨線橋、陸上橋、鉄道橋、煙突、タンク、送電塔、通信塔、アンテナ、柱、建築構造物外壁、屋上床、建築部材、レンガ、風力発電タワー、風力発電ナセル、風力発電ブレード、ダム、プール、工場床、コピー部品、太陽電池部品、太陽熱発電装置、熱温水器、看板、手摺、高欄、防音壁、自動車外装、自動車内部製品、船舶、電車、飛行機、ヘリコプター、テント地、またはプラスチック成型品に設けられたフッ素樹脂塗膜
     である請求項1から請求項7の何れか1項に記載のフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
  9.  前記フッ素樹脂塗料または前記フッ素樹脂塗膜が、
     水路橋、鉄道橋、煙突、タンク、送電塔、通信塔、アンテナ、柱、建築構造物外壁、屋上床、建築部材、レンガ、風力発電タワー、風力発電ナセル、風力発電ブレード、ダム、プール、工場床、コピー部品、太陽電池部品、太陽熱発電装置、熱温水器、看板、手摺、高欄、防音壁、自動車外装、自動車内部製品、船舶、電車、飛行機、ヘリコプター、テント地、またはプラスチック成型品に塗布されるフッ素樹脂塗料、
     または水路橋、鉄道橋、煙突、タンク、送電塔、通信塔、アンテナ、柱、建築構造物外壁、屋上床、建築部材、レンガ、風力発電タワー、風力発電ナセル、風力発電ブレード、ダム、プール、工場床、コピー部品、太陽電池部品、太陽熱発電装置、熱温水器、看板、手摺、高欄、防音壁、自動車外装、自動車内部製品、船舶、電車、飛行機、ヘリコプター、テント地、またはプラスチック成型品に設けられたフッ素樹脂塗膜
     である請求項8に記載のフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
  10.  フッ素樹脂塗料またはフッ素樹脂塗膜である試料の、熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データを取得する計測データ取得部と、
     ビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位由来の熱分解生成物のピークに係るデータを記憶する特定モノマーピーク記憶装置と、
     フッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピークに係るデータを記憶するフッ素ピーク記憶装置と、
     前記特定モノマーピーク記憶装置に記録されたビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位由来の熱分解生成物のピークに係るデータと前記計測データとに基づいて、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方を推定する特定モノマー推定部と、
     前記フッ素ピーク記憶装置に記録されたフッ素原子を有するモノマーに基づく構成単位由来の熱分解生成物のピークに係るデータと前記計測データとに基づいて、前記試料のフッ素原子含量を推定するフッ素原子含量推定部と
     を備える評価用情報算出装置。
  11.  前記特定モノマーピーク記憶装置にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位由来の熱分解生成物のピークに係る新たなデータを記録する記録部をさらに備える
     請求項10に記載の評価用情報算出装置。
  12.  請求項10または請求項11に記載の評価用情報算出装置と端末装置とを備え、
     前記端末装置が、
     熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による前記試料の計測データを生成する計測データ生成部と、
     前記計測データを前記評価用情報算出装置に送信する送信部と、
     前記評価用情報算出装置から、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方の推定結果およびフッ素原子含量とに関する情報を受信する受信部と、
     前記受信部が受信した情報に基づいて、前記試料の評価に用いられる情報を提示する提示部と
     を備える評価用情報提示システム。
  13.  フッ素樹脂塗料またはフッ素樹脂塗膜である試料の、熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データを生成する計測データ生成部と、
     前記計測データを請求項10または請求項11に記載の評価用情報算出装置に送信する送信部と、
     前記評価用情報算出装置から、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方の推定結果およびフッ素原子含量とに関する情報を受信する受信部と、
     前記受信部が受信した情報に基づいて、前記試料の評価に用いられる情報を提示する提示部と
     を備える端末装置。
  14.  フッ素樹脂塗料またはフッ素樹脂塗膜である試料の、熱分解ガスクロマトグラフィ法または熱分解ガスクロマトグラフィ質量分析法による計測データを生成する計測データ生成ステップと、
     前記計測データを請求項10または請求項11に記載の評価用情報算出装置に送信する送信ステップと、
     前記評価用情報算出装置から、前記試料にビニルエステルおよびビニルエーテルの少なくとも一方に基づく構成単位の有無および量の少なくとも一方の推定結果およびフッ素原子含量とに関する情報を受信する受信ステップと、
     受信した前記情報に基づいて前記試料を評価する評価ステップと
     を有するフッ素樹脂塗料またはフッ素樹脂塗膜の評価方法。
PCT/JP2015/084212 2014-12-12 2015-12-04 フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置 WO2016093180A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580067801.2A CN107110836B (zh) 2014-12-12 2015-12-04 氟树脂涂料或氟树脂涂膜的评价方法、评价用信息计算装置、评价用信息呈现系统以及终端装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-252465 2014-12-12
JP2014252465A JP2018021758A (ja) 2014-12-12 2014-12-12 フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置

Publications (1)

Publication Number Publication Date
WO2016093180A1 true WO2016093180A1 (ja) 2016-06-16

Family

ID=56107365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084212 WO2016093180A1 (ja) 2014-12-12 2015-12-04 フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置

Country Status (4)

Country Link
JP (1) JP2018021758A (ja)
CN (1) CN107110836B (ja)
TW (1) TW201627660A (ja)
WO (1) WO2016093180A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020180968A1 (en) * 2019-03-05 2020-09-10 Chemours-Mitsui Fluoroproducts Co. Ltd Solvent for gas chromatograpy mass spectometry, and method for determination of fluorine-containing substances on the surface of fluororesin melt-molded products
US20210231636A1 (en) * 2020-01-24 2021-07-29 Hitachi Metals, Ltd. Crosslinked fluoropolymer resin and control method for same
JP2022548674A (ja) * 2020-11-05 2022-11-21 中国長江三峡集団有限公司 Ptfeベース膜の風車用ブレード空力特性への影響の数値シミュレーション方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108501297A (zh) * 2017-10-14 2018-09-07 上海尚耐自动化科技有限公司 一种用于紫外光环境下光电传感器的密封外壳的制造工艺
CN110068642A (zh) * 2018-01-23 2019-07-30 苏州电器科学研究院股份有限公司 一种船用产品中消耗臭氧物质的检测方法
JP2023021558A (ja) * 2021-08-02 2023-02-14 ダイキン工業株式会社 学習モデル生成方法、プログラム、記憶媒体、学習済みモデル

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240154A (ja) * 1989-03-15 1990-09-25 Dainippon Ink & Chem Inc フルオロオレフィン共重合体水性分散体
JPH02276808A (ja) * 1988-12-29 1990-11-13 Tokuyama Soda Co Ltd 含フッ素ランダム共重合体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614002B2 (ja) * 2006-06-08 2011-01-19 株式会社島津製作所 クロマトグラフ質量分析用データ処理装置
US20110023945A1 (en) * 2008-04-28 2011-02-03 Asahi Kasei Chemicals Corporation Laminate for a solar battery back-sheet and back-sheet comprisng same
JP2014189600A (ja) * 2013-03-26 2014-10-06 Fuji Xerox Co Ltd 樹脂材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276808A (ja) * 1988-12-29 1990-11-13 Tokuyama Soda Co Ltd 含フッ素ランダム共重合体の製造方法
JPH02240154A (ja) * 1989-03-15 1990-09-25 Dainippon Ink & Chem Inc フルオロオレフィン共重合体水性分散体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHOI SUNG-SEEN ET AL.: "Analysis of pyrolysis products of poly(vinylidene fluoride- co-hexafluoropropylene) by pyrolysis-gas chromatography/mass spectrometry", JOURNAL OF FLUORINE CHEMISTRY, vol. 165, September 2014 (2014-09-01), pages 33 - 38, XP029014963, DOI: doi:10.1016/j.jfluchem.2014.06.004 *
T ISHIDA ET AL.: "Effect of monomer sequence on the polymer durability in the copolymers of chlorotrifluoroethylene with an alkyl vinyl ester or an alkyl vinyl ether", SURFACE COATINGS INTERNATIONAL PART B: COATINGS TRANSACTIONS, vol. 85, June 2006 (2006-06-01), pages 143 - 148 *
TSUGUHIDE ISEMURA ET AL.: "Netsu Bunkai Gas Chromatography ni yoru Ethylene-Tetrafluoroethylene Jushi no Sosei Bunseki", ABSTRACT OF THE FLUORINE CONFERENCE OF JAPAN, vol. 17, 1992, pages 29 - 30 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020180968A1 (en) * 2019-03-05 2020-09-10 Chemours-Mitsui Fluoroproducts Co. Ltd Solvent for gas chromatograpy mass spectometry, and method for determination of fluorine-containing substances on the surface of fluororesin melt-molded products
CN113574376A (zh) * 2019-03-05 2021-10-29 科慕·三井氟产品株式会社 用于气相色谱-质谱的溶剂以及用于测定氟树脂熔体模塑产品的表面上的含氟物质的方法
US20210231636A1 (en) * 2020-01-24 2021-07-29 Hitachi Metals, Ltd. Crosslinked fluoropolymer resin and control method for same
US11946924B2 (en) * 2020-01-24 2024-04-02 Proterial, Ltd. Crosslinked fluoropolymer resin and control method for same
JP2022548674A (ja) * 2020-11-05 2022-11-21 中国長江三峡集団有限公司 Ptfeベース膜の風車用ブレード空力特性への影響の数値シミュレーション方法
JP7212914B2 (ja) 2020-11-05 2023-01-26 中国長江三峡集団有限公司 Ptfeベース膜の風車用ブレード空力特性への影響の数値シミュレーション方法

Also Published As

Publication number Publication date
CN107110836B (zh) 2019-02-15
JP2018021758A (ja) 2018-02-08
TW201627660A (zh) 2016-08-01
CN107110836A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2016093180A1 (ja) フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置
White et al. Service life prediction of polymers and plastics exposed to outdoor weathering
Kiil Model-based analysis of photoinitiated coating degradation under artificial exposure conditions
Loisel et al. Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing.
CN101294885A (zh) 热熔型氟树脂涂层干膜中聚偏二氟乙烯含量的检测方法
Nichols et al. The effect of weathering on the fracture energy of hardcoats over polycarbonate
WO2016093179A1 (ja) フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置
Shi et al. Performance evaluation on the weathering resistance of two USAF coating systems (standard 85285 topcoat versus fluorinated APC topcoat) via electrochemical impedance spectroscopy
Eibl et al. Prospects to separately estimate temperature and duration of a thermal pre-load on a polymer matrix composite
JP4245080B1 (ja) 樹脂成形品の診断方法
Wärnheim et al. Depth-Resolved FTIR-ATR Imaging Studies of Coating Degradation during Accelerated and Natural Weathering─ Influence of Biobased Reactive Diluents in Polyester Melamine Coil Coating
Polo et al. Angstrom turbidity and ozone column estimations from spectral solar irradiance in a semi-desertic environment in Spain
Tanabe et al. The Progress of Newly Developed Fluoro-polymer Topcoat Systems-Weathering Performance And Track Records Since the 1980's
Ito et al. Rapid viscosity determination of waterborne automotive paint emulsion system by FT-Raman spectroscopy
Batchelor et al. Computationally-accelerated prediction of polyester-melamine coatings degradation to design sustainable organically-coated steels for outdoor applications
Gambi et al. A mathematical algorithm approach for estimating water-based paint requirements for a given wall
Huang et al. A new algorithm of retrieving a petroleum substances absorption coefficient in sea water based on a remote sensing image
EP4369347A1 (en) Systems and methods for predicting properties of coating types and estimating service life thereof
Hutchinson et al. Engineering an Anti‐Graffiti System: A Study in Industrial Product Design
Jackson Improving the Interpretation of the Evidential Value of Vehicle and Architectural Paint
Hansen Methods of characterization-Polymers
JP6386942B2 (ja) 塗膜耐候性評価システム及び塗膜耐候性評価方法
Landry et al. Evaluation of the impacts of four weathering methods on two acrylic paints: showcasing distinctions and particularities
White et al. Service Life Prediction of Polymers and Coatings: Enhanced Methods
Darden TOWARD A 100 YEAR BRIDGE COATING SYSTEM: BRIDGE TOPCOATS IN JAPAN 2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP