WO2016093119A1 - 車載ヘッドライト用led光源 - Google Patents

車載ヘッドライト用led光源 Download PDF

Info

Publication number
WO2016093119A1
WO2016093119A1 PCT/JP2015/083839 JP2015083839W WO2016093119A1 WO 2016093119 A1 WO2016093119 A1 WO 2016093119A1 JP 2015083839 W JP2015083839 W JP 2015083839W WO 2016093119 A1 WO2016093119 A1 WO 2016093119A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light source
light
wavelength
led
Prior art date
Application number
PCT/JP2015/083839
Other languages
English (en)
French (fr)
Inventor
津森 俊宏
敏彦 塚谷
和浩 綿谷
美濃輪 武久
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US15/534,125 priority Critical patent/US20170336040A1/en
Priority to JP2016563634A priority patent/JP6471756B2/ja
Publication of WO2016093119A1 publication Critical patent/WO2016093119A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the present invention relates to an LED light source for in-vehicle headlights.
  • LED light sources have high impact resistance, significantly higher luminous efficiency than incandescent bulbs such as conventional halogen lamps, and a high degree of freedom in the emission spectrum. .
  • a blue LED is used as a light source, and a part of blue light is converted into yellow light by a Y 3 Al 5 O 12 : Ce phosphor arranged in front of the light emission direction of the blue LED.
  • a pseudo white LED of a type that obtains white light emission by combining this with unconverted blue light from a blue LED is widely used.
  • the emission spectrum of Y 3 Al 5 O 12 : Ce phosphor is a broad emission spectrum with a peak near 555 nm, which is the peak of sensitivity to human photopic vision. And high brightness can be obtained.
  • the emission peak near the wavelength of 555 nm is appropriate. This is because, in the case of a human being, in a low-light environment of 1 lx or less such as at night, the visibility at 500 nm shorter than the wavelength of 555 nm and the vicinity thereof greatly increases. As shown in FIG. 6, the visibility wavelength shifts from a photopic wavelength range having a peak at a wavelength of 555 nm to a scotopic vision wavelength range having a peak at a wavelength of 507 nm, as shown in FIG. 6.
  • In-vehicle headlights are required to have good visibility even in bad weather such as rain and fog in addition to the performance of general outdoor lighting.
  • light with a high color temperature especially LED light with a large amount of blue component, has a large amount of light scattering due to water droplets, and the visibility decreases when used in bad weather.
  • the guidelines for in-vehicle lighting recommend a color temperature of 6000 K or less for many in-vehicle lighting.
  • the LED light source has a suitable performance as a headlight of a car powered by a storage battery, such as light efficiency and high brightness than conventional lighting, but it contains a lot of blue light components during light emission, and the color temperature is also high. Become higher.
  • in-vehicle headlights using conventional incandescent light bulbs have a light emission component with a certain proportion of dark place visibility even at a color temperature of 6000 K or less, but the light emission efficiency is significantly lower than that of LED lighting. As a result, the illuminance tends to be insufficient.
  • the present invention has been made in view of the above circumstances, has a color temperature of 6000 K or less suitable for bad weather such as rainy weather, fog, and the like, and visibility at night, in particular, visual recognition of the peripheral vision of human eyes at night. It is an object of the present invention to provide a highly efficient LED light source for in-vehicle headlights having an emission spectrum with good visibility at the periphery of irradiated light that affects the performance.
  • the present inventors have focused on the Purkinje effect, emit light having a color temperature of 6000 K or less, have good visibility under low illuminance, and are suitable for an in-vehicle headlight.
  • a light source an LED light source including a large amount of a green light component having a wavelength of 500 nm or its vicinity was examined.
  • Ce phosphor As the main phosphor that predominantly determines the hue of fluorescence emission, that is, the dominant wavelength of fluorescence emission, the visibility characteristics in the dark can be improved without increasing the color temperature.
  • the luminescent color is a natural LED light source for dark place vision.
  • the total amount of light emission energy in the range of the light emission spectrum has a light emission spectrum that is 0.7 times or more of the total amount of light emission energy in the wavelength range from 510 nm to 610 nm, which is the peak wavelength region in the photopic wavelength range, Furthermore, the total amount of light emission energy in the wavelength range of 470 nm to 540 nm, which is the peak wavelength range in the wavelength range of dark vision, is a wavelength range of 430 nm to 630 nm corresponding to most of the photopic wavelength range.
  • the present invention provides the following LED light source for in-vehicle headlights.
  • a blue LED that emits blue light having a dominant wavelength of 430 nm or more and 470 nm or less, and a phosphor that is disposed in front of the emission direction of the blue light and that converts the wavelength of the blue light, the phosphor being Lu 3 Al LED light source for in-vehicle headlights characterized in that it contains cerium activated lutetium / aluminum / garnet phosphor represented by 5 O 12 : Ce as a main phosphor and emits pseudo white light having a color temperature of 6000 K or less. .
  • the phosphor for converting the wavelength of the blue light further includes a manganese-activated potassium silicofluoride phosphor represented by K 2 SiF 6 : Mn or a cerium-activated yttrium-expressed Y 3 Al 5 O 12 : Ce.
  • the LED light source for in-vehicle headlights according to [1] or [2]. [4] It emits pseudo white light having an emission spectrum in which the total amount of emission energy in the wavelength range of 470 nm to 540 nm is 0.4 times or more of the total emission energy in the wavelength range of 430 nm to 630 nm.
  • the vehicle-mounted headlight LED light source according to any one of [1] to [3].
  • the LED light source for vehicle-mounted headlights in any one.
  • the LED light source for in-vehicle headlights emits light having a color temperature of 6000 K or less, which is considered to be less likely to deteriorate even in bad weather, has a wide illumination range, and has visibility of a field edge (peripheral visual field). It has the feature of being excellent, and contributes to accident prevention and road traffic safety.
  • FIG. 1 It is a figure which shows the illuminating device produced in the Example and the comparative example, (A) is a top view, (B) is sectional drawing. It is a figure which shows the emission spectrum of the illuminating device of Example 1,2. It is a figure which shows the emission spectrum of the illuminating device of Example 3.
  • FIG. It is a figure which shows the emission spectrum of the illuminating device of the comparative examples 1 and 2.
  • FIG. It is a figure which shows the emission spectrum of the illuminating device of the comparative examples 3 and 4.
  • FIG. It is a figure which shows the peak wavelength by the photopic vision of the sensitivity of a human eye, and the peak wavelength by the dark vision.
  • the LED light source for in-vehicle headlights of the present invention includes a blue LED that emits blue light and a phosphor that converts the wavelength of blue light, and Lu 3 Al 5 O 12 : Ce as a phosphor that converts the wavelength of blue light.
  • a cerium activated lutetium / aluminum / garnet phosphor represented by the formula (LuAG: Ce phosphor) is used.
  • the Lu 3 Al 5 O 12 : Ce phosphor emits green fluorescence having a peak in the vicinity of a wavelength of 500 nm, which is a dominant wavelength in the dark place visual sensitivity range, by excitation light (blue light).
  • the Lu 3 Al 5 O 12 : Ce phosphor preferably has a Ce content of 0.2 mass% or more and 10 mass% or less.
  • Green light emission with a close peak wavelength can be obtained with a green monochromatic LED such as InGaN, but the emission spectrum is an emission line spectrum with almost no wavelength distribution. Contains almost no light. Since the in-vehicle headlight light source also requires visibility at an illuminance of 1 lx or more, a green single-color LED that does not contain a color component other than green is not suitable for this application.
  • the Lu 3 Al 5 O 12 : Ce phosphor excited with blue light has a broad emission spectrum, and the average color rendering index is 50 or more for photopic illumination as well as visibility for photopic vision. It is possible to obtain pseudo white light.
  • a Lu 3 Al 5 O 12 : Ce phosphor is arranged in front of the blue LED in the light emission direction.
  • the blue LED one emitting blue light having a dominant wavelength of 430 nm or more and 470 nm or less is used, and a conventionally known one such as a commercially available product can be used.
  • the phosphor is disposed in front of the blue LED, for example, in front of the light emitting element (light emitting semiconductor) in the light emitting direction, or on the front surface of the blue LED in the light emitting direction of the sealing material for sealing the light emitting semiconductor.
  • the body is dispersed as it is or dispersed in a polymer material such as a resin, a solvent, etc., and placed as a phosphor layer by a method such as potting or coating, or the phosphor is made of a high-temperature material such as a thermosetting resin or a thermoplastic resin
  • a phosphor layer mixed and dispersed in a molecular material or inorganic glass is prepared, and this is arranged directly on the front surface of the blue LED in the light emitting direction of the sealing material for sealing the light emitting element, or separated from the front surface.
  • An arrangement mode (a so-called remote phosphor system) is exemplified.
  • the Lu 3 Al 5 O 12 : Ce phosphor is in the form of particles, and the particle diameter is preferably 1 ⁇ m or more and 150 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less, and even more preferably 10 ⁇ m or more. 25 ⁇ m or less.
  • the particle size is less than 1 ⁇ m, the efficiency (quantum efficiency) of converting blue light into fluorescent light is lowered, and there is a possibility that the amount of fluorescent light is insufficient and the light emission efficiency is lowered.
  • the particle size exceeds 150 ⁇ m, it may be difficult to form a uniform and dense phosphor layer, and the gaps between the particles become wide, and more blue light passes between the particles than necessary. May cause structural problems.
  • Luminescence obtained by the Lu 3 Al 5 O 12 : Ce phosphor is mainly at a wavelength of 500 nm and its vicinity, so that it is excellent as illumination in a dark place or under low illuminance, for example, on the optical axis near the light source.
  • the illuminance at a location where sufficient brightness can be obtained is slightly lower than that of a conventional incandescent bulb or a conventional pseudo white LED mainly using a Y 3 Al 5 O 12 : Ce phosphor as a phosphor.
  • the red component of around 600 nm is insufficient, color reproducibility, particularly red reproducibility is slightly low.
  • the Lu 3 Al 5 O 12 Ce phosphor is used as a main phosphor that dominantly determines the color of fluorescence emission, that is, the main wavelength of fluorescence emission, and further, as a sub-fluorescent material, K 2 SiF. 6 : By using manganese-activated potassium silicofluoride phosphor represented by Mn, cerium-activated yttrium / aluminum / garnet phosphor (YAG: Ce phosphor) represented by Y 3 Al 5 O 12 : Ce, etc. By increasing the amount of light having a wavelength of 500 to 630 nm, the light quality as white light, specifically, the color deviation ( ⁇ uv) can be improved.
  • examples of the phosphor that can obtain light having a red wavelength include red phosphors such as CASN, S-CASN, and ⁇ -SiALON.
  • red phosphors such as CASN, S-CASN, and ⁇ -SiALON.
  • such a phosphor is not preferable in the present invention. This is because these phosphors absorb green light emitted by the Lu 3 Al 5 O 12 : Ce phosphor and greatly reduce the light emission efficiency.
  • the K 2 SiF 6 : Mn phosphor preferably has a Mn content of 0.05% by mass or more and 7% by mass or less.
  • the K 2 SiF 6 : Mn phosphor is in the form of particles, and the particle diameter is preferably 2 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 60 ⁇ m or less, with an average particle diameter D50.
  • the emission spectrum increases the amount of light emission in the long wavelength side of the Lu 3 Al 5 O 12 : Ce phosphor. It is possible to reduce the color temperature and improve the red reproducibility.
  • the Y 3 Al 5 O 12 : Ce phosphor preferably has a Ce content of 1% by mass to 6% by mass.
  • the Y 3 Al 5 O 12 : Ce phosphor is in the form of particles, and the average particle size D50 is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • Lu 3 Al 5 O 12 Ce phosphor, which is the main phosphor, and auxiliary phosphors other than Lu 3 Al 5 O 12 : Ce phosphor (K 2 SiF 6 : Mn phosphor, Y 3 Al 5 O 12 : Ce
  • the main phosphor is preferably 10% by mass or more, particularly 20% by mass or more, and preferably 50% by mass or less, particularly 40% by mass or less.
  • the phosphor in the present invention can be produced by a conventionally known method, and a commercially available product can also be used.
  • the thickness of the phosphor layer is appropriately set so as to obtain a desired emission spectrum effective as an in-vehicle headlight LED light source, but is preferably 0.1 to 10 mm, and more preferably 0.5 to 3 mm.
  • the amount of the phosphor in the phosphor layer is 5% by mass or more, particularly 10% by mass or more in terms of the total amount of the phosphor. Particularly, it is preferably 20% by mass or more and 60% by mass or less, particularly 40% by mass or less, and particularly preferably 25% by mass or less.
  • 20% by mass or more and 60% by mass or less is suitable, and the molded product having a thickness of 2 mm is kneaded into the polymer material.
  • a light-diffusing material such as SiO 2 , SiON, TiO or the like is used as an additive for the purpose of preventing so-called blue loss, in which blue light is transmitted without entering the phosphor. You may add in% or more and 5 mass% or less.
  • the following pseudo white light can be emitted.
  • the LED light source of the present invention has a total amount of light emission energy in the range of wavelengths from 470 nm to 540 nm, which is a light emission wavelength mainly in the green range, 0.7 times or more of the total amount of light emission energy in the range of wavelengths from 510 nm to 610 nm.
  • pseudo white light having an emission spectrum of 0.8 times or more and 1.5 times or less can be emitted. When this ratio is less than 0.7 times, there is a possibility that the effect of improving the visibility in dark place vision cannot be obtained.
  • the LED light source of the present invention has a wavelength range of 430 nm to 630 nm corresponding to the majority of the photopic vision sensitivity range, where the total amount of emission energy in the wavelength range of 470 nm to 540 nm, which is the emission wavelength mainly in the green range. It is possible to emit pseudo white light having an emission spectrum that is 0.4 times or more, particularly 0.5 times or more and 0.7 times or less of the total amount of emission energy. When this ratio is 0.4 times or more, a higher effect can be obtained in improving visibility in dark place vision. Therefore, it is particularly advantageous to satisfy both of the two ratios.
  • the total amount of emission energy in the wavelength range can be an integrated value (integrated value) of radiant energy (intensity) in each wavelength range in the emission spectrum.
  • pseudo white light having a color temperature of 6000 K or less which is considered to be less likely to be deteriorated even under bad weather, and visibility due to a change in visibility wavelength due to Purkinje effect in a low-light environment such as nighttime. It is possible to provide an LED light source suitable for use in an in-vehicle headlight with improved reduction.
  • Example 1 A royal blue LED array (emission wavelength: 445 nm, 50 W) manufactured by Shenzhen Hanhua Opto Co., Ltd. was used as a blue light source, and Lu 3 Al 5 O 12 : Ce containing 1.4% by mass of Ce on the light emitting surface.
  • a slurry (phosphor concentration 26 mass%) in which phosphor particles (particle diameter D50 16.2 ⁇ m) were dispersed in Marumoto Struers Co., Ltd., epoxy resin composition, Specifix was applied. This was heated and cured in an oven at 50 ° C. for 3.5 hours to obtain a pseudo white LED chip in which a phosphor layer having a thickness of about 0.4 mm was laminated on the light emitting surface of the LED.
  • the obtained pseudo white LED chip 11 is incorporated in the center of the reflector 12, and a 2 mm thick milky white acrylic plate is used as the shade material 13 for the test lighting device (LED light source). ) 1 was produced.
  • the orientation angle of illumination was 115 ° with a 1 ⁇ 2 light distribution angle.
  • the color temperature was evaluated by a spectral irradiance meter CL-500A manufactured by Konica Minolta Co., Ltd., and the luminous efficiency was evaluated by a total luminous flux measurement system FM-1650 manufactured by Otsuka Electronics.
  • the emission spectrum is shown in FIG. Furthermore, from this emission spectrum, the total amount of emission energy in the range of wavelengths from 510 nm to 610 nm and the total amount of emission energy in the range of wavelengths from 470 nm to 540 nm are measured, and the ratio (ratio A) is calculated.
  • the total amount of emission energy in the wavelength range of 430 nm to 630 nm and the total amount of emission energy in the wavelength range of 470 nm to 540 nm were measured, and the ratio (ratio B) was calculated.
  • the results are shown in Table 1 together with the color temperature of light emission, color deviation ( ⁇ uv), light emission efficiency, and S / P ratio.
  • the visibility in the dark place of this lighting device was evaluated by the following method as a difference in the recognition response time of the peripheral visual field when the illumination illuminance is low.
  • the lighting device was installed at night at a position 50 cm in height at the center of an asphalt road with a width of 7 m at night.
  • a color chart of 15 cm square with Munsell brightness of 7.5 was installed in any of the above, and the illuminance of the lighting device was adjusted so that the illumination intensity of the front color chart would be 10 lx.
  • the line of sight is directed in the optical axis direction, the test LED light source is emitted, and the color chart at any position from the start of irradiation is visually recognized.
  • the sensitivity test was performed to measure the time until completion. The test was performed by three subjects, and a color chart was randomly set at three positions, and the test was performed 15 times, 5 times for each location at 5-minute intervals. Table 1 shows the average response time at each position.
  • Example 2 The blue light source of Example 1 was used as it was without laminating the phosphor layer, and the Lu 3 Al 5 O 12 : Ce phosphor particles of Example 1 were kneaded into a transparent acrylic resin, Delpet 60N manufactured by Asahi Kasei Corporation. Using the 2 mm thick plate material (phosphor concentration 9% by mass) as a phosphor layer and shade material, a remote phosphor type LED light source for testing was prepared. Sex was evaluated. The emission spectrum is shown in FIG. 2 and other results are shown in Table 1.
  • a test LED light source was prepared in the same manner as in Example 1 except that the slurry (phosphor concentration of 32% by mass) was applied, and the optical characteristics and visibility were evaluated in the same manner as in Example 1.
  • the emission spectrum is shown in FIG. 4 and other results are shown in Table 1.
  • a test LED light source was prepared in the same manner as in Example 1 except that the applied slurry (phosphor concentration of 32% by mass) was applied at a coating amount of 21% of Comparative Example 1. Characteristics and visibility were evaluated. The emission spectrum is shown in FIG. 4 and other results are shown in Table 1.
  • Example 3 In the test lighting device 1 shown in FIG. 1, instead of the pseudo white LED chip 11, a commercially available day white white halogen bulb is used, and the tip of its light spherical surface (light emitting surface) is the pseudo white LED chip of the first embodiment. 11 in the same manner as in Example 1 except that the substrate is penetrated behind the reflector 12 so that it is in the same position as the tip of the reflector 11, and a glass plate having a thickness of 1.5 mm is used as the shade material 13. A test lighting device was prepared, and optical characteristics and visibility were evaluated in the same manner as in Example 1. The emission spectrum is shown in FIG. 5 and other results are shown in Table 1.
  • Comparative Example 4 In the test lighting device 1 shown in FIG. 1, a test lighting device was manufactured in the same manner as in Comparative Example 3 except that a commercially available white incandescent bulb was used instead of the halogen bulb. In the same manner as above, optical characteristics and visibility were evaluated. The emission spectrum is shown in FIG. 5 and other results are shown in Table 1.
  • the average response time of the left and right shoulders under the LED light of Examples 1 to 3 is about 20% shorter than that of the conventional pseudo white LED shown in Comparative Example 1 using Y 3 Al 5 O 12 : Ce phosphor.
  • the LED light source of the present invention has good visibility at the periphery of the irradiated light that affects the visibility of the peripheral visual field at night.
  • the average response time of the left and right road shoulders was even shorter than in Examples 1 to 3, but The color temperature is higher than the upper limit of 6000K guideline for in-vehicle lighting.
  • the conventional halogen bulb shown in Comparative Example 3 and the incandescent bulb shown in Comparative Example 4 have good response time in the dark, but the luminous efficiency is about 1/5 that of the LED light source of the present invention. It turns out that it is low.
  • Lighting device LED light source
  • Pseudo white LED chip 12
  • Reflector 13 Shade material or phosphor layer

Abstract

 ドミナント波長430nm以上470nm以下の青色光を発光する青色LEDと、上記青色光の発光方向前方に配置され、上記青色光を波長変換する蛍光体とを備え、上記蛍光体がLu3Al512:Ceで表されるセリウム賦活ルテチウム・アルミニウム・ガーネット蛍光体を主蛍光体として含んでなり、色温度が6000K以下の疑似白色光を発光する車載ヘッドライト用LED光源であり、悪天候下においても視認性が低下しにくいとされる色温度6000K以下の光を発し、かつ照明範囲が広く、視野縁部(周辺視野)の視認性に優れるという特長を有しており、事故防止、道路交通の安全に寄与するものである。

Description

車載ヘッドライト用LED光源
 本発明は、車載ヘッドライト用LED光源に関するものである。
 近年のLED照明の普及に伴い、自動車においても燈火類のLED化が進行している。車載ヘッドライトへの適用を考えた場合、LED光源は、耐衝撃性が高く、従来のハロゲンランプ等の白熱電球より発光効率が大幅に高く、また、発光スペクトルの自由度が高いという特長を有する。
 一般的な照明用の白色LED光源としては、青色LEDを光源とし、青色LEDの発光方向前方に配したY3Al512:Ce蛍光体により、青色光の一部を黄色光に変換し、これを青色LEDからの未変換の青色光と併せることで白色の発光を得る方式の疑似白色LEDが広く用いられている。
 Y3Al512:Ce蛍光体の発光スペクトルは、人の明所視の感度のピークである555nm近傍にピークをもつブロードな発光スペクトルであり、疑似白色LEDに用いることで、良好な発色及び高い輝度を得ることができる。
 しかしながら、車載ヘッドライトなどの夜間の屋外暗所で利用される光源を考えた場合、波長555nm近傍の発光ピークは適当とは言い難い。これは、人の場合、夜間等の1lx以下の低照度環境では、波長555nmより短波長の500nm及びその近傍の視感度が大幅に増加するためである。視感度波長は、周辺照度の低下につれて図6に示されるように、波長555nmをピークとする明所視波長域から、波長507nmをピークとする暗所視波長域に移行する。この視感度波長域の変化は、プルキンエ効果として広く知られており、これによる暗所での視感度の向上は、人の目の周辺視野域で特に著しいことが知られている。LED照明においては、このようなプルキンエ効果として知られている視感度波長の変化に対応できるように、暗所での視感効率の向上を目的として、発光中の青色成分を増加させた色温度の高い照明が、暗所で使用するLED照明として提案されている。また、暗所で使用される車載ヘッドライト用のLED光源においても、色温度の高い光源を使用することで、視認性、特に、視野周辺部の視認性の改善が期待できる。
 車載ヘッドライトは、一般的な屋外照明としての性能に加え、雨天、霧などの悪天候下でも良好な視認性が確保されていることが要求される。しかしながら、色温度の高い光、特に青色成分が多いLED光では、水滴による光散乱が多く、悪天候下で用いた場合には、視認性が低下してしまう。このため、車載用照明のガイドラインでは、多くの車載用照明において、色温度が6000K以下のものが推奨されている。LED光源は、従来の照明より光効率、高輝度といった、蓄電池を電源とする車のヘッドライトとして適当な性能を有しているものの、発光中に青色光成分を多く含んでおり、色温度も高めとなる。一方で、従来の白熱電球による車載ヘッドライトは、6000K以下の色温度においても一定割合の暗所視感度域の発光成分を有しているものの、LED照明と比較して発光効率が大幅に低く、結果的に照度が不足気味となる。
特開2013-65555号公報 特開2009-272092号公報 特開2012-204071号公報 特開2012-221633号公報 特開2012-221634号公報
 本発明は、上記事情に鑑みなされたもので、雨天、霧等の悪天候下において好適な6000K以下の色温度を有し、なおかつ夜間における視認性、特に、夜間における人の目の周辺視野の視認性に影響を与える照射光周縁部における視認性も良好な発光スペクトルを有する高効率の車載ヘッドライト用LED光源を提供することを目的とする。
 本発明者らは、上記課題を解決するために、プルキンエ効果に着目し、色温度が6000K以下の光を発光し、なおかつ低照度下の視認性が良好で、車載ヘッドライト用に好適なLED光源として、波長500nm又はその近傍の緑色光成分を多く含むLED光源について検討した。
 そして、本発明者らは、鋭意検討を重ねた結果、ドミナント波長430nm以上470nm以下の青色光を発光する青色LEDと共に、波長500nmの近傍に緑色の蛍光発光のピークを有するLu3Al512:Ce蛍光体を、蛍光発光の色合い、すなわち蛍光発光の主波長を支配的に決める主蛍光体として用いることで、色温度を上げることなく暗所での視感度特性が改善可能であることを見出し、更に、Lu3Al512:Ce蛍光体と共に、K2SiF6:Mn蛍光体、Y3Al512:Ce蛍光体等の副蛍光体を併用することで、視認性のみならず、発光色についても自然な、暗所視用LED光源となることを見出した。
 また、このような暗所視用LED光源を、車載ヘッドライトに用いるべく、発光スペクトルの詳細検討を進めた結果、暗所視の波長域のうち、そのピーク波長域である波長470nm以上540nm以下の範囲の発光エネルギーの総量が、明所視の波長域のうち、そのピーク波長域である波長510nm以上610nm以下の範囲の発光エネルギーの総量の0.7倍以上である発光スペクトルを有するもの、更に、暗所視の波長域のうち、そのピーク波長域である波長470nm以上540nm以下の範囲の発光エネルギーの総量が、明所視の波長域の大部分に相当する波長430nm以上630nm以下の範囲の発光エネルギーの総量の0.4倍以上である発光スペクトルを有するもの、特に、上記2つの比率の両方を満たすものが、LED光源としての高い発光効率に加え、白熱電球ヘッドライトのように、色温度6000K以下においても、夜間等の低照度環境における視認性及び視認応答時間の低下の少ない白熱電球の利点を併せもつ、車載ヘッドライト用として好適なLED光源となることを見出し、本発明を成すに至った。
 従って、本発明は、下記の車載ヘッドライト用LED光源を提供する。
[1] ドミナント波長430nm以上470nm以下の青色光を発光する青色LEDと、上記青色光の発光方向前方に配置され、上記青色光を波長変換する蛍光体とを備え、上記蛍光体がLu3Al512:Ceで表されるセリウム賦活ルテチウム・アルミニウム・ガーネット蛍光体を主蛍光体として含んでなり、色温度が6000K以下の疑似白色光を発光することを特徴とする車載ヘッドライト用LED光源。
[2] 上記青色光を波長変換する蛍光体が、更に、K2SiF6:Mnで表されるマンガン賦活ケイフッ化カリウム蛍光体又はY3Al512:Ceで表されるセリウム賦活イットリウム・アルミニウム・ガーネット蛍光体を副蛍光体として含むことを特徴とする[1]記載の車載ヘッドライト用LED光源。
[3] 波長470nm以上540nm以下の範囲の発光エネルギーの総量が、波長510nm以上610nm以下の範囲の発光エネルギーの総量の0.7倍以上である発光スペクトルを有する疑似白色光を発光することを特徴とする[1]又は[2]記載の車載ヘッドライト用LED光源。
[4] 波長470nm以上540nm以下の範囲の発光エネルギーの総量が、波長430nm以上630nm以下の範囲の発光エネルギーの総量の0.4倍以上である発光スペクトルを有する疑似白色光を発光することを特徴とする[1]乃至[3]のいずれかに記載の車載ヘッドライト用LED光源。
[5] 上記青色光を波長変換する蛍光体が、高分子材料又は無機ガラスに上記蛍光体を分散させてなる蛍光体層により配置されていることを特徴とする[1]乃至[4]のいずれかに記載の車載ヘッドライト用LED光源。
 本発明の車載ヘッドライト用LED光源は、悪天候下においても視認性が低下しにくいとされる色温度6000K以下の光を発し、かつ照明範囲が広く、視野縁部(周辺視野)の視認性に優れるという特長を有しており、事故防止、道路交通の安全に寄与するものである。
実施例及び比較例で作製した照明装置を示す図であり、(A)は平面図、(B)は断面図である。 実施例1、2の照明装置の発光スペクトルを示す図である。 実施例3の照明装置の発光スペクトルを示す図である。 比較例1、2の照明装置の発光スペクトルを示す図である。 比較例3、4の照明装置の発光スペクトルを示す図である。 人の目の感度の明所視でのピーク波長及び暗所視でのピーク波長を示す図である。
 以下、本発明の車載ヘッドライト用LED光源について詳細に説明する。
 本発明の車載ヘッドライト用LED光源は、青色光を発光する青色LEDと、青色光を波長変換する蛍光体とを備え、青色光を波長変換する蛍光体として、Lu3Al512:Ceで表されるセリウム賦活ルテチウム・アルミニウム・ガーネット蛍光体(LuAG:Ce蛍光体)を用いる。Lu3Al512:Ce蛍光体は、励起光(青色光)により、暗所視感度域のドミナント波長である波長500nmの近傍にピークを有する緑色の蛍光を発光する。Lu3Al512:Ce蛍光体は、Ce含有率が0.2質量%以上10質量%以下のものが好ましい。
 ピーク波長が近い緑色発光は、InGaNなどの緑色単色発光のLEDによっても得ることが可能ではあるが、その発光スペクトルは、波長分布がほとんどない輝線スペクトルであるため、波長500nm及びその近傍の緑色光以外の光をほとんど含まない。車載ヘッドライト用光源では、1lx以上の照度での視感度も必要であるため、緑色以外の色成分を含まない緑色単色発光のLEDは、この用途には適していない。これに対して、青色光で励起されたLu3Al512:Ce蛍光体の発光スペクトルはブロードであり、暗所視の視認性はもとより、明所視照明としても平均演色指数で50以上の疑似白色光を得ることが可能である。
 本発明の車載ヘッドライト用LED光源では、青色LEDの青色光の発光方向前方に、Lu3Al512:Ce蛍光体が配置される。青色LEDとしては、ドミナント波長430nm以上470nm以下の青色光を発光するものが用いられ、市販品など、従来公知のものを用いることができる。
 一方、蛍光体を配置する態様は、青色LEDの前方、例えば、発光素子(発光半導体)自体の発光方向前面や、発光半導体を封止する封止材の、青色LEDの発光方向前面に、蛍光体をそのままで又は樹脂等の高分子材料、溶媒等に分散させて、ポッティング、塗布などの方法で蛍光体層として配置する態様や、蛍光体を、熱硬化性樹脂、熱可塑性樹脂などの高分子材料や無機ガラスに混合分散させた蛍光体層を作製し、これを、発光素子を封止する封止材の、青色LEDの発光方向前面に直接配置する態様、又は該前面から離間させて配置する態様(いわゆるリモートフォスファー方式)などが挙げられる。
 Lu3Al512:Ce蛍光体は、粒子状のものが用いられ、その粒径は、平均粒径D50で1μm以上150μm以下が好ましく、より好ましくは5μm以上50μm以下、更に好ましくは10μm以上25μm以下である。粒径が1μm未満の場合、青色光を蛍光光に変換する効率(量子効率)が低下してしまい、蛍光光量の不足、発光効率の低下を生ずるおそれがある。粒径が150μmを超える場合、均一で緻密な蛍光体層の形成が困難となるおそれがあり、また、粒子の隙間が広くなって、粒子間から必要以上に多くの青色光が通過してしまうという構造上の問題が生じるおそれがある。
 Lu3Al512:Ce蛍光体により得られる発光は、500nm及びその近傍の波長を主としているので、暗所又は低照度下の照明として優れている一方、例えば、光源の近くの光軸上など、十分な明るさが得られる箇所の照度は、従来の白熱電球や、蛍光体としてY3Al512:Ce蛍光体を主として用いた従来の疑似白色LEDと比べた場合、やや低くなる。また、600nm前後の赤色成分が不足しているため、色の再現性、特に、赤色の再現性がやや低い。
 このような問題に対し、Lu3Al512:Ce蛍光体を、蛍光発光の色合い、すなわち蛍光発光の主波長を支配的に決める主蛍光体とし、更に、副蛍光体として、K2SiF6:Mnで表されるマンガン賦活ケイフッ化カリウム蛍光体や、Y3Al512:Ceで表されるセリウム賦活イットリウム・アルミニウム・ガーネット蛍光体(YAG:Ce蛍光体)などを併用することで、波長500~630nmの光量を増やして、白色光としての光質、具体的には、色偏差(Δuv)を改善することができる。なお、赤色の波長の光を得ることができる蛍光体としては、CASN、S-CASN、α-SiALON等の赤色蛍光体が挙げられるが、このような蛍光体は、本発明においては好ましくない。これは、これらの蛍光体が、Lu3Al512:Ce蛍光体による緑色の発光を吸収してしまい、発光効率を大きく低下させてしまうためである。
 副蛍光体としてK2SiF6:Mn蛍光体を加えた場合、Lu3Al512:Ce蛍光体の500nm及びその近傍の発光に、630nm及びその近傍の赤色の発光が加わり、照明装置としての光質が大きく改善する。この際、K2SiF6:Mn蛍光体によるLu3Al512:Ce蛍光体からの発光光の再吸収はほとんどなく、また、発光スペクトルに、疑似白色の形成に寄与しない成分がほとんどないので、光量の低下はわずかである。このK2SiF6:Mn蛍光体は、Mn含有率が0.05質量%以上7質量%以下のものが好ましい。また、K2SiF6:Mn蛍光体は、粒子状のものが用いられ、その粒径は、平均粒径D50で2μm以上200μm以下が好ましく、より好ましくは10μm以上60μm以下である。
 また、副蛍光体としてY3Al512:Ce蛍光体を加えた場合、発光スペクトルは、Lu3Al512:Ce蛍光体の発光の長波長側の波長域において、発光量を増加させることができ、色温度を低下させて、赤色の再現性を向上させることが可能となる。このY3Al512:Ce蛍光体は、Ce含有率が1質量%以上6質量%以下のものが好ましい。また、Y3Al512:Ce蛍光体は、粒子状のものが用いられ、その粒径は、平均粒径D50で1μm以上100μm以下が好ましく、より好ましくは5μm以上50μm以下である。
 主蛍光体であるLu3Al512:Ce蛍光体と、Lu3Al512:Ce蛍光体以外の副蛍光体(K2SiF6:Mn蛍光体、Y3Al512:Ce蛍光体など)とは、蛍光体の総量に対し、主蛍光体が10質量%以上、特に20質量%以上で、50質量%以下、特に40質量%以下とすることが好ましい。
 本発明における蛍光体は、従来公知の方法で製造することができ、市販品を用いることもできる。
 蛍光体層の厚さは、車載ヘッドライト用LED光源として有効な所望の発光スペクトルが得られるように適宜設定されるが、0.1~10mmが好ましく、0.5~3mmがより好ましい。
 また、蛍光体を高分子材料や無機ガラス等に分散させた蛍光体層の場合、蛍光体層中の蛍光体の量は、蛍光体の総量で、5質量%以上、特に10質量%以上、とりわけ20質量%以上で、60質量%以下、特に40質量%以下、とりわけ25質量%以下が好ましい。例えば、高分子材料と共にポッティングで厚さ0.3mmの蛍光体層を形成する場合は、20質量%以上60質量%以下が適しており、高分子材料に練り込んで、厚さ2mmの成形体を形成してリモートフォスファー材として用いる場合には5質量%以上25質量%以下が適している。蛍光体の含有率が低い場合には、青色LEDからの未変換青色光の透過が多くなって、色温度が高くなるおそれがある。一方、蛍光体の含有率が高い場合には、光の減衰量が多くなって、光量が低下するおそれがある。
 蛍光体層には、添加剤として、青色光が蛍光体に入射せずに透過してしまう、いわゆる青抜けを防ぐ目的で、SiO2、SiON、TiO等の散光材を、例えば0.1質量%以上5質量%以下の範囲で加えてもよい。
 本発明のドミナント波長430nm以上470nm以下の青色光を発光する青色LEDと、Lu3Al512:Ce蛍光体を主蛍光体として用いたLED光源、特に、Lu3Al512:Ce蛍光体と、副蛍光体としてK2SiF6:Mn蛍光体又はY3Al512:Ce蛍光体とを併用したLED光源により、暗所視効率の低下を抑えつつ、発光の色温度が6000K以下の疑似白色光を発光させることができる。
 また、本発明のLED光源は、主に緑色域の発光波長である波長470nm以上540nm以下の範囲の発光エネルギーの総量が、波長510nm以上610nm以下の範囲の発光エネルギーの総量の0.7倍以上、特に0.8倍以上1.5倍以下である発光スペクトルを有する疑似白色光を発光させることができる。この比率が0.7倍未満では、暗所視における視認性の向上効果が得られないおそれがある。更に、本発明のLED光源は、主に緑色域の発光波長である波長470nm以上540nm以下の範囲の発光エネルギーの総量が、明所視感度域の大部分に相当する波長430nm以上630nm以下の範囲の発光エネルギーの総量の0.4倍以上、特に0.5倍以上0.7倍以下である発光スペクトルを有する疑似白色光を発光させることができる。この比率が0.4倍以上の場合、暗所視における視認性の向上において、より高い効果が得られる。そのため、上記2つの比率の両方を満たすことが、特に有利である。なお、上記波長範囲における発光エネルギーの総量は、発光スペクトルにおける各々の波長範囲の放射エネルギー(強度)の積算値(積分値)とすることができる。
 本発明により、悪天候下においても視認性が低下しにくいとされる色温度6000K以下の疑似白色光を発光し、かつ夜間等の低照度環境における、プルキンエ効果による視感度波長の変化による視認性の低下を改善した、車載ヘッドライト用として好適なLED光源を提供することができる。
 以下に、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
  [実施例1]
 青色光源として、Shenzhen Hanhua Opto Co., Ltd.製、ロイヤルブルーLEDアレイ(発光波長:445nm、50W)を用い、この発光表面に、Ceを1.4質量%含むLu3Al512:Ce蛍光体粒子(粒径D50=16.2μm)を、丸本ストルアス株式会社製、エポキシ樹脂組成物、Specifixに分散させたスラリー(蛍光体濃度26質量%)を塗布した。これを、オーブンで、50℃で3.5時間加熱して硬化させて、LEDの発光表面に厚さ約0.4mmの蛍光体層を積層した疑似白色LEDチップを得た。次に、図1に示されるように、得られた疑似白色LEDチップ11をリフレクター12の中央部に組み込み、厚さ2mmの乳白色のアクリル板をシェード材13として、試験用の照明装置(LED光源)1を作製した。照明の配向角は1/2配光角で115°となった。
 この照明装置の光学特性として、色温度を、コニカミノルタ株式会社製、分光放射照度計CL-500Aにより、また、発光効率を、大塚電子社製、全光束測定システムFM-1650により評価した。発光スペクトルを図2に示す。更に、この発光スペクトルから、波長510nm以上610nm以下の範囲の発光エネルギーの総量と、波長470nm以上540nm以下の範囲の発光エネルギーの総量とを計測し、それらの比(比率A)を算出し、また、波長430nm以上630nm以下の範囲の発光エネルギーの総量と、波長470nm以上540nm以下の範囲の発光エネルギーの総量とを計測し、それらの比(比率B)を算出した。結果を、発光の色温度、色偏差(Δuv)、発光効率及びS/P比と共に表1に示す。
 更に、この照明装置の暗所視における視認性を、照明照度が低い場合の周辺視野の認識応答時間の差として、以下の方法で評価した。まず、照明装置を、夜間、幅員7mのアスファルト道路の中央の高さ50cmの位置に光軸を水平にして設置した。次に、照明装置の発光面から光軸上の前方12mの位置(正面)、及び同位置から左若しくは右の路肩側それぞれの、照明装置の発光面から約10.6mの位置の計3ヶ所のいずれかに、マンセル明度7.5の15cm角の色票を設置し、正面の色票の照射照度が10lxとなるように照明装置の照度を調整した。この状態で、照明装置の後方1mの位置に被験者を立たせた状態で視線を光軸方向に向けさせて、試験用のLED光源を発光させ、照射開始からいずれかの位置にある色票を視認できるまでの時間を計測する感応試験により行った。試験は3人の被験者で、3ヶ所の位置にランダムに色票を設置し、5分間隔で各箇所について5回ずつ、計15回の試験を実施した。各位置の平均応答時間を表1に示す。
  [実施例2]
 実施例1の青色光源を、蛍光体層を積層せずにそのまま用い、実施例1のLu3Al512:Ce蛍光体粒子を、旭化成株式会社製、透明アクリル樹脂、デルペット60Nに練り込んだ厚さ2mmの板材(蛍光体濃度9質量%)を、蛍光体層兼シェード材として用い、リモートフォスファー型の試験用のLED光源を作製し、実施例1と同様に光学特性及び視認性を評価した。発光スペクトルを図2に、その他の結果を表1に示す。
  [実施例3]
 実施例1のLu3Al512:Ce蛍光体粒子と、Mnを2質量%含むK2SiF6:Mn蛍光体粒子(粒径D50=20μm)とを併用した厚さ2mmの板材(Lu3Al512:Ce蛍光体濃度10質量%、K2SiF6:Mn蛍光体5質量%)を蛍光体層兼シェード材とした以外は実施例2と同様にして、リモートフォスファー型の試験用のLED光源を作製し、実施例1と同様に光学特性及び視認性を評価した。発光スペクトルを図3に、その他の結果を表1に示す。
  [比較例1]
 実施例1の青色光源の発光表面に、Ceを1.6質量%含むY3Al512:Ce蛍光体粒子(粒径D50=14μm)を、実施例1のエポキシ樹脂組成物に分散させたスラリー(蛍光体濃度32質量%)を塗布した以外は実施例1と同様にして、試験用のLED光源を作製し、実施例1と同様に光学特性及び視認性を評価した。発光スペクトルを図4に、その他の結果を表1に示す。
  [比較例2]
 実施例1の青色光源の発光表面に、Ceを1.6質量%含むY3Al512:Ce蛍光体粒子(粒径D50=14μm)を、実施例1のエポキシ樹脂組成物に分散させたスラリー(蛍光体濃度32質量%)を、塗布量を比較例1の21%として塗布した以外は実施例1と同様にして、試験用のLED光源を作製し、実施例1と同様に光学特性及び視認性を評価した。発光スペクトルを図4に、その他の結果を表1に示す。
  [比較例3]
 図1に示される試験用の照明装置1において、疑似白色LEDチップ11の代わりに、市販の昼白色のハロゲン球を、その光球面(発光面)の先端が、実施例1の疑似白色LEDチップ11の先端と同位置となるように、リフレクター12の中央部後方に、基板を貫通させて配置し、厚さ1.5mmのガラス板をシェード材13とした以外は実施例1と同様にして、試験用の照明装置を作製し、実施例1と同様に光学特性及び視認性を評価した。発光スペクトルを図5に、その他の結果を表1に示す。
  [比較例4]
 図1に示される試験用の照明装置1において、ハロゲン球の代わりに、市販の白色の白熱電球を用いた以外は比較例3と同様にして、試験用の照明装置を作製し、実施例1と同様に光学特性及び視認性を評価した。発光スペクトルを図5に、その他の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

・S/P比
Figure JPOXMLDOC01-appb-M000002
・発光エネルギー総量比(比率A)
 (発光スペクトルの波長470~540nmの範囲の発光エネルギーの総量)/(発光スペクトルの波長510~610nmの範囲の発光エネルギーの総量)
・発光エネルギー総量比(比率B)
 (発光スペクトルの波長470~540nmの範囲の発光エネルギーの総量)/(発光スペクトルの波長430~630nmの範囲の発光エネルギーの総量)
 実施例1~3のLED光下での左右路肩の平均応答時間は、Y3Al512:Ce蛍光体を用いた比較例1に示される従来の疑似白色LEDと比べて約2割短縮されており、本発明のLED光源が、夜間における周辺視野の視認性に影響を与える照射光周縁部においての視認性が良好であることがわかる。また、発光の色温度を高くした比較例2のY3Al512:Ce蛍光体を用いたLEDでは、左右路肩の平均応答時間は、実施例1~3のよりさらに短くなるものの、その色温度が車載用照明のガイドライン上限の6000Kより高い。このため、雨天や霧といった悪天候下での利用も考慮する必要がある車載ヘッドライトとしては好ましくない。一方、比較例3に示される従来のハロゲン球や、比較例4に示される白熱電球では、暗所での応答時間は良好ではあるものの、発光効率が本発明のLED光源の1/5程度と低いことがわかる。
1 照明装置(LED光源)
11 疑似白色LEDチップ
12 リフレクター
13 シェード材又は蛍光体層

Claims (5)

  1.  ドミナント波長430nm以上470nm以下の青色光を発光する青色LEDと、上記青色光の発光方向前方に配置され、上記青色光を波長変換する蛍光体とを備え、上記蛍光体がLu3Al512:Ceで表されるセリウム賦活ルテチウム・アルミニウム・ガーネット蛍光体を主蛍光体として含んでなり、色温度が6000K以下の疑似白色光を発光することを特徴とする車載ヘッドライト用LED光源。
  2.  上記青色光を波長変換する蛍光体が、更に、K2SiF6:Mnで表されるマンガン賦活ケイフッ化カリウム蛍光体又はY3Al512:Ceで表されるセリウム賦活イットリウム・アルミニウム・ガーネット蛍光体を副蛍光体として含むことを特徴とする請求項1記載の車載ヘッドライト用LED光源。
  3.  波長470nm以上540nm以下の範囲の発光エネルギーの総量が、波長510nm以上610nm以下の範囲の発光エネルギーの総量の0.7倍以上である発光スペクトルを有する疑似白色光を発光することを特徴とする請求項1又は2記載の車載ヘッドライト用LED光源。
  4.  波長470nm以上540nm以下の範囲の発光エネルギーの総量が、波長430nm以上630nm以下の範囲の発光エネルギーの総量の0.4倍以上である発光スペクトルを有する疑似白色光を発光することを特徴とする請求項1乃至3のいずれか1項記載の車載ヘッドライト用LED光源。
  5.  上記青色光を波長変換する蛍光体が、高分子材料又は無機ガラスに上記蛍光体を分散させてなる蛍光体層により配置されていることを特徴とする請求項1乃至4のいずれか1項記載の車載ヘッドライト用LED光源。
PCT/JP2015/083839 2014-12-09 2015-12-02 車載ヘッドライト用led光源 WO2016093119A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/534,125 US20170336040A1 (en) 2014-12-09 2015-12-02 Led light source for vehicle-mounted headlight
JP2016563634A JP6471756B2 (ja) 2014-12-09 2015-12-02 車載ヘッドライト用led光源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-248699 2014-12-09
JP2014248699 2014-12-09

Publications (1)

Publication Number Publication Date
WO2016093119A1 true WO2016093119A1 (ja) 2016-06-16

Family

ID=56107308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083839 WO2016093119A1 (ja) 2014-12-09 2015-12-02 車載ヘッドライト用led光源

Country Status (4)

Country Link
US (1) US20170336040A1 (ja)
JP (1) JP6471756B2 (ja)
TW (1) TW201633561A (ja)
WO (1) WO2016093119A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129450A (ja) * 2017-02-10 2018-08-16 信越化学工業株式会社 白色光源及びled照明装置
WO2023189747A1 (ja) * 2022-03-28 2023-10-05 株式会社小糸製作所 車載用光源部品および車両用灯具

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6724634B2 (ja) * 2016-07-28 2020-07-15 日亜化学工業株式会社 発光装置の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297357A (ja) * 1997-04-30 1998-11-10 Yukimaro Tanaka 歩行者を守り、ドライバーの安全運転を助ける明るい二色のヘッドライトの光
JP2006222297A (ja) * 2005-02-10 2006-08-24 Matsushita Electric Works Ltd 白色発光装置
JP2009535775A (ja) * 2006-05-02 2009-10-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 車両用ヘッドライト
JP2012156209A (ja) * 2011-01-24 2012-08-16 Panasonic Corp 照明装置
JP2013101881A (ja) * 2011-11-09 2013-05-23 Stanley Electric Co Ltd 車両用前照灯
JP2013201274A (ja) * 2012-03-23 2013-10-03 Toshiba Lighting & Technology Corp 照明装置
JP2013214735A (ja) * 2012-03-09 2013-10-17 Panasonic Corp 発光装置、これを用いた照明装置及び照明器具
JP2014197673A (ja) * 2013-03-04 2014-10-16 三菱化学株式会社 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法
JP2014209617A (ja) * 2013-03-29 2014-11-06 株式会社朝日ラバー Led照明装置、その製造方法及びled照明方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548491A (en) * 1993-12-01 1996-08-20 Karpen; Daniel N. Color corrected motor vehicle headlight
EP1566426B1 (en) * 2004-02-23 2015-12-02 Philips Lumileds Lighting Company LLC Phosphor converted light emitting device
WO2006077740A1 (ja) * 2004-12-28 2006-07-27 Nichia Corporation 窒化物蛍光体及びその製造方法並びに窒化物蛍光体を用いた発光装置
US8203260B2 (en) * 2007-04-13 2012-06-19 Intematix Corporation Color temperature tunable white light source
JP5521325B2 (ja) * 2008-12-27 2014-06-11 日亜化学工業株式会社 発光装置及びその製造方法
JP5520023B2 (ja) * 2009-12-08 2014-06-11 株式会社小糸製作所 車両用照明灯具
JP6061863B2 (ja) * 2011-11-10 2017-01-18 ユニチカ株式会社 熱可塑性樹脂組成物およびそれからなる成形体
JP2013161889A (ja) * 2012-02-02 2013-08-19 Sharp Corp 発光装置、車両用前照灯および発光装置の色み調整方法
JP2014039006A (ja) * 2012-02-27 2014-02-27 Mitsubishi Chemicals Corp 波長変換部材及びこれを用いた半導体発光装置
KR102202309B1 (ko) * 2012-12-28 2021-01-14 신에쓰 가가꾸 고교 가부시끼가이샤 파장 변환 부재 및 발광 장치
JP2014137973A (ja) * 2013-01-18 2014-07-28 Stanley Electric Co Ltd 光源装置
KR101762818B1 (ko) * 2013-04-09 2017-07-28 대주전자재료 주식회사 백색 발광다이오드용 형광체 및 이의 제조방법
US9466771B2 (en) * 2014-07-23 2016-10-11 Osram Sylvania Inc. Wavelength converters and methods for making the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297357A (ja) * 1997-04-30 1998-11-10 Yukimaro Tanaka 歩行者を守り、ドライバーの安全運転を助ける明るい二色のヘッドライトの光
JP2006222297A (ja) * 2005-02-10 2006-08-24 Matsushita Electric Works Ltd 白色発光装置
JP2009535775A (ja) * 2006-05-02 2009-10-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 車両用ヘッドライト
JP2012156209A (ja) * 2011-01-24 2012-08-16 Panasonic Corp 照明装置
JP2013101881A (ja) * 2011-11-09 2013-05-23 Stanley Electric Co Ltd 車両用前照灯
JP2013214735A (ja) * 2012-03-09 2013-10-17 Panasonic Corp 発光装置、これを用いた照明装置及び照明器具
JP2013201274A (ja) * 2012-03-23 2013-10-03 Toshiba Lighting & Technology Corp 照明装置
JP2014197673A (ja) * 2013-03-04 2014-10-16 三菱化学株式会社 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法
JP2014209617A (ja) * 2013-03-29 2014-11-06 株式会社朝日ラバー Led照明装置、その製造方法及びled照明方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129450A (ja) * 2017-02-10 2018-08-16 信越化学工業株式会社 白色光源及びled照明装置
WO2023189747A1 (ja) * 2022-03-28 2023-10-05 株式会社小糸製作所 車載用光源部品および車両用灯具

Also Published As

Publication number Publication date
US20170336040A1 (en) 2017-11-23
TW201633561A (zh) 2016-09-16
JP6471756B2 (ja) 2019-02-20
JPWO2016093119A1 (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
JP4809508B1 (ja) Ledモジュール、ledランプおよび照明装置
US9228718B2 (en) LED light bulb
CN107068838B (zh) 用于展示展示物的装置和用于展示展示物的系统
TWI760303B (zh) 白光照明用之led照明單元、材料及光學組件
WO2011108053A1 (ja) Ledランプおよびled照明装置
US20140167599A1 (en) Light-emitting module and lighting source including the same
WO2007120582A1 (en) WHITE LEDs WITH TAILORABLE COLOR TEMPERATURE
TW201502244A (zh) 紅色燈以及車輛用燈光裝置
CN103080634B (zh) Led电灯泡
US20070023762A1 (en) White light emitting LED-powered lamp
KR102088211B1 (ko) 조명 장치
CN109723984A (zh) 具有白色灯丝外观的led白炽灯
US20150300602A1 (en) Light emitting arrangement with controlled spectral properties and angular distribution
JP6471756B2 (ja) 車載ヘッドライト用led光源
CN108302458A (zh) 车辆用前照灯
CN105793391A (zh) 发光材料混合物、具有发光材料混合物的发光半导体器件和具有发光材料混合物的路灯
CN104253196A (zh) 户外照明装置
JP6861389B2 (ja) 屋外用照明装置
JP2017183522A (ja) 発光装置
JP5683625B2 (ja) 発光装置、それを用いた車両用灯具、およびヘッドランプ
JP5566822B2 (ja) Led電球
KR20160008443A (ko) 발광 장치
WO2023189747A1 (ja) 車載用光源部品および車両用灯具
WO2024079960A1 (ja) 発光装置、前照灯及びそれを備えた車両
JP2023145094A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866586

Country of ref document: EP

Kind code of ref document: A1