WO2016091542A1 - Mehrschicht-verbund für akustische membranen - Google Patents

Mehrschicht-verbund für akustische membranen Download PDF

Info

Publication number
WO2016091542A1
WO2016091542A1 PCT/EP2015/076817 EP2015076817W WO2016091542A1 WO 2016091542 A1 WO2016091542 A1 WO 2016091542A1 EP 2015076817 W EP2015076817 W EP 2015076817W WO 2016091542 A1 WO2016091542 A1 WO 2016091542A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer composite
composite according
cover
layers
Prior art date
Application number
PCT/EP2015/076817
Other languages
English (en)
French (fr)
Inventor
Michael Egger
Gero Maatz
Original Assignee
Tesa Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa Se filed Critical Tesa Se
Priority to EP15804082.4A priority Critical patent/EP3231193A1/de
Priority to US15/534,802 priority patent/US10397705B2/en
Priority to CN201580075181.7A priority patent/CN107211217A/zh
Priority to JP2017531151A priority patent/JP6506843B2/ja
Priority to KR1020177018653A priority patent/KR20170094304A/ko
Publication of WO2016091542A1 publication Critical patent/WO2016091542A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/52Polyphenylene sulphide [PPS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the invention relates to a multilayer composite comprising at least one outer polyphenylene sulfide film for use as a membrane for electroacoustic transducers.
  • micro-speakers The generation of sound in mobile phones and smartphones for the reproduction of speech, ringtones, music, etc. is done by small electro-acoustic transducers, so-called micro-speakers.
  • microspeakers are becoming ever smaller and flatter due to the design requirements for the corresponding electronic devices, but are also intended to be operated at a higher output, the temperature load on the microspeaker, and in particular its membrane, is increasing more and more.
  • the demands on the acoustic properties of the loudspeakers which are increasingly being used, for example, in smartphones for the loud playing of music and at the same time have a good sound quality, are also increasing.
  • the demands on the mechanical strength and acoustic quality of the micro speaker membrane have increased enormously in recent years.
  • a loudspeaker diaphragm should generally be stiff and light on the one hand in order to produce a high sound pressure and to cover a wide frequency range, but on the other hand be well damped at the same time to show the smoothest possible frequency response. Since the properties stiff, light and well damped give a constructive contradiction and not all can be fulfilled simultaneously (the higher the stiffness, the lower the damping and vice versa) In general, compromises are made in terms of stiffness and damping of the membrane material in each membrane or rigid materials combined with good damping materials. Therefore, multi-layer composites (in particular multi-layer laminates) are often used, which are then formed into the membrane. The multi-layer composites usually comprise the membrane stiffening or stabilizing layers and damping layers. The rigid films used in today's multi-layer composites themselves contribute very little to the damping.
  • US Pat. No. 7,726,441 B describes a membrane composed of a multilayer composite of two rigid polymer films and a damping adhesive layer lying between these films.
  • polyphenylene sulfide plastics are known in the prior art (for polyphenylene sulfide, the term PPS is also common and is used in this document).
  • PPS polyphenylene sulfide
  • cover layer material usually have unsatisfactory acoustic distortions, so that there is aural impairment of the acoustic signals.
  • total harmonic distortion commonly referred to in the art as “Total Harmony Distortion” or “THD” for short Designation is therefore also used in the context of this document.
  • the THD is defined as the ratio of the summed powers Ph of all harmonics to the power of the fundamental vibration Pi and is usually given as a percentage:
  • THD [%] (P h / Pi) * 100 Plastics used for the realization of optimized acoustic properties of loudspeaker membranes as cover sheet material, such as polyetherimide (PEI), polyarylate (PAR) or polyetheretherketone (PEEK), are considerably more expensive than PPS.
  • PEI polyetherimide
  • PAR polyarylate
  • PEEK polyetheretherketone
  • PPS preparation of PPS, even for such films as are used for membranes of the aforementioned type, is usually carried out by polycondensation of phenylenedihalides, in particular dichlorobenzene, and sodium sulfide in a high-boiling, dipolar aprotic solvent such as N-methylpyrrolidone.
  • phenylenedihalides in particular dichlorobenzene
  • sodium sulfide in a high-boiling, dipolar aprotic solvent such as N-methylpyrrolidone.
  • EP 0737705 A An alternative method is shown in EP 0737705 A, in which the preparation of the polymer is carried out from a prepolymer having halogen end groups.
  • halogen-containing (by-products) The manufacturing process requires that a relatively high proportion of halogen-containing (by-products) remain, which remains in the polymer in considerable quantities, as a result of which commercially available polyphenylene sulfide films have a relatively high content of halogen, which is quantitatively determined by conventional analysis methods This is usually chlorine.
  • halogen contents of more than 600 ppm, generally even more than 900 ppm.
  • One ppm corresponds to one milligram of the halogen per kilogram of the analyzed PPS film material as used.
  • the object of the invention was to provide composite film systems for the production of loudspeaker membranes (acoustic membranes), which are inexpensive and therefore economically interesting, but in which the acoustic membranes produced therefrom have improved acoustic properties compared to commercially available PPS films ,
  • the membranes should not lose their good properties in terms of high flexural stiffness, low density and high internal damping.
  • the object is achieved if, as material for the cover films of such membranes, although PPS continues to be used, but here selects a PPS having a total halogen content of not more than 550 ppm.
  • PPS a PPS having a total halogen content of not more than 550 ppm.
  • the invention relates to a multilayer composite for use as or for producing a membrane for electroacoustic transducers, comprising at least a first and a second outer layer (hereinafter referred to as cover layer), optionally a damping layer disposed between these cover layers, wherein at least one of Cover layers (“first cover layer”) consists of a polyphenylene sulfide plastic, and wherein the halogen content of the polyphenylene sulfide plastic (“PPS plastic”) does not exceed 550 ppm.
  • first cover layer consists of a polyphenylene sulfide plastic, and wherein the halogen content of the polyphenylene sulfide plastic (“PPS plastic”) does not exceed 550 ppm.
  • the multilayer composite may be a two-layer composite (excluding cover layers), it may be a three-layer composite (in particular cover layer damping layer cover layer), or it may comprise more than three layers, wherein advantageously at least one of the layers located between the cover layers is a cushioning layer.
  • the at least one damping layer in a three-layer or multi-layer composite is particularly advantageously adhesive layers, in particular PSA layers.
  • the first cover layer has a thickness of 1 to 50 ⁇ , very preferably from 1 to 5 ⁇ .
  • Suitable films for use as a second cover layer are, for example, films of polyetheretherketone (PEEK), commercial polyphenylene sulphide (PPS), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyarylate (PAR), polyimide (PI), polyetherimide ( PEI), Polyphenylsulfone (PPSU), Polyethersulfone (PES), Polysulfone (PSU) or Thermoplastic Polyurethane (TPU)
  • PEEK polyetheretherketone
  • PPS polyethylene naphthalate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PAR polyarylate
  • PI polyimide
  • PEI polyetherimide
  • PEI Polyphenylsulfone
  • PES Polyethersulfone
  • PSU Polysulfone
  • TPU Thermoplastic Polyurethane
  • the second cover layer is particularly advantageous according to the invention to also produce the second cover layer from low-halogen PPS, so that both cover layers of the multi-layer composite consist of polyphenylene sulfide plastic whose halogen content does not exceed 550 ppm in each case.
  • the second cover layer has a thickness of 1 to 50 ⁇ , preferably from 1 to 5 ⁇ on.
  • both cover layers are made of the identical low-halogen PPS plastic, and / or the thicknesses of both cover layers are the same, so that in particular a symmetrical - or at least symmetrical with respect to the outer cover layers - multi-layer composite is present.
  • the multilayer composite of the invention consists of two laminated plastic films, of which at least one of the films - optionally also both films - consists of polyphenylene sulfide plastic whose halogen content does not exceed 550 ppm.
  • Such two-sheet systems can be used particularly well for membranes when the two-layer composite has sufficient damping properties without additional damping layer and / or the requirements for the damping in the application are low.
  • one of the films can be softened and / or melted in order to improve the adhesion to the other film.
  • a film of thermoplastic polyurethane is particularly advantageous.
  • a particularly advantageous embodiment of a two-layer composite is therefore one comprising a TPU film and a film of halogen-reduced PPS.
  • the membrane should be well damped to show the smoothest possible frequency response.
  • a damping layer which may be constructed in one layer or in turn multi-layered.
  • the damping layer therefore comprises a single-layer or multi-layer double-sided adhesive tape, in particular pressure-sensitive adhesive tape;
  • the damping layer is formed by a single-layer or multilayer double-sided adhesive tape, in particular pressure-sensitive adhesive tape.
  • Pressure-sensitive adhesive tape in addition to its damping effect, is able to cause the cohesion of the layers in the composite due to its (self) adhesive properties.
  • the damping layer itself is single-layered, so that the multi-layer composite is a three-layer composite.
  • the damping layer is then preferably a layer of a pressure-sensitive adhesive.
  • the multi-layer composite has a symmetrical three-layer structure of the kind of topcoat pressure-sensitive adhesive topcoat in which the outer cover layers are identical in chemical composition and thickness.
  • the layer thickness of the (adhesive) adhesive layer in three-layer composites is advantageously 2 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m, particularly preferably 10 ⁇ m to 30 ⁇ m.
  • a further variant of the invention is represented by a - five-layer structure - symmetrical or asymmetrical, wherein the cover layer has an inner support or stabilization layer, for example of a film of polyetheretherketone (PEEK), commercial polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), Polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyarylate (PAR), polyimide (PI), polyetherimide (PEI), polyphenylsulfone (PPSU), polyethersulfone (PES), polysulfone (PSU) or thermoplastic polyurethane (TPU), or which are particularly preferred also formed from a film of a low halogenated polyphenylene sulfide (PPS) having a halogen content of less than 550 ppm.
  • PEEK polyetheretherketone
  • PPS polyetheretherketone
  • PEN polyethylene naphthalate
  • PET Polyethylene
  • both adhesive (adhesive) layers are chemically identical and / or the same thickness.
  • the (adhesive) adhesive layers can also be selected differently with regard to their chemical nature and / or their thickness.
  • the thickness of the inner carrier or stabilizing layer is preferably 1 to 50 ⁇ m, preferably 1 to 30 ⁇ m, particularly preferably 1 to 5 ⁇ m.
  • the thicknesses of the (adhesive) adhesive layer layers are preferably 1 to 100 ⁇ , preferably 1 to 50 ⁇ , particularly preferably 2 to 40 ⁇ .
  • pressure-sensitive adhesives also referred to as self-adhesives or PSA from English: "pressure sensitive adhesives”
  • PSA pressure sensitive adhesives
  • those polymeric compositions are referred to - optionally by suitable addition with other components, such as adhesive resins - at the application temperature (unless otherwise defined, in Room temperature) are permanently tacky and permanently tacky and adhere to a variety of surfaces on contact, in particular adhere immediately (a so-called “tack” [stickiness or Anutzklebrtechnik] have). They are able, even at the application temperature without activation by solvents or by heat - but usually by the influence of a more or less high pressure - sufficient to wet a substrate to be bonded so that between the mass and the substrate for the adhesion can form sufficient interactions. Factors influencing this process include pressure and contact time.
  • the special properties of the PSAs are due in particular to their viscoelastic properties.
  • acrylate PSAs are used for the adhesive layers.
  • These are adhesives whose polymer base are polymers of acrylic monomers - these are in particular acrylic and methacrylic acid, the esters of the aforementioned acids and the copolymerizable further derivatives of the aforementioned acids understood -, the acrylic monomers - optionally together with other comonomers - in the polymerization at least be used in an amount that the properties of the adhesive are thereby determined significantly.
  • pressure-sensitive adhesives having an acrylic monomer content in the polymerization of at least 50% by weight, of at least 80% by weight or of 100% by weight (pure acrylate systems) can be used.
  • adhesives which are familiar to the person skilled in the art, in particular pressure-sensitive adhesives, are likewise possible and can be used in the context of the invention, with particular preference being given to those which have good adhesion to PPS and, moreover, have good damping properties.
  • silicone adhesives and / or polyurethane adhesives and / or rubber adhesives in particular silicone pressure-sensitive adhesives, polyurethane pressure-sensitive adhesives or rubber pressure-sensitive adhesives, can also be used in particular.
  • the PSA is applied either directly to one of the two outer layers in the desired layer thickness using the application method familiar to those skilled in the art, or indirectly by coating a temporary transfer support such as siliconized paper or siliconized film, laminating with the first of the two film layers and masking the temporary transfer support.
  • the second of the two film layers can be fed directly to the pressure-sensitive adhesive side of the one-sided laminated composite.
  • laminating devices that connect the webs of material between rubber cylinders or a steel and a rubber cylinder with variably adjustable contact pressure continuously.
  • membranes for electroacoustic transducers in particular loudspeaker membranes
  • embossing or thermoforming of a multilayer composite according to the invention whereby this composite is brought into a specific three-dimensional form.
  • the multi-layer composite is heated, for example in a thermoform and pressed by applying pressure and / or vacuum in the form of the finished membrane.
  • the multilayer composites according to the invention can be used excellently in a process for the production of membranes for electroacoustic transducers, wherein they are subjected to the process of multicavity thermoforming.
  • the multilayer laminate is placed on the heatable thermoforming, which contains recesses with the negative impression of the membrane to be formed.
  • the multi-layer laminate is e.g. heated by IR radiation and thereby softened and then pressed from above with compressed air into the recesses.
  • the softened multi-layer laminate can also be pressed into the molds with a stamp made of silicone or foamed silicone.
  • the halogen content of a halogen-reduced PPS film was 532 ppm.
  • three-layer composites each consisted of a 4 ⁇ m thick PPS film, each of a 10 ⁇ m acrylate or silicone damping layer (each standard pressure-sensitive adhesive, identical in each case in Example 1 and Comparative Example 1 and in Example 2 and Comparative Example) 2) and 4 ⁇ thick PPS film produced, wherein for the inventive examples, halogen-reduced PPS films and for comparative experiments standard PPS films were used (see Table 1).
  • the resonant frequency of both loudspeakers is 450 Hz.
  • the THD curves of the loudspeakers with the multi-layer composite diaphragms made of halogen-reduced PPS foil was between 0 and 0 for the composites with acrylate damping layer as well as for the composites with silicone damping layer. 1 and 10 kHz below the THD curves of the speakers with the membranes made of commercially available PPS film.
  • Table 1 shows examples of THD values at frequencies below the resonant frequency. Table 1 . Results of the THD determination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Laminated Bodies (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

Mehrschicht-Verbund zur Verwendung als Membran für elektroakustische Wandler, umfassend zumindest eine erste und eine zweite außenliegende Schicht (Deckschicht), wobei zumindest eine der Deckschichten („erste Deckschicht") aus einem Polyphenylensulfid-Kunststoff besteht, dadurch gekennzeichnet, dass der Halogengehalt des Polyphenylensulfid-Kunststoffs („PPS-Kunststoff") 550 ppm nicht übersteigt.

Description

tesa SE
Quickbornstraße 24
20253 Hamburg
Mehrschicht-Verbund für akustische Membranen
Die Erfindung betrifft einen Mehrschicht-Verbund umfassend zumindest eine außenliegende Polyphenylensulfid-Folie zur Verwendung als Membran für elektroakustische Wandler.
Die Schallerzeugung in Mobiltelefonen und Smartphones zur Wiedergabe von Sprache, Klingeltönen, Musik etc. erfolgt durch kleine elektroakustische Wandler, sogenannte Mikrolautsprecher. Die Größe der Membranen solcher Mikrolautsprecher, die auch in Kopfhörern, Notebooks, LCD-Fernsehern oder Personal Digital Assistants (PDAs) eingesetzt werden, liegt typischerweise im Bereich 20 mm2 bis 900 mm2.
Da Mikrolautsprecher aufgrund der Design-Anforderungen an die entsprechenden elektronischen Geräte immer kleiner und flacher werden, dabei aber zusätzlich mit höherer Leistung betrieben werden sollen, nimmt die Temperaturbelastung des Mikrolautsprechers und insbesondere seiner Membran immer mehr zu. Gleichzeitig steigen auch die Anforderungen an die akustischen Eigenschaften der Lautsprecher, die zum Beispiel in Smartphones vermehrt auch zum lauten Abspielen von Musik eingesetzt werden und dabei auch eine gute Klangqualität haben sollten. Die Anforderungen an die mechanische Belastbarkeit und akustische Güte der Mikrolautsprecher-Membran sind dadurch in den letzten Jahren enorm gestiegen.
Eine Lautsprechermembran sollte allgemein einerseits möglichst steif und leicht sein, um einen hohen Schalldruck zu erzeugen und einen breiten Frequenzbereich abzudecken, andererseits aber gleichzeitig gut gedämpft sein, um einen möglichst glatten Frequenzgang zu zeigen. Da die Eigenschaften steif, leicht und gut gedämpft einen konstruktiven Widerspruch ergeben und nicht alle gleichzeitig erfüllt werden können (je höher die Steifigkeit, desto geringer die Dämpfung und umgekehrt), müssen generell bei jeder Membran Kompromisse bezüglich der Steifigkeit und der Dämpfung des Membranmaterials eingegangen werden oder steife Materialien mit gut dämpfenden Materialien kombiniert werden. Daher werden vielfach Mehrschicht- Verbunde (insbesondere Mehrschichtlaminate) eingesetzt, die dann zur Membran ausgeformt werden. Die Mehrschicht-Verbunde umfassen dabei in der Regel die Membran versteifende bzw. stabilisierende Schichten sowie dämpfende Schichten. Die in den heute marktüblichen Mehrschicht-Verbunden verwendeten steifen Folien tragen selber sehr wenig zur Dämpfung bei.
So beschreibt die US 7,726,441 B eine Membran aus einem Mehrschicht-Verbund aus zwei steifen Polymerfolien und einer zwischen diesen Folien liegenden dämpfenden Klebmasse-Schicht. US 8,189,851 B beschreibt die Verwendung von weichen Haftklebmassen als Dämpfungsschichten in Mehrschicht-Verbunden und nennt als Maß für die Dämpfung des mehrschichtigen Membran-Gesamtaufbaues den mechanischen Verlustfaktor (Tangens delta; tan δ) ausgehend vom Elastizitätsmodul E (Youngscher Modul). Dieser ist definiert als das Verhältnis von Verlustmodul E" und Speichermodul E': tan δ = E7E' und soll in einem relevanten Frequenzintervall einen Mindestwert haben.
Als Polymerfolienmaterial für die steifen Polymerfolien (Deckschichten der Membran) sind nach dem Stand der Technik unter anderem Polyphenylensulfid-Kunststoffe bekannt (für Polyphenylensulfid ist auch die Bezeichnung PPS gebräuchlich und wird im Rahmen dieser Schrift verwendet). (Mikro-)Lautsprecher, deren Membranen mit PPS als Deckschichtmaterial hergestellt sind, besitzen jedoch üblicherweise unbefriedigende akustische Verzerrungen, so dass es zur klanglichen Beeinträchtigung der akustischen Signale kommt. Eine Größe, die die nichtlineare Verzerrung des Lautsprechers quantifiziert und am Lautsprecher einfach bestimmt werden kann, ist die sogenannte„Gesamte harmonische Verzerrung", in Fachkreisen üblicherweise mit dem englischen Ausdruck„Total Harmonie Distortion" oder kurz „THD" bezeichnet. Diese in Fachkreisen übliche Bezeichnung wird daher auch im Rahmen dieser Schrift verwendet.
Die THD ist definiert als das Verhältnis der summierten Leistungen Ph aller Oberschwingungen zur Leistung der Grundschwingung Pi und wird üblicherweise in Prozent angegeben:
THD [%] = (Ph/Pi) * 100 Kunststoffe, die für die Realisierung optimierter akustischer Eigenschaften der Lautsprechermembranen als Deckfolienmaterial verwendet werden, wie etwa Polyetherimid (PEI), Polyarylat (PAR) oder Polyetheretherketon (PEEK), sind erheblich teurer als PPS.
Die Herstellung von PPS, auch für solche Folien, wie sie für Membranen der vorgenannten Art eingesetzt werden, erfolgt üblicherweise durch Polykondensation aus Phenylendihalogeniden, insbesondere Dichlorbenzol, und Natriumsulfid in einem hochsiedenden, dipolar aprotischen Lösungsmittel wie beispielsweise N- Methylpyrrolidon. Ein solcher Prozess wird beispielsweise in US 4,910,294 beschrieben. Ein alternatives Verfahren zeigt die EP 0737705 A, hier erfolgt die Herstellung des Polymers aus einem Präpolymer mit Halogen-Endgruppen. Durch das Herstellverfahren ist bedingt, dass ein relativ hoher Anteil an halogenhaltigen (Nebenprodukten entsteht, die in beträchtlicher Menge im Polymer verbleiben. Dies hat zur Folge, dass handelsübliche Polyphenylensulfid-Folien einen relativ hohen Anteil an Halogen aufweisen, das durch übliche Analyseverfahren quantitativ bestimmt werden kann. In der Regel handelt es sich dabei um Chlor.
Industrieübliche PPS-Produkte haben regelmäßig Halogenanteile von mehr als 600 ppm, in der Regel sogar von mehr als 900 ppm. Ein ppm entspricht dabei einem Milligramm des Halogens auf ein Kilogramm des analysierten PPS-Folien-Materials wie eingesetzt.
Ein Zusammenhang des Halogengehalts von PPS-Folien, die in akustischen Membranen eingesetzt werden, mit den Eigenschaften dieser Membranen für die Verwendung als Lautsprecher wurde bisher nicht diskutiert.
Aufgabe der Erfindung war es, Folien-Verbundsysteme für die Herstellung von Lautsprecher-Membranen (akustischen Membranen) anzubieten, die zwar preiswert und daher wirtschaftlich interessant sind, bei denen die daraus hergestellten akustischen Membranen aber im Vergleich zu handelsüblichen PPS-Folien verbesserte akustische Eigenschaften aufweisen. Die Membranen sollen dabei ihre guten Eigenschaften bezüglich hoher Biegesteifigkeit, geringer Dichte sowie hoher innerer Dämpfung nicht verlieren.
In überraschender Weise wird die Aufgabe gelöst, wenn man als Material für die Deckfolien solcher Membranen zwar weiterhin PPS einsetzt, hier aber ein PPS mit einem Gesamt-Halogengehalt von nicht mehr als 550 ppm wählt. Messungen haben ergeben, dass die durch die THD beschriebene Verzerrung eines Lautsprechers bei Verwendung einer solchen Membran signifikant geringer war als bei Verwendung einer Membran, deren Deckschicht aus handelsüblichem PPS besteht. Ein solcher Einfluss war für den Fachmann nicht vorhersehbar.
Dementsprechend betrifft die Erfindung einen Mehrschicht-Verbund zur Verwendung als bzw. zur Herstellung einer Membran für elektroakustische Wandler, zumindest umfassend eine erste und eine zweite außenliegende Schicht (im folgenden als Deckschicht bezeichnet), gegebenenfalls eine zwischen diesen Deckschichten angeordnete Dämpfungsschicht, wobei zumindest eine der Deckschichten („erste Deckschicht") aus einem Polyphenylensulfid-Kunststoff besteht, und wobei der Halogengehalt des Polyphenylensulfid-Kunststoffs („PPS-Kunststoff") 550 ppm nicht übersteigt.
Optional können zwischen den Deckschichten weitere Schichten angeordnet sein. Der Mehrschichtverbund kann ein Zweischichtverbund (ausschließlich Deckschichten) sein, er kann ein Dreischichtverbund (insbesondere Deckschicht-Dämpfungsschicht- Deckschicht) sein, oder er umfasst mehr als drei Schichten, wobei vorteilhaft zumindest eine der zwischen den Deckschichten befindliche Schicht eine Dämpfungsschicht ist. Bei der zumindest einen Dämfungsschicht (im Drei- oder Mehrschichtverbund) handelt es sich insbesondere vorteilhaft um Klebemassenschichten, insbesondere Haftklebemassenschichten.
Bevorzugt hat die erste Deckschicht eine Dicke von 1 bis 50 μηη, sehr bevorzugt von von 1 bis 5 μηη.
Geeignete Folien für den Einsatz als zweite Deckschicht sind beispielsweise Folien aus Polyetheretherketon (PEEK), handelsüblichem Polyphenylensulfid (PPS), Polyethylennaphthalat (PEN), Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), Polyarylat (PAR), Polyimid (PI), Polyetherimid (PEI), Polyphenylsulfon (PPSU), Polyethersulfon (PES), Polysulfon (PSU) oder Thermoplastischem Polyurethan (TPU)
In besonderer Weise erfindungsgemäß vorteilhaft ist es aber, auch die zweite Deckschicht aus halogenarmen PPS herzustellen, so dass beide Deckschichten des Mehrschicht-Verbundes aus Polyphenylensulfid-Kunststoff bestehen, deren Halogengehalt jeweils 550 ppm nicht übersteigt. In günstiger Weise weist auch die zweite Deckschicht eine Dicke von 1 bis 50 μηη, bevorzugt von 1 bis 5 μηι auf.
In einer besonders vorteilhaften Ausführungsform sind beide Deckschichten aus dem identischen halogenarmen PPS-Kunststoff hergestellt, und/oder die Dicken beider Deckschichten sind gleich, so dass insbesondere ein symmetrischer - oder zumindest bezüglich der äußeren Deckschichten symmetrischer - Mehrschicht-Verbund vorliegt.
In einer Ausführungsvariante besteht der erfindungsgemäße Mehrschicht-Verbund aus zwei zusammenlaminierten Kunststofffolien, von denen zumindest eine der Folien - gegebenenfalls auch beide Folien - aus Polyphenylensulfid-Kunststoff besteht, deren Halogengehalt 550 ppm nicht übersteigt. Solche Zweifolien-systeme lassen sich dann besonders gut für Membranen einsetzen, wenn der Zweischicht-Verbund auch ohne zusätzliche Dämpfungsschicht hinreichend dämpfende Eigenschaften aufweist und/oder die Anforderungen an die Dämpfung in der Anwendung gering sind.
Insbesondere ist es vorteilhaft, wenn bei der Herstellung des Zweischicht-Verbundes eine der Folien erweicht und/oder angeschmolzen werden kann, um die Haftung an die andere Folie zu verbessern. Dafür eignet sich insbesondere vorteilhaft eine Folie aus thermoplastischem Polyurethan. Eine besonders vorteilhafte Ausgestaltung eines Zweischicht-Verbundes ist daher eine solche umfassend eine TPU-Folie und eine Folie aus Halogengehalt-reduziertem PPS.
Wie eingangs ausgeführt sollte die Membran gut gedämpft sein, um einen möglichst glatten Frequenzgang zu zeigen. Zwischen den beiden Deckschichten des Mehrschicht-Verbundes befindet sich daher bevorzugt eine Dämpfungsschicht, die einschichtig oder ihrerseits mehrschichtig aufgebaut sein kann. Ein Maß für die Dämpfung des mehrschichtigen Membran-Gesamtaufbaues ist der mechanische Verlustfaktor (Tangens delta; tan δ) der durch das Verhältnis von Verlustmodul E" und Speichermodul E' definiert ist: tan δ = E7E'.
Es ist bekannt, dass Klebemassen, insbesondere Haftklebemassen, die Anforderungen an die Dämpfungsschicht erfüllen können und für eine hohe Dämpfung im Mehrschicht-Verbund sorgen können. In einer bevorzugten Vorgehensweise umfasst die Dämpfungsschicht daher ein einschichtiges oder mehrschichtiges doppelseitig klebendes Klebeband, insbesondere Haftklebeband; insbesondere wird die Dämpfungsschicht durch ein einschichtiges oder mehrschichtiges doppelseitig klebendes Klebeband, insbesondere Haftklebeband, gebildet. Ein solches Haftklebeband ist zusätzlich zu seiner dämpfenden Wirkung in der Lage, aufgrund seiner (selbst-)klebenden Eigenschaften den Zusammenhalt der Schichten im Verbund zu bewirken.
In einer bevorzugten Ausführungsvariante ist die Dämpfungsschicht selbst einschichtig, so dass es sich bei dem Mehrschicht-Verbund um einen Dreischicht- Verbund handelt. Bevorzugt ist die Dämpfungsschicht dann eine Schicht einer Haftklebemasse. In sehr bevorzugter Weise hat der Mehrschicht-Verbund einen symmetrischen Dreischichtaufbau der Art Deckschicht-Haftklebemasse-Deckschicht, bei dem die äußeren Deckschichten identisch in ihrer chemischen Zusammensetzung und Dicke sind.
Die Schichtdicke der (Haft-)Klebemassenschicht in Dreischicht-Verbunden beträgt vorteilhaft 2 μηη bis 100 μηη, bevorzugt 5 μηη bis 50 μηη, besonders bevorzugt 10 μηη bis 30 μηι.
Eine weitere Variante der Erfindung wird durch einen - symmetrischen oder unsymmetrischen - Fünfschichtaufbau wiedergegeben, wobei die Deckschicht eine innere Träger- oder Stabilisierungsschicht aufweist, die zum Beispiel aus einer Folie aus Polyetheretherketon (PEEK), handelsüblichem Polyphenylensulfid (PPS), Polyethylennaphthalat (PEN), Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), Polyarylat (PAR), Polyimid (PI), Polyetherimid (PEI), Polyphenylsulfon (PPSU), Polyethersulfon (PES), Polysulfon (PSU) oder Thermoplastischem Polyurethan (TPU) besteht oder die insbesondere bevorzugt ebenfalls aus einer Folie aus einem halogenarmen Polyphenylensulfid (PPS) mit einem Halogengehalt von weniger als 550 ppm gebildet wird. Zwischen dieser inneren Träger- bzw. Stabilisierungsschicht und jeder äußeren Deckschicht ist jeweils eine (Haft-)Klebemassenschicht vorgesehen. Bevorzugt sind beide (Haft-)Klebemassenschichten chemisch identisch und/oder gleich dick. Die (Haft-)Klebemassenschichten können aber auch in Bezug auf ihre chemische Natur und/oder auf ihre Dicke unterschiedlich ausgewählt sein.
Bevorzugt beträgt die Dicke der inneren Träger- oder Stabilisierungsschicht 1 -50 μηη, bevorzugt 1 -30 μηη, besonders bevorzugt 1 -5 μηη.
Bevorzugt betragen die Dicken der (Haft-)Klebmassenschichten unabhängig voneinander 1 -100 μηη, bevorzugt 1 -50 μηη, besonders bevorzugt 2-40 μηη.
Sehr bevorzugt ist hier der völlig symmetrische fünfschichtige Verbundaufbau mit in Bezug auf ihre jeweilige chemische Zusammensetzung und ihre jeweilige Dicke identischen Deckschichten und mit in Bezug auf ihre jeweilige chemische Zusammensetzung und ihre jeweilige Dicke identischen (Haft-)Klebemassen- schichten.
Als Haftklebemassen, (auch bezeichnet als Selbstklebemassen oder PSA von englisch: „pressure sensitive adhesives") werden insbesondere solche polymeren Massen bezeichnet, die - gegebenenfalls durch geeignete Additivierung mit weiteren Komponenten, wie beispielsweise Klebharzen - bei der Anwendungstemperatur (sofern nicht anders definiert, bei Raumtemperatur) dauerhaft klebrig und permanent klebfähig sind und an einer Vielzahl von Oberflächen bei Kontakt anhaften, insbesondere sofort anhaften (einen sogenannten „Tack" [Klebrigkeit oder Anfassklebrigkeit] aufweisen). Sie sind in der Lage, bereits bei der Anwendungstemperatur ohne eine Aktivierung durch Lösemittel oder durch Wärme - üblicherweise aber durch den Einfluss eines mehr oder weniger hohen Druckes - ein zu verklebendes Substrat hinreichend zu benetzen, damit sich zwischen der Masse und dem Substrat für die Haftung hinreichende Wechselwirkungen ausbilden können. Diesen Vorgang beeinflussende Einflussparameter sind unter anderem der Druck sowie die Kontaktzeit. Die besonderen Eigenschaften der Haftklebemassen gehen unter anderem insbesondere auf deren viskoelastische Eigenschaften zurück.
In vorteilhafter Weise werden für die Klebemassenschichten Acrylat-Haftklebemassen eingesetzt. Dies sind Klebemassen, deren Polymerbasis Polymere aus Acrylmonomeren sind - hierunter werden insbesondere Acryl- und Methacrylsäure, die Ester der vorgenannten Säuren sowie die copolymerisierbaren weiteren Derivate der vorgenannten Säuren verstanden -, wobei die Acrylmonomere - ggf. zusammen mit weiteren Comonomeren - bei der Polymerisation zumindest in einer Menge eingesetzt werden, dass die Eigenschaften der Klebemasse hierdurch maßgeblich bestimmt werden. So können beispielsweise Haftklebemassen mit einen Acrylmonomeranteil bei der Polymerisation von mindestens 50 Gew.-%, von mindestens 80 Gew.-% oder von 100 Gew.-% (Reinacrylatsysteme) eingesetzt werden.
Andere dem Fachmann geläufige Klebmassen, insbesondere Haftklebemassen, sind ebenfalls möglich und können im Sinne der Erfindung eingesetzt werden, wobei insbesondere diejenigen ausgewählt werden, die eine gute Haftung auf PPS bewirken und außerdem gute Dämfungseigenschaften besitzen. So lassen sich beispielsweise insbesondere auch Silikonklebemassen und/oder Polyurethanklebemassen und/oder Kautschukklebemassen, insbesondere Silikonhaftklebemassen, Polyurethanhaftklebemassen bzw. Kautschukhaftklebemassen, einsetzen. Zur Herstellung des Mehrschichtaufbaus wird die Haftklebemasse entweder direkt auf eine der beiden Deckschichten in der gewünschten Schichtstärke mit den dem Fachmann geläufigen Auftragsverfahren aufgetragen oder indirekt durch Beschichtung eines temporären Transferträgers wie silikonisiertem Papier oder silikonisierter Folie, Kaschieren mit der ersten der beiden Folienschichten und Ausdecken des temporären Transferträgers. Die zweite der beiden Folienschichten kann direkt zur haftklebrigen Seite des einseitig kaschierten Verbundes zugeführt werden. Zur Erzielung einer sicheren Verbund haftung und zum Vermeiden von Lufteinschlüssen eignen sich Kaschiereinrichtungen, die die Materialbahnen zwischen Gummizylindern bzw. einem Stahl und einem Gummizylinder mit variabel einstellbarem Anpressdruck kontinuierlich verbinden.
Die Herstellung von Membranen für elektroakustische Wandler, insbesondere Lautsprechermembranen, erfolgt beispielsweise durch Prägen oder Tiefziehen eines erfindungsgemäßen Mehrschicht-Verbundes, wodurch dieser Verbund in eine spezifische dreidimensionale Form gebracht wird. Hierzu wird der Mehrschicht- Verbund beispielsweise in einer Thermoform erwärmt und durch Anlegen von Druck und/oder Vakuum in die Form der fertigen Membran gepresst.
Die erfindungsgemäßen Mehrschicht-Verbunde lassen sich hervorragend in einem Verfahren zur Herstellung von Membranen für elektroakustische Wandler einsetzen, wobei sie dem Prozess des Multicavity-Thermoformens unterzogen werden. Bei diesem Verfahren wird das Mehrschicht-Laminat auf die beheizbare Thermoform gelegt, die Vertiefungen mit dem Negativ-Abdruck der zu formenden Membran enthält. Anschließend wird das Mehrschicht-Laminat z.B. durch IR-Strahlung aufgeheizt und dadurch erweicht und dann von oben mit Druckluft in die Vertiefungen gepresst. Alternativ kann das erweichte Mehrschicht-Laminat auch mit einem Stempel aus Silikon oder geschäumtem Silikon in die Formen gepresst werden.
Für die erfindungsgemäß hergestellten mehrschichtigen Verbünde können Gesamthalogengehalte von weniger als 400 ppm realisiert werden. Ein weiterer Vorteil neben der Verbesserung der akustischen Eigenschaften ist somit auch, dass die daraus erhältliche Lautsprechermembran in ihrem Einsatzgebiet wegen des niedrigeren Gesamt-Halogengehalts unter die in der Elektronik-Industrie üblicherweise geforderten Grenzwerte fällt. Beispiele, Vergleichsbeispiele
Der Erfindungsgedanke soll im Folgenden an mehreren Beispielen und Gegenbeispielen erläutert werden, ohne die Erfindung damit einschränken zu wollen.
Zunächst wurde von kommerziell erhältlichen Standard-PPS-Folien der Halogengehalt durch ein externes Labor analysiert. Dabei wurde jeweils Chlor als enthaltenes Halogen festgestellt, andere Halogene waren nicht in signifikanten Mengen detektierbar. Die gemessenen Proben wiesen durchgängig einen Chlorgehalt von mehr als 1000 ppm (1000 mg/kg) auf.
Der Halogengehalt einer halogen-reduzierten PPS-Folie betrug 532 ppm.
Für die THD-Bestimmung wurden Dreischicht-Verbunde aus je einer 4 μηη dicken PPS- Folie, je einer 10 μηη Acrylat- bzw. Silikon-Dämpfungsschicht (jeweils Standard- Haftklebemasse; jeweils identisch in Beispiel 1 und Vergleichsbeispiel 1 sowie in Beispiel 2 und Vergleichsbeispiel 2) und je einer 4 μηη dicken PPS-Folie hergestellt, wobei für die erfindungsgemäßen Beispiele halogen-reduzierte PPS-Folien und für Vergleichsversuche Standard-PPS-Folien eingesetzt wurden (siehe Tabelle 1 ).
Aus diesen Dreischicht-Verbunden wurden durch Thermoformen rechteckige Membranen der Länge 15 mm und Breite 1 1 mm geformt und diese in ansonsten baugleiche Mikrolautsprecher eingebaut. Die Aufzeichnung der THD-Kurven erfolgte mit dem R&S® UPV Audio Analyzer (Rohde & Schwarz) in jeweils identischer Vorgehensweise, so dass die Werte direkt miteinander vergleichbar sind. Auf den exakten jeweils bestimmten Wert bei der THD-Messung kommt es bei dem relativen Vergleich nicht an.
Die Resonanzfrequenz beider Lautsprecher liegt bei 450 Hz. Die THD-Kurven der Lautsprecher mit den aus halogenreduzierter PPS-Folie heregstellten Mehrschichtverbund-Membranen lag im gesamten Frequenzbereich sowohl für die Verbünde mit Acrylat-Dämpfungsschicht als auch für die Verbünde mit Silikon- Dämpfungsschicht zwischen 0,1 und 10 kHz unterhalb der THD-Kurven der Lautsprecher mit den aus handelsüblicher PPS-Folie gefertigten Membranen. In Tabelle 1 sind beispielhaft THD-Werte bei Frequenzen unterhalb der Resonanzfrequenz angegeben. Tabelle 1 . Ergebnisse der THD-Bestimmung.
Figure imgf000011_0001
Durch die Experimente wurde gezeigt, dass die erfindungsgemäße Aufgabe erfindungsgemäß gelöst werden konnte, indem in einer akustischen Membran Standard-PPS-Folien durch PPS-Folien mit reduziertem Halogengehalt (< 550 ppm) ersetzt wurde. Ein Effekt des Halogengehaltes der eingesetzten PPS-Folien auf die Klangqualität von mit solchen Folien hergestellten Lautsprechermembranen war vom Fachmann nicht zu erwarten.
Es hat sich gezeigt, dass die unterhalb der Resonanzfrequenz bestimmten THD-Werte einer Membran, die unter Verwendung einer PPS-Folie mit reduziertem Halogengehalt hergestellt wurde, durchgängig niedriger liegen als diejenigen einer Vergleichsmembran (gleiche Dicke und Form, gleicher Lautsprecher), die unter Verwendung handelsüblicher Standard-PPS-Folie hergestellt wurde.

Claims

Patentansprüche
1 . Mehrschicht-Verbund zur Verwendung als Membran für elektroakustische Wandler, umfassend zumindest eine erste und eine zweite außenliegende Schicht (Deckschicht), wobei
zumindest eine der Deckschichten („erste Deckschicht") aus einem Polyphenylensulfid-Kunststoff besteht,
dadurch gekennzeichnet, dass der Halogengehalt des Polyphenylensulfid- Kunststoffs („PPS-Kunststoff") 550 ppm nicht übersteigt.
2. Mehrschicht-Verbund nach Anspruch 1 , dadurch gekennzeichnet, dass
die erste Deckschicht eine Dicke von 1 bis 50 μηη hat.
3. Mehrschicht-Verbund nach Anspruch 1 , dadurch gekennzeichnet, dass
die erste Deckschicht eine Dicke von 1 bis 5 μηη hat.
4. Mehrschicht-Verbund nach Anspruch 1 , dadurch gekennzeichnet, dass
beide Deckschichten aus Polyphenylensulfid-Kunststoff bestehen, deren Halogengehalt jeweils 500 ppm nicht übersteigt.
5. Mehrschicht-Verbund nach Anspruch 4, dadurch gekennzeichnet, dass
beide Deckschichten jeweils eine Dicke von 1 bis 50 μηη haben.
6. Mehrschicht-Verbund nach Anspruch 4, dadurch gekennzeichnet, dass
beide Deckschichten jeweils eine Dicke von 1 bis 5 μηη haben.
7. Mehrschicht-Verbund nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
beide Deckschichten aus dem identischen PPS-Kunststoff hergestellt sind.
8. Mehrschicht-Verbund nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
zwischen den beiden Deckschichten eine Dämpfungsschicht angeordnet ist.
9. Mehrschicht-Verbund nach Anspruch 8, dadurch gekennzeichnet, dass die Dämpfungsschicht durch ein doppelseitig klebendes Haftklebeband gebildet wird oder ein solches umfasst.
10. Mehrschicht-Verbund nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
die Dämpfungsschicht eine Schicht einer Haftklebemasse ist.
1 1 . Mehrschicht-Verbund nach einem der vorangehenden Ansprüche, gekennzeichnet durch
einen Dreischichtaufbau Deckschicht-Haftklebemasse-Deckschicht.
12. Lautsprechermembran, erhältlich durch Thermoformen aus einem Mehrschicht- Verbund nach einem der vorangehenden Ansprüche, insbesondere durch Prägen und/oder Tiefziehen.
PCT/EP2015/076817 2014-12-11 2015-11-17 Mehrschicht-verbund für akustische membranen WO2016091542A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15804082.4A EP3231193A1 (de) 2014-12-11 2015-11-17 Mehrschicht-verbund für akustische membranen
US15/534,802 US10397705B2 (en) 2014-12-11 2015-11-17 Multi-layer composite for acoustic membranes
CN201580075181.7A CN107211217A (zh) 2014-12-11 2015-11-17 用于声学振膜的多层复合体
JP2017531151A JP6506843B2 (ja) 2014-12-11 2015-11-17 音響膜用多層複合材
KR1020177018653A KR20170094304A (ko) 2014-12-11 2015-11-17 음향 멤브레인들을 위한 다층 복합물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225579.1 2014-12-11
DE102014225579.1A DE102014225579A1 (de) 2014-12-11 2014-12-11 Mehrschicht-Verbund für akustische Membranen

Publications (1)

Publication Number Publication Date
WO2016091542A1 true WO2016091542A1 (de) 2016-06-16

Family

ID=54771077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/076817 WO2016091542A1 (de) 2014-12-11 2015-11-17 Mehrschicht-verbund für akustische membranen

Country Status (8)

Country Link
US (1) US10397705B2 (de)
EP (1) EP3231193A1 (de)
JP (1) JP6506843B2 (de)
KR (1) KR20170094304A (de)
CN (1) CN107211217A (de)
DE (1) DE102014225579A1 (de)
TW (1) TW201625417A (de)
WO (1) WO2016091542A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018007372A1 (en) 2016-07-06 2018-01-11 Isovolta Ag Composite material for producing an acoustic membrane
EP3962103A4 (de) * 2019-04-24 2023-05-24 Goertek Inc Membran für miniatur-schallerzeugungsvorrichtung und miniatur-schallerzeugungsvorrichtung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017202622A1 (de) * 2017-02-17 2018-08-23 Tesa Se Membran für Mikrolautsprecher
CN109218924A (zh) * 2018-08-20 2019-01-15 歌尔股份有限公司 用于发声装置的振膜、发声装置及其组装方法
TWI683583B (zh) * 2018-09-03 2020-01-21 輔仁大學學校財團法人輔仁大學 音膜結構

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130069001A1 (en) * 2011-09-20 2013-03-21 Ticona Llc Polyarylene Sulfide/Liquid Crystal Polymer Alloy and Compositions Including Same
WO2014170122A1 (de) * 2013-04-16 2014-10-23 Tesa Se Verbund zur herstellung einer akustischen membran und akustische membran

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000372A1 (en) * 1987-07-03 1989-01-12 E W D, Electronic-Werke Deutschland Gmbh Membrane for a loudspeaker
US4910294A (en) 1988-06-20 1990-03-20 Idemitsu Petrochemical Company Limited Two-stage process for production of polyarylene sulfides with lithium compound
DE19513479A1 (de) 1995-04-13 1996-10-17 Hoechst Ag Verfahren zur Herstellung von Polyarylensulfid
JP2006295245A (ja) 2005-04-05 2006-10-26 Sony Corp 音響振動板
EP1927615B2 (de) * 2005-09-22 2020-03-25 Toray Industries, Inc. Polyarylensulfid und herstellungsverfahren dafür
JP2010070656A (ja) * 2008-09-19 2010-04-02 Toray Ind Inc ポリフェニレンサルファイド樹脂組成物およびそれからなる成形品
US8189851B2 (en) 2009-03-06 2012-05-29 Emo Labs, Inc. Optically clear diaphragm for an acoustic transducer and method for making same
CN103843365B (zh) * 2011-09-30 2016-08-17 富士胶片株式会社 电声转换膜、柔性显示器、声带麦克风以及乐器传感器
DE102012208477A1 (de) * 2012-05-21 2013-11-21 Tesa Se Asymmetrische Mehrschichtmembran für elektroakustische Wandler
US20140178662A1 (en) * 2012-12-20 2014-06-26 Ticona Llc Multilayer Polyarylene Sulfide Composite
CN203883985U (zh) * 2014-05-26 2014-10-15 歌尔声学股份有限公司 扬声器振膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130069001A1 (en) * 2011-09-20 2013-03-21 Ticona Llc Polyarylene Sulfide/Liquid Crystal Polymer Alloy and Compositions Including Same
WO2014170122A1 (de) * 2013-04-16 2014-10-23 Tesa Se Verbund zur herstellung einer akustischen membran und akustische membran

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018007372A1 (en) 2016-07-06 2018-01-11 Isovolta Ag Composite material for producing an acoustic membrane
CN109417670A (zh) * 2016-07-06 2019-03-01 奥地利依索沃尔塔股份公司 用于生产声学膜的复合材料
CN109417670B (zh) * 2016-07-06 2021-09-17 奥地利依索沃尔塔股份公司 用于生产声学膜的复合材料
EP3962103A4 (de) * 2019-04-24 2023-05-24 Goertek Inc Membran für miniatur-schallerzeugungsvorrichtung und miniatur-schallerzeugungsvorrichtung

Also Published As

Publication number Publication date
TW201625417A (zh) 2016-07-16
JP2018505585A (ja) 2018-02-22
KR20170094304A (ko) 2017-08-17
CN107211217A (zh) 2017-09-26
US20180270577A1 (en) 2018-09-20
DE102014225579A1 (de) 2016-06-16
US10397705B2 (en) 2019-08-27
EP3231193A1 (de) 2017-10-18
JP6506843B2 (ja) 2019-04-24

Similar Documents

Publication Publication Date Title
WO2016091542A1 (de) Mehrschicht-verbund für akustische membranen
EP3081007B1 (de) Mehrschicht-laminat mit hoher innerer dämpfung
DE102013206812A1 (de) Verbund zur Herstellung einer akustischen Membran und akustische Membran
EP2853100B1 (de) Asymmetrische mehrschichtmembran für elektroakustische wandler
TWI485192B (zh) A waterproof sound-permeable film, a method for manufacturing a waterproof sound-permeable film, and an electrical product using the same
DE112017003755B4 (de) Wasserdichte schalldurchlässige Abdeckung, wasserdichtes schalldurchlässiges Abdeckelement und akustische Vorrichtung
EP2848643B1 (de) Poröse polytetrafluorethylenfolie und wasserdichtes luftdurchlässiges element
EP3333236B1 (de) Haftklebestreifen
EP2141211A2 (de) Doppelseitige Schaumstoffklebebänder zur Verklebung von elektronischen Bauteilen
DE3741251A1 (de) Polymerbeschichteter schaumstoff sowie verfahren zu seiner herstellung
WO2015132042A1 (de) Mehrschicht-verbund mit hoher innerer dämpfung
DE112020001957T5 (de) Wasserdichte Abdeckung
JP2006082455A (ja) 自動車内装天井材用の積層部材
DE112017005331T5 (de) Schutzabdeckungsanordnung für akustische Einrichtungen umfassend ein retraktiertes/zusammengezogenes Membranmaterial
DE112017008059T5 (de) Eine härtbare trägerschicht einschliessende akustikschutzabdeckung
EP1519983A1 (de) Membranen aus polyarylat-giessfolien
EP2611604B1 (de) Mehrlagige körper, umfassend eine substratlage und eine kunststofflage
DE102020116515A1 (de) Akustisch widerständige gestützte membranbaugruppen
DE102007040098A1 (de) Trägerfolie
WO2015052316A1 (de) Verfahren zur herstellung einer folie für eine lautsprecher-membran oder eine mikrophon-membran
WO2019215043A1 (de) Verfahren zur herstellung einer mit mikroballons geschäumten selbstklebemasseschicht
DE2819786B2 (de) Membran für akustische Ausstattung
WO2014135620A1 (en) Multilayer-compound membrane for electroacoustic transducers
DE102021120028B4 (de) Akustisch widerstandsfähige gestützte membrananordnungen mit mindestens einer trägerstruktur
DE112020003876T5 (de) Abdeckungselement und elementbereitstellungsanordnung, welche dieses umfasst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15804082

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015804082

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017531151

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15534802

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177018653

Country of ref document: KR

Kind code of ref document: A