WO2016091195A1 - 基于平板光子晶体的高消光比te光开关 - Google Patents

基于平板光子晶体的高消光比te光开关 Download PDF

Info

Publication number
WO2016091195A1
WO2016091195A1 PCT/CN2015/097055 CN2015097055W WO2016091195A1 WO 2016091195 A1 WO2016091195 A1 WO 2016091195A1 CN 2015097055 W CN2015097055 W CN 2015097055W WO 2016091195 A1 WO2016091195 A1 WO 2016091195A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
flat
optical path
refractive index
optical switch
Prior art date
Application number
PCT/CN2015/097055
Other languages
English (en)
French (fr)
Inventor
欧阳征标
文国华
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2016091195A1 publication Critical patent/WO2016091195A1/zh
Priority to US15/626,156 priority Critical patent/US10095082B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • G02F1/3133Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type the optical waveguides being made of semiconducting materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/07Polarisation dependent

Definitions

  • the invention relates to a high extinction ratio TE optical switch, in particular to a wideband high extinction ratio TE optical switch based on the absolute forbidden band of a flat photonic crystal.
  • a photonic crystal is a material structure in which dielectric materials are periodically arranged in space, and is usually composed of two or more kinds of artificial crystals having materials having different dielectric constants.
  • a photonic crystal with an absolute forbidden band can change the interaction between the field and the substance and improve the performance of the optical device by controlling the spontaneous emission.
  • the tunable photonic crystal bandgap can be used for information communication, display and storage. High-speed modulation of bandgap variation can be performed using an external drive source. Many proposals have been made in this regard, such as: ferromagnetic materials can be used to control magnetic permeability, and ferroelectric materials can be used to control dielectric properties. Constants, etc.
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a flat photonic crystal high extinction ratio TE optical switch that is easy to integrate.
  • the high extinction ratio TE optical switch of the flat photonic crystal of the present invention comprises a whole of two upper and lower flat photonic crystals, and the upper flat photonic crystal is a photonic crystal having a first flat square lattice and a first flat square photonic crystal.
  • the cell of the crystal is composed of a high refractive index rotating square rod, three first flat dielectric rods and a background medium, and the first flat dielectric rod is arranged in a horizontal direction, and the first flat dielectric rod makes the entire upper flat photonic crystal as a whole.
  • the first flat dielectric rod is composed of a high refractive index dielectric sleeve and a low refractive index medium in the sleeve, or consists of 1 to 3 high refractive index flat films, or consists of one low refractive index medium; the lower flat photon
  • the crystal is a second square lattice photonic crystal with a completely forbidden band, and the cells of the second square lattice photonic crystal are composed of a high refractive index rotating square rod, three second flat dielectric rods and a background medium, and the second flat medium
  • the rods are arranged in a horizontal direction, the second flat dielectric rod is formed integrally with the entire lower flat photonic crystal, and the second flat dielectric rod is a high refractive index medium A rod, the background medium being a low refractive index medium.
  • the normalized operating frequency (a/ ⁇ ) of the TE optical switch is 0.4057 to 0.406, 0.4267 to 0.4329, or 0.44 to 0.479.
  • One of the first flat dielectric rods of the first flat photonic crystal is located at a horizontal middle portion of the center of the rotating square rod, and the other two are respectively parallel to the first flat dielectric rod located at the horizontal middle portion, and are spaced apart from each other by 0.25a;
  • One of the second flat dielectric rods of the two-plate photonic crystal is located at a horizontal middle portion of the center of the rotating square rod, and the other two are respectively parallel to the second flat dielectric rod of the horizontal middle portion, and are spaced apart by 0.25 a.
  • the side lengths of the high refractive index rotating square rods in the first and second planar photonic crystals are respectively 0.545a to 0.564a, and the rotation angle thereof is 0° to 90°; the first and second planar photonic crystal elements
  • the widths of the first and second flat dielectric rods in the cells are respectively 0.029a to 0.034a.
  • the thickness of the sleeve in the first flat dielectric rod in the first flat photonic crystal cell is 0-0.009a; the width of the low refractive index medium in the sleeve is the width and the width of the first flat dielectric rod The thickness of the sleeve is subtracted.
  • the high refractive index medium is silicon, gallium arsenide, titanium dioxide or a medium having a refractive index greater than 2; the low refractive index medium is vacuum, air, cryolite, silicon dioxide, organic foam, olive oil or a refractive index of less than 1.5 Medium.
  • the first planar photonic crystal is located in the optical path
  • the second planar photonic crystal is located outside the optical path
  • the second planar photonic crystal is located in the optical path
  • the first planar photonic crystal is located outside the optical path. switch status.
  • the normalized operating frequency (a/ ⁇ ) of the TE optical switch ranges from 0.4057 to 0.406, and the extinction ratio is -14 dB to -15 dB.
  • the first planar photonic crystal is located in the optical path, and the second flat
  • the photonic crystal of the plate is located outside the optical path for the optical path, and the second planar photonic crystal is located in the optical path.
  • the first planar photonic crystal is located outside the optical path for the optical path to be disconnected.
  • the normalized operating frequency (a/ ⁇ ) of the TE optical switch ranges from 0.4267 to 0.4329, and the extinction ratio is -32 dB to -35 dB.
  • the second planar photonic crystal is located in the optical path, and the first planar photonic crystal is located outside the optical path. In the connected state of the optical path, the first planar photonic crystal is located in the optical path, and the second planar photonic crystal is located outside the optical path to be in an optically disconnected state.
  • the normalized operating frequency (a/ ⁇ ) of the TE optical switch has an extinction ratio in the range of 0.44 to 0.479 of -20 dB to -40 dB, and the second planar photonic crystal is located in the optical path, and the first planar photonic crystal is located in the optical path.
  • the external light source is in a connected state, the first flat photonic crystal is located in the optical path, and the second flat photonic crystal is located outside the optical path to be in an open state.
  • the positions of the first flat photonic crystal and the second flat photonic crystal in the optical path are adjusted by an external force including mechanical force, electric power, and magnetic force.
  • the present invention has the following positive effects.
  • Optical switch is an indispensable component in the integrated optical path. It is very important for high-speed operation of the network. Large bandwidth, low energy loss, high polarization and high extinction ratio are important parameters for measuring the switch.
  • the optical switching function is achieved by adjusting the change in the position of the photonic crystal of the first plate (upper plate) and the second plate (lower plate) in the optical path.
  • the structure of the present invention realizes a high extinction ratio TE optical switch, thereby realizing a high extinction ratio optical switching function.
  • a flat-panel photonic crystal that is easy to integrate has a high extinction ratio TE optical switch.
  • Fig. 1(a) is a schematic view showing the cell structure of a planar square lattice photonic crystal on a TE optical switch of the present invention.
  • Fig. 1(b) is a schematic view showing the cell structure of a planar square lattice photonic crystal of a TE optical switch of the present invention.
  • FIG. 2(a) is a schematic structural view of a first embodiment of a high extinction ratio TE optical switch based on a planar photonic crystal of the present invention.
  • FIG. 2(b) is a schematic view showing the structure of a second embodiment of a high extinction ratio TE optical switch based on a planar photonic crystal of the present invention.
  • FIG. 2(c) is a schematic view showing the structure of a third embodiment of a high extinction ratio TE optical switch based on a planar photonic crystal of the present invention.
  • Embodiment 3 is a view showing a photonic band structure of a second flat photonic crystal shown in Embodiment 1.
  • Embodiment 4 is a view showing a photonic band structure of a first flat photonic crystal shown in Embodiment 1.
  • Figure 5 is a photonic band structure diagram of a second flat photonic crystal shown in Example 2.
  • Fig. 6 is a view showing the photonic band structure of the first flat photonic crystal shown in the second embodiment.
  • Fig. 7 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) shown in Example 3 of 0.4057.
  • Figure 8 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) shown in Example 4 of 0.4058.
  • Figure 9 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) shown in Example 5 of 0.406.
  • Figure 10 is a switching light field with a normalized frequency (a/ ⁇ ) of 0.4267 as shown in Embodiment 6 Distribution.
  • Figure 11 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) shown in Example 7 of 0.4315.
  • Figure 12 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) shown in Example 8 of 0.4329.
  • Figure 13 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) of 0.44 as shown in the embodiment.
  • Figure 14 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) shown in Example 10 of 0.4435.
  • Figure 15 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) shown in Example 11 of 0.452.
  • Figure 16 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) shown in Example 12 of 0.456.
  • Figure 17 is a diagram showing the switching light field distribution of the normalized frequency (a/ ⁇ ) shown in Example 13 of 0.479.
  • the invention is based on a high extinction ratio TE optical switch of a flat photonic crystal, as shown in FIG. 1(a), a flat photonic crystal high extinction ratio TE optical switch, comprising two upper and lower flat photonic crystals connected together; an upper flat photonic crystal a cell having a first planar square lattice photonic crystal, the first planar square lattice photonic crystal is rotated by a high refractive index square rod, 3 first flat dielectric rods and a background medium, the first flat dielectric rods are arranged in a horizontal direction, the first flat dielectric rods make the entire upper flat photonic crystals as a whole, and the first flat dielectric rods are made of a high refractive index dielectric sleeve and
  • the low refractive index medium in the sleeve is composed of 1 to 3 high refractive index flat films or 1 low refractive index medium.
  • the low refractive index medium is vacuum, air, cryolite, silica, organic foam. , olive oil or medium with a refractive index of less than 1.5.
  • the lower planar photonic crystal is a second square lattice photonic crystal with a complete forbidden band, and the cells of the second square lattice photonic crystal are rotated by a high refractive index square rod, and three second The flat dielectric rod and the background medium are composed, the second flat dielectric rod is arranged in a horizontal direction, the second flat dielectric rod makes the whole lower flat photonic crystal as a whole, and the second flat dielectric rod is a high refractive index dielectric rod, a high refractive index medium It is silicon, gallium arsenide, titanium dioxide or a medium having a refractive index greater than 2.
  • the background medium is a low refractive index medium.
  • the normalized operating frequency (a/ ⁇ ) of the high extinction ratio TE optical switch is 0.4057 ⁇ 0.406, 0.4267 ⁇ 0.4329 or 0.44 ⁇ 0.479, and the frequency range is the TE transmission band of the first flat photonic crystal and is the second flat photonic crystal.
  • the TE forbidden band is either the TE transmission band of the second flat photonic crystal and is the TE forbidden band of the first planar photonic crystal, where a is the lattice constant of the first and second planar photonic crystals, and ⁇ is the wavelength of the incident wave.
  • the normalized operating frequency (a/ ⁇ ) of the high extinction ratio TE optical switch is 0.4057 ⁇ 0.406, and the extinction ratio is -14dB ⁇ -15dB.
  • the first flat photonic crystal is located in the optical path, and the second flat photonic crystal is located outside the optical path.
  • the first switch state of the optical switch that is, the optical path communication state
  • the second flat photonic crystal is located in the optical path
  • the first flat photonic crystal is located outside the optical path as the second switch state of the TE optical switch, that is, the optical path is disconnected
  • the second flat photon The crystal is located in the optical path, and the first flat photonic crystal is located outside the optical path for the optical path communication state, the first flat photon The crystal is located in the optical path, and the second planar photonic crystal is located outside the optical path for the optical path to be disconnected.
  • the normalized operating frequency (a/ ⁇ ) of the TE optical switch ranges from 0.4267 to 0.4329, and the extinction ratio is -32 dB to -35 dB.
  • the second planar photonic crystal is located in the optical path, and the first planar photonic crystal is located outside the optical path. In the connected state of the optical path, the first planar photonic crystal is located in the optical path, and the second planar photonic crystal is located outside the optical path to be in an optically disconnected state.
  • the normalized operating frequency (a/ ⁇ ) of the high-extinction TE optical switch is 0.44 ⁇ 0.479, and the extinction ratio is -20dB ⁇ -40dB.
  • the second flat photonic crystal is located in the optical path, and the first flat photonic crystal is located outside the optical path for optical path connection. In the state, the first flat photonic crystal is located in the optical path, and the second flat photonic crystal is located outside the optical path as the optical path is disconnected.
  • the extinction ratio of the switch refers to the ratio of the output optical power in the two states of the switch.
  • the structure of an embodiment of the present invention comprises two upper and lower planar photonic crystals connected in a whole body, as shown in FIG. 2(a), in which the rotating square column in the photonic crystal is omitted, and the dotted frame is a rotating square column.
  • the upper plate photonic crystal is a photonic crystal having a first planar square lattice, and the cells of the first planar tetragonal lattice photonic crystal are rotated by a high refractive index square rod, three first flat dielectric rods, and a background medium
  • the first flat dielectric rod is arranged in a horizontal direction, and one of the first flat dielectric rods of the first flat photonic crystal is located at a horizontal middle portion of the center of the rotating square rod, and the other two are respectively parallel with the first flat dielectric rod of the horizontal middle portion.
  • the first flat dielectric rod makes the whole upper flat photonic crystal as a whole, and the first flat dielectric rod is composed of a high refractive index sleeve and a low refractive index medium in the sleeve, the first flat photonic crystal cell
  • the thickness of the sleeve in the first flat dielectric rod is 0-0.009a; the width of the low refractive index medium in the sleeve is the width of the first flat dielectric rod and the sleeve The thickness of subtraction.
  • Lower plate photonic crystal is one with complete a second square lattice photonic crystal of the forbidden band
  • the cells of the second square lattice photonic crystal are composed of a high refractive index rotating square rod, three second flat dielectric rods and a background medium, and the second flat dielectric rod is arranged in a horizontal direction
  • the second flat dielectric rod makes the entire lower flat photonic crystal as a whole, and one of the second flat dielectric rods of the second flat photonic crystal is located at a horizontal middle portion of the center of the rotating square rod, and the other two are respectively located at the second central portion
  • the flat dielectric rods are parallel, and the left and right distances are 0.25a, and the side lengths of the high refractive index rotating square rods in the first and second flat photonic crystals are respectively 0.545a to 0.564a, and the rotation angle thereof is 0° to 90°;
  • the widths of the first and second flat dielectric rods in the two-plate photonic crystal cell are respectively 0.029a-0.0
  • medium with refractive index greater than 2 high refractive index medium using silicon material; background medium is low refractive index medium, low refractive index medium is vacuum, air, cryolite, silicon dioxide, Machine foam, olive oil or medium with refractive index less than 1.5, the normalized operating frequency (a/ ⁇ ) of the high extinction ratio TE optical switch ranges from 0.4057 to 0.406, which is the TE transmission belt of the first flat photonic crystal and Is the TE forbidden band of the second plate photonic crystal, or the TE transmission band of the second plate photonic crystal and is the TE band gap of the first plate photonic crystal, where a is the lattice constant of the first and second plate photonic crystals, ⁇ is the wavelength of the incident wave.
  • the present invention can also be designed according to the structural schematic diagram of another embodiment.
  • the planar photonic crystal TM optical switch of another specific structure comprises two upper and lower planar photonic crystals connected together as a whole, as shown in FIG. 2(b).
  • the rotating square rod in the photonic crystal is omitted, and the dashed box is the position where the array of rotating square rods is located.
  • the upper plate photonic crystal is a cell having a first flat square lattice photonic crystal, a first flat square lattice photonic crystal Composed of a high refractive index rotating square rod, three first flat dielectric rods and a background medium, the first flat dielectric rods are arranged in a horizontal direction, and one of the first flat dielectric rods of the first flat photonic crystal is located at the center of the rotating square rod In the middle of the horizontal direction, the other two are parallel to the first flat dielectric rod in the horizontal middle portion, and the left and right distances are 0.25a; the first flat dielectric rod makes the entire upper flat photonic crystal as a whole, and the first flat dielectric rod is composed of three high refractive indexes.
  • Flat film composition is a cell having a first flat square lattice photonic crystal, a first flat square lattice photonic crystal Composed of a high refractive index rotating square rod, three first flat dielectric rods and a background medium, the first flat dielectric rods are arranged
  • the lower plate photonic crystal is a second square lattice photonic crystal with a completely forbidden band, and the cells of the second square lattice photonic crystal are composed of a high refractive index rotating square rod, three second flat dielectric rods and a background medium,
  • the two flat dielectric rods are arranged in a horizontal direction, the second flat dielectric rod makes the entire lower flat photonic crystal as a whole, and one of the second flat dielectric rods of the second flat photonic crystal is located in the horizontal middle of the center of the rotating square rod, and the other two
  • the lengths of the high-refractive-rotation square rods in the first and second flat-plate photonic crystals are respectively 0.545a to 0.564a, and the rotation angle thereof is respectively parallel to the second flat dielectric rods located in the horizontal middle portion and spaced apart by 0.25a.
  • the widths of the first and second flat dielectric rods in the first and second flat photonic crystal cells are respectively 0.029a to 0.034a.
  • the second flat dielectric rod is a high refractive index dielectric rod, the high refractive index medium is silicon, gallium arsenide, titanium dioxide or a medium having a refractive index greater than 2, the high refractive index medium is made of silicon material; the background medium is a low refractive index medium, and low refractive index
  • the medium is vacuum, air, cryolite, silica, organic foam, olive oil or a medium having a refractive index of less than 1.5.
  • the normalized operating frequency (a/ ⁇ ) of the high extinction ratio TE optical switch ranges from 0.4267 to 0.4329, which is the TE transmission band of the first planar photonic crystal and is the TE forbidden band of the second planar photonic crystal, or
  • the TE transmission band of the second plate photonic crystal is the TE forbidden band of the first plate photonic crystal, where a is the lattice constant of the first and second plate photonic crystals, and ⁇ is the incident wave wavelength.
  • planar photonic crystal TM optical switch can be designed according to the schematic diagram shown in FIG. 2(c), including two upper and lower planar photonic crystals connected in a whole, as shown in FIG. 2(c).
  • the rotating square rod in the photonic crystal is omitted, the dotted frame is the position where the rotating square rod array is located;
  • the upper flat photonic crystal is a photonic crystal having a first flat square lattice, and the first flat square lattice photonic crystal is high
  • the refractive index is rotated by a square rod, a single first flat dielectric rod and a background medium.
  • the first flat dielectric rod is composed of one low refractive index medium, the background medium is a low refractive index medium, and the high refractive index rotating square rod has three grooves.
  • the trough is filled with a low refractive index medium, which is vacuum, air, cryolite, silica, organic foam, olive oil or a medium having a refractive index of less than 1.5, such as filled air.
  • the lower plate photonic crystal is a second square lattice photonic crystal with a completely forbidden band, and the cells of the second square lattice photonic crystal are composed of a high refractive index rotating square rod, three second flat dielectric rods and a background medium,
  • the two flat dielectric rods are arranged in a horizontal direction, the second flat dielectric rod makes the entire lower flat photonic crystal as a whole, and one of the second flat dielectric rods of the second flat photonic crystal is located in the horizontal middle of the center of the rotating square rod, and the other two They are parallel to the second flat dielectric rod located in the middle horizontal portion, and are separated by 0.25a from left to right.
  • the side length of the high refractive index rotating square rod in the second flat photonic crystal is 0.545a to 0.564a, and the rotation angle is 0° to 90°. °; the width of the second flat dielectric rod in the second flat photonic crystal cell is 0.029a - 0.034a.
  • the flat dielectric rod is a high refractive index dielectric rod, the high refractive index medium is silicon, gallium arsenide, titanium dioxide or a medium having a refractive index greater than 2, the high refractive index medium is made of silicon material, and the background medium is a low refractive index medium.
  • the normalized operating frequency (a/ ⁇ ) of the high extinction ratio TE optical switch is 0.44 to 0.479.
  • the frequency range is the TE transmission band of the first planar photonic crystal and is the TE forbidden band of the second planar photonic crystal, or the TE transmission band of the second planar photonic crystal and is the TE forbidden band of the first planar photonic crystal, wherein a For the lattice constants of the first and second plate photonic crystals, ⁇ is the wavelength of the incident wave.
  • the paper surface is used as the reference surface
  • the upper and lower flat photonic crystals are connected as a whole through the frame, and are perpendicular to the motion by the external force to realize the optical switching function, as shown in FIG. 2, the photonic crystal is omitted in the figure.
  • Rotate the square rod in the middle, and the dashed box is the position where the array of rotating square rods is located. Since the frame itself is not on the light input and output faces, that is, the input and output faces of the light are parallel to the reference plane, the propagation of light is not affected.
  • the up and down movement of the upper and lower flat photonic crystals as a whole can be achieved by micromechanical force, electric power or magnetic force.
  • a magnet can be embedded in the frame, and a pressure linkage device is connected to the frame, and the pressure can drive the black frame to move up and down.
  • the left and right sides of the frame are located in the groove guide rail to ensure that the black frame is linearly reciprocated up and down.
  • FIG. 3 is a photonic band structure diagram of the second planar photonic crystal, and the TE forbidden band in the photonic band structure diagram
  • the normalized frequency (a/ ⁇ ) is 0.400-0.4325
  • FIG. 4 is a photonic band structure diagram of the first flat photonic crystal, and the normalized frequency frequency (a/ ⁇ ) of the TE forbidden band is 0.4303-0.5216.
  • the structure realizes a high extinction ratio TE optical switch, thereby realizing a high extinction ratio optical switching function.
  • FIG. 5 is a photonic band diagram of the second flat photonic crystal, the TE band gap in the photonic band diagram
  • the normalized frequency (a / ⁇ ) is 0.400 ⁇ 0.4325
  • Figure 6 is the photonic band diagram of the first flat photonic crystal, the normalized frequency (a / ⁇ ) of the TE forbidden band is 0.4303 ⁇ 0.5216.
  • the structure realizes a high extinction ratio TE optical switch, thereby realizing a high extinction ratio optical switching function.
  • the normalized operating frequency is (a/ ⁇ ) is 0.4057
  • the first embodiment is used to verify the numerical value of the three-dimensional structure, wherein the 9-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric network From the numerical simulation results shown in Fig. 7, it can be known that the switching effect is good.
  • the normalized operating frequency is (a/ ⁇ ) is 0.4058
  • the first embodiment is used to verify the numerical value of the three-dimensional structure, wherein the nine-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric network From the numerical simulation results shown in Figure 8, it can be seen that the switching effect is good.
  • the normalized operating frequency is (a/ ⁇ ) is 0.406
  • the first embodiment is used to verify the numerical value of the three-dimensional structure, wherein the 9-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric network From the numerical simulation results shown in Figure 9, it can be seen that the switching effect is good.
  • the normalized operating frequency (a/ ⁇ ) is 0.4267
  • the second embodiment is used to verify the numerical value of the three-dimensional structure, wherein the nine-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric vein are It can be seen from the numerical simulation results shown in Fig. 10 that the switching effect is good.
  • the normalized operating frequency (a/ ⁇ ) is 0.4315
  • the second embodiment is used to verify the numerical value of the three-dimensional structure, wherein the nine-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric vein are It can be seen from the numerical simulation results in Fig. 11 that the switching effect is well extinct.
  • the normalized operating frequency (a/ ⁇ ) is 0.4329
  • the second embodiment is used to verify the numerical value of the three-dimensional structure, wherein the nine-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric vein are It can be seen from the numerical simulation results shown in Fig. 12 that the switching effect is well extinct.
  • the normalized operating frequency (a/ ⁇ ) is 0.44
  • the third embodiment is used to verify the three-dimensional structure numerical value, wherein the nine-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric vein are It can be seen from the numerical simulation results in Fig. 13 that the switching effect is well extinct.
  • the normalized operating frequency (a/ ⁇ ) is 0.4435, and the third type is adopted.
  • the application method uses three-dimensional structure numerical verification, in which 9 layers of high-refractive-index rotating media rod and 37-layer high-refractive-index medium veins, as shown by the numerical simulation results in Fig. 14, the switching effect is well extinct.
  • the normalized operating frequency (a/ ⁇ ) is 0.452
  • the third embodiment is used to verify the numerical value of the three-dimensional structure, wherein the nine-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric vein are It can be seen from the numerical simulation results shown in Fig. 15 that the switching effect is well extinct.
  • the normalized operating frequency (a/ ⁇ ) is 0.456
  • the third embodiment is used to verify the three-dimensional structure numerical value, wherein the nine-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric vein are It can be seen from the numerical simulation results shown in Fig. 16 that the switching effect is well extinct.
  • the normalized operating frequency (a/ ⁇ ) is 0.479
  • the third embodiment is used to verify the numerical value of the three-dimensional structure, wherein the nine-layer high-refractive-index rotating dielectric rod and the 37-layer high-refractive-index dielectric vein are It can be seen from the numerical simulation results in Fig. 17 that the switching effect is well extinct.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于平板光子晶体的高消光比TE光开关,包括上下两层平板光子晶体相连的一个整体。上平板光子晶体为一个完全禁带的第一平板正方晶格光子晶体。第一平板正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第一平板介质杆和背景介质组成。第一平板介质杆由高折射率介质套管和套管内的低折射率介质组成。下平板光子晶体为一个完全禁带的第二正方晶格光子晶体。第二正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个高折射率第二平板介质杆和为低折射率的背景介质组成。TE光开关的频率为0.4057~0.406,实现了高消光比TE光开关。

Description

基于平板光子晶体的高消光比TE光开关 技术领域
本发明涉及一种高消光比TE光开关,特别涉及一种基于平板光子晶体绝对禁带的宽带的高消光比TE光开关。
背景技术
近年来,随着信息时代的到来,通信技术的速度和信息量急剧增大。光通信技术给信息化时代插上了翅膀,但目前在节点和路由的信息处理依旧需要电路实现,这在速度、容量和功率消耗方面制约了通讯技术的发展。采用光子集成光路代替或部分代替集成电路实现通信路由势必成为未来的发展方向。
光子晶体是一种介电材料在空间中呈周期性排列的物质结构,通常由两种或两种以上具有不同介电常数材料构成的人工晶体。
因为绝对禁带中的电磁场模式是完全不能存在的,所以当电子能带与光子晶体绝对禁带重叠时,自发辐射被抑制。拥有绝对禁带的光子晶体可以通过控制自发辐射,从而改变场与物质的相互作用以及提高光学器件的性能。
可调光子晶体带隙可以应用于信息通讯,显示和储存。可以利用外部驱动源进行高速调制带隙变化,这方面已经有很多方案提出,诸如:利用铁磁性材料可以控制磁导率、利用铁电性材料可以控制介电 常数等。
目前的光开关多数利用非线性效应来实现,而非线性效应需要使用高功率的控制光,这势必消耗大量的能量,在系统的集成度高,通信用户数量庞大时,该能量消耗将变得非常巨大。同时,偏振度的高低将影响信噪比和传输速率。
发明内容
本发明的目的是克服现有技术中的不足,提供一种便于集成的平板光子晶体高消光比TE光开关。
本发明的目的是这样实现的:
本发明的平板光子晶体的高消光比TE光开关包括上下两层平板光子晶体相连而成的一个整体,上平板光子晶体为一个具有第一平板正方晶格光子晶体,第一平板正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第一平板介质杆和背景介质组成,,第一平板介质杆沿水平方向布置,第一平板介质杆使整个上平板光子晶体成为一个整体,第一平板介质杆由高折射率介质套管和套管内的低折射率介质组成,或者由1至3块高折射率平板薄膜组成,或者由1块低折射率介质组成;所述下平板光子晶体为一个具有完全禁带的第二正方晶格光子晶体,第二正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第二平板介质杆和背景介质组成,第二平板介质杆沿水平方向布置,第二平板介质杆以整个下平板光子晶体形成一个整体,第二平板介质杆为高折射率介质杆,所述背景介质为低折射率介质。高消光比 TE光开关的归一化工作频率(a/λ)为0.4057~0.406、0.4267~0.4329或者0.44~0.479。
所述第一平板光子晶体的第一平板介质杆中的一个位于旋转正方形杆中心的水平中部,其余两个分别与位于水平中部的第一平板介质杆平行,且左右相距0.25a;所述第二平板光子晶体的第二平板介质杆中的一个位于旋转正方形杆中心的水平中部,其余两个分别与水平中部的第二平板介质杆平行,且左右相距0.25a。
所述第一、第二平板光子晶体中的高折射率旋转正方形杆的边长分别为0.545a~0.564a,其旋转角度为0°~90°;所述第一和第二平板光子晶体元胞内的第一和第二平板介质杆的宽度分别为0.029a~0.034a。
所述第一平板光子晶体元胞内的第一平板介质杆中的套管厚度为0~0.009a;所述套管内的低折射率介质的宽度为所述第一平板介质杆的宽度与所述套管的厚度相减。
所述高折射率介质为硅、砷化镓、二氧化钛或者折射率大于2的介质;所述低折射率介质为真空、空气、冰晶石、二氧化硅、有机泡沫、橄榄油或者折射率小于1.5的介质。
所述TE光开关,第一平板光子晶体位于光路中,第二平板光子晶体位于光路外为一种开关状态,第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为另一种开关状态。
所述TE光开关的归一化工作频率(a/λ)范围为0.4057~0.406,消光比为-14dB~-15dB,所述第一平板光子晶体位于光路中,第二平 板光子晶体位于光路外为光路连通状态,第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为光路断开状态。
所述TE光开关的归一化工作频率(a/λ)范围为0.4267~0.4329,消光比为-32dB~-35dB,所述第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为光路连通状态,第一平板光子晶体位于光路中,第二平板光子晶体位于光路外为光路断开状态。
所述TE光开关的归一化工作频率(a/λ)在范围0.44~0.479内的消光比为-20dB~-40dB,所述第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为光路连通状态,第一平板光子晶体位于光路中,第二平板光子晶体位于光路外为光路断开状态。
所述第一平板光子晶体和第二平板光子晶体在光路中的位置通过外力调节,所述外力包括机械力、电力和磁力。
本发明与现有技术相比,具有如下积极效果。
1.光开关是集成光路中必不可少的元器件,对于网络的高速运行是非常重要的,大带宽,低能量损耗,高偏振度、高消光比是衡量开关的重要参数。
2.通过调节第一平板(上平板)和第二平板(下平板)光子晶体在光路中的位置的变化来实现光开关功能。
3.本发明结构实现了高消光比TE光开关,从而实现了高消光比的光开关功能。
4.便于集成的平板光子晶体具有高消光比的TE光开关。
附图说明
图1(a)是本发明TE光开关上平板正方晶格光子晶体的元胞结构示意图。
图1(b)是本发明TE光开关下平板正方晶格光子晶体的元胞结构示意图。
图2(a)是本发明基于平板光子晶体的高消光比TE光开关第一种实施方式的结构示意图。
图2(b)是本发明基于平板光子晶体的高消光比TE光开关第二种实施方式的结构示意图。
图2(c)是本发明基于平板光子晶体的高消光比TE光开关第三种实施方式的结构示意图。
图3是实施例1所示第二平板光子晶体的光子带结构图。
图4是实施例1所示第一平板光子晶体的光子带结构图。
图5是实施例2所示第二平板光子晶体的光子带结构图。
图6是实施例2所示第一平板光子晶体的光子带结构图。
图7是实施例3所示归一化频率(a/λ)为0.4057的开关光场分布图。
图8是实施例4所示归一化频率(a/λ)为0.4058的开关光场分布图。
图9是实施例5所示归一化频率(a/λ)为0.406的开关光场分布图。
图10是实施例6所示归一化频率(a/λ)为0.4267的开关光场 分布图。
图11是实施例7所示归一化频率(a/λ)为0.4315的开关光场分布图。
图12是实施例8所示归一化频率(a/λ)为0.4329的开关光场分布图。
图13是实施例所示中归一化频率(a/λ)为0.44的开关光场分布图。
图14是实施例10所示归一化频率(a/λ)为0.4435的开关光场分布图。
图15是实施例11所示归一化频率(a/λ)为0.452的开关光场分布图。
图16是实施例12所示归一化频率(a/λ)为0.456的开关光场分布图。
图17是实施例13所示归一化频率(a/λ)为0.479的开关光场分布图。
具体实施方式
本发明基于平板光子晶体的高消光比TE光开关,如图1(a)所示,平板光子晶体高消光比TE光开关,包括连成一个整体的上下两层平板光子晶体;上平板光子晶体为一个具有第一平板正方晶格光子晶体,第一平板正方晶格光子晶体的元胞由高折射率旋转正方形杆、 3个第一平板介质杆和背景介质组成,第一平板介质杆沿水平方向布置,第一平板介质杆使整个上平板光子晶体成为一个整体,第一平板介质杆由高折射率介质套管和套管内的低折射率介质组成,或者由1至3块高折射率平板薄膜组成,或者由1块低折射率介质组成,低折射率介质为真空、空气、冰晶石、二氧化硅、有机泡沫、橄榄油或者折射率小于1.5的介质。如图1(b)所示,下平板光子晶体为一个具有完全禁带的第二正方晶格光子晶体,第二正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第二平板介质杆和背景介质组成,,第二平板介质杆沿水平方向布置,第二平板介质杆使整个下平板光子晶体成为一个整体,第二平板介质杆为高折射率介质杆,高折射率介质为硅,砷化镓,二氧化钛或者折射率大于2的介质,背景介质为低折射率介质。高消光比TE光开关的归一化工作频率(a/λ)为0.4057~0.406、0.4267~0.4329或者0.44~0.479,此频率范围为第一平板光子晶体的TE传输带且为第二平板光子晶体的TE禁带,或者为第二平板光子晶体的TE传输带且为第一平板光子晶体的TE禁带,其中a为第一和第二平板光子晶体的晶格常数,λ为入射波波长。
高消光比TE光开关的归一化工作频率(a/λ)为0.4057~0.406,消光比为-14dB~-15dB,第一平板光子晶体位于光路中,第二平板光子晶体位于光路外为TE光开关的第一开关状态,即光路连通状态,第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为TE光开关的第二开关状态,即光路断开状态;第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为光路连通状态,第一平板光子 晶体位于光路中,第二平板光子晶体位于光路外为光路断开状态。
所述TE光开关的归一化工作频率(a/λ)范围为0.4267~0.4329,消光比为-32dB~-35dB,所述第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为光路连通状态,第一平板光子晶体位于光路中,第二平板光子晶体位于光路外为光路断开状态。
高消光TE光开关的归一化工作频率(a/λ)为0.44~0.479,消光比为-20dB~-40dB,第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为光路连通状态,第一平板光子晶体位于光路中,第二平板光子晶体位于光路外为光路断开状态。开关的消光比是指开关两种状态下的输出光功率的比值。
本发明的一种实施方式的结构,包括连成一个整体的上下两层平板光子晶体,如图2(a)所示,图中省略了光子晶体中的旋转正方柱,虚线框为旋转正方形柱阵列所在的位置,上平板光子晶体为一个具有第一平板正方晶格光子晶体,第一平板正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第一平板介质杆和背景介质组成,第一平板介质杆沿水平方向布置,第一平板光子晶体的第一平板介质杆中的一个位于旋转正方形杆中心的水平中部,其余两个分别与水平中部的第一平板介质杆平行,且左右相距0.25a;第一平板介质杆使整个上平板光子晶体成为一个整体,第一平板介质杆由高折射率套管和套管内的低折射率介质组成,第一平板光子晶体元胞内的第一平板介质杆中的套管厚度为0~0.009a;套管内的低折射率介质的宽度为第一平板介质杆的宽度与套管的厚度相减。下平板光子晶体为一个具有完全 禁带的第二正方晶格光子晶体,第二正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第二平板介质杆和背景介质组成,第二平板介质杆沿水平方向布置,第二平板介质杆使整个下平板光子晶体成为一个整体,第二平板光子晶体的第二平板介质杆中的一个位于旋转正方形杆中心的水平中部,其余两个分别与位于水平中部的第二平板介质杆平行,且左右相距0.25a,第一、第二平板光子晶体中的高折射率旋转正方形杆的边长分别为0.545a~0.564a,其旋转角度为0°~90°;第一、二平板光子晶体元胞内的第一、二平板介质杆的宽度分别为0.029a~0.034a;第二平板介质杆为高折射率介质杆,高折射率介质为硅、砷化镓、二氧化钛或者折射率大于2的介质,高折射率介质采用硅材料;背景介质为低折射率介质,低折射率介质为真空、空气、冰晶石、二氧化硅、有机泡沫、橄榄油或者折射率小于1.5的介质,高消光比TE光开关的归一化工作频率(a/λ)范围为0.4057~0.406,此频率范围为第一平板光子晶体的TE传输带且为第二平板光子晶体的TE禁带,或者为第二平板光子晶体的TE传输带且为第一平板光子晶体的TE禁带,其中a为第一和第二平板光子晶体的晶格常数,λ为入射波波长。
本发明也可以按另一种实施方式的结构示意图设计出另一种具体结构的平板光子晶体TM光开关包括连成一个整体的上下两层平板光子晶体,如图2(b)所示,图中省略了光子晶体中的旋转正方形杆,虚线框为旋转正方形杆阵列所在的位置。上平板光子晶体为一个具有第一平板正方晶格光子晶体,第一平板正方晶格光子晶体的元胞 由高折射率旋转正方形杆、3个第一平板介质杆和背景介质组成,第一平板介质杆沿水平方向布置,第一平板光子晶体的第一平板介质杆中的一个位于旋转正方形杆中心的水平中部,其余两个分别与水平中部的第一平板介质杆平行,且左右相距0.25a;第一平板介质杆使整个上平板光子晶体成为一个整体,第一平板介质杆由3块高折射率平板薄膜组成。下平板光子晶体为一个具有完全禁带的第二正方晶格光子晶体,第二正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第二平板介质杆和背景介质组成,第二平板介质杆沿水平方向布置,第二平板介质杆使整个下平板光子晶体成为一个整体,第二平板光子晶体的第二平板介质杆中的一个位于旋转正方形杆中心的水平中部,其余两个分别与位于水平中部的第二平板介质杆平行,且左右相距0.25a,第一、第二平板光子晶体中的高折射率旋转正方形杆的边长分别为0.545a~0.564a,其旋转角度为0°~90°;第一、二平板光子晶体元胞内的第一、二平板介质杆的宽度分别为0.029a~0.034a。第二平板介质杆为高折射率介质杆,高折射率介质为硅、砷化镓、二氧化钛或者折射率大于2的介质,高折射率介质采用硅材料;背景介质为低折射率介质,低折射率介质为真空、空气、冰晶石、二氧化硅、有机泡沫、橄榄油或者折射率小于1.5的介质。高消光比TE光开关的归一化工作频率(a/λ)范围为0.4267~0.4329,此频率范围为第一平板光子晶体的TE传输带且为第二平板光子晶体的TE禁带,或者为第二平板光子晶体的TE传输带且为第一平板光子晶体的TE禁带,其中a为第一和第二平板光子晶体的晶格常数,λ为入射波 波长。
还可以根据图2(c)所示结构示意图设计出另一种具体结构的平板光子晶体TM光开关,包括连成一个整体的上下两层平板光子晶体,如图2(c)所示图中省略了光子晶体中的旋转正方形杆,虚线框为旋转正方形杆阵列所在的位置;上平板光子晶体为一个具有第一平板正方晶格光子晶体,第一平板正方晶格光子晶体的元胞由高折射率旋转正方形杆、单一第一平板介质杆和背景介质组成,第一平板介质杆由1块低折射率介质组成,背景介质为低折射率介质,高折射率旋转正方形杆内有三条槽,槽中填充低折射率介质,低折射率介质为真空、空气、冰晶石、二氧化硅、有机泡沫、橄榄油或者折射率小于1.5的介质,例如填充空气。下平板光子晶体为一个具有完全禁带的第二正方晶格光子晶体,第二正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第二平板介质杆和背景介质组成,第二平板介质杆沿水平方向布置,第二平板介质杆使整个下平板光子晶体成为一个整体,第二平板光子晶体的第二平板介质杆中的一个位于旋转正方形杆中心的水平中部,其余两个分别与位于水平中部的第二平板介质杆平行,且左右相距0.25a,第二平板光子晶体中的高折射率旋转正方形杆的边长为0.545a~0.564a,其旋转角度为0°~90°;第二平板光子晶体元胞内的第二平板介质杆的宽度为0.029a~0.034a。平板介质杆为高折射率介质杆,高折射率介质为硅、砷化镓、二氧化钛或者折射率大于2的介质,高折射率介质采用硅材料;背景介质为低折射率介质。高消光比TE光开关的归一化工作频率(a/λ)为0.44~0.479, 此频率范围为第一平板光子晶体的TE传输带且为第二平板光子晶体的TE禁带,或者为第二平板光子晶体的TE传输带且为第一平板光子晶体的TE禁带,其中a为第一和第二平板光子晶体的晶格常数,λ为入射波波长。
上述三种实施方式,均以纸面为参考面,上下平板光子晶体通过框架连接成为一个整体,受外力而做垂直于运动,实现光开关功能,如图2所示,图中省略了光子晶体中的旋转正方形杆,虚线框为旋转正方形杆阵列所在的位置。由于框架本身不在光输入和输出面,即光的输入和输出面平行于参考面,因而不影响光的传播。作为整体的上下平板光子晶体的上下移动可以通过微机械力、电力或者磁力来实现。例如,可在框架内埋入磁铁,采用一个压力联动装置与框架连接,则压力可以驱动黑色框上下移动),框架的左右两边位于凹槽导轨中,以保证黑框做上下直线往复运动。
实施例1
本实施例中,通过第一和第二两个平板光子晶体得到水平方向上的不同的光子带结构图,图3为第二平板光子晶体的光子带结构图,光子带结构图中TE禁带的归一化频率(a/λ)为0.400~0.4325;图4为第一平板光子晶体的光子带结构图,TE禁带的归一化频率频率(a/λ)为0.4303~0.5216。对比可知,在归一化频率(a/λ)范围0.400~0.4303中,该结构实现了高消光比TE光开关,从而实现了高消光比的光开关功能。
实施例2
本实施例中,通过第一和第二两个平板光子晶体得到垂直方向上的不同的光子带结构图,图5为第二平板光子晶体的光子带图,所述光子带图中TE禁带的归一化频率(a/λ)为0.400~0.4325;图6为第一平板光子晶体的光子带图,TE禁带的归一化频率(a/λ)为0.4303~0.5216。对比可知,在归一化频率(a/λ)范围0.400~0.4303中,该结构实现了高消光比TE光开关,从而实现了高消光比的光开关功能。
实施例3
本实施例中,归一化工作频率为(a/λ)为0.4057,采用第一种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图7数值模拟结果可知:开关效果消光很好。
实施例4
本实施例中,归一化工作频率为(a/λ)为0.4058,采用第一种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图8数值模拟结果可知:开关效果消光很好。
实施例5
本实施例中,归一化工作频率为(a/λ)为0.406,采用第一种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图9数值模拟结果可知:开关效果消光很好。
实施例6
本实施例中,归一化工作频率(a/λ)为0.4267,采用第二种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图10数值模拟结果可知:开关效果消光很好。
实施例7
本实施例中,归一化工作频率(a/λ)为0.4315,采用第二种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图11数值模拟结果可知:开关效果消光很好。
实施例8
本实施例中,归一化工作频率(a/λ)为0.4329,采用第二种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图12数值模拟结果可知:开关效果消光很好。
实施例9
本实施例中,归一化工作频率(a/λ)为0.44,采用第三种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图13数值模拟结果可知:开关效果消光很好。
实施例10
本实施例中,归一化工作频率(a/λ)为0.4435,采用第三种实 施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图14数值模拟结果可知:开关效果消光很好。
实施例11
本实施例中,归一化工作频率(a/λ)为0.452,采用第三种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图15数值模拟结果可知:开关效果消光很好。
实施例12
本实施例中,归一化工作频率(a/λ)为0.456,采用第三种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图16数值模拟结果可知:开关效果消光很好。
实施例13
本实施例中,归一化工作频率(a/λ)为0.479,采用第三种实施方式,利用三维结构数值验证,其中为9层高折射率旋转介质杆和37层高折射率介质脉络,由如图17数值模拟结果可知:开关效果消光很好。
以上之详细描述仅为清楚理解本发明,而不应将其看做是对本发明不必要的限制,因此对本发明的任何改动对本领域中的技术熟练的人是显而易见的。

Claims (10)

  1. 一种基于平板光子晶体的高消光比TE光开关,其特征在于,其包括上下两层平板光子晶体相连而成的一个整体;所述上平板光子晶体为一个具有第一平板正方晶格光子晶体,所述第一平板正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第一平板介质杆和背景介质组成,所述第一平板介质杆沿水平方向布置,所述第一平板介质杆使整个上平板光子晶体形成一个整体,所述第一平板介质杆由高折射率介质套管和套管内的低折射率介质组成,或者由1至3块高折射率平板薄膜组成,或者由1块低折射率介质组成;所述下平板光子晶体为一个具有完全禁带的第二正方晶格光子晶体,所述第二正方晶格光子晶体的元胞由高折射率旋转正方形杆、3个第二平板介质杆和背景介质组成,所述第二平板介质杆沿水平方向布置,所述第二平板介质杆使整个下平板光子晶体形成一个整体,所述第二平板介质杆为高折射率介质杆;所述背景介质为低折射率介质;所述TE光开关的归一化工作频率(a/λ)为0.4057~0.406、0.4267~0.4329或者0.44~0.479。
  2. 按照权利要求1所述的基于平板光子晶体的高消光比TE光开关,所述第一平板光子晶体元胞内的第一平板介质杆中的套管厚度为0~0.009a;所述套管内的低折射率介质的宽度为所述第一平板介质杆的宽度与所述套管的厚度相减。
  3. 按照权利要求1所述的基于平板光子晶体的高消光比TE光开关,其特征在于,所述第一平板光子晶体的第一平板介质杆中的一个 位于旋转正方形杆中心的水平中部,其余两个分别与位于水平中部的第一平板介质杆平行,且左右相距0.25a;所述第二平板光子晶体的第二平板介质杆中的一个位于旋转正方形杆中心的水平中部,其余两个分别与水平中部的第二平板介质杆平行,且左右相距0.25a。
  4. 按照权利要求1所述的基于平板光子晶体的高消光比TE光开关,其特征在于,所述第一、第二平板光子晶体中的高折射率旋转正方形杆的边长分别为0.545a~0.564a,其旋转角度为0°~90°;所述第一和第二平板光子晶体元胞内的第一和第二平板介质杆的宽度分别为0.029a~0.034a。
  5. 按照权利要求1所述的基于平板光子晶体的高消光比TE光开关,其特征在于,所述高折射率介质为硅、砷化镓、二氧化钛或者折射率大于2的介质;所述低折射率介质为真空、空气、冰晶石、二氧化硅、有机泡沫、橄榄油或者折射率小于1.5的介质。
  6. 按照权利要求1所述的基于平板光子晶体的高消光比TE光开关,其特征在于,所述TE光开关,第一平板光子晶体位于光路中,第二平板光子晶体位于光路外为一种开关状态,第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为另一种开关状态。
  7. 按照权利要求1或7所述的基于平板光子晶体的高消光比TE光开关,其特征在于,所述TE光开关的归一化工作频率(a/λ)范围为0.4057~0.406,消光比为-14dB~-15dB,所述第一平板光子晶体位于光路中,第二平板光子晶体位于光路外的状况为光路连通状态,第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为光路 断开状态。
  8. 按照权利要求1或7所述的基于平板光子晶体的高消光比TE光开关,其特征在于,所述TE光开关的归一化工作频率(a/λ)范围为0.4267~0.4329,消光比为-32dB~-35dB,所述第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为光路连通状态,第一平板光子晶体位于光路中,第二平板光子晶体位于光路外为光路断开状态。
  9. 按照权利要求1或7所述的基于平板光子晶体的高消光比TE光开关,其特征在于,所述TE光开关的归一化工作频率(a/λ)范围为0.44~0.479,消光比为-20dB~-40dB,所述第二平板光子晶体位于光路中,第一平板光子晶体位于光路外为光路连通状态,第一平板光子晶体位于光路中,第二平板光子晶体位于光路外为光路断开状态。
  10. 按照权利要求1所述的基于平板光子晶体的高消光比TE光开关,其特征在于,所述第一平板光子晶体和第二平板光子晶体在光路中的位置通过外力调节,所述外力包括机械力、电力和磁力。
PCT/CN2015/097055 2014-12-10 2015-12-10 基于平板光子晶体的高消光比te光开关 WO2016091195A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/626,156 US10095082B2 (en) 2014-12-10 2017-06-18 TE optical switch with high extinction ratio based on slab photonic crystals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410759245.2A CN104459989B (zh) 2014-12-10 2014-12-10 基于平板光子晶体的高消光比te光开关
CN201410759245.2 2014-12-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/626,156 Continuation US10095082B2 (en) 2014-12-10 2017-06-18 TE optical switch with high extinction ratio based on slab photonic crystals

Publications (1)

Publication Number Publication Date
WO2016091195A1 true WO2016091195A1 (zh) 2016-06-16

Family

ID=52906304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097055 WO2016091195A1 (zh) 2014-12-10 2015-12-10 基于平板光子晶体的高消光比te光开关

Country Status (3)

Country Link
US (1) US10095082B2 (zh)
CN (1) CN104459989B (zh)
WO (1) WO2016091195A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10095082B2 (en) 2014-12-10 2018-10-09 Zhengbiao OUYANG TE optical switch with high extinction ratio based on slab photonic crystals

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459988B (zh) * 2014-12-10 2017-07-18 欧阳征标 基于平板光子晶体的高偏振度及高消光比tm光开关
CN104375267B (zh) * 2014-12-10 2017-01-11 欧阳征标 基于平板光子晶体高消光比tm光开关
CN104459990B (zh) * 2014-12-10 2017-01-11 欧阳征标 基于平板光子晶体的高消光比偏振无关光开关
CN104849806B (zh) * 2015-05-27 2017-10-03 欧阳征标 基于十字连杆与旋转空心正方柱的二维正方晶格光子晶体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014010A1 (en) * 2001-08-08 2003-02-20 Jsr Corporation Three-dimensional opto-electronic micro-system
CN101571657A (zh) * 2009-06-10 2009-11-04 南京邮电大学 一种光子晶体全光开关
US8571373B2 (en) * 2011-05-23 2013-10-29 Xiaolong Wang Photonic crystal band-shifting device for dynamic control of light transmission
CN104375267A (zh) * 2014-12-10 2015-02-25 欧阳征标 基于平板光子晶体高消光比tm光开关
CN104459988A (zh) * 2014-12-10 2015-03-25 欧阳征标 基于平板光子晶体的高偏振度及高消光比tm光开关
CN104459990A (zh) * 2014-12-10 2015-03-25 欧阳征标 基于平板光子晶体的高消光比偏振无关光开关
CN104459991A (zh) * 2014-12-10 2015-03-25 欧阳征标 基于平板光子晶体的高偏振度及高消光比te光开关
CN104459989A (zh) * 2014-12-10 2015-03-25 欧阳征标 基于平板光子晶体的高消光比te光开关

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281714A (ja) * 2000-01-24 2001-10-10 Minolta Co Ltd 光機能素子及び光集積化素子
JP3846228B2 (ja) * 2001-06-07 2006-11-15 日本電気株式会社 導波路
JP3561244B2 (ja) * 2001-07-05 2004-09-02 独立行政法人 科学技術振興機構 二次元フォトニック結晶面発光レーザ
JP2003215646A (ja) * 2002-01-21 2003-07-30 Matsushita Electric Works Ltd 光スイッチ
US6957003B2 (en) * 2002-06-27 2005-10-18 The Board Of Trustees Of The Leland Stanford Junior University Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs
US20040001665A1 (en) * 2002-07-01 2004-01-01 Majd Zoorob Optical device
US6873777B2 (en) * 2003-03-10 2005-03-29 Japan Aviation Electronics Industry Limited Two-dimensional photonic crystal device
JP4093281B2 (ja) * 2004-03-03 2008-06-04 独立行政法人科学技術振興機構 フォトニック結晶結合欠陥導波路
JP2006251063A (ja) * 2005-03-08 2006-09-21 Japan Aviation Electronics Industry Ltd 光コネクタ、光結合方法及び光素子
US7783139B2 (en) * 2005-03-18 2010-08-24 Kyoto University Polarized light mode converter
US7529437B2 (en) * 2006-07-27 2009-05-05 Hewlett-Packard Development Company, L.P. Scalable and defect-tolerant quantum-dot-based quantum computer architectures and methods for fabricating quantum dots in quantum computer architectures
JP5147041B2 (ja) * 2006-09-21 2013-02-20 古河電気工業株式会社 フォトニック結晶光素子
US7373059B2 (en) * 2006-09-22 2008-05-13 Hewlett-Packard Development Company, L.P. Compact, single chip-based, entangled polarization-state photon sources and methods for generating photons in entangled polarization states
US7421179B1 (en) * 2006-09-29 2008-09-02 Wei Jiang Apparatus and method for switching, modulation and dynamic control of light transmission using photonic crystals
JP5299290B2 (ja) * 2008-02-07 2013-09-25 日本電気株式会社 光スイッチ及びその製造方法
US8617471B2 (en) * 2010-08-23 2013-12-31 Omega Optics, Inc. Fabrication tolerant design for the chip-integrated spectroscopic identification of solids, liquids, and gases
CN102650714B (zh) * 2012-01-13 2015-04-08 深圳大学 光子晶体波导t形偏振分束器
CN103901536B (zh) * 2014-04-11 2016-08-17 深圳大学 一种圆环杆与平板连杆的二维正方晶格光子晶体
CN104155718B (zh) * 2014-07-28 2017-07-04 欧阳征标 基于高折射率内圆外方空心柱的正方晶格光子晶体
CN104101949B (zh) * 2014-07-28 2017-01-25 欧阳征标 基于十字连杆柱和圆柱的大绝对禁带正方晶格光子晶体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014010A1 (en) * 2001-08-08 2003-02-20 Jsr Corporation Three-dimensional opto-electronic micro-system
CN101571657A (zh) * 2009-06-10 2009-11-04 南京邮电大学 一种光子晶体全光开关
US8571373B2 (en) * 2011-05-23 2013-10-29 Xiaolong Wang Photonic crystal band-shifting device for dynamic control of light transmission
CN104375267A (zh) * 2014-12-10 2015-02-25 欧阳征标 基于平板光子晶体高消光比tm光开关
CN104459988A (zh) * 2014-12-10 2015-03-25 欧阳征标 基于平板光子晶体的高偏振度及高消光比tm光开关
CN104459990A (zh) * 2014-12-10 2015-03-25 欧阳征标 基于平板光子晶体的高消光比偏振无关光开关
CN104459991A (zh) * 2014-12-10 2015-03-25 欧阳征标 基于平板光子晶体的高偏振度及高消光比te光开关
CN104459989A (zh) * 2014-12-10 2015-03-25 欧阳征标 基于平板光子晶体的高消光比te光开关

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MING-CHANG M. ET AL.: "MEMS-actuated photonic crystal switches", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 18, no. 2, 15 January 2006 (2006-01-15), pages 358 - 360 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10095082B2 (en) 2014-12-10 2018-10-09 Zhengbiao OUYANG TE optical switch with high extinction ratio based on slab photonic crystals

Also Published As

Publication number Publication date
CN104459989A (zh) 2015-03-25
US10095082B2 (en) 2018-10-09
US20170285440A1 (en) 2017-10-05
CN104459989B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2016091195A1 (zh) 基于平板光子晶体的高消光比te光开关
WO2016091194A1 (zh) 基于平板光子晶体的高消光比tm光开关
WO2016091192A1 (zh) 基于平板光子晶体的高偏振度及高消光比tm光开关
US9904010B2 (en) Polarization independent optical switch with high extinction ratio based on slab photonic crystals
WO2016091193A1 (zh) 基于平板光子晶体的高偏振度及高消光比te光开关
Ge et al. Antisymmetric PT-photonic structures with balanced positive-and negative-index materials
CN210040564U (zh) 一种基于二氧化钒和腔体谐振的双层太赫兹吸波器
CN104111565A (zh) 一种基于表面等离激元法诺共振的微纳光开关及使用它的级联光开关
Xiao et al. Effective PT-symmetric metasurfaces for subwavelength amplified sensing
WO2016050185A1 (zh) 一种十字连杆与旋转正方杆的二维正方晶格光子晶体
CN108732794B (zh) 基于周期性石墨烯结构吸收特性的太赫兹开关及控制方法
CN113156740A (zh) 一种图厄-摩尔斯序列多层电介质与石墨烯的复合结构
CN111338153A (zh) 一种用于低阀值全光开关的双稳态准光子晶体结构
CN215376024U (zh) 一种图厄-摩尔斯序列多层电介质与石墨烯的复合结构
Deb et al. Critical coupling in a Fabry–Pérot cavity with metamaterial mirrors
CN110646958B (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器及其使用方法
Bi et al. Magnetic coupling effect of Mie resonance-based metamaterial with inclusion of split ring resonators
CN211698524U (zh) 一种用于低阈值全光开关的双稳态准光子晶体结构
Lobo et al. Gap soliton transparency switching in one-dimensional Kerr-metamaterial superlattices
Luo et al. Controllable switching behavior of optical Tamm state based on nematic liquid crystal
US20210132457A1 (en) Method and apparatus for enhancing retention time of bleached and colored states of electrochromic devices
Shah et al. Polarization-Insensitive electro-absorption optical modulator using ITO-enhanced D-fiber
Shi et al. Active modulation of multiple metamaterial induced transparences in terahertz region
Zhu et al. A Reconfigurable Metasurface with Switchable Functionalities from Perfect Transparency to Perfect Absorption
Kieliszczyk et al. Tunable Hyperbolic Metamaterials for Novel Photonic Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868160

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15868160

Country of ref document: EP

Kind code of ref document: A1