WO2016090925A1 - 横电磁模介质滤波器、射频模块及基站 - Google Patents

横电磁模介质滤波器、射频模块及基站 Download PDF

Info

Publication number
WO2016090925A1
WO2016090925A1 PCT/CN2015/085087 CN2015085087W WO2016090925A1 WO 2016090925 A1 WO2016090925 A1 WO 2016090925A1 CN 2015085087 W CN2015085087 W CN 2015085087W WO 2016090925 A1 WO2016090925 A1 WO 2016090925A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
proximal
dielectric body
suppression structure
frequency
Prior art date
Application number
PCT/CN2015/085087
Other languages
English (en)
French (fr)
Inventor
古健
张辉
董利芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA2970054A priority Critical patent/CA2970054C/en
Priority to JP2017548510A priority patent/JP2017537581A/ja
Priority to EP15867903.5A priority patent/EP3217468B1/en
Publication of WO2016090925A1 publication Critical patent/WO2016090925A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a transverse electromagnetic mode dielectric filter, a radio frequency module, and a base station.
  • TEM dielectric filter is an important type of dielectric filter that can be applied to devices such as wireless base stations, radio frequency terminals, radio frequency or microwave transceiver components.
  • the lateral electromagnetic mode dielectric filter provided by the prior art has poor near-end suppression performance, and thus cannot be applied to a position such as an RF front end or a microwave antenna feed front end which requires high filter performance, and the application scenario is limited.
  • the embodiment of the invention provides a transverse electromagnetic mode dielectric filter with good near-end suppression performance.
  • the embodiment of the invention further provides a radio frequency module and a base station.
  • an embodiment of the present invention provides a transverse electromagnetic mode dielectric filter resonator, comprising: a dielectric body, a metal outer casing, an outer surface of the dielectric body covered with a conductive material, the metal outer casing being fixed to the medium Above the body, there is a gap between the metal casing and the dielectric body, the resonator includes a resonance disk and a resonance hole, and the resonance disk is disposed on an upper surface of the dielectric body.
  • the resonant hole is a hollow cylindrical structure having upper and lower ends open, the upper end opening of the resonant hole is located on the resonant disk, and the lower end opening of the resonant hole is located at a lower surface of the dielectric body, the resonant hole
  • the inner surface is covered with a conductive material
  • the resonant disk is made of a metal material
  • the filter further includes a proximal restraining structure, the proximal restraining structure is located inside the dielectric body, and the shape and position of the proximal restraining structure are And the size is determined by the frequency of the signal filtered by the filter target.
  • a shape, a position, and a size of the near-end suppression structure are determined by a frequency of a signal filtered by the filter target, including,
  • the proximal suppression structure has at least two ends contacting the lower surface of the dielectric body, and the proximal suppression structure The remainder of the area is located in the magnetic field region within the medium.
  • the proximal suppression structure is located in an electric field region within the dielectric body.
  • the shape, a position, and a size of the near-end suppression structure are determined by a frequency of a signal filtered by the filter target.
  • the method includes determining, according to an electrical wavelength corresponding to a frequency of a signal filtered by the filter target, a height, a length, and a distance from the resonant hole.
  • the near-end suppression structure is a metallized through hole, a metalized strip line, a solid metal structure, a metallized conductor, Any of the metal foils.
  • an embodiment of the present invention provides a radio frequency module, including any one of the transverse electromagnetic mode dielectric filters provided by the first aspect.
  • an embodiment of the present invention provides a base station, including the radio frequency module provided by the second aspect.
  • the technical solution provided by the embodiment of the present invention is set inside the transverse electromagnetic mode dielectric filter.
  • the near-end suppression structure realizes the function of transmitting zero point or zero cavity by flexibly designing the shape, position and size of the near-end suppression structure, and suppresses the RF signal of the high-frequency end or the low-frequency end of the filter passband.
  • the transverse electromagnetic mode dielectric filter provided by the embodiment of the invention has good near-end suppression performance and can be widely used in a radio frequency module and a base station.
  • FIG. 1 is a schematic structural diagram of a transverse electromagnetic mode dielectric filter according to an embodiment of the present invention
  • FIG. 2 is a front elevational view of another transverse electromagnetic mode dielectric filter according to an embodiment of the present invention.
  • FIG. 3 is a top plan view of another transverse electromagnetic mode dielectric filter according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another transverse electromagnetic mode dielectric filter according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the filter is an essential component in devices such as base stations or RF terminals. Due to advantages in cost and size, the dielectric filter can be used at a location such as the receiving link of the base station to filter the RF signal.
  • a transverse electromagnetic mode dielectric filter is a widely used dielectric filter.
  • the transverse electromagnetic mode dielectric mode filter due to the poor radio frequency performance of the transverse electromagnetic mode dielectric mode filter, it cannot be used in a position where the performance of the filter is high, such as the front end of the RF module, that is, between the transmitting antenna and the power amplifier, where the RF of the filter Performance indicators include insertion loss, suppression, intermodulation and many other indicators. Therefore, the application scenarios of the transverse electromagnetic mode dielectric mode filter are more limited. Big.
  • the main reason for the poor RF performance of the transverse electromagnetic mode dielectric mode filter is that the near-end suppression performance of such a filter is not good.
  • the near-end suppression is also called sideband rejection or near band rejection. It means strong suppression of the signal at the high frequency end or the low frequency end near the pass band of the filter, thereby ensuring the filtering effect. Since the cross-coupling or resonance design method of the transverse electromagnetic mode dielectric mode filter is not flexible enough to form a transmission zero point or a zero-cavity structure, it does not have good near-end suppression performance.
  • FIG. 1 is a schematic diagram of a transverse electromagnetic mode dielectric filter according to an embodiment of the present invention.
  • the transverse electromagnetic mode dielectric filter 1 (hereinafter referred to as "filter 1") includes a resonator 11, a dielectric body 12, a metal casing 13, and a metal casing 13 fixed above the dielectric body 12, a metal casing. There is a gap between the 13 and the dielectric body 12.
  • the outer surface of the dielectric body 12 is covered with a conductive material.
  • a metal plating such as a silver plating may be employed.
  • the gap between the metal casing 13 and the dielectric body 12 is filled with air.
  • the resonator 11 includes a resonance disk 101, a resonance hole 102, and a resonance disk 101 is disposed on an upper surface of the dielectric body 12.
  • the resonance disk 101 may be a metal foil mounted on the upper surface of the dielectric body 12 or a metal plating printed on the upper surface of the dielectric body 12.
  • the shape of the resonant disc 101 is not limited.
  • it may be a regular pattern such as a rectangle or a circle.
  • the regular pattern may be modified according to the specifications and performance requirements of the filter, for example, cutting a certain area to form an irregular pattern.
  • the embodiment of the present invention does not specifically limit this.
  • the resonant hole 102 is a hollow cylindrical structure having open upper and lower ends.
  • the upper end opening of the resonant hole 102 is located on the resonant disk 101, and the lower end opening of the resonant hole 102 is located on the lower surface of the dielectric body 12, and the inner surface of the resonant hole 112 Covered with conductive material.
  • the conductive material covering the inner surface of the resonant hole 102 may be a metal plating such as a silver plating.
  • the resonant hole 102 and the resonant disk 101 may be integrally formed or separately formed and joined.
  • the filter 1 also includes a proximal suppression structure 14 located within the dielectric body 12, the shape, position and size of the proximal suppression structure 14 being determined by the frequency of the signal filtered by the filter target.
  • both ends of the proximal restraining structure 14 are in contact with the lower surface of the dielectric body 12, and the remaining portion of the proximal restraining structure 14 is located in a magnetic field region within the dielectric body 12, said magnetic field region being a magnetic field within the dielectric body. A region that is stronger than other locations.
  • the region where the magnetic field in the dielectric body 12 is strong is the region near the lower surface of the dielectric body 12.
  • the height, length, and distance from the resonant aperture of the proximal suppression structure 14 may be determined according to a coupling coefficient of the filter, wherein the coupling coefficient and the filter target filter The frequency of the divided signal corresponds.
  • the coupling coefficient is an important parameter in the filter design. After the coupling coefficient is determined, the physical structure of the filter can be designed according to the coupling coefficient and the corresponding performance index can be achieved. In general, the coupling coefficient can be solved by a coupling matrix, wherein the coupling matrix can be used to express the relationship of the coupling energy between the resonators, and the coupling coefficient is included in the coupling matrix.
  • the coupling matrix may be calculated by the filter simulation software, or may be determined according to an experimental or empirical value, which is not specifically limited in the embodiment of the present invention.
  • the proximal suppression structure 14 can be any of a metallized via, a metallized stripline, a solid metal structure, a metallized conductor, and a metal foil.
  • the near-end suppression structure 14 may be a strip-shaped structure having a certain degree of curvature.
  • the specific arc metric may be determined by the performance requirements of the filter, which is not specifically limited in the embodiment of the present invention.
  • any other portion of the proximal restraining structure 14 may also be in contact with the lower surface of the dielectric body 12 to function as a ground.
  • the near-end suppression structure 14 functions as an inductive transmission zero point, which can improve the high-frequency end suppression capability outside the filter passband, that is, suppress the high-frequency end signal outside the filter passband. It can be understood that the design of the near-end suppression structure 14 can be only for a specific signal frequency point. When the filter has strong suppression for a certain frequency point, the frequency band close to the frequency point has a good suppression effect.
  • the filter 1 includes four resonators, which are sequentially labeled from left to right as 1 cavity, 2 cavity, 3 cavity, 4 cavity, and the two ends of the proximal suppression structure 14 are respectively located in 1 cavity and 3 cavity. nearby.
  • the proximal restraining structure 14 can also be located between the 1 and 4 lumens, or between the 2 and 4 lumens.
  • the proximal suppression structure 14 between the non-adjacent resonators forms a cross-coupling structure, that is, when signals pass through the respective resonant paths through different resonant paths, the phases of the different signal paths are cancelled, forming a transmission zero.
  • a 1-cavity-2 cavity-3 cavity signal path can be considered a positive phase path
  • a 1-cavity-3 cavity signal path is considered a negative phase path
  • two paths are phase cancelled, at the near-end suppression structure 14
  • a transmission zero is formed, which corresponds to the frequency of the signal filtered by the filter target.
  • the transverse electromagnetic mode dielectric filter provided by the embodiment of the invention provides a near-end suppression structure near the lower surface of the dielectric filter, realizes the function of inductive transmission zero point, and suppresses the radio frequency signal of the high-frequency end of the filter passband.
  • the near-end suppression performance is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, inductive transmission zero point, and suppresses the radio frequency signal of the high-frequency end of the filter passband.
  • FIGS 2 to 3 are front and top views of another transverse electromagnetic mode dielectric filter according to an embodiment of the present invention.
  • the transverse electromagnetic mode dielectric filter 2 (hereinafter referred to as "filter 2") includes a resonator 21, a dielectric body 22, a metal casing 23, and a proximal restraining structure 24, wherein the metal casing 23 is fixed to the Above the dielectric body 22, there is a gap between the metal casing 23 and the dielectric body 22.
  • the resonator 21 includes a resonator piece 211 and a resonance hole 212.
  • the filter 2 is similar to the overall structure of the filter 1 provided in the embodiment of FIG. 1, and FIG.
  • the illustrated embodiment differs in that the proximal suppression structure 24 is located adjacent the upper surface of the dielectric body 22, which is the electric field region within the dielectric body 22, which refers to the stronger electric field relative to other locations within the dielectric body. Area.
  • the specific shape, position and size of the proximal restraining structure 24 can be determined by the coupling coefficient of the filter. For the specific determination manner, reference may be made to the description of the embodiment shown in FIG. 1 , and details are not described herein.
  • the near-end suppression structure 24 functions as a capacitive transmission zero point, which can improve the low-frequency end suppression capability outside the filter passband, that is, suppress the low-frequency end signal of the filter passband. .
  • a near-end suppression structure is set inside the dielectric body of the filter as a capacitive zero point, and the structure is a metalized through hole.
  • the specific size is 23 mm in length and 1 mm in width, and the distance from the resonant hole is 3 mm, and the distance from the upper surface of the dielectric body, that is, the resonant disk is 3 mm.
  • the passband of the filter is from 1805MHz to 1865MHz, which can effectively filter out the RF signal whose frequency is outside the frequency band.
  • a near-end suppression structure is disposed near the upper surface of the dielectric body in the dielectric filter to realize a function of capacitive transmission zero point, and suppress the radio frequency signal of the low-frequency end of the filter passband. Has good near-end inhibition performance.
  • FIG. 4 is a schematic diagram of another transverse electromagnetic mode dielectric filter according to an embodiment of the present invention.
  • the transverse electromagnetic mode dielectric filter 3 (hereinafter referred to as "filter 3") includes a resonator 31, a dielectric body 32, a metal casing 33, and a proximal restraining structure 34; the metal casing 33 is fixed to the dielectric body. Above the 32, there is a gap between the metal casing 33 and the dielectric body 32, and the resonator 31 includes a resonance plate 311 and a resonance hole 312.
  • the filter 3 is similar to the overall structure of the transverse electromagnetic mode dielectric filter provided by the embodiment of FIG. 1 or FIG. 2 and FIG. 3, and differs from the filter of FIG. 1 or FIG. 2 in the shape and position of the proximal suppression structure 34. Determined by the electrical wavelength corresponding to the frequency of the signal whose size is filtered by the filter target. Among them, the electrical wavelength is the wavelength of the electromagnetic wave.
  • the wavelength and frequency of a certain electromagnetic wave waveform have a unique relationship.
  • the height, the length of the proximal restraining structure 34 and the distance from the resonant hole 312 can be determined.
  • the size of the near-end suppression structure 34 can be determined by the filter simulation software, and can also be determined according to experiments or experience, which is not specifically limited in the embodiment of the present invention.
  • the proximal restraining structure 34 can be a banded structure having an angled corner or, in other embodiments, a strip or tubular structure having a curvature.
  • both ends of the proximal restraining structure 34 are in contact with the lower surface of the dielectric body 32.
  • any other portion of the proximal restraining structure 34 may be in contact with the lower surface of the dielectric body 32 in addition to the ends.
  • the near-end suppression structure 4 can function as a zero cavity, improving the high-frequency or low-frequency end suppression capability outside the filter passband, that is, suppressing the high-frequency end of the filter passband or The signal at the low end.
  • the electrical wavelength corresponding to the proximal suppression structure 4 can be varied to control the signal frequency filtered by the filter target.
  • the length of the near-end suppression structure 4 is inversely proportional to the signal frequency. The longer the near-end suppression structure 4 is, the lower the corresponding signal frequency is, the filter 3 can be used to filter out the low-frequency end signal; the more the near-end suppression structure 4 Short, the higher the corresponding signal frequency, the filter 3 can be used to filter out the high frequency end signal.
  • FIG. 1 It can be understood that a detailed description of other components in the filter 4 can be referred to FIG. 1 or The contents of the embodiment shown in FIG. 2 and FIG. 4 are not described herein.
  • the embodiment of the invention further provides a radio frequency module, which includes any of the transverse electromagnetic mode dielectric filters described in the above embodiments.
  • the radio frequency module may be a device such as a repeater, a remote radio unit (RRU), a radio frequency unit (RFU), and the like, which is not limited in this embodiment of the present invention.
  • the function of zero cavity can be realized by setting a near-end suppression structure inside the medium body without increasing the filter volume, and the filtering can be suppressed by the structure.
  • the signal of the high-frequency or low-frequency end of the band is improved to improve the near-end suppression performance of the filter and improve the filtering effect.
  • FIG. 5 is a schematic diagram of a base station according to an embodiment of the present invention.
  • the base station may include a radio frequency module including a transverse electromagnetic mode dielectric filter shown in any one of FIG. 1 to FIG.
  • the base station may further include a baseband processing unit (BBU) 402, a power module 403, and the like, and each module or unit may be connected through a communication bus.
  • BBU baseband processing unit
  • the base station may be a small cell device, such as an indoor small base station product.
  • the transverse electromagnetic mode dielectric filter with good near-end suppression performance is used in the radio frequency module or the base station provided by the embodiment of the invention, and has low cost and small volume.
  • the embodiment of the present invention further provides a method of manufacturing the transverse electromagnetic mode dielectric filter (hereinafter referred to as "filter") of any of FIGS. 1 to 4.
  • the method comprises: preparing a raw material of a two-layer or a multi-layer dielectric blank, and preparing a through hole or a blind hole on the raw material of the two-layer or multi-layer medium, respectively sintering the raw materials of each layer separately, and then sintering the good
  • a metallization structure and punching are prepared in each layer of the medium, and then the entire filter is formed by bonding, and the metallization of the filter printing pattern is completed to form an embodiment of the present invention.
  • a transverse electromagnetic mode dielectric filter is prepared in each layer of the medium, and then the entire filter is formed by bonding, and the metallization of the filter printing pattern is completed to form an embodiment of the present invention.
  • the method may also be that a two-layer or multi-layer dielectric blank raw material is prepared, and a desired metal structure is obtained by opening a hole, a printed circuit, or the like on each layer of the medium raw material. That is, in the present invention, the zero point or zero cavity structure is transported, and then the layers of the raw materials prepared by the layers are laminated and sintered together to complete the metallization of the printed pattern of the dielectric filter, thereby finally forming the horizontal shape provided by the embodiment of the present invention. Electromagnetic mode dielectric filter.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明实施例提供了一种横电磁模介质滤波器。在滤波器内部设置近端抑制结构,通过灵活设计近端抑制结构的形状、位置及尺寸,实现传输零点或零腔的功能,抑制滤波器通带外高频端或低频端的射频信号,具有良好的近端抑制性能。本发明实施例还提供了一种射频模块及基站。

Description

横电磁模介质滤波器、射频模块及基站
本申请要求于2014年12月08日提交中国专利局、申请号为201410743332.9、发明名称为“横电磁模介质滤波器、射频模块及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种横电磁模介质滤波器、射频模块及基站。
背景技术
随着无线通信技术的发展,无线通信设备日益追求小型化及低插损。相比传统的金属腔体滤波器,介质滤波器具有体积小、插损小、承受功率大、成本低等优势。横电磁模(TEM,transverse electromagnetic mode)介质滤波器是一种重要的介质滤波器类型,可以应用于无线基站,射频终端,射频或微波收发组件等设备中。
但是,现有技术提供的横电磁模介质滤波器的近端抑制性能不佳,因而,无法应用于对滤波器性能要求较高的射频前端或微波天馈前端等位置,应用场景有限。
发明内容
本发明实施例提供了一种横电磁模介质滤波器,具有良好的近端抑制性能,本发明实施例还提供了一种射频模块及基站。
第一方面,本发明实施例提供了一种横电磁模介质滤波器谐振器,包括,介质体,金属外壳,所述介质体的外表面覆盖有导电材料,所述金属外壳固定于所述介质体的上方,所述金属外壳与所述介质体之间存在间隙,所述谐振器包括谐振盘与谐振孔,所述谐振盘设置在所述介质体的上表面, 所述谐振孔为上下两端开口的中空柱形结构,所述谐振孔的上端开口位于所述谐振盘上,所述谐振孔的下端开口位于所述介质体的下表面,所述谐振孔的内表面覆盖有导电材质,所述谐振盘为金属材质,所述滤波器还包括,近端抑制结构,所述近端抑制结构位于所述介质体内部,所述近端抑制结构的形状、位置及尺寸由所述滤波器目标滤除的信号的频率确定。
在第一方面的第一种可能的实现方式中,所述近端抑制结构的形状、位置及尺寸由所述滤波器目标滤除的信号的频率确定,包括,
根据所述滤波器的耦合系数,确定所述近端抑制结构的高度,长度及离开所述谐振孔的距离,其中,所述耦合系数与所述滤波器目标滤除的信号的频率对应。
结合以上任意一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述近端抑制结构至少有两端与所述介质体的下表面接触,所述近端抑制结构的其余部分位于所述介质体内的磁场区域。
结合以上任意一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述近端抑制结构位于所述介质体内的电场区域。
结合以上任意一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述近端抑制结构的形状、位置及尺寸由所述滤波器目标滤除的信号的频率确定,包括,根据所述滤波器目标滤除的信号的频率对应的电波长,确定所述近端抑制结构的高度,长度及离开所述谐振孔的距离。
结合以上任意一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述近端抑制结构为金属化通孔、金属化带状线、实体金属结构、金属化导体、金属薄片中的任意一种。
第二方面,本发明实施例提供了一种射频模块,包括,第一方面提供的任意一种横电磁模介质滤波器。
第三方面,本发明实施例提供了一种基站,包括,第二方面提供的射频模块。
采用本发明实施例提供的技术方案,在横电磁模介质滤波器内部设置 近端抑制结构,通过灵活设计近端抑制结构的形状、位置及尺寸,实现传输零点或零腔的功能,抑制滤波器通带外高频端或低频端的射频信号。本发明实施例提供的横电磁模介质滤波器具有良好的近端抑制性能,可以广泛地在射频模块及基站中使用。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种横电磁模介质滤波器的结构示意图;
图2为本发明实施例提供的另一种横电磁模介质滤波器的正视图;
图3为本发明实施例提供的另一种横电磁模介质滤波器的俯视图;
图4为本发明实施例提供的又一种横电磁模介质滤波器的结构示意图;
图5为本发明实施例提供的一种基站的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步详细描述。
滤波器是基站或射频终端等设备中的一种必备器件。由于在成本和体积等方面的优势,介质滤波器可以在基站的接收链路等位置上使用,用于对射频信号进行滤波。横电磁模介质滤波器是广泛使用的一种介质滤波器。
但是,由于横电磁模介质模滤波器的射频性能指标较差,无法在对滤波器性能要求较高的位置使用,例如射频模块的前端,即发射天线和功放之间,其中,滤波器的射频性能指标包括插损、抑制、互调等多项指标。因此,横电磁模介质模滤波器的应用场景限制较 大。
造成横电磁模介质模滤波器的射频性能指标较差的主要原因是此类滤波器的近端抑制性能不佳,其中,近端抑制也称为边带抑制或者近带抑制(near band rejection),是指对滤波器通带外附近的高频端或低频端的信号进行强抑制,从而保证滤波的效果。由于目前横电磁模介质模滤波器的交叉耦合或谐振设计方法不够灵活,无法有效形成传输零点或零腔结构,因此,不具备良好的近端抑制性能。
图1为本发明实施例提供的一种横电磁模介质滤波器的示意图。
如图1所示,横电磁模介质滤波器1(以下简称“滤波器1”)包括谐振器11,介质体12,金属外壳13,金属外壳13固定于所述介质体12的上方,金属外壳13与介质体12之间存在间隙。
介质体12的外表面覆盖有导电材料,可选地,可以采用金属镀层,例如银镀层。
金属外壳13与介质体12之间的间隙内充满空气。
谐振器11包括谐振盘101,谐振孔102,其中,谐振盘101设置在所述介质体12的上表面。
可选地,谐振盘101可以是安装在介质体12的上表面的金属薄片,或者印刷在介质体12的上表面的金属镀层。
可选地,谐振盘101的形状不限,例如可以是矩形,圆形等规则图形,也可以按照滤波器的规格及性能需求对上述规则图形做一定修改,例如切削一定面积,形成不规则图形,本发明实施例对此不做特别限定。
谐振孔102为上下两端开口的中空柱形结构,谐振孔102的上端开口位于所述谐振盘101上,谐振孔102的下端开口位于所述介质体12的下表面,谐振孔112的内表面覆盖有导电材质。
可选地,覆盖在谐振孔102内表面的导电材质可以是金属镀层,例如银镀层。
可选地,谐振孔102和谐振盘101可以是一体成形,或者分别制作并连接成型。
滤波器1还包括近端抑制结构14,近端抑制结构14位于介质体12内部,近端抑制结构14的形状、位置及尺寸由所述滤波器目标滤除的信号的频率确定。
如图1所示,近端抑制结构14的两端与介质体12的下表面接触,近端抑制结构14的其余部分位于介质体12内的磁场区域,所述磁场区域是指在介质体内磁场相对其他位置较强的区域。
其中,介质体12内磁场强的区域为介质体12下表面附近区域。
可选地,根据滤波器的耦合系数(coupling coefficient),可以确定所述近端抑制结构14的高度,长度及离开所述谐振孔的距离,其中,所述耦合系数与所述滤波器目标滤除的信号的频率对应。
耦合系数是滤波器设计中的一项重要参数,在确定了耦合系数之后,可以根据耦合系数设计出滤波器的物理结构并达到相应的性能指标。一般地,耦合系数可以由耦合矩阵(coupling matrix)求解得到,其中,耦合矩阵可以用于表述谐振腔之间耦合能量的关系,耦合系数包含在该耦合矩阵中。
可选地,耦合矩阵可以由滤波器仿真软件计算得到,也可以根据实验或经验值确定,本发明实施例对此不做特别限定。
可选地,近端抑制结构14可以是金属化通孔、金属化带状线、实体金属结构、金属化导体、金属薄片中的任意一种。
可选地,近端抑制结构14可以是具有一定弧度的带状结构,具体的弧度量可以由滤波器的性能需求经过调试确定,本发明实施例对此不做特别限定。
可选地,在本发明的其他实施例中,除了两端之外,近端抑制结构14的其他任意部分也可以与介质体12的下表面接触,起到接地的作用。
在图1所示的实施例中,近端抑制结构14起到感性传输零点的作用,可以改善滤波器通带外的高频端抑制能力,即抑制滤波器通带外高频端信号。可以理解,近端抑制结构14的设计可以仅针对一个具体的信号频点,当滤波器对某个频点具有强抑制时,对该频点相近的频段都有良好的抑制作用。
可选地,滤波器1中可以包括三个以上谐振器11,近端抑制结构14位于不相邻的谐振腔之间。如图1所示,滤波器1中包含4个谐振器,从左向右依次标记为1腔,2腔,3腔,4腔,近端抑制结构14的两端分别位于1腔和3腔附近。可选地,近端抑制结构14也可以位于1腔和4腔之间,或者2腔和4腔之间。
位于不相邻的谐振腔之间的近端抑制结构14形成了交叉耦合结构,即信号通过不同的信号路径经过各谐振腔时,不同信号路径的相位对消,形成了传输零点。例如,可以将1腔-2腔-3腔的信号路径视为正相位路径,且将1腔-3腔的信号路径视为负相位路径,两路径的相位对消,在近端抑制结构14处形成传输零点,该零点对应滤波器目标滤除的信号的频率。
采用本发明实施例提供的横电磁模介质滤波器,在介质滤波器内部靠近下表面处设置近端抑制结构,实现感性传输零点的功能,抑制滤波器通带外高频端的射频信号,具有良好的近端抑制性能。
图2-图3为本发明实施例提供的另一种横电磁模介质滤波器的正视图及俯视图。
如图2所示,横电磁模介质滤波器2(以下简称“滤波器2”)包括谐振器21,介质体22,金属外壳23,近端抑制结构24,其中,金属外壳23固定于所述介质体22的上方,金属外壳23与介质体22之间存在间隙。如图3所示,谐振器21包括谐振片211及谐振孔212。
滤波器2与图1实施例提供的滤波器1的整体结构类似,与图1 所示实施例不同的是,近端抑制结构24位于所述介质体22的上表面附近,该区域为介质体22内的电场区域,所述电区域是指在介质体内电场相对其他位置较强的区域。近端抑制结构24具体的形状、位置及尺寸可以由滤波器的耦合系数确定,具体的确定方式可以参照图1所示实施例的描述,在此不做赘述。
在图2-图3所示的实施例中,近端抑制结构24起到容性传输零点的作用,可以改善滤波器通带外的低频端抑制能力,即抑制滤波器通带外低频端信号。
可以理解,对滤波器2中其他部件的详细描述可以参照图1所示实施例中的内容,在此不做赘述。
以一个规格为90*44*20(mm,毫米)的横电磁模介质滤波器为例,在滤波器的介质体内部设置一个近端抑制结构作为容性零点,该结构为金属化通孔,其具体尺寸为,长23mm,宽1mm,距离谐振孔的距离为3mm,距离介质体上表面即谐振盘距离为3mm。该滤波器的通带为1805MHz~1865MHz,即可以有效滤除频率在该频段之外的射频信号。
采用本发明实施例提供的横电磁模介质滤波器,在介质滤波器内部靠近介质体上表面处设置近端抑制结构,实现容性传输零点的功能,抑制滤波器通带外低频端的射频信号,具有良好的近端抑制性能。
图4为本发明实施例提供的另一种横电磁模介质滤波器的示意图。
如图4所示,横电磁模介质滤波器3(以下简称“滤波器3”)包括谐振器31,介质体32,金属外壳33,近端抑制结构34;金属外壳33固定于所述介质体32的上方,金属外壳33与介质体32之间存在间隙,谐振器31包括谐振片311及谐振孔312。
滤波器3与图1或图2、图3实施例提供的横电磁模介质滤波器的整体结构类似,与图1或图2所示滤波器不同的是,近端抑制结构34的形状、位置与尺寸由滤波器目标滤除的信号的频率对应的电波长确定。其中,电波长即为电磁波波长。
具体地,根据公式c=λ*f可以计算电波长,其中f为信号频率,λ为电波长,c为常数。
可见,某种电磁波波形的波长与频率为唯一对应的关系,根据电波长,可以确定近端抑制结构34的高度,长度及离开谐振孔312的距离。具体地,可以通过滤波器仿真软件确定近端抑制结构34的尺寸,也可以根据实验或者经验确定,本发明实施例对此不做特别限定。
可选地,如图4所示,近端抑制结构34可以是具有折角的带状结构,或者,在其他实施例中,也可以是具有弧度的带状或管状结构。
如图4所示,近端抑制结构34的两端与介质体32的下表面接触。可选地,在其他实施例中,除了两端之外,近端抑制结构34的其他任意部分也可以与介质体32的下表面接触。
在图4所示的实施例中,近端抑制结构4可以起到零腔的作用,改善滤波器通带外的高频端或低频端抑制能力,即抑制滤波器通带外高频端或低频端的信号。
可选地,通过改变近端抑制结构4的结构,例如改变长度,可以改变近端抑制结构4对应的电波长,从而控制滤波器目标滤除的信号频率。具体地,近端抑制结构4的长度与信号频率成反比,近端抑制结构4越长,对应的信号频率越低,则滤波器3可以用于滤除低频端信号;近端抑制结构4越短,对应的信号频率越高,则滤波器3可以用于滤除高频端信号。
可以理解,对滤波器4中其他部件的详细描述可以参照图1或 图2、图4所示实施例中的内容,在此不做赘述。
本发明实施例还提供了一种射频模块,该射频模块包括以上实施例中描述的任意一种横电磁模介质滤波器。
可选地,该射频模块可以是直放站、远端射频单元(RRU,remote radio unit)、射频单元(RFU,radio frequency unit)等设备,本发明实施例对此不做特别限定。
采用本发明实施例提供的横电磁模介质滤波器或射频模块,可以在不增加滤波器体积的前提下,通过在介质体内部设置近端抑制结构实现零腔的功能,通过该结构可以抑制滤波器通带外高频端或低频端的信号,改善滤波器的近端抑制性能,提升滤波效果。
图5为本发明实施例提供的一种基站示例图,该基站内可以包括射频模块,该射频模块内包括图1-图4任一实施例所示的横电磁模介质滤波器。
该基站内还可以包括基带处理单元(BBU,base band unit)402,电源模块403等,各模块或单元可以通过通信总线的方式连接。
可选地,该基站可以是小站(small cell)设备,例如室内小基站产品。
本发明实施例提供的射频模块或基站中使用了具有良好近端抑制性能的横电磁模介质滤波器,成本低,体积小。
本发明实施例还提供了一种制造图1到图4任意一种横电磁模介质滤波器(以下简称“滤波器”)的方法。
该方法包括:制备二层或多层介质坯件生料,在二层或多层介质生料上制备出通孔或盲孔后,先分别烧结好各层介质生料,再在烧结好的各层介质中制备出金属化结构和冲孔,之后通过粘接形成滤波器整体,完成滤波器印刷图案的金属化后形成本发明实施例提 供的横电磁模介质滤波器。
在本发明的另一个实施例中,所述方法也可以是,制备二层或多层介质坯件生料,在各层介质生料上通过开孔、印刷电路等方式获得所需金属结构,即本发明中的传输零点或零腔结构,再将各层制备好的各层介质生料叠压在一起烧结,完成介质滤波器印刷图案的金属化后,最终形成本发明实施例提供的横电磁模介质滤波器。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

  1. 一种横电磁模介质滤波器,其特征在于,包括,
    谐振器,介质体,金属外壳,所述介质体的外表面覆盖有导电材料,所述金属外壳固定于所述介质体的上方,所述金属外壳与所述介质体之间存在间隙,
    所述谐振器包括谐振盘与谐振孔,所述谐振盘设置在所述介质体的上表面,所述谐振孔为上下两端开口的中空柱形结构,所述谐振孔的上端开口位于所述谐振盘上,所述谐振孔的下端开口位于所述介质体的下表面,所述谐振孔的内表面覆盖有导电材质,所述谐振盘为金属材质,
    所述滤波器还包括,近端抑制结构,所述近端抑制结构位于所述介质体内部,所述近端抑制结构的形状、位置及尺寸由所述滤波器目标滤除的信号的频率确定。
  2. 根据权利要求1所述的滤波器,其特征在于,所述近端抑制结构的形状、位置及尺寸由所述滤波器目标滤除的信号的频率确定,包括
    根据所述滤波器的耦合系数,确定所述近端抑制结构的高度,长度及离开所述谐振孔的距离,其中,所述耦合系数与所述滤波器目标滤除的信号的频率对应。
  3. 根据权利要求2所述的滤波器,其特征在于,所述近端抑制结构至少有两端与所述介质体的下表面接触,所述近端抑制结构的其余部分位于所述介质体内的磁场区域。
  4. 根据权利要求2所述的滤波器,其特征在于,所述近端抑制结构位于所述介质体内的电场区域。
  5. 根据权利要求1所述的滤波器,其特征在于,所述近端抑制结构的形状、位置及尺寸由所述滤波器目标滤除的信号的频率确定,包括
    根据所述滤波器目标滤除的信号的频率对应的电波长,确定所述近端抑制结构的高度,长度及离开所述谐振孔的距离。
  6. 根据权利要求1-5任一所述的滤波器,其特征在于,所述近端抑制结构为金属化通孔、金属化带状线、实体金属结构、金属化导体、金属薄片中的任意一种。
  7. 一种射频模块,其特征在于,包括,权利要求1-6任意所述的横电磁模介质滤波器。
  8. 一种基站,其特征在于,包括,权利要求7所述的射频模块。
PCT/CN2015/085087 2014-12-08 2015-07-24 横电磁模介质滤波器、射频模块及基站 WO2016090925A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2970054A CA2970054C (en) 2014-12-08 2015-07-24 Transverse electromagnetic mode dielectric filter, radio frequency module, and base station
JP2017548510A JP2017537581A (ja) 2014-12-08 2015-07-24 横電磁モード誘電体フィルタ、無線周波数モジュール、および基地局
EP15867903.5A EP3217468B1 (en) 2014-12-08 2015-07-24 Transverse electromagnetic mode dielectric filter, radio frequency module and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410743332.9 2014-12-08
CN201410743332.9A CN104466315B (zh) 2014-12-08 2014-12-08 横电磁模介质滤波器、射频模块及基站

Publications (1)

Publication Number Publication Date
WO2016090925A1 true WO2016090925A1 (zh) 2016-06-16

Family

ID=52911977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085087 WO2016090925A1 (zh) 2014-12-08 2015-07-24 横电磁模介质滤波器、射频模块及基站

Country Status (5)

Country Link
EP (1) EP3217468B1 (zh)
JP (1) JP2017537581A (zh)
CN (1) CN104466315B (zh)
CA (1) CA2970054C (zh)
WO (1) WO2016090925A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411476A (zh) * 2022-08-19 2022-11-29 北京遥测技术研究所 一种小型化全金属结构的微同轴微波滤波器芯片

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466315B (zh) * 2014-12-08 2017-11-24 上海华为技术有限公司 横电磁模介质滤波器、射频模块及基站
CN109219904A (zh) * 2016-12-29 2019-01-15 深圳市大富科技股份有限公司 一种tem模滤波器及通信设备
CN107359394B (zh) * 2017-08-15 2020-09-11 罗森伯格技术有限公司 可调电磁混合耦合滤波器
CN108493538B (zh) * 2018-04-11 2024-04-16 广东通宇通讯股份有限公司 一种能调节耦合强度的腔体滤波器
WO2023159482A1 (en) * 2022-02-25 2023-08-31 Telefonaktiebolaget Lm Ericsson (Publ) A communication device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201849A1 (en) * 2002-04-25 2003-10-30 Takaaki Uchiyama Dielectric filter device having conductive strip removed for improved filter characteristics
CN102760923A (zh) * 2012-08-02 2012-10-31 深圳市国人射频通信有限公司 介质滤波器
CN202855879U (zh) * 2012-09-18 2013-04-03 武汉凡谷电子技术股份有限公司 滤波器中tem模金属腔与tm模介质腔可调电耦合结构
CN103928731A (zh) * 2014-04-30 2014-07-16 华为技术有限公司 Tem模介质滤波器和制造方法
CN104466315A (zh) * 2014-12-08 2015-03-25 上海华为技术有限公司 横电磁模介质滤波器、射频模块及基站

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692726A (en) * 1986-07-25 1987-09-08 Motorola, Inc. Multiple resonator dielectric filter
US5537085A (en) * 1994-04-28 1996-07-16 Motorola, Inc. Interdigital ceramic filter with transmission zero
KR970008855A (ko) * 1996-11-08 1997-02-24 김덕용 유전체 공진기 필터
US5850168A (en) * 1997-04-18 1998-12-15 Motorola Inc. Ceramic transverse-electromagnetic-mode filter having a waveguide cavity mode frequency shifting void and method of tuning same
TW409458B (en) * 1998-11-03 2000-10-21 Samsung Electro Mech Dielectric filter
KR100342442B1 (ko) * 1999-11-03 2002-06-28 성규제 마이크로스트립 패턴 결합의 tem모드 유전체 동축 공진기를 이용한 초고주파 대역통과 여파기
JP4494931B2 (ja) * 2004-10-19 2010-06-30 日本特殊陶業株式会社 誘電体磁器組成物及びこれを用いた電子部品
JP2007028141A (ja) * 2005-07-15 2007-02-01 Toko Inc 誘電体フィルタ
WO2007142786A1 (en) * 2006-05-31 2007-12-13 Cts Corporation Ceramic monoblock filter with inductive direct-coupling and quadruplet cross-coupling
US7619496B2 (en) * 2006-10-27 2009-11-17 Cts Corporation Monoblock RF resonator/filter having a conductive transmission line connecting regions of conductive material
CN101340014B (zh) * 2008-08-01 2012-04-04 苏州艾福电子通讯有限公司 带凹槽的陶瓷电介质滤波器和双工器
US9030276B2 (en) * 2008-12-09 2015-05-12 Cts Corporation RF monoblock filter with a dielectric core and with a second filter disposed in a side surface of the dielectric core
CN103050752B (zh) * 2009-08-11 2016-06-01 京信通信系统(中国)有限公司 腔体介质滤波器及其带外抑制方法
JP5569686B2 (ja) * 2010-07-29 2014-08-13 宇部興産株式会社 誘電体共振部品及びそれを用いた実装構造体
CN203260696U (zh) * 2012-12-03 2013-10-30 武汉凡谷电子技术股份有限公司 Tm模介质滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201849A1 (en) * 2002-04-25 2003-10-30 Takaaki Uchiyama Dielectric filter device having conductive strip removed for improved filter characteristics
CN102760923A (zh) * 2012-08-02 2012-10-31 深圳市国人射频通信有限公司 介质滤波器
CN202855879U (zh) * 2012-09-18 2013-04-03 武汉凡谷电子技术股份有限公司 滤波器中tem模金属腔与tm模介质腔可调电耦合结构
CN103928731A (zh) * 2014-04-30 2014-07-16 华为技术有限公司 Tem模介质滤波器和制造方法
CN104466315A (zh) * 2014-12-08 2015-03-25 上海华为技术有限公司 横电磁模介质滤波器、射频模块及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3217468A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411476A (zh) * 2022-08-19 2022-11-29 北京遥测技术研究所 一种小型化全金属结构的微同轴微波滤波器芯片
CN115411476B (zh) * 2022-08-19 2023-09-05 北京遥测技术研究所 一种小型化全金属结构的微同轴微波滤波器芯片

Also Published As

Publication number Publication date
CA2970054C (en) 2019-04-23
CA2970054A1 (en) 2016-06-16
EP3217468A1 (en) 2017-09-13
EP3217468A4 (en) 2017-11-29
CN104466315A (zh) 2015-03-25
JP2017537581A (ja) 2017-12-14
CN104466315B (zh) 2017-11-24
EP3217468B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2016090925A1 (zh) 横电磁模介质滤波器、射频模块及基站
US11664564B2 (en) Dielectric filter, transceiver device, and base station
US9825366B2 (en) Printed circuit board antenna and printed circuit board
JP5711318B2 (ja) アンテナ装置及びこれを用いた無線通信機器
CN102394328B (zh) 基于dgs方环谐振器的微带双模带通滤波器
US20150380810A1 (en) Antenna device and method for designing same
JP2023507909A (ja) アンテナコンポーネント及び電子機器
JP2015032969A (ja) 誘電体線路および電子部品
WO2019215970A1 (ja) フィルタ回路及び通信装置
JP4901823B2 (ja) フィルタ装置、これを用いた無線通信モジュール及び無線通信機器
JP5019938B2 (ja) バンドパスフィルタおよびそれを用いた高周波モジュールならびにそれを用いた無線通信機器
JP4895982B2 (ja) フィルタ装置
WO2015199077A1 (ja) 誘電体非接触伝送装置及び非接触伝送方法
JP4889539B2 (ja) バンドパスフィルタおよびそれを用いた高周波モジュールならびにそれらを用いた無線通信機器
JP5213419B2 (ja) バンドパスフィルタならびにそれを用いた無線通信モジュールおよび無線通信機器
JP4535267B2 (ja) 電子部品
JP6221240B2 (ja) コイル部品
JP6337879B2 (ja) 方向性結合器及び高周波回路
Guntupalli et al. Compact high performance microstrip dual-band bandstop filters for GSM mobile bands
CN105322254A (zh) 直接馈电带宽可调平面双模环形带通滤波器
CN107017461B (zh) 带通超材料结构和天线罩
JP5171710B2 (ja) バンドパスフィルタならびにそれを用いた無線通信モジュールおよび無線通信機器
JP4949212B2 (ja) バンドパスフィルタおよびそれを用いた高周波モジュールならびにそれを用いた無線通信機器
CN112563699A (zh) 基于多层pcb结构的小型化螺旋形可表面贴装带通滤波器
JP2015156713A (ja) 電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2970054

Country of ref document: CA

Ref document number: 2017548510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015867903

Country of ref document: EP