WO2016088870A1 - 耐熱性イソアミラーゼ - Google Patents

耐熱性イソアミラーゼ Download PDF

Info

Publication number
WO2016088870A1
WO2016088870A1 PCT/JP2015/084118 JP2015084118W WO2016088870A1 WO 2016088870 A1 WO2016088870 A1 WO 2016088870A1 JP 2015084118 W JP2015084118 W JP 2015084118W WO 2016088870 A1 WO2016088870 A1 WO 2016088870A1
Authority
WO
WIPO (PCT)
Prior art keywords
isoamylase
amino acid
mutant
seq
acid sequence
Prior art date
Application number
PCT/JP2015/084118
Other languages
English (en)
French (fr)
Inventor
博文 堀口
愛 伊豫谷
一磨 塩田
Original Assignee
合同酒精株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同酒精株式会社 filed Critical 合同酒精株式会社
Priority to EP15864800.6A priority Critical patent/EP3228705A4/en
Priority to US15/532,566 priority patent/US10017751B2/en
Priority to JP2016562693A priority patent/JP6585078B2/ja
Publication of WO2016088870A1 publication Critical patent/WO2016088870A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/746Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for lactic acid bacteria (Streptococcus; Lactococcus; Lactobacillus; Pediococcus; Enterococcus; Leuconostoc; Propionibacterium; Bifidobacterium; Sporolactobacillus)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/22Preparation of compounds containing saccharide radicals produced by the action of a beta-amylase, e.g. maltose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01068Isoamylase (3.2.1.68)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/16Preparation of compounds containing saccharide radicals produced by the action of an alpha-1, 6-glucosidase, e.g. amylose, debranched amylopectin
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K7/00Maltose

Definitions

  • the present invention relates to a mutant isoamylase with improved heat resistance and a method for producing maltose using the mutant isoamylase.
  • pullulanase and isoamylase produced by Klebsiella pneumoniae and the like are known as enzymes that hydrolyze ⁇ -1,6-glucopyranoside bonds in starch and amylopectin.
  • pullulanase is a reversible reaction in the presence of a high concentration substrate of 20% (w / v) or more, that is, maltose is polymerized to produce tetrasaccharide, or maltose is transferred to amylose. Therefore, when maltose is produced in combination with ⁇ -amylase, high-purity maltose cannot be produced.
  • isoamylase is an enzyme that hydrolyzes ⁇ -1,6-glucopyranoside bonds in starch, amylopectin, and glycogen, and is known to be able to produce high-purity maltose because no reversible reaction is observed.
  • isoamylase-producing bacteria Pseudomonas amyloderamosa, Flavobacterium odoratum (currently Naxibacter ⁇ haematophilus), etc. have been reported, but these isoamylases are not compatible with various amylases used in combination, such as optimum pH and optimum temperature. , Cann't show enough ability.
  • starch sugar is produced under mildly acidic conditions of pH 5.0 to 6.0 at a high temperature of 50 ° C. or higher, which is a suitable condition for other amylases.
  • isoamylase produced by Pseudomonas amyloderamosa is Appropriate pH is in the acidic range of 3.0 to 4.0 (Non-patent Document 1), and it was difficult to use malt ⁇ -amylase, bacterial ⁇ -amylase and ⁇ -amylase with low acid resistance.
  • isoamylase produced by Flavobacterium odoratum (currently Naxibacter haematophilus) and the like although the optimum pH is consistent with various amylases used together, the optimum temperature is as low as 40 to 45 ° C (Non-patent Documents 2 and 3) Combined use with various amylases was difficult.
  • an object of the present invention is to provide a new isoamylase having an improved optimum temperature, that is, improved heat resistance, and a method for producing maltose using the same.
  • the present inventor manufactured a protein in which a part of the amino acid sequence of isoamylase produced by the aforementioned Flavobacterium odoratum and the like was modified, and examined its heat resistance. As a result, two or more specific positions were changed to other amino acids. The present inventors have found that a mutant isoamylase having improved heat resistance of 5 ° C. to 10 ° C. can be obtained by mutation.
  • the present invention provides the following [1] to [9].
  • An isoamylase consisting of the amino acid sequence represented by SEQ ID NO: 1 or an isoamylase in which one to several amino acid residues are deleted, substituted or inserted in the amino acid sequence represented by SEQ ID NO: 1, An isoamylase in which at least amino acid number 515 valine and 570 methionine are mutated to other amino acids.
  • one or more amino acid residues selected from serine of amino acid number 239, threonine of 241, glycine of 534, and serine of 601 are mutated to other amino acids. amylase.
  • [8] A method for producing isoamylase comprising culturing the transformant according to [7] and collecting isoamylase from the culture.
  • a method for producing maltose comprising reacting an enzyme selected from ⁇ -amylase and ⁇ -amylase with the isoamylase according to any one of [1] to [4] on starch.
  • the isoamylase of the present invention has improved heat resistance of 5 ° C. or more, and overlaps with the optimum temperature of other various amylases. Therefore, the isoamylase of the present invention can industrially advantageously produce high-purity maltose by acting on starch and the like in combination with various amylases.
  • FIG. 5 shows the pH stability of native and hexafold mutant enzymes. It is a figure which shows the heat resistance improvement in the presence of calcium of a native and sixfold mutant enzyme.
  • the isoamylase of the present invention is an isoamylase consisting of the amino acid sequence represented by SEQ ID NO: 1, or one to several amino acid residues are deleted, substituted or inserted in the amino acid sequence represented by SEQ ID NO: 1.
  • the isoamylase consisting of the amino acid sequence represented by SEQ ID NO: 1 is an isoamylase produced by Flavobacterium odoratum (currently Naxibacter haematophilus) described in Non-Patent Documents 2 and 3.
  • This isoamylase includes isoamylases not derived from Flavobacterium odoratum as long as they have the same amino acid sequence. Moreover, as long as it has the same amino acid sequence, not only polypeptide but glycopeptide is contained.
  • SEQ ID NO: 1 shows the amino acid sequence of the mature protein.
  • the number of amino acid residue deletions, substitutions or insertions in an isoamylase in which 1 to several amino acid residues are deleted, substituted or inserted in the amino acid sequence represented by SEQ ID NO: 1 is SEQ ID NO: 1.
  • it is not limited as long as it shows an enzyme activity equivalent to the isoamylase consisting of the amino acid sequence represented, it is preferably 1-20, more preferably 1-10, and even more preferably 1-8.
  • the identity between the deleted, substituted or inserted isoamylase and the amino acid sequence of SEQ ID NO: 1 is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, and 95% or more. Further preferred.
  • sequence identity percentage can be calculated using publicly available or commercially available software with an algorithm that compares the reference sequence as a query sequence.
  • BLAST, FASTA, or GENETYX manufactured by Software Development Co., Ltd.
  • the isoamylase of the present invention is obtained by mutating at least valine at amino acid number 515 and methionine at 570 of the isoamylase to other amino acids.
  • the amino acid numbers 515 and 570 may change.
  • a valine corresponding to 515 valine and a methionine corresponding to 570 methionine are mutated to other amino acids.
  • amino acid numbers 239, 241, 534, and 601 described later which are positions where amino acids corresponding to the amino acids before mutation are present.
  • amino acid number 515 examples include V515P, V515I, V515L, V515G, and V515A, with V515P and V515I being more preferable, and V515P being more preferable.
  • amino acids of amino acid number 570 include leucine, isoleucine, valine, alanine and proline, leucine, isoleucine, valine and alanine are more preferable, and leucine is more preferable.
  • examples of the mutation at amino acid number 570 include M570L, M570I, M570V, M570A, and M570P. M570L, M570I, M570V, and M570A are more preferable, and M570L is more preferable.
  • the isoamylase of the present invention has a heat resistance improvement of 5% or more because at least two of valine at amino acid number 515 and methionine at 570 are mutated to other amino acids. With only one mutation, the improvement in heat resistance is not sufficient.
  • amino acid residues selected from serine of amino acid number 239, threonine of 241, glycine of 534 and serine of 601 were mutated to other amino acids in addition to the above two locations It is preferable.
  • amino acids after the mutation of serine of amino acid number 239 asparagine and glutamine are exemplified, and asparagine is more preferable. Therefore, examples of the mutation of amino acid number 239 include S239N and S239Q, and S239N is more preferable.
  • Examples of other amino acids after mutation of threonine of amino acid number 241 include alanine, serine, and glycine, and alanine is more preferable. Therefore, examples of the mutation at amino acid number 241 include T241A, T241S, and T241G, and T241A is more preferable.
  • amino acids after the mutation of glycine with amino acid number 534 include aspartic acid, glutamic acid, asparagine, and glutamine, with aspartic acid and glutamic acid being more preferable, and aspartic acid being further preferable. Accordingly, examples of the mutation at amino acid number 534 include G534D, G534E, G534N, and G534Q. G534D and G534E are more preferable, and G534D is more preferable.
  • amino acids after the mutation of serine of amino acid number 601 include threonine, alanine, glycine, asparagine, and valine, threonine, alanine, and glycine are more preferable, and threonine is more preferable. Therefore, examples of the mutation of amino acid number 601 include S601T, S601A, S601G, S601N, and S610V, S601T, S601A, and S601G are more preferable, and S601T is more preferable.
  • amino acid mutations of amino acid numbers 239, 241, 534, and 601 may be one or more, but in addition to the above-mentioned 515 and 570, mutation of 241; mutation of 241 and 601; mutation of 239, 241 and 601 Mutation; or 239, 241, 534, and 601 mutations are preferred from the viewpoint of improving heat resistance.
  • Examples of more preferable multiple mutations include V515P / M570L, T241A / V515P / M570L, T241A / V515P / M570L / S601T, S239N / T241A / V515P / M570L / S601T, S239N / T241A / V515P / T570 / 535S It is done.
  • the mutant isoamylase of the present invention is an isoamylase consisting of the amino acid sequence represented by SEQ ID NO: 1, or one to several amino acid residues deleted or substituted or inserted in the amino acid sequence represented by SEQ ID NO: 1.
  • valine of amino acid number 515 and methionine of 570 are substituted with other amino acids, and if necessary, one or more amino acid residues selected from 239 serine, 241 threonine, 534 glycine and 601 serine It can be produced using a gene constructed by substituting a group with another amino acid.
  • the gene for producing the mutant isoamylase of the present invention is a gene having a base sequence encoding the above-mentioned mutant isoamylase.
  • the gene encoding the amino acid sequence represented by SEQ ID NO: 1 should be substituted. It can be constructed by substituting a base sequence encoding an amino acid sequence with a base encoding a desired amino acid residue. Various methods for such site-specific base sequence substitution are well known in the art, and can be performed, for example, by PCR using appropriately designed primers. Alternatively, a gene encoding a modified amino acid sequence may be totally synthesized.
  • the gene thus obtained is inserted into an appropriate expression vector, and this is transformed into an appropriate host (for example, E. coli).
  • an appropriate host for example, E. coli.
  • Many vector / host systems for expressing foreign proteins are known in the art.
  • Examples of the expression vector for incorporating the mutant isoamylase gene include plasmid vectors.
  • Examples of the expression vector for Escherichia coli include pET-14b and pBR322.
  • Examples of Bacillus subtilis include pUB110.
  • filamentous fungi include pPTRI.
  • pRS403 etc. are mentioned for yeast use.
  • the obtained recombinant plasmid is transformed into microorganisms such as Escherichia coli, Bacillus subtilis, filamentous fungi and yeast, and the transformant is cultured to obtain the mutant isoamylase of the present invention.
  • the isoamylase of the present invention has improved heat resistance by 5 ° C to 10 ° C compared to the isoamylase produced by Flavobacterium odoratum, etc., and the optimum pH, isoamylase activity, calcium dependency, etc. are produced by Flavobacterium odoratum etc. It is equivalent to isoamylase. Therefore, high purity maltose can be easily obtained by reacting starch with an enzyme selected from ⁇ -amylase and ⁇ -amylase and the isoamylase of the present invention.
  • ⁇ -amylase GODO-GBA2 (joint sake spirit Co., Ltd.), Optimalto BBA (Danisco Japan Co., Ltd.), ⁇ -amylase L / R (Nagase ChemteX Corporation), Hymaltocin GL (HIBI Co., Ltd.), etc. Can be used.
  • ⁇ -amylase for example, Christase T10 (Daiwa Kasei Co., Ltd.) can be used.
  • the reaction is performed, for example, by adding the enzyme to a starch saccharifying enzyme such as starch and amylase, and mixing and stirring under the pH and temperature conditions at which the enzyme acts.
  • a starch saccharifying enzyme such as starch and amylase
  • high-purity maltose can be produced industrially advantageously.
  • Example 1 (Partial specific mutagenesis of isoamylase) A fragment of about 1.5 kb was obtained using pHSG398 (Takara Bio Inc.) as a template and primers MLUPHSG398-F (CGACGCGTGGCCAGGAACCGTAAAAAG (SEQ ID NO: 2)) and XBAPHSG398-R (GCTCTAGATTTAAGGGCACCAATAACTGC (SEQ ID NO: 3)). This fragment was digested with restriction enzymes Xba I and Mlu I, and ligated with an approximately 2.5 kb Xba I and Mlu I fragment containing the isoamylase gene on the Flavobacterium odoratum genome to obtain p-ML.
  • Site-directed mutagenesis was performed on plasmid p-ML, which is an expression plasmid for native isoamylase, to obtain double mutant (V515P / M570L) expression plasmid p-W. Furthermore, site-directed mutagenesis was performed on this, and the quadruple mutant (T241A / V515P / M570L / S601T) expression plasmid pQ and the sixfold mutant (S239N / T241A / V515P / G534D / M570L / S601T) expression plasmid p -Obtained S.
  • Example 2 (Production of enzyme) Escherichia coli DH5 ⁇ strain was transformed with native isoamylase expression plasmid p-ML, double mutant expression plasmid pW, quadruple mutant expression plasmid pQ, and hexafold mutant expression plasmid pS. An E. coli strain producing isoamylase was obtained. These E. coli were cultured in LB medium (yeast extract 0.5%, tryptone 1.0%, sodium chloride 0.5% pH 7.2) containing 30 ⁇ g / ml chloramphenicol for 3 days at 30 ° C. 1 L of culture solution was obtained.
  • LB medium yeast extract 0.5%, tryptone 1.0%, sodium chloride 0.5% pH 7.2
  • the cells After removing the cells by centrifugation (10,000 g, 10 minutes), the cells were concentrated to 10,000 U / ml by UF concentration (AIP module manufactured by Asahi Kasei Corporation). These were sterilized with a membrane having a pore size of 0.2 ⁇ m to obtain enzyme solutions of native isoamylase, double mutant isoamylase, quadruple mutant isoamylase, and six mutant isoamylase.
  • Example 3 (Improvement of thermal stability of each mutant) After keeping these at 45 ° C, 47.5 ° C, 50 ° C, 52.5 ° C, 55 ° C, 57.5 ° C, 60 ° C, 62.5 ° C, 65 ° C, 67.5 ° C, 70 ° C for 10 minutes The remaining activity was measured.
  • the method for measuring the activity of isoamylase is as follows. To 0.35 ml of 0.5% waxy corn starch solution, 0.1 ml of 0.5 M acetate buffer (pH 6.0) is mixed, and 0.1 ml of enzyme solution diluted appropriately is added and reacted at 45 ° C. for 15 minutes. Thereafter, 0.5 ml of an iodine solution (0.5 M potassium iodide solution containing 0.05 M iodine) diluted 5 times with 0.1 N HCl was added to stop the enzyme reaction, and 10 ml of water was added and sufficiently stirred. Then, it measures at 610 nm using a spectrophotometer.
  • a iodine solution 0.5 M potassium iodide solution containing 0.05 M iodine
  • the unit of enzyme activity was defined as the amount of enzyme that increases 0.01 absorbance per minute under the above conditions. As a result, as shown in FIG. 1, improvement in heat resistance of about 5 ° C. for the double mutant, about 8 ° C. for the quadruple mutant, and about 10 ° C. for the hexa mutant was confirmed.
  • Example 4 Increase of optimum temperature
  • the optimum temperature of the native enzyme is usually 45 ° C, but for the native and each mutant enzyme obtained, 47.5 ° C, 50 ° C, 52.5 ° C, 55 ° C, 57.5 ° C, 60 ° C.
  • the activity at 5 ° C., 62.5 ° C., 65 ° C., 67.5 ° C., and 70 ° C. was measured by the method described in Example 3.
  • the optimum temperature was increased as the double mutant, quadruple mutant, and hexafold mutant were multiplexed.
  • Example 5 The pH stability was examined for native and hexafold mutants. Native and hexafold mutants at pH 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, respectively, and sixfold mutant 60 ° C, native 52.5 ° C And held for 10 minutes, and then rapidly cooled, and the residual activity was measured by the method described in Example 3. As a result, as shown in FIG. 3, there was no significant change in the optimum pH range due to the amino acid modification.
  • Example 6 (Calcium dependence) The native and hexafold mutants were examined for calcium dependence on heat resistance. Native and hexafold mutants were treated at 35 ° C., 40 ° C., 45 ° C. in 20 mM acetate buffer (pH 6.0) with 10 mM calcium chloride or 20 mM acetate buffer (pH 6.0) without calcium chloride. C., 50.degree. C., 55.degree. C., and 60.degree. C. for 10 minutes, and then rapidly cooled and the residual activity was measured by the method described in Example 3. As a result, as shown in FIG. 4, it was confirmed that both the native and hexafold mutants have high heat resistance in the presence of calcium.
  • Example 7 (Production of maltose syrup) A maltose purification test from dextrin was conducted. Dissolve Paindex # 100 (manufactured by Matsutani Chemical Industry Co., Ltd.) as a dextrin in 10 mM acetate buffer (pH 6.0) as Brix30, and (1) GODO-GBA2 (manufactured by Godo Shusei Co., Ltd.) .2 mg added, (2) 0.2 mg of GODO-GBA2 per dextrin and 400 U of native isoamylase per dextrin, (3) 0.2 mg of GODO-GBA2 per g of dextrin and 6-fold mutant Isoamylase added with 400 U / g dextrin was reacted at 60 ° C.
  • the maltose concentration was (1) 15.4%, (2) 23.4%, (3) 25.4%, and the amount of maltose produced was the highest when the hexafold mutant isoamylase was used.
  • the reaction temperature was performed at 62 ° C. in order to further prevent contamination with bacteria during the reaction, the maltose concentrations were (1) 14.0%, (2) 14.7%, and (3) 21.1%.
  • the native isoamylase showed almost no debranching effect, whereas the six-fold mutant isoamylase showed a debranching effect and improved yield.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 耐熱性が向上したイソアミラーゼ、及びデンプンからマルトースの工業的生産方法の提供。 配列番号1で表されるアミノ酸配列からなるイソアミラーゼ、又は配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されているイソアミラーゼにおいて、少なくともアミノ酸番号515のバリン及び570のメチオニンが他のアミノ酸に変異したイソアミラーゼ。

Description

耐熱性イソアミラーゼ
 本発明は、耐熱性が向上した変異イソアミラーゼ、及び変異イソアミラーゼを用いるマルトースの製造法に関する。
 糖化工業において、デンプンやアミロペクチン中のα-1,6-グルコピラノシド結合を加水分解する酵素として、Klebsiella pneumoniaeなどが生産するプルラナーゼ及びイソアミラーゼが知られている。このうち、プルラナーゼは、20%(w/v)以上という高濃度基質存在下では、可逆的な反応、つまりマルトースを重合して4糖を生成したり、また、マルトースをアミロースに転移させたりするため、β-アミラーゼと併用してマルトースを製造する場合、高い純度のマルトースを製造することができない。
 一方、イソアミラーゼは、デンプン、アミロペクチン、グリコーゲン中のα-1,6-グルコピラノシド結合を加水分解する酵素であり、可逆的な反応が見られないため、高純度のマルトースが生産できることが知られている。イソアミラーゼ生産菌としては、Pseudomonas amyloderamosa、Flavobacterium odoratum(現Naxibacter haematophilus)などが報告されているが、これらのイソアミラーゼは、至適pHや至適温度などが、併用される各種アミラーゼと合致しないため、十分な能力を発揮できなかった。一般にデンプン糖の生産は、他のアミラーゼの好適条件である50℃以上の高温でpH5.0~6.0の弱酸性条件下で行われているが、Pseudomonas amyloderamosaが生産するイソアミラーゼは、至適pHが3.0~4.0と酸性領域に片寄っており(非特許文献1)、耐酸性の弱い麦芽β-アミラーゼや細菌β-アミラーゼ及びα-アミラーゼとは併用が困難であった。また、Flavobacterium odoratum(現Naxibacter haematophilus)などが生産するイソアミラーゼは、至適pHは併用される各種アミラーゼと合致するものの、至適温度が40~45℃と低く(非特許文献2、3)、各種アミラーゼとの併用が困難であった。
Starch(1996),48:295-300 Enzyme and Microbial Technology(1998),19(6),456-461 Applied and Environmental Microbiology(1999),65(9),4163-4170
 デンプン等の多糖類から高純度のマルトースを工業的に製造するには、β-アミラーゼ等のアミラーゼとイソアミラーゼを併用することが望まれているが、Flavobacterium odoratumなどが生産するイソアミラーゼの至適温度は他のアミラーゼの至適温度よりも低く、併用できなかった。
 従って、本発明の課題は、より至適温度が向上した、すなわち耐熱性が向上した新たなイソアミラーゼ、及びこれを用いたマルトースの製造法を提供することにある。
 そこで本発明者は、前記のFlavobacterium odoratumなどが生産するイソアミラーゼのアミノ酸配列の一部を改変したタンパク質を製造し、その耐熱性を検討したところ、特定の位置の2ヶ所以上を他のアミノ酸に変異させることにより耐熱性が5℃~10℃向上した変異イソアミラーゼが得られることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[9]を提供するものである。
[1]配列番号1で表されるアミノ酸配列からなるイソアミラーゼ、又は配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されているイソアミラーゼにおいて、少なくともアミノ酸番号515のバリン及び570のメチオニンが他のアミノ酸に変異したイソアミラーゼ。
[2]アミノ酸変異が、V515P及びM570Lである[1]記載のイソアミラーゼ。
[3]さらに、アミノ酸番号239のセリン、241のスレオニン、534のグリシン及び601のセリンから選ばれる1又は2以上のアミノ酸残基が他のアミノ酸に変異した[1]又は[2]記載のイソアミラーゼ。
[4]アミノ酸変異が、S239N、T241A、G534D及びS601Tから選ばれる1又は2以上である[3]記載のイソアミラーゼ。
[5][1]~[4]のいずれかに記載のイソアミラーゼをコードする遺伝子。
[6][5]記載の遺伝子を有する組み換えベクター。
[7][6]記載の組み換えベクターで形質転換した形質転換体。
[8][7]記載の形質転換体を培養して、該培養物からイソアミラーゼを採取することを特徴とするイソアミラーゼの製造法。
[9]デンプンに、β-アミラーゼ、α-アミラーゼから選ばれる酵素と、[1]~[4]のいずれかに記載のイソアミラーゼとを作用させることを特徴とするマルトースの製造法。
 本発明のイソアミラーゼは、耐熱性が5℃以上向上しており、他の各種アミラーゼの至適温度と重複する。従って、本発明のイソアミラーゼは、各種アミラーゼと併用してデンプン等に作用させることにより、高純度のマルトースを工業的に有利に生産することができる。
ネイティブおよび各変異体酵素の熱安定性を示す図である。 ネイティブおよび各変異体酵素の至適温度を示す図である。 ネイティブおよび六重変異体酵素のpH安定性を示す図である。 ネイティブおよび六重変異体酵素のカルシウム存在下での耐熱性向上を示す図である。
 本発明のイソアミラーゼは、配列番号1で表されるアミノ酸配列からなるイソアミラーゼ、又は配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されているイソアミラーゼにおいて、少なくともアミノ酸番号515のバリン及び570のメチオニンが他のアミノ酸に変異したイソアミラーゼである。
 ここで、配列番号1で表されるアミノ酸配列からなるイソアミラーゼは、非特許文献2及び3に記載された、Flavobacterium odoratum(現Naxibacter haematophilus)が産生するイソアミラーゼである。このイソアミラーゼには、同一のアミノ酸配列を有する限り、Flavobacterium odoratum由来でないイソアミラーゼが含まれる。また、同一アミノ酸配列を有する限り、ポリペプチドだけでなく、糖ペプチドも含まれる。なお、配列番号1は、成熟タンパク質のアミノ酸配列を示す。
 配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されているイソアミラーゼにおける、アミノ酸残基の欠失、置換又は挿入の数は、配列番号1で表されるアミノ酸配列からなるイソアミラーゼと同等の酵素活性を示すものであれば限定されないが、1~20個が好ましく、1~10個がさらに好ましく、1~8個がさらに好ましい。また、当該欠失、置換又は挿入されたイソアミラーゼと配列番号1のアミノ酸配列との同一性は、80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましく、95%以上がさらに好ましい。このような配列の同一性パーセンテージは、基準配列を照会配列として比較するアルゴリズムをもった公開又は市販されているソフトウエアを用いて計算することができる。例として、BLAST、FASTA又はGENETYX(ソフトウエア開発社製)などを用いることができる。
 本発明のイソアミラーゼは、少なくとも前記イソアミラーゼのアミノ酸番号515のバリン及び570のメチオニンが他のアミノ酸に変異したものである。なお、配列番号1のアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたイソアミラーゼの場合には、当該アミノ酸番号515及び570は、変化する場合があるが、その場合、515のバリンに相当するバリン、及び570のメチオニンに相当するメチオニンが、他のアミノ酸に変異したものである。これは、後記のアミノ酸番号239、241、534及び601についても同様であり、変異前のアミノ酸に相当するアミノ酸が存在する位置である。
 ここで、他のアミノ酸としては、アミノ酸番号515については、プロリン、イソロイシン、ロイシン、グリシン、アラニンが挙げられ、プロリン、イソロイシンがより好ましく、プロリンがさらに好ましい。従って、アミノ酸番号515の変異としては、V515P、V515I、V515L、V515G、V515Aが挙げられ、V515P、V515Iがより好ましく、V515Pがさらに好ましい。
 また、アミノ酸番号570の他のアミノ酸については、ロイシン、イソロイシン、バリン、アラニン、プロリンが挙げられ、ロイシン、イソロイシン、バリン、アラニンがより好ましく、ロイシンがさらに好ましい。従って、アミノ酸番号570の変異としては、M570L、M570I、M570V、M570A、M570Pが挙げられ、M570L、M570I、M570V、M570Aがより好ましく、M570Lがさらに好ましい。
 本発明のイソアミラーゼは、少なくともアミノ酸番号515のバリンと570のメチオニンの2ヶ所が他のアミノ酸に変異していることにより5%以上の耐熱性向上が得られる。一方のみの変異では、耐熱性の向上は十分でない。
 本発明のイソアミラーゼは、上記2ヶ所以外に、さらに、アミノ酸番号239のセリン、241のスレオニン、534のグリシン及び601のセリンから選ばれる1又は2以上のアミノ酸残基が他のアミノ酸に変異したものであるのが好ましい。
 ここで、アミノ酸番号239のセリンの変異後の他のアミノ酸としては、アスパラギン、グルタミンが挙げられ、アスパラギンがより好ましい。従って、アミノ酸番号239の変異としては、S239N、S239Qが挙げられ、S239Nがより好ましい。
 アミノ酸番号241のスレオニンの変異後の他のアミノ酸としては、アラニン、セリン、グリシンが挙げられ、アラニンがより好ましい。従って、アミノ酸番号241の変異としては、T241A、T241S、T241Gが挙げられ、T241Aがより好ましい。
 アミノ酸番号534のグリシンの変異後の他のアミノ酸としては、アスパラギン酸、グルタミン酸、アスパラギン、グルタミンが挙げられ、アスパラギン酸、グルタミン酸がより好ましく、アスパラギン酸がさらに好ましい。従って、アミノ酸番号534の変異としては、G534D、G534E、G534N、G534Qが挙げられ、G534D、G534Eがより好ましく、G534Dがさらに好ましい。
 アミノ酸番号601のセリンの変異後の他のアミノ酸としては、スレオニン、アラニン、グリシン、アスパラギン、バリンが挙げられ、スレオニン、アラニン、グリシンがより好ましく、スレオニンがさらに好ましい。従って、アミノ酸番号601の変異としては、S601T、S601A、S601G、S601N、S610Vが挙げられ、S601T、S601A、S601Gがより好ましく、S601Tがさらに好ましい。
 また、アミノ酸番号239、241、534及び601のアミノ酸変異は、1又は2以上であればよいが、前記515及び570に加えて、241の変異;241及び601の変異;239、241及び601の変異;又は239、241、534及び601の変異がされているのが、耐熱性向上の点で好ましい。
 より好ましい多重変異の例としては、V515P/M570L、T241A/V515P/M570L、T241A/V515P/M570L/S601T、S239N/T241A/V515P/M570L/S601T、S239N/T241A/V515P/G534D/M570L/S601Tが挙げられる。
 本発明の変異イソアミラーゼは、配列番号1で表されるアミノ酸配列からなるイソアミラーゼ、又は配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されているイソアミラーゼにおいて、アミノ酸番号515のバリン及び570のメチオニンが他のアミノ酸に置換し、必要によりさらに239のセリン、241のスレオニン、534のグリシン及び601のセリンから選ばれる1又は2以上のアミノ酸残基が他のアミノ酸に置換することにより構築した遺伝子を用いて製造することができる。
 本発明の変異イソアミラーゼを製造するための遺伝子は、前記の変異イソアミラーゼをコードする塩基配列を有する遺伝子であり、例えば前記の配列番号1で示されるアミノ酸配列をコードする遺伝子において、置換すべきアミノ酸配列をコードする塩基配列を、所望のアミノ酸残基をコードする塩基に置換することにより構築することができる。このような部位特異的塩基配列置換のための種々の方法は、当該技術分野においてよく知られており、例えば適切に設計されたプライマーを用いるPCRによって行うことができる。あるいは、改変型のアミノ酸配列をコードする遺伝子を全合成してもよい。
 このようにして得た遺伝子を適当な発現ベクターに挿入し、これを適当な宿主(例えば大腸菌)に形質転換する。外来性蛋白質を発現させるための多くのベクター・宿主系が当該技術分野において知られている。変異イソアミラーゼ遺伝子を組み込むための発現ベクターとしては、プラスミドベクターが挙げられ、例えば大腸菌用としてはpET-14b、pBR322等が挙げられる。枯草菌用としては、pUB110等が挙げられる。糸状菌用としては、pPTRI等が挙げられる。また、酵母用としては、pRS403等が挙げられる。
 得られた組み換えプラスミドは、大腸菌、枯草菌、糸状菌、酵母等の微生物に形質転換し、当該形質転換体を培養すれば、本発明変異イソアミラーゼが得られる。
 本発明のイソアミラーゼは、Flavobacterium odoratumなどが生産するイソアミラーゼに比べて耐熱性が5℃~10℃向上しており、かつ至適pH、イソアミラーゼ活性、 カルシウム依存性等はFlavobacterium odoratumなどが生産するイソアミラーゼと同等である。従って、デンプンに、β-アミラーゼ、α―アミラーゼから選ばれる酵素と、本発明イソアミラーゼとを作用させれば、高純度のマルトースが容易に得られる。ここでβ-アミラーゼとしては、GODO-GBA2(合同酒精株式会社)、オプチマルトBBA(ダニスコジャパン株式会社)、β-アミラーゼL/R(ナガセケムテックス株式会社)、ハイマルトシンGL(エイチビィアイ株式会社)等を用いることができる。また、α-アミラーゼとしては、例えばクライスターゼT10(大和化成株式会社)を用いることができる。
 反応は、例えばデンプンおよびアミラーゼ等のデンプン糖化酵素に前記酵素を添加し、当該酵素が作用するpH、温度条件にて混合撹拌することにより行なわれる。本発明方法によれば、高純度のマルトースを工業的に有利に製造することができる。
 次に実施例を挙げて本発明をより詳細に説明するが、本発明は何らこれに限定されるものではない。
実施例1(イソアミラーゼの部分特異的変異導入)
 pHSG398(タカラバイオ株式会社)をテンプレートとして、プライマーMLUPHSG398-F(CGACGCGTGGCCAGGAACCGTAAAAAG(配列番号2))およびXBAPHSG398-R(GCTCTAGATTTAAGGGCACCAATAACTGC(配列番号3))を用いて約1.5kbの断片を取得した。この断片を制限酵素Xba I及びMlu Iで消化し、Flavobacterium odoratumゲノム上のイソアミラーゼ遺伝子を含む約2.5kbのXba I及びMlu I断片とライゲーションすることにより、p-MLを取得した。ネイティブのイソアミラーゼの発現プラスミドであるプラスミドp-MLに部位特異的変異導入を行い、二重変異体(V515P/M570L)発現プラスミドp-Wを取得した。さらにこれに部位特異的変異導入を行い、四重変異体(T241A/V515P/M570L/S601T)発現プラスミドp-Q及び六重変異体(S239N/T241A/V515P/G534D/M570L/S601T)発現プラスミドp-Sを取得した。
実施例2(酵素の生成)
 ネイティブイソアミラーゼ発現プラスミドp-ML、二重変異体発現プラスミドp-W、四重変異体発現プラスミドp-Q、及び六重変異体発現プラスミドp-Sにより大腸菌DH5α株を形質転換し、それぞれのイソアミラーゼを生産する大腸菌株を取得した。これらの大腸菌を30μg/mlのクロラムフェニコールを含むLB培地(酵母エキス 0.5%、トリプトン1.0%、塩化ナトリウム 0.5% pH 7.2)で、30℃ 3日培養し、培養液1Lを得た。遠心分離(10,000g、10分間)により菌体を除去した後、UF濃縮(旭化成社製 AIPモジュール)により、10,000U/mlとなるように濃縮した。これらを0.2μmのポアサイズの膜で除菌することにより、ネイティブイソアミラーゼ、二重変異体イソアミラーゼ、四重変異体イソアミラーゼ、六重変異体イソアミラーゼの酵素溶液とした。
実施例3(各変異体の熱安定性向上)
 これらを45℃、47.5℃、50℃、52.5℃、55℃、57.5℃、60℃、62.5℃、65℃、67.5℃、70℃に10分間保ったのちに急冷し、残存活性を測定した。
<活性測定方法>
 イソアミラーゼの活性測定法は、以下のとおりである。
 0.5%ワキシーコーンスターチ溶液0.35mlに、0.5Mの酢酸緩衝液(pH6.0)0.1mlを混合し、適時希釈した酵素液を0.1ml加え、45℃で15分間反応させる。その後、0.1N HCl にて5倍希釈したヨード溶液(0.05Mヨウ素を含む0.5Mヨウ化カリウム溶液)0.5mlを加えて酵素反応を止め、10mlの水を加えて十分に撹拌した後、分光光度計を用いて610nmで測定する。酵素活性の単位は、上記条件下で1分間に0.01吸光度を増加する酵素量を1単位とした。
 その結果、図1に示すように、二重変異体で約5℃、四重変異体で約8℃、六重変異体で約10℃の耐熱性の向上が確認された。
実施例4(至適温度の上昇)
 また、通常ネイティブの酵素の至適温度は45℃であるが、ネイティブおよび得られた各変異体酵素について、47.5℃、50℃、52.5℃、55℃、57.5℃、60℃、62.5℃、65℃、67.5℃、70℃での活性を実施例3に記載の方法で測定した。
 その結果、図2に示すように、二重変異体、四重変異体、六重変異体と変異を多重化するにつれて至適温度の上昇が認められた。
実施例5(至適pH)
 ネイティブ及び六重変異体についてpH安定性を調べた。ネイティブ及び六重変異体をpH4.0、4.5、5.0、5.5、6.0、6.5、7.0の各pHで六重変異体60℃、ネイティブ52.5℃で10分間保持後、急冷し残存活性を実施例3に記載の方法で測定した。
 その結果、図3に示すように、アミノ酸の改変による至適pH域の大きな変動は認められなかった。
実施例6(カルシウム依存性)
 ネイティブ及び六重変異体について、耐熱性に関するカルシウム依存性を調べた。ネイティブ及び六重変異体を、10mM塩化カルシウムを含んだ20mM酢酸緩衝液(pH 6.0)もしくは塩化カルシウムを含まない20mM酢酸緩衝液(pH 6.0)中で、35℃、40℃、45℃、50℃、55℃、60℃で10分間保温後、急冷し残存活性を実施例3に記載の方法で測定した。
 その結果、図4に示すように、ネイティブおよび六重変異体ともにカルシウム存在下で耐熱性が高いことが認められた。
実施例7(マルトースシロップの製造)
 デキストリンからのマルトース精製試験を行った。10mM酢酸緩衝液(pH6.0)にBrix30となるようにデキストリンとしてパインデックス#100(松谷化学工業社製)を溶解し、(1)GODO-GBA2(合同酒精株式会社製)をデキストリン1gあたり0.2mg添加したもの、(2)GODO-GBA2をデキストリン1gあたり0.2mgおよびネイティブイソアミラーゼをデキストリン1gあたり400U添加したもの、(3)GODO-GBA2をデキストリン1gあたり0.2mgおよび六重変異体イソアミラーゼをデキストリン1gあたり400U添加したもの、それぞれを60℃で24時間反応させた。
 100℃、5分間加熱し反応を停止させ、生成したマルトース量について、高速液体クロマトグラフィー(ウォーターズ社製2695)を用い、RI検出器(ウォーターズ社製2414)、CARBOSep CHO-620CA(トランスジェノミック社製)カラム温度85℃、水を溶離液として流速0.5ml/分にて測定した。
 その結果、マルトース濃度は(1)15.4%、(2)23.4%、(3)25.4%となり、六重変異体イソアミラーゼを使用した場合に最もマルトース生成量が高かった。
 また、反応中の雑菌汚染をより防止するために反応温度を62℃で行ったところ、マルトース濃度は(1)14.0%、(2)14.7%、(3)21.1%となり、ネイティブイソアミラーゼでは枝切り効果がほとんど認められなかったのに対して、六重変異体イソアミラーゼでは枝切り効果が認められ、歩留まりの向上が認められた。

Claims (9)

  1.  配列番号1で表されるアミノ酸配列からなるイソアミラーゼ、又は配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されているイソアミラーゼにおいて、少なくともアミノ酸番号515のバリン及び570のメチオニンが他のアミノ酸に変異したイソアミラーゼ。
  2.  アミノ酸変異が、V515P及びM570Lである請求項1記載のイソアミラーゼ。
  3.  さらに、アミノ酸番号239のセリン、241のスレオニン、534のグリシン及び601のセリンから選ばれる1又は2以上のアミノ酸残基が他のアミノ酸に変異した請求項1又は2記載のイソアミラーゼ。
  4.  アミノ酸変異が、S239N、T241A、G534D及びS601Tから選ばれる1又は2以上である請求項3記載のイソアミラーゼ。
  5.  請求項1~4のいずれかに記載のイソアミラーゼをコードする遺伝子。
  6.  請求項5記載の遺伝子を有する組み換えベクター。
  7.  請求項6記載の組み換えベクターで形質転換した形質転換体。
  8.  請求項7記載の形質転換体を培養して、該培養物からイソアミラーゼを採取することを特徴とするイソアミラーゼの製造法。
  9.  デンプンに、β-アミラーゼ、α―アミラーゼから選ばれる酵素と、請求項1~4のいずれかに記載のイソアミラーゼとを作用させることを特徴とするマルトースの製造法。
PCT/JP2015/084118 2014-12-05 2015-12-04 耐熱性イソアミラーゼ WO2016088870A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15864800.6A EP3228705A4 (en) 2014-12-05 2015-12-04 Heat-resistant isoamylase
US15/532,566 US10017751B2 (en) 2014-12-05 2015-12-04 Heat-resistant isoamylase
JP2016562693A JP6585078B2 (ja) 2014-12-05 2015-12-04 耐熱性イソアミラーゼ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246530 2014-12-05
JP2014246530 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088870A1 true WO2016088870A1 (ja) 2016-06-09

Family

ID=56091809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084118 WO2016088870A1 (ja) 2014-12-05 2015-12-04 耐熱性イソアミラーゼ

Country Status (4)

Country Link
US (1) US10017751B2 (ja)
EP (1) EP3228705A4 (ja)
JP (1) JP6585078B2 (ja)
WO (1) WO2016088870A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823981A (ja) * 1994-07-20 1996-01-30 Nippon Shokuhin Kako Co Ltd 新規なイソアミラーゼ遺伝子及びその用途
JP2002519054A (ja) * 1998-07-02 2002-07-02 ノボザイムス アクティーゼルスカブ 澱粉枝切り酵素
WO2008015861A1 (fr) * 2006-08-04 2008-02-07 Amano Enzyme Inc. Procédé de conception d'enzyme mutée, son procédé de préparation et enzyme mutée

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265197B1 (en) 1998-07-02 2001-07-24 Novozymes A/S Krogshoejvej Starch debranching enzymes
CN102559568B (zh) 2011-12-31 2014-07-09 江南大学 一种酸性耐热异淀粉酶基因工程菌及其应用
WO2014081622A1 (en) * 2012-11-20 2014-05-30 Danisco Us Inc. Amylase with maltogenic properties

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823981A (ja) * 1994-07-20 1996-01-30 Nippon Shokuhin Kako Co Ltd 新規なイソアミラーゼ遺伝子及びその用途
JP2002519054A (ja) * 1998-07-02 2002-07-02 ノボザイムス アクティーゼルスカブ 澱粉枝切り酵素
WO2008015861A1 (fr) * 2006-08-04 2008-02-07 Amano Enzyme Inc. Procédé de conception d'enzyme mutée, son procédé de préparation et enzyme mutée

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE Database DDBJ 10 August 2015 (2015-08-10), LOU, J. ET AL.: "Definition: Massilia sp. WF1 contig30, whole genome shotgun sequence.", XP055454654, Database accession no. LELH02000030 *
See also references of EP3228705A4 *

Also Published As

Publication number Publication date
JP6585078B2 (ja) 2019-10-02
JPWO2016088870A1 (ja) 2017-09-21
EP3228705A4 (en) 2018-06-27
US20170362581A1 (en) 2017-12-21
EP3228705A1 (en) 2017-10-11
US10017751B2 (en) 2018-07-10

Similar Documents

Publication Publication Date Title
JP5528333B2 (ja) β−アミラーゼ、それをコードする遺伝子及びその製造法
JP6505240B2 (ja) 切断型プルラナーゼの製造および使用方法
CN112391365B (zh) 一种催化活力提高的淀粉分支酶突变体及其应用
JP5178517B2 (ja) 変異型酵素の設計法、調製法、及び変異型酵素
CN114317498A (zh) 一种α-葡萄糖转苷酶突变体及其应用
JP6585078B2 (ja) 耐熱性イソアミラーゼ
US11136569B2 (en) Heat resistant isoamylase
CN107603965B (zh) 热稳定性提高的酸性淀粉酶突变体及其制备方法和应用
WO2017144008A1 (zh) α淀粉酶变体及其应用
US11913053B2 (en) Application of trehalase in fermentative production
WO2020145288A1 (ja) 耐熱性イソアミラーゼ
JP7514184B2 (ja) マルトトリオース生成アミラーゼ
JP6162389B2 (ja) イソマルターゼ
WO2020213604A1 (ja) 新規βアミラーゼ及びその利用・製造法
KR101014802B1 (ko) 복합 탈분지 효소를 이용하여 전분으로부터 포도당을 제조하는 방법
KR102312807B1 (ko) 비피도박테리움 속의 저항전분 분해 활성을 가지는 아밀라아제들 및 이의 용도
KR102312806B1 (ko) 비피도박테리움 속 유래인 저항전분 분해 활성을 나타내는 아밀라아제들 및 이의 용도
Sun et al. Cloning, expression and characterization of a thermostable pullulanase from newly isolated thermophilic Geobacillus sp. LM14–3
CN114457058A (zh) 一种饲用α淀粉酶的突变改良方法及应用
CN115851561A (zh) 一种表达低聚糖脱支酶的基因工程菌及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864800

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015864800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016562693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15532566

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE