WO2016088342A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2016088342A1
WO2016088342A1 PCT/JP2015/005875 JP2015005875W WO2016088342A1 WO 2016088342 A1 WO2016088342 A1 WO 2016088342A1 JP 2015005875 W JP2015005875 W JP 2015005875W WO 2016088342 A1 WO2016088342 A1 WO 2016088342A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
intermediate pressure
compression chamber
injection
extension
Prior art date
Application number
PCT/JP2015/005875
Other languages
French (fr)
Japanese (ja)
Inventor
豊広 加納
井上 孝
江原 俊行
雅至 井ノ上
神谷 治雄
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015005489.8T priority Critical patent/DE112015005489T5/en
Publication of WO2016088342A1 publication Critical patent/WO2016088342A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)

Definitions

  • the present disclosure relates to a compressor that joins an intermediate pressure fluid sucked from the outside to a fluid in a compression process in a compression chamber.
  • Patent Document 1 discloses a compressor that joins an intermediate pressure fluid sucked from outside to a fluid in a compression process in a compression chamber.
  • an intermediate pressure suction port for sucking an intermediate pressure fluid from the outside and the compression chamber are intermittently connected. Therefore, pressure pulsation tends to occur in the intermediate pressure fluid in the injection passage, which is a fluid passage connecting the intermediate pressure suction port and the compression chamber. Further, such pressure pulsation causes an increase in noise and vibration of the entire compressor.
  • part was provided in the inside of an injection passage, and the intermediate pressure fluid of a liquid phase state is stored in this enlarged diameter part. . Then, the space in the enlarged diameter portion is made to function as a muffler space that attenuates the pressure pulsation of the fluid, and an increase in noise and vibration of the compressor is suppressed.
  • This indication aims at providing the compressor which can fully control the increase in noise and vibration in view of the above-mentioned point.
  • the compressor forms a compression mechanism portion having a first compression chamber and a second compression chamber for compressing a fluid, a housing for accommodating the compression mechanism portion, and a passage through which the fluid flows in the housing. And a passage forming member.
  • the housing is provided with an intermediate pressure suction port for sucking in from the outside an intermediate pressure fluid that is merged with a fluid in the compression process in the first compression chamber and the second compression chamber.
  • the passage forming member includes a branch portion that branches the flow of the intermediate pressure fluid sucked from the intermediate pressure suction port, and a first injection passage that guides one of the intermediate pressure fluids branched at the branch portion to the first compression chamber side.
  • a second injection passage for guiding the other intermediate pressure fluid branched at the branch portion to the second compression chamber side, and an extension passage for extending at least one of the first injection passage and the second injection passage to the side away from the branch portion And have.
  • the internal space of the extension passage can be made to function as a muffler space that attenuates the pressure pulsation of at least one fluid in the first injection passage and the second injection passage.
  • the extension passage is formed so as to extend at least one of the first injection passage and the second injection passage to the side away from the branch portion, the internal volume (passage volume) of the extension passage can be easily expanded. Can do.
  • the extension passage may be formed in a shape that allows the first injection passage and the second injection passage to communicate with each other.
  • the extension passage may be constituted by a first extension passage that extends the first injection passage and a second extension passage that extends the second injection passage.
  • a compressor in one aspect of the present disclosure, includes a compression mechanism section that forms a first compression chamber and a second compression chamber that compress a fluid, a housing that houses the compression mechanism section, and a passage that allows fluid to flow through the housing.
  • the housing is provided with an intermediate pressure suction port for sucking in from the outside an intermediate pressure fluid that is merged with a fluid in the compression process in the first compression chamber and the second compression chamber.
  • the passage forming member includes a branch portion that branches the flow of the intermediate pressure fluid sucked from the intermediate pressure suction port, and a first injection passage that guides one of the intermediate pressure fluids branched at the branch portion to the first compression chamber side. And a second injection passage for guiding the other intermediate pressure fluid branched at the branching portion to the second compression chamber side.
  • the passage shape of the first injection passage and the passage shape of the second injection passage are different from each other.
  • the passage shape of the first injection passage and the passage shape of the second injection passage are different, the passage volume of the first injection passage and the passage volume of the second injection passage can be set to different values.
  • pressure pulsations of fluids having different frequencies can be attenuated in the first injection passage and the second injection passage.
  • increase in noise and vibration of the compressor in which the injection passage is formed can be sufficiently suppressed.
  • the different passage shapes mean that the lengths of the passages are different and the cross-sectional areas of the passages are different.
  • the passage forming member may form an extension passage that extends at least one of the first injection passage and the second injection passage to the side away from the branch portion.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. It is sectional drawing corresponding to FIG. 3 of the channel
  • the compressor 1 is applied to a heat pump cycle (vapor compression refrigeration cycle) 100 that heats hot water using a heat pump type hot water heater. Therefore, the fluid compressed by the compressor 1 of this embodiment is a refrigerant of a heat pump cycle.
  • the heat pump cycle 100 is configured as a gas injection cycle (economizer-type refrigeration cycle) in which an intermediate-pressure gas-phase refrigerant of a cycle is merged with a refrigerant in a pressurizing process in the compression chamber of the compressor 1. More specifically, the heat pump cycle 100 of the present embodiment includes a compressor 1, a water-refrigerant heat exchanger 2, a first expansion valve 3, a gas-liquid separator 4, a second expansion valve, as shown in FIG. 5. It has the outdoor heat exchanger 6 grade
  • the water-refrigerant heat exchanger 2 is a heating heat exchanger that heats hot water by exchanging heat between the refrigerant discharged from the discharge port 40a of the compressor 1 and the hot water.
  • the first expansion valve 3 is high-stage decompression means for decompressing the high-pressure refrigerant flowing out of the water-refrigerant heat exchanger 2 until it becomes intermediate-pressure refrigerant, and operates according to a control signal output from a control device (not shown). Is an electric expansion valve controlled.
  • the gas-liquid separator 4 is a gas-liquid separating means for separating the gas-liquid of the intermediate pressure refrigerant decompressed by the first expansion valve 3.
  • the second expansion valve 5 is a low-stage decompression unit that decompresses the intermediate-pressure liquid-phase refrigerant flowing out from the liquid-phase refrigerant outlet of the gas-liquid separator 4 until it becomes a low-pressure refrigerant.
  • the outdoor heat exchanger 6 is a heat absorption heat exchanger that evaporates the low-pressure refrigerant decompressed by the second expansion valve 5 by exchanging heat with the outside air.
  • a suction port 30 a of the compressor 1 is connected to the refrigerant outlet side of the outdoor heat exchanger 6, and an intermediate pressure suction port 30 b of the compressor 1 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 4. Yes. Therefore, in this embodiment, the intermediate-pressure gas-phase refrigerant separated by the gas-liquid separator 4 is injected into the refrigerant in the pressurizing process in the compression chamber of the compressor 1.
  • carbon dioxide is used as the refrigerant
  • the supercritical pressure in which the pressure of the high-pressure side refrigerant in the cycle from the discharge port of the compressor 1 to the inlet side of the first expansion valve 3 is equal to or higher than the critical pressure. It constitutes the refrigeration cycle.
  • the refrigerant is mixed with oil (refrigeration oil) that lubricates each sliding portion inside the compressor 1, and a part of this oil circulates in the cycle together with the refrigerant.
  • the heat pump hot water heater is a hot water storage tank that stores hot water heated by the water-refrigerant heat exchanger 2, and hot water supply between the hot water storage tank and the water-refrigerant heat exchanger 2.
  • a hot water circulation circuit that circulates, a water pump that is arranged in the hot water circulation circuit and pumps hot water (none of which is shown).
  • the compressor 1 of the present embodiment is a so-called scroll type compressor, and includes a compression mechanism section 10, an electric motor section (electric motor section) 20, a housing 30, an oil separator 40, and the like.
  • the compression mechanism unit 10 sucks, compresses and discharges a refrigerant that is a compression target fluid.
  • the electric motor unit 20 outputs a rotational driving force that drives the compression mechanism unit 10.
  • the housing 30 forms an outer shell of the compressor 1 and houses the compression mechanism portion 10 and the electric motor portion 20 and the like therein.
  • the oil separator 40 is disposed outside the housing 30 and separates oil from the high-pressure refrigerant compressed by the compression mechanism unit 10.
  • the compressor 1 of the present embodiment has a shaft (rotating shaft) 25 that transmits a rotational driving force from the electric motor unit 20 to the compression mechanism unit 10 extending in the vertical direction (up and down direction).
  • the part 10 and the motor part 20 are configured in a so-called vertical type in which the parts are arranged in the vertical direction. More specifically, in the compressor 1, the compression mechanism unit 10 is disposed on the lower side of the electric motor unit 20.
  • the housing 30 includes a cylindrical member 31 whose central axis extends in the vertical direction, a bowl-shaped upper lid member 32 that blocks the upper end portion of the cylindrical member 31, and a bowl-shaped lower lid member 33 that blocks the lower end portion of the cylindrical member 31. These are integrally joined to form a sealed container structure.
  • the cylindrical member 31, the upper lid member 32, and the lower lid member 33 are all made of iron or an iron-based metal, and these members are joined by welding.
  • the housing 30 is formed with a suction port 30a, an intermediate pressure suction port 30b, and a high-pressure refrigerant outlet not shown.
  • the suction port 30a is a refrigerant suction port through which the low-pressure refrigerant flowing out of the outdoor heat exchanger 6 is sucked into the compression mechanism unit 10.
  • the intermediate pressure suction port 30b is used to compress the intermediate pressure gas-phase refrigerant flowing out from the gas-phase refrigerant outlet of the gas-liquid separator 4 into the compression chambers of the compression mechanism unit 10 (in this embodiment, the first and second compression chambers shown in FIG. 2).
  • Va, Vb) are intermediate pressure refrigerant inlets for merging with the refrigerant in the compression process.
  • the high-pressure refrigerant outlet is a refrigerant outlet for allowing the high-pressure refrigerant discharged from the compression mechanism unit 10 to flow out to the oil separator 40 side disposed outside the housing 30.
  • the electric motor unit 20 includes a coil stator 21 that forms a stator and a rotor 22 that forms a rotor.
  • a shaft 25 is fixed to the shaft center hole of the rotor 22 by press-fitting. Therefore, when electric power is supplied from the control device to the coils of the coil stator 21 and a rotating magnetic field is generated, the rotor 22 and the shaft 25 rotate together.
  • the shaft 25 is formed in a substantially cylindrical shape, and both end portions thereof are rotatably supported by a first bearing portion 26 and a second bearing portion 27 that are configured by sliding bearings, respectively. Further, an oil supply passage 25 a for supplying oil to the sliding portion between the outer surface of the shaft 25 and the first and second bearing portions 26 and 27 is formed inside the shaft 25.
  • the first bearing portion 26 is formed in a middle housing 28 fixed so as to partition the space in the housing 30 into a space in which the electric motor portion 20 is disposed and a space in which the compression mechanism portion 10 is disposed.
  • the lower end side (compression mechanism unit 10 side) is rotatably supported.
  • the 2nd bearing part 27 is being fixed to the cylindrical member 31 of the housing 30 via the interposition member, and is supporting the upper end side (opposite side of the compression mechanism part 10) of the shaft 25 rotatably.
  • the compression mechanism unit 10 is a scroll type compression mechanism unit configured by a movable scroll 11 and a fixed scroll 12 each having a spiral tooth portion.
  • the movable scroll 11 has a disk-shaped movable side substrate part 111 and a spiral movable side tooth part 112 protruding from the movable side substrate part 111 toward the fixed scroll 12 side.
  • the fixed scroll 12 has a disk-shaped fixed side substrate portion 121 and a spiral fixed side tooth portion 122 protruding from the fixed side substrate portion 121 toward the movable scroll 11 side.
  • the fixed scroll 12 is fixed to the lower side of the middle housing 28 by press-fitting the outer peripheral side surface of the fixed-side substrate portion 121 into the inner peripheral side surface of the cylindrical member 31 of the housing 30.
  • the movable scroll 11 is disposed in a space formed between the middle housing 28 and the fixed scroll 12.
  • the movable scroll 11 and the fixed scroll 12 are arranged so that the plate surfaces of the respective substrate portions 111 and 121 face each other, and the respective tooth portions 112 and 122 are engaged with each other, so that the tooth portion of one scroll is engaged.
  • the tip portion is disposed so as to contact the substrate portion of the other scroll.
  • each tooth part 112,122 contacts in several places, and when it sees from the axial direction of the central axis of the shaft 25 between each tooth part 112,122, it forms in a crescent moon shape.
  • a plurality of compression chambers are formed.
  • FIG. 2 schematically shows the first compression chamber Va and the second compression chamber Vb into which the intermediate pressure refrigerant that has flowed in via the intermediate pressure suction port 30b is injected for the sake of clarity.
  • the first compression chamber Va and the second compression chamber Vb are formed at positions that are symmetric with respect to the central axis of the shaft 25. Further, the refrigerant pressure in the first compression chamber Va is equal to the refrigerant pressure in the second compression chamber Vb.
  • a cylindrical boss portion 113 into which the lower end portion of the shaft 25 (end portion on the compression mechanism portion 10 side) is inserted is formed at the center portion on the upper surface side of the movable side substrate portion 111 of the movable scroll 11.
  • the lower end portion of the shaft 25 is an eccentric portion 25 b that is eccentric with respect to the rotation center of the shaft 25. Accordingly, the eccentric portion 25 b of the shaft 25 is inserted into the boss portion 113 of the movable side substrate portion 111 of the movable scroll 11.
  • a rotation prevention mechanism (not shown) for preventing the movable scroll 11 from rotating around the eccentric portion 25b is provided. For this reason, when the shaft 25 rotates, the movable scroll 11 turns (revolves) with the rotation center of the shaft 25 as the revolution center without rotating around the eccentric portion 25b.
  • the compression chamber described above is displaced from the outer peripheral side to the center side around the shaft 25 while reducing the volume. Furthermore, in this embodiment, the confidentiality of the compression chamber is improved by disposing a tip seal at the tip of the tooth portions 112 and 122 of the respective scrolls. As such a chip seal, one formed of PEEK (polyether ether ketone) resin can be employed.
  • PEEK polyether ether ketone
  • the suction port 30a formed in the housing 30 is positioned on the outermost peripheral side of the compression chamber via the suction passage formed in the fixed scroll 12 and has the largest volume on the suction side. Communicating with Therefore, the fixed scroll 12 of the present embodiment also has a function as a passage forming member that forms a passage through which the refrigerant flows in the housing 30.
  • the intermediate pressure suction port 30b is an intermediate position in the process of being displaced from the outermost peripheral side to the center side in the compression chamber via the first and second injection passages 14a and 14b formed in the fixed scroll 12 and the passage forming plate 14. Are communicated with the first compression chamber Va and the second compression chamber Vb. Therefore, the passage forming plate 14 of this embodiment constitutes a passage forming member together with the fixed scroll 12.
  • the passage forming plate 14 is formed of a disk-shaped metal member, and is fixed to the lower surface of the fixed scroll 12 by fixing means such as bolting. Further, as shown in FIG. 3, the passage forming plate 14 is recessed on the surface on the fixed scroll 12 side so that the branching portion 14c, the first injection passage 14a, the second injection passage 14b, and the extension passage 14d are formed. Is formed.
  • FIG. 2 The positional relationship among the first injection passage 14a, the second injection passage 14b, the branching portion 14c, the suction port 30a, the intermediate pressure suction port 30b, and the like is as shown in FIG. That is, in FIG. 2, the first injection passage 14a, the second injection passage 14b, the branching portion 14c, the suction port 30a, the intermediate pressure suction port 30b, and the like are schematically illustrated on one cross-sectional view for the sake of clarity of explanation. It is shown.
  • the branch part 14c is a part that branches the flow of the intermediate pressure refrigerant sucked from the intermediate pressure suction port 30b.
  • the first injection passage 14a is a refrigerant passage that guides one intermediate-pressure refrigerant branched by the branch portion 14c to the first compression chamber Va side.
  • the second injection passage 14b is a refrigerant passage that guides the other intermediate-pressure refrigerant branched by the branch portion 14c to the second compression chamber Vb side.
  • the extension passage 14d is a refrigerant passage that extends the first injection passage 14a and the second injection passage 14b to the side away from the branch portion 14c. Furthermore, the extension passage 14d of the present embodiment is formed in a semicircular arc shape so as to connect the first injection passage 14a and the second injection passage 14b when viewed from the central axis direction of the shaft 25.
  • first injection passage 14a, the second injection passage 14b, and the extension passage 14d of the present embodiment are annularly connected when viewed from the axial direction of the central axis of the shaft 25 as shown in FIG.
  • first injection passage 14a, the second injection passage 14b, and the extension passage 14d in the passage formation plate 14 have constant depth dimensions (the amount of recesses in the front and back directions).
  • the intermediate pressure refrigerant sucked from the intermediate pressure suction port 30b is allowed to flow only from the first injection passage 14a side (branch portion 14c side) to the first compression chamber Va side.
  • 1 check valve 51 is arranged inside the fixed scroll 12.
  • a second check valve 52 that allows only the intermediate pressure refrigerant to flow from the second injection passage 14 b side (branch portion 14 c side) to the second compression chamber Vb side is disposed inside the fixed scroll 12. Yes.
  • the first and second check valves 51 and 52 are constituted by a reed valve formed of a plate-like member and a seat member formed with a passage for opening and closing the reed valve. Since such a reed valve type check valve can be accommodated in a relatively small accommodation space, the internal volume (dead volume) of the refrigerant passage downstream from the first and second check valves 51 and 52. It is effective in that it does not unnecessarily expand.
  • a discharge hole 123 through which the refrigerant compressed in the compression chamber is discharged is formed at the center of the fixed side substrate 121 of the fixed scroll 12. Further, a discharge chamber 124 communicating with the discharge hole 123 is formed below the discharge hole 123.
  • the discharge chamber 124 is provided with a discharge valve (reed valve) that prevents the refrigerant from flowing backward from the discharge chamber 124 side to the compression chamber Vc side, and a stopper 16 that regulates the maximum opening of the discharge valve.
  • a refrigerant passage (not shown) that leads from the discharge chamber 124 to the refrigerant outlet formed in the housing 30 is formed. Further, a refrigerant inlet 40b of the oil separator 40 is connected to the refrigerant outlet.
  • the oil separator 40 includes a cylindrical member 41 extending in the vertical direction, and the refrigerant pressurized by the compression mechanism unit 10 is swirled in a space formed therein, and the gas phase refrigerant and the oil are subjected to centrifugal force. And isolate.
  • the high-pressure gas-phase refrigerant separated by the oil separator 40 is discharged from the discharge port 40a formed on the upper side of the oil separator 40 to the water-refrigerant heat exchanger 2 side.
  • the oil separated by the oil separator 40 is stored in a lower portion of the oil separator 40, and the first and first compression mechanisms 10 and the shaft 25 in the housing 30 are connected to the first and first members via an oil passage (not shown). 2 Supplied to a sliding portion with the bearing portions 26 and 27.
  • the low-pressure refrigerant flowing out of the outdoor heat exchanger 6 is sucked into the suction-side compression chamber positioned on the outermost peripheral side and communicating with the suction port 30a through the suction port 30a.
  • the compression chamber into which the low-pressure refrigerant has flowed moves to an intermediate position communicating with the downstream refrigerant passage 51 while reducing its volume.
  • the compression chamber moves to a position where it communicates with the discharge hole 123 of the fixed scroll 12 on the center side, and discharge occurs when the pressure of the high-pressure refrigerant in the working chamber Vc exceeds the valve opening pressure of the discharge valve.
  • the valve opens.
  • the high-pressure refrigerant is discharged into the discharge chamber 124.
  • the high-pressure refrigerant discharged to the discharge chamber 124 is separated from the oil by the oil separator 40 and discharged from the discharge port 40a to the water-refrigerant heat exchanger 2 side.
  • the heat pump cycle 100 can suck the refrigerant, compress it, and discharge it.
  • the intermediate pressure suction port and the compression chamber are intermittently provided. Because of the connection, pressure pulsation is likely to occur in the intermediate pressure refrigerant in the injection passage (first and second injection passages 14a and 14b in this embodiment). Further, such pressure pulsation causes an increase in noise and vibration of the entire compressor.
  • the extension passage 14d is formed in the compressor 1 of the present embodiment, the pressure of the intermediate pressure refrigerant in the first and second injection passages 14a and 14b is formed in the internal space of the extension passage 14d. It can function as a muffler space that attenuates pulsation.
  • extension passage 14d is formed so as to extend the first injection passage 14a and the second injection passage 14b to the side away from the branch portion 14c. According to this, it is possible to easily expand the internal volume (passage volume) of the extension passage 14d by effectively utilizing the portion of the passage formation plate 14 where the first and second injection passages 14a and 14b are not formed. .
  • the extension passage 14d is formed so as to communicate the first injection passage 14a and the second injection passage 14b. Therefore, the passage volume of the extension passage 14d can be more easily expanded.
  • the effect is further improved.
  • increase in noise and vibration of the compressor can be suppressed.
  • the opening and closing operation of the check valves 51 and 52 causes the inside of the injection passages 14a and 14b. Pressure pulsation is likely to occur in the refrigerant. Therefore, it is extremely effective in the compressor in which the check valve is arranged in the injection passage to suppress the increase in noise and vibration as in the present embodiment.
  • the extension passage is configured by a first extension passage 14e that extends the first injection passage 14a and a second extension passage 14f that extends the second injection passage 14b.
  • the first and second extension passages 14 e and 14 f are both arcuately shaped when viewed from the central axis direction of the shaft 25, and the tip portions communicate with each other. Not done.
  • FIG. 4 is a drawing corresponding to FIG. 3 of the first embodiment, and the same reference numerals are given to the same or equivalent parts as in the first embodiment. The same applies to the following drawings.
  • the first and second extension passages 14e and 14f are in the form of a tip. For this reason, the first and second pulsating waves of the refrigerant in the first and second injection passages 14a and 14b and the pulsating waves reflected at the tips of the first and second extension passages 14e and 14f cancel each other.
  • the passage lengths and the like of the extension passages 14e and 14f the increase in noise and vibration of the compressor can be suppressed more effectively.
  • the passage lengths of the first and second extension passages 14e and 14f are about 1 / 8 ⁇ or more and about 3 / 8 ⁇ or less with respect to the wavelength ⁇ of the pulsating wave.
  • the length of the first extension passage 14e may be the length of the center line of the first extension passage 14e as shown by the broken line in FIG. More specifically, the length of the center line of the passage extending from the communication of the first check valve 51 to the first compression chamber Va to the tip of the branch portion 14c of the first extension passage 14e may be employed. . The same applies to the length of the second extension passage 14f.
  • the extension passage 14e and the second extension passage 14f may be arranged so that at least a part thereof is superposed.
  • the extension passage 14d of this embodiment reduces the passage cross-sectional area by gradually reducing the passage width dimension with distance from the first and second injection passages 14a and 14b.
  • Other configurations and operations are the same as those in the first embodiment. Therefore, when the compressor 1 of this embodiment is operated, the same effect as that of the first embodiment can be obtained.
  • the passage cross-sectional area gradually changes in the extension passage 14d as the distance from the first and second injection passages 14a and 14b increases.
  • the frequency of the pressure pulsation that can be attenuated can be gradually changed. Therefore, pressure pulsations in a wide frequency band can be attenuated, and increase in noise and vibration of the compressor 1 can be suppressed more effectively.
  • the compressor 1 of the present embodiment since the passage length of the first extension passage 14e and the passage length of the second extension passage 14f are different, the first and second extension passages 14e, The frequency of the pressure pulsation that can be attenuated at 14f can be set to different values. Therefore, the range of the pressure pulsation frequency band that can be attenuated can be expanded, and the increase in noise and vibration of the compressor 1 can be more effectively suppressed.
  • the pressure pulsation generated when the compressor 1 of the present embodiment is applied to a system that rotates at two different rotational speeds and the passage length of the first extension passage 14e is rotated at one rotational speed is attenuated. It may be determined so that the pressure pulsation generated when the passage length of the second extension passage 14f is rotated at the other rotational speed is attenuated. According to this, it is possible to suppress an increase in noise and vibration of the compressor 1 when operated at any rotational speed.
  • the passage length of the first injection passage 14a is changed by changing the positions of the intermediate pressure suction port 30b and the branching portion 14c with respect to the second embodiment. It is shorter than the passage length of the 2-injection passage 14b.
  • Other configurations and operations are the same as those in the second embodiment. Therefore, when the compressor 1 of this embodiment is operated, the same effect as that of the second embodiment can be obtained.
  • the passage shape of the first injection passage 14a and the passage shape of the second injection passage 14b are different, so the first injection passage 14a and the second injection passage 14b Different frequency pulsations can be attenuated.
  • the internal spaces of the first and second injection passages 14a and 14b each function as a muffler space. Therefore, if the passage shapes of the first and second injection passages 14a and 14b are different, and the passage volumes of the first and second injection passages 14a and 14b are different values, the first and second injection passages 14a and 14b. Thus, pressure pulsations with different frequencies can be attenuated.
  • the means for making the passage shape of the first injection passage 14a different from the passage shape of the second injection passage 14b is not limited to changing the length of each passage.
  • the passage width dimension of the first injection passage 14a may be larger than the passage width dimension of the second injection passage 14b.
  • the passage width dimension of the first injection passage 14a may be made smaller than the passage width dimension of the second injection passage 14b.
  • the first injection passage 14a is formed in a shape in which the passage cross-sectional area gradually increases from the branch portion 14c.
  • the second injection passage 14b is formed with a throttle portion 14g that reduces the cross-sectional area of the passage.
  • the first extension passage 14e is eliminated.
  • Other configurations and operations are the same as those of the fifth embodiment. Therefore, when the compressor 1 of this embodiment is operated, the same effect as that of the fifth embodiment can be obtained.
  • the internal spaces of the first and second injection passages 14a and 14b each function as a muffler space. For this reason, the pressure pulsation damping effect of the intermediate pressure refrigerant can be improved by increasing the passage volume of the first and second injection passages 14a and 14b. On the other hand, if the passage volumes of the first and second injection passages 14a and 14b are enlarged, the compressor 1 as a whole is likely to be enlarged.
  • the pressure pulsation of the intermediate pressure refrigerant is achieved by forming the throttle portions 14g and the like in the first and second injection passages 14a and 14b and reducing the flow rate of the refrigerant flowing through the first and second injection passages 14a and 14b. Energy can be reduced. On the other hand, if the flow rate of the refrigerant flowing through the first and second injection passages 14a and 14b is reduced, it becomes impossible to join the intermediate pressure refrigerant having an appropriate flow rate to the refrigerant in the compression process in the compression chamber.
  • the first injection passage 14a and the second injection passage 14b are shaped so that the passage cross-sectional area changes to form the throttle portion 14g and the like. According to this, the passage volume of the first and second injection passages 14a and 14b and the flow rate of the refrigerant flowing through the first and second injection passages 14a and 14b are adjusted so that the pressure pulsation of the target frequency can be attenuated. Can do.
  • the volume component C of the first and second injection passages 14a and 14b can be adjusted by adjusting the passage volume of the first and second injection passages 14a and 14b.
  • the resistance component R of the first and second injection passages 14a and 14b can be adjusted by adjusting the flow rate of the refrigerant flowing through the first and second injection passages 14a and 14b.
  • the shape of the first injection passage 14a and the second injection passage 14b can be adjusted so that the pressure pulsation of the target frequency can be attenuated, like a low-pass filter in an electric circuit. As a result, an increase in noise and vibration of the compressor 1 can be suppressed more effectively.
  • the passage forming plate 14 is fixed to the lower surface of the fixed scroll 12 by bolting. For this reason, in order to prevent refrigerant leakage from the gap between the lower surface of the fixed scroll 12 and the passage forming plate 14, a gasket 15 that is a flat seal member is provided in the gap between the fixed scroll 12 and the passage forming plate 14. It is arranged.
  • the gasket 15 is arranged in the range shown in the hatched area in FIG. Further, the gasket 15 is formed with first and second ribs 15a and 15b protruding to at least one of the fixed scroll 12 side and the passage forming plate 14 side. The first and second ribs 15a and 15b are crushed when the passage forming plate 14 is fixed to the fixed scroll 12, and fulfill the function of improving the sealing performance.
  • annular first rib 15a is formed around the discharge chamber 124, and the outer circumferences of the first and second injection passages 14a and 14b and the second extension passage 14f are formed.
  • a second rib 15b is formed on the side. That is, the first and second ribs 15a and 15b are formed in a double annular shape when viewed from the direction in which the gasket 15 is crushed (in the present embodiment, the central axis direction of the shaft 25).
  • the second rib 15b is shaped to be recessed on the inner peripheral side, and four inner peripheral side bolt holes 151 into which fastening bolts are inserted are arranged at substantially equal angular intervals (approximately 90 ° intervals) around the first rib 15a.
  • the six outer peripheral bolt holes 152 are arranged around the second rib 15b at substantially equal angular intervals (approximately 60 ° intervals).
  • the first and second ribs 15a and 15b are formed in an annular shape, and the inner peripheral side bolt hole 151 and the outer peripheral side bolt 152 hole are arranged in an annular shape, so that the passage forming plate 14 is positioned below the fixed scroll 12.
  • the first and second ribs 15a and 15b of the gasket 15 can be uniformly crushed, and a good sealing property can be obtained.
  • the example in which the extension passages 14d to 14f are formed in the passage formation plate 14 has been described.
  • the shape of the first injection passage 14a and the second shape If the shape of the passage of the injection passage 14b is different, the extension passages 14d to 14f are not essential components.
  • the first and second extension passages 14e and 14f do not necessarily have to be formed at the same time. If the pressure pulsation at the target frequency can be attenuated as in the sixth embodiment, either one is formed. May be.
  • the passage width dimension of each of the passages 14a to 14f is changed in order to change the passage cross-sectional area of the first and second injection passages 14a and 14b and the extension passages 14d to 14f has been described.
  • the means for changing the passage cross-sectional area is not limited to this.
  • the passage cross-sectional area may be changed by changing the vertical dimension (the amount of depression) of each of the passages 14a to 14f in the passage forming plate 14.
  • first and second injection passages 14a and 14b and the extension passages 14d to 14f do not necessarily have to change all the passage cross-sectional areas. If the pressure pulsation of the target frequency can be attenuated, the passages 14a to 14f What is necessary is just to change at least 1 passage cross-sectional area of 14f.
  • the compression mechanism unit 10 is not limited thereto. That is, as the compression mechanism unit 10, any type of compression mechanism unit may be adopted as long as the first and second compression chambers Va and Vb that can join the intermediate pressure fluid to the fluid in the compression process are formed. May be.
  • the compression chamber may be a so-called inner vane type compression mechanism portion formed by a space partitioned by the inner peripheral surface of the cylinder, the outer peripheral surface of the rotor, and the vanes.
  • the compressor 1 is applied to the heat pump cycle 100 of the heat pump type hot water heater, but the application of the compressor 1 is not limited to this. That is, the compressor 1 can be applied to a wide range of uses as a compressor that compresses various fluids.
  • the compressor 1 A radiator that exchanges heat between the high-pressure refrigerant discharged from the compressor and the fluid to be heated (or outside air); A branching portion for branching the flow of the high-pressure refrigerant flowing out of the radiator; A high-stage expansion valve that depressurizes one high-pressure refrigerant branched at the branching section until it becomes an intermediate-pressure refrigerant; An internal heat exchanger for exchanging heat between the other high-pressure refrigerant branched at the branch portion and the intermediate-pressure refrigerant decompressed by the high-stage expansion valve; A low-stage side expansion valve that depressurizes the high-pressure refrigerant flowing out of the internal heat exchanger until it becomes a low-pressure refrigerant; An evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out from the low-stage expansion valve and the outside air (or the fluid to be cooled), A gas injection cycle configured to suck intermediate pressure refrigerant flowing
  • the vertical type compressor 1 has been described.
  • the shaft (rotating shaft) 25 extends in the horizontal direction, and the compression mechanism unit 10 and the motor unit 20 are arranged in the horizontal direction (lateral direction).
  • You may be comprised as a horizontal installation type compressor.
  • first and second check valves 51 and 52 are not limited thereto.
  • a free valve (spool valve) that is displaced according to the differential pressure between the refrigerant pressure P1 on the compression chamber Vc side and the refrigerant pressure P2 on the intermediate pressure suction port 30b side may be employed.
  • the means disclosed in each of the above embodiments may be appropriately combined within a practicable range.
  • the modification of the second embodiment may be applied to the first and second extension passages 14e and 14f of the fourth embodiment. That is, when viewed from the radial direction of the shaft 25, the first and second extension passages 14e and 14f having different lengths may be arranged so that at least a part thereof is superposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

A compressor is provided with a compression mechanism part (10) having a first compression chamber (Va) and a second compression chamber (Vb) for compressing fluid, a housing (30) for accommodating the compression mechanism part, and a passage-forming member (14) for forming a passage through which the fluid is channeled in the housing. The housing is provided with an intermediate pressure intake port (30b) for taking in from the exterior intermediate pressure fluid, which will be merged with fluid undergoing the compression process in the first compression chamber and the second compression chamber. The passage-forming member has a branching part (14c) where the flow of intermediate pressure fluid taken in through the intermediate pressure intake port branches, a first injection passage (14a) for guiding one path of intermediate pressure fluid branched in the branching part to the first compression chamber, a second injection passage (14b) for guiding the other path of intermediate pressure fluid branched in the branching part to the second compression chamber, and extending passages (14d, 14e, 14f) for causing at least one of the first injection passage and the second injection passage to extend in a direction away from the branching part.

Description

圧縮機Compressor 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年12月4日に出願された日本特許出願2014-245621号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2014-245621 filed on December 4, 2014, the contents of which are incorporated herein by reference.
 本開示は、圧縮室にて圧縮過程の流体に、外部から吸入された中間圧流体を合流させる圧縮機に関する。 The present disclosure relates to a compressor that joins an intermediate pressure fluid sucked from the outside to a fluid in a compression process in a compression chamber.
 特許文献1に、圧縮室にて圧縮過程の流体に、外部から吸入された中間圧流体を合流させる圧縮機が開示されている。 Patent Document 1 discloses a compressor that joins an intermediate pressure fluid sucked from outside to a fluid in a compression process in a compression chamber.
 この種の圧縮機では、外部から中間圧流体を吸入する中間圧吸入ポートと圧縮室が断続的に接続される。そのため、中間圧吸入ポートと圧縮室とを接続する流体通路であるインジェクション通路内の中間圧流体に圧力脈動が生じやすい。さらに、このような圧力脈動は、圧縮機全体としての騒音や振動を増加させる原因となる。 In this type of compressor, an intermediate pressure suction port for sucking an intermediate pressure fluid from the outside and the compression chamber are intermittently connected. Therefore, pressure pulsation tends to occur in the intermediate pressure fluid in the injection passage, which is a fluid passage connecting the intermediate pressure suction port and the compression chamber. Further, such pressure pulsation causes an increase in noise and vibration of the entire compressor.
 これに対して、特許文献1の圧縮機では、インジェクション通路の内部に他の部位よりも通路径を拡大させた拡径部を設け、この拡径部に液相状態の中間圧流体を貯留させる。そして、この拡径部内の空間を流体の圧力脈動を減衰させるマフラー空間として機能させ、圧縮機の騒音および振動の増加を抑制しようとしている。 On the other hand, in the compressor of patent document 1, the enlarged diameter part which expanded the passage diameter rather than the other site | part was provided in the inside of an injection passage, and the intermediate pressure fluid of a liquid phase state is stored in this enlarged diameter part. . Then, the space in the enlarged diameter portion is made to function as a muffler space that attenuates the pressure pulsation of the fluid, and an increase in noise and vibration of the compressor is suppressed.
特開平5-157069号公報Japanese Patent Laid-Open No. 5-157069
 しかしながら、特許文献1の圧縮機では、インジェクション通路の途中に拡径部を設けただけなので、拡径部内の空間(マフラー空間)の容積を充分に確保することが難しい。このため、特許文献1の圧縮機では、拡径部内の空間にて流体の圧力脈動を充分に減衰させることができず、圧縮機の騒音および振動の増加を充分に抑制できなくなってしまうおそれがある。 However, in the compressor of Patent Document 1, it is difficult to ensure a sufficient volume of the space (muffler space) in the enlarged diameter portion because the enlarged diameter portion is only provided in the middle of the injection passage. For this reason, in the compressor of patent document 1, there is a possibility that the pressure pulsation of the fluid cannot be sufficiently attenuated in the space in the enlarged diameter portion, and the increase in noise and vibration of the compressor cannot be sufficiently suppressed. is there.
 本開示は、上記点に鑑み、騒音および振動の増加を充分に抑制できる圧縮機を提供することを目的とする。 This indication aims at providing the compressor which can fully control the increase in noise and vibration in view of the above-mentioned point.
 本開示の一態様において、圧縮機は、流体を圧縮する第1圧縮室および第2圧縮室を有する圧縮機構部と、圧縮機構部を収容するハウジングと、ハウジング内に流体を流通させる通路を形成する通路形成部材と、を備える。ハウジングには、第1圧縮室および第2圧縮室にて圧縮過程の流体に合流させる中間圧流体を外部から吸入する中間圧吸入ポートが設けられている。通路形成部材は、中間圧吸入ポートから吸入された中間圧流体の流れを分岐する分岐部と、分岐部にて分岐された一方の中間圧流体を第1圧縮室側へ導く第1インジェクション通路と、分岐部にて分岐された他方の中間圧流体を第2圧縮室側へ導く第2インジェクション通路と、第1インジェクション通路および第2インジェクション通路の少なくとも一方を分岐部から離れる側へ延長させる延長通路と、を有している。 In one aspect of the present disclosure, the compressor forms a compression mechanism portion having a first compression chamber and a second compression chamber for compressing a fluid, a housing for accommodating the compression mechanism portion, and a passage through which the fluid flows in the housing. And a passage forming member. The housing is provided with an intermediate pressure suction port for sucking in from the outside an intermediate pressure fluid that is merged with a fluid in the compression process in the first compression chamber and the second compression chamber. The passage forming member includes a branch portion that branches the flow of the intermediate pressure fluid sucked from the intermediate pressure suction port, and a first injection passage that guides one of the intermediate pressure fluids branched at the branch portion to the first compression chamber side. A second injection passage for guiding the other intermediate pressure fluid branched at the branch portion to the second compression chamber side, and an extension passage for extending at least one of the first injection passage and the second injection passage to the side away from the branch portion And have.
 これによれば、延長通路の内部空間を、第1インジェクション通路内および第2インジェクション通路内の少なくとも一方の流体の圧力脈動を減衰させるマフラー空間として機能させることができる。 According to this, the internal space of the extension passage can be made to function as a muffler space that attenuates the pressure pulsation of at least one fluid in the first injection passage and the second injection passage.
 さらに、延長通路を、第1インジェクション通路および第2インジェクション通路の少なくとも一方を分岐部から離れる側へ延長させるように形成しているので、延長通路の内部容積(通路容積)を容易に拡大させることができる。 Furthermore, since the extension passage is formed so as to extend at least one of the first injection passage and the second injection passage to the side away from the branch portion, the internal volume (passage volume) of the extension passage can be easily expanded. Can do.
 従って、延長通路の通路容積として、中間圧流体の圧力脈動を充分に減衰可能な容積を確保しやすい。その結果、インジェクション通路が形成された圧縮機の騒音および振動の増加を充分に抑制することができる。 Therefore, it is easy to secure a volume that can sufficiently attenuate the pressure pulsation of the intermediate pressure fluid as the passage volume of the extension passage. As a result, increase in noise and vibration of the compressor in which the injection passage is formed can be sufficiently suppressed.
 延長通路は、第1インジェクション通路および第2インジェクション通路を連通させる形状に形成されていてもよい。また、延長通路は、第1インジェクション通路を延長させる第1延長通路、および第2インジェクション通路を延長させる第2延長通路によって構成されていてもよい。 The extension passage may be formed in a shape that allows the first injection passage and the second injection passage to communicate with each other. The extension passage may be constituted by a first extension passage that extends the first injection passage and a second extension passage that extends the second injection passage.
 本開示の一態様において、圧縮機は、流体を圧縮する第1圧縮室および第2圧縮室を形成する圧縮機構部と、圧縮機構部を収容するハウジングと、ハウジング内に流体を流通させる通路を形成する通路形成部材と、を備える。ハウジングには、第1圧縮室および第2圧縮室にて圧縮過程の流体に合流させる中間圧流体を外部から吸入する中間圧吸入ポートが設けられている。通路形成部材は、中間圧吸入ポートから吸入された中間圧流体の流れを分岐する分岐部と、分岐部にて分岐された一方の中間圧流体を第1圧縮室側へ導く第1インジェクション通路と、分岐部にて分岐された他方の中間圧流体を第2圧縮室側へ導く第2インジェクション通路と、を有している。第1インジェクション通路の通路形状および第2インジェクション通路の通路形状は互いに異なっている。 In one aspect of the present disclosure, a compressor includes a compression mechanism section that forms a first compression chamber and a second compression chamber that compress a fluid, a housing that houses the compression mechanism section, and a passage that allows fluid to flow through the housing. A passage forming member to be formed. The housing is provided with an intermediate pressure suction port for sucking in from the outside an intermediate pressure fluid that is merged with a fluid in the compression process in the first compression chamber and the second compression chamber. The passage forming member includes a branch portion that branches the flow of the intermediate pressure fluid sucked from the intermediate pressure suction port, and a first injection passage that guides one of the intermediate pressure fluids branched at the branch portion to the first compression chamber side. And a second injection passage for guiding the other intermediate pressure fluid branched at the branching portion to the second compression chamber side. The passage shape of the first injection passage and the passage shape of the second injection passage are different from each other.
 これによれば、第1インジェクション通路の通路形状および第2インジェクション通路の通路形状が異なっているので、第1インジェクション通路の通路容積および第2インジェクション通路の通路容積を異なる値とすることができる。 According to this, since the passage shape of the first injection passage and the passage shape of the second injection passage are different, the passage volume of the first injection passage and the passage volume of the second injection passage can be set to different values.
 従って、第1インジェクション通路および第2インジェクション通路にて異なる周波数の流体の圧力脈動を減衰させることができる。その結果、インジェクション通路が形成された圧縮機の騒音および振動の増加を充分に抑制することができる。 Therefore, pressure pulsations of fluids having different frequencies can be attenuated in the first injection passage and the second injection passage. As a result, increase in noise and vibration of the compressor in which the injection passage is formed can be sufficiently suppressed.
 ここで、通路形状が異なっているとは、各通路の長さが異なっていることや、各通路の通路断面積が異なっていること等を幅広く含む意味である。 Here, the different passage shapes mean that the lengths of the passages are different and the cross-sectional areas of the passages are different.
 また、通路形成部材が、第1インジェクション通路および第2インジェクション通路の少なくとも一方を分岐部から離れる側へ延長させる延長通路を形成していてもよい。 Further, the passage forming member may form an extension passage that extends at least one of the first injection passage and the second injection passage to the side away from the branch portion.
 本開示についての上記およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態のヒートポンプサイクルの全体構成図である。 第1実施形態の圧縮機の軸方向断面図である。 図2のIII-III線における断面図である。 第2実施形態の通路形成プレートの図3に対応する断面図である。 第2実施形態の変形例の通路形成プレートの図3に対応する断面図である。 第3実施形態の通路形成プレートの図3に対応する断面図である。 第4実施形態の通路形成プレートの図3に対応する断面図である。 第5実施形態の通路形成プレートの図3に対応する断面図である。 第5実施形態の変形例の通路形成プレートの図3に対応する断面図である。 第5実施形態の別の変形例の通路形成プレートの図3に対応する断面図である。 第6実施形態の通路形成プレートの図3に対応する断面図である。 第6実施形態の通路形成プレートに適用されるガスケットの説明図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is a whole block diagram of the heat pump cycle of 1st Embodiment. It is an axial sectional view of the compressor of a 1st embodiment. FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. It is sectional drawing corresponding to FIG. 3 of the channel | path formation plate of 2nd Embodiment. It is sectional drawing corresponding to FIG. 3 of the channel | path formation plate of the modification of 2nd Embodiment. It is sectional drawing corresponding to FIG. 3 of the channel | path formation plate of 3rd Embodiment. It is sectional drawing corresponding to FIG. 3 of the channel | path formation plate of 4th Embodiment. It is sectional drawing corresponding to FIG. 3 of the channel | path formation plate of 5th Embodiment. It is sectional drawing corresponding to FIG. 3 of the channel | path formation plate of the modification of 5th Embodiment. It is sectional drawing corresponding to FIG. 3 of the channel | path formation plate of another modification of 5th Embodiment. It is sectional drawing corresponding to FIG. 3 of the channel | path formation plate of 6th Embodiment. It is explanatory drawing of the gasket applied to the channel | path formation plate of 6th Embodiment.
 (第1実施形態)
 図1~図3により、第1実施形態を説明する。本実施形態では、圧縮機1を、ヒートポンプ式給湯機にて給湯水を加熱するヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)100に適用している。従って、本実施形態の圧縮機1にて圧縮される流体は、ヒートポンプサイクルの冷媒である。
(First embodiment)
The first embodiment will be described with reference to FIGS. In this embodiment, the compressor 1 is applied to a heat pump cycle (vapor compression refrigeration cycle) 100 that heats hot water using a heat pump type hot water heater. Therefore, the fluid compressed by the compressor 1 of this embodiment is a refrigerant of a heat pump cycle.
 ヒートポンプサイクル100は、圧縮機1の圧縮室にて昇圧過程の冷媒に、サイクルの中間圧気相冷媒を合流させるガスインジェクションサイクル(エコノマイザ式冷凍サイクル)として構成されている。より具体的には、本実施形態のヒートポンプサイクル100は、図1に示すように、圧縮機1、水-冷媒熱交換器2、第1膨張弁3、気液分離器4、第2膨張弁5、室外熱交換器6等を有している。 The heat pump cycle 100 is configured as a gas injection cycle (economizer-type refrigeration cycle) in which an intermediate-pressure gas-phase refrigerant of a cycle is merged with a refrigerant in a pressurizing process in the compression chamber of the compressor 1. More specifically, the heat pump cycle 100 of the present embodiment includes a compressor 1, a water-refrigerant heat exchanger 2, a first expansion valve 3, a gas-liquid separator 4, a second expansion valve, as shown in FIG. 5. It has the outdoor heat exchanger 6 grade | etc.,.
 水-冷媒熱交換器2は、圧縮機1の吐出ポート40aから吐出された冷媒と給湯水とを熱交換させて給湯水を加熱する加熱用熱交換器である。第1膨張弁3は、水-冷媒熱交換器2から流出した高圧冷媒を中間圧冷媒となるまで減圧させる高段側減圧手段であって、図示しない制御装置から出力される制御信号によってその作動が制御される電気式膨張弁である。 The water-refrigerant heat exchanger 2 is a heating heat exchanger that heats hot water by exchanging heat between the refrigerant discharged from the discharge port 40a of the compressor 1 and the hot water. The first expansion valve 3 is high-stage decompression means for decompressing the high-pressure refrigerant flowing out of the water-refrigerant heat exchanger 2 until it becomes intermediate-pressure refrigerant, and operates according to a control signal output from a control device (not shown). Is an electric expansion valve controlled.
 気液分離器4は、第1膨張弁3にて減圧された中間圧冷媒の気液を分離する気液分離手段である。第2膨張弁5は、気液分離器4の液相冷媒流出口から流出した中間圧液相冷媒を低圧冷媒となるまで減圧させる低段側減圧手段であって、その基本的構成は第1膨張弁3と同様である。室外熱交換器6は、第2膨張弁5にて減圧された低圧冷媒を外気と熱交換させて蒸発させる吸熱用熱交換器である。 The gas-liquid separator 4 is a gas-liquid separating means for separating the gas-liquid of the intermediate pressure refrigerant decompressed by the first expansion valve 3. The second expansion valve 5 is a low-stage decompression unit that decompresses the intermediate-pressure liquid-phase refrigerant flowing out from the liquid-phase refrigerant outlet of the gas-liquid separator 4 until it becomes a low-pressure refrigerant. The same as the expansion valve 3. The outdoor heat exchanger 6 is a heat absorption heat exchanger that evaporates the low-pressure refrigerant decompressed by the second expansion valve 5 by exchanging heat with the outside air.
 室外熱交換器6の冷媒出口側には、圧縮機1の吸入ポート30aが接続され、気液分離器4の気相冷媒流出口には、圧縮機1の中間圧吸入ポート30bが接続されている。従って、本実施形態では、気液分離器4にて分離された中間圧気相冷媒が圧縮機1の圧縮室にて昇圧過程の冷媒にインジェクションされる。 A suction port 30 a of the compressor 1 is connected to the refrigerant outlet side of the outdoor heat exchanger 6, and an intermediate pressure suction port 30 b of the compressor 1 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 4. Yes. Therefore, in this embodiment, the intermediate-pressure gas-phase refrigerant separated by the gas-liquid separator 4 is injected into the refrigerant in the pressurizing process in the compression chamber of the compressor 1.
 本実施形態のヒートポンプサイクル100では、冷媒として二酸化炭素を採用しており、圧縮機1の吐出ポートから第1膨張弁3入口側へ至るサイクルの高圧側冷媒の圧力が臨界圧力以上となる超臨界冷凍サイクルを構成している。さらに、冷媒には、圧縮機1内部の各摺動部位を潤滑するオイル(冷凍機油)が混入されており、このオイルの一部は冷媒とともにサイクルを循環している。 In the heat pump cycle 100 of the present embodiment, carbon dioxide is used as the refrigerant, and the supercritical pressure in which the pressure of the high-pressure side refrigerant in the cycle from the discharge port of the compressor 1 to the inlet side of the first expansion valve 3 is equal to or higher than the critical pressure. It constitutes the refrigeration cycle. Furthermore, the refrigerant is mixed with oil (refrigeration oil) that lubricates each sliding portion inside the compressor 1, and a part of this oil circulates in the cycle together with the refrigerant.
 ヒートポンプ式給湯機は、ヒートポンプサイクル100の他に、水-冷媒熱交換器2にて加熱された給湯水を貯湯する貯湯タンク、貯湯タンクと水-冷媒熱交換器2との間で給湯水を循環させる給湯水循環回路、および給湯水循環回路に配置されて給湯水を圧送する水ポンプ(いずれも図示せず)等を備えている。 In addition to the heat pump cycle 100, the heat pump hot water heater is a hot water storage tank that stores hot water heated by the water-refrigerant heat exchanger 2, and hot water supply between the hot water storage tank and the water-refrigerant heat exchanger 2. There are provided a hot water circulation circuit that circulates, a water pump that is arranged in the hot water circulation circuit and pumps hot water (none of which is shown).
 次に、図2、図3を用いて、圧縮機1の詳細構成を説明する。なお、図2における上下の各矢印は、圧縮機1をヒートポンプ式給湯機に搭載した状態における上下の各方向を示している。本実施形態の圧縮機1は、いわゆるスクロール型の圧縮機であり、圧縮機構部10、電動機部(電動モータ部)20、ハウジング30、および油分離器40等を有している。 Next, the detailed configuration of the compressor 1 will be described with reference to FIGS. In addition, the up and down arrows in FIG. 2 indicate the up and down directions in a state where the compressor 1 is mounted on the heat pump type hot water heater. The compressor 1 of the present embodiment is a so-called scroll type compressor, and includes a compression mechanism section 10, an electric motor section (electric motor section) 20, a housing 30, an oil separator 40, and the like.
 圧縮機構部10は、圧縮対象流体である冷媒を吸入し、圧縮して吐出する。電動機部20は、圧縮機構部10を駆動する回転駆動力を出力する。ハウジング30は、圧縮機1の外殻を形成するとともに、その内部に圧縮機構部10および電動機部20等を収容する。油分離器40は、ハウジング30の外部に配置されて圧縮機構部10にて圧縮された高圧冷媒からオイルを分離する。 The compression mechanism unit 10 sucks, compresses and discharges a refrigerant that is a compression target fluid. The electric motor unit 20 outputs a rotational driving force that drives the compression mechanism unit 10. The housing 30 forms an outer shell of the compressor 1 and houses the compression mechanism portion 10 and the electric motor portion 20 and the like therein. The oil separator 40 is disposed outside the housing 30 and separates oil from the high-pressure refrigerant compressed by the compression mechanism unit 10.
 本実施形態の圧縮機1は、図2に示すように、電動機部20から圧縮機構部10へ回転駆動力を伝達するシャフト(回転軸)25が鉛直方向(上下方向)に延びて、圧縮機構部10と電動機部20が鉛直方向に配置された、いわゆる縦置きタイプに構成されている。より具体的には、この圧縮機1では、圧縮機構部10が電動機部20の下方側に配置されている。 As shown in FIG. 2, the compressor 1 of the present embodiment has a shaft (rotating shaft) 25 that transmits a rotational driving force from the electric motor unit 20 to the compression mechanism unit 10 extending in the vertical direction (up and down direction). The part 10 and the motor part 20 are configured in a so-called vertical type in which the parts are arranged in the vertical direction. More specifically, in the compressor 1, the compression mechanism unit 10 is disposed on the lower side of the electric motor unit 20.
 ハウジング30は、中心軸が鉛直方向に延びる筒状部材31、筒状部材31の上端部を塞ぐ椀状の上蓋部材32および筒状部材31の下端部を塞ぐ椀状の下蓋部材33を有し、これらを一体に接合して密閉容器構造としたものである。筒状部材31、上蓋部材32および下蓋部材33は、いずれも鉄あるいは鉄系金属で形成されており、これらの部材は溶接にて接合されている。 The housing 30 includes a cylindrical member 31 whose central axis extends in the vertical direction, a bowl-shaped upper lid member 32 that blocks the upper end portion of the cylindrical member 31, and a bowl-shaped lower lid member 33 that blocks the lower end portion of the cylindrical member 31. These are integrally joined to form a sealed container structure. The cylindrical member 31, the upper lid member 32, and the lower lid member 33 are all made of iron or an iron-based metal, and these members are joined by welding.
 ハウジング30には、吸入ポート30a、中間圧吸入ポート30b、図示しない高圧冷媒流出口が形成されている。 The housing 30 is formed with a suction port 30a, an intermediate pressure suction port 30b, and a high-pressure refrigerant outlet not shown.
 吸入ポート30aは、室外熱交換器6から流出した低圧冷媒を圧縮機構部10へ吸入させるための冷媒吸入口である。中間圧吸入ポート30bは、気液分離器4の気相冷媒流出口から流出した中間圧気相冷媒を圧縮機構部10の圧縮室(本実施形態では、図2に示す第1、第2圧縮室Va、Vb)にて圧縮過程の冷媒に合流させるための中間圧冷媒吸入口である。高圧冷媒流出口は、圧縮機構部10から吐出された高圧冷媒をハウジング30の外部に配置された油分離器40側へ流出させるための冷媒流出口である。 The suction port 30a is a refrigerant suction port through which the low-pressure refrigerant flowing out of the outdoor heat exchanger 6 is sucked into the compression mechanism unit 10. The intermediate pressure suction port 30b is used to compress the intermediate pressure gas-phase refrigerant flowing out from the gas-phase refrigerant outlet of the gas-liquid separator 4 into the compression chambers of the compression mechanism unit 10 (in this embodiment, the first and second compression chambers shown in FIG. 2). Va, Vb) are intermediate pressure refrigerant inlets for merging with the refrigerant in the compression process. The high-pressure refrigerant outlet is a refrigerant outlet for allowing the high-pressure refrigerant discharged from the compression mechanism unit 10 to flow out to the oil separator 40 side disposed outside the housing 30.
 電動機部20は、固定子をなすコイルステータ21と回転子をなすロータ22とを有して構成されている。このロータ22の軸中心穴にはシャフト25が圧入により固定されている。従って、制御装置からコイルステータ21のコイルへ電力が供給されて回転磁界が発生すると、ロータ22およびシャフト25が一体となって回転する。 The electric motor unit 20 includes a coil stator 21 that forms a stator and a rotor 22 that forms a rotor. A shaft 25 is fixed to the shaft center hole of the rotor 22 by press-fitting. Therefore, when electric power is supplied from the control device to the coils of the coil stator 21 and a rotating magnetic field is generated, the rotor 22 and the shaft 25 rotate together.
 シャフト25は、略円筒状に形成されており、その両端部は、それぞれすべり軸受けにて構成された第1軸受部26、第2軸受部27に回転可能に支持されている。また、シャフト25の内部には、シャフト25の外表面と第1、第2軸受部26、27との摺動部位にオイルを供給するための油供給通路25aが形成されている。 The shaft 25 is formed in a substantially cylindrical shape, and both end portions thereof are rotatably supported by a first bearing portion 26 and a second bearing portion 27 that are configured by sliding bearings, respectively. Further, an oil supply passage 25 a for supplying oil to the sliding portion between the outer surface of the shaft 25 and the first and second bearing portions 26 and 27 is formed inside the shaft 25.
 第1軸受部26は、ハウジング30内の空間を電動機部20が配置される空間と圧縮機構部10が配置される空間とに仕切るように固定されたミドルハウジング28に形成されており、シャフト25の下端側(圧縮機構部10側)を回転可能に支持している。第2軸受部27は、介在部材を介してハウジング30の筒状部材31に固定されており、シャフト25の上端側(圧縮機構部10の反対側)を回転可能に支持している。 The first bearing portion 26 is formed in a middle housing 28 fixed so as to partition the space in the housing 30 into a space in which the electric motor portion 20 is disposed and a space in which the compression mechanism portion 10 is disposed. The lower end side (compression mechanism unit 10 side) is rotatably supported. The 2nd bearing part 27 is being fixed to the cylindrical member 31 of the housing 30 via the interposition member, and is supporting the upper end side (opposite side of the compression mechanism part 10) of the shaft 25 rotatably.
 圧縮機構部10は、それぞれ渦巻き状の歯部が形成された可動スクロール11および固定スクロール12によって構成されるスクロール型の圧縮機構部である。 The compression mechanism unit 10 is a scroll type compression mechanism unit configured by a movable scroll 11 and a fixed scroll 12 each having a spiral tooth portion.
 可動スクロール11は、円板状の可動側基板部111、および可動側基板部111から固定スクロール12側へ向かって突出する渦巻き状の可動側歯部112を有している。固定スクロール12は、円板状の固定側基板部121および固定側基板部121から可動スクロール11側へ向かって突出する渦巻き状の固定側歯部122を有している。 The movable scroll 11 has a disk-shaped movable side substrate part 111 and a spiral movable side tooth part 112 protruding from the movable side substrate part 111 toward the fixed scroll 12 side. The fixed scroll 12 has a disk-shaped fixed side substrate portion 121 and a spiral fixed side tooth portion 122 protruding from the fixed side substrate portion 121 toward the movable scroll 11 side.
 さらに、固定スクロール12は、固定側基板部121の外周側面がハウジング30の筒状部材31の内周側面に圧入されていることによって、ミドルハウジング28の下方側に固定されている。可動スクロール11は、ミドルハウジング28と固定スクロール12との間に形成される空間に配置されている。 Furthermore, the fixed scroll 12 is fixed to the lower side of the middle housing 28 by press-fitting the outer peripheral side surface of the fixed-side substrate portion 121 into the inner peripheral side surface of the cylindrical member 31 of the housing 30. The movable scroll 11 is disposed in a space formed between the middle housing 28 and the fixed scroll 12.
 可動スクロール11および固定スクロール12は、それぞれの基板部111、121の板面が対向するように配置されているとともに、それぞれの歯部112、122同士が噛み合わされて、一方のスクロールの歯部の先端部が他方のスクロールの基板部に当接するように配置されている。 The movable scroll 11 and the fixed scroll 12 are arranged so that the plate surfaces of the respective substrate portions 111 and 121 face each other, and the respective tooth portions 112 and 122 are engaged with each other, so that the tooth portion of one scroll is engaged. The tip portion is disposed so as to contact the substrate portion of the other scroll.
 これにより、それぞれの歯部112、122同士が複数箇所で接触し、それぞれの歯部112、122同士の間には、シャフト25の中心軸の軸方向から見たときに三日月形状に形成される圧縮室が複数個形成される。 Thereby, each tooth part 112,122 contacts in several places, and when it sees from the axial direction of the central axis of the shaft 25 between each tooth part 112,122, it forms in a crescent moon shape. A plurality of compression chambers are formed.
 図2では、図示の明確化のため、中間圧吸入ポート30bを介して流入した中間圧冷媒がインジェクションされる第1圧縮室Vaおよび第2圧縮室Vbを模式的に図示している。これらの第1圧縮室Vaおよび第2圧縮室Vbは、シャフト25の中心軸に対して対称となる位置に形成されている。さらに、第1圧縮室Va内の冷媒圧力と第2圧縮室Vb内の冷媒圧力は同等となる。 FIG. 2 schematically shows the first compression chamber Va and the second compression chamber Vb into which the intermediate pressure refrigerant that has flowed in via the intermediate pressure suction port 30b is injected for the sake of clarity. The first compression chamber Va and the second compression chamber Vb are formed at positions that are symmetric with respect to the central axis of the shaft 25. Further, the refrigerant pressure in the first compression chamber Va is equal to the refrigerant pressure in the second compression chamber Vb.
 また、可動スクロール11の可動側基板部111の上面側の中心部には、シャフト25の下端部(圧縮機構部10側の端部)が挿入される円筒状のボス部113が形成されている。一方、シャフト25の下端部は、シャフト25の回転中心に対して偏心した偏心部25bになっている。従って、可動スクロール11の可動側基板部111のボス部113には、シャフト25の偏心部25bが挿入される。 A cylindrical boss portion 113 into which the lower end portion of the shaft 25 (end portion on the compression mechanism portion 10 side) is inserted is formed at the center portion on the upper surface side of the movable side substrate portion 111 of the movable scroll 11. . On the other hand, the lower end portion of the shaft 25 is an eccentric portion 25 b that is eccentric with respect to the rotation center of the shaft 25. Accordingly, the eccentric portion 25 b of the shaft 25 is inserted into the boss portion 113 of the movable side substrate portion 111 of the movable scroll 11.
 さらに、可動スクロール11およびミドルハウジング28の間には、可動スクロール11が偏心部25b周りに自転することを防止する図示しない自転防止機構が設けられている。このため、シャフト25が回転すると、可動スクロール11は偏心部25b周りに自転することなく、シャフト25の回転中心を公転中心として旋回(公転運動)する。 Furthermore, between the movable scroll 11 and the middle housing 28, a rotation prevention mechanism (not shown) for preventing the movable scroll 11 from rotating around the eccentric portion 25b is provided. For this reason, when the shaft 25 rotates, the movable scroll 11 turns (revolves) with the rotation center of the shaft 25 as the revolution center without rotating around the eccentric portion 25b.
 そして、この公転運動により、前述した圧縮室が容積を縮小させながら、シャフト25回りに、外周側から中心側へ変位する。さらに、本実施形態では、それぞれのスクロールの歯部112、122の先端部に、チップシールを配置することにより、圧縮室の機密性を向上させている。このようなチップシールとしては、PEEK(ポリエーテルエーテルケトン)樹脂で形成されたものを採用することができる。 And by this revolving motion, the compression chamber described above is displaced from the outer peripheral side to the center side around the shaft 25 while reducing the volume. Furthermore, in this embodiment, the confidentiality of the compression chamber is improved by disposing a tip seal at the tip of the tooth portions 112 and 122 of the respective scrolls. As such a chip seal, one formed of PEEK (polyether ether ketone) resin can be employed.
 また、ハウジング30に形成された吸入ポート30aは、固定スクロール12の内部に形成された吸入用通路を介して、圧縮室のうち最外周側に位置付けられて容積が最も大きくなる吸入側の圧縮室に連通している。従って、本実施形態の固定スクロール12は、ハウジング30内に冷媒を流通させる通路を形成する通路形成部材としての機能を兼ね備えている。 The suction port 30a formed in the housing 30 is positioned on the outermost peripheral side of the compression chamber via the suction passage formed in the fixed scroll 12 and has the largest volume on the suction side. Communicating with Therefore, the fixed scroll 12 of the present embodiment also has a function as a passage forming member that forms a passage through which the refrigerant flows in the housing 30.
 中間圧吸入ポート30bは、固定スクロール12および通路形成プレート14に形成された第1、第2インジェクション通路14a、14bを介して、圧縮室のうち最外周側から中心側へ変位する過程の中間位置に位置付けられる第1圧縮室Va、第2圧縮室Vbに連通している。従って、本実施形態の通路形成プレート14は、固定スクロール12とともに、通路形成部材を構成している。 The intermediate pressure suction port 30b is an intermediate position in the process of being displaced from the outermost peripheral side to the center side in the compression chamber via the first and second injection passages 14a and 14b formed in the fixed scroll 12 and the passage forming plate 14. Are communicated with the first compression chamber Va and the second compression chamber Vb. Therefore, the passage forming plate 14 of this embodiment constitutes a passage forming member together with the fixed scroll 12.
 この通路形成プレート14は、円板状の金属部材で形成されており、固定スクロール12の下方側の面にボルト締め等の固定手段によって固定されている。さらに、通路形成プレート14には、固定スクロール12側の面を凹ませること等によって、図3に示すように、分岐部14c、第1インジェクション通路14a、第2インジェクション通路14b、並びに、延長通路14dが形成されている。 The passage forming plate 14 is formed of a disk-shaped metal member, and is fixed to the lower surface of the fixed scroll 12 by fixing means such as bolting. Further, as shown in FIG. 3, the passage forming plate 14 is recessed on the surface on the fixed scroll 12 side so that the branching portion 14c, the first injection passage 14a, the second injection passage 14b, and the extension passage 14d are formed. Is formed.
 なお、第1インジェクション通路14a、第2インジェクション通路14b、分岐部14c、吸入ポート30a、中間圧吸入ポート30b等の位置関係は、図3に示す通りである。つまり、図2では、説明の明確化のために、第1インジェクション通路14a、第2インジェクション通路14b、分岐部14c、吸入ポート30a、中間圧吸入ポート30b等を模式的に一つの断面図上に図示している。 The positional relationship among the first injection passage 14a, the second injection passage 14b, the branching portion 14c, the suction port 30a, the intermediate pressure suction port 30b, and the like is as shown in FIG. That is, in FIG. 2, the first injection passage 14a, the second injection passage 14b, the branching portion 14c, the suction port 30a, the intermediate pressure suction port 30b, and the like are schematically illustrated on one cross-sectional view for the sake of clarity of explanation. It is shown.
 分岐部14cは、中間圧吸入ポート30bから吸入された中間圧冷媒の流れを分岐する部位である。第1インジェクション通路14aは、分岐部14cにて分岐された一方の中間圧冷媒を第1圧縮室Va側へ導く冷媒通路である。第2インジェクション通路14bは、分岐部14cにて分岐された他方の中間圧冷媒を第2圧縮室Vb側へ導く冷媒通路である。 The branch part 14c is a part that branches the flow of the intermediate pressure refrigerant sucked from the intermediate pressure suction port 30b. The first injection passage 14a is a refrigerant passage that guides one intermediate-pressure refrigerant branched by the branch portion 14c to the first compression chamber Va side. The second injection passage 14b is a refrigerant passage that guides the other intermediate-pressure refrigerant branched by the branch portion 14c to the second compression chamber Vb side.
 延長通路14dは、第1インジェクション通路14aおよび第2インジェクション通路14bを分岐部14cから離れる側へ延長させる冷媒通路である。さらに、本実施形態の延長通路14dは、シャフト25の中心軸方向から見たときに、第1インジェクション通路14aおよび第2インジェクション通路14bを連通させるように半円弧状に形成されている。 The extension passage 14d is a refrigerant passage that extends the first injection passage 14a and the second injection passage 14b to the side away from the branch portion 14c. Furthermore, the extension passage 14d of the present embodiment is formed in a semicircular arc shape so as to connect the first injection passage 14a and the second injection passage 14b when viewed from the central axis direction of the shaft 25.
 このため、本実施形態の第1インジェクション通路14a、第2インジェクション通路14b、および延長通路14dは、図3に示すように、シャフト25の中心軸の軸方向から見たときに、環状に接続される。なお、本実施形態では、通路形成プレート14における第1インジェクション通路14a、第2インジェクション通路14b、および延長通路14dの上下方向の深さ寸法(紙面裏表方向の凹み量)を、一定としている。 For this reason, the first injection passage 14a, the second injection passage 14b, and the extension passage 14d of the present embodiment are annularly connected when viewed from the axial direction of the central axis of the shaft 25 as shown in FIG. The In the present embodiment, the first injection passage 14a, the second injection passage 14b, and the extension passage 14d in the passage formation plate 14 have constant depth dimensions (the amount of recesses in the front and back directions).
 また、固定スクロール12の内部には、中間圧吸入ポート30bから吸入された中間圧冷媒が第1インジェクション通路14a側(分岐部14c側)から第1圧縮室Va側へ流れることのみを許容する第1逆止弁51が配置されている。さらに、固定スクロール12の内部には、中間圧冷媒が第2インジェクション通路14b側(分岐部14c側)から第2圧縮室Vb側へ流れることのみを許容する第2逆止弁52が配置されている。 Further, inside the fixed scroll 12, the intermediate pressure refrigerant sucked from the intermediate pressure suction port 30b is allowed to flow only from the first injection passage 14a side (branch portion 14c side) to the first compression chamber Va side. 1 check valve 51 is arranged. Further, a second check valve 52 that allows only the intermediate pressure refrigerant to flow from the second injection passage 14 b side (branch portion 14 c side) to the second compression chamber Vb side is disposed inside the fixed scroll 12. Yes.
 第1、第2逆止弁51、52は、板状部材で形成されたリード弁、およびリード弁が開閉する通路が形成されたシート部材によって構成されている。このようなリード弁方式の逆止弁は、比較的小さな収容空間内に収容することができるので、第1、第2逆止弁51、52から下流側の冷媒通路の内容積(デッドボリューム)を不必要に拡大させない点で有効である。 The first and second check valves 51 and 52 are constituted by a reed valve formed of a plate-like member and a seat member formed with a passage for opening and closing the reed valve. Since such a reed valve type check valve can be accommodated in a relatively small accommodation space, the internal volume (dead volume) of the refrigerant passage downstream from the first and second check valves 51 and 52. It is effective in that it does not unnecessarily expand.
 また、固定スクロール12の固定側基板部121の中心部には、圧縮室で圧縮された冷媒が吐出される吐出孔123が形成されている。さらに、吐出孔123の下方側には、吐出孔123と連通する吐出室124が形成されている。吐出室124には、吐出室124側から圧縮室Vc側への冷媒の逆流を防止する吐出弁(リード弁)と、吐出弁の最大開度を規制するストッパ16が配置されている。 Further, a discharge hole 123 through which the refrigerant compressed in the compression chamber is discharged is formed at the center of the fixed side substrate 121 of the fixed scroll 12. Further, a discharge chamber 124 communicating with the discharge hole 123 is formed below the discharge hole 123. The discharge chamber 124 is provided with a discharge valve (reed valve) that prevents the refrigerant from flowing backward from the discharge chamber 124 side to the compression chamber Vc side, and a stopper 16 that regulates the maximum opening of the discharge valve.
 ハウジング30の内部には、吐出室124からハウジング30に形成された冷媒流出口へ導く図示しない冷媒通路が形成されている。さらに、この冷媒流出口には油分離器40の冷媒流入口40bが接続されている。油分離器40は、鉛直方向に延びる筒状部材41を有し、その内部に形成された空間で圧縮機構部10にて昇圧された冷媒を旋回させ、遠心力の作用によって気相冷媒とオイルとを分離する。 Inside the housing 30, a refrigerant passage (not shown) that leads from the discharge chamber 124 to the refrigerant outlet formed in the housing 30 is formed. Further, a refrigerant inlet 40b of the oil separator 40 is connected to the refrigerant outlet. The oil separator 40 includes a cylindrical member 41 extending in the vertical direction, and the refrigerant pressurized by the compression mechanism unit 10 is swirled in a space formed therein, and the gas phase refrigerant and the oil are subjected to centrifugal force. And isolate.
 油分離器40にて分離された高圧気相冷媒は、油分離器40の上方側に形成された吐出ポート40aから水-冷媒熱交換器2側へ吐出される。一方、油分離器40にて分離されたオイルは、油分離器40の下方側の部位に蓄えられ、図示しない油通路を介してハウジング30内の圧縮機構部10やシャフト25と第1、第2軸受部26、27との摺動部等へ供給される。 The high-pressure gas-phase refrigerant separated by the oil separator 40 is discharged from the discharge port 40a formed on the upper side of the oil separator 40 to the water-refrigerant heat exchanger 2 side. On the other hand, the oil separated by the oil separator 40 is stored in a lower portion of the oil separator 40, and the first and first compression mechanisms 10 and the shaft 25 in the housing 30 are connected to the first and first members via an oil passage (not shown). 2 Supplied to a sliding portion with the bearing portions 26 and 27.
 次に、上記構成における本実施形態の圧縮機1の作動について説明する。圧縮機1の電動機部20に電力が供給されてロータ22およびシャフト25が回転すると、可動スクロール11がシャフト25に対して旋回(公転運動)する。これにより、可動スクロール11の可動側歯部112と固定スクロール12の固定側歯部122との間に形成された三日月状の圧縮室が外周側から中心側へシャフト25回りに旋回しながら移動していく。 Next, the operation of the compressor 1 of the present embodiment having the above configuration will be described. When electric power is supplied to the electric motor unit 20 of the compressor 1 and the rotor 22 and the shaft 25 rotate, the movable scroll 11 turns (revolves) with respect to the shaft 25. As a result, the crescent-shaped compression chamber formed between the movable side tooth portion 112 of the movable scroll 11 and the fixed side tooth portion 122 of the fixed scroll 12 moves while turning around the shaft 25 from the outer peripheral side to the center side. To go.
 この際、最外周側に位置付けられて吸入ポート30aに連通する吸入側の圧縮室には、吸入ポート30aを介して室外熱交換器6から流出した低圧冷媒が吸入される。低圧冷媒が流入した圧縮室は、シャフト25の回転に伴って、その容積を縮小させながら下流側冷媒通路51に連通する中間位置へ移動する。 At this time, the low-pressure refrigerant flowing out of the outdoor heat exchanger 6 is sucked into the suction-side compression chamber positioned on the outermost peripheral side and communicating with the suction port 30a through the suction port 30a. As the shaft 25 rotates, the compression chamber into which the low-pressure refrigerant has flowed moves to an intermediate position communicating with the downstream refrigerant passage 51 while reducing its volume.
 圧縮室が中間位置へ移動し、第1、第2圧縮室Va、Vb側の冷媒圧力P1よりも中間圧吸入ポート30b側の中間圧気相冷媒の圧力P2が高くなっている状態では、第1、第2圧縮室Va、Vb側の冷媒圧力P1と中間圧吸入ポート30b側の冷媒圧力P2との圧力差によって、第1、第2逆止弁51、52が開く。これにより、気液分離器4にて分離されて中間圧吸入ポート30bから吸入された中間圧気相冷媒が、第1、第2圧縮室Va、Vbへインジェクションされる。 In a state where the compression chamber moves to the intermediate position and the pressure P2 of the intermediate pressure gas phase refrigerant on the intermediate pressure suction port 30b side is higher than the refrigerant pressure P1 on the first and second compression chambers Va and Vb side, The first and second check valves 51 and 52 are opened by the pressure difference between the refrigerant pressure P1 on the second compression chambers Va and Vb side and the refrigerant pressure P2 on the intermediate pressure suction port 30b side. Thereby, the intermediate-pressure gas-phase refrigerant separated by the gas-liquid separator 4 and sucked from the intermediate-pressure suction port 30b is injected into the first and second compression chambers Va and Vb.
 さらに、シャフト25の回転に伴って圧縮室の容積が縮小し、第1、第2圧縮室Va、Vb側の冷媒圧力P1が中間圧吸入ポート30b側の冷媒圧力P2を上回ると、第1、第2圧縮室Va、Vb側の冷媒圧力P1と中間圧吸入ポート30b側の冷媒圧力P2との圧力差によって、第1、第2逆止弁51、52が閉じる。これにより、圧縮室Vc側から中間圧吸入ポート30b側へ冷媒が逆流してしまうことが防止される。 Furthermore, when the volume of the compression chamber is reduced with the rotation of the shaft 25 and the refrigerant pressure P1 on the first and second compression chambers Va, Vb side exceeds the refrigerant pressure P2 on the intermediate pressure suction port 30b side, The first and second check valves 51 and 52 are closed by the pressure difference between the refrigerant pressure P1 on the second compression chambers Va and Vb side and the refrigerant pressure P2 on the intermediate pressure suction port 30b side. This prevents the refrigerant from flowing backward from the compression chamber Vc side to the intermediate pressure suction port 30b side.
 さらに、シャフト25の回転に伴って圧縮室が中心側の固定スクロール12の吐出孔123へ連通する位置に移動し、作動室Vc内の高圧冷媒の圧力が吐出弁の開弁圧を超えると吐出弁が開く。これにより、高圧冷媒が吐出室124へ吐出される。吐出室124へ吐出された高圧冷媒は、油分離器40にてオイルが分離されて吐出ポート40aから水-冷媒熱交換器2側へ吐出される。 Further, as the shaft 25 rotates, the compression chamber moves to a position where it communicates with the discharge hole 123 of the fixed scroll 12 on the center side, and discharge occurs when the pressure of the high-pressure refrigerant in the working chamber Vc exceeds the valve opening pressure of the discharge valve. The valve opens. As a result, the high-pressure refrigerant is discharged into the discharge chamber 124. The high-pressure refrigerant discharged to the discharge chamber 124 is separated from the oil by the oil separator 40 and discharged from the discharge port 40a to the water-refrigerant heat exchanger 2 side.
 以上の如く、本実施形態の圧縮機1では、ヒートポンプサイクル100において、冷媒を吸入し、圧縮して吐出することができる。 As described above, in the compressor 1 of the present embodiment, the heat pump cycle 100 can suck the refrigerant, compress it, and discharge it.
 ここで、本実施形態の圧縮機1のように、圧縮室にて圧縮過程の流体に、外部から吸入された中間圧流体を合流させる圧縮機では、中間圧吸入ポートと圧縮室が断続的に接続されため、インジェクション通路(本実施形態では、第1、第2インジェクション通路14a、14b)内の中間圧冷媒に圧力脈動が生じやすい。さらに、このような圧力脈動は、圧縮機全体としての騒音や振動を増加させる原因となる。 Here, in the compressor in which the intermediate pressure fluid sucked from the outside is joined to the fluid in the compression process in the compression chamber like the compressor 1 of the present embodiment, the intermediate pressure suction port and the compression chamber are intermittently provided. Because of the connection, pressure pulsation is likely to occur in the intermediate pressure refrigerant in the injection passage (first and second injection passages 14a and 14b in this embodiment). Further, such pressure pulsation causes an increase in noise and vibration of the entire compressor.
 これに対して、本実施形態の圧縮機1では、延長通路14dが形成されているので、この延長通路14dの内部空間を、第1、第2インジェクション通路14a、14b内の中間圧冷媒の圧力脈動を減衰させるマフラー空間として機能させることができる。 In contrast, since the extension passage 14d is formed in the compressor 1 of the present embodiment, the pressure of the intermediate pressure refrigerant in the first and second injection passages 14a and 14b is formed in the internal space of the extension passage 14d. It can function as a muffler space that attenuates pulsation.
 さらに、延長通路14dを、第1インジェクション通路14aおよび第2インジェクション通路14bを分岐部14cから離れる側へ延長させるように形成している。これによれば、通路形成プレート14のうち第1、第2インジェクション通路14a、14bが形成されない部位を有効に活用して、延長通路14dの内部容積(通路容積)を容易に拡大させることができる。 Further, the extension passage 14d is formed so as to extend the first injection passage 14a and the second injection passage 14b to the side away from the branch portion 14c. According to this, it is possible to easily expand the internal volume (passage volume) of the extension passage 14d by effectively utilizing the portion of the passage formation plate 14 where the first and second injection passages 14a and 14b are not formed. .
 従って、延長通路14dの通路容積として、狙いの周波数の圧力脈動を充分に減衰可能な容積を確保しやすい。その結果、本実施形態の圧縮機1では、第1、第2インジェクション通路14a、14bが形成されていても、騒音および振動の増加を充分に抑制することができる。 Therefore, it is easy to secure a volume capable of sufficiently attenuating the pressure pulsation of the target frequency as the passage volume of the extension passage 14d. As a result, in the compressor 1 of this embodiment, increase in noise and vibration can be sufficiently suppressed even if the first and second injection passages 14a and 14b are formed.
 また、本実施形態では、延長通路14dを、第1インジェクション通路14aおよび第2インジェクション通路14bを連通させるように形成している。従って、延長通路14dの通路容積をより一層容易に拡大させることができる。 In the present embodiment, the extension passage 14d is formed so as to communicate the first injection passage 14a and the second injection passage 14b. Therefore, the passage volume of the extension passage 14d can be more easily expanded.
 さらに、延長通路14dの通路長さや通路断面積を、第1インジェクション通路14a側の圧力脈動と第2インジェクション通路14b側の圧力脈動が互いに打ち消し合って減衰するように調整することで、より一層効果的に、圧縮機の騒音や振動の増加を抑制することができる。 Further, by adjusting the passage length and the passage cross-sectional area of the extension passage 14d so that the pressure pulsation on the first injection passage 14a side and the pressure pulsation on the second injection passage 14b side cancel each other and attenuate, the effect is further improved. In particular, increase in noise and vibration of the compressor can be suppressed.
 また、本実施形態の圧縮機1のように、インジェクション通路14a、14bに逆止弁51、52が配置される構成では、逆止弁51、52の開閉作動によって、インジェクション通路14a、14b内の冷媒に圧力脈動が生じやすい。従って、本実施形態のように騒音および振動の増加を抑制できることは、インジェクション通路に逆止弁が配置される圧縮機において極めて有効である。 Further, in the configuration in which the check valves 51 and 52 are arranged in the injection passages 14a and 14b as in the compressor 1 of the present embodiment, the opening and closing operation of the check valves 51 and 52 causes the inside of the injection passages 14a and 14b. Pressure pulsation is likely to occur in the refrigerant. Therefore, it is extremely effective in the compressor in which the check valve is arranged in the injection passage to suppress the increase in noise and vibration as in the present embodiment.
 (第2実施形態)
 本実施形態では、図4に示すように、延長通路を、第1インジェクション通路14aを延長させる第1延長通路14e、および第2インジェクション通路14bを延長させる第2延長通路14fによって構成した例を説明する。図4から明らかなように、第1、第2延長通路14e、14fは、シャフト25の中心軸方向から見たときに、いずれも円弧状の先止まり形状となっており、先端部同士が連通していない。
(Second Embodiment)
In the present embodiment, as shown in FIG. 4, an example is described in which the extension passage is configured by a first extension passage 14e that extends the first injection passage 14a and a second extension passage 14f that extends the second injection passage 14b. To do. As is clear from FIG. 4, the first and second extension passages 14 e and 14 f are both arcuately shaped when viewed from the central axis direction of the shaft 25, and the tip portions communicate with each other. Not done.
 なお、図4は、第1実施形態の図3に対応する図面であって、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。 FIG. 4 is a drawing corresponding to FIG. 3 of the first embodiment, and the same reference numerals are given to the same or equivalent parts as in the first embodiment. The same applies to the following drawings.
 その他の構成および作動については、第1実施形態と同様である。従って、本実施形態の圧縮機1を作動させると、第1、第2延長通路14e、14fが形成されているので、第1実施形態と同様に、圧縮機1の騒音および振動の増加を充分に抑制することができる。 Other configurations and operations are the same as those in the first embodiment. Accordingly, when the compressor 1 of the present embodiment is operated, the first and second extension passages 14e and 14f are formed, so that the noise and vibration of the compressor 1 are sufficiently increased as in the first embodiment. Can be suppressed.
 さらに、本実施形態の圧縮機1では、第1、第2延長通路14e、14fが先止まり形状となっている。このため、第1、第2インジェクション通路14a、14b内の冷媒の脈動波と第1、第2延長通路14e、14fの先端部で反射した脈動波が互いに打ち消し合うように、第1、第2延長通路14e、14fの通路長さ等を調整することで、より一層効果的に、圧縮機の騒音や振動の増加を抑制することができる。 Furthermore, in the compressor 1 of the present embodiment, the first and second extension passages 14e and 14f are in the form of a tip. For this reason, the first and second pulsating waves of the refrigerant in the first and second injection passages 14a and 14b and the pulsating waves reflected at the tips of the first and second extension passages 14e and 14f cancel each other. By adjusting the passage lengths and the like of the extension passages 14e and 14f, the increase in noise and vibration of the compressor can be suppressed more effectively.
 また、本発明者らの検討によれば、第1、第2延長通路14e、14fの通路長さを、脈動波の波長λに対して、1/8λ以上、かつ、3/8λ以下程度とすることで、効果的に圧縮機の騒音や振動の増加を抑制可能であることが確認されている。 Further, according to the study by the present inventors, the passage lengths of the first and second extension passages 14e and 14f are about 1 / 8λ or more and about 3 / 8λ or less with respect to the wavelength λ of the pulsating wave. By doing so, it has been confirmed that an increase in noise and vibration of the compressor can be effectively suppressed.
 なお、第1延長通路14eの長さとしては、図4の破線で示すように、第1延長通路14eの中心線の長さを採用すればよい。より詳細には、第1逆止弁51の第1圧縮室Vaへの連通を起点として、第1延長通路14eの分岐部14cの先端部へ至る通路の中心線の長さを採用すればよい。第2延長通路14fの長さについても同様である。 The length of the first extension passage 14e may be the length of the center line of the first extension passage 14e as shown by the broken line in FIG. More specifically, the length of the center line of the passage extending from the communication of the first check valve 51 to the first compression chamber Va to the tip of the branch portion 14c of the first extension passage 14e may be employed. . The same applies to the length of the second extension passage 14f.
 さらに、第1、第2延長通路14e、14fの通路長さを所望の長さとするために、例えば、図5の変形例に示すように、シャフト25の径方向から見たときに、第1延長通路14eおよび第2延長通路14fが、少なくとも一部が重合するように配置されていてもよい。 Furthermore, in order to make the passage lengths of the first and second extension passages 14e and 14f desired lengths, for example, as shown in the modified example of FIG. The extension passage 14e and the second extension passage 14f may be arranged so that at least a part thereof is superposed.
 (第3実施形態)
 本実施形態では、図6に示すように、第1実施形態で説明した延長通路14dを通路断面積が変化する形状に形成した例を説明する。
(Third embodiment)
In the present embodiment, as shown in FIG. 6, an example will be described in which the extended passage 14d described in the first embodiment is formed in a shape in which the passage cross-sectional area changes.
 より具体的には、本実施形態の延長通路14dは、第1、第2インジェクション通路14a、14bから離れるに伴って、徐々に通路幅寸法を縮小させることにより、通路断面積を縮小させている。その他の構成および作動については、第1実施形態と同様である。従って、本実施形態の圧縮機1を作動させると、第1実施形態と同様の効果を得ることができる。 More specifically, the extension passage 14d of this embodiment reduces the passage cross-sectional area by gradually reducing the passage width dimension with distance from the first and second injection passages 14a and 14b. . Other configurations and operations are the same as those in the first embodiment. Therefore, when the compressor 1 of this embodiment is operated, the same effect as that of the first embodiment can be obtained.
 さらに、本実施形態の圧縮機1によれば、第1、第2インジェクション通路14a、14bから離れるに伴って、延長通路14d内に通路断面積が徐々に変化する形状としているので、延長通路14d内にて減衰可能な圧力脈動の周波数についても徐々に変化させることができる。従って、広範囲の周波数帯の圧力脈動を減衰させることができ、より一層効果的に、圧縮機1の騒音および振動の増加を抑制することができる。 Furthermore, according to the compressor 1 of the present embodiment, the passage cross-sectional area gradually changes in the extension passage 14d as the distance from the first and second injection passages 14a and 14b increases. The frequency of the pressure pulsation that can be attenuated can be gradually changed. Therefore, pressure pulsations in a wide frequency band can be attenuated, and increase in noise and vibration of the compressor 1 can be suppressed more effectively.
 (第4実施形態)
 本実施形態では、図7に示すように、第2実施形態で説明した第1延長通路14eの通路長さ、および第2延長通路14fの通路長さを、互いに異なる長さとしている。その他の構成および作動については、第2実施形態と同様である。従って、本実施形態の圧縮機1を作動させると、第2実施形態と同様の効果を得ることができる。
(Fourth embodiment)
In the present embodiment, as shown in FIG. 7, the passage length of the first extension passage 14e and the passage length of the second extension passage 14f described in the second embodiment are different from each other. Other configurations and operations are the same as those in the second embodiment. Therefore, when the compressor 1 of this embodiment is operated, the same effect as that of the second embodiment can be obtained.
 さらに、本実施形態の圧縮機1によれば、第1延長通路14eの通路長さ、および第2延長通路14fの通路長さが異なっているので、それぞれの第1、第2延長通路14e、14fにて減衰可能な圧力脈動の周波数を異なる値とすることができる。従って、減衰可能な圧力脈動の周波数帯の範囲を拡大させることができ、より一層効果的に、圧縮機1の騒音および振動の増加を抑制することができる。 Furthermore, according to the compressor 1 of the present embodiment, since the passage length of the first extension passage 14e and the passage length of the second extension passage 14f are different, the first and second extension passages 14e, The frequency of the pressure pulsation that can be attenuated at 14f can be set to different values. Therefore, the range of the pressure pulsation frequency band that can be attenuated can be expanded, and the increase in noise and vibration of the compressor 1 can be more effectively suppressed.
 例えば、本実施形態の圧縮機1を、二種類の異なる回転数で回転させるシステムに適用し、第1延長通路14eの通路長さを一方の回転数で回転させた際に生じる圧力脈動を減衰させるように決定し、第2延長通路14fの通路長さを他方の回転数で回転させた際に生じる圧力脈動を減衰させるように決定してもよい。これによれば、いずれの回転数で作動させた際にも、圧縮機1の騒音および振動の増加を抑制することができる。 For example, the pressure pulsation generated when the compressor 1 of the present embodiment is applied to a system that rotates at two different rotational speeds and the passage length of the first extension passage 14e is rotated at one rotational speed is attenuated. It may be determined so that the pressure pulsation generated when the passage length of the second extension passage 14f is rotated at the other rotational speed is attenuated. According to this, it is possible to suppress an increase in noise and vibration of the compressor 1 when operated at any rotational speed.
 (第5実施形態)
 本実施形態では、図8に示すように、第2実施形態に対して、第1インジェクション通路14aの通路形状および第2インジェクション通路14bの通路形状を異なる形状とした例を説明する。
(Fifth embodiment)
In the present embodiment, as shown in FIG. 8, an example will be described in which the passage shape of the first injection passage 14a and the passage shape of the second injection passage 14b are different from those of the second embodiment.
 具体的には、本実施形態の圧縮機1では、第2実施形態に対して、中間圧吸入ポート30bおよび分岐部14cの位置を変化させることによって、第1インジェクション通路14aの通路長さを第2インジェクション通路14bの通路長さよりも短くしている。その他の構成および作動については、第2実施形態と同様である。従って、本実施形態の圧縮機1を作動させると、第2実施形態と同様の効果を得ることができる。 Specifically, in the compressor 1 according to the present embodiment, the passage length of the first injection passage 14a is changed by changing the positions of the intermediate pressure suction port 30b and the branching portion 14c with respect to the second embodiment. It is shorter than the passage length of the 2-injection passage 14b. Other configurations and operations are the same as those in the second embodiment. Therefore, when the compressor 1 of this embodiment is operated, the same effect as that of the second embodiment can be obtained.
 さらに、本実施形態の圧縮機1によれば、第1インジェクション通路14aの通路形状および第2インジェクション通路14bの通路形状を異なる形状としているので、第1インジェクション通路14aおよび第2インジェクション通路14bにて異なる周波数の圧力脈動を減衰させることができる。 Furthermore, according to the compressor 1 of the present embodiment, the passage shape of the first injection passage 14a and the passage shape of the second injection passage 14b are different, so the first injection passage 14a and the second injection passage 14b Different frequency pulsations can be attenuated.
 より詳細には、第1、第2インジェクション通路14a、14bの内部空間は、それぞれマフラー空間としての機能を果たす。従って、第1、第2インジェクション通路14a、14bの通路形状を異なる形状として、第1、第2インジェクション通路14a、14bの通路容積を異なる値とすれば、第1、第2インジェクション通路14a、14bにて、それぞれ異なる周波数の圧力脈動を減衰させることができる。 More specifically, the internal spaces of the first and second injection passages 14a and 14b each function as a muffler space. Therefore, if the passage shapes of the first and second injection passages 14a and 14b are different, and the passage volumes of the first and second injection passages 14a and 14b are different values, the first and second injection passages 14a and 14b. Thus, pressure pulsations with different frequencies can be attenuated.
 また、第1インジェクション通路14aの通路形状および第2インジェクション通路14bの通路形状を異なる形状とする手段は、それぞれの通路長さを変えることに限定されない。 Further, the means for making the passage shape of the first injection passage 14a different from the passage shape of the second injection passage 14b is not limited to changing the length of each passage.
 例えば、図9の変形例に示すように、第1インジェクション通路14aの通路幅寸法を、第2インジェクション通路14bの通路幅寸法よりも拡大させてもよい。図10の変形例に示すように、第1インジェクション通路14aの通路幅寸法を、第2インジェクション通路14bの通路幅寸法よりも縮小させてもよい。 For example, as shown in the modification of FIG. 9, the passage width dimension of the first injection passage 14a may be larger than the passage width dimension of the second injection passage 14b. As shown in the modification of FIG. 10, the passage width dimension of the first injection passage 14a may be made smaller than the passage width dimension of the second injection passage 14b.
 (第6実施形態)
 本実施形態では、図11に示すように、第5実施形態と同様に、第1インジェクション通路14aの通路形状および第2インジェクション通路14bの通路形状を異なる形状とし、さらに、第1インジェクション通路14aおよび第2インジェクション通路14bを通路断面積が変化する形状に形成した例を説明する。
(Sixth embodiment)
In the present embodiment, as shown in FIG. 11, the passage shape of the first injection passage 14a and the passage shape of the second injection passage 14b are different from each other as in the fifth embodiment, and the first injection passage 14a and An example in which the second injection passage 14b is formed in a shape in which the passage sectional area changes will be described.
 より具体的には、第1インジェクション通路14aは分岐部14cから通路断面積が徐々に拡大する形状に形成されている。第2インジェクション通路14bには、通路断面積を縮小させる絞り部14gが形成されている。また、本実施形態では、第1延長通路14eを廃止している。その他の構成および作動は第5実施形態と同様である。従って、本実施形態の圧縮機1を作動させると、第5実施形態と同様の効果を得ることができる。 More specifically, the first injection passage 14a is formed in a shape in which the passage cross-sectional area gradually increases from the branch portion 14c. The second injection passage 14b is formed with a throttle portion 14g that reduces the cross-sectional area of the passage. In the present embodiment, the first extension passage 14e is eliminated. Other configurations and operations are the same as those of the fifth embodiment. Therefore, when the compressor 1 of this embodiment is operated, the same effect as that of the fifth embodiment can be obtained.
 ここで、第5実施形態で説明したように、第1、第2インジェクション通路14a、14bの内部空間は、それぞれマフラー空間としての機能を果たす。このため、第1、第2インジェクション通路14a、14bの通路容積を拡大することで、中間圧冷媒の圧力脈動減衰効果を向上させることができる。その一方で、第1、第2インジェクション通路14a、14bの通路容積を拡大すると、圧縮機1全体としての大型化を招きやすい。 Here, as described in the fifth embodiment, the internal spaces of the first and second injection passages 14a and 14b each function as a muffler space. For this reason, the pressure pulsation damping effect of the intermediate pressure refrigerant can be improved by increasing the passage volume of the first and second injection passages 14a and 14b. On the other hand, if the passage volumes of the first and second injection passages 14a and 14b are enlarged, the compressor 1 as a whole is likely to be enlarged.
 また、第1、第2インジェクション通路14a、14bに、絞り部14g等を形成して、第1、第2インジェクション通路14a、14bを流通する冷媒流量を減少させることで、中間圧冷媒の圧力脈動のエネルギを減少させることができる。その一方で、第1、第2インジェクション通路14a、14bを流通する冷媒流量を減少させると、圧縮室にて圧縮過程の冷媒に適切な流量の中間圧冷媒を合流させることができなくなってしまう。 Further, the pressure pulsation of the intermediate pressure refrigerant is achieved by forming the throttle portions 14g and the like in the first and second injection passages 14a and 14b and reducing the flow rate of the refrigerant flowing through the first and second injection passages 14a and 14b. Energy can be reduced. On the other hand, if the flow rate of the refrigerant flowing through the first and second injection passages 14a and 14b is reduced, it becomes impossible to join the intermediate pressure refrigerant having an appropriate flow rate to the refrigerant in the compression process in the compression chamber.
 そして、ガスインジェクションサイクルにおいて、圧縮室にて圧縮過程の冷媒に適切な流量の中間圧冷媒を合流させることができなくなってしまうと、ガスインジェクションサイクルを構成することによる、サイクルの成績係数(COP)の向上効果を得にくくなってしまう。 In the gas injection cycle, if the intermediate pressure refrigerant having an appropriate flow rate cannot be merged with the refrigerant in the compression process in the compression chamber, the coefficient of performance (COP) of the cycle by configuring the gas injection cycle. It becomes difficult to obtain the improvement effect.
 これに対して、本実施形態では、第1インジェクション通路14aおよび第2インジェクション通路14bを通路断面積が変化する形状にし、絞り部14g等を形成している。これによれば、狙いの周波数の圧力脈動を減衰できるように、第1、第2インジェクション通路14a、14bの通路容積および第1、第2インジェクション通路14a、14bを流通する冷媒流量を調整することができる。 On the other hand, in the present embodiment, the first injection passage 14a and the second injection passage 14b are shaped so that the passage cross-sectional area changes to form the throttle portion 14g and the like. According to this, the passage volume of the first and second injection passages 14a and 14b and the flow rate of the refrigerant flowing through the first and second injection passages 14a and 14b are adjusted so that the pressure pulsation of the target frequency can be attenuated. Can do.
 より詳細には、第1、第2インジェクション通路14a、14bの通路容積を調整することによって、第1、第2インジェクション通路14a、14bの容量成分Cを調整することができる。第1、第2インジェクション通路14a、14bを流通する冷媒流量を調整することによって、第1、第2インジェクション通路14a、14bの抵抗成分Rを調整することができる。 More specifically, the volume component C of the first and second injection passages 14a and 14b can be adjusted by adjusting the passage volume of the first and second injection passages 14a and 14b. The resistance component R of the first and second injection passages 14a and 14b can be adjusted by adjusting the flow rate of the refrigerant flowing through the first and second injection passages 14a and 14b.
 従って、電気回路におけるローパスフィルタのように、狙いの周波数の圧力脈動を減衰できるように、第1インジェクション通路14aおよび第2インジェクション通路14bの形状を調整できる。その結果、より一層効果的に、圧縮機1の騒音および振動の増加を抑制することができる。 Therefore, the shape of the first injection passage 14a and the second injection passage 14b can be adjusted so that the pressure pulsation of the target frequency can be attenuated, like a low-pass filter in an electric circuit. As a result, an increase in noise and vibration of the compressor 1 can be suppressed more effectively.
 ところで、本実施形態では、第1、第2インジェクション通路14a、14b等を形成するために、固定スクロール12の下方側の面にボルト締めによって、通路形成プレート14を固定している。このため、固定スクロール12の下方側の面と通路形成プレート14との隙間からの冷媒漏れを防止するため、固定スクロール12と通路形成プレート14との隙間に平板状のシール部材であるガスケット15を配置している。 By the way, in this embodiment, in order to form the first and second injection passages 14a and 14b, the passage forming plate 14 is fixed to the lower surface of the fixed scroll 12 by bolting. For this reason, in order to prevent refrigerant leakage from the gap between the lower surface of the fixed scroll 12 and the passage forming plate 14, a gasket 15 that is a flat seal member is provided in the gap between the fixed scroll 12 and the passage forming plate 14. It is arranged.
 より具体的には、本実施形態では、図12の網掛けハッチング領域に示す範囲に、ガスケット15を配置している。さらに、ガスケット15には、固定スクロール12側および通路形成プレート14側の少なくとも一方に突出した第1、第2リブ15a、15bが形成されている。第1、第2リブ15a、15bは、通路形成プレート14が固定スクロール12に固定された際に押し潰されて、シール性を向上させる機能を果たす。 More specifically, in this embodiment, the gasket 15 is arranged in the range shown in the hatched area in FIG. Further, the gasket 15 is formed with first and second ribs 15a and 15b protruding to at least one of the fixed scroll 12 side and the passage forming plate 14 side. The first and second ribs 15a and 15b are crushed when the passage forming plate 14 is fixed to the fixed scroll 12, and fulfill the function of improving the sealing performance.
 また、ガスケット15では、図12の太実線で示すように、吐出室124の周囲に環状の第1リブ15aを形成し、第1、第2インジェクション通路14a、14bおよび第2延長通路14fの外周側に第2リブ15bを形成している。つまり、第1、第2リブ15a、15bは、ガスケット15を押しつぶす方向(本実施形態では、シャフト25の中心軸方向)から見たときに、二重の環状に形成されている。 Further, in the gasket 15, as shown by a thick solid line in FIG. 12, an annular first rib 15a is formed around the discharge chamber 124, and the outer circumferences of the first and second injection passages 14a and 14b and the second extension passage 14f are formed. A second rib 15b is formed on the side. That is, the first and second ribs 15a and 15b are formed in a double annular shape when viewed from the direction in which the gasket 15 is crushed (in the present embodiment, the central axis direction of the shaft 25).
 さらに、第2リブ15bを内周側に凹ませる形状とし、締結用のボルトを挿入する内周側ボルト穴151を第1リブ15aの周囲に略等角度間隔(約90°間隔)で4つ配置し、外周側ボルト穴152を第2リブ15bの周囲に略等角度間隔(約60°間隔)で6つ配置している。 Further, the second rib 15b is shaped to be recessed on the inner peripheral side, and four inner peripheral side bolt holes 151 into which fastening bolts are inserted are arranged at substantially equal angular intervals (approximately 90 ° intervals) around the first rib 15a. The six outer peripheral bolt holes 152 are arranged around the second rib 15b at substantially equal angular intervals (approximately 60 ° intervals).
 このように、第1、第2リブ15a、15bを環状に形成するとともに、内周側ボルト穴151、外周側ボルト152穴を環状に配置することで、通路形成プレート14を固定スクロール12の下方側の面に取り付けた際に、ガスケット15の第1、第2リブ15a、15bを均等に押し潰すことができ、良好なシール性を得ることができる。さらに、良好なシール性を得るためには、図12の太実線で示すように、内周側ボルト穴151の周囲にもリブを設けることが望ましい。 As described above, the first and second ribs 15a and 15b are formed in an annular shape, and the inner peripheral side bolt hole 151 and the outer peripheral side bolt 152 hole are arranged in an annular shape, so that the passage forming plate 14 is positioned below the fixed scroll 12. When attached to the side surface, the first and second ribs 15a and 15b of the gasket 15 can be uniformly crushed, and a good sealing property can be obtained. Furthermore, in order to obtain a good sealing property, it is desirable to provide ribs also around the inner peripheral side bolt hole 151 as shown by a thick solid line in FIG.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の各実施形態では、通路形成プレート14に延長通路14d~14fを形成した例を説明したが、例えば、第5、第6実施形態のように、第1インジェクション通路14aの通路形状および第2インジェクション通路14bの通路形状を異なる形状とする場合には、延長通路14d~14fは必須の構成ではない。さらに、第1、第2延長通路14e、14fは、必ずしも双方同時に形成する必要はなく、第6実施形態のように、狙いの周波数の圧力脈動を減衰可能であれば、いずれか一方を形成してもよい。 In each of the above embodiments, the example in which the extension passages 14d to 14f are formed in the passage formation plate 14 has been described. For example, as in the fifth and sixth embodiments, the shape of the first injection passage 14a and the second shape If the shape of the passage of the injection passage 14b is different, the extension passages 14d to 14f are not essential components. Furthermore, the first and second extension passages 14e and 14f do not necessarily have to be formed at the same time. If the pressure pulsation at the target frequency can be attenuated as in the sixth embodiment, either one is formed. May be.
 上述の各実施形態では、第1、第2インジェクション通路14a、14bおよび延長通路14d~14fの通路断面積を変化させるために、各通路14a~14fの通路幅寸法を変化させた例を説明したが、通路断面積を変化させる手段はこれに限定されない。例えば、通路形成プレート14における各通路14a~14fの上下方向の深さ寸法(凹み量)を変化させることによって通路断面積を変化させてもよい。 In each of the above-described embodiments, the example in which the passage width dimension of each of the passages 14a to 14f is changed in order to change the passage cross-sectional area of the first and second injection passages 14a and 14b and the extension passages 14d to 14f has been described. However, the means for changing the passage cross-sectional area is not limited to this. For example, the passage cross-sectional area may be changed by changing the vertical dimension (the amount of depression) of each of the passages 14a to 14f in the passage forming plate 14.
 さらに、第1、第2インジェクション通路14a、14bおよび延長通路14d~14fは、必ずしも全ての通路断面積を変更する必要はなく、狙いの周波数の圧力脈動を減衰可能であれば、各通路14a~14fの少なくとも一つの通路断面積を変更すればよい。 Furthermore, the first and second injection passages 14a and 14b and the extension passages 14d to 14f do not necessarily have to change all the passage cross-sectional areas. If the pressure pulsation of the target frequency can be attenuated, the passages 14a to 14f What is necessary is just to change at least 1 passage cross-sectional area of 14f.
 上述の各実施形態では、圧縮機構部10としてスクロール型の圧縮機構部を採用した例を説明したが、圧縮機構部10はこれに限定されない。つまり、圧縮機構部10としては、圧縮過程の流体に中間圧流体を合流させることのできる第1、第2圧縮室Va、Vbが形成されるものであれば、いずれの形式のものを採用してもよい。 In each of the above-described embodiments, an example in which a scroll-type compression mechanism unit is employed as the compression mechanism unit 10 has been described. However, the compression mechanism unit 10 is not limited thereto. That is, as the compression mechanism unit 10, any type of compression mechanism unit may be adopted as long as the first and second compression chambers Va and Vb that can join the intermediate pressure fluid to the fluid in the compression process are formed. May be.
 例えば、断面楕円形状の柱状空間を形成するシリンダ、柱状空間の内部に配置される円柱状のロータ、およびロータの外周面側からシリンダの内周面に当接するように突出する複数のベーンを有し、圧縮室が、シリンダの内周面、ロータの外周面およびベーンによって仕切られた空間によって形成される、いわゆるインナーベーン型の圧縮機構部であってもよい。 For example, it has a cylinder that forms a columnar space having an elliptical cross section, a columnar rotor disposed inside the columnar space, and a plurality of vanes that protrude from the outer peripheral surface side of the rotor so as to contact the inner peripheral surface of the cylinder. The compression chamber may be a so-called inner vane type compression mechanism portion formed by a space partitioned by the inner peripheral surface of the cylinder, the outer peripheral surface of the rotor, and the vanes.
 上述の各実施形態では、圧縮機1をヒートポンプ式給湯機のヒートポンプサイクル100に適用した例を説明したが、圧縮機1の適用はこれに限定されない。つまり、圧縮機1は、種々の流体を圧縮する圧縮機として幅広い用途に適用可能である。 In the above embodiments, the example in which the compressor 1 is applied to the heat pump cycle 100 of the heat pump type hot water heater has been described, but the application of the compressor 1 is not limited to this. That is, the compressor 1 can be applied to a wide range of uses as a compressor that compresses various fluids.
 さらに、圧縮機1は、
 圧縮機から吐出された高圧冷媒と加熱対象流体(あるいは外気)とを熱交換させる放熱器と、
 放熱器から流出した高圧冷媒の流れを分岐する分岐部と、
 分岐部にて分岐された一方の高圧冷媒を中間圧冷媒となるまで減圧させる高段側膨張弁と、
 分岐部にて分岐された他方の高圧冷媒と高段側膨張弁にて減圧された中間圧冷媒とを熱交換させる内部熱交換器と、
 内部熱交換器から流出した高圧冷媒を低圧冷媒となるまで減圧させる低段側膨張弁と、
 低段側膨張弁から流出した低圧冷媒と外気(あるいは冷却対象流体)とを熱交換させて低圧冷媒を蒸発させる蒸発器とを備え、
 内部熱交換器から流出した中間圧冷媒を圧縮機1の中間圧吸入ポート30bへ吸入させ、蒸発器から流出した低圧冷媒を圧縮機1の吸入ポート30aへ吸入させるように構成されたガスインジェクションサイクルに適用してもよい。
Furthermore, the compressor 1
A radiator that exchanges heat between the high-pressure refrigerant discharged from the compressor and the fluid to be heated (or outside air);
A branching portion for branching the flow of the high-pressure refrigerant flowing out of the radiator;
A high-stage expansion valve that depressurizes one high-pressure refrigerant branched at the branching section until it becomes an intermediate-pressure refrigerant;
An internal heat exchanger for exchanging heat between the other high-pressure refrigerant branched at the branch portion and the intermediate-pressure refrigerant decompressed by the high-stage expansion valve;
A low-stage side expansion valve that depressurizes the high-pressure refrigerant flowing out of the internal heat exchanger until it becomes a low-pressure refrigerant;
An evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out from the low-stage expansion valve and the outside air (or the fluid to be cooled),
A gas injection cycle configured to suck intermediate pressure refrigerant flowing out of the internal heat exchanger into the intermediate pressure suction port 30b of the compressor 1 and suck low pressure refrigerant flowing out of the evaporator into the suction port 30a of the compressor 1. You may apply to.
 上述の実施形態では、縦置きタイプの圧縮機1について説明したが、シャフト(回転軸)25が水平方向に延びて、圧縮機構部10と電動機部20が水平方向(横方向)に配置された横置きタイプの圧縮機として構成されていてもよい。 In the above embodiment, the vertical type compressor 1 has been described. However, the shaft (rotating shaft) 25 extends in the horizontal direction, and the compression mechanism unit 10 and the motor unit 20 are arranged in the horizontal direction (lateral direction). You may be comprised as a horizontal installation type compressor.
 上述の実施形態では、第1、第2逆止弁51、52として、リード弁を採用した例を説明したが、第1、第2逆止弁51、52はこれに限定されない。例えば、圧縮室Vc側の冷媒圧力P1と中間圧吸入ポート30b側の冷媒圧力P2との差圧に応じて変位するフリーバルブ(スプール弁)を採用してもよい。 In the above-described embodiment, an example in which a reed valve is employed as the first and second check valves 51 and 52 has been described. However, the first and second check valves 51 and 52 are not limited thereto. For example, a free valve (spool valve) that is displaced according to the differential pressure between the refrigerant pressure P1 on the compression chamber Vc side and the refrigerant pressure P2 on the intermediate pressure suction port 30b side may be employed.
 また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。例えば、第4実施形態の第1、第2延長通路14e、14fに第2実施形態の変形例を適用してもよい。つまり、シャフト25の径方向から見たときに、互いに長さの異なる第1、第2延長通路14e、14fが、少なくとも一部が重合するように配置されていてもよい。

 
Further, the means disclosed in each of the above embodiments may be appropriately combined within a practicable range. For example, the modification of the second embodiment may be applied to the first and second extension passages 14e and 14f of the fourth embodiment. That is, when viewed from the radial direction of the shaft 25, the first and second extension passages 14e and 14f having different lengths may be arranged so that at least a part thereof is superposed.

Claims (10)

  1.  流体を圧縮する第1圧縮室(Va)および第2圧縮室(Vb)を有する圧縮機構部(10)と、
     前記圧縮機構部(10)を収容するハウジング(30)と、
     前記ハウジング(30)内に流体を流通させる通路を形成する通路形成部材(14)と、を備え、
     前記ハウジング(30)には、前記第1圧縮室(Va)および前記第2圧縮室(Vb)にて圧縮過程の流体に合流させる中間圧流体を外部から吸入する中間圧吸入ポート(30b)が設けられており、
     前記通路形成部材(14)は、
      前記中間圧吸入ポート(30b)から吸入された中間圧流体の流れを分岐する分岐部(14c)と、
      前記分岐部(14c)にて分岐された一方の中間圧流体を前記第1圧縮室(Va)側へ導く第1インジェクション通路(14a)と、
      前記分岐部(14c)にて分岐された他方の中間圧流体を前記第2圧縮室(Vb)側へ導く第2インジェクション通路(14b)と、
      前記第1インジェクション通路(14a)および前記第2インジェクション通路(14b)の少なくとも一方を前記分岐部(14c)から離れる側へ延長させる延長通路(14d、14e、14f)を有する圧縮機。
    A compression mechanism (10) having a first compression chamber (Va) and a second compression chamber (Vb) for compressing fluid;
    A housing (30) for accommodating the compression mechanism (10);
    A passage forming member (14) that forms a passage through which fluid flows in the housing (30),
    The housing (30) has an intermediate pressure suction port (30b) for sucking in from the outside an intermediate pressure fluid that joins the fluid in the compression process in the first compression chamber (Va) and the second compression chamber (Vb). Provided,
    The passage forming member (14)
    A branch portion (14c) for branching the flow of the intermediate pressure fluid sucked from the intermediate pressure suction port (30b);
    A first injection passage (14a) for guiding one intermediate pressure fluid branched at the branch portion (14c) toward the first compression chamber (Va);
    A second injection passage (14b) for guiding the other intermediate pressure fluid branched at the branch portion (14c) toward the second compression chamber (Vb);
    The compressor having an extension passage (14d, 14e, 14f) for extending at least one of the first injection passage (14a) and the second injection passage (14b) to the side away from the branch portion (14c).
  2.  流体を圧縮する第1圧縮室(Va)および第2圧縮室(Vb)を有する圧縮機構部(10)と、
     前記圧縮機構部(10)を収容するハウジング(30)と、
     前記ハウジング(30)内に流体を流通させる通路を形成する通路形成部材(14)と、を備え、
     前記ハウジング(30)には、前記第1圧縮室(Va)および前記第2圧縮室(Vb)にて圧縮過程の流体に合流させる中間圧流体を外部から吸入する中間圧吸入ポート(30b)が設けられており、
     前記通路形成部材(14)は、
      前記中間圧吸入ポート(30b)から吸入された中間圧流体の流れを分岐する分岐部(14c)と、
      前記分岐部(14c)にて分岐された一方の中間圧流体を前記第1圧縮室(Va)側へ導く第1インジェクション通路(14a)と、
      前記分岐部(14c)にて分岐された他方の中間圧流体を前記第2圧縮室(Vb)側へ導く第2インジェクション通路(14b)を有しており、
     前記第1インジェクション通路(14a)の通路形状および前記第2インジェクション通路(14b)の通路形状が異なっている圧縮機。
    A compression mechanism (10) having a first compression chamber (Va) and a second compression chamber (Vb) for compressing fluid;
    A housing (30) for accommodating the compression mechanism (10);
    A passage forming member (14) that forms a passage through which fluid flows in the housing (30),
    The housing (30) has an intermediate pressure suction port (30b) for sucking in from the outside an intermediate pressure fluid that joins the fluid in the compression process in the first compression chamber (Va) and the second compression chamber (Vb). Provided,
    The passage forming member (14)
    A branch portion (14c) for branching the flow of the intermediate pressure fluid sucked from the intermediate pressure suction port (30b);
    A first injection passage (14a) for guiding one intermediate pressure fluid branched at the branch portion (14c) toward the first compression chamber (Va);
    A second injection passage (14b) for guiding the other intermediate pressure fluid branched at the branch portion (14c) to the second compression chamber (Vb) side;
    The compressor in which the passage shape of the first injection passage (14a) and the passage shape of the second injection passage (14b) are different.
  3.  前記第1インジェクション通路(14a)および前記第2インジェクション通路(14b)の少なくとも一方は、通路断面積が変化する形状に形成されている請求項2に記載の圧縮機。 The compressor according to claim 2, wherein at least one of the first injection passage (14a) and the second injection passage (14b) is formed in a shape in which a passage sectional area changes.
  4.  前記通路形成部材(14)は、前記第1インジェクション通路(14a)および前記第2インジェクション通路(14b)の少なくとも一方を前記分岐部(14c)から離れる側へ延長させる延長通路(14d、14e、14f)を形成している請求項2または3に記載の圧縮機。 The passage forming member (14) is an extension passage (14d, 14e, 14f) that extends at least one of the first injection passage (14a) and the second injection passage (14b) away from the branch portion (14c). The compressor according to claim 2 or 3 which forms).
  5.  前記延長通路(14d)は、前記第1インジェクション通路(14a)および前記第2インジェクション通路(14b)を連通させる形状に形成されている請求項1または4に記載の圧縮機。 The compressor according to claim 1 or 4, wherein the extension passage (14d) is formed in a shape that allows the first injection passage (14a) and the second injection passage (14b) to communicate with each other.
  6.  前記延長通路は、前記第1インジェクション通路(14a)を延長させる第1延長通路(14e)、および前記第2インジェクション通路(14b)を延長させる第2延長通路(14f)によって構成されている請求項1または4に記載の圧縮機。 The extension passage is constituted by a first extension passage (14e) for extending the first injection passage (14a) and a second extension passage (14f) for extending the second injection passage (14b). The compressor according to 1 or 4.
  7.  前記第1延長通路(14e)の通路長さ、および前記第2延長通路(14f)の通路長さが、互いに異なっている請求項6に記載の圧縮機。 The compressor according to claim 6, wherein a passage length of the first extension passage (14e) and a passage length of the second extension passage (14f) are different from each other.
  8.  前記第1延長通路(14e)および前記第2延長通路(14f)は、互いに円弧状に形成されており、径方向から見たときに、少なくとも一部が重合して配置されている請求項6または7に記載の圧縮機。 The said 1st extension channel | path (14e) and the said 2nd extension channel | path (14f) are mutually formed in circular arc shape, and when it sees from radial direction, at least one part has overlapped and is arrange | positioned. Or the compressor according to 7;
  9.  前記延長通路(14d、14e、14f)は、通路断面積が変化する形状に形成されている請求項1、4ないし8のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1, 4 to 8, wherein the extension passages (14d, 14e, 14f) are formed in a shape in which a passage cross-sectional area changes.
  10.  前記中間圧吸入ポート(30b)側から前記第1圧縮室(Va)側へ流体が流れることのみを許容する第1逆止弁(51)と、
     前記中間圧吸入ポート(30b)側から前記第2圧縮室(Vb)側へ流体が流れることのみを許容する第2逆止弁(52)と、を備える請求項1ないし9のいずれか1つに記載の圧縮機。
    A first check valve (51) that only allows fluid to flow from the intermediate pressure suction port (30b) side to the first compression chamber (Va) side;
    10. A second check valve (52) that allows only fluid to flow from the intermediate pressure suction port (30 b) side to the second compression chamber (Vb) side. The compressor described in 1.
PCT/JP2015/005875 2014-12-04 2015-11-26 Compressor WO2016088342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015005489.8T DE112015005489T5 (en) 2014-12-04 2015-11-26 compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014245621A JP6460595B2 (en) 2014-12-04 2014-12-04 Compressor
JP2014-245621 2014-12-04

Publications (1)

Publication Number Publication Date
WO2016088342A1 true WO2016088342A1 (en) 2016-06-09

Family

ID=56091305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005875 WO2016088342A1 (en) 2014-12-04 2015-11-26 Compressor

Country Status (3)

Country Link
JP (1) JP6460595B2 (en)
DE (1) DE112015005489T5 (en)
WO (1) WO2016088342A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418574A1 (en) * 2017-06-22 2018-12-26 LG Electronics Inc. Scroll compressor and air conditioner having the same
WO2019207785A1 (en) * 2018-04-27 2019-10-31 三菱電機株式会社 Scroll compressor
WO2022202092A1 (en) * 2021-03-22 2022-09-29 株式会社豊田自動織機 Scroll-type compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127903A (en) * 2017-02-06 2018-08-16 株式会社Soken Compressor
JP7119416B2 (en) 2018-02-21 2022-08-17 中国電力株式会社 Turbine building
JP7123636B2 (en) * 2018-06-05 2022-08-23 三菱重工サーマルシステムズ株式会社 Compressor and method for manufacturing compressor
JP7462163B2 (en) * 2020-06-24 2024-04-05 パナソニックIpマネジメント株式会社 Scroll Compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080184733A1 (en) * 2007-02-05 2008-08-07 Tecumseh Products Company Scroll compressor with refrigerant injection system
JP2012172581A (en) * 2011-02-21 2012-09-10 Mitsubishi Electric Corp Scroll compressor and heat pump device
JP2012184750A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Scroll compressor and refrigeration cycle device including the same
JP2013209954A (en) * 2012-03-30 2013-10-10 Nippon Soken Inc Injection device for compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365465B2 (en) * 2015-08-25 2018-08-01 株式会社Soken Compressor manufacturing method and compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080184733A1 (en) * 2007-02-05 2008-08-07 Tecumseh Products Company Scroll compressor with refrigerant injection system
JP2012172581A (en) * 2011-02-21 2012-09-10 Mitsubishi Electric Corp Scroll compressor and heat pump device
JP2012184750A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Scroll compressor and refrigeration cycle device including the same
JP2013209954A (en) * 2012-03-30 2013-10-10 Nippon Soken Inc Injection device for compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418574A1 (en) * 2017-06-22 2018-12-26 LG Electronics Inc. Scroll compressor and air conditioner having the same
US10590931B2 (en) 2017-06-22 2020-03-17 Lg Electronics Inc. Scroll compressor and air conditioner having the same
WO2019207785A1 (en) * 2018-04-27 2019-10-31 三菱電機株式会社 Scroll compressor
WO2022202092A1 (en) * 2021-03-22 2022-09-29 株式会社豊田自動織機 Scroll-type compressor
JP2022146760A (en) * 2021-03-22 2022-10-05 株式会社豊田自動織機 scroll compressor
JP7488993B2 (en) 2021-03-22 2024-05-23 株式会社豊田自動織機 Scroll Compressor

Also Published As

Publication number Publication date
DE112015005489T5 (en) 2017-08-17
JP6460595B2 (en) 2019-01-30
JP2016108991A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
JP6460595B2 (en) Compressor
KR101576459B1 (en) Scoroll compressor and refrigsrator having the same
EP3358192B1 (en) Co-rotating compressor with multiple compression mechanisms
JP5745450B2 (en) Compressor injection device
JP2013167215A (en) Scroll type compressor
JP2010107178A (en) Refrigeration apparatus
JP7123636B2 (en) Compressor and method for manufacturing compressor
WO2011148453A1 (en) Two-stage rotary compressor and heat pump apparatus
JP2015113817A (en) Scroll type compressor
US9803643B2 (en) Scroll-type compressor
KR20060030521A (en) Scroll-type fluid machine
JP6714765B2 (en) Pump body assembly and compressor
JP5338314B2 (en) Compressor and refrigeration equipment
JP6130771B2 (en) Compressor and refrigeration cycle equipment
JPH09105386A (en) Compressor and injection cycle
JP6059452B2 (en) Compressor backflow prevention structure
JP2018127903A (en) Compressor
JP6365465B2 (en) Compressor manufacturing method and compressor
JP4948557B2 (en) Multistage compressor and refrigeration air conditioner
JP6130759B2 (en) Compressor
WO2015129169A1 (en) Compressor
JP6285816B2 (en) Compressor
WO2019022134A1 (en) Scroll compressor
JP6093676B2 (en) Compressor
JP2020008009A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005489

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866260

Country of ref document: EP

Kind code of ref document: A1