WO2016088292A1 - リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器 - Google Patents

リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器 Download PDF

Info

Publication number
WO2016088292A1
WO2016088292A1 PCT/JP2015/005282 JP2015005282W WO2016088292A1 WO 2016088292 A1 WO2016088292 A1 WO 2016088292A1 JP 2015005282 W JP2015005282 W JP 2015005282W WO 2016088292 A1 WO2016088292 A1 WO 2016088292A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
positive electrode
lithium ion
secondary battery
density
Prior art date
Application number
PCT/JP2015/005282
Other languages
English (en)
French (fr)
Inventor
慎 細井
宮崎 武志
敏幸 国清
真之介 服部
樂 白澤
村上 大介
光則 中本
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016088292A1 publication Critical patent/WO2016088292A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to a positive electrode material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, a battery pack, and an electronic device.
  • the lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte.
  • As the positive electrode material LiCoO 2 is used as a typical positive electrode active material due to high energy density derived from chemical stability and high equilibrium potential. It has been.
  • LiCoO 2 that is a positive electrode active material As shown in Patent Documents 1 to 5, improvements such as stabilization of the crystal structure in an electrochemical reaction and prevention of transition metal elution by surface modification have been made.
  • an object of the present technology is to provide a positive electrode material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, a battery pack, and an electronic device capable of obtaining a high energy density. To provide equipment.
  • the positive electrode material for a lithium ion secondary battery contains a lithium composite oxide.
  • the lithium composite oxide the integral value of the density of states until the inner shell direction 1eV from the valence band maximum and D 1, the integral value of the density of states until the inner shell direction 2eV from the valence band upper end
  • D 2 the electron state density is D 1 / D 2 ⁇ 0.4.
  • the equilibrium potential of the positive electrode material for a lithium ion secondary battery can be improved.
  • the positive electrode material for lithium ion secondary batteries which has a high energy density can be obtained.
  • the lithium composite oxide may be a LiNiXMnO-based lithium composite oxide.
  • X is at least one metal element. According to this configuration, the energy level of the band to be oxidized in the lithium composite oxide can be lowered. Thereby, the equilibrium potential of the positive electrode material for a lithium ion secondary battery can be improved.
  • X may be aluminum or gallium. Thereby, the equilibrium potential of the positive electrode material for a lithium ion secondary battery can be further improved.
  • X may be at least two metals selected from magnesium, silicon, zinc, and germanium. Thereby, the equilibrium potential of the positive electrode material for a lithium ion secondary battery can be further improved.
  • the lithium composite oxide may have a layered rock salt structure. According to this configuration, a high electric capacity can be obtained. In addition, the phase transition of the lithium composite oxide can be made difficult to occur, thereby improving the battery life characteristics.
  • the positive electrode for lithium ion secondary batteries which concerns on one form of this technique comprises the positive electrode material for lithium ion secondary batteries.
  • the positive electrode material for a lithium ion secondary battery includes a lithium composite oxide.
  • the lithium composite oxide the integral value of the density of states until the inner shell direction 1eV from the valence band maximum and D 1, the integral value of the density of states until the inner shell direction 2eV from the valence band upper end When D 2 , the electron state density is D 1 / D 2 ⁇ 0.4.
  • a lithium ion secondary battery includes an electrolytic solution, a negative electrode, and a positive electrode.
  • the positive electrode contains a positive electrode material for a lithium ion secondary battery.
  • the positive electrode material for a lithium ion secondary battery includes a lithium composite oxide.
  • the lithium composite oxide, the integral value of the density of states until the inner shell direction 1eV from the valence band maximum and D 1 the integral value of the density of states until the inner shell direction 2eV from the valence band upper end
  • the electron state density is D 1 / D 2 ⁇ 0.4.
  • a battery pack includes a lithium ion secondary battery, a control unit, and a package body.
  • the said control part controls charging / discharging of the said lithium ion secondary battery.
  • the package body supports the lithium ion secondary battery and the control unit.
  • the lithium ion secondary battery includes an electrolytic solution, a negative electrode, and a positive electrode.
  • the positive electrode contains a positive electrode material for a lithium ion secondary battery.
  • the positive electrode material for a lithium ion secondary battery includes a lithium composite oxide.
  • the lithium composite oxide the integral value of the density of states until the inner shell direction 1eV from the valence band maximum and D 1
  • D 2 the electron state density is D 1 / D 2 ⁇ 0.4.
  • An electronic device includes a lithium ion secondary battery and a power receiving circuit.
  • the lithium ion secondary battery includes an electrolytic solution, a negative electrode, and a positive electrode.
  • the positive electrode contains a positive electrode material for a lithium ion secondary battery.
  • the positive electrode material for a lithium ion secondary battery includes a lithium composite oxide.
  • the lithium composite oxide, the integral value of the density of states until the inner shell direction 1eV from the valence band maximum and D 1 the integral value of the density of states until the inner shell direction 2eV from the valence band upper end When D 2 , the electron state density is D 1 / D 2 ⁇ 0.4.
  • the passive circuit is supplied with power from the lithium ion secondary battery.
  • a positive electrode material for a lithium ion secondary battery capable of obtaining a high energy density a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, a battery pack, and an electronic device are provided. can do.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 6 is a graph showing a state density spectrum of lithium composite oxides of Comparative Examples 1 to 3 according to an embodiment of the present invention.
  • FIG. 8 is a graph showing a state density spectrum of a lithium composite oxide of Comparative Example 1 and Examples 1 to 8 according to an aspect of the present invention. It is a block diagram showing the composition of the battery pack concerning one form of this art.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of a lithium ion secondary battery according to an embodiment of the present technology.
  • FIG. 2 is an enlarged cross-sectional view of the wound electrode body of the lithium ion secondary battery.
  • the lithium ion secondary battery 10 of the present embodiment is cylindrical, and a belt-like positive electrode 21 and a negative electrode 22 are wound together with a liquid electrolyte (not shown) through a separator 23 inside a substantially hollow circular battery can 11.
  • the wound electrode body 20 is rotated.
  • the battery can 11 has a bottomed cylindrical shape with one end closed and the other end open. Inside the battery can 11, a pair of insulating plates 12 a and 12 b are respectively arranged perpendicular to the winding peripheral surface so as to sandwich the winding electrode body 20.
  • Examples of the material of the battery can 11 include iron (Fe), nickel (Ni), stainless steel (SUS), aluminum (Al), titanium (Ti), and the like.
  • the battery can 11 may be plated with nickel or the like, for example, in order to prevent corrosion due to an electrochemical electrolyte accompanying charging / discharging of the lithium ion secondary battery 10.
  • a battery lid 13 At the open end of the battery can 11, there is a battery lid 13, a safety valve mechanism and a thermal resistance element (PTC element: Positive Temperature Coefficient) 17 provided inside the battery lid 13, and a gasket 18 for insulating sealing. Is attached through.
  • PTC element Positive Temperature Coefficient
  • the battery lid 13 is made of, for example, the same material as the battery can 11 and is provided with an opening for discharging gas generated inside the battery.
  • a safety valve 14, a disc holder 15, and a shut-off disc 16 are sequentially stacked.
  • the protruding portion 14 a of the safety valve 14 is connected to a positive electrode lead 25 led out from the wound electrode body 20 through the sub disk 19.
  • the sub disk 19 is disposed so as to cover a hole 16 a provided at the center of the blocking disk 16.
  • the safety valve 14 and the positive electrode lead 25 are connected via the sub disk 19, whereby the positive electrode lead 25 can be prevented from being drawn from the hole 16 a when the safety valve 14 is reversed.
  • the safety valve mechanism is electrically connected to the battery lid 13 via the heat sensitive resistance element 17.
  • the safety valve mechanism when the internal pressure of the lithium ion secondary battery 10 becomes a certain level or more due to internal short circuit of the battery or heating from the outside of the battery, the safety valve 14 is reversed, and the protruding portion 14a, the battery lid 13, and the wound electrode body The electrical connection with 20 is cut off. That is, when the safety valve 14 is reversed, the positive electrode lead 25 is pressed by the shut-off disk 16 and the connection between the safety valve 14 and the positive electrode lead 25 is released.
  • the disc holder 15 is made of an insulating material, and when the safety valve 14 is reversed, the safety valve 14 and the shut-off disc 16 are insulated.
  • a plurality of gas vent holes are provided around the hole 16a of the shut-off disk 16. Thereby, when gas is generated from the wound electrode body 20, the gas can be effectively discharged to the battery lid 13 side.
  • the resistance element 17 increases in resistance when the temperature rises, and disconnects the electrical connection between the battery lid 13 and the wound electrode body 20. As a result, the current is interrupted, and abnormal heat generation due to an excessive current can be prevented.
  • the gasket 18 is made of, for example, an insulating material, and the surface thereof may be coated with asphalt.
  • the wound electrode body 20 is accommodated in the lithium ion secondary battery 10 and wound around the center pin 24.
  • a positive electrode 21 and a negative electrode 22 are sequentially stacked via a separator 23 and wound in the longitudinal direction.
  • a positive electrode lead 25 is connected to the positive electrode 21, and a negative electrode lead 26 is connected to the negative electrode 22.
  • the positive electrode lead 25 is welded to the safety valve 14 and is electrically connected to the battery lid 13, and the negative electrode lead 26 is welded to and electrically connected to the battery can 11.
  • FIG. 2 shows an enlarged part of a sectional view of the wound electrode body 20.
  • the positive electrode 21, the negative electrode 22, and the separator 23 will be described in detail.
  • the positive electrode 21 is obtained by forming a positive electrode active material layer 21B containing a positive electrode active material on both surfaces of the positive electrode current collector 21A.
  • a metal foil such as an aluminum (Al) foil, a nickel (Ni) foil, or a stainless steel (SUS) foil can be used.
  • the positive electrode 21 has a positive electrode lead 25 connected by spot welding or ultrasonic welding to a portion where the positive electrode active material layer 21B is not formed at one end of the positive electrode current collector 21A.
  • the positive electrode lead 25 is preferably a metal foil or a net-like one, but is not limited to a specific type as long as it is electrochemically and chemically stable and can conduct electricity. Examples of the material of the positive electrode lead 25 include aluminum and nickel.
  • the positive electrode active material layer 21B includes one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and a binder, a conductive material, and the like as necessary. Other materials may be included.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resins. At least one selected from a copolymer mainly composed of materials is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a carbon material such as carbon black or graphite is used.
  • Examples of the positive electrode material include lithium-containing compounds such as lithium oxide, lithium phosphorous oxide, lithium sulfide, lithium composite compounds containing lithium and other metals, and lithium-containing intercalation compounds.
  • the lithium composite oxide according to this embodiment will be described later.
  • lithium composite oxide for cathode materials
  • a lithium composite oxide containing lithium, a transition metal element, and oxygen (O) is used as the positive electrode material.
  • examples of such a lithium composite oxide include LiCoO 2 containing cobalt (Co) as a transition metal element.
  • LiCoO 2 has a layered rock salt structure, is chemically stable, and is used as a typical positive electrode active material of a lithium ion secondary battery due to its high energy density derived from a high equilibrium potential.
  • the “equilibrium potential” is the potential of the positive electrode (vs. Li + / Li) when the potential of the reduced metallic lithium is 0, that is, the electromotive force of the battery.
  • LiCoO 2 can desorb lithium only up to about 50% of theoretical capacity (140 mAh / g) in order to maintain the reversibility of the crystal structure during charge and discharge.
  • a positive electrode active material having a layered rock salt structure similar to LiCoO 2 and capable of reversibly inserting and removing a larger amount of lithium has been proposed.
  • a positive electrode active material for example, Li 2 NiMnO 4 (LNMO) using nickel (Ni) and manganese (Mn) 1 ⁇ 2 each instead of cobalt, nickel (Ni), cobalt (Co), Examples include Li 9 Ni 3 Co 3 Mn 3 O 18 (LNCMO) using 1/3 of manganese (Mn).
  • LNCMO has a structure composed of unit cells shown in FIG.
  • Both LNMO and LNCMO can reversibly desorb and insert a larger amount of lithium than LiCoO 2 during charging and discharging, and the practical amount has reached about 80% of theoretical capacity (200 mAh / g).
  • LiCoO 2 is about 3.9 V
  • LNMO is 3.7 V
  • LNCMO is 3.6 V
  • LiCoO 2 it is known that the equilibrium potential of LNMO and LNCMO is low.
  • the positive electrode material according to the present embodiment achieves high energy density by a method of increasing the equilibrium potential by electronic state control as described below.
  • FIG. 4 is a schematic diagram illustrating a mechanism in which the equilibrium potential of the lithium ion secondary battery is increased by electronic state control.
  • the vertical axis represents the energy based on the vacuum level
  • the horizontal axis represents the density of states.
  • the left schematic diagram of FIG. 4 is a metallic lithium band
  • the central schematic diagram is a LiNi 1/3 Co 1/3 Mn 1/3 O 2 band
  • the right schematic diagram is LiNi 1/3. It is a band of X 1/3 Mn 1/3 O 2 (X is at least one metal element).
  • lithium ions are reduced to metallic lithium.
  • the transition metal is oxidized, and the average energy difference between the band oxidized by the transition metal and the Li2s orbital of the metallic lithium becomes the equilibrium potential.
  • the band oxidized in the positive electrode is a Co3d (t 2g ) orbit in the valence band state.
  • the average energy difference E 1 between the trajectory and Li2s trajectory is equilibrium potential.
  • the calculation of the equilibrium potential by the electronic state calculation employs the GGA + U method in particular in the band calculation using the density functional method (DFT: Density Functional Theory).
  • DFT Density Functional Theory
  • GGA general gradient approximation
  • VASP Vehicle Ab initio Simulation Package
  • n is the number of Li atoms inserted from the X structure in the LiX structure
  • e is the elementary charge
  • G (X) and G (LiX) are the Gibbs free energy of each structure
  • G (Li metal) Is Gibbs free energy per atom of metal lithium having a body-centered cubic structure.
  • the value of G (Li metal) is -1.910 eV in the calculation using VASP.
  • G (Li metal) is the above value and is basically a constant. Thereafter, the Gibbs free energy of X and LiX is calculated, and the average equilibrium potential E is calculated by taking the difference. In this technique, the Gibbs free energy of the system can be approximated by the total energy of the cell calculated by VASP.
  • Li 3 Ni 3 Co 3 Mn 3 O 18 has a composition at a charging depth of 66%, and the unit cell has a structure in which two lithiums in each lithium layer are extracted from the structure in FIG. To do.
  • E 1 3.87V was obtained.
  • the origin of the energy axis is the Fermi level of LNCMO and LNAMO.
  • the “valence band upper end” of the lithium composite oxide is the Fermi level of the lithium composite oxide as described above, that is, the origin (0 eV) of the energy axis. The energy is positive in the inner shell direction.
  • the integrated value D of the state density of each lithium composite oxide there is no state density peak in the range of 0 eV to 1 eV in LNAMO, so the integration of the state density in the range of 0 eV to 1 eV.
  • the value D 1 is 40% or less (D 1 / D 2 ⁇ 0.4) of the integrated value D 2 of the state density between 0 eV and 2 eV, and the ratio of the integrated value is greatly reduced.
  • the D 1 / D 2 0.35.
  • the maximum state density d 1 between 0 eV and 1 eV is It can be seen that the maximum state density dD MAX of the entire valence band of LNAMO is 60% or less (d 1 ⁇ 0.6 d MAX ).
  • d 1 is a value exceeding 60% of d MAX .
  • HXPES hard X-ray photoelectron spectroscopy
  • HAXPES the electronic state of the valence band whose calculation results are shown in FIG. 5 can be directly observed.
  • a band derived from Co3d at the upper end of the valence band as in LNCMO a clear peak structure should be observed within 0 eV to 1 eV.
  • the redox species could be changed by controlling the electronic state.
  • the integrated value of the state density from the valence band upper end (0 eV) to the inner shell direction 1 eV is D 1
  • the valence band upper end to the inner shell direction is D 2
  • the integrated value of the state density up to 2 eV is D 2
  • the lithium composite oxide having the above range of D 1 / D 2 has a large difference between the energy of the band oxidized during charging of the lithium ion secondary battery and the energy of Li2s orbital of metallic lithium, and has a high equilibrium potential. Obtainable. Thereby, the equilibrium potential of the positive electrode material can be improved, and a positive electrode material having a high energy density can be obtained.
  • the lithium composite oxide is typically a LiNiXMnO-based lithium composite oxide (where X is at least one metal element), but is not limited thereto.
  • X is at least one metal element
  • the energy of the band that is oxidized when the lithium ion secondary battery is charged can be lowered, and the energy difference from the Li2s band can be increased. Thereby, the equilibrium potential of the positive electrode can be further increased.
  • the metal element X examples include magnesium (Mg), aluminum (Al), silicon (Si), zinc (Zn), gallium (Ga), germanium (Ge), and the like. Further, the metal element X is not limited to a specific type as long as it does not have 3d orbital electrons having energy of Co3d (t 2g ) or more.
  • the content of the metal element X is not particularly limited, but the composition ratio of the lithium composite oxide is LiNi 1/3 X 1/3 Mn 1/3 O 2 and the valence of manganese and nickel is not changed.
  • the lithium composite oxide can have a layered rock salt structure as shown in FIG. For this reason, the lithium composite oxide having the above composition ratio can remove and insert a large amount of lithium similarly to LNCMO, and can have a high electric capacity.
  • the layered rock salt structure is unlikely to undergo phase transition, thereby improving battery life characteristics.
  • the lithium composite oxide may be used in combination of two or more. Further, from the viewpoint that higher electrode filling properties and cycle characteristics can be obtained, the surface of the core particle made of any one of the above lithium composite oxides, the fine particles made of any of the other lithium composite oxides, or a carbon material, etc.
  • the composite particles may be coated with.
  • the firing conditions are firing temperature: 950 ° C., heating rate: 200 ° C./h, and holding time: 10 h.
  • the obtained precursor is calcined under open air and then slowly cooled in a furnace.
  • the obtained fired body is pulverized to obtain LiNi 1/3 Al 1/3 Mn 1/3 O 2 .
  • Example of method for producing lithium composite oxide containing gallium Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnO 2 ), gallium oxide (Ga 2 O 3 ), nickel oxide (NiO) in a molar ratio of 1.05: 0.66: 0.33: 0.66 Mix with ethanol uniformly.
  • the obtained precursor is calcined under open air and then slowly cooled in a furnace.
  • the obtained fired body is pulverized to obtain LiNi 1/3 Ga 1/3 Mn 1/3 O 2 .
  • Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), and nickel oxide (NiO) were mixed at 1.05: 0.66: 0.33: 0. Equally wet-mix with ethanol at a molar ratio of 33: 0.66.
  • the obtained precursor is calcined under open air and then slowly cooled in a furnace.
  • the obtained fired body is pulverized to obtain LiNi 1/3 Sn 1/6 Zn 1/6 Mn 1/3 O 2 .
  • Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnO 2 ), tin oxide (SnO 2 ), magnesium oxide (MgO), and nickel oxide (NiO) were added at 1.05: 0.66: 0.33: 0. Equally wet-mix with ethanol at a molar ratio of 33: 0.66.
  • the obtained precursor is calcined under open air and then slowly cooled in a furnace.
  • the obtained fired body is pulverized to obtain LiNi 1/3 Sn 1/6 Mg 1/6 Mn 1/3 O 2 .
  • Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), and nickel oxide (NiO) are mixed at 1.05: 0.66: 0.33: 0. Equally wet-mix with ethanol at a molar ratio of 33: 0.66.
  • the obtained precursor is calcined under open air and then slowly cooled in a furnace.
  • the obtained fired body is pulverized to obtain LiNi 1/3 Si 1/6 Zn 1/6 Mn 1/3 O 2 .
  • Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnO 2 ), silicon oxide (SiO 2 ), magnesium oxide (MgO), and nickel oxide (NiO) were mixed at 1.05: 0.66: 0.33: 0. Equally wet-mix with ethanol at a molar ratio of 33: 0.66.
  • the obtained precursor is calcined under open air and then slowly cooled in a furnace.
  • the fired body obtained is pulverized to obtain LiNi 1/3 Si 1/6 Mg 1/6 Mn 1/3 O 2 .
  • Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnO 2 ), germanium oxide (GeO 2 ), zinc oxide (ZnO), and nickel oxide (NiO) were mixed at 1.05: 0.66: 0.33: 0. Equally wet-mix with ethanol at a molar ratio of 33: 0.66.
  • the obtained precursor is calcined under open air and then slowly cooled in a furnace.
  • the obtained fired body is pulverized to obtain LiNi 1/3 Ge 1/6 Zn 1/6 Mn 1/3 O 2 .
  • Lithium carbonate (Li 2 CO 3 ), manganese oxide (MnO 2 ), germanium oxide (GeO 2 ), magnesium oxide (MgO), and nickel oxide (NiO) were mixed at 1.05: 0.66: 0.33: 0. Equally wet-mix with ethanol at a molar ratio of 33: 0.66.
  • the obtained precursor is calcined under open air and then slowly cooled in a furnace.
  • the obtained fired body is pulverized to obtain LiNi 1/3 Ge 1/6 Mg 1/6 Mn 1/3 O 2 .
  • the negative electrode 22 has a negative electrode active material layer 22B containing a negative electrode active material formed on both surfaces of the negative electrode current collector 22A, and the negative electrode active material layer 22B and the positive electrode active material layer 21B are opposed to each other. Has been placed.
  • a metal foil such as a copper (Cu) foil can be used as the negative electrode current collector 22A.
  • the negative electrode active material layer 1B includes one or more negative electrode materials capable of occluding and releasing lithium as a negative electrode active material, and a binder or a conductive material as necessary. It may contain material.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resins. At least one selected from a copolymer mainly composed of materials is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a carbon material such as carbon black or fibrous carbon is used.
  • Examples of the negative electrode active material include artificial graphite, non-graphitizable carbon, graphitizable carbon, pyrolytic carbons, cokes, glassy carbons, organic polymer material fired bodies, carbon fibers, and activated carbon.
  • Examples thereof include carbon materials.
  • examples of coke include pitch coke, needle coke, and petroleum coke.
  • An organic polymer material fired body is a carbonized material obtained by firing a polymer material such as phenol resin or furan resin at an appropriate temperature, and in part, it is made of non-graphitizable carbon or graphitizable carbon. Some are classified. These carbon materials have very little change in the crystal structure that occurs during charge and discharge, can provide high charge and discharge capacity, and good cycle characteristics. In addition, non-graphitizable carbon provides excellent cycle characteristics. Further, a battery having a low charge / discharge potential, specifically, a battery having a charge / discharge potential close to that of lithium metal, can easily realize a high energy density of the battery.
  • the negative electrode active material include materials that can occlude and release lithium and include at least one of a metal element and a metalloid element as a constituent element. Even with such a material, a high energy density can be obtained.
  • This negative electrode material may be a single element, an alloy or a compound of a metal element or a metalloid element, or may have at least a part of one or more of these phases.
  • the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements.
  • the nonmetallic element may be included. There are solid structures, eutectics (eutectic mixtures), intermetallic compounds, or those in which two or more of them coexist.
  • Examples of the metal element or metalloid element constituting the negative electrode active material include a metal element or metalloid element capable of forming an alloy with lithium.
  • a metal element or metalloid element capable of forming an alloy with lithium.
  • the negative electrode active material for example, a material containing a 4B group metal element or metalloid element in the short-period type periodic table as a constituent element is preferable, and more preferably, at least one of silicon (Si) and tin (Sn) is contained. It is contained as a constituent element, and particularly preferably contains at least silicon. A high energy density can be obtained by including silicon and tin having a large ability to occlude and release lithium.
  • the negative electrode material having at least one of silicon and tin include, for example, a simple substance, an alloy or a compound of silicon, a simple substance, an alloy or a compound of tin, or one or two or more phases thereof. The material which has in is mentioned.
  • tin alloys include silicon (Si), nickel (Ni), copper (Cu), iron (Fe), cobalt (Co), and manganese (Mn) as second constituent elements other than tin (Sn).
  • Examples of the tin (Sn) compound or silicon (Si) compound include those containing oxygen (O) or carbon (C), and include the above-described second constituent element in addition to tin or silicon. You may go out.
  • Other negative electrode active materials include other metal compounds or polymer materials.
  • oxides such as lithium titanate (Li 4 Ti 5 O 12 ), manganese dioxide (MnO 2 ), vanadium oxide (V 2 O 5 , V 6 O 13 ), nickel sulfide (NiS), molybdenum sulfide (MoS 2) ), Or lithium nitride such as lithium nitride (Li 3 N), and examples of the polymer material include polyacetylene, polyaniline, and polypyrrole.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and prevents a short circuit of current due to contact between both electrodes, and the separator 23 has a function of impregnating the electrolyte and allowing lithium ions to pass therethrough.
  • the separator 23 is made of, for example, a porous film made of a polyolefin resin such as polypropylene (PP) or polyethylene (PE), or a nonwoven fabric, and has a structure in which two or more kinds of these porous films are laminated. May be.
  • a porous film made of polyolefin is preferable because it is excellent in short-circuit prevention effect and can improve the safety of the battery due to the shutdown effect.
  • the separator 23 may be made of a fluorinated resin such as polyvinylidene fluoride (PVdF) and polytetrafluoroethylene (PTFE) in addition to the polyolefin resin, and may be a porous film in which these materials are mixed. Further, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF) or the like may be applied or deposited on the surface of a porous film made of polyethylene (PE), polypropylene (PP), or the like.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PE polyethylene
  • PP polypropylene
  • porous layer made of polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF) is formed on the surface of the porous film, inorganic particles such as alumina (Al 2 O 3) and silica (SiO 2 ) are used. It may be a mixed porous layer.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • the electrolytic solution includes an electrolyte salt and a solvent that dissolves the electrolyte salt.
  • the electrolyte salt contains, for example, one or more light metal compounds such as lithium salts.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium tetraphenylborate (LiB (C 6 H 5) 4), methanesulfonic acid lithium (LiCH 3 SO 3), lithium trifluoromethanesulfonate (LiCF 3 SO 3), tetrachloroaluminate lithium (LiAlCl 4), six Examples thereof include dilithium fluorosilicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr).
  • At least one selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, and lithium hexafluoroarsenate is preferable, and lithium hexafluorophosphate is more preferable.
  • the solvent examples include lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and ⁇ -caprolactone, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and ⁇ -caprolactone
  • ethylene carbonate propylene carbonate
  • butylene carbonate butylene carbonate
  • vinylene carbonate dimethyl carbonate
  • ethyl methyl carbonate ethyl methyl carbonate
  • diethyl carbonate diethyl carbonate
  • Carbonate solvents such as 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 1,2-diethoxyethane, ether solvents such as tetrahydrofuran or 2-methyltetrahydrofuran, nitrile solvents such as acetonitrile, Examples include sulfolane solvents, phosphoric acids, phosphoric ester solvents, and pyrrolidones. Any one type of solvent may be used alone, or two or more types may be mixed and used.
  • a mixture of a cyclic carbonate and a chain carbonate as the solvent, and more preferably a compound in which a part or all of hydrogen in the cyclic carbonate or the chain carbonate includes a fluorination.
  • the fluorinated compound include fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one: FEC) or difluoroethylene carbonate (4,5-difluoro-1,3-dioxolan-2-one: DFEC) is preferably used.
  • the negative electrode 22 containing a compound such as silicon (Si), tin (Sn), or germanium (Ge) is used as the negative electrode active material, charge / discharge cycle characteristics can be improved.
  • difluoroethylene carbonate which is excellent in the cycle characteristic improving effect, is preferable as the solvent.
  • the electrolytic solution may be a non-fluidic electrolyte that is held by a polymer compound.
  • the polymer compound that holds the electrolytic solution may be any compound that absorbs the solvent and becomes semi-solid or solid.
  • a fluoropolymer such as a copolymer containing polyvinylidene fluoride (PVdF) or vinylidene fluoride (VdF) and hexafluoropropylene (HFP) in its repeating unit, polyethylene oxide (PEO) or polyethylene oxide (PEO)
  • ether-based polymer compounds such as crosslinked products containing polyacrylonitrile (PAN), polypropylene oxide (PPO) or polymethyl methacrylate (PMMA) as repeating units. Any one of these polymer compounds may be used alone, or two or more thereof may be mixed and used.
  • a fluorine-based polymer compound is desirable, and among them, a copolymer containing vinylidene fluoride and hexafluoropropylene as components is preferable. Further, this copolymer is composed of unsaturated dibasic acid monoester such as maleic acid monomethyl ester (MMM), halogenated ethylene such as ethylene trifluorochloride (PCTFE), and unsaturated compound such as vinylene carbonate (VC).
  • MMM maleic acid monomethyl ester
  • PCTFE halogenated ethylene
  • VC vinylene carbonate
  • the cyclic carbonic acid ester or epoxy group-containing acrylic vinyl monomer may be included as a component. Thereby, high characteristics can be obtained.
  • a positive electrode active material, a conductive material, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in water, a solvent such as N-methyl-2-pyrrolidone (NMP), and pasted.
  • a positive electrode mixture slurry is prepared.
  • the solvent is dried, and the positive electrode active material layer 21B is formed by compression molding with a roll press or the like. 21 is produced.
  • a negative electrode active material, a conductive material, and a binder are mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as water or N-methyl-2-pyrrolidone to obtain a paste-like negative electrode mixture.
  • An agent slurry is prepared.
  • the solvent is removed, and the negative electrode active material layer 22B is formed by compression molding with a roll press or the like. 22 is produced.
  • the electrolytic solution is prepared by dissolving a predetermined amount of electrolyte salt in a solvent.
  • the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like. Thereafter, the positive electrode 21 and the negative electrode 22 are wound through a separator 23 to form a wound electrode body 20.
  • the tip of the positive electrode lead 25 is welded to the safety valve mechanism, and the tip of the negative electrode lead 26 is welded to the battery can 11.
  • the wound surface of the wound electrode body 20 is sandwiched between the pair of insulating plates 12 a and 12 b and housed in the battery can 11.
  • the electrolytic solution is injected into the battery can 11 and impregnated in the separator 23.
  • the safety valve mechanism including the battery lid 13 and the safety valve 14 and the heat sensitive resistance element 17 are fixed to the opening end portion of the battery can 11 by caulking through the gasket 18. Thereby, the lithium ion secondary battery 10 of this technique shown in FIG. 1 is formed.
  • lithium ions are released from the positive electrode active material layer 21 ⁇ / b> B and inserted into the negative electrode active material layer 22 ⁇ / b> B through the electrolytic solution impregnated in the separator 23. Further, when discharging is performed, lithium ions are released from the negative electrode active material layer 22 ⁇ / b> B and inserted into the positive electrode active material layer 21 ⁇ / b> B through the electrolytic solution impregnated in the separator 23.
  • lithium composite oxides according to the following examples and comparative examples are obtained by replacing all the cobalt in LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCMO) with other metal elements. It is assumed that the structure maintains a layered rock salt structure.
  • Example 1 The equilibrium potential, state density, and energy density were calculated for the lithium composite oxide LiNi 1/3 Al 1/3 Mn 1/3 O 2 in which all cobalt in LNCMO was replaced with aluminum.
  • Example 2 The equilibrium potential, state density, and energy density were calculated for the lithium composite oxide LiNi 1/3 Ga 1/3 Mn 1/3 O 2 in which cobalt in LNCMO was entirely substituted with gallium.
  • Table 1 shows the cobalt (Co) -substituted element and the equilibrium potential E [V] of the lithium composite oxide according to each example and comparative example.
  • FIG. 6 the spectrum of the electronic state of the lithium composite oxide according to Comparative Examples 1 to 3 is shown in FIG. 6, and the spectrum of the electronic state of the lithium composite oxide according to Comparative Example 1 and Examples 1 to 8 is shown in FIG. It was.
  • the origin of energy (0 eV) in FIGS. 6 and 7 is the Fermi level of each lithium composite oxide, and the energy is positive in the inner shell direction.
  • the D 1 / D 2 values of the lithium composite oxides according to the examples and comparative examples are 0.35 in Example 1, 0.25 in Example 2, and 0 in Example 3. .35, 0.37 in Example 4, 0.36 in Example 5, 0.36 in Example 6, 0.35 in Example 7, 0.36 in Example 8, 0.48 in Comparative Example 1 In Comparative Example 2, it was 0.42, and in Comparative Example 3, it was 0.87.
  • Comparative Example 1 which is LNCMO and Comparative Examples 2 and 3 in which cobalt in LNCMO is substituted with a transition metal element
  • a peak derived from the 3d orbital of the transition metal is present in the region from 0 eV to 1 eV.
  • the value of D 1 / D 2 was in the range of D 1 / D 2 ⁇ 0.4.
  • the lithium composite oxides according to Examples 1 to 8 do not have a Co3d (t 2g ) orbit or an equivalent 3d orbit near the top of the valence band. For this reason, the energy difference between the Li2s orbital of metallic lithium is larger in the band involved in the oxidation of the lithium composite oxide according to each example than in the lithium composite oxide according to each comparative example. Thereby, the equilibrium potential E of the lithium composite oxide according to each example is higher than that of the lithium composite oxide according to each comparative example.
  • Table 3 shows the result of calculating the energy density using the equilibrium potential E of the lithium composite oxide according to each example and comparative example.
  • the energy density [Wh / L] of the lithium composite oxide according to each example and comparative example is 3140 in Example 1, 3170 in Example 2, 3140 in Example 3, and Example 4 3170, 3130 in Example 5, 3130 in Example 6, 3180 in Example 7, 3150 in Example 8, 3030 in Comparative Example 1, 3030 in Comparative Example 2, and 2510 in Comparative Example 3. Since the energy density is proportional to the equilibrium potential E, a high energy density was obtained in all examples compared to the comparative example.
  • the lithium ion secondary battery 10 can be mounted, for example, on a device such as an electronic device, an electric vehicle, or a power storage device, or can be used to supply power.
  • Examples of electronic devices include notebook personal computers, PDAs (personal digital assistants), mobile phones, cordless phones, video movies, digital still cameras, electronic books, electronic dictionaries, music players, radios, headphones, game consoles, navigation System, memory card, pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment, toy, medical equipment, robot, A load conditioner, a traffic light, etc. are mentioned.
  • Examples of the power receiving circuit that receives power from the secondary battery 20 include various electric / electronic components such as IC components and light emitting components, circuit boards on which these components are mounted, actuators such as motors, and the like.
  • Examples of the electric vehicle include a railway vehicle, a golf cart, an electric cart, an electric vehicle (including a hybrid vehicle), and the like, and are used as a driving power source or an auxiliary power source.
  • Examples of power storage devices include power storage power supplies for buildings such as houses or power generation facilities.
  • a battery pack will be described as an example as a representative.
  • FIG. 8 is a block diagram showing a circuit configuration example of a battery pack having a lithium ion secondary battery.
  • the battery pack 300 mainly includes a cell 301, a switch unit 304, a control unit 310, and a package body 320 that supports them.
  • the battery pack 300 has a positive electrode terminal 321 and a negative electrode terminal 322, and at the time of charging, the positive electrode terminal 321 and the negative electrode terminal 322 are charged by being connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively.
  • the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and are discharged, thereby supplying power to the power receiving circuit in the electronic device.
  • the cell 301 is composed of an assembled battery in which a plurality of lithium ion secondary batteries 301a are connected in series and / or in parallel.
  • the lithium ion secondary battery 301a the lithium ion secondary battery 10 described in the first embodiment is applied.
  • FIG. 8 a case where six lithium ion secondary batteries 301a are connected in two parallel three series (2P3S) is shown as an example, but in addition, n parallel m series (n and m are integers). As such, any connection method may be used.
  • the switch unit 304 includes a charge control switch 302a and a diode 302b, and a discharge control switch 303a and a diode 303b, and is controlled by the switch control unit 314.
  • the diode 302b has a polarity that is opposite to the charging current that flows in the direction from the positive terminal 321 to the cell 301 and that is forward to the discharge current that flows in the direction from the negative terminal 322 to the cell 301.
  • the diode 303b has a polarity that is forward with respect to the charging current and reverse with respect to the discharging current. Note that the switch unit 304 is provided on the positive electrode terminal 321 side, but may be provided on the negative electrode terminal 322 side.
  • the charging control switch 302a is turned off when the battery voltage becomes the overcharge detection voltage, and is controlled by the control unit 310 so that the charging current does not flow in the current path of the cell 301. After the charging control switch 302a is turned off, only discharging is possible through the diode 302b. Further, it is turned off when a large current flows during charging, and is controlled by the control unit 310 so as to cut off the charging current flowing in the current path of the cell 301.
  • the discharge control switch 303 a is turned off when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 310 so that the discharge current does not flow in the current path of the cell 301. After the discharge control switch 303a is turned off, only charging is possible through the diode 303b. Further, it is turned off when a large current flows during discharge, and is controlled by the control unit 310 so as to cut off the discharge current flowing in the current path of the cell 301.
  • the temperature detection element 308 is, for example, a thermistor, is provided in the vicinity of the cell 301, measures the temperature of the cell 301, and supplies the measured temperature to the temperature measurement unit 318.
  • the temperature measurement unit 318 supplies information related to the temperature measured using the temperature detection element 308 to the control unit 310.
  • the control unit 310 performs charge / discharge control at the time of abnormal heat generation and correction in calculation of the remaining capacity based on the output of the temperature measurement unit 318.
  • the voltage measurement unit 311 measures the voltage of the cell 301 and each of the lithium ion secondary batteries 301a constituting the cell 301, A / D converts this measurement voltage, and supplies the voltage to the control unit 310.
  • the current measuring unit 313 measures the current using the current detection resistor 307 and supplies the measured current to the control unit 310.
  • the switch control unit 314 is controlled by the control unit 310 and controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage measurement unit 311 and the current measurement unit 313.
  • the switch control unit 314 controls the switch unit 304 when any voltage of the lithium ion secondary battery 301a becomes equal to or lower than the overcharge detection voltage or the overdischarge detection voltage, or when a large current flows rapidly. By sending a signal, overcharge, overdischarge, and overcurrent charge / discharge are prevented.
  • the overcharge detection voltage is determined to be, for example, 4.20V ⁇ 0.05V, and the overdischarge detection voltage is determined to be, for example, 2.4V ⁇ 0.1V.
  • a semiconductor switch such as a MOSFET is used for the charge control switch 302a and the discharge control switch 303a.
  • the parasitic diode of the MOSFET functions as the diodes 302b and 303b.
  • the switch control unit 314 supplies control signals DO and CO to the gates of the charge control switch 302a and the discharge control switch 303a, respectively. .
  • the charge control switch 302a and the discharge control switch 303a are P-channel type, they are turned on by a gate potential that is lower than the source potential by a predetermined value or more. That is, in normal charging and discharging operations, the control signals CO and DO are set to a low level, and the charging control switch 302a and the discharging control switch 303a are turned off.
  • the memory 317 includes a RAM and a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) that is a nonvolatile memory.
  • EPROM Erasable Programmable Read Only Memory
  • numerical values calculated by the control unit 310, internal resistance values of the batteries in the initial state of each lithium ion secondary battery 301a measured in the manufacturing process, and the like are stored in advance, and can be appropriately rewritten. is there. Further, by storing the full charge capacity of the lithium ion secondary battery 301a, for example, the remaining capacity can be calculated together with the control unit 310.
  • a method for controlling the electronic state a method of reducing the energy of the band involved in the oxidation-reduction reaction by replacing an element in the lithium composite oxide is used. It is not limited to.
  • a method in which the interaction between cobalt and the ligand is increased in order to directly reduce the energy of the band involved in redox there is a method of shortening the interatomic distance by applying pressure to the lithium composite oxide or growing grains on a specific substrate having a small lattice constant is exemplified.
  • a cylindrical lithium ion secondary battery having a winding structure has been described, but other than this, the present invention can be similarly applied to a thin battery having a winding structure called a so-called laminate film type. is there.
  • the lithium ion secondary battery having a winding structure has been described.
  • the present invention can be applied to a battery having a structure in which the positive electrode and the negative electrode are folded or stacked.
  • the present technology can also be applied to so-called coin-type, button-type, and square-type batteries.
  • this technique can also take the following structures. (1) When the integrated value of the density of states between the valence band upper end to the inner shell direction 1eV and D 1, the integral value of the density of states until the inner shell direction 2eV from the valence band upper end and a D 2, D
  • D A positive electrode material for a lithium ion secondary battery comprising a lithium composite oxide having an electronic state density of 1 / D 2 ⁇ 0.4.
  • the positive electrode material for a lithium ion secondary battery according to (1) above The lithium composite oxide is a LiNiXMnO-based lithium composite oxide (where X is at least one metal element), a positive electrode material for a lithium ion secondary battery.
  • X is a positive electrode material for a lithium ion secondary battery, wherein X is at least two metals selected from magnesium, silicon, zinc, and germanium.
  • the lithium composite oxide is a positive electrode material for a lithium ion secondary battery having a layered rock salt structure.
  • (6) When the integrated value of the density of states between the valence band upper end to the inner shell direction 1eV and D 1, the integral value of the density of states until the inner shell direction 2eV from the valence band upper end and a D 2, D 1 / D 2 ⁇ positive electrode for a lithium ion secondary battery comprising a positive electrode material for a lithium ion secondary battery including a lithium composite oxide having an electron state density is 0.4.
  • An electrolyte, A negative electrode When the integrated value of the density of states between the valence band upper end to the inner shell direction 1eV and D 1, the integral value of the density of states until the inner shell direction 2eV from the valence band upper end and a D 2, D A positive electrode containing a positive electrode material for a lithium ion secondary battery including a lithium composite oxide having an electronic state density of 1 / D 2 ⁇ 0.4; A lithium ion secondary battery comprising: (8) A lithium ion secondary battery; A controller that controls charging and discharging of the lithium ion secondary battery; A package body that supports the lithium ion secondary battery and the control unit; The lithium ion secondary battery is An electrolyte, A negative electrode, When the integrated value of the density of states between the valence band upper end to the inner shell direction 1eV and D 1, the integral value of the density of states until the inner shell direction 2eV from the valence band upper end and a D 2, D And a positive electrode containing a positive electrode material for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】高エネルギー密度を得ることが可能なリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器を提供すること。 【解決手段】本技術の一形態に係るリチウムイオン二次電池用正極材料は、リチウム複合酸化物を含有する。上記リチウム複合酸化物は、価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有する。

Description

リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器
 本技術は、リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器に関する。
 近年、携帯電話、ビデオカメラ、ノート型パーソナルコンピュータ等の携帯情報電子機器の普及に伴い、これらの機器の高性能化、小型化及び軽量化が図られている。これらの機器の電源には、使い捨ての一次電池や繰り返し使用できる二次電池が用いられているが、高性能化、小型化、軽量化、経済性等の総合的なバランスの良さから、非水電解質二次電池、特にリチウムイオン二次電池の需要が伸びている。また、これらの機器では、更なる高性能化や小型化等が進められており、リチウムイオン二次電池に関しても、さらなる高エネルギー密度化が要求されている。
 リチウムイオン二次電池は、正極、負極、及び電解質を備えており、正極材料としては、化学的安定性と高い平衡電位に由来する高エネルギー密度により、LiCoOが典型的な正極活物質として用いられている。
 正極活物質であるLiCoOについては、特許文献1~5に示すように、電気化学反応における結晶構造の安定化や、表面改質による遷移金属の溶出防止等の改良がなされている。
特開2003-017055号公報 特許第3422440号公報 特開2002-124261号公報 特許第4404564号公報 特許第3858699号公報
 近年、リチウムイオン二次電池が適用される電子機器等は、ますます高性能化及び多機能化しており、リチウムイオン二次電池の電池特性についても、高エネルギー密度化、高容量化等、さらなる改善が求められている。
 以上のような事情に鑑み、本技術の目的は、高エネルギー密度を得ることが可能なリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器を提供することにある。
 本技術の一形態に係るリチウムイオン二次電池用正極材料は、リチウム複合酸化物を含有する。上記リチウム複合酸化物は、価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有する。
 この構成によれば、リチウムイオン二次電池用正極材料の平衡電位を向上させることができる。これにより、高エネルギー密度を有するリチウムイオン二次電池用正極材料を得ることができる。
 また、上記リチウム複合酸化物は、LiNiXMnO系リチウム複合酸化物であってもよい。ただし、Xは少なくとも1種の金属元素である。
 この構成によれば、上記リチウム複合酸化物中の酸化されるバンドのエネルギーレベルを下げることが可能となる。これにより、リチウムイオン二次電池用正極材料の平衡電位を向上させることができる。
 また、上記Xは、アルミニウム又はガリウムであってもよい。
 これにより、リチウムイオン二次電池用正極材料の平衡電位をさらに向上させることができる。
 また、上記Xは、マグネシウム、ケイ素、亜鉛、ゲルマニウムの中から選ばれる少なくとも2種の金属であってもよい。
 これにより、リチウムイオン二次電池用正極材料の平衡電位をさらに向上させることができる。
 また、上記リチウム複合酸化物は、層状岩塩型構造であってもよい。
 この構成によれば、高い電気容量を得ることができる。また、リチウム複合酸化物の相転移を起こり難くすることができ、これにより電池寿命特性を向上させることができる。
 本技術の一形態に係るリチウムイオン二次電池用正極は、リチウムイオン二次電池用正極材料を具備する。上記リチウムイオン二次電池用正極材料は、リチウム複合酸化物を含む。上記リチウム複合酸化物は、価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有する。
 本技術の一形態に係るリチウムイオン二次電池は、電解液と、負極と、正極とを具備する。上記正極は、リチウムイオン二次電池用正極材料を含有する。上記リチウムイオン二次電池用正極材料は、リチウム複合酸化物を含む。上記リチウム複合酸化物は、価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有する。
 本技術の一形態に係る電池パックは、リチウムイオン二次電池と、制御部と、パッケージ体とを具備する。上記制御部は、上記リチウムイオン二次電池の充放電を制御する。上記パッケージ体は、上記リチウムイオン二次電池と上記制御部とを支持する。上記リチウムイオン二次電池は、電解液と、負極と、正極とを具備する。上記正極は、リチウムイオン二次電池用正極材料を含有する。上記リチウムイオン二次電池用正極材料は、リチウム複合酸化物を含む。上記リチウム複合酸化物は、価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有する。
 本技術の一形態に係る電子機器は、リチウムイオン二次電池と、受電回路とを具備する。上記リチウムイオン二次電池は、電解液と、負極と、正極とを具備する。上記正極は、リチウムイオン二次電池用正極材料を含有する。上記リチウムイオン二次電池用正極材料は、リチウム複合酸化物を含む。上記リチウム複合酸化物は、価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有する。上記受動回路は、上記リチウムイオン二次電池からの電力の供給を受ける。
 以上のように、本技術によれば、高エネルギー密度を得ることが可能なリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器を提供することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の一実施形態に係るリチウムイオン二次電池用正極材料を用いたリチウム二次電池を示す断面図である。 図1に示したリチウムイオン二次電池の巻回電極体の拡大断面図である。 LNCMOの結晶構造を示す図である。 電子状態制御による平衡電位の上昇メカニズムを示す図である。 LNCMO及びLNAMOの状態密度のスペクトルを示す図である。 本発明の一形態に係る比較例1~3のリチウム複合酸化物の状態密度のスペクトルを示す図である。 本発明の一形態に係る比較例1及び実施例1~8のリチウム複合酸化物の状態密度のスペクトルを示す図である。 本技術の一形態に係る電池パックの構成を示すブロック図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
<第1の実施形態>
 図1は、本技術の一実施形態に係るリチウムイオン二次電池の一構成例を示す断面図である。図2は、上記リチウムイオン二次電池の巻回電極体の拡大断面図である。以下、本技術をリチウムイオン二次電池に適用した例について説明する。
[リチウムイオン二次電池の全体構成]
 本実施形態のリチウムイオン二次電池10は円筒型であり、ほぼ中空円状の電池缶11の内部に、図示しない液体状の電解質とともに帯状の正極21と負極22とがセパレータ23を介して巻回された巻回電極体20を有している。
 電池缶11は、一端部が閉鎖され他端部が開放された有底円筒形状である。電池缶11の内部には、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12a、12bがそれぞれ配置されている。
 電池缶11の材料としては、鉄(Fe)、ニッケル(Ni)、ステンレス(SUS)、アルミニウム(Al)、チタン(Ti)等が挙げられる。この電池缶11には、リチウムイオン二次電池10の充放電に伴う電気化学的な電解液による腐食を防止するために、例えばニッケル等のメッキが施されていてもよい。
 電池缶11の開放端部には、電池蓋13と、この電池蓋13の内側に設けられた安全弁機構及び熱感抵抗素子(PTC素子:Positive Temperature Coefficient)17が、絶縁封口のためのガスケット18を介して取り付けられている。
 電池蓋13は、例えば電池缶11と同様の材料により構成されており、電池内部で発生したガスを排出するための開口部が設けられている。
 安全弁機構は、安全弁14とディスクホルダ15と遮断ディスク16とが順に重ねられている。安全弁14の突出部14aは、サブディスク19を介して巻回電極体20から導出された正極リード25と接続されている。サブディスク19は、遮断ディスク16の中心部に設けられた孔部16aを覆うように配置されている。このように、サブディスク19を介して安全弁14と正極リード25とが接続されることにより、安全弁14の反転時に正極リード25が孔部16aから引き込まれることを防止することができる。また、安全弁機構は、熱感抵抗素子17を介して電池蓋13と電気的に接続されている。
 安全弁機構は、電池内部短絡あるいは電池外部からの加熱等によりリチウムイオン二次電池10の内圧が一定以上となった場合に、安全弁14が反転し、突出部14aと電池蓋13と巻回電極体20との電気的接続を切断するものである。すなわち、安全弁14が反転した際には遮断ディスク16により正極リード25が押さえられて安全弁14と正極リード25との接続が解除される。ディスクホルダ15は絶縁性材料からなり、安全弁14が反転した場合には安全弁14と遮断ディスク16とが絶縁される。
 また、電池内部でガスが発生し、電池内圧がさらに上昇した場合には、安全弁14の一部が裂壊することにより、ガスを電池蓋13側に排出することができる。
 さらに、遮断ディスク16の孔部16aの周囲には、図示しない複数のガス抜き孔が設けられている。これにより、巻回電極体20からガスが発生した場合には、ガスを効果的に電池蓋13側に排出することができる。
 熱感抵抗素子17は、温度が上昇した際に抵抗値が増大し、電池蓋13と巻回電極体20との電気的接続を切断する。これにより電流を遮断し、過大電流による異常な発熱を防止することができる。ガスケット18は、例えば絶縁材料により構成されており、その表面にはアスファルトが塗布されていてもよい。
 巻回電極体20は、リチウムイオン二次電池10内に収容され、センターピン24を中心に巻回されている。巻回電極体20は、正極21及び負極22がセパレータ23を介して順に積層され、長手方向に巻回されている。正極21には正極リード25が接続されており、負極22には負極リード26が接続されている。正極リード25は、上述のように、安全弁14に溶接されて電池蓋13と電気的に接続されており、負極リード26は電池缶11に溶接されて電気的に接続されている。
 図2は、巻回電極体20の断面図の一部を拡大して示している。以下、正極21、負極22、セパレータ23について、詳細に説明する。
[正極]
 正極21は、正極活物質を含有する正極活物質層21Bが、正極集電体21Aの両面上に形成されたものである。正極集電体21Aとしては、例えば、アルミニウム(Al)箔、ニッケル(Ni)箔あるいはステンレス(SUS)箔等の金属箔を用いることができる。
 また、正極21は、正極集電体21Aの一端部の正極活物質層21B未形成部分に、スポット溶接又は超音波溶接で接続された正極リード25を有している。正極リード25は、金属箔、網目状のものが望ましいが、電気化学的及び化学的に安定であり、導通がとれるものであれば特定の種類に限定されない。正極リード25の材料としては、例えば、アルミニウム、ニッケル等が挙げられる。
 正極活物質層21Bは、正極活物質として、リチウムを吸蔵及び放出することが可能な正極材料のいずれか1種又は2種以上を含んでおり、必要に応じて、結着材や導電材等の他の材料を含んでいてもよい。
 上記結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)等の樹脂材料、並びにこれら樹脂材料を主体とする共重合体等から選択される少なくとも1種が用いられる。
 上記導電材としては、例えば、カーボンブラックあるいはグラファイト等の炭素材料等が用いられる。
 上記正極材料としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物、リチウムと他の金属を含有するリチウム複合化合物、リチウム含有層間化合物等のリチウム含有化合物が挙げられる。本実施形態に係るリチウム複合酸化物については後述する。
(一般の正極材料用リチウム複合酸化物について)
 一般に、リチウムイオン二次電池の正極のエネルギー密度を向上させるために、正極材料として、リチウムと遷移金属元素と酸素(O)とを含むリチウム複合酸化物が用いられている。このようなリチウム複合酸化物としては、例えば、遷移金属元素としてコバルト(Co)を含んだLiCoO等が挙げられる。
 LiCoOは、層状岩塩型構造を有し、化学的に安定であり、高い平衡電位に由来する高エネルギー密度により、リチウムイオン二次電池の典型的な正極活物質として用いられている。本技術では、「平衡電位」とは、還元された金属リチウムの電位を0としたときの、正極の電位(vs.Li/Li)としており、すなわち電池の起電力である。
 しかしながら、LiCoOは、充放電時の結晶構造の可逆性を維持するために、理論容量の50%(140mAh/g)程度までしかリチウムの脱挿入を行うことができない。
 そこで、LiCoOと同様の層状岩塩型構造を有し、より多量のリチウムを可逆に脱挿入できる正極活物質が提案されている。そのような正極活物質としては、例えば、コバルトの代わりにニッケル(Ni)とマンガン(Mn)を1/2ずつ用いたLiNiMnO(LNMO)や、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)を1/3ずつ用いたLiNiCoMn18(LNCMO)等がある。LNCMOは、図3に示す単位胞からなる構造を有している。
 LNMO及びLNCMOは、いずれも充放電時にLiCoOよりも多量のリチウムを可逆に脱挿入することが可能であり、また、実用量は理論容量の80%(200mAh/g)程度まで達している。
 しかしながら、LiCoO、LNMO及びLNCMOの充電初期段階での平衡電位を比較すると、LiCoOが約3.9Vであることに対し、LNMOでは3.7V、LNCMOでは3.6Vであり、LiCoOと比べるとLNMO及びLNCMOの平衡電位は低い値となることが知られている。
 このため、上述のような方法で高容量化をしても、〔平衡電位×リチウム容量×重量密度〕で与えられるエネルギー密度[Wh/L]については、効率的に上昇させることができない。
(電子状態制御による平衡電位上昇のメカニズム)
 本実施形態に係る正極材料は、上述のような方法とは異なり、下記のような電子状態制御によって平衡電位を上昇させる方法により高エネルギー密度化を図っている。
 図4は、電子状態制御によりリチウムイオン二次電池の平衡電位が上昇するメカニズムを示した模式図である。図4において、縦軸は真空準位基準のエネルギーであり、横軸は状態密度である。また、図4の左の模式図は金属リチウムのバンドであり、中央の模式図はLiNi1/3Co1/3Mn1/3のバンドであり、右の模式図はLiNi1/31/3Mn1/3(Xは少なくとも1種の金属元素)のバンドである。
 リチウムイオン二次電池の充電過程においては、リチウムイオンが金属リチウムに還元される。このとき、遷移金属は酸化し、当該遷移金属の酸化するバンドと金属リチウムのLi2s軌道との平均エネルギー差が平衡電位となる。
 例えば、図4に示したように、正極にLiNi1/3Co1/3Mn1/3を用いた場合では、正極において酸化するバンドは価電子帯状態のCo3d(t2g)軌道であり、この軌道とLi2s軌道との平均エネルギー差Eが平衡電位となる。
 ここで、上記正極のCo3d(t2g)軌道の下には、Ni,Mnの3d軌道が存在する。このため、図4の右図に示したように、正極を、コバルトを含まないLiNi1/31/3Mn1/3とすると、正極において酸化するバンドは、Co3d(t2g)軌道よりもLi2sバンドとのエネルギー差が大きいNi、Mn由来のバンドとなる。すなわち、この場合の平衡電位Eは、E>Eとなることにより、正極にLiNi1/3Co1/3Mn1/3を用いた場合に比べて平衡電位を上昇させることができる。
(正極材料の平衡電位及び状態密度の計算)
 ここで、正極材料の平衡電位及び状態密度に関して具体的な計算を行い、上述の電子状態制御により正極材料の平衡電位が上昇するメカニズムについて検証する。正極材料の平衡電位の値については、下記のような電子状態計算により算出することができる。
 本技術において、電子状態計算による平衡電位の算出は、密度汎関数法(DFT:Density Functional Theory)を用いたバンド計算の中でも、特にGGA+U法を採用した。この方法は、交換相関相互作用として一般勾配近似(GGA:General Gradient Approximation)の汎関数を用いたうえで、特にd電子を含む遷移金属について、エネルギーの補正項を加え、定量精度の向上を図った手法である。
 補正パラメータUについては完全に元素に依存しており、かつ理論的に導出されたものではないが、実験値の再現性の検証は行われており、複合酸化物においては、L.Wang,T.Maxisch,and G.Ceder,"Phys.Rev.B",2006,73,195107で提示されたUを用いて十分な精度があることが保障されている。本技術でも、Uについてはその値を用いている。
 計算に用いるバンド計算ソフトウェアとしては、VASP(Vienna Ab initio Simulation Package)を用いた。以下に計算の詳細を示す。
 〔正極材料の平衡電位〕
 ホスト構造Xに対するリチウム(Li)挿入反応「Li(metal)+X→LiX」に対する平均平衡電位Eは、式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
                         …(1)
 式(1)中、nはLiX構造においてX構造から挿入されたLiの原子数、eは電気素量、G(X)、G(LiX)は各構造のギブス自由エネルギー、G(Li metal)は体心立方構造の金属リチウムの1原子当たりのギブス自由エネルギーである。G(Li metal)の値は、VASPを用いた計算では-1.910eVとなる。
 Gの単位をeVで計算した場合、電気素量e=1とすればEの単位はV(ボルト)で算出することができる。G(Li metal)は上記の値で、基本的に定数とする。後はXとLiXのギブス自由エネルギーを計算し、差をとることで平均平衡電位Eが算出される。なお本技術では、系のギブス自由エネルギーはVASPで計算されるセルの全エネルギーで近似できるものとする。
 〔LNCMOの平衡電位〕
 式(1)に従い、LiNi1/3Co1/3Mn1/3(LNCMO)の平衡電位を算出した。LNCMOの未充電状態の単位胞中の組成は、原子数を反映させた形で記述すると、図3に示すようにLiNiCoMn18となる。充電深度を66%までとした場合の平均平衡電位Eは、式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
                         …(2)
 式(2)中、LiNiCoMn18は充電深度66%の時の組成であり、単位胞は、図3の構造から各リチウム層のリチウムを2つずつ抜いた構造とする。この条件でLNCMOの平均平衡電位Eを算出すると、E=3.87Vとなった。
 〔LNAMOの平衡電位〕
 式(1)に従い、LiNi1/3Al1/3Mn1/3(LNAMO)の平衡電位を算出した。LNAMOは、LNCMO中のコバルトを、アルミニウムで全て置換したものであり、その結晶構造は、図3中のコバルト原子の位置にアルミニウム原子を配置したものとした。充電深度を66%までとした場合のLNAMOの平均平衡電位Eは、式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
                         …(3)
 式(3)より平均平衡電位Eを算出すると、E=4.01Vとなり、LNCMOと比較して平衡電位の上昇がみられた。
 〔正極材料の状態密度〕
 また、LNCMOとLNAMOについて、各々の電子状態密度を計算し、結果を図5に示した。図5中、エネルギー軸の原点はLNCMO及びLNAMOのFermi準位とした。なお、本技術において、リチウム複合酸化物の「価電子帯上端」とは、上記のように当該リチウム複合酸化物のFermi準位であり、すなわちエネルギー軸の原点(0eV)のことを示す。また、エネルギーは内殻方向を正とする。
 図5に示すように、LNCMOの状態密度については、価電子帯上端(0eV)~1eVまでの領域にCo3d(t2g)軌道に由来するピークが存在することがわかる。一方、LNAMOの状態密度については、0eV~1eVまでの領域に上記ピークが存在しなかった。
 また、図5より、各リチウム複合酸化物の状態密度の積分値Dに着目すると、LNAMOでは0eV~1eVまでの間に状態密度のピークがないため、0eV~1eVまでの間の状態密度の積分値Dは、0eV~2eVまでの間の状態密度の積分値Dの40%以下(D/D<0.4)となり、積分値の割合が大きく低下している。LNAMOでは、D/D=0.35となる。一方、LNCMOの場合は、0eV~1eVまでの間にCo3d(t2g)軌道に由来するピークがあるため、D/D=0.48となっており、DがDの40%を超えた値となっている。
 さらに、図5より、各リチウム複合酸化物の最大状態密度dに着目すると、LNAMOでは0eV~1eVまでの間に状態密度のピークがないため、0eV~1eVまでの間の最大状態密度dは、LNAMOの価電子帯全体の最大状態密度dDMAXの60%以下(d<0.6dMAX)となっていることがわかる。一方、LNCMOの場合は、0eV~1eVまでの間にCo3d(t2g)軌道に由来するピークがあるため、dがdMAXの60%を超えた値となっていることがわかる。
 以上の正極材料の平衡電位及び状態密度に関する計算から、正極材料の電子状態を変化させることにより当該正極材料の平衡電位が上昇することがわかった。すなわち、図4に示したメカニズムを支持する結果が得られた。
 また、リチウム複合酸化物内の元素を置換することによる電子状態に対する影響を、直接実験的に観測する方法としては、硬X線光電子分光法(HAXPES)が挙げられる。
 HAXPESでは、図5で計算結果を示した価電子帯の電子状態を直接観測することができる。このとき、LNCMOのように価電子帯の上端にCo3d由来のバンドがあれば、0eV~1eV以内に明瞭なピーク構造が観測されるはずである。一方、上記領域に高いピークが存在しなければ、電子状態制御により酸化還元種を変更することができたとみなすことができる。
(本実施形態に係る正極材料)
 以上の説明を踏まえ、本実施形態に係る正極材料は、価電子帯上端(0eV)から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物を含有する。
 上記D/Dの値の範囲を有するリチウム複合酸化物は、リチウムイオン二次電池の充電時に酸化するバンドのエネルギーと、金属リチウムのLi2s軌道のエネルギーとの差が大きく、高い平衡電位を得ることができる。これにより、正極材料の平衡電位を向上させ、高エネルギー密度を有する正極材料を得ることができる。
 上記リチウム複合酸化物は、典型的には、LiNiXMnO系リチウム複合酸化物(ただし、Xは少なくとも1種の金属元素)であるが、これに限定されない。上記Xが少なくとも1種の金属元素であることにより、リチウムイオン二次電池の充電時に酸化するバンドのエネルギーを下げ、Li2sバンドとのエネルギー差を大きくすることができる。これにより、正極の平衡電位をさらに上昇させることが可能となる。
 上記金属元素Xとしては、例えば、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)等が挙げられる。また、上記金属元素Xは、Co3d(t2g)軌道以上のエネルギーの3d軌道電子を持たない金属元素であれば、特定の種類に限定されない。
 上記金属元素Xの含有率は、特に限定されないが、上記リチウム複合酸化物の組成比をLiNi1/31/3Mn1/3とし、マンガンとニッケルの価数を変えないよう上記金属元素Xの平均価数が3+となるように調整することにより、上記リチウム複合酸化物は図3に示すような層状岩塩型構造をとることができる。このため、上記組成比を有する上記リチウム複合酸化物は、LNCMOと同様に多量のリチウムを脱挿入可能であり、高い電気容量を持たせることができる。また、層状岩塩型構造は相転移が起こり難く、これにより電池寿命特性を向上させることができる。
 上記リチウム複合酸化物は、2種以上を混合して用いてもよい。また、より高い電極充填性とサイクル特性が得られるという観点から、上記リチウム複合酸化物のいずれかよりなる芯粒子の表面を、他の上記リチウム複合酸化物のいずれかよりなる微粒子又は炭素材料等で被覆した複合粒子としてもよい。
 上記リチウム複合酸化物を作製する方法としては、例えば、以下の方法を用いることができるが、これらに限定されない。以下のリチウム複合酸化物の作製方法において、焼成条件は、焼成温度:950℃、昇温速度:200℃/h、保持時間:10hである。
〔アルミニウムを含むリチウム複合酸化物の作製方法の一例〕
 炭酸リチウム(LiCO)、酸化マンガン(MnO)、酸化アルミニウム(Al)、及び酸化ニッケル(NiO)を、1.05:0.66:0.33:0.66のモル比で均一にエタノール湿式混合する。得られた前駆体を大気開放下にて焼成した後、炉内で徐冷する。得られた焼成体を粉砕し、LiNi1/3Al1/3Mn1/3を得る。
〔ガリウムを含むリチウム複合酸化物の作製方法の一例〕
 炭酸リチウム(LiCO)、酸化マンガン(MnO)、酸化ガリウム(Ga)、酸化ニッケル(NiO)を、1.05:0.66:0.33:0.66のモル比で均一にエタノール湿式混合する。得られた前駆体を大気開放下にて焼成した後、炉内で徐冷する。得られた焼成体を粉砕し、LiNi1/3Ga1/3Mn1/3を得る。
〔スズ及び亜鉛を含むリチウム複合酸化物の作製方法の一例〕
 炭酸リチウム(LiCO)、酸化マンガン(MnO)、酸化スズ(SnO)、酸化亜鉛(ZnO)及び酸化ニッケル(NiO)を、1.05:0.66:0.33:0.33:0.66のモル比で均一にエタノール湿式混合する。得られた前駆体を大気開放下にて焼成した後、炉内で徐冷する。得られた焼成体を粉砕し、LiNi1/3Sn1/6Zn1/6Mn1/3を得る。
〔スズ及びマグネシウムを含むリチウム複合酸化物の作製方法の一例〕
 炭酸リチウム(LiCO)、酸化マンガン(MnO)、酸化スズ(SnO)、酸化マグネシウム(MgO)及び酸化ニッケル(NiO)を、1.05:0.66:0.33:0.33:0.66のモル比で均一にエタノール湿式混合する。得られた前駆体を大気開放下にて焼成した後、炉内で徐冷する。得られた焼成体を粉砕し、LiNi1/3Sn1/6Mg1/6Mn1/3を得る。
〔ケイ素及び亜鉛を含むリチウム複合酸化物の作製方法の一例〕
 炭酸リチウム(LiCO)、酸化マンガン(MnO)、酸化ケイ素(SiO)、酸化亜鉛(ZnO)及び酸化ニッケル(NiO)を、1.05:0.66:0.33:0.33:0.66のモル比で均一にエタノール湿式混合する。得られた前駆体を大気開放下にて焼成した後、炉内で徐冷する。得られた焼成体を粉砕し、LiNi1/3Si1/6Zn1/6Mn1/3を得る。
〔ケイ素及びマグネシウムを含むリチウム複合酸化物の作製方法の一例〕
 炭酸リチウム(LiCO)、酸化マンガン(MnO)、酸化ケイ素(SiO)、酸化マグネシウム(MgO)及び酸化ニッケル(NiO)を、1.05:0.66:0.33:0.33:0.66のモル比で均一にエタノール湿式混合する。得られた前駆体を大気開放下にて焼成した後、炉内で徐冷する。得られた焼成体を粉砕し、LiNi1/3Si1/6Mg1/6Mn1/3を得る。
〔ゲルマニウム及び亜鉛を含むリチウム複合酸化物の作製方法の一例〕
 炭酸リチウム(LiCO)、酸化マンガン(MnO)、酸化ゲルマニウム(GeO)、酸化亜鉛(ZnO)及び酸化ニッケル(NiO)を、1.05:0.66:0.33:0.33:0.66のモル比で均一にエタノール湿式混合する。得られた前駆体を大気開放下にて焼成した後、炉内で徐冷する。得られた焼成体を粉砕し、LiNi1/3Ge1/6Zn1/6Mn1/3を得る。
〔ゲルマニウム及びマグネシウム含むリチウム複合酸化物の作製方法の一例〕
 炭酸リチウム(LiCO)、酸化マンガン(MnO)、酸化ゲルマニウム(GeO)、酸化マグネシウム(MgO)及び酸化ニッケル(NiO)を、1.05:0.66:0.33:0.33:0.66のモル比で均一にエタノール湿式混合する。得られた前駆体を大気開放下にて焼成した後、炉内で徐冷する。得られた焼成体を粉砕し、LiNi1/3Ge1/6Mg1/6Mn1/3を得る。
[負極]
 負極22は、負極活物質を含有する負極活物質層22Bが、負極集電体22Aの両面上に形成されたものであり、負極活物質層22Bと正極活物質層21Bとが対向するように配置されている。負極集電体22Aとしては、例えば、銅(Cu)箔等の金属箔を用いることができる。
 負極活物質層1Bは、負極活物質として、リチウムを吸蔵及び放出することが可能な負極材料のいずれか1種又は2種以上を含んでおり、必要に応じて結着材又は導電材等の材料を含んでいてもよい。
 上記結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)等の樹脂材料、並びにこれら樹脂材料を主体とする共重合体等から選択される少なくとも1種が用いられる。
 上記導電材としては、例えば、カーボンブラックあるいは繊維状炭素等の炭素材料等が用いられる。
 上記負極活物質としては、例えば、人造黒鉛、難黒鉛化性炭素、易黒鉛化性炭素、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子材料焼成体、炭素繊維あるいは活性炭等の炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークス等がある。有機高分子材料焼成体とは、フェノール樹脂やフラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素又は易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができるとともに、良好なサイクル特性を得ることができる。また、難黒鉛化性炭素は、優れたサイクル特性が得られる。さらにまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができる。
 他の負極活物質としては、リチウムを吸蔵及び放出することが可能であり、金属元素及び半金属元素のうちの少なくとも1種を構成元素として含む材料も挙げられる。このような材料によっても、高いエネルギー密度を得ることができる。この負極材料は、金属元素あるいは半金属元素の単体でも合金でも化合物でもよく、またこれらの1種又は2種以上の相を少なくとも一部に有するようなものでもよい。なお、本技術において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物、あるいはそれらのうちの2種以上が共存するものがある。
 上記負極活物質を構成する金属元素あるいは半金属元素としては、例えば、リチウムと合金を形成することが可能な金属元素又は半金属元素が挙げられる。具体的には、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、チタン(Ti)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)あるいは白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
 上記負極活物質としては、例えば、短周期型周期表における4B族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、より好ましいのはケイ素(Si)及びスズ(Sn)の少なくとも一方を構成元素として含むものであり、特に好ましくは少なくともケイ素を含むものである。リチウムを吸蔵及び放出する能力が大きいケイ素及びスズを含むことで、高いエネルギー密度を得ることができる。ケイ素及びスズのうちの少なくとも1種を有する負極材料としては、例えば、ケイ素の単体、合金又は化合物や、スズの単体、合金又は化合物や、それらの1種又は2種以上の相を少なくとも一部に有する材料が挙げられる。
 ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ(Sn)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)及びクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。スズの合金としては、例えば、スズ(Sn)以外の第2の構成元素として、ケイ素(Si)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)及びクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。
 スズ(Sn)の化合物あるいはケイ素(Si)の化合物としては、例えば、酸素(O)あるいは炭素(C)を含むものが挙げられ、スズ又はケイ素に加えて、上述した第2の構成元素を含んでいてもよい。
 他の負極活物質としては、他の金属化合物又は高分子材料が挙げられる。例えば、チタン酸リチウム(LiTi12)、二酸化マンガン(MnO)、酸化バナジウム(V、V13)等の酸化物、硫化ニッケル(NiS)、硫化モリブデン(MoS)等の硫化物、又は窒化リチウム(LiN)等のリチウム窒化物が挙げられ、高分子材料としてはポリアセチレン、ポリアニリン又はポリピロール等が挙げられる。
[セパレータ]
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止するとともに、セパレータ23には電解液が含浸され、リチウムイオンを通過させる機能を有する。セパレータ23は、例えば、ポリプロピレン(PP)あるいはポリエチレン(PE)等のポリオレフィン樹脂からなる多孔質膜、又は不織布等により構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。
 セパレータ23は、ポリオレフィン樹脂以外にも、ポリフッ化ビニリデン(PVdF)及びポリテトラフルオロエチレン(PTFE)等のフッ素化樹脂を用いることができ、これら材料が混合された多孔質膜とされてもよい。また、ポリエチレン(PE)、ポリプロピレン(PP)等からなる多孔質膜の表面に、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等を塗布又は被着させてもよい。多孔質膜の表面に、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)からなる孔質層を形成する場合には、アルミナ(AlO3)、シリカ(SiO)等の無機粒子が混合された多孔質層とされてもよい。
[電解液]
 電解液は、電解質塩と、この電解質塩を溶解する溶媒とを含む。
 電解質塩は、例えば、リチウム塩等の軽金属化合物の1種あるいは2種以上を含有している。このリチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、テトラクロロアルミン酸リチウム(LiAlCl)、六フッ化ケイ酸二リチウム(LiSiF)、塩化リチウム(LiCl)あるいは臭化リチウム(LiBr)等が挙げられる。中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウム及び六フッ化ヒ酸リチウムからなる群のうちの少なくとも1種が好ましく、六フッ化リン酸リチウムがより好ましい。
 溶媒としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトンあるいはε-カプロラクトン等のラクトン系溶媒、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ビニレン、炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチル等の炭酸エステル系溶媒、1,2-ジメトキシエタン、1-エトキシ-2-メトキシエタン、1,2-ジエトキシエタン、テトラヒドロフランあるいは2-メチルテトラヒドロフラン等のエーテル系溶媒、アセトニトリル等のニトリル系溶媒、スルフォラン系溶媒、リン酸類、リン酸エステル溶媒、又はピロリドン類等の溶媒が挙げられる。溶媒は、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 また、溶媒として、環状炭酸エステル及び鎖状炭酸エステルを混合して用いることが好ましく、環状炭酸エステル又は鎖状炭酸エステルの水素の一部又は全部がフッ素化された化合物を含むことがより好ましい。このフッ素化された化合物としては、フルオロエチレンカーボネート(4-フルオロ-1,3-ジオキソラン-2-オン:FEC)又はジフルオロエチレンカーボネート(4,5-ジフルオロ-1,3-ジオキソラン-2-オン:DFEC)を用いることが好ましい。負極活物質として、ケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)等の化合物を含む負極22を用いた場合であっても、充放電サイクル特性を向上させることができるためである。特に、サイクル特性改善効果に優れるジフルオロエチレンカーボネートが溶媒として好ましい。
 また、電解液は、高分子化合物に保持されて非流動性電解質とされていてもよい。電解液を保持する高分子化合物は、溶媒を吸収して半固体状又は固体状とするものであればよい。例えば、ポリフッ化ビニリデン(PVdF)あるいはビニリデンフルオライド(VdF)とヘキサフルオロプロピレン(HFP)とを繰り返し単位に含む共重合体等のフッ素系高分子化合物、ポリエチレンオキサイド(PEO)あるいはポリエチレンオキサイド(PEO)を含む架橋体等のエーテル系高分子化合物、ポリアクリロニトリル(PAN)、ポリプロピレンオキサイド(PPO)あるいはポリメチルメタクリレート(PMMA)を繰返し単位として含むもの等が挙げられる。高分子化合物には、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 特に、酸化還元安定性の点からは、フッ素系高分子化合物が望ましく、中でも、ビニリデンフルオライドとヘキサフルオロプロピレンとを成分として含む共重合体が好ましい。さらに、この共重合体は、マレイン酸モノメチルエステル(MMM)等の不飽和二塩基酸のモノエステル、三フッ化塩化エチレン(PCTFE)等のハロゲン化エチレン、炭酸ビニレン(VC)等の不飽和化合物の環状炭酸エステル、又はエポキシ基含有アクリルビニルモノマー等を成分として含んでいてもよい。これにより、高い特性を得ることができる。
[リチウムイオン二次電池の製造方法]
(正極の製造方法)
 正極活物質と、導電材と、結着材とを混合して正極合剤を調製し、この正極合剤を水、N-メチル-2-ピロリドン(NMP)等の溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーをドクターブレード又はバーコータ等によって正極集電体21Aに塗布したのち、溶剤を乾燥させ、ロールプレス機等で圧縮成型することにより正極活物質層21Bを形成し、正極21を作製する。
(負極の製造方法)
 負極活物質と、導電材と、結着材とを混合して負極合剤を調製し、この負極合剤を水、N-メチル-2-ピロリドン等の溶媒に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーをドクターブレード又はバーコータ等によって負極集電体22Aに塗布したのち、溶媒を除去し、ロールプレス機等で圧縮成型することにより負極活物質層22Bを形成し、負極22を作製する。
(電解液の調製)
 電解液は、溶媒に対して所定量の電解質塩を溶解させて調製する。
(リチウムイオン二次電池の組み立て)
 正極集電体21Aに正極リード25を溶接等により取り付けるとともに、負極集電体22Aに負極リード26を溶接等により取り付ける。その後、正極21と負極22とをセパレータ23を介して巻回し巻回電極体20とする。
 続いて、正極リード25の先端部を安全弁機構に溶接するとともに、負極リード26の先端部を電池缶11に溶接する。この後、巻回電極体20の巻回面を一対の絶縁板12a,12bで挟み、電池缶11の内部に収納する。巻回電極体20を電池缶11の内部に収納したのち、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。続いて、電池缶11の開口端部に電池蓋13、安全弁14等からなる安全弁機構及び熱感抵抗素子17を、ガスケット18を介してかしめることにより固定する。これにより、図1に示した本技術のリチウムイオン二次電池10が形成される。
 このリチウムイオン二次電池10では、充電を行うと、正極活物質層21Bからリチウムイオンが放出され、セパレータ23に含浸された電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、負極活物質層22Bからリチウムイオンが放出され、セパレータ23に含浸された電解液を介して正極活物質層21Bに吸蔵される。
 以下、本技術の実施例について説明する。
<リチウム複合酸化物の平衡電位、状態密度及びエネルギー密度の計算>
 以下の実施例1~8及び比較例1~3に係るリチウム複合酸化物における、平衡電位及び状態密度を、密度汎関数法(GGA+U法)を用いて計算した。計算に用いるバンド計算ソフトウェアとしては、VASPを用いた。エネルギー密度〔Wh/L〕については、LNCMOの容量を165〔mAh/g〕、密度を理論密度4.75〔g〕とし、体積はCoの元素置換に対し不変と仮定して、これに表1に示した平衡電位〔V〕を乗ずることにより算出した。
 また、以下の各実施例及び比較例に係るリチウム複合酸化物は、LiNi1/3Co1/3Mn1/3(LNCMO)中のコバルトを、他の金属元素で全て置換したものであり、その構造は層状岩塩型構造を維持しているものとする。
[実施例1]
 LNCMO中のコバルトを、全てアルミニウムで置換したリチウム複合酸化物LiNi1/3Al1/3Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
[実施例2]
 LNCMO中のコバルトを、全てガリウムで置換したリチウム複合酸化物LiNi1/3Ga1/3Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
[実施例3]
 LNCMO中のコバルトを、スズ50%及び亜鉛50%で置換したリチウム複合酸化物LiNi1/3Sn1/6Zn1/6Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
[実施例4]
 LNCMO中のコバルトを、スズ50%及びマグネシウム50%で置換したリチウム複合酸化物LiNi1/3Sn1/6Mg1/6Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
[実施例5]
 LNCMO中のコバルトを、ケイ素50%及び亜鉛50%で置換したリチウム複合酸化物LiNi1/3Si1/6Zn1/6Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
[実施例6]
 LNCMO中のコバルトを、ケイ素50%及びマグネシウム50%で置換したリチウム複合酸化物LiNi1/3Si1/6Mg1/6Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
[実施例7]
 LNCMO中のコバルトを、ゲルマニウム50%及び亜鉛50%で置換したリチウム複合酸化物LiNi1/3Ge1/6Zn1/6Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
[実施例8]
 LNCMO中のコバルトを、ゲルマニウム50%及びマグネシウム50%で置換したリチウム複合酸化物LiNi1/3Ge1/6Mg1/6Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
[比較例1]
 リチウム複合酸化物LiNi1/3Co1/3Mn1/3(LNCMO)について平衡電位、状態密度及びエネルギー密度の計算を行った。
[比較例2]
 LNCMO中のコバルトを、全てクロムで置換したリチウム複合酸化物LiNi1/3Cr1/3Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
[比較例3]
 LNCMO中のコバルトを、全てバナジウムで置換したリチウム複合酸化物LiNi1/31/3Mn1/3について平衡電位、状態密度及びエネルギー密度の計算を行った。
<平衡電位及び状態密度の計算結果>
 各実施例及び比較例に係るリチウム複合酸化物のコバルト(Co)置換元素と、平衡電位E[V]とを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各実施例及び比較例に係るリチウム複合酸化物の平衡電位E[V]は、実施例1ではE=4.01、実施例2ではE=4.05、実施例3ではE=4.00、実施例4ではE=4.04、実施例5ではE=3.99、実施例6ではE=3.98、実施例7ではE=4.05、実施例8ではE=4.03、比較例1ではE=3.87、比較例2ではE=3.87、比較例3ではE=3.2となった。
 上記の結果により、実施例1~8に係るリチウム複合酸化物では、LNCMOと比べて平衡電位が上昇していることがわかる。特に、実施例2、実施例4、実施例7、実施例8では、より高い平衡電位が得られた。一方、LNCMO中のコバルトを遷移金属元素で置換した比較例2,3では、LNCMOと比べて平衡電位が同等であるか又は低下していることがわかる。
 次に、比較例1~3に係るリチウム複合酸化物の電子状態のスペクトルを図6に示し、比較例1及び実施例1~8に係るリチウム複合酸化物の電子状態のスペクトルを図7に示した。なお、図6,7中のエネルギーの原点(0eV)は、各リチウム複合酸化物のFermi準位とし、エネルギーは内殻方向を正とした。
 図6に示すように、比較例1~3の全てにおいて、価電子帯上端付近、すなわち0eV~1eVまでの領域に、遷移金属の3d軌道に由来するピークが存在することがわかる。
 また、図7に示すように、実施例1~8の全てにおいて、0eV~1eVまでの領域に、遷移金属の3d軌道に由来するピークと同等のピークは存在しないことがわかる。
 ここで、各実施例及び比較例において、0eV~1eVまでの領域の状態密度の積分値をDとし、0eV~2eVまでの領域の状態密度の積分値をDとしたときの、D/Dの値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、各実施例及び比較例に係るリチウム複合酸化物のD/Dの値は、実施例1では0.35、実施例2では0.25、実施例3では0.35、実施例4では0.37、実施例5では0.36、実施例6では0.36、実施例7では0.35、実施例8では0.36、比較例1では0.48、比較例2では0.42、比較例3では0.87となった。
 上記の結果により、実施例1~8では、0eV~1eVまでの領域に遷移金属の3d軌道に由来するピークが存在せず、各実施例のD/Dの値は、D/D<0.4の値の範囲となることがわかった。特に、実施例2では、D/Dの値はより低くなった。
 また、LNCMOである比較例1及びLNCMO中のコバルトを遷移金属元素で置換した比較例2,3では、0eV~1eVまでの領域に遷移金属の3d軌道に由来するピークが存在し、各比較例のD/Dの値は、D/D≧0.4の値の範囲となった。
 以上の平衡電位及び状態密度の計算結果から、D/D<0.4の値の範囲を有する実施形態1~8に係るリチウム複合酸化物は、高い平衡電位Eを有することが示された。
 この結果は次のように考えられる。実施例1~8に係るリチウム複合酸化物は、比較例1~3に係るリチウム複合酸化物と比べて、価電子帯上端付近にCo3d(t2g)軌道あるいはそれと同等の3d軌道が存在しない。このため、各実施例に係るリチウム複合酸化物の酸化に関与するバンドは、各比較例に係るリチウム複合酸化物よりも、金属リチウムのLi2s軌道とのエネルギー差が大きくなる。これにより、各実施例に係るリチウム複合酸化物の平衡電位Eは、各比較例に係るリチウム複合酸化物よりも高くなる。
<エネルギー密度の計算結果>
 次に、各実施例及び比較例に係るリチウム複合酸化物の平衡電位Eを用いて、エネルギー密度を計算した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、各実施例及び比較例に係るリチウム複合酸化物のエネルギー密度[Wh/L]は、実施例1では3140、実施例2では3170、実施例3では3140、実施例4では3170、実施例5では3130、実施例6では3130、実施例7では3180、実施例8では3150、比較例1では3030、比較例2では3030、比較例3では2510となった。エネルギー密度は平衡電位Eに比例することから、全ての実施例において、比較例と比べて高いエネルギー密度が得られた。
<変形例>
 リチウムイオン二次電池10は、例えば電子機器や電動車両、蓄電装置等の機器に搭載され又は電力を供給するために使用することができる。
 電子機器としては、例えばノート型パーソナルコンピュータ、PDA(携帯情報端末)、携帯電話、コードレスフォン子機、ビデオムービー、デジタルスチルカメラ、電子書籍、電子辞書、音楽プレイヤー、ラジオ、ヘッドホン、ゲーム機、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコンディショナ、テレビ、ステレオ、温水器、電子レンジ、食器洗い機、洗濯機、乾燥機、照明機器、玩具、医療機器、ロボット、ロードコンディショナ、信号機等が挙げられる。この場合、二次電池20から電力の供給を受ける受電回路としては、IC部品、発光部品等の各種電気・電子部品、これら部品が実装された回路基板、モータ等のアクチュエータ等が挙げられる。
 電動車両としては、例えば鉄道車両、ゴルフカート、電動カート、電気自動車(ハイブリッド自動車を含む)等が挙げられ、これらの駆動用電源又は補助用電源として用いられる。
 蓄電装置としては、住宅をはじめとする建築物用又は発電設備用の電力貯蔵用電源等が挙げられる。
 以下、代表として電池パックを例に挙げて説明する。
 図8は、リチウムイオン二次電池を有する電池パックの回路構成例を示すブロック図である。電池パック300は、主として、セル301と、スイッチ部304と、制御部310と、これらを支持するパッケージ体320とを有する。
 電池パック300は、正極端子321及び負極端子322を有し、充電時には正極端子321及び負極端子322がそれぞれ充電器の正極端子及び負極端子に接続されることで充電される。また、電子機器の使用時には、正極端子321及び負極端子322がそれぞれ電子機器の正極端子及び負極端子に接続されることで放電し、電子機器内の受電回路に電力を供給する。
 セル301は、複数のリチウムイオン二次電池301aを直列及び/又は並列に接続した組電池で構成される。このリチウムイオン二次電池301aは、第1の実施形態で説明されたリチウムイオン二次電池10が適用される。なお図8では、6つのリチウムイオン二次電池301aが、2並列3直列(2P3S)に接続された場合が例として示されているが、その他、n並列m直列(n,mは整数)のように、どのような接続方法でもよい。
 スイッチ部304は、充電制御スイッチ302a及びダイオード302b、並びに放電制御スイッチ303a及びダイオード303bを備え、スイッチ制御部314によって制御される。
 ダイオード302bは、正極端子321からセル301の方向に流れる充電電流に対しては逆方向であり、負極端子322からセル301の方向に流れる放電電流に対しては順方向である極性を有する。ダイオード303bは、充電電流に対しては順方向であり、放電電流に対しては逆方向である極性を有する。なおスイッチ部304は正極端子321側に設けられているが、負極端子322側に設けられてもよい。
 充電制御スイッチ302aは、電池電圧が過充電検出電圧となった場合にOFFとされ、セル301の電流経路に充電電流が流れないように制御部310によって制御される。充電制御スイッチ302aがOFFとされた後、ダイオード302bを介することによって放電のみが可能となる。また、充電時に大電流が流れた場合にOFFとされ、セル301の電流経路に流れる充電電流を遮断するように、制御部310によって制御される。
 放電制御スイッチ303aは、電池電圧が過放電検出電圧となった場合にOFFとされ、セル301の電流経路に放電電流が流れないように制御部310によって制御される。放電制御スイッチ303aがOFFとされた後、ダイオード303bを介することによって充電のみが可能となる。また、放電時に大電流が流れた場合にOFFとされ、セル301の電流経路に流れる放電電流を遮断するように、制御部310によって制御される。
 温度検出素子308は、例えばサーミスタであり、セル301の近傍に設けられ、セル301の温度を測定して測定温度を温度測定部318へ供給する。温度測定部318では、温度検出素子308を用いて測定された温度に関する情報を制御部310へ供給する。制御部310は、温度測定部318の出力に基づいて異常発熱時の充放電制御や、残容量の算出における補正を行う。
 電圧測定部311は、セル301及びそれを構成する各リチウムイオン二次電池301aの電圧を測定し、この測定電圧をA/D変換して制御部310へ供給する。電流測定部313は、電流検出抵抗307を用いて電流を測定し、この測定電流を制御部310へ供給する。
 スイッチ制御部314は、制御部310によって制御され、電圧測定部311及び電流測定部313から入力された電圧及び電流を基に、スイッチ部304の充電制御スイッチ302a及び放電制御スイッチ303aを制御する。スイッチ制御部314は、リチウムイオン二次電池301aのいずれかの電圧が過充電検出電圧若しくは過放電検出電圧以下になったときに、又は大電流が急激に流れたときに、スイッチ部304の制御信号を送ることにより、過充電及び過放電、過電流充放電を防止する。
 過充電検出電圧は、例えば4.20V±0.05Vと定められ、過放電検出電圧は、例えば2.4V±0.1Vと定められる。
 充電制御スイッチ302a及び放電制御スイッチ303aには、例えばMOSFET等の半導体スイッチが使用される。この場合、MOSFETの寄生ダイオードがダイオード302b,303bとして機能する。充電制御スイッチ302a及び放電制御スイッチ303aとしてPチャンネル型FETを使用した場合、スイッチ制御部314は、充電制御スイッチ302a及び放電制御スイッチ303aのそれぞれのゲートに対して制御信号DO及びCOをそれぞれ供給する。
 充電制御スイッチ302a及び放電制御スイッチ303aがPチャンネル型である場合、ソース電位より所定値以上低いゲート電位によってONとされる。すなわち、通常の充電及び放電動作では、制御信号CO及びDOをローレベルとされ、充電制御スイッチ302a及び放電制御スイッチ303aをOFF状態とされる。
 メモリ317は、RAMやROMからなり、例えば不揮発性メモリであるEPROM(Erasable Programmable Read Only Memory)等からなる。メモリ317では、制御部310に演算された数値や、製造工程の段階で測定された各リチウムイオン二次電池301aの初期状態における電池の内部抵抗値等が予め記憶され、適宜、書き換えも可能である。また、リチウムイオン二次電池301aの満充電容量を記憶させておくことで、制御部310とともに例えば残容量を算出することができる。
 以上、本技術の実施形態について説明したが、本技術はこれに限定されることはなく、本技術の技術的思想に基づいて種々の変更が可能である。
 例えば、以上の実施例では、電子状態制御の手法として、リチウム複合酸化物中の元素の置換によって酸化還元反応に関与するバンドのエネルギーを低下させる方法を用いたが、電子状態制御の手法はこれに限定されない。他の手法の一例としては、酸化還元に関与するバンドのエネルギーを直接低下させるために、コバルトと配位子の相互作用を大きくする方法がある。具体的には、リチウム複合酸化物に圧力を印加する、あるいは格子定数の小さい特定の基板上で粒成長させる等により原子間距離を短縮する方法が挙げられる。
 以上の実施例では、巻回構造を有する円筒型のリチウムイオン二次電池について説明したが、これ以外にも、いわゆるラミネートフィルム型といわれる巻回構造を有する薄型の電池にも同様に適用可能である。
 また、以上の実施形態では、巻回構造を有するリチウムイオン二次電池について説明したが、これ以外にも、正極及び負極を折り畳んだ構造あるいは積み重ねた構造を有する電池にも同様に適用可能である。加えて、いわゆるコイン型、ボタン型、角型等の電池にも本技術は適用可能である。
 なお、本技術は以下のような構成もとることができる。
(1)
 価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物
 を具備するリチウムイオン二次電池用正極材料。
(2)
 上記(1)に記載のリチウムイオン二次電池用正極材料であって、
 上記リチウム複合酸化物は、LiNiXMnO系リチウム複合酸化物(ただし、Xは少なくとも1種の金属元素)である
 リチウムイオン二次電池用正極材料。
(3)
 上記(2)に記載のリチウムイオン二次電池用正極材料であって、
 上記Xは、アルミニウム又はガリウムである
 リチウムイオン二次電池用正極材料。
(4)
 上記(2)に記載のリチウムイオン二次電池用正極材料であって、
 上記Xは、マグネシウム、ケイ素、亜鉛、ゲルマニウムの中から選ばれる少なくとも2種の金属である
 リチウムイオン二次電池用正極材料。
(5)
 上記(1)~(4)のいずれかに記載のリチウムイオン二次電池用正極材料であって、
 上記リチウム複合酸化物は、層状岩塩型構造である
 リチウムイオン二次電池用正極材料。
(6)
 価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物を含むリチウムイオン二次電池用正極材料を具備するリチウムイオン二次電池用正極。
(7)
 電解液と、
 負極と、
 価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物を含むリチウムイオン二次電池用正極材料を含有する正極と、
 を具備するリチウムイオン二次電池。
(8)
 リチウムイオン二次電池と、
 上記リチウムイオン二次電池の充放電を制御する制御部と、
 上記リチウムイオン二次電池と上記制御部とを支持するパッケージ体と
 を具備し、
 上記リチウムイオン二次電池は、
 電解液と、
 負極と、
 価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物を含むリチウムイオン二次電池用正極材料を含有する正極と
 を有する
 電池パック。
(9)
 電解液と、
 負極と、
 価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、上記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物を含むリチウムイオン二次電池用正極材料を含有する正極と、
 を有するリチウムイオン二次電池と、
 上記リチウムイオン二次電池から電力の供給を受ける受電回路と
 を具備する電子機器。
 10…リチウムイオン二次電池
 20…巻回電極体
 21…正極
 22…負極
 23…セパレータ
 300…電池パック

Claims (9)

  1.  価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、前記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物
     を具備するリチウムイオン二次電池用正極材料。
  2.  請求項1に記載のリチウムイオン二次電池用正極材料であって、
     前記リチウム複合酸化物は、LiNiXMnO系リチウム複合酸化物(ただし、Xは少なくとも1種の金属元素)である
     リチウムイオン二次電池用正極材料。
  3.  請求項2に記載のリチウムイオン二次電池用正極材料であって、
     前記Xは、アルミニウム又はガリウムである
     リチウムイオン二次電池用正極材料。
  4.  請求項2に記載のリチウムイオン二次電池用正極材料であって、
     前記Xは、マグネシウム、ケイ素、亜鉛、ゲルマニウムの中から選ばれる少なくとも2種の金属である
     リチウムイオン二次電池用正極材料。
  5.  請求項1に記載のリチウムイオン二次電池用正極材料であって、
     前記リチウム複合酸化物は、層状岩塩型構造である
     リチウムイオン二次電池用正極材料。
  6.  価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、前記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物を含むリチウムイオン二次電池用正極材料を具備するリチウムイオン二次電池用正極。
  7.  電解液と、
     負極と、
     価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、前記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物を含むリチウムイオン二次電池用正極材料を含有する正極と、
     を具備するリチウムイオン二次電池。
  8.  リチウムイオン二次電池と、
     上記リチウムイオン二次電池の充放電を制御する制御部と、
     上記リチウムイオン二次電池と上記制御部とを支持するパッケージ体と
     を具備し、
     上記リチウムイオン二次電池は、
     電解液と、
     負極と、
     価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、前記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物を含むリチウムイオン二次電池用正極材料を含有する正極と
     を有する
     電池パック。
  9.  電解液と、
     負極と、
     価電子帯上端から内殻方向1eVまでの間の状態密度の積分値をDとし、前記価電子帯上端から内殻方向2eVまでの間の状態密度の積分値をDとしたとき、D/D<0.4である電子状態密度を有するリチウム複合酸化物を含むリチウムイオン二次電池用正極材料を含有する正極と、
     を有するリチウムイオン二次電池と、
     上記リチウムイオン二次電池から電力の供給を受ける受電回路と
     を具備する電子機器。
PCT/JP2015/005282 2014-12-04 2015-10-20 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器 WO2016088292A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-245856 2014-12-04
JP2014245856A JP2016110783A (ja) 2014-12-04 2014-12-04 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器

Publications (1)

Publication Number Publication Date
WO2016088292A1 true WO2016088292A1 (ja) 2016-06-09

Family

ID=56091262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005282 WO2016088292A1 (ja) 2014-12-04 2015-10-20 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器

Country Status (2)

Country Link
JP (1) JP2016110783A (ja)
WO (1) WO2016088292A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157601A1 (ja) * 2019-01-31 2020-08-06 株式会社半導体エネルギー研究所 リチウム複合酸化物の分析方法、正極活物質及び二次電池
CN114556634A (zh) * 2019-09-30 2022-05-27 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质、和非水电解质二次电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141527A (ja) * 2005-11-15 2007-06-07 Hitachi Maxell Ltd 電極及びそれを用いた非水二次電池
WO2007072759A1 (ja) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
JP2007188703A (ja) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009224097A (ja) * 2008-03-14 2009-10-01 Panasonic Corp 非水電解質二次電池
JP2011113869A (ja) * 2009-11-27 2011-06-09 Panasonic Corp リチウム二次電池用正極活物質およびその製造方法
WO2014009723A1 (en) * 2012-07-10 2014-01-16 Faradion Ltd Doped nickelate compounds
JP2014063704A (ja) * 2011-09-26 2014-04-10 Fujifilm Corp 非水二次電池用電解液及び二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141527A (ja) * 2005-11-15 2007-06-07 Hitachi Maxell Ltd 電極及びそれを用いた非水二次電池
WO2007072759A1 (ja) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
JP2007188703A (ja) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009224097A (ja) * 2008-03-14 2009-10-01 Panasonic Corp 非水電解質二次電池
JP2011113869A (ja) * 2009-11-27 2011-06-09 Panasonic Corp リチウム二次電池用正極活物質およびその製造方法
JP2014063704A (ja) * 2011-09-26 2014-04-10 Fujifilm Corp 非水二次電池用電解液及び二次電池
WO2014009723A1 (en) * 2012-07-10 2014-01-16 Faradion Ltd Doped nickelate compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157601A1 (ja) * 2019-01-31 2020-08-06 株式会社半導体エネルギー研究所 リチウム複合酸化物の分析方法、正極活物質及び二次電池
CN114556634A (zh) * 2019-09-30 2022-05-27 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质、和非水电解质二次电池
EP4040541A4 (en) * 2019-09-30 2022-11-30 Panasonic Intellectual Property Management Co., Ltd. ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY NON-AQUEOUS ELECTROLYTE BATTERIES, AND SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY

Also Published As

Publication number Publication date
JP2016110783A (ja) 2016-06-20

Similar Documents

Publication Publication Date Title
JP6706461B2 (ja) 二次電池用負極活物質、二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5510084B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム
JP5103945B2 (ja) 非水電解質二次電池
JP6179372B2 (ja) リチウムイオン二次電池用活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2011119386A2 (en) High voltage battery formation protocols and control of charging and discharging for desirable long term cyycling performance
JP2007194202A (ja) リチウムイオン二次電池
JP2006134770A (ja) 正極および電池
JP2008198432A (ja) 電池
JP2009117159A (ja) 正極及びリチウムイオン二次電池
CN112736298A (zh) 电压改变的混合型电化学电池设计
WO2013038939A1 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JP2010123331A (ja) 非水電解質二次電池
WO2019009239A1 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2009200043A (ja) 電池
JP2020053407A (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2009206091A (ja) 非水電解質電池および負極ならびにこれらの製造方法
JP2006302756A (ja) 電池
JP6686650B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器
JP2005347222A (ja) 電解液および電池
WO2016088292A1 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック及び電子機器
JP4910301B2 (ja) 二次電池
CN108292781B (zh) 二次电池、电池组、电动车辆、电力储存系统、电动工具以及电子设备
JP2008016316A (ja) 非水電解質二次電池
JP2015156280A (ja) 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2006302757A (ja) 電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864752

Country of ref document: EP

Kind code of ref document: A1