WO2016086796A1 - 一种石墨烯分散剂及其应用 - Google Patents

一种石墨烯分散剂及其应用 Download PDF

Info

Publication number
WO2016086796A1
WO2016086796A1 PCT/CN2015/095742 CN2015095742W WO2016086796A1 WO 2016086796 A1 WO2016086796 A1 WO 2016086796A1 CN 2015095742 W CN2015095742 W CN 2015095742W WO 2016086796 A1 WO2016086796 A1 WO 2016086796A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
aniline oligomer
coating
aniline
derivative
Prior art date
Application number
PCT/CN2015/095742
Other languages
English (en)
French (fr)
Inventor
余海斌
戴雷
郑艳
顾林
Original Assignee
宁波中科建华新材料有限公司
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410781191.XA external-priority patent/CN105778740B/zh
Priority claimed from CN201410819604.9A external-priority patent/CN105789155B/zh
Priority claimed from CN201410813889.5A external-priority patent/CN105783576B/zh
Priority claimed from CN201410816025.9A external-priority patent/CN105792598B/zh
Priority claimed from CN201410815993.8A external-priority patent/CN105778134B/zh
Priority claimed from CN201410816051.1A external-priority patent/CN105778572B/zh
Priority claimed from CN201410816024.4A external-priority patent/CN105778136B/zh
Priority claimed from CN201410814796.4A external-priority patent/CN105788874B/zh
Priority claimed from CN201410814945.7A external-priority patent/CN105778608B/zh
Priority claimed from CN201410815986.8A external-priority patent/CN105778571B/zh
Priority claimed from CN201410844601.0A external-priority patent/CN105802452B/zh
Priority claimed from CN201410841675.9A external-priority patent/CN105802441B/zh
Priority to EP15865917.7A priority Critical patent/EP3228592A4/en
Priority to PCT/CN2015/095742 priority patent/WO2016086796A1/zh
Application filed by 宁波中科建华新材料有限公司, 中国科学院宁波材料技术与工程研究所 filed Critical 宁波中科建华新材料有限公司
Publication of WO2016086796A1 publication Critical patent/WO2016086796A1/zh
Priority to US15/607,552 priority patent/US10696790B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment

Definitions

  • the present invention relates to a graphene dispersant and its use.
  • Graphene is a hexagonal honeycomb structure composed of carbon atoms and has a carbon atom thickness. Graphene was discovered in 2004 and won the 2010 Nobel Prize in Physics. The monoatomic nanostructure of graphene gives it many unparalleled unique properties. 1 Very strong conductivity: Since the electrons in graphene have almost no mass, the speed of electrons can reach 1/300 of the speed of light, so it has superior conductivity. 2 Ultra-high strength: Graphene hardness is higher than diamond, but it has good toughness and can be bent. 3 large specific surface area: the ideal single-layer graphene can reach a specific surface area of 2630m 2 /g, while the ordinary activated carbon has a specific surface area of 1500m 2 /g. The large specific surface area makes graphene a potential energy storage material. It is precisely because graphene has many excellent properties that has stimulated the worldwide development of graphene.
  • the preparation method of graphene generally includes mechanical peeling, chemical vapor deposition, oxidation-reduction, solution ultrasonic stripping, and the like.
  • the obtained graphene is easily agglomerated due to ⁇ - ⁇ conjugation and van der Waals adsorption.
  • the unique structure of graphene it is difficult to physically or chemically interact with other media, and the bonding strength is not high, and the application field is limited. Therefore, the biggest bottleneck limiting the current application of graphene is how to obtain stable and easily dispersed modified graphene to fully exert its unique physical and chemical properties.
  • the main object of the present invention is to provide a graphene dispersant and a related application thereof, by which the graphene can be uniformly dispersed, thereby realizing application in various fields.
  • the present invention provides a graphene dispersant for dispersing graphene, the graphene dispersant comprising an aniline oligomer or an aniline oligomer derivative, the aniline oligomer or an aniline oligomer derivative being electrically active A polymer, and the aniline oligomer or the aniline oligomer derivative and the graphene can be bonded by a ⁇ - ⁇ bond.
  • the aniline oligomer derivative is an aniline oligomer having a functional group including a carboxyl group, a hydroxyl group, a carbonyl group, an ester group, an amino group, a hydrocarbon group, an alkyl group, a sulfonic acid group, a phosphoric acid group, an epoxy group Group, polyethylene glycol group, polyvinyl alcohol group Any one or a combination of two or more of the groups, the aniline oligomer being one or a combination of an aniline trimer, an aniline tetramer, an aniline pentamer, an aniline hexamer, or an aniline octamer. .
  • the invention also provides a method for dispersing graphene, comprising the following steps:
  • the graphene dispersant comprising an aniline oligomer or an aniline oligomer derivative, the aniline oligomer or an aniline oligomer derivative being an electroactive polymer, and graphene Can be combined by ⁇ - ⁇ bond;
  • the graphene and the graphene dispersant are added to the dispersion medium, and a ⁇ - ⁇ bond is formed between the graphene and the aniline oligomer or the aniline oligomer derivative, wherein the dispersion medium comprises water, an organic solvent, and a polymer polymerization.
  • the organic solvents including ethanol, acetone, isopropanol, butanol, ethyl acetate, toluene, chloroform, dimethylformamide, dimethyl sulfoxide, and One or several mixed solvents in ethyl chloride.
  • the present invention also provides a graphene composite powder comprising a graphene powder, a graphene dispersant and a dispersing aid, wherein the graphene dispersant and the dispersing aid are uniformly dispersed in the graphene powder.
  • the graphene dispersant comprises an aniline oligomer or an aniline oligomer derivative, the aniline oligomer or an aniline oligomer derivative is an electroactive polymer, and can pass a ⁇ - ⁇ bond with the graphene powder. Combine.
  • the dispersing aid is a silane coupling agent, polyvinyl alcohol, polyvinylpyrrolidone, an organically modified polysiloxane dipropylene glycol monomethyl ether solution, a silicone surfactant and/or a fluorosurfactant,
  • the mass percentage of the aniline oligomer or the aniline oligomer derivative in the graphene composite powder is from 0.1% to 50%.
  • the mass percentage of the aniline oligomer or the aniline oligomer derivative in the graphene composite powder is 10% to 20%.
  • the invention also provides a preparation method of graphene composite powder, which comprises the following steps:
  • the mixture B is dried to obtain a graphene composite powder modified with an aniline oligomer or an aniline oligomer derivative.
  • the dispersion medium is one of deionized water, ethanol, acetone, isopropanol, butanol, ethyl acetate, toluene, chloroform, dimethylformamide, dimethyl sulfoxide dichloroethane or a mixed solvent
  • the mass ratio of the graphene to the dispersion medium is 1:10 to 1:10000
  • the dispersing aid is a silane coupling agent, polyvinyl alcohol, polyvinylpyrrolidone, organic modified polysilicon Oxypropylene dipropylene glycol monomethyl ether solution, silicone surfactant and/or fluorosurfactant, mass percentage (0.01-1): 100 of the dispersing aid and mixture A.
  • the invention also provides a method for preparing a graphene slurry, comprising the following steps:
  • the graphene dispersant comprising an aniline oligomer or an aniline oligomer derivative, the aniline being low
  • the polymer or aniline oligomer derivative is an electroactive polymer, and the aniline oligomer or the aniline oligomer derivative is uniformly mixed with the graphene and between the aniline oligomer or the aniline oligomer derivative and the graphene Forming a ⁇ - ⁇ bond to obtain a mixture B2;
  • the graphene composite powder is dispersed in a dispersion medium A2 to obtain the graphene slurry.
  • the dispersion medium A1 and the dispersion medium A2 are deionized water, ethanol, acetone, isopropanol, butanol, ethyl acetate, toluene, chloroform, dimethylformamide, dimethyl sulfoxide, dichloroethane.
  • One or several mixed solvents in the alkene the mass ratio of the graphene to the dispersion medium A1 is 1:10 to 1:10000, and the aniline oligomer or the aniline oligomer derivative and the mixture B1 The mass percentage is (0.01-10): 100.
  • the present invention also provides a graphene slurry obtained by the above production method.
  • the present invention also provides a graphene composite coating, which is composed of a coating body, a graphene dispersion, and a coating auxiliary.
  • the coating body accounts for 40% to 60% by mass.
  • the graphene dispersion accounts for 30% to 50% by mass and the coating auxiliary agent accounts for 3% to 10% by mass, and the graphene dispersion includes graphene, graphene dispersant and dispersion medium.
  • the graphene dispersant comprises an aniline oligomer or an aniline oligomer derivative, and the aniline oligomer or an aniline oligomer derivative is an electroactive polymer, and the graphene is low by an oligomer with an aniline or an aniline.
  • the polymer derivative forms a ⁇ - ⁇ bond and is uniformly dispersed in the coating body.
  • the graphene accounts for 0.1% to 10% by mass of the graphene dispersion
  • the aniline oligomer or aniline oligomer derivative accounts for 0.1% to 10% by mass.
  • the mass percentage of the dispersion medium is 80% to 90%
  • the coating body is one or a combination of a silicone resin, an acrylic resin, a polyester resin, a polyurethane resin, an alkyd resin, and an epoxy resin.
  • the coating aid comprises a film former, a wetting agent, an antifoaming agent and a leveling agent
  • the film forming agent is ethylene glycol monobutyl ether, propylene glycol monobutyl ether, dipropylene glycol methyl ether ether ester, and ethylene dioxide.
  • the wetting agent is dodecyl sulfate, dodecyl sulfonate, polyethylene
  • an alcohol a polyvinylpyrrolidone, an organosilicon compound, and an organofluorine compound, which is a dimethyl silicone oil, an ether ester compound, a modified mineral oil, a polyoxyethyl glyceryl ether, a small molecular metal
  • the leveling agent is ethylene glycol butyl ether, butyl cellulose, polyacrylate, silicone oil, hydroxymethyl cellulose, polydimethyl silane, polymethyl phenyl siloxane and modified organosilicon compound.
  • the invention also provides a preparation method of a graphene composite coating, which comprises the following steps:
  • Adding a coating aid to the mixture B to obtain a graphene composite coating wherein the pigment body accounts for 40% to 60% by mass of the graphene composite coating, and the graphene dispersion
  • the percentage by mass is 30% to 50% and the mass percentage of the coating aid is 3% to 10%.
  • the invention also provides a preparation method of a graphene composite film, which comprises the following steps:
  • the invention also provides a preparation method of composite graphene paper, which comprises the following steps:
  • a dispersing aid and an aniline oligomer or an aniline oligomer derivative for forming a ⁇ - ⁇ bond with graphene are added to the mixture A3, and the aniline oligomer or aniline oligomer derivative is highly electroactive a molecule, the graphene is mixed with an aniline oligomer or an aniline oligomer derivative uniformly and forms a ⁇ - ⁇ bond between the graphene and an aniline oligomer or an aniline oligomer derivative to obtain a mixture B3;
  • microporous membrane is immersed in the above mixture B3 for 1 minute to 10 minutes, and dried to obtain a membrane-graphene composite
  • the filter-graphene composite is carbonized in a carbonization furnace at a carbonization temperature to obtain a composite graphene paper.
  • the microporous membrane is a polymer membrane containing a plurality of through holes having a pore diameter of 10 nm to 1000 ⁇ m
  • the polymer membrane comprises polyethylene (PE), polypropylene (PP), Polystyrene (PS), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), nylon (Nylon), polycarbonate (PC), polyurethane (PU), polytetrafluoroethylene (PTFE) or poly
  • PET ethylene terephthalate
  • the invention also provides a graphene composite coating, which is composed of a resin, a graphene, an aniline oligomer, a dispersing solvent and a coating auxiliary agent, wherein the aniline oligomer is an electroactive polymer, and is used in a graphene composite coating.
  • the graphene accounts for 0.01% to 5% by mass, and the graphene is uniformly dispersed in the resin by forming a ⁇ - ⁇ bond with the aniline oligomer.
  • the mass ratio of the aniline oligomer to the graphene is 1:10 to 10:1
  • the dispersion solvent is one or a combination of toluene, xylene, acetone, tetrahydrofuran, ethanol and dimethyl sulfoxide.
  • the resin is one or a combination of an epoxy resin, an acrylic resin, a polyurethane resin, an acrylic urethane resin, and an amino resin.
  • the invention also provides a preparation method of a graphene composite coating, which comprises the following steps:
  • An aniline oligomer is an electroactive polymer
  • a coating aid is added to the mixture A4 to obtain a graphene composite coating, wherein the graphene accounts for 0.01% to 5% by mass of the graphene composite coating.
  • the invention also provides an aqueous graphene composite coating comprising: an aqueous resin, a graphene, an aniline oligomer derivative, water and a coating auxiliary, wherein the aniline oligomer derivative is an electroactive polymer, in water
  • the graphene has a mass percentage of 0.01% to 4% in the graphene composite coating, and the graphene is uniformly dispersed in water by forming a ⁇ - ⁇ bond with the aniline oligomer derivative.
  • the aqueous resin is one or a combination of an aqueous epoxy resin, an aqueous acrylic resin, an aqueous polyurethane resin, an aqueous acrylic polyurethane resin, and an aqueous amino resin.
  • the invention also provides a preparation method of an aqueous graphene composite coating, which comprises the following steps:
  • a coating aid is added to the mixture B5 to obtain an aqueous graphene composite coating, wherein the graphene accounts for 0.01% to 4% by mass of the aqueous graphene composite coating.
  • the base is one or a combination of sodium hydroxide, triethylamine, potassium hydroxide and ammonia.
  • the invention also provides a preparation method of graphene composite metal foil, which comprises the following steps:
  • the graphene and the dispersing agent are mixed in a solvent to form a graphene dispersion, wherein the dispersing agent is an aniline oligomer or an aniline oligomer derivative which forms a ⁇ - ⁇ interaction force with the graphene to achieve bonding;
  • the metal foil containing a plurality of through holes is immersed in the graphene dispersion, taken out after 1 min to 10 min, and dried to obtain the graphene composite metal foil, and the surface of the metal foil and the pore walls of the through holes are deposited.
  • Graphene The metal foil containing a plurality of through holes is immersed in the graphene dispersion, taken out after 1 min to 10 min, and dried to obtain the graphene composite metal foil, and the surface of the metal foil and the pore walls of the through holes are deposited.
  • the present invention also provides a graphene composite metal foil obtained by the above preparation method, comprising a metal foil containing a plurality of through holes and graphene grown on the surface of the metal foil by liquid deposition and The bonding strength of the graphene to the metal foil is 1 MPa to 100 MPa through the pore wall of the through hole.
  • the present invention also provides a graphene-based conductive coating comprising graphene, a graphene dispersant and a coating base, the graphene dispersant comprising an aniline oligomer or an aniline oligomer derivative, the aniline oligomer or The aniline oligomer derivative is an electroactive polymer, and the graphene can be uniformly dispersed in the coating substrate by ⁇ - ⁇ bonding with the graphene powder.
  • the graphene dispersant provided by the invention adopts an aniline oligomer or an aniline oligomer derivative, and the aniline oligomer and the derivative thereof have a benzene ring in the structure, and the benzene ring carries a large ⁇ bond, the benzene ring being similar to the carbon hexacyclic structure in the graphene to form a ⁇ - ⁇ bond, thereby bonding the aniline oligomer or the aniline oligomer derivative to the graphene, and the aniline
  • the oligomer or aniline oligomer derivative is an electroactive polymer, and the adjacent two aniline oligomers or aniline oligomer derivative molecules are mutually repelled due to the same electric charge, and thus, two adjacent anilines are adjacent.
  • the oligomer or aniline oligomer derivative molecules do not easily overlap, and the graphene bonded thereon is uniformly dispersed to avoid agglomeration.
  • the aniline oligomer or the aniline oligomer derivative is used.
  • the action of a graphene dispersant greatly improves the dispersibility and chemical stability of graphene, so that the graphene is easily dispersed in various media or coated on the surface of the substrate, thereby improving the applicability of graphene.
  • the method for dispersing graphene provided by the invention and the preparation method of each related graphene product can obtain graphene-containing products with better dispersibility and chemical stability through the innovation of preparation process, and the preparation process is simple, the cost is low, and the method is favorable for the preparation. Industrial application of graphene.
  • Example 1a is a Raman spectrum of the graphene composite powder of Example 1a and the untreated graphene of Comparative Example 1a (wherein the solid line represents the graphene composite powder described in Example 1a, and the broken line represents Comparative Example 1a. Treated graphene).
  • FIG 1b is an ultraviolet-visible spectrum of the graphene composite powder of Example 1a and an aniline trimer carboxylic acid derivative (wherein curve 1 represents the graphene composite powder of Example 1a, and curve 2 represents an aniline trimer). Carboxylic acid derivatives).
  • Figure 2a is a TEM photograph of a graphene paste provided in Examples 2a and 2b of the present invention (wherein water corresponds to Example 2a and oiliness corresponds to Example 2b).
  • Figure 2b is a scanning electron micrograph of the graphene composite powder of Example 2a.
  • Figure 3a is a photograph of a graphene dispersion in Examples 3a-3c of the present invention (wherein the examples are respectively from left to right) 3a-3c).
  • 4a is a schematic structural view of a graphene composite film according to the present invention, wherein 1 represents a substrate and 2 represents a coating.
  • Figure 5a is a photograph of a composite graphene paper provided in Example 5a of the present invention.
  • Example 6a is a photograph of the surface topography of the pure polyurethane coating of Comparative Example 3b and the graphene composite coating obtained in Example 6b after 500 hours of salt spray experiments (wherein the left image corresponds to Comparative Example 3b, and the right image corresponds to the implementation).
  • Example 6b ).
  • Figure 6b is an impedance complex plan view of the AC impedance spectrum of the epoxy resin coating of Comparative Example 3a immersed in a 3.5 wt% NaCl solution for 8 days.
  • Figure 6c is a Bode plot of the AC impedance spectrum of the epoxy resin coating of Comparative Example 3a immersed in a 3.5 wt% NaCl solution for 8 days.
  • Figure 6d is an impedance complex plan view of the AC impedance spectrum of the graphene composite coating obtained in Example 6a after soaking for 8 days in a 3.5 wt% NaCl solution.
  • Figure 6e is a Bode plot of the AC impedance spectrum of the graphene composite coating obtained in Example 6a immersed in a 3.5 wt% NaCl solution for 8 days.
  • Fig. 6f is a polarization curve of the graphene composite coating obtained in Example 6a (corresponding to the solid line) and the epoxy resin coating of Comparative Example 3a (corresponding to the broken line) after soaking for 8 days in a 3.5 wt% NaCl solution.
  • Figure 6g is the lgQ c -t 1/2 of the graphene composite coating obtained in Example 6a (corresponding to the b curve) and the epoxy resin coating of Comparative Example 3a (corresponding to the a curve) immersed in a 3.5 wt% NaCl solution for 8 days. Curves and linear regression equations (where Q c is the capacitance of the coating and t is the test time).
  • Figure 6h is a graphene composite coating obtained in Example 6a (c curve), Comparative Example 3a epoxy resin coating (corresponding to b curve) and a commercially available epoxy zinc-rich coating (corresponding to a curve) at 3.5 wt% NaCl
  • the AC impedance spectrum was immersed in the solution for 8 days.
  • Example 7a is a photograph of the surface topography of the aqueous epoxy resin coating of Comparative Example 4a and the aqueous graphene composite coating obtained in Example 7a after 500 hours of salt spray experiments respectively (the left image corresponds to Comparative Example 4a, and the right image corresponds to FIG. Example 7a).
  • Figure 7b is the self-corrosion potential curve of the aqueous graphene composite coating obtained in Example 7a (corresponding to b curve) and the comparative epoxy resin coating of Comparative Example 4a (corresponding to a curve) after soaking for 48 hours in 3.5 wt% NaCl solution. .
  • Figure 7c is an impedance complex plan view of the AC impedance spectrum of the aqueous epoxy resin coating of Comparative Example 4a immersed in a 3.5 wt% NaCl solution for 48 hours.
  • Figure 7d is a Bode plot of the AC impedance spectrum of the aqueous epoxy resin coating of Comparative Example 4a immersed in a 3.5 wt% NaCl solution for 48 hours.
  • Fig. 7e is an impedance complex plan view of the AC impedance spectrum of the aqueous graphene composite coating obtained in Example 7a immersed in a 3.5 wt% NaCl solution for 48 hours.
  • Figure 7f is the exchange of the aqueous graphene composite coating obtained in Example 7a in a 3.5 wt% NaCl solution for 48 hours. Bode plot of the impedance spectrum.
  • Figure 7g is the polarization curve of the aqueous graphene composite coating obtained in Example 7a (corresponding to the solid line) and the comparative epoxy resin coating of Comparative Example 4a (corresponding to the broken line) in a 3.5 wt% NaCl solution for 48 hours.
  • Figure 7h is the lgQ c -t of the aqueous graphene composite coating obtained in Example 7a (corresponding to the b curve) and the comparative epoxy resin coating of Comparative Example 4a (corresponding to the a curve) immersed in a 3.5 wt% NaCl solution for 48 hours. 1/2 curve and linear regression equation (where Q c is the capacitance of the coating and t is the test time).
  • Figure 7i is a photograph of the contact angle of the surface of the aqueous epoxy resin coating of Comparative Example 4a, the aqueous graphene composite coating obtained in Example 7a (wherein (a) corresponds to Comparative Example 4a, (b) corresponds to Example 7a) .
  • Embodiments of the present invention provide a graphene dispersant for dispersing graphene.
  • the graphene dispersant includes an aniline oligomer or an aniline oligomer derivative.
  • the aniline oligomer is one or a combination of an aniline trimer, an aniline tetramer, an aniline pentamer, an aniline hexamer, and an aniline octamer.
  • the aniline oligomer derivative is an aniline oligomer having a functional group including a carboxyl group, a hydroxyl group, a carbonyl group, an ester group, an amino group, a hydrocarbon group, an alkyl group, a sulfonic acid group, a phosphoric acid group, and an epoxy group. Any one or a combination of two or more of a polyethylene glycol group and a polyvinyl alcohol group.
  • the aniline oligomer or a derivative thereof may have the following structural formula:
  • M is mainly sodium ion, potassium ion, quaternary ammonium salt, etc.
  • the aniline oligomer or aniline oligomer derivative is an electroactive polymer, and the aniline oligomer or the aniline oligomer derivative and the graphene can be bonded by a ⁇ - ⁇ bond. Specifically, since the benzene ring and the graphene have a carbon-hexacyclic structure in the aniline oligomer derivative, a ⁇ - ⁇ bond is formed, thereby causing the aniline oligomer or the aniline oligomer derivative and the graphene bond. put them together.
  • the aniline oligomer or the aniline oligomer derivative is an electroactive polymer, and adjacent two aniline oligomers or aniline oligomer derivative molecules are mutually exclusive due to the same electric charge, and thus, adjacent The molecules of the two aniline oligomers or aniline oligomer derivatives do not easily overlap, and the graphene bonded thereon is uniformly dispersed to avoid agglomeration. Therefore, the aniline oligomer derivative can form a ⁇ - ⁇ bond with graphene to achieve uniform mixing with graphene. It should be noted that the formation of ⁇ - ⁇ bonds between aniline oligomers or aniline oligomer derivatives and graphene is different from chemical graft modification, which does not destroy the structure of graphene itself.
  • the modified graphene is modified by an aniline oligomer or an aniline oligomer derivative, which only makes the dispersibility and stability of the graphene better without destroying the structure of the graphene or reducing the graphene. Original performance.
  • Embodiments of the present invention provide a method for dispersing graphene, which includes the following steps:
  • the graphene is graphene having reducing properties.
  • the structure of the graphene is not limited, and includes graphene nanosheets, graphene microchips, graphene nanoribbons, a few layers of graphene (2-5 layers), multilayer graphene (2-9 layers), graphene quantum Points and derivatives of these graphene-based materials).
  • the definition of the graphene material can be found in the literature "All in the graphene family - A recommended nomenclature for two-dimensional carbon materials".
  • the graphene material may also be selected from materials having a thickness of ⁇ 20 nm, more preferably a thickness ⁇ 10 nm.
  • the thickness of the graphene material is preferably ⁇ 3 nm, and the thinner the graphene material, the better the flexibility and the easier the processing.
  • the preparation method of the graphene material is not limited, and may be prepared by using a graphene product well known to those skilled in the art or by a conventional preparation method.
  • the graphene material may be selected from any one of chemical oxidation methods such as the Brodie method, the Hummers method, or the Staudenmaier method.
  • Graphene materials prepared by mechanical stripping, liquid phase stripping or electrochemical stripping may also be used.
  • the dispersion medium includes any one or a combination of two or more of water, an organic solvent, and a high molecular polymer.
  • the organic solvent may be selected according to the specific application, and may be ethanol, acetone, isopropanol, butanol, ethyl acetate, toluene, chloroform, dimethylformamide, dimethyl sulfoxide, dichloroethane or the like.
  • the mixing volume ratio of the graphene, graphene dispersant and organic solvent or water can be adjusted according to specific needs. In general, the mass ratio of the graphene to the organic solvent or water may be from 1:10 to 1:10000.
  • the aniline oligomer or the aniline oligomer derivative has a limited effect on the dispersion thereof, preferably, the graphene and the
  • the mass ratio of the organic solvent or water is from 1:20 to 1:1000.
  • the ratio of the mass of the aniline oligomer or the aniline oligomer derivative to the total mass of the graphene and the organic solvent or water is (0.01-10):100. More preferably, the ratio of the mass of the aniline oligomer or the aniline oligomer derivative to the total mass of the graphene and the organic solvent or water is (6-10):100.
  • the embodiment of the invention provides a method for preparing a graphene composite powder, which comprises the following steps:
  • the dispersion medium is one or more of deionized water, ethanol, acetone, isopropanol, butanol, ethyl acetate, toluene, chloroform, dimethylformamide, dimethyl sulfoxide dichloroethane. Mixed solvent.
  • the mass ratio of the graphene to the dispersion medium is from 1:10 to 1:10000.
  • the aniline oligomer derivative has a limited dispersion effect, preferably, the mass ratio of the graphene to the dispersion medium It is 1:20 ⁇ 1:1000.
  • the mass percentage of the aniline oligomer or aniline oligomer derivative to the mixture A is (0.01-10):100. More preferably, the mass percentage of the aniline oligomer or aniline oligomer derivative to the mixture A is (6-10):100.
  • the dispersing aid can also be used to make the dispersion of the graphene more uniform.
  • the dispersing aid is a silane coupling agent, polyvinyl alcohol, polyvinylpyrrolidone, an organically modified polysiloxane dipropylene glycol monomethyl ether solution, a silicone surfactant, and/or a fluorosurfactant.
  • the mass percentage (0.01-1) of the dispersing aid to the mixture A 100.
  • the preparation method of the graphene composite powder provided by the invention can obtain the graphene composite powder with good dispersibility and chemical stability through the innovation of the preparation process, the preparation process is simple, the cost is low, and the industrial application of graphene is facilitated. .
  • the present invention provides a graphene composite powder prepared by the method for preparing the graphene composite powder, which comprises graphene powder, aniline oligomer or aniline oligomer derivative and dispersion. Auxiliary.
  • the aniline oligomer or aniline oligomer derivative and a dispersing aid are uniformly dispersed in the graphene powder.
  • Deionized water (dispersion medium), 98g;
  • Aniline trimer carboxylic acid derivative (carboxyl group-containing, modifier), 1 g;
  • the graphene and the dispersion medium were firstly dispersed at a high speed of 1500 rad/min for 20 minutes, and ultrasonically dispersed for 20 minutes to obtain a mixture A. Further, a dispersing aid and an aniline trimer carboxylic acid derivative were added to the mixture A, and the mixture was stirred at a constant temperature of 70 ° C for 2 hours on a high-speed stirrer, and then centrifuged to obtain a mixture B. The mixture B was vacuum dried at 60 ° C to obtain a graphene composite powder modified with an aniline trimer carboxylic acid derivative.
  • the performance of the obtained graphene composite powder was tested. Specifically, the obtained graphene composite powder was dispersed in a solvent to observe the dispersion effect, surface characteristics, and stability of the graphene composite powder.
  • the stability means that the obtained slurry containing the graphene composite powder is stored for 3 months and then observed.
  • the solvent is a common solvent and may be water, ethanol (EtOH), tetrahydrofuran (THF) or the like.
  • the main properties of the obtained graphene composite powder are shown in Table 1a.
  • Aniline tetramer alkyl derivative (containing alkyl group, modifier), 6g;
  • Polyvinyl alcohol (dispersion aid), 0.1 g.
  • the graphene and the dispersion medium were firstly dispersed at a high speed of 1000 rad/min for 20 min, and ultrasonically dispersed for 30 min.
  • Mixture A was obtained.
  • a dispersing aid and an aniline tetramer alkyl derivative were added to the mixture A, and the mixture was stirred at a constant temperature of 80 ° C for 2 hours on a high speed mixer.
  • the precipitate was again centrifuged to obtain a mixture B.
  • the mixture B is vacuum dried at 60 ° C to obtain a graphene composite powder modified with an aniline tetramer alkyl derivative;
  • the performance of the obtained graphene composite powder was tested.
  • the test method is the same as in Example 1a.
  • the main properties of the obtained graphene composite powder are shown in Table 1a.
  • the untreated graphene powder was directly subjected to the test method of Example 1, and the performance results are shown in Table 1a.
  • the graphene and the silane coupling agent were first dispersed at a high speed of 1500 rad/min for 20 min, and ultrasonically dispersed for 20 min to obtain a mixture.
  • the mixture was vacuum dried at 60 ° C to obtain a graphene powder treated with a silane coupling agent.
  • the graphene composite powder prepared by the preparation method of the present invention is compared to the graphene powder which has not been subjected to any treatment and the graphene powder which has been treated only by the silane coupling agent.
  • the dispersibility and stability are obviously improved, and the surface characteristics of the graphene composite powder can be adjusted to be lipophilic and hydrophilic by selecting aniline oligomer derivatives and dispersing assistants having different properties, thereby further Conducive to industrial applications.
  • the graphene composite powder is modified by an aniline oligomer derivative, and an absorption peak corresponding to the ⁇ - ⁇ bond appears at 1410 cm -1 , which proves There is a ⁇ - ⁇ bond between the aniline oligomer derivative and graphene.
  • the graphene composite powder of Example 1a and the aniline trimer carboxylic acid derivative were subjected to ultraviolet-visible spectroscopy, and the results are shown in Fig. 1b.
  • the internal ⁇ - ⁇ bond of the aniline trimer carboxylic acid derivative itself is made at 307 nm and 474 nm.
  • the position of the absorption peak of the graphene composite powder was shifted (at 311 nm and 468 nm), which further confirmed the existence of a ⁇ - ⁇ bond between the aniline trimer carboxylic acid derivative and the graphene, thereby causing the characteristic peak to shift.
  • Embodiments of the present invention provide a method for preparing a graphene slurry, which includes the following steps:
  • the graphene is dispersed in the dispersion medium A1 to obtain a mixture B1.
  • the properties of the graphene have been described in detail above, and are not described herein again, and the description will not be repeated later.
  • the dispersion medium A1 is deionized water, ethanol, acetone, isopropanol, butanol, ethyl acetate, toluene, chloroform, dimethylformamide, dimethyl sulfoxide, dichloroethane, high molecular polymer. One or several mixed solvents in the mixture.
  • the mass ratio of the graphene to the dispersion medium A1 is 1:10 to 1:10000.
  • the dispersion effect of the aniline oligomer derivative is limited, preferably, the quality of the graphene and the dispersion medium A1 is preferable.
  • the ratio is 1:20 to 1:1000.
  • the mass percentage of the aniline oligomer derivative to the mixture B1 is (0.01-10):100. More preferably, the mass percentage of the aniline oligomer derivative to the mixture B1 is (6-10):100.
  • the dispersing aid can also be used to make the dispersion of graphene more uniform.
  • the dispersing aid is a silane coupling agent, polyvinyl alcohol, polyvinylpyrrolidone, an organically modified polysiloxane dipropylene glycol monomethyl ether solution, a silicone surfactant, and/or a fluorosurfactant.
  • the mass ratio of the graphene powder to the dispersion medium A2 is 1:10 to 1:10000.
  • the mass ratio of the graphene powder to the dispersion medium A2 is 1:20 to 1:1000.
  • the dispersion medium A2 and the dispersion medium A1 are the same and will not be described herein. It will be appreciated that in order to aid in better dispersion of the graphene composite powder, another dispersion may be added.
  • the dispersing substance may be a modified acrylic dispersant, a polyacrylate dispersant, a modified polyester dispersant, a polyvinyl alcohol dispersant or a modified polyurethane dispersant, or the like.
  • the present invention also provides a graphene slurry prepared according to the above production method.
  • the preparation method of the graphene slurry provided by the invention, the preparation process innovation, the modification of the aniline oligomer derivative can effectively improve the dispersibility and chemical stability of the graphene, so that the graphene is easily dispersed on the substrate. Or applied to the surface of the substrate to improve the applicability of graphene.
  • the mass of each component was as follows: graphene (monolayer), 2 g; deionized water (dispersion medium A1), 98 g; aniline trimer carboxylic acid derivative (carboxyl group-containing, modifier), 1 g; polyvinylpyrrolidone (Dispersing aid), 0.05 g.
  • the graphene and the dispersion medium A1 were firstly dispersed at a high speed of 1500 rad/min for 20 minutes, and ultrasonically dispersed for 20 minutes to obtain a mixture B1.
  • a dispersing aid and an aniline trimer carboxylic acid derivative were added to the mixture B1, and the mixture was stirred at a constant temperature of 70 ° C for 2 hours on a high speed mixer, and then centrifuged to obtain a mixture B2.
  • the mixture B2 is vacuum dried at 60 ° C to obtain an aniline trimer carboxylic acid derivative modified graphene composite powder;
  • the mass of each component was as follows: the graphene composite powder obtained in the above (1), 5 g; ethanol, 94.95 g; modified acrylic dispersant, 0.05 g.
  • the graphene composite powder was pre-dispersed in ethanol at high speed for 5 min, then ultrasonically dispersed with a modified acrylic dispersant for 30 min, and stirred on a high-speed mixer for 1 h to obtain a graphene slurry.
  • the obtained graphene composite powder and the graphene slurry were subjected to performance tests to observe the surface characteristics of the graphene composite powder and the stability of the graphene paste.
  • the main properties of the graphene paste obtained in this example are shown in Table 2a and Figure 2a.
  • Aniline pentameric sulfonic acid derivative (containing sulfonic acid group, modifier), 0.5g
  • Silane coupling agent (dispersion aid), 0.3 g.
  • the graphene and the dispersion medium A1 were dispersed at a high speed of 1500 rad/min for 10 min, and ultrasonically dispersed for 20 minutes to obtain a mixture B1.
  • the dispersing aid and the aniline pentameric sulfonic acid derivative are added to the mixture B1 at high speed stirring.
  • the mixture was stirred at a constant temperature of 80 ° C for 2 hours, and then precipitated by centrifugation to obtain a mixture B2.
  • the mixture B2 is vacuum dried at 70 ° C to obtain an aniline pentapolymer sulfonic acid derivative-modified graphene composite powder;
  • the graphene composite powder obtained in the first embodiment (1) 1 g;
  • Modified polyester dispersant 0.1 g.
  • the graphene composite powder was pre-dispersed by adding high-speed stirring to ethyl acetate for 5 min, and then ultrasonically dispersed for 20 min by adding a modified polyester dispersant, and stirred for 1 hour on a high-speed mixer to obtain a graphene slurry.
  • the obtained graphene composite powder and the graphene slurry were subjected to performance tests to observe the surface characteristics of the graphene composite powder and the stability of the graphene paste.
  • the main properties of the graphene paste obtained in this example are shown in Table 2a and Figure 2a.
  • the mass of each component was as follows: untreated graphene powder, 0.1 g; toluene, 99 g; dispersant, 0.9 g.
  • the untreated graphene powder was separately added to different dispersion medium A2 and pre-dispersed by high-speed stirring for 5 min, then dispersed by dispersing agent for 10 min, and stirred on a high-speed mixer for 20 min to obtain three graphene pastes.
  • the dispersion medium A2 is water, ethanol, and tetrahydrofuran.
  • the untreated graphene powder and the graphene paste were subjected to performance tests to observe the surface characteristics of the untreated graphene powder and the stability of the graphene paste.
  • the performance results are shown in Table 2a.
  • Example 2a Example 2b Comparative example 2a Surface characteristics Hydrophilic Lipophilic Not hydrophilic, not lipophilic stability No settlement No settlement Average settlement
  • the dispersion of the graphene paste prepared by the preparation method of the present invention is compared with the graphene slurry prepared by using the graphene powder without any treatment.
  • the properties and stability are obviously improved, and the surface characteristics of the graphene composite powder can be adjusted to be lipophilic and hydrophilic by selecting aniline oligomer derivatives and dispersing assistants having different properties, thereby being more advantageous.
  • Industrial application is a great deal of oligomer derivatives and dispersing assistants having different properties, thereby being more advantageous.
  • the graphene in the graphene slurry has good dispersibility, and the adjacent graphenes are substantially free from each other.
  • Embodiments of the present invention provide a method for preparing a graphene coating, which includes the following steps:
  • the dispersion medium is one or more of deionized water, ethanol, acetone, isopropanol, butanol, ethyl acetate, toluene, chloroform, dimethylformamide, dimethyl sulfoxide dichloroethane.
  • the mass ratio of the aniline oligomer derivative to the dispersion medium is (0.1 to 10): (80 to 90).
  • the aniline is low.
  • the mass ratio of the polymer derivative to the dispersion medium is (6 to 10): (80 to 90).
  • the graphene can be uniformly dispersed in the mixture A by a high-speed stirring, ultrasonic, ball milling and/or sanding dispersion method to further derivatize the graphene and the aniline oligomer. Mix well.
  • the mass ratio of the graphene to the dispersion medium is (0.1 to 10): (80 to 90).
  • the graphene obtained in the graphene dispersion has a mass percentage of 0.1% to 10%
  • the aniline oligomer derivative accounts for 0.1% to 10% by mass, and the dispersion.
  • the mass percentage of the medium is 80% to 90%.
  • the dispersion effect of the aniline oligomer derivative is limited, preferably, the quality of the graphene and the dispersion medium
  • the ratio is (0.5 to 5): (80 to 90).
  • the coating body is one or a combination of a silicone resin, an acrylic resin, a polyester resin, a polyurethane resin, an alkyd resin, and an epoxy resin.
  • the mass ratio of the coating main body to the graphene dispersion is (4 to 6): (3 to 5). It can be understood that the graphene dispersion can be uniformly mixed with the coating body by a high-speed stirring, ultrasonic, ball milling, and/or sanding dispersion method, thereby further uniformly dispersing the graphene in the coating body.
  • the coating aid includes a film former, a wetting agent, an antifoaming agent, and a leveling agent.
  • the film forming agent is one of ethylene glycol monobutyl ether, propylene glycol monobutyl ether, dipropylene glycol methyl ether ether ester, ethylene glycol propyl ether, dipropyl ether, propylene glycol phenyl ether, benzyl alcohol, and dodecyl alcohol ester.
  • the film forming agent is one of ethylene glycol monobutyl ether, propylene glycol monobutyl ether, dipropylene glycol methyl ether ether ester, ethylene glycol propyl ether, dipropyl ether, propylene glycol phenyl ether, benzyl alcohol, and dodecyl alcohol ester.
  • the wetting agent is one or a combination of lauryl sulfate, dodecyl sulfonate, polyvinyl alcohol, polyvinyl pyrrolidone, an organosilicon compound, and an organofluorine compound.
  • the antifoaming agent is dimethyl silicone oil, ether ester compound, modified mineral oil, polyoxyethyl Gan One or a combination of an oil ether, a small molecule metal organic, and a modified silicone polymer.
  • the leveling agent is ethylene glycol butyl ether, butyl acetate cellulose, polyacrylate, silicone oil, hydroxymethyl cellulose, polydimethyl silane, polymethyl phenyl siloxane and modified organosilicon compound. One or a combination of them.
  • the mass ratio of the coating aid to the graphene dispersion is (0.3 to 1): (3 to 5).
  • the mass percentage of the coating body in the obtained graphene coating is 40% to 60%, the mass percentage of the graphene dispersion is 30% to 50%, and the mass percentage of the coating auxiliary agent It is 3% to 10%.
  • the coating The mass ratio of the auxiliary agent to the graphene dispersion is (0.3 to 0.5): (3 to 5).
  • the present invention also provides a graphene coating prepared by the above method.
  • the graphene coating is composed of a coating body, a graphene dispersion, and a coating aid.
  • the mass percentage of the coating body is 40% to 60%
  • the mass percentage of the graphene dispersion is 30% to 50%
  • the mass percentage of the coating auxiliary agent is 3% to 10%.
  • the graphene dispersion liquid includes graphene, a graphene dispersant, and a dispersion medium, and the graphene dispersant includes an aniline oligomer or an aniline oligomer derivative, and the aniline oligomer or an aniline oligomer derivative is An electroactive polymer which is uniformly dispersed in the coating body by forming a ⁇ - ⁇ bond with an aniline oligomer or an aniline oligomer derivative.
  • the graphene coating provided by the invention greatly improves the dispersibility and chemical stability of graphene in the coating by modifying the surface of the graphene powder through the modification of the aniline oligomer or the aniline oligomer derivative.
  • the graphene coating is easy to adhere to the surface of the transparent carrier such as the automobile front windshield and the architectural glass, and the prepared coating film is transparent, heat insulation and energy saving effect is remarkable.
  • the graphene coating does not contain heavy metal elements such as In and Sn, and does not cause heavy metal contamination.
  • the preparation method of the graphene coating provided by the invention can obtain the graphene coating with good dispersibility and chemical stability through the innovation of the preparation process, the preparation process is simple, the cost is low, and the industrial application of graphene is facilitated.
  • the performance of the obtained graphene coating was tested. Specifically, the obtained graphene coating was applied to a flat glass piece of 10 cm ⁇ 10 cm ⁇ 0.2 cm with a 10 ⁇ m wire bar coater, and then dried in an oven at 80 ° C for 1 hour to obtain a coating film.
  • the visible light transmittance, infrared light transmittance, and ultraviolet light blocking rate of the coating film were measured by an ultraviolet-visible-infrared spectrophotometer according to GB/T 2680.
  • the adhesion of the coating film was tested according to GB/T 9286 by the cross-cut method.
  • the water resistance of the coating film was measured by the normal temperature immersion method according to GB/T 1733, and the test time was 96 hours.
  • the artificial weathering machine is used to test the artificial weathering resistance of the coating film according to GB/T 1865, and the test time is 1000 hours.
  • the temperature resistance of the coating film was tested according to GB/T 1735 by the alternating cold and heat resistance test.
  • the main properties of the coating film made of the obtained graphene coating are shown in Table 3a.
  • the performance of the obtained graphene coating was tested.
  • the test method is the same as in Example 3a.
  • the main properties of the coating film made of the obtained graphene coating are shown in Table 3a.
  • the performance of the obtained graphene coating was tested.
  • the test method is the same as in Example 3a.
  • the main properties of the coating film made of the obtained graphene coating are shown in Table 3a.
  • the coating film made of the graphene coating of the present invention has high visible light transmittance, can completely shield ultraviolet rays, and can effectively block infrared rays with high energy in sunlight, and at the same time, the coating is resistant. Aging, waterproof, adhesion, and temperature resistance.
  • Embodiments of the present invention provide a method for preparing a graphene composite film, which includes the following steps:
  • the content of the steps S51 to S54 in the method for preparing the graphene composite film is the same as the content of the steps S41 to S44 in the method for preparing the graphene composite coating, and details are not described herein again.
  • step S55 the graphene composite coating is applied onto the substrate 1 and dried to obtain a graphene composite film.
  • the graphene composite coating is applied onto the substrate 1 by spraying, knife coating, brush coating, shower coating or roll coating to form a coating 2 on the surface of the substrate 1.
  • the substrate is made of polyethylene (PE), polypropylene (PP), polyhexamethylene adipamide (PA), polyvinyl chloride (PVC), polyethylene terephthalate (PET) or polymethyl A film made of methyl acrylate (PMMA).
  • PE polyethylene
  • PP polypropylene
  • PA polyhexamethylene adipamide
  • PA polyvinyl chloride
  • PET polyethylene terephthalate
  • PMMA polymethyl A film made of methyl acrylate
  • the invention also provides a graphene composite film prepared by the above method.
  • the graphene composite film includes a substrate and a coating covering the substrate.
  • the coating is applied to the substrate by the graphene composite coating and dried. Since the graphene is modified by modification of the aniline oligomer derivative, it is uniformly dispersed in the coating body, so that the graphene composite coating has good adhesion and stability.
  • the coating can be closely adhered to the substrate by intermolecular forces and integrated into the substrate to facilitate subsequent applications.
  • the graphene composite film provided by the invention by modifying the surface of the graphene through the modification of the aniline oligomer derivative, the dispersibility and chemical stability of the graphene are greatly improved, so that the graphene is uniformly dispersed in the In the main body of the paint, the graphene composite film is easy to adhere to the surface of a transparent carrier such as an automobile front windshield or a building glass, and the obtained graphene composite film has high transparency, good adhesion, outstanding aging resistance, and heat insulation. The effect is obvious. Moreover, the graphene composite film does not contain heavy metal elements such as In and Sn, and does not cause heavy metal contamination.
  • the preparation method of the graphene composite film provided by the invention has the advantages of simple process, convenient construction and easy operation, and can be widely used in the fields of building glass, glass for vehicles such as automobiles, trains, airplanes, etc., which need to be energy-saving.
  • the obtained graphene composite coating was applied onto a transparent PMMA film by knife coating to obtain a graphene composite film.
  • the obtained graphene composite film was subjected to performance test. Specifically, the visible light transmittance, the infrared light transmittance, and the ultraviolet light blocking rate of the graphene composite film are detected by an ultraviolet-visible-infrared spectrophotometer according to GB/T 2680.
  • the adhesion of the graphene composite film was examined by the cross-cut method according to GB/T 9286.
  • the water resistance of the graphene composite film was measured by the normal temperature immersion method according to GB/T 1733, and the test time was 96 hours.
  • the artificial weathering resistance of the graphene composite film was tested by an artificial aging machine according to GB/T 1865, and the test time was 1000 hours.
  • the temperature resistance of the graphene composite film was tested according to GB/T 1735 by the alternating cold and heat resistance test.
  • the performance test results of the graphene composite film are: visible light transmittance of 91%, infrared light transmittance of 7%, ultraviolet light blocking rate of 99%, water resistance of 96 hours, and artificial weathering aging up to 1000 hours, Focus on level 0.
  • the obtained graphene composite coating was applied onto a transparent PP film by spraying to obtain a graphene composite film.
  • the obtained graphene composite film was subjected to performance test.
  • the test method is the same as in Example 4a.
  • the performance test results of the graphene composite film are: visible light transmittance of 94%, infrared light transmittance of 12%, ultraviolet light blocking rate of 98%, water resistance of 96 hours, and artificial weathering aging up to 1000 hours, Focus on level 0.
  • the graphene composite film according to Embodiments 4a and 4b of the present invention has high visible light transmittance, can completely shield ultraviolet rays, can effectively block infrared rays with high energy in sunlight, and at the same time, the coating is resistant to aging. Waterproof, adhesion, and temperature resistance.
  • Embodiments of the present invention provide a method for preparing a composite graphene paper, which includes the following steps:
  • the microporous membrane is immersed in the above mixture B3 for 1 min to 10 min, and dried to obtain a membrane-graphene composite.
  • the microporous membrane functions as a template and a carrier to impart a shape and size to the subsequently produced composite graphene paper.
  • the microporous membrane is a polymer membrane containing a plurality of through holes having a pore diameter of 10 nm to 1000 ⁇ m.
  • the polymer film comprises polyethylene (PE), polypropylene (PP), polystyrene (PS), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), nylon (Nylon), polycarbonate. (PC), polyurethane (PU), polytetrafluoroethylene (PTFE) or polyethylene terephthalate (PET).
  • the filter-graphene composite is carbonized in a carbonization furnace at a carbonization temperature to obtain a composite graphene paper.
  • the carbonization temperature is from 800 ° C to 1400 ° C.
  • the carbonization time is from 1 hour to 3 hours.
  • the present invention also provides a composite graphene paper prepared by the method for preparing the composite graphene paper.
  • the composite graphene paper may have a thickness of from 5 micrometers to 500 micrometers.
  • the method for preparing the composite graphene paper provided by the invention adopts a filter paper or a microporous membrane as a matrix, and prepares the composite graphene paper by immersing in the graphene dispersion.
  • the preparation process is simple, the cost is low, the cost is low, and it is suitable for large-scale batch industrial production.
  • the method provided by the present invention deposits graphene on the surface and pores of the microporous membrane to form an interlaced structure, and the obtained composite graphene paper has far greater strength and flexibility than the graphene paper obtained by other methods. This facilitates its application in flexible electronic products.
  • the composite graphene paper was tested for performance. It was found by the test that the composite graphene paper had an electric conductivity of 1.3 ⁇ 10 5 S/m and a tensile strength of 221 MPa.
  • the composite graphene paper has good flexibility and can be crimped.
  • Embodiments of the present invention provide a method for preparing a graphene composite coating.
  • the method comprises the following steps:
  • S71 Dispersing an aniline oligomer and graphene in a dispersion solvent, uniformly mixing the aniline oligomer and the graphene, and forming a ⁇ - ⁇ bond between the aniline oligomer and the graphene to obtain a graphene dispersion.
  • the graphene dispersion can be uniformly dispersed in the resin by a high-speed stirring, ultrasonic, ball milling, and/or sanding dispersion method to further uniformly disperse the graphene in the resin.
  • the resin is one or a combination of an epoxy resin, an acrylic resin, a polyurethane resin, an acrylic urethane resin, and an amino resin.
  • the coating aid includes an anti-settling agent, an antifoaming agent, and a leveling agent.
  • the anti-settling agent is one or a combination of fumed silica, polyamide wax, and organic bentonite.
  • the antifoaming agent is one or a combination of a dimethyl silicone oil, an ether ester compound, a modified mineral oil, a polyoxyethyl glyceryl ether, a small molecular metal organic substance, and a modified silicone polymer.
  • the leveling agent is ethylene glycol butyl ether, butyl acetate cellulose, polyacrylate, silicone oil, hydroxymethyl cellulose, polydimethyl silane, polymethyl phenyl siloxane and modified organosilicon compound.
  • the curing agent may be a polyamide for accelerating the curing process of the graphene composite coating.
  • the graphene in the obtained graphene composite coating has a mass percentage of 0.01% to 5%, preferably 0.2% to 0.5%.
  • the present invention also provides a graphene composite coating prepared by the above method.
  • the graphene composite coating is composed of a resin, a graphene, an aniline oligomer, a dispersion solvent, and a coating aid.
  • the graphene accounts for 0.01% to 5% by mass of the graphene composite coating.
  • the graphene is uniformly dispersed in the resin by forming a ⁇ - ⁇ bond with the aniline oligomer.
  • the dispersibility and chemical stability of the graphene are greatly improved, so that the graphene is uniformly dispersed in the Among the resins, graphene has good hydrophobic properties, so that in the application process, water molecules can be effectively inhibited from adsorbing on the surface of the formed graphene composite coating.
  • graphene has a two-dimensional sheet structure, which is uniformly dispersed in the coating.
  • graphene When a graphene composite coating is formed, graphene can be layered to form a dense insulating layer, and thus a small molecule corrosive medium (water molecules, chlorine) Ions, etc.) are difficult to pass through this dense barrier layer, which provides outstanding physical insulation. That is, the obtained graphene composite coating has good water permeability resistance, strong protective ability, and excellent anticorrosive effect. Moreover, the graphene composite coating does not contain heavy metal elements such as In and Sn, and does not cause heavy metal contamination.
  • the preparation method of the graphene composite coating provided by the invention can obtain the graphene composite coating with good dispersibility and chemical stability through the innovation of the preparation process, and the preparation process is simple. Low cost and good for industrialization.
  • the graphene dispersion was added to 46 g of epoxy resin ((Model E44, purchased from Jiangsu Wujiang Heli Resin Factory), and mixed to obtain a mixture A4. Then, 1 g of a leveling agent, 1 g was sequentially added to the mixture A4. An antifoaming agent, a 1 g anti-settling agent and 46 g of a polyamide curing agent were uniformly stirred to obtain a graphene composite coating.
  • epoxy resin (Model E44, purchased from Jiangsu Wujiang Heli Resin Factory)
  • the obtained graphene composite coating is coated on a carbon steel substrate, and after the toluene is volatilized, a graphene composite coating is obtained.
  • a comparative example 3a epoxy resin coating was also prepared.
  • the epoxy resin coating described in Comparative Example 3a was prepared in the same manner as in Example 6a except that no graphene dispersion was added.
  • the graphene composite coating described in Example 6a and the epoxy resin coating of Comparative Example 3a were tested for corrosion resistance. Specifically, the graphene composite coating layer and the epoxy resin coating layer of Comparative Example 3a were respectively immersed in a 3.5 wt% NaCl solution for 8 days, and then a graphene composite coating layer was respectively obtained by using a Shanghai Chenhua CHI660E electrochemical workstation.
  • the AC impedance spectrum of the epoxy resin coating see Figures 6b to 6e
  • the potentiodynamic polarization curve see Figure 6f. 6b to 6e and 6f, the graphene composite coating has a higher impedance than the epoxy resin coating.
  • the self-corrosion current density of the graphene composite coating was 5.23 nA ⁇ cm -2
  • the self-corrosion current density of the epoxy resin coating was 158 nA ⁇ cm -2 . This indicates that the graphene oxide modified by the modification of the aniline oligomer can be uniformly dispersed in the resin, thereby greatly improving the corrosion resistance of the graphene composite coating.
  • the graphene composite coating described in Example 6a and the epoxy resin coating of Comparative Example 3a were tested for water penetration resistance. Specifically, by fitting the AC impedance value, lgQ c (Qc is the coating capacitance) is plotted against t 1/2 to obtain FIG. 6g. By linear fitting, the linear regression equations of the epoxy resin coating and the graphene composite coating can be obtained separately, and the diffusion coefficients of the epoxy resin coating and the graphene composite coating are calculated to be 6.35 ⁇ 10 -11 m 2 , respectively. /d and 9.1 ⁇ 10 -12 m 2 /d. This indicates that the graphene modified by the modification of the aniline oligomer can be uniformly dispersed in the resin, thereby slowing the diffusion rate of water molecules in the graphene composite coating.
  • the antiseptic effect is the best.
  • the graphene dispersion was added to 90 g of polyurethane (purchased from Ningbo Feilun Paint Co., Ltd.), and after mixing, a mixture A4 was obtained. Further, 2 g of a leveling agent, 3 g of an antifoaming agent, and 2 g of an anti-settling agent were sequentially added to the mixture A4, and the mixture was uniformly stirred to obtain a graphene composite coating.
  • the obtained graphene composite coating is coated on a carbon steel substrate, and after the toluene is volatilized, a graphene composite coating is obtained.
  • Example 3b a comparative 3b pure polyurethane coating was also prepared.
  • the pure polyurethane coating described in Comparative Example 3b was prepared in the same manner as in Example 6b except that no graphene dispersion was added.
  • the graphene composite coating described in Example 6b and the pure polyurethane coating of Comparative Example 3b were tested for salt spray resistance. Specifically, the graphene composite coating and the comparative 3b pure polyurethane coating were respectively placed in a salt spray test chamber, taken out after 1000 hours, and dried at room temperature, and photographed (see Fig. 6a). It can be seen from Fig. 6a that the surface of the pure polyurethane coating has obvious corrosion pits, and the surface of the graphene composite coating has no obvious corrosion phenomenon.
  • Embodiments of the present invention provide a method for preparing an aqueous graphene composite coating.
  • the method comprises the following steps:
  • S81 An equimolar amount of the aniline oligomer derivative and a base are dissolved in water to obtain a mixture A5.
  • the purpose of adding a base is to make the aniline oligomer derivative more soluble in water.
  • the equimolar amount is such that the carboxylic acid carried in the structure of the aniline oligomer derivative or the group of the other acid can be completely neutralized with the base.
  • the base is one or a combination of sodium hydroxide, triethylamine, potassium hydroxide, and aqueous ammonia.
  • the aniline oligomer derivative and the base are dispersed in water to sufficiently dissolve the aniline oligomer derivative.
  • the aniline oligomer derivative is used to modify the graphene.
  • the mass ratio of the aniline oligomer derivative to graphene is from 1:10 to 10:1.
  • the mass ratio of the aniline oligomer derivative to graphene is from 2:1 to 1:1.
  • An aqueous resin is provided, and the graphene dispersion is added to the aqueous resin and uniformly mixed to obtain a mixture B5.
  • the graphene dispersion can be uniformly dispersed in the aqueous resin by a high-speed stirring, ultrasonic, ball milling, and/or sanding dispersion method to further uniformly disperse the graphene in the aqueous resin.
  • the aqueous resin is one or a combination of an aqueous epoxy resin, an aqueous acrylic resin, an aqueous polyurethane resin, an aqueous acrylic polyurethane resin, and an aqueous amino resin.
  • the coating aid includes an anti-settling agent, an antifoaming agent, and a leveling agent.
  • the anti-settling agent is one or a combination of fumed silica, polyamide wax, and organic bentonite.
  • the antifoaming agent is one or a combination of a dimethyl silicone oil, an ether ester compound, a modified mineral oil, a polyoxyethyl glyceryl ether, a small molecular metal organic substance, and a modified silicone polymer.
  • the leveling agent is ethylene glycol butyl ether, acetobutyl cellulose, poly One or a combination of an acrylate, a silicone oil, a hydroxymethyl cellulose, a polydimethylsilane, a polymethylphenylsiloxane, and a modified organosilicon compound.
  • the aqueous graphene composite coating may further comprise a curing agent.
  • the curing agent may be an aqueous polyamide for accelerating the curing process of the aqueous graphene composite coating.
  • the graphene in the obtained aqueous graphene composite coating has a mass percentage of 0.01% to 4%, preferably 0.2% to 1.0%.
  • the present invention also provides an aqueous graphene composite coating prepared by the above method.
  • the water-based graphene composite coating is composed of an aqueous resin, graphene, an aniline oligomer derivative, water, and a coating aid.
  • the graphene accounts for 0.01% to 4% by mass of the aqueous graphene composite coating.
  • the graphene accounts for 0.2% to 1.0% by mass of the aqueous graphene composite coating.
  • the graphene is uniformly dispersed in the aqueous resin by forming a ⁇ - ⁇ bond with the aniline oligomer derivative.
  • the dispersibility and chemical stability of the graphene are greatly improved, so that the graphene is uniformly dispersed.
  • graphene has good hydrophobic properties, so that in the application process, water molecules can be effectively inhibited from adsorbing on the surface of the formed aqueous graphene composite coating.
  • graphene has a two-dimensional sheet structure, which is uniformly dispersed in the coating.
  • the graphene layer can be layered to form a dense insulating layer, and thus the small molecule corrosive medium (water molecules, Chloride ions, etc.) are difficult to pass through this dense barrier layer, which provides outstanding physical insulation. That is, the obtained aqueous graphene composite coating layer has good water permeability resistance and salt spray resistance as well as strong protection ability, so that the water-based graphene composite coating layer has excellent antiseptic effect. Moreover, the water-based graphene composite coating does not contain an organic solvent, does not cause organic volatile emissions, and is environmentally friendly.
  • the preparation method of the aqueous graphene composite coating provided by the invention can obtain the water-based graphene composite coating with good dispersibility and chemical stability through the innovation of the preparation process, and the preparation process is simple, the cost is low, and the industrialization is facilitated.
  • aniline trimer carboxyl derivative 1.24 g of the aniline trimer was weighed and dissolved in 50 ml of THF, and then 1.04 g of succinic anhydride was added thereto, and the mixture was reacted for 3 hours, and precipitated with petroleum ether to obtain an aniline trimer carboxyl derivative.
  • the graphene dispersion was added to 45 g of water-based epoxy resin (purchased from Northwest Yongxin Group Co., Ltd.), and mixed Evenly, a mixture B5 was obtained.
  • a leveling agent 1 g of a leveling agent, 2 g of an antifoaming agent, 2.67 g of an anti-settling agent, and 45 g of an aqueous polyamide curing agent were sequentially added, and the mixture was uniformly stirred to obtain an aqueous graphene composite coating.
  • the obtained aqueous graphene composite coating is coated on a carbon steel substrate, and after the water is volatilized, an aqueous graphene composite coating is obtained.
  • Comparative Example 4a For comparison of experimental results, a comparative epoxy resin coating of Comparative Example 4a was also prepared.
  • the aqueous epoxy resin coating described in Comparative Example 4a was prepared in the same manner as in Example 7a except that no graphene dispersion was added.
  • Example 7a The water-resistant graphene composite coating described in Example 7a and the aqueous epoxy resin coating of Comparative Example 4a were tested for salt spray resistance. Specifically, the aqueous graphene composite coating layer and the aqueous epoxy resin coating layer of Comparative Example 4a were respectively placed in a salt spray test chamber, taken out after 500 hours, and photographed after drying at room temperature (see FIG. 7a). It can be seen from Fig. 7a that the surface of the aqueous epoxy resin coating has obvious corrosion pits, and the surface of the aqueous graphene composite coating has no obvious corrosion phenomenon.
  • the aqueous graphene composite coating described in Example 7a and the aqueous epoxy resin coating of Comparative Example 4a were tested for corrosion resistance. Specifically, the aqueous graphene composite coating layer and the aqueous epoxy resin coating layer of Comparative Example 4a were respectively immersed in a 3.5 wt% NaCl solution (in simulated seawater) for 8 days, and then a Shanghai Chenhua CHI660E electrochemical workstation was used. The mechanism of action of graphene on waterborne graphene composite coating was analyzed by open circuit potential, alternating current impedance and potentiodynamic polarization curve test technique.
  • a saturated calomel electrode with a Lujin capillary is used as a reference electrode
  • a platinum plate electrode is a counter electrode
  • a graphene coating/carbon steel electrode is a working electrode
  • an open circuit potential (OCP) is immersed in a simulated aqueous seawater solution.
  • EIS electrical impedance
  • the scanning curve of the polarization curve was 0.5 mV/s, and the scanning range was -200 to 200 mV vs. OCP.
  • test OCP results are shown in Figure 7b
  • the AC impedance results are shown in Figures 7c to 7f
  • the polarization curve results are shown in Figure 7g. 7b, 7c to 7f, and 7g
  • the aqueous graphene composite coating has a higher impedance than the epoxy resin coating; after 48 hours of immersion, the self-corrosion current density of the aqueous graphene composite coating is 130nA ⁇ cm -2, and the corrosion current density waterborne epoxy coating is 38nA ⁇ cm -2.
  • the water-resistant graphene composite coating described in Example 7a and the aqueous epoxy resin coating of Comparative Example 4a were tested for water penetration resistance. Specifically, by fitting the AC impedance value, lgQ c (Qc is the coating capacitance) is plotted against t 1/2 to obtain Figure 7h.
  • the linear regression equation of the waterborne epoxy resin coating and the waterborne graphene composite coating can be obtained by linear fitting, and the diffusion coefficients of the waterborne epoxy resin coating and the waterborne graphene composite coating are calculated to be 5.56 ⁇ 10, respectively. -9 cm 2 /h and 1.61 ⁇ 10 -11 cm 2 /h. This indicates that the graphene modified by the modification of the aniline oligomer derivative can be uniformly dispersed in the aqueous resin, thereby slowing the diffusion rate of water molecules in the aqueous graphene composite coating.
  • the contact angle of the aqueous graphene composite coating described in Example 7a and the aqueous epoxy resin coating of Comparative Example 4a was tested (see Figure 7i). As a result, the contact angle of the aqueous graphene composite coating was 95.38°; the contact angle of the aqueous epoxy resin coating was 87.32°. This indicates that the graphene modified by the modification of the aniline oligomer derivative can be uniformly dispersed in the aqueous resin, thereby increasing the contact angle of the aqueous epoxy resin coating, thereby increasing the aqueous epoxy resin coating. The hydrophobic properties of the layer.
  • the present invention provides a graphene composite metal foil which can be obtained by the following preparation method.
  • the preparation method comprises the following steps:
  • S91 performing surface cleaning treatment on the metal foil 10, the process comprising: degreasing, pickling, water washing, alcohol washing, drying;
  • the metal foil 10 has a thickness of 5 ⁇ m to 500 ⁇ m. Preferably, the metal foil 10 has a thickness of 10 ⁇ m to 100 ⁇ m.
  • the cleaned metal foil 10 is subjected to a hole-opening treatment, and the opening method includes laser drilling, plasma drilling, mechanical drilling, chemical etching, etc., to obtain a plurality of through holes 20;
  • the through hole 20 has a pore diameter of 1 ⁇ m to 1000 ⁇ m and a pore density of 10 1 /cm 2 to 10 6 /cm 2 .
  • the through hole 20 has a pore diameter of 10 ⁇ m to 500 ⁇ m and a pore density of 10 2 /cm 2 to 10 4 /cm 2 ;
  • the graphene, the dispersant, and the solvent are dispersed by means of high-speed stirring, ultrasonication, ball milling, and/or sanding to obtain a homogeneous and stable graphene dispersion.
  • the dispersant is an aniline oligomer or an aniline oligomer derivative.
  • the aniline oligomer or aniline oligomer derivative has good solubility and is soluble in the solvent.
  • the solvent may be one or a combination of deionized water, ethanol, acetone, isopropanol, butanol, ethyl acetate, toluene, chloroform, dimethylformamide, dimethyl sulfoxide dichloroethane.
  • the mass percentage (i.e., solid content) of graphene in the graphene dispersion is from 0.1% to 10%.
  • the graphene deposited on the surface of the metal foil and the wall of the through-hole is integrally formed into a layered structure, and the metal foil clip is In the middle and stuck.
  • the graphene layer 30 is composed of a plurality of layers of pure graphene.
  • the graphene layer 30 covers the surface of the metal foil 10 and the pore walls of the through holes 20.
  • the number of layers of graphene in the graphene layer 30 is from 1 to 100 layers.
  • the graphene layer 30 has a thickness of 0.01 ⁇ m to 10 ⁇ m.
  • the obtained graphene composite metal foil has a thermal conductivity of 500 W/m ⁇ K to 2000 W/m ⁇ K, and the bonding strength between the graphene and the metal foil 10 is 1 MPa to 100 MPa.
  • the graphene composite metal foil is used as a heat dissipating component in a heat sink of an integrated circuit, an electronic device, a heat exchanger, or an LED.
  • the method for preparing the graphene composite metal foil of the present invention has the following advantages: dispersing graphene through an aniline oligomer to obtain a homogeneous and stable graphene dispersion, since the aniline oligomer is positive
  • the electricity causes the graphene dispersion to be positively charged, and the clean metal surface is negatively charged, and the two adhere to the surface of the metal foil by strong electrostatic attraction, thereby obtaining a graphene composite metal foil.
  • the operation of adding a binder for coating is omitted, and graphene is more stably attached to the surface of the metal foil by electrostatic attraction.
  • the graphene composite metal foil of the present invention has the following advantages: (1) has excellent heat dissipation performance.
  • the graphene prepared in the prior art is flat on the surface of the metal foil, and the heat flow direction is perpendicular to the plane of the graphene, so that the final heat dissipation effect is not ideal.
  • the graphene composite metal foil of the present invention has a graphene layer on both sides of the metal foil and on the pore walls. The bottom graphene layer not only rapidly disperses the heat from the heat source on the surface of the graphene, but also transfers the obtained heat to the graphene layer on the upper portion of the metal foil through the graphene layer attached to the pore wall.
  • the heat transferred to the upper part is rapidly diffused through the graphene plane, and finally through the convection and radiation to achieve rapid heat dissipation. That is, the graphene in the through-hole of the graphene composite metal foil can improve the thermal conductivity in a direction perpendicular to the surface of the metal foil, thereby greatly improving the overall thermal conductivity of the graphene composite metal foil.
  • the graphene layer has high bonding strength with the metal foil, and the graphene prepared by the prior art has an interfacial stress between the two because it is laid on the surface of the metal foil, so that the graphene layer is easily peeled off.
  • the graphene composite metal foil of the present invention wherein the graphene covers not only the upper and lower surfaces of the metal foil but also the pore walls of the through holes, and the graphene distributed on the upper and lower surfaces and the pore walls is integrated A layered structure is formed, and the metal foil is sandwiched and secured, thereby greatly increasing the bonding strength between the graphene and the metal foil.
  • the graphene composite metal foil prepared by the electrostatic adsorption method has high adhesion stability and high bonding strength on the metal foil. (3) The process is simple and the preparation cost is low.
  • the prior art generally uses chemical vapor deposition (CVD) to grow graphene on the surface of a metal foil.
  • the present invention prepares a graphene composite metal foil by a liquid deposition method.
  • the method has no special requirements on growth conditions, growth equipment and substrate, and has a short growth time (1 min to 10 min), and it can continuously grow on-line. Thereby greatly improving production efficiency.
  • the present invention also provides a graphene-based conductive coating comprising graphene, a graphene dispersant, and a coating matrix.
  • Said Graphene dispersants include aniline oligomers or aniline oligomer derivatives.
  • the aniline oligomer or aniline oligomer derivative is an electroactive polymer, and the graphene can be uniformly dispersed in the coating substrate by ⁇ - ⁇ bonding with the graphene powder.
  • the coating substrate may be an aqueous one-component polyurethane, but is not limited to a polyurethane system, and includes other polymer film-forming resins including epoxy resins, alkyd resins, polymethacrylate emulsions, silicone resins, and the like.
  • the graphene dispersant is an aniline oligomer or an aniline oligomer derivative
  • the graphene having conductivity itself can be uniformly dispersed in the coating substrate under the action of the graphene dispersant, thereby obtaining the graphene conductive
  • the coating has good electrical conductivity and can be applied to conductive inks, antistatic coatings, electromagnetic shielding, absorbing stealth and the like.
  • aqueous sulfonated polyaniline 3 mL of deionized water, 0.025 g of graphene, and ultrasonic dispersion, then 1.47 g of aqueous polyurethane (solid content 34%), coated, and cured at 60 ° C to obtain graphene-containing 5 % polyurethane conductive coating.
  • the film conductivity was measured to be 1287 ohm/sq.
  • aqueous sulfonated polyaniline 3 mL of deionized water, 0.025 g of graphene, and ultrasonic dispersion, then 1.47 g of aqueous polyurethane (solid content: 34%), coated, and cured at 60 ° C to obtain graphene-containing 2.5 % polyurethane conductive coating.
  • the film conductivity was measured to be 3276 ohm/sq.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种石墨烯分散剂,包括苯胺低聚物或其衍生物。该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且与石墨烯之间可通过π-π键结合。还提供该石墨烯分散剂的相关应用。

Description

一种石墨烯分散剂及其应用 技术领域
本发明涉及一种石墨烯分散剂及其应用。
背景技术
石墨烯是由碳原子组成的六角型呈蜂巢晶格材料,只有一个碳原子厚度。石墨烯于2004年被发现,并获2010年诺贝尔物理学奖。石墨烯的单原子纳米结构赋予其许多无以伦比的独特性能。①导电性极强:石墨烯中的电子由于基本没有质量,其电子的运动速度能够达到光速的1/300,因此拥有超强的导电性。②超高强度:石墨烯硬度比金刚石还高,却又拥有很好的韧性,且可以弯曲。③超大比表面积:理想的单层石墨烯的比表面积能够达到2630m2/g,而普通的活性炭的比表面积为1500m2/g,超大的比表面积使得石墨烯成为潜力巨大的储能材料。正是因为石墨烯具有诸多卓越性能,激发了全球范围内的石墨烯研发热潮。
近期,很多研究都集中于大尺寸、规模化石墨烯的合成。目前,石墨烯的制备方法通常包括机械剥离、化学气相沉积、氧化-还原、溶液超声剥离等方法。但得到的石墨烯由于π-π共轭作用和范德华力吸附作用而易于团聚。另外,由于石墨烯独特的结构使得其很难与其它介质发生物理或化学作用,结合强度不高,应用领域受限。因此,目前限制石墨烯应用的最大瓶颈就是如何得到稳定的易于分散的改性石墨烯来充分发挥其独特的物理化学性能。
发明内容
针对现有技术的不足,本发明的主要目的在于提供一种石墨烯分散剂及其相关应用,通过该石墨烯分散剂可将石墨烯均匀分散,从而实现在各种不同的领域的应用。
本发明提供一种石墨烯分散剂,用于分散石墨烯,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且该苯胺低聚物或苯胺低聚物衍生物与石墨烯之间可通过π-π键结合。
其中,所述苯胺低聚物衍生物为带有官能团的苯胺低聚物,所述官能团包括羧基、羟基、羰基、酯基、氨基、烃基、烷基、磺酸基、磷酸基、环氧基团、聚乙二醇基团、聚乙烯醇基 团中的任意一种或两种以上的组合,所述苯胺低聚物为苯胺三聚体、苯胺四聚体、苯胺五聚体、苯胺六聚体、苯胺八聚体中的一种或组合。
本发明还提供一种石墨烯的分散方法,其包括如下步骤:
提供石墨烯及石墨烯分散剂,该石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且与石墨烯之间可通过π-π键结合;
将石墨烯、石墨烯分散剂加入到分散介质中,并使石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键,其中分散介质包括水、有机溶剂、高分子聚合物中的任意一种或两种以上的组合,所述有机溶剂包括乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜、二氯乙烷中的一种或几种混合溶剂。
本发明还提供一种石墨烯复合粉体,其包括石墨烯粉体、石墨烯分散剂及分散助剂,所述石墨烯分散剂及分散助剂均匀分散于所述石墨烯粉体中,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且与石墨烯粉体之间可通过π-π键结合。
其中,所述分散助剂为硅烷偶联剂、聚乙烯醇、聚乙烯吡咯烷酮、有机改性聚硅氧烷二丙二醇单甲醚溶液、有机硅表面活性剂和/或含氟表面活性剂,所述苯胺低聚物或苯胺低聚物衍生物在石墨烯复合粉体中的质量百分比为0.1%~50%。
其中,所述苯胺低聚物或苯胺低聚物衍生物在石墨烯复合粉体中的质量百分比为10%~20%。
本发明还提供一种石墨烯复合粉体的制备方法,其包括如下步骤:
将还原性石墨烯分散于分散介质中,得到混合物A;
在所述混合物A中加入分散助剂和用于与石墨烯形成π-π结合的苯胺低聚物或苯胺低聚物衍生物,使石墨烯与苯胺低聚物或苯胺低聚物衍生物混合均匀并在苯胺低聚物或苯胺低聚物衍生物与石墨烯之间形成π-π键得到混合物B;
将混合物B干燥制得苯胺低聚物或苯胺低聚物衍生物修饰改性的石墨烯复合粉体。
其中,所述分散介质为去离子水、乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜二氯乙烷中的一种或几种混合溶剂,所述石墨烯与所述分散介质的质量比为1:10~1:10000,所述分散助剂为硅烷偶联剂、聚乙烯醇、聚乙烯吡咯烷酮、有机改性聚硅氧烷二丙二醇单甲醚溶液、有机硅表面活性剂和/或含氟表面活性剂,所述分散助剂与混合物A的质量百分比(0.01-1):100。
本发明还提供一种石墨烯浆料的制备方法,其包括如下步骤:
将石墨烯分散于分散介质A1中,得到混合物B1;
在所述混合物B1中加入分散助剂和用于与石墨烯形成强π-π结合的石墨烯分散剂,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,使苯胺低聚物或苯胺低聚物衍生物与石墨烯混合均匀并在苯胺低聚物或苯胺低聚物衍生物与石墨烯之间形成π-π键得到混合物B2;
将混合物B2干燥制得苯胺低聚物或苯胺低聚物衍生物修饰改性的石墨烯复合粉体;
将石墨烯复合粉体分散于分散介质A2中得到所述石墨烯浆料。
其中,所述分散介质A1及分散介质A2为去离子水、乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜、二氯乙烷中的一种或几种混合溶剂,所述石墨烯与所述分散介质A1的质量比为1:10~1:10000,所述苯胺低聚物或苯胺低聚物衍生物与混合物B1的质量百分比为(0.01-10):100。
本发明还提供一种采用上述制备方法得到的石墨烯浆料。
本发明还提供一种石墨烯复合涂料,其由涂料主体、石墨烯分散液及涂料助剂组成,在石墨烯复合涂料中所述涂料主体所占的质量百分数为40%~60%,所述石墨烯分散液所占的质量百分数为30%~50%及所述涂料助剂所占的质量百分数为3%~10%,所述石墨烯分散液包括石墨烯、石墨烯分散剂及分散介质,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,该石墨烯通过与苯胺低聚物或苯胺低聚物衍生物形成π-π键而均匀分散于所述涂料主体中。
其中,在所述石墨烯分散液中所述石墨烯所占的质量百分数为0.1%~10%,所述苯胺低聚物或苯胺低聚物衍生物所占的质量百分数为0.1%~10%,以及所述分散介质所占的质量百分数为80%~90%,所述涂料主体为有机硅树脂、丙烯酸树脂、聚酯树脂、聚氨酯树脂、醇酸树脂和环氧树脂中的一种或组合,所述涂料助剂包括成膜剂、润湿剂、消泡剂和流平剂,所述成膜剂为乙二醇单丁醚、丙二醇单丁醚、二丙二醇甲醚乙醚酯、乙二醇丙醚、二丙醚、丙二醇苯醚、苯甲醇、十二碳醇酯中的一种或组合,所述润湿剂为十二烷基硫酸盐、十二烷基磺酸盐、聚乙烯醇、聚乙烯吡咯烷酮、有机硅化合物和有机氟化合物中的一种或组合,所述消泡剂为二甲基硅油、醚酯化合物、改性矿物油、聚氧乙基甘油醚、小分子金属有机物和改性有机硅聚合物中的一种或组合,所述流平剂为乙二醇丁醚、醋丁纤维素、聚丙烯酸酯类、硅油、羟甲基纤维素、聚二甲基硅烷、聚甲基苯基硅氧烷和改性有机硅化合物中的一种或组合。
本发明还提供一种石墨烯复合涂料的制备方法,其包括以下步骤:
将苯胺低聚物或苯胺低聚物衍生物和分散介质混合,得到混合物A;
向所述混合物A中加入石墨烯,使苯胺低聚物或苯胺低聚物衍生物与石墨烯混合均匀并在石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键得到石墨烯分散液;
提供一涂料主体,向所述涂料主体中加入所述石墨烯分散液并混合均匀,得到混合物B;
向所述混合物B中加入涂料助剂,得到石墨烯复合涂料,其中,在所述石墨烯复合涂料中所述涂料主体所占的质量百分数为40%~60%,所述石墨烯分散液所占的质量百分数为30%~50%及所述涂料助剂所占的质量百分数为3%~10%。
本发明还提供一种石墨烯复合贴膜的制备方法,其包括以下步骤:
将苯胺低聚物或苯胺低聚物衍生物和分散介质混合,得到混合物A,其中该苯胺低聚物或苯胺低聚物衍生物为电活性高分子;
向所述混合物A中加入石墨烯,使石墨烯与苯胺低聚物或苯胺低聚物衍生物混合均匀并在石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键得到石墨烯分散液;
提供一涂料主体,向所述涂料主体中加入所述石墨烯分散液并混合均匀,得到混合物B;
向所述混合物B中加入涂料助剂,得到石墨烯复合涂料;
将所述石墨烯复合涂料涂布在基底上,干燥后得到石墨烯复合贴膜,其中,在所述石墨烯复合涂料中所述涂料主体所占的质量百分数为40%~60%,所述石墨烯分散液所占的质量百分数为30%~50%及所述涂料助剂所占的质量百分数为3%~10%。
本发明还提供一种复合石墨烯纸的制备方法,其包括以下步骤:
将石墨烯分散于分散介质中,得到混合物A3;
在所述混合物A3中加入分散助剂和用于与石墨烯形成π-π结合的苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,该石墨烯与苯胺低聚物或苯胺低聚物衍生物混合均匀并在该石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键得到混合物B3;
将微孔滤膜浸入到上述混合物B3中1分钟~10分钟取出,烘干得到滤膜-石墨烯复合体;
将所述滤膜-石墨烯复合体在碳化炉内在碳化温度下进行碳化,得到复合石墨烯纸。
其中,所述微孔滤膜为含有多个贯穿孔的高分子膜,所述贯穿孔的孔径为10纳米~1000微米,所述高分子膜包括聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚氯乙烯(PVC)、尼龙(Nylon)、聚碳酸酯(PC)、聚氨酯(PU)、聚四氟乙烯(PTFE)或聚对苯二甲酸乙二醇酯(PET),所述碳化温度为800℃~1400℃,碳化时间为1小时~3小时。
本发明还提供一种石墨烯复合涂料,其由树脂、石墨烯、苯胺低聚物、分散溶剂及涂料助剂组成,所述苯胺低聚物为电活性高分子,在石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~5%,该石墨烯通过与苯胺低聚物形成π-π键而均匀分散于所述树脂中。
其中,所述苯胺低聚物与石墨烯的质量比为1:10~10:1,所述分散溶剂为甲苯、二甲苯、丙酮、四氢呋喃、乙醇和二甲基亚砜中的一种或组合,所述树脂为环氧树脂、丙烯酸树脂、聚氨酯树脂、丙烯酸聚氨酯树脂和氨基树脂中的一种或组合。
本发明还提供一种石墨烯复合涂料的制备方法,其包括以下步骤:
将苯胺低聚物和石墨烯分散于分散溶剂中,使苯胺低聚物与石墨烯混合均匀并在苯胺低聚物与石墨烯之间形成π-π键得到石墨烯分散液,其中,所述苯胺低聚物为电活性高分子;
提供一树脂,向所述树脂中加入所述石墨烯分散液并混合均匀,得到混合物A4;
向所述混合物A4中加入涂料助剂,得到石墨烯复合涂料,其中,在所述石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~5%。
本发明还提供一种水性石墨烯复合涂料,其由水性树脂、石墨烯、苯胺低聚物衍生物、水及涂料助剂组成,所述苯胺低聚物衍生物为电活性高分子,在水性石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~4%,该石墨烯通过与苯胺低聚物衍生物形成π-π键而均匀分散于水中。
其中,所述水性树脂为水性环氧树脂、水性丙烯酸树脂、水性聚氨酯树脂、水性丙烯酸聚氨酯树脂和水性氨基树脂中的一种或组合。
本发明还提供一种水性石墨烯复合涂料的制备方法,其包括以下步骤:
将等摩尔量的苯胺低聚物衍生物和碱溶解于水,得到混合物A5;
向所述混合物A5中加入石墨烯,使苯胺低聚物衍生物与石墨烯混合均匀并在苯胺低聚物衍生物与石墨烯之间形成π-π键得到石墨烯分散液;
提供一水性树脂,向所述水性树脂中加入所述石墨烯分散液并混合均匀,得到混合物B5;
向所述混合物B5中加入涂料助剂,得到水性石墨烯复合涂料,其中,在所述水性石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~4%。
其中,所述碱为氢氧化钠、三乙胺、氢氧化钾和氨水中的一种或组合。
本发明还提供一种石墨烯复合金属箔的制备方法,其包括如下步骤:
将石墨烯与分散剂在溶剂中混合形成石墨烯分散液,其中所述分散剂为与石墨烯之间形成π-π相互作用力而实现结合的苯胺低聚物或苯胺低聚物衍生物;
将含有多个贯穿孔的金属箔浸入到所述石墨烯分散液中,经1min~10min后取出,干燥得到所述石墨烯复合金属箔,所述金属箔的表面和贯穿孔的孔壁均沉积有所述石墨烯。
本发明还提供一种采用上述制备方法得到的石墨烯复合金属箔,其包括含有多个贯穿孔的金属箔及石墨烯,所述石墨烯通过液相沉积的方式生长在所述金属箔表面和贯穿孔的孔壁,所述石墨烯与金属箔的结合强度为1Mpa~100Mpa。
本发明还提供一种石墨烯基导电涂料,其包括石墨烯、石墨烯分散剂和涂料基体,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且与石墨烯粉体之间可通过π-π键结合而使所述石墨烯均匀分散于所述涂料基体中。
相较于现有技术,本发明提供的石墨烯分散剂采用苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物及其衍生物的结构中带有苯环,该苯环带有大π键,该苯环可与石墨烯中的碳六环结构相近而形成π-π键,从而使该苯胺低聚物或苯胺低聚物衍生物与石墨烯键合在一起,并且该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,相邻的两个苯胺低聚物或苯胺低聚物衍生物分子之间由于电荷相同而相互排斥,因而,相邻的两个苯胺低聚物或苯胺低聚物衍生物分子之间不易重叠,其上键合的石墨烯也随之均匀分散而避免了团聚现象,综上,通过苯胺低聚物或苯胺低聚物衍生物这一石墨烯分散剂的作用而极大提高了石墨烯的分散性和化学稳定性,使得所述石墨烯易于分散于各种介质中或涂覆于基材表面,提高了石墨烯的应用性。本发明提供的石墨烯的分散方法以及各相关石墨烯产品的制备方法,通过制备工艺创新,可得到具有较好分散性和化学稳定性的含石墨烯的产品,制备工艺简单,成本低廉,利于石墨烯的产业化应用。
附图说明
图1a为实施例1a所述石墨烯复合粉体和对比例1a的未经处理的石墨烯的Raman图谱(其中,实线代表实施例1a所述石墨烯复合粉体,虚线代表对比例1a未经处理的石墨烯)。
图1b为实施例1a的石墨烯复合粉体以及苯胺三聚体羧酸衍生物进行紫外-可见光谱图谱(其中曲线1代表实施例1a所述石墨烯复合粉体,曲线2代表苯胺三聚体羧酸衍生物)。
图2a为本发明实施例2a和2b所提供的石墨烯浆料的TEM照片(其中,水性对应于实施例2a,油性对应于实施例2b)。
图2b为实施例2a的石墨烯复合粉体的扫描电镜照片。
图3a为本发明实施例3a-3c中的石墨烯分散液的照片(其中从左至右分别对应实施例 3a-3c)。
图4a为本发明所述石墨烯复合贴膜的结构示意图,其中1表示基底,2表示涂层。
图5a为本发明实施例5a所提供的复合石墨烯纸的照片。
图6a为对比例3b纯聚氨酯涂层、实施例6b所得的石墨烯复合涂层分别经盐雾实验500小时后的表面形貌照片(其中,左图对应于对比例3b,右图对应于实施例6b)。
图6b为对比例3a环氧树脂涂层在3.5wt%NaCl溶液中浸泡8天内的交流阻抗谱的阻抗复平面图。
图6c为对比例3a环氧树脂涂层在3.5wt%NaCl溶液中浸泡8天内的交流阻抗谱的波特图。
图6d为实施例6a所得的石墨烯复合涂层在3.5wt%NaCl溶液中浸泡8天内的交流阻抗谱的阻抗复平面图。
图6e为实施例6a所得的石墨烯复合涂层在3.5wt%NaCl溶液中浸泡8天内的交流阻抗谱的波特图。
图6f为实施例6a所得的石墨烯复合涂层(对应实线)与对比例3a环氧树脂涂层(对应虚线)在3.5wt%NaCl溶液中浸泡8天后的极化曲线。
图6g为实施例6a所得的石墨烯复合涂层(对应b曲线)与对比例3a环氧树脂涂层(对应a曲线)在3.5wt%NaCl溶液中浸泡8天内的lgQc-t1/2曲线及线性回归方程(其中,Qc为涂层的电容,t为测试时间)。
图6h为实施例6a所得的石墨烯复合涂层(c曲线)、对比例3a环氧树脂涂层(对应b曲线)与市售环氧富锌涂层(对应a曲线)在3.5wt%NaCl溶液中浸泡8天后交流阻抗谱图。
图7a为对比例4a水性环氧树脂涂层、实施例7a所得的水性石墨烯复合涂层分别经盐雾实验500小时后的表面形貌照片(左图对应于对比例4a,右图对应于实施例7a)。
图7b为实施例7a所得的水性石墨烯复合涂层(对应b曲线)和对比例4a水性环氧树脂涂层(对应a曲线)在3.5wt%NaCl溶液中浸泡48小时后的自腐蚀电位曲线。
图7c为对比例4a水性环氧树脂涂层在3.5wt%NaCl溶液中浸泡48小时内的交流阻抗谱的阻抗复平面图。
图7d为对比例4a水性环氧树脂涂层在3.5wt%NaCl溶液中浸泡48小时内的交流阻抗谱的波特图。
图7e为实施例7a所得的水性石墨烯复合涂层在3.5wt%NaCl溶液中浸泡48小时内的交流阻抗谱的阻抗复平面图。
图7f为实施例7a所得的水性石墨烯复合涂层在3.5wt%NaCl溶液中浸泡48小时内的交流 阻抗谱的波特图。
图7g为实施例7a所得的水性石墨烯复合涂层(对应实线)与对比例4a水性环氧树脂涂层(对应虚线)在3.5wt%NaCl溶液中浸泡48小时内的极化曲线。
图7h为实施例7a所得的水性石墨烯复合涂层(对应b曲线)与对比例4a水性环氧树脂涂层(对应a曲线)在3.5wt%NaCl溶液中浸泡48小时内的lgQc-t1/2曲线及线性回归方程(其中,Qc为涂层的电容,t为测试时间)。
图7i为对比例4a水性环氧树脂涂层、实施例7a所得的水性石墨烯复合涂层的表面的接触角照片(其中(a)对应于对比例4a,(b)对应于实施例7a)。
具体实施方式
以下将结合附图对本发明提供的石墨烯分散剂及其应用作进一步说明。
本发明实施例提供一种石墨烯分散剂,用于分散石墨烯。所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物。
所述苯胺低聚物为苯胺三聚体、苯胺四聚体、苯胺五聚体、苯胺六聚体、苯胺八聚体中的一种或组合。该所述苯胺低聚物衍生物为带有官能团的苯胺低聚物,所述官能团包括羧基、羟基、羰基、酯基、氨基、烃基、烷基、磺酸基、磷酸基、环氧基团、聚乙二醇基团、聚乙烯醇基团中的任意一种或两种以上的组合。
所述苯胺低聚物或其衍生物可具有如下结构式:
Figure PCTCN2015095742-appb-000001
(M主要为钠离子,钾离子,季铵盐等)。
Figure PCTCN2015095742-appb-000002
所述苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且该苯胺低聚物或苯胺低聚物衍生物与石墨烯之间可通过π-π键结合。具体的,由于所述苯胺低聚物衍生物中的苯环和石墨烯的碳六环结构相近而形成π-π键,从而使该苯胺低聚物或苯胺低聚物衍生物与石墨烯键合在一起。并且该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,相邻的两个苯胺低聚物或苯胺低聚物衍生物分子之间由于电荷相同而相互排斥,因而,相邻的两个苯胺低聚物或苯胺低聚物衍生物分子之间不易重叠,其上键合的石墨烯也随之均匀分散而避免了团聚现象。故,所述苯胺低聚物衍生物可与石墨烯之间形成π-π键而实现与石墨烯均匀混合。需要指出的是,利用苯胺低聚物或苯胺低聚物衍生物与石墨烯之间形成π-π键,这种方式不同于化学接枝改性,其并不破坏石墨烯本身的结构,也不同于物理性包覆石墨烯的高分子,其并不牺牲石墨烯的性能。也就是说,通过苯胺低聚物或苯胺低聚物衍生物修饰改性石墨烯,其仅使石墨烯的分散性和稳定性更好,而并不破坏石墨烯的结构,也不降低石墨烯原有的性能。
本发明实施例提供一种石墨烯的分散方法,其包括如下步骤:
S11:提供石墨烯及石墨烯分散剂,该石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且与石墨烯之间可通过π-π键结合;
S12:将石墨烯、石墨烯分散剂加入到分散介质中,并使石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键。
在步骤S11中,该石墨烯为具有还原性的石墨烯。该石墨烯的结构不限,其包括石墨烯纳米片、石墨烯微米片、石墨烯纳米带、少层石墨烯(2-5层)、多层石墨烯(2-9层)、石墨烯量子点以及这些石墨烯类材料的衍生物)。所述石墨烯材料的定义可参见文献“All in the graphene family–A recommended nomenclature for two-dimensional carbon materials”。所述石墨烯材料还可以选自厚度≤20nm,更优选地,厚度≤10nm的材料。在本实施例中,该石墨烯材料的厚度优选≤3nm,石墨烯材料越薄,柔韧性越好,越容易加工。所述石墨烯材料的的制备方法不限,采用本领域技术人员熟知的石墨烯产品或用常规的制备方法制备即可。石墨烯材料可以选自化学氧化法如Brodie法、Hummers法或Staudenmaier法中的任意一种 方法制备的氧化石墨烯经热膨胀制得的石墨烯材料。也可以选用机械剥离、液相剥离或电化学剥离制备的石墨烯材料。
在步骤S12中,所述分散介质包括水、有机溶剂、高分子聚合物中的任意一种或两种以上的组合。所述有机溶剂可根据具体应用而选择,可为乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜、二氯乙烷等。所述石墨烯、石墨烯分散剂与有机溶剂或水的混合体积比可根据具体需要而调整。一般而言,所述石墨烯与所述有机溶剂或水的质量比可为1:10~1:10000。为了避免当石墨烯含量过低,其应用意义不大,以及当石墨烯含量过高,苯胺低聚物或苯胺低聚物衍生物对其分散效果有限,优选地,所述石墨烯与所述有机溶剂或水的质量比为1:20~1:1000。所述苯胺低聚物或苯胺低聚物衍生物的质量与所述石墨烯和有机溶剂或水的总质量的比例为(0.01-10):100。更优选地,苯胺低聚物或苯胺低聚物衍生物的质量与所述石墨烯和有机溶剂或水的总质量的比例为(6-10):100。
本发明实施例提供一种石墨烯复合粉体的制备方法,其包括如下步骤:
S21:将石墨烯分散于分散介质中,得到混合物A。所述分散介质为去离子水、乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜二氯乙烷中的一种或几种混合溶剂。所述石墨烯与所述分散介质的质量比为1:10~1:10000。为了避免当石墨烯含量过低,其应用意义不大,以及当石墨烯含量过高,苯胺低聚物衍生物对其分散效果有限,优选地,所述石墨烯与所述分散介质的质量比为1:20~1:1000。
S22:在所述混合物A中加入分散助剂和用于与石墨烯形成强π-π结合的苯胺低聚物或苯胺低聚物衍生物,使苯胺低聚物或苯胺低聚物衍生物与石墨烯混合均匀并在苯胺低聚物或苯胺低聚物衍生物与石墨烯之间形成π-π键得到混合物B。所述苯胺低聚物或苯胺低聚物衍生物具有良好的溶解性,可溶于所述分散介质中。
优选地,所述苯胺低聚物或苯胺低聚物衍生物与混合物A的质量百分比为(0.01-10):100。更优选地,所述苯胺低聚物或苯胺低聚物衍生物与混合物A的质量百分比为(6-10):100。
所述分散助剂还可用于使所述石墨烯的分散更为均匀。优选地,所述分散助剂为硅烷偶联剂、聚乙烯醇、聚乙烯吡咯烷酮、有机改性聚硅氧烷二丙二醇单甲醚溶液、有机硅表面活性剂和/或含氟表面活性剂。所述分散助剂与混合物A的质量百分比(0.01-1):100。
S23:将混合物B干燥制得苯胺低聚物或苯胺低聚物衍生物修饰改性的石墨烯复合粉体。干燥后的石墨烯复合粉体中,所述苯胺低聚物或苯胺低聚物衍生物在石墨烯复合粉体中的质量百分比为0.1%~50%。
本发明提供的石墨烯复合粉体的制备方法,通过制备工艺创新,可得到具有较好分散性和化学稳定性的石墨烯复合粉体,制备工艺简单,成本低廉,利于石墨烯的产业化应用。
请参照图1c,本发明提供一种由所述石墨烯复合粉体的制备方法所制备的石墨烯复合粉体,其包括石墨烯粉体、苯胺低聚物或苯胺低聚物衍生物及分散助剂。所述苯胺低聚物或苯胺低聚物衍生物及分散助剂均匀分散在所述石墨烯粉体中。通过对石墨烯粉体的表面经过苯胺低聚物或苯胺低聚物衍生物的改性修饰,极大提高了石墨烯粉体的分散性和化学稳定性,使得所述石墨烯复合粉体易于分散于基材中或涂覆于基材表面,提高了石墨烯的应用性。
为进一步描述本发明,下面为所述石墨烯复合粉体的制备方法,在不同参数下的具体实施例:
实施例1a
取各组分质量如下:
石墨烯(单层),2g;
去离子水(分散介质),98g;
苯胺三聚体羧酸衍生物(含羧基基团,修饰剂),1g;
聚乙烯吡咯烷酮(分散助剂),0.05g。
先将石墨烯和分散介质,在1500rad/min下高速搅拌分散20min,并超声分散20min,得到混合物A。再将分散助剂和苯胺三聚体羧酸衍生物加入混合物A中,在高速搅拌机上恒温70℃下搅拌2h,再离心沉淀,得到混合物B。将混合物B于60℃下真空干燥得到经苯胺三聚体羧酸衍生物改性的石墨烯复合粉体。
对所得到的石墨烯复合粉体进行性能测试。具体的,将所得到的石墨烯复合粉体分散于溶剂中,以观察所述石墨烯复合粉体的分散效果、表面特性和稳定性。其中稳定性是指将制得的含石墨烯复合粉体的浆料存放3个月再观察。所述溶剂为常见的溶剂,可为水、乙醇(EtOH)、四氢呋喃(THF)等。所得到的石墨烯复合粉体的主要性能见表1a。
实施例1b
取各组分质量如下:
石墨烯(多层),5g;
乙醇(分散介质),92g;
苯胺四聚体烷基衍生物(含烷基基团,修饰剂),6g;
聚乙烯醇(分散助剂),0.1g。
先将石墨烯和分散介质,在1000rad/min下高速搅拌分散20min,并超声分散30min, 得到混合物A。再将分散助剂和苯胺四聚体烷基衍生物加入混合物A中,在高速搅拌机上恒温80℃下搅拌2h。再离心沉淀,得到混合物B。将混合物B于60℃下真空干燥得到经苯胺四聚体烷基衍生物改性的石墨烯复合粉体;
对所得到的石墨烯复合粉体进行性能测试。测试方法同实施例1a。所得到的石墨烯复合粉体的主要性能见表1a。
对比例1a
直接将未经处理的石墨烯粉末采用同实施例1的测试方法,性能结果见表1a。
对比例1b
先将石墨烯和硅烷偶联剂,在1500rad/min下高速搅拌分散20min,并超声分散20min,得到混合物。将混合物于60℃下真空干燥得到经硅烷偶联剂处理的石墨烯粉体。
采用同实施例1a的测试方法对该经硅烷偶联剂处理的石墨烯粉体进行性能测试,性能结果见表1a。
表1a
Figure PCTCN2015095742-appb-000003
从表1a可以看出,相较于未经任何处理的石墨烯粉末以及仅经过硅烷偶联剂处理的石墨烯粉体,采用本发明所述制备方法制得的所述石墨烯复合粉体的分散性和稳定性得到明显的提升,并且还可通过选择性能不同的苯胺低聚物衍生物以及分散助剂来调节所述石墨烯复合粉体的表面特性为亲油亲水性,从而更有利于产业化应用。
由图1a可见,相对于未经处理的石墨烯,所述石墨烯复合粉体经过苯胺低聚物衍生物修饰改性后在1410cm-1出现对应于π-π键的吸收峰,这证明了在苯胺低聚物衍生物与石墨烯之间存在π-π键。
进一步,还对实施例1a的石墨烯复合粉体以及苯胺三聚体羧酸衍生物进行紫外-可见光谱测试,结果如图1b所示。苯胺三聚体羧酸衍生物本身内部的π-π键使其在307nm和474nm 处存在两个明显的吸收峰。而石墨烯复合粉体的吸收峰的位置发生偏移(311nm和468nm处),这进一步证实苯胺三聚体羧酸衍生物与石墨烯之间存在π-π键,从而使得特征峰发生位移。
本发明实施例提供一种石墨烯浆料的制备方法,其包括如下步骤:
S31:将石墨烯分散于分散介质A1中,得到混合物B1。所述石墨烯的性能在上文中已经详述,在此不赘述,并且在后续也不再重复说明。所述分散介质A1为去离子水、乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜、二氯乙烷、高分子聚合物中的一种或几种混合溶剂。所述石墨烯与所述分散介质A1的质量比为1:10~1:10000。为了避免当石墨烯含量过低,其应用意义不大,以及当石墨烯含量过高,苯胺低聚物衍生物对其分散效果有限,优选地,所述石墨烯与所述分散介质A1的质量比为1:20~1:1000。
S32:在所述混合物B1中加入分散助剂和用于与石墨烯形成强π-π结合的苯胺低聚物或苯胺低聚物衍生物,使苯胺低聚物或苯胺低聚物衍生物与石墨烯混合均匀并在苯胺低聚物或苯胺低聚物衍生物与石墨烯之间形成π-π键得到混合物B2。
所述苯胺低聚物或苯胺低聚物衍生物的具体结构在上文中已经详述,在此不再赘述,并且在后续也不再重复说明。需要说明的是,本发明中命名相同的物质均为同一物质,且不重复说明。优选地,所述苯胺低聚物衍生物与混合物B1的质量百分比为(0.01-10):100。更优选地,所述苯胺低聚物衍生物与混合物B1的质量百分比为(6-10):100。
所述分散助剂还可用于使石墨烯的分散更为均匀。优选地,所述分散助剂为硅烷偶联剂、聚乙烯醇、聚乙烯吡咯烷酮、有机改性聚硅氧烷二丙二醇单甲醚溶液、有机硅表面活性剂和/或含氟表面活性剂。所述分散助剂与混合物B1中的质量百分比(0.01-1):100。
S33:将混合物B2干燥制得苯胺低聚物衍生物修饰改性的石墨烯复合粉体。干燥后的石墨烯复合粉体中,所述苯胺低聚物衍生物在石墨烯复合粉体中的质量百分比为0.1%~50%。
S34:将石墨烯复合粉体分散于分散介质A2中得到所述石墨烯浆料。所述石墨烯粉体与所述分散介质A2的质量比为1:10~1:10000。优选地,所述石墨烯粉体与所述分散介质A2的质量比为1:20~1:1000。所述分散介质A2和分散介质A1相同,在此不再赘述。可以理解,为了帮助石墨烯复合粉体更好的分散,还可加入另一分散物质。所述分散物质可为改性丙烯酸分散剂、聚丙烯酸盐分散剂、改性聚酯分散剂、聚乙烯醇分散剂或改性聚氨酯分散剂等。
本发明还提供一种根据上述制备方法制得的石墨烯浆料。
本发明提供的石墨烯浆料的制备方法,制备工艺创新,通过苯胺低聚物衍生物的修饰改性,可以有效的提高石墨烯的分散性和化学稳定性,使得石墨烯易于分散于基材中或涂覆于基材表面,提高石墨烯的应用性。
为进一步描述本发明,下面为所述石墨烯浆料的制备方法,在不同参数下的具体实施例:
实施例2a
(1)石墨烯复合粉体的制备:
取各组分质量如下:石墨烯(单层),2g;去离子水(分散介质A1),98g;苯胺三聚体羧酸衍生物(含羧基基团,修饰剂),1g;聚乙烯吡咯烷酮(分散助剂),0.05g。先将石墨烯和分散介质A1,在1500rad/min下高速搅拌分散20min,并超声分散20min,得到混合物B1。再将分散助剂和苯胺三聚体羧酸衍生物加入混合物B1中,在高速搅拌机上恒温70℃下搅拌2h,再离心沉淀,得到混合物B2。将混合物B2于60℃下真空干燥得到苯胺三聚体羧酸衍生物改性的石墨烯复合粉体;
(2)石墨烯浆料的制备:
取各组分质量如下:本实施例第(1)中制得的石墨烯复合粉体,5g;乙醇,94.95g;改性丙烯酸分散剂,0.05g。将石墨烯复合粉体加入乙醇中高速搅拌预分散5min,再加入改性丙烯酸分散剂超声分散30min,在高速搅拌机上搅拌处理1h,得到石墨烯浆料。
对所得到的石墨烯复合粉体以及石墨烯浆料进行性能测试,以观察所述石墨烯复合粉体的表面特性和石墨烯浆料的稳定性。本实施例中所得到的石墨烯浆料的主要性能见表2a以及图2a。
实施例2b
(1)石墨烯复合粉体的制备:
取各组分质量如下:
石墨烯(单层),1g;
丙酮(分散介质A1),99g;
苯胺五聚体磺酸基衍生物(含磺酸基基团,修饰剂),0.5g
硅烷偶联剂(分散助剂),0.3g。
先将石墨烯和分散介质A1,在1500rad/min下高速搅拌分散10min,并超声分散20min,得到混合物B1。再将分散助剂和苯胺五聚体磺酸基衍生物加入混合物B1中,在高速搅拌 机上恒温80℃下搅拌2h,再离心沉淀,得到混合物B2。将混合物B2于70℃下真空干燥得到苯胺五聚体磺酸基衍生物改性的石墨烯复合粉体;
(2)石墨烯浆料的制备:
取各组分质量如下:
本实施例第(1)中制得的石墨烯复合粉体,1g;
乙酸乙酯,98.9g;
改性聚酯分散剂,0.1g。
将石墨烯复合粉体加入乙酸乙酯中高速搅拌预分散5min,再加入改性聚酯分散剂超声分散20min,在高速搅拌机上搅拌处理1h,得到石墨烯浆料。
对所得到的石墨烯复合粉体以及石墨烯浆料进行性能测试,以观察所述石墨烯复合粉体的表面特性和石墨烯浆料的稳定性。本实施例中所得到的石墨烯浆料的主要性能见表2a、图2a。
为了对比本申请所制备的石墨烯复合粉体的性能,还将进行以下对比例2a和对比例2b的实验。
对比例2a
取各组分质量如下:未经处理的石墨烯粉末,0.1g;甲苯,99g;分散剂,0.9g。将未经处理的石墨烯粉末分别加入不同的分散介质A2中高速搅拌预分散5min,再加入分散剂超声分散10min,在高速搅拌机上搅拌处理20min,得到三种石墨烯浆料。其中,分散介质A2为水、乙醇和四氢呋喃。
对未经处理的石墨烯粉末以及石墨烯浆料进行性能测试,以观察所述未经处理的石墨烯粉末的表面特性和石墨烯浆料的稳定性,性能结果见表2a。
表2a(其中稳定性是指将制得的石墨烯浆料存放3个月再观察)
  实施例2a 实施例2b 对比例2a
表面特性 亲水 亲油 不亲水、不亲油
稳定性 无沉降 无沉降 均沉降
结合图2a和表2a可以看出,相较于采用未经任何处理的石墨烯粉末制备得到的石墨烯浆料而言,采用本发明所述制备方法制得的所述石墨烯浆料的分散性和稳定性得到明显的提升,并且还可通过选择性能不同的苯胺低聚物衍生物以及分散助剂来调节所述石墨烯复合粉体的表面特性为亲油亲水性,从而更有利于产业化应用。
由图2b可见,所述石墨烯浆料中的石墨烯的分散性较好,相邻的石墨烯之间基本没有相互堆叠的现象。
本发明实施例提供一种石墨烯涂料的制备方法,其包括如下步骤:
S41:将苯胺低聚物或苯胺低聚物衍生物和分散介质混合,得到混合物A。所述分散介质为去离子水、乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜二氯乙烷中的一种或几种混合溶剂。所述苯胺低聚物衍生物与所述分散介质的质量比为(0.1~10):(80~90)。为了避免当苯胺低聚物衍生物含量过低,则分散石墨烯的能力有限,以及当苯胺低聚物衍生物含量过高,其本身的分散性也会受到影响,优选地,所述苯胺低聚物衍生物与所述分散介质的质量比为(6~10):(80~90)。
S42:在所述混合物A中加入石墨烯,使苯胺低聚物衍生物与石墨烯混合均匀并在苯胺低聚物衍生物与石墨烯之间形成π-π键得到石墨烯分散液。
可以理解,将所述石墨烯加入所述混合物A后,可通过高速搅拌、超声、球磨和/或砂磨的分散方法使石墨烯均匀分散于混合物A,进一步使石墨烯与苯胺低聚物衍生物混合均匀。
所述石墨烯与所述分散介质的质量比为(0.1~10):(80~90)。此时,得到的石墨烯分散液中所述石墨烯所占的质量百分数为0.1%~10%,所述苯胺低聚物衍生物所占的质量百分数为0.1%~10%,以及所述分散介质所占的质量百分数为80%~90%。为了避免当石墨烯含量过低,其应用意义不大,以及当果石墨烯含量过高,苯胺低聚物衍生物对其分散效果有限,优选地,所述石墨烯与所述分散介质的质量比为(0.5~5):(80~90)。
S43:提供一涂料主体,向所述涂料主体中加入所述石墨烯分散液并混合均匀,得到混合物B。所述涂料主体为有机硅树脂、丙烯酸树脂、聚酯树脂、聚氨酯树脂、醇酸树脂和环氧树脂中的一种或组合。所述涂料主体与所述石墨烯分散液的质量比为(4~6):(3~5)。可以理解,所述石墨烯分散液可通过高速搅拌、超声、球磨和/或砂磨的分散方法与所述涂料主体混合均匀,从而使石墨烯进一步均匀分散于所述涂料主体。
S44:向所述混合物B中加入涂料助剂,得到石墨烯涂料。所述涂料助剂包括成膜剂、润湿剂、消泡剂和流平剂。所述成膜剂为乙二醇单丁醚、丙二醇单丁醚、二丙二醇甲醚乙醚酯、乙二醇丙醚、二丙醚、丙二醇苯醚、苯甲醇、十二碳醇酯中的一种或组合。所述润湿剂为十二烷基硫酸盐、十二烷基磺酸盐、聚乙烯醇、聚乙烯吡咯烷酮、有机硅化合物和有机氟化合物中的一种或组合。所述消泡剂为二甲基硅油、醚酯化合物、改性矿物油、聚氧乙基甘 油醚、小分子金属有机物和改性有机硅聚合物中的一种或组合。所述流平剂为乙二醇丁醚、醋丁纤维素、聚丙烯酸酯类、硅油、羟甲基纤维素、聚二甲基硅烷、聚甲基苯基硅氧烷和改性有机硅化合物中的一种或组合。
所述涂料助剂与所述石墨烯分散液的质量比为(0.3~1):(3~5)。得到的石墨烯涂料中所述涂料主体所占的质量百分数为40%~60%,所述石墨烯分散液所占的质量百分数为30%~50%及所述涂料助剂所占的质量百分数为3%~10%。为了避免当涂料助剂含量过低,其对高浓度的苯胺低聚物衍生物分散不足,以及当涂料助剂含量过高,会对石墨烯的性能造成一定的影响,优选地,所述涂料助剂与所述石墨烯分散液的质量比为(0.3~0.5):(3~5)。
本发明还提供一种采用上述方法制备的石墨烯涂料。所述石墨烯涂料由涂料主体、石墨烯分散液及涂料助剂组成。在石墨烯涂料中所述涂料主体所占的质量百分数为40%~60%,所述石墨烯分散液所占的质量百分数为30%~50%及所述涂料助剂所占的质量百分数为3%~10%。所述石墨烯分散液包括石墨烯、石墨烯分散剂及分散介质,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,该石墨烯通过与苯胺低聚物或苯胺低聚物衍生物形成π-π键而均匀分散于所述涂料主体中。
本发明提供的石墨烯涂料中,通过对石墨烯粉体的表面经过苯胺低聚物或苯胺低聚物衍生物的改性修饰,极大提高了石墨烯在涂料中的分散性和化学稳定性,使得所述石墨烯涂料易于附着于汽车前挡玻璃、建筑玻璃等透明载体表面,所制得的涂膜透明,隔热保温,节能效果显著。并且,所述石墨烯涂料不含In、Sn等重金属元素,不会带来重金属污染的问题。本发明提供的石墨烯涂料的制备方法,通过制备工艺创新,可得到具有较好分散性和化学稳定性的石墨烯涂料,制备工艺简单,成本低廉,利于石墨烯的产业化应用。
为进一步描述本发明,下面为所述石墨烯涂料的制备方法,在不同参数下的具体实施例:
实施例3a
先将10g苯胺三聚体和80g去离子水在1500rad/min下高速搅拌分散10min,得到混合物A。再将10g单层石墨烯粉体加入混合物A中,继续高速搅拌20min并超声10min,即得到均匀稳定的石墨烯分散液。
将60g有机硅树脂加入搅拌容器中,然后在1500rad/min高速搅拌的条件下加入35g所述石墨烯分散液,搅拌均匀,得到混合物B。再向混合物B中加入2g乙二醇单丁醚、2g十二烷基硫酸盐、0.5g改性矿物油和0.5g硅油,继续搅拌10min并超声分散30min,经325~400目筛网过滤处理,即得到石墨烯涂料。
所述石墨烯分散液的分散效果请参见图3a。由图3a可见,所述石墨烯分散液的分散效果较好。
对所得到的石墨烯涂料进行性能测试。具体的,将所得到的石墨烯涂料用10μm的线棒涂布器分别涂布于10cm×10cm×0.2cm的平板玻璃片上,然后在80℃烘箱中干燥1h,得到涂膜。
通过紫外-可见-红外分光光度计依据GB/T 2680检测涂膜的可见光透过率、红外光透过率、紫外光阻隔率。
通过划格法依据GB/T 9286检测涂膜的附着力。
通过常温浸水法依据GB/T 1733检测涂膜的耐水性,测试时间为96小时。
通过人工老化机依据GB/T 1865检测涂膜的耐人工气候老化能力,测试时间为1000小时。
通过耐冷热交替试验依据GB/T 1735检测涂膜的耐温变性。
所得到的石墨烯涂料制成的涂膜的主要性能见表3a。
实施例3b
先将9.9g苯胺四聚体和90g乙醇在1500rad/min下高速搅拌分散10min,得到混合物A。再将0.1g多层石墨烯粉体加入混合物A中,继续高速搅拌20min并超声10min,即得到均匀稳定的石墨烯分散液。
将52g丙烯酸树脂加入搅拌容器中,然后在1500rad/min高速搅拌的条件下加入45g所述石墨烯分散液,搅拌均匀,得到混合物B。再向混合物B中加入1g二丙二醇甲醚乙醚酯、1g十二烷基磺酸盐、0.5g二甲基硅油和0.5g羟甲基纤维素,继续搅拌10min并超声分散30min,经325~400目筛网过滤处理,即得到石墨烯涂料。
所述石墨烯分散液的分散效果请参见图3a。由图3a可见,所述石墨烯分散液的分散效果较好。
对所得到的石墨烯涂料进行性能测试。测试方法同实施例3a。所得到的石墨烯涂料制成的涂膜的主要性能见表3a。
实施例3c
先将0.1g苯胺五聚体和90g丙酮在1500rad/min下高速搅拌分散10min,得到混合物A。再将9.9g单层石墨烯浆料加入混合物A中,继续高速搅拌20min并超声10min,即得到均匀稳定的石墨烯分散液。
将55g聚酯树脂加入搅拌容器中,然后在1500rad/min高速搅拌的条件下加入40g所述 石墨烯分散液,搅拌均匀,得到混合物B。再向混合物B中加入2g乙二醇丙醚、2g聚乙烯醇、0.5g醚酯化合物和0.5g聚丙烯酸酯类,继续搅拌10min并超声分散30min,经325~400目筛网过滤处理,即得到石墨烯涂料。
所述石墨烯分散液的分散效果请参见图3a。由图3a可见,所述石墨烯分散液的分散效果较好。
对所得到的石墨烯涂料进行性能测试。测试方法同实施例3a。所得到的石墨烯涂料制成的涂膜的主要性能见表3a。
表3a
  实施例3a 实施例3b 实施例3c
可见光透过率 91% 94% 93%
红外光透过率 7% 12% 10%
紫外光阻隔率 99% 98% 99%
耐水性 无异常 无异常 无异常
耐人工气候老化 无异常 无异常 无异常
附着力 0级 0级 0级
耐温变性 无异常 无异常 无异常
由表3a可见,本发明所述石墨烯涂料制成的涂膜具有较高的可见光透过率,几乎可以完全屏蔽紫外线,能对太阳光中能量较高的红外线进行有效阻截,同时涂层耐老化、防水、附着力、耐温变性好。
本发明实施例提供一种石墨烯复合贴膜的制备方法,其包括如下步骤:
S51:将苯胺低聚物或苯胺低聚物衍生物和分散介质混合,得到混合物A,其中该苯胺低聚物或苯胺低聚物衍生物为电活性高分子。
S52:向所述混合物A中加入石墨烯,使石墨烯与苯胺低聚物或苯胺低聚物衍生物混合均匀并在石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键得到石墨烯分散液。
S53:提供一涂料主体,向所述涂料主体中加入所述石墨烯分散液并混合均匀,得到混合物B。
S54:向所述混合物B中加入涂料助剂,得到石墨烯复合涂料。
S55:将所述石墨烯复合涂料涂布在基底上,干燥后得到石墨烯复合贴膜,其中,在 所述石墨烯复合涂料中所述涂料主体所占的质量百分数为40%~60%,所述石墨烯分散液所占的质量百分数为30%~50%及所述涂料助剂所占的质量百分数为3%~10%。
所述石墨烯复合贴膜的制备方法中步骤S51至S54的内容与上述石墨烯复合涂料的制备方法中步骤S41至S44的内容相同,在此不再赘述。
步骤S55中,将所述石墨烯复合涂料涂布在基底1上,干燥后得到石墨烯复合贴膜。将所述石墨烯复合涂料通过喷涂、刮涂、刷涂、淋涂或辊涂的涂布方式涂布在基底1上,以在所述基底1的表面形成涂层2。
所述基底为由聚乙烯(PE)、聚丙烯(PP)、聚己二酰己二胺(PA)、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)或聚甲基丙烯酸甲酯(PMMA)制成的薄膜。所述基底可经过去离子水、乙醇等常见的冲洗处理,以使其表面洁净。
本发明还提供一种采用上述方法制备的石墨烯复合贴膜。所述石墨烯复合贴膜包括基底和覆盖于基底的涂层。所述涂层由所述石墨烯复合涂料涂覆于基底后,经干燥而成。由于所述石墨烯通过苯胺低聚物衍生物的改性修饰,因而均匀分散于所述涂料主体中,从而使得石墨烯复合涂料具有良好的粘附性和稳定性。所述涂层可通过分子间的作用力而紧密黏附于所述基底,而与所述基底成为一体结构,以方便后续的应用。
本发明提供的石墨烯复合贴膜中,通过对石墨烯的表面经过苯胺低聚物衍生物的改性修饰,极大提高了石墨烯的分散性和化学稳定性,使得所述石墨烯均匀分散于所述涂料主体中,故所述石墨烯复合贴膜易于附着于汽车前挡玻璃、建筑玻璃等透明载体表面,所制得的石墨烯复合贴膜透明度高,附着力好,耐老化能力突出,隔热效果明显。并且,所述石墨烯复合贴膜不含In、Sn等重金属元素,不会带来重金属污染的问题。本发明提供的石墨烯复合贴膜的制备方法,工艺简单、施工方便、易于操作可广泛用于建筑物玻璃,汽车、火车、飞机等交通工具的玻璃等需要进行节能改造的领域。
为进一步描述本发明,下面为所述石墨烯复合贴膜的制备方法,在不同参数下的具体实施例:
实施例4a
先将10g苯胺三聚体和80g去离子水在1500rad/min下高速搅拌分散10min,得到混合物A。再将10g单层石墨烯粉体加入混合物A中,继续高速搅拌20min并超声10min,即得到均匀稳定的石墨烯分散液。
将60g有机硅树脂加入搅拌容器中,然后在1500rad/min高速搅拌的条件下加入35g所述石墨烯分散液,搅拌均匀,得到混合物B。再向混合物B中加入2g乙二醇单丁醚、2g十 二烷基硫酸盐、0.5g改性矿物油和0.5g硅油,继续搅拌10min并超声分散30min,经325~400目筛网过滤处理,即得到石墨烯复合涂料。
将所得到的石墨烯复合涂料通过刮涂的方式涂布在透明PMMA薄膜上,制得石墨烯复合贴膜。
对所得到的石墨烯复合贴膜进行性能测试。具体的,通过紫外-可见-红外分光光度计依据GB/T 2680检测石墨烯复合贴膜的可见光透过率、红外光透过率、紫外光阻隔率。
通过划格法依据GB/T 9286检测石墨烯复合贴膜的附着力。
通过常温浸水法依据GB/T 1733检测石墨烯复合贴膜的耐水性,测试时间为96小时。
通过人工老化机依据GB/T 1865检测石墨烯复合贴膜的耐人工气候老化能力,测试时间为1000小时。
通过耐冷热交替试验依据GB/T 1735检测石墨烯复合贴膜的耐温变性。
所述石墨烯复合贴膜的性能测试结果为:可见光透过率为91%,红外光透过率为7%,紫外光阻隔率为99%,耐水性达到96h,耐人工气候老化达到1000h,附着力为0级。
实施例4b
先将9.9g苯胺四聚体和90g乙醇在1500rad/min下高速搅拌分散10min,得到混合物A。再将0.1g多层石墨烯粉体加入混合物A中,继续高速搅拌20min并超声10min,即得到均匀稳定的石墨烯分散液。
将52g丙烯酸树脂加入搅拌容器中,然后在1500rad/min高速搅拌的条件下加入45g所述石墨烯分散液,搅拌均匀,得到混合物B。再向混合物B中加入1g二丙二醇甲醚乙醚酯、1g十二烷基磺酸盐、0.5g二甲基硅油和0.5g羟甲基纤维素,继续搅拌10min并超声分散30min,经325~400目筛网过滤处理,即得到石墨烯复合涂料。
将所得到的石墨烯复合涂料通过喷涂的方式涂布在透明PP薄膜上,制得石墨烯复合贴膜。
对所得到的石墨烯复合贴膜进行性能测试。测试方法同实施例4a。所述石墨烯复合贴膜的性能测试结果为:可见光透过率为94%,红外光透过率为12%,紫外光阻隔率为98%,耐水性达到96h,耐人工气候老化达到1000h,附着力为0级。
可见,本发明实施例4a、4b所述石墨烯复合贴膜具有较高的可见光透过率,几乎可以完全屏蔽紫外线,能对太阳光中能量较高的红外线进行有效阻截,同时涂层耐老化、防水、附着力、耐温变性好。
本发明实施例提供一种复合石墨烯纸的制备方法,其包括如下步骤:
S61:将具有还原性的石墨烯分散于分散介质中,得到混合物A3。
S62:在所述混合物A3中加入分散助剂和用于与石墨烯形成强π-π结合的苯胺低聚物衍生物,使苯胺低聚物衍生物与石墨烯混合均匀并在苯胺低聚物衍生物与石墨烯之间形成π-π键得到混合物B3。
S63:将微孔滤膜浸入到上述混合物B3中1min~10min取出,烘干得到滤膜-石墨烯复合体。所述微孔滤膜起到模板和载体的作用,以使后续制得的复合石墨烯纸具有一定的形状和尺寸。所述微孔滤膜为含有多个贯穿孔的高分子膜,所述贯穿孔的孔径为10纳米~1000微米。所述高分子膜包括聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚氯乙烯(PVC)、尼龙(Nylon)、聚碳酸酯(PC)、聚氨酯(PU)、聚四氟乙烯(PTFE)或聚对苯二甲酸乙二醇酯(PET)。
S64:将所述滤膜-石墨烯复合体在碳化炉内在碳化温度下进行碳化,得到复合石墨烯纸。所述碳化温度为800℃-1400℃。所述碳化时间为1小时~3小时。
请参照图5a,本发明还提供一种由所述复合石墨烯纸的制备方法所制备的复合石墨烯纸。所述复合石墨烯纸的厚度可为5微米~500微米。
本发明提供的复合石墨烯纸的制备方法,采用滤纸或微孔滤膜为基体,通过在石墨烯分散液中浸渍的方法来制备得到复合石墨烯纸。制备工艺简单,造价低廉,成本便宜,适合于大规模批量工业生产。此外,本发明提供的方法使石墨烯沉积在微孔滤膜的表面和孔洞中,形成一种交织结构,得到的复合石墨烯纸的强度和柔韧性远远大于其它方法得到的石墨烯纸,从而有利于其在柔性电子产品中应用。
为进一步描述本发明,下面为所述复合石墨烯纸的制备方法,在不同参数下的具体实施例:
实施例5a
将2g单层石墨烯加入到98g去离子水中,在1500rad/min下高速搅拌分散20min,并超声分散20min,得到混合物A3。再将0.05g聚乙烯吡咯烷酮和1g苯胺三聚体羧酸衍生物加入混合物A3中,超声分散30min,在高速搅拌机上搅拌处理1h得到混合物B3。将厚度为35μm的多孔PE膜浸入到上述混合物B3中1min取出,烘干得石墨烯复合PE膜。将上述石墨烯复合PE膜在碳化炉内于800℃碳化处理3h,得到厚度为37μm的复合石墨烯纸。
对所述复合石墨烯纸进行性能测试。通过测试可知,该复合石墨烯纸的电导率为1.3×105S/m,拉伸强度为221MPa。
从图5a可以看出,所述复合石墨烯纸具有良好的柔韧性,而可进行卷曲。
本发明实施例提供一种石墨烯复合涂料的制备方法。该方法包括如下步骤:
S71:将苯胺低聚物和石墨烯分散于分散溶剂中,使苯胺低聚物与石墨烯混合均匀并在苯胺低聚物与石墨烯之间形成π-π键得到石墨烯分散液。
S72:提供一树脂,向所述树脂中加入所述石墨烯分散液并混合均匀,得到混合物A4。可通过高速搅拌、超声、球磨和/或砂磨的分散方法使石墨烯分散液均匀分散于树脂中,进一步使石墨烯均匀分散于树脂中。所述树脂为环氧树脂、丙烯酸树脂、聚氨酯树脂、丙烯酸聚氨酯树脂和氨基树脂中的一种或组合。
S73:向所述混合物A4中加入涂料助剂,得到石墨烯复合涂料。所述涂料助剂包括防沉剂、消泡剂和流平剂。所述防沉剂为气相二氧化硅、聚酰胺蜡和有机膨润土中的一种或组合。所述消泡剂为二甲基硅油、醚酯化合物、改性矿物油、聚氧乙基甘油醚、小分子金属有机物和改性有机硅聚合物中的一种或组合。所述流平剂为乙二醇丁醚、醋丁纤维素、聚丙烯酸酯类、硅油、羟甲基纤维素、聚二甲基硅烷、聚甲基苯基硅氧烷和改性有机硅化合物中的一种或组合。可以理解,所述石墨烯复合涂料还可包括固化剂。所述固化剂可为聚酰胺,用于加速所述石墨烯复合涂料固化过程。
得到的石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~5%,优选为,0.2%~0.5%。
本发明还提供一种采用上述方法制备的石墨烯复合涂料。该石墨烯复合涂料由树脂、石墨烯、苯胺低聚物、分散溶剂及涂料助剂组成。在石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~5%。该石墨烯通过与苯胺低聚物形成π-π键而均匀分散于所述树脂中。
本发明提供的石墨烯复合涂料中,通过对石墨烯的表面经过苯胺低聚物的改性修饰,极大提高了石墨烯的分散性和化学稳定性,使得所述石墨烯均匀分散于所述树脂中,而石墨烯具有良好的疏水性能,故在应用过程中,可有效抑制水分子在形成的石墨烯复合涂层的表面吸附。同时,石墨烯具有二维片层结构,其在涂料中均匀分散,当形成石墨烯复合涂层后,石墨烯可层层叠加,形成致密的隔绝层,因而小分子腐蚀介质(水分子、氯离子等)很难通过这层致密的隔绝层,起到了突出的物理隔绝作用。即,所制得的石墨烯复合涂层具有良好的耐水渗透性、较强的防护能力、以及优异的防腐效果。并且,所述石墨烯复合涂料不含In、Sn等重金属元素,不会带来重金属污染的问题。本发明提供的石墨烯复合涂料的制备方法,通过制备工艺创新,可得到具有较好分散性和化学稳定性的石墨烯复合涂料,制备工艺简单, 成本低廉,利于产业化。
为进一步描述本发明,下面为所述石墨烯复合涂料、石墨烯复合涂层的制备方法,在不同参数下的具体实施例:
实施例6a
将2.0g苯胺四聚体以及1.0g石墨烯分散在1.0L甲苯溶液中,超声分散1小时,得到石墨烯分散液。石墨烯经苯胺四聚体修饰后在甲苯中的含量达到1g/L。
将所述石墨烯分散液加到46g环氧树脂中((型号为E44,购自江苏吴江合力树脂厂),混合后得到混合物A4。再向所述混合物A4中依次加入1g流平剂、1g消泡剂、1g防沉剂和46g聚酰胺固化剂,搅拌均匀,即得到石墨烯复合涂料。
将得到的石墨烯复合涂料涂覆于一碳钢基体上,待甲苯挥发后,得到石墨烯复合涂层。
为了对比实验效果,还制备了对比例3a环氧树脂涂层。对比例3a中所述环氧树脂涂层的制备方法同实施例6a,不同的是,没有加入石墨烯分散液。
对实施例6a所述石墨烯复合涂层以及对比例3a的环氧树脂涂层进行防腐性能的测试。具体的,将所述石墨烯复合涂层与对比例3a的环氧树脂涂层分别在3.5wt%NaCl溶液中浸泡8天,然后采用上海晨华CHI660E电化学工作站,分别得到石墨烯复合涂层和环氧树脂涂层的交流阻抗谱(见图6b至图6e)和动电位极化曲线(见图6f)。由图6b至图6e、图6f可知,所述石墨烯复合涂层比环氧树脂涂层的阻抗大。在浸泡8天后,石墨烯复合涂层的自腐蚀电流密度为5.23nA·cm-2,而环氧树脂涂层的自腐蚀电流密度为158nA·cm-2。这说明经过苯胺低聚物的改性修饰的石墨烯烯可均匀分散于树脂中,从而大大提高了石墨烯复合涂层的防腐性能。
对实施例6a所述石墨烯复合涂层以及对比例3a的环氧树脂涂层进行耐水渗透性能的测试。具体的,通过对交流阻抗值进行拟合,以lgQc(Qc为涂层电容)对t1/2作图,得到图6g。通过线性拟合,可以分别得到环氧树脂涂层和石墨烯复合涂层的线性回归方程,进而计算得到环氧树脂涂层和石墨烯复合涂层的扩散系数分别为6.35×10-11m2/d和9.1×10-12m2/d。这说明经过苯胺低聚物的改性修饰的石墨烯可均匀分散于树脂中,从而减缓了水分子在石墨烯复合涂层中的扩散速度。
将石墨烯涂层与纯环氧涂层,市售环氧富锌涂层在3.5wt%NaCl溶液中,通过对比8天后的交流阻抗谱图(见图6h),可见石墨烯环氧涂层的防腐效果最好。
实施例6b
将1.5g苯胺三聚体以及1.5g石墨烯分散在1.0L甲苯溶液中,超声分散1小时得到石墨 烯分散液。石墨烯经苯胺三聚体修饰后在甲苯中的含量达到1.5g/L。
将所述石墨烯分散液加到90g聚氨酯中(购自宁波飞轮造漆有限责任公司),混合后得到混合物A4。再向所述混合物A4中依次加入2g流平剂、3g消泡剂、2g防沉剂,搅拌均匀,即得到石墨烯复合涂料。
将得到的石墨烯复合涂料涂覆于一碳钢基体上,待甲苯挥发后,得到石墨烯复合涂层。
为了对比实验效果,还制备了对比例3b纯聚氨酯涂层。对比例3b中所述纯聚氨酯涂层的制备方法同实施例6b,不同的是,没有加入石墨烯分散液。
对实施例6b所述石墨烯复合涂层以及对比例3b的纯聚氨酯涂层进行耐盐雾性能的测试。具体的,将所述石墨烯复合涂层与对比例3b纯聚氨酯涂层分别置于盐雾试验箱中,1000小时后取出,并在室温下干燥后进行拍照(见图6a)。由图6a可见,纯聚氨酯涂层的表面有明显的腐蚀坑出现,而石墨烯复合涂层的表面没有明显的腐蚀现象发生。
本发明实施例提供一种水性石墨烯复合涂料的制备方法。该方法包括如下步骤:
S81:将等摩尔量的苯胺低聚物衍生物和碱溶解于水,得到混合物A5。加碱的目的是为了使苯胺低聚物衍生物能够更好的溶于水。加等摩尔量是使苯胺低聚物衍生物结构中带有的羧酸,或者别的酸的基团能够和碱完全中和。所述碱为氢氧化钠、三乙胺、氢氧化钾和氨水中的一种或组合。
将苯胺低聚物衍生物和碱分散于水中,使苯胺低聚物衍生物充分溶解。所述苯胺低聚物衍生物用于修饰改性所述石墨烯。
S82:在所述混合物A5中加入石墨烯,使苯胺低聚物衍生物与石墨烯混合均匀并在苯胺低聚物衍生物与石墨烯之间形成π-π键得到石墨烯分散液。所述苯胺低聚物衍生物与石墨烯的质量比为1:10~10:1。优选地,所述苯胺低聚物衍生物与石墨烯的质量比为2:1~1:1。
S83:提供一水性树脂,向所述水性树脂中加入所述石墨烯分散液并混合均匀,得到混合物B5。可通过高速搅拌、超声、球磨和/或砂磨的分散方法使石墨烯分散液均匀分散于水性树脂中,进一步使石墨烯均匀分散于水性树脂中。所述水性树脂为水性环氧树脂、水性丙烯酸树脂、水性聚氨酯树脂、水性丙烯酸聚氨酯树脂和水性氨基树脂中的一种或组合。
S84:向所述混合物B5中加入涂料助剂,得到水性石墨烯复合涂料。所述涂料助剂包括防沉剂、消泡剂和流平剂。所述防沉剂为气相二氧化硅、聚酰胺蜡和有机膨润土中的一种或组合。所述消泡剂为二甲基硅油、醚酯化合物、改性矿物油、聚氧乙基甘油醚、小分子金属有机物和改性有机硅聚合物中的一种或组合。所述流平剂为乙二醇丁醚、醋丁纤维素、聚 丙烯酸酯类、硅油、羟甲基纤维素、聚二甲基硅烷、聚甲基苯基硅氧烷和改性有机硅化合物中的一种或组合。可以理解,所述水性石墨烯复合涂料还可包括固化剂。所述固化剂可为水性聚酰胺,用于加速所述水性石墨烯复合涂料固化过程。
得到的水性石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~4%,优选为,0.2%~1.0%。
本发明还提供一种采用上述方法制备的水性石墨烯复合涂料。该水性石墨烯复合涂料由水性树脂、石墨烯、苯胺低聚物衍生物、水及涂料助剂组成。在水性石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~4%。优选的,在所述水性石墨烯复合涂料中所述石墨烯所占的质量百分数为0.2%~1.0%。该石墨烯通过与苯胺低聚物衍生物形成π-π键而均匀分散于所述水性树脂中。
本发明提供的水性石墨烯复合涂料中,通过对石墨烯的表面经过苯胺低聚物衍生物的改性修饰,极大提高了石墨烯的分散性和化学稳定性,使得所述石墨烯均匀分散于所述水性树脂中,而石墨烯具有良好的疏水性能,故在应用过程中,可有效抑制水分子在形成的水性石墨烯复合涂层的表面吸附。同时,石墨烯具有二维片层结构,其在涂料中均匀分散,当形成水性石墨烯复合涂层后,石墨烯可层层叠加,形成致密的隔绝层,因而小分子腐蚀介质(水分子、氯离子等)很难通过这层致密的隔绝层,起到了突出的物理隔绝作用。即,所制得的水性石墨烯复合涂层具有良好的耐水渗透性和耐盐雾性以及较强的防护能力,从而水性石墨烯复合涂层具有优异的防腐效果。并且,所述水性石墨烯复合涂料不含有机溶剂,不会带来有机挥发物排放,绿色环保。本发明提供的水性石墨烯复合涂料的制备方法,通过制备工艺创新,可得到具有较好分散性和化学稳定性的水性石墨烯复合涂料,制备工艺简单,成本低廉,利于产业化。
为进一步描述本发明,下面为所述水性石墨烯复合涂料、水性石墨烯复合涂层的制备方法,在不同参数下的具体实施例:
实施例7a
称取苯胺三聚体1.24g溶于50ml THF中,再加入1.04g丁二酸酐,反应3小时,用石油醚沉淀,得到苯胺三聚体羧基衍生物。
称取2.0g苯胺三聚体羧基衍生物和0.33g NaOH固体溶于10mL水中,得到混合物A5。向所述混合物A5中加入2g石墨烯(购自宁波墨西科技有限公司),超声分散1小时,得到石墨烯分散液。石墨烯经苯胺三聚体羧基衍生物修饰后在水中的含量达到0.2g/mL。
将所述石墨烯分散液加到45g水性环氧树脂中(购自西北永新集团有限公司),并混合均 匀,得到混合物B5。向所述混合物B5中依次加入1g流平剂、2g消泡剂、2.67g防沉剂和45g水性聚酰胺固化剂,搅拌均匀,即得到水性石墨烯复合涂料。
将得到的水性石墨烯复合涂料涂覆于一碳钢基体上,待水挥发后,得到水性石墨烯复合涂层。
为了对比实验效果,还制备了对比例4a水性环氧树脂涂层。对比例4a中所述水性环氧树脂涂层的制备方法同实施例7a,不同的是,没有加入石墨烯分散液。
对实施例7a所述水性石墨烯复合涂层以及对比例4a的水性环氧树脂涂层进行耐盐雾性能的测试。具体的,将所述水性石墨烯复合涂层与对比例4a水性环氧树脂涂层分别置于盐雾试验箱中,500小时后取出,并在室温下干燥后进行拍照(见图7a)。由图7a可见,水性环氧树脂涂层的表面有明显的腐蚀坑出现,而水性石墨烯复合涂层的表面没有明显的腐蚀现象发生。
对实施例7a所述水性石墨烯复合涂层以及对比例4a的水性环氧树脂涂层进行防腐性能的测试。具体的,将所述水性石墨烯复合涂层与对比例4a的水性环氧树脂涂层分别在3.5wt%NaCl溶液(以模拟海水)中浸泡8天,然后采用上海晨华CHI660E电化学工作站,以开路电位、交流阻抗和动电位极化曲线测试技术分析石墨烯对水性石墨烯复合涂层的作用机理。具体的,以带有鲁金毛细管的饱和甘汞电极为参比电极,铂片电极为对电极,石墨烯涂层/碳钢电极为工作电极,在模拟海水溶液中浸泡使开路电位(OCP)稳定后,在OCP下以正弦波扰动幅值30mV,频率范围为100000Hz~0.01Hz进行电阻抗(EIS)扫描。极化曲线的扫描速度为0.5mV/s,扫描范围为-200~200mV vs.OCP。测试OCP结果见图7b,交流阻抗结果见图7c至图7f,极化曲线结果见图7g。由图7b、图7c至图7f、图7g可知,所述水性石墨烯复合涂层比环氧树脂涂层的阻抗大;在浸泡48小时后,水性石墨烯复合涂层的自腐蚀电流密度为130nA·cm-2,而水性环氧树脂涂层的自腐蚀电流密度为38nA·cm-2。这说明经过苯胺低聚物衍生物的改性修饰的石墨烯可均匀分散于水性树脂中,从而得到的水性石墨烯复合涂层的开路电位正移,阻抗增大,自腐蚀电流密度降低,进而大大提高了水性石墨烯复合涂层的防腐性能。
对实施例7a所述水性石墨烯复合涂层以及对比例4a水性环氧树脂涂层进行耐水渗透性能的测试。具体的,通过对交流阻抗值进行拟合,以lgQc(Qc为涂层电容)对t1/2作图,得到图7h。通过线性拟合,可以分别得到水性环氧树脂涂层和水性石墨烯复合涂层的线性回归方程,进而计算得到水性环氧树脂涂层和水性石墨烯复合涂层的扩散系数分别为5.56×10-9cm2/h和1.61×10-11cm2/h。这说明经过苯胺低聚物衍生物的改性修饰的石墨烯可均匀分 散于水性树脂中,从而减缓了水分子在水性石墨烯复合涂层中的扩散速度。
对实施例7a所述水性石墨烯复合涂层以及对比例4a水性环氧树脂涂层进行接触角的测试(见图7i)。结果为:所述水性石墨烯复合涂层的接触角为95.38°;所述水性环氧树脂涂层的接触角为87.32°。这说明经过苯胺低聚物衍生物的改性修饰的石墨烯可均匀分散于水性树脂中,从而使所述水性环氧树脂涂层的接触角增大,进而增加了所述水性环氧树脂涂层的疏水性能。
请参阅图8a,本发明提供一种石墨烯复合金属箔,其通过以下制备方法可得到。所述制备方法包括以下步骤:
S91:将金属箔10进行表面清洗处理,处理过程包括:除油、酸洗、水洗、醇洗、烘干;
其中,所述金属箔10的厚度为5μm~500μm。优选的,所述金属箔10的厚度为10μm~100μm。
S92:将清洗后的金属箔10进行开孔处理,开孔方式包括激光打孔、等离子打孔、机械钻孔、化学刻蚀孔等,得到多个贯穿孔20;
其中,所述贯穿孔20的孔径为1μm~1000μm,孔密度为101个/cm2~106个/cm2。为了使金属箔10散热更均匀,优选的,所述贯穿孔20的孔径为10μm~500μm,孔密度为102个/cm2~104个/cm2
S93:将石墨烯与分散剂在溶剂中混合形成石墨烯分散液;
具体的,将石墨烯、分散剂和溶剂通过高速搅拌、超声、球磨和/或砂磨等手段进行分散,得到均相且稳定的石墨烯分散液。所述分散剂为苯胺低聚物或苯胺低聚物衍生物。所述苯胺低聚物或苯胺低聚物衍生物具有良好的溶解性,可溶于所述溶剂中。所述溶剂可为去离子水、乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜二氯乙烷中的一种或组合。所述石墨烯分散液中石墨烯的质量百分比(即固含量)为0.1%~10%。
S94:将进行开孔处理的金属箔10放入石墨烯分散液中,经1min~10min后取出,干燥得到所述石墨烯复合金属箔。所述金属箔的表面和贯穿孔的孔壁均沉积有石墨烯。由于苯胺低聚物带正电使得石墨烯分散液也带正电,而清洁的金属箔表面带负电,二者通过强烈的静电引力,实现石墨烯在金属箔表面的附着沉积,从而得到石墨烯复合金属箔。
该沉积于金属箔的表面和贯穿孔的孔壁的石墨烯连成一体形成层状结构,而将金属箔夹 在中间并套牢。所述石墨烯层30由多层纯的石墨烯组成。所述石墨烯层30覆盖所述金属箔10的表面和贯穿孔20的孔壁。所述石墨烯层30中石墨烯的层数为1层~100层。所述石墨烯层30的厚度为0.01μm~10μm。得到的石墨烯复合金属箔的热导率为500W/m·K~2000W/m·K,石墨烯与金属箔10的结合强度为1Mpa~100Mpa。所述石墨烯复合金属箔作为散热元件应用于集成电路、电子器件、热交换器或LED的散热装置中。
相较于现有技术,本发明所述石墨烯复合金属箔的制备方法具有以下优点:通过苯胺低聚物来分散石墨烯得到均相且稳定的石墨烯分散液,由于苯胺低聚物带正电使得石墨烯分散液也带正电,而清洁的金属表面带负电,二者通过强烈的静电引力,实现石墨烯在金属箔表面的附着沉积,从而得到石墨烯复合金属箔。因而,省去了加入粘结剂进行涂敷的操作,且石墨烯通过静电引力而更加稳定附着于金属箔表面。
与现有技术相比,本发明所述石墨烯复合金属箔具备以下优点:(1)具有优异的散热性能。现有技术制备的石墨烯均是平铺在金属箔表面,热流方向垂直于石墨烯平面,导致最终散热效果并不理想。本发明所述石墨烯复合金属箔,金属箔两面和孔壁均有石墨烯层。底部的石墨烯层不仅可将热源传来的热量快速分散在石墨烯表面,而且可将得到的热量通过附于孔壁的石墨烯层迅速转移到金属箔上部石墨烯层。传输到上部的热量通过石墨烯平面快速扩散,最终通过对流和辐射的方式实现快速散热。也就是说,所述石墨烯复合金属箔的贯穿孔内的石墨烯可提高垂直于金属箔表面的方向上的热导率,从而大大提高了石墨烯复合金属箔的整体热导率。(2)石墨烯层与金属箔结合强度高,现有技术制备的石墨烯由于其平铺在金属箔表面,二者间存在界面应力,因而容易导致石墨烯层剥离。本发明所述石墨烯复合金属箔,其中的石墨烯不仅覆盖在金属箔的上下两个表面,而且也分布于贯穿孔的孔壁,该分布于上下表面和孔壁的石墨烯连成一体而形成层状结构,将金属箔夹在中间并套牢,从而大幅提高石墨烯与金属箔的结合强度。另外,通过静电吸附的方法制备得到的石墨烯复合金属箔,石墨烯在金属箔上的附着稳定性强,结合强度高。(3)工艺简单,制备成本低。现有技术一般采用化学气相沉积(CVD)的方法在金属箔表面生长石墨烯,然而该方法需要高昂的生长设备,生长时间较长,生长条件要求较高(高温、高真空),对金属箔有一定的选择性(需要能作为催化剂的金属材料),并且其很难在线连续生长。而本发明通过液相沉积的方法来制备石墨烯复合金属箔,该方法对生长条件、生长设备和基材没有特殊要求,生长时间短(1min~10min即可),并且其可以在线连续生长,从而大大提高生产效率。
本发明还提供一种石墨烯基导电涂料,其包括石墨烯、石墨烯分散剂和涂料基体。所述 石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物。该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且与石墨烯粉体之间可通过π-π键结合而使所述石墨烯均匀分散于所述涂料基体中。所述涂料基体可为水性单组份聚氨酯,但不仅仅局限于聚氨酯体系,还包括其他高分子成膜树脂包括环氧树脂,醇酸树脂,聚甲基丙烯酯乳液,有机硅树脂等。由于石墨烯分散剂为苯胺低聚物或苯胺低聚物衍生物,因而,本身具有导电性的石墨烯在石墨烯分散剂的作用下可均匀分散于涂料基体,从而得到的该石墨烯基导电涂料具有良好的导电性,而可应用于导电油墨、防静电涂层、电磁屏蔽、吸波隐身等方面。
为进一步描述本发明,下面为所述石墨烯基导电涂料,在不同参数下的具体实施例:
实施例8a
将水性磺酸化聚苯胺0.025g,去离子水3mL,石墨烯0.025g混合,再超声分散,然后加入水性聚氨酯1.47g(固含量34%),涂膜,60℃下固化,得到含石墨烯5%的聚氨酯导电涂层。测定其薄膜电导率为1287ohm/sq。
实施例8b
将水性磺酸化聚苯胺0.025g,去离子水3mL,石墨烯0.025g混合,再超声分散,然后加入水性聚氨酯1.47g(固含量34%),涂膜,60℃下固化,得到含石墨烯2.5%的聚氨酯导电涂层。测定其薄膜电导率为3276ohm/sq。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (27)

  1. 一种石墨烯分散剂,用于分散石墨烯,其特征在于,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且该苯胺低聚物或苯胺低聚物衍生物与石墨烯之间可通过π-π键结合。
  2. 一种如权利要求1所述的石墨烯分散剂,其特征在于,所述苯胺低聚物衍生物为带有官能团的苯胺低聚物,所述官能团包括羧基、羟基、羰基、酯基、氨基、烃基、烷基、磺酸基、磷酸基、环氧基团、聚乙二醇基团、聚乙烯醇基团中的任意一种或两种以上的组合,所述苯胺低聚物为苯胺三聚体、苯胺四聚体、苯胺五聚体、苯胺六聚体、苯胺八聚体中的一种或组合。
  3. 一种石墨烯的分散方法,其包括如下步骤:
    提供石墨烯及石墨烯分散剂,该石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且与石墨烯之间可通过π-π键结合;
    将石墨烯、石墨烯分散剂加入到分散介质中,并使石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键,其中分散介质包括水、有机溶剂、高分子聚合物中的任意一种或两种以上的组合,所述有机溶剂包括乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜、二氯乙烷中的一种或几种混合溶剂。
  4. 一种石墨烯复合粉体,其特征在于,其包括石墨烯粉体、石墨烯分散剂及分散助剂,所述石墨烯分散剂及分散助剂均匀分散于所述石墨烯粉体中,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且与石墨烯粉体之间可通过π-π键结合。
  5. 根据权利要求4所述石墨烯复合粉体的制备方法,其特征在于,所述分散助剂为硅烷偶联剂、聚乙烯醇、聚乙烯吡咯烷酮、有机改性聚硅氧烷二丙二醇单甲醚溶液、有机硅表面活性剂和/或含氟表面活性剂,所述苯胺低聚物或苯胺低聚物衍生物在石墨烯复合粉体中的质量百分比为0.1%~50%。
  6. 根据权利要求4所述石墨烯复合粉体的制备方法,其特征在于,所述苯胺低聚物或苯胺低聚物衍生物在石墨烯复合粉体中的质量百分比为10%~20%。
  7. 一种石墨烯复合粉体的制备方法,其包括如下步骤:
    将还原性石墨烯分散于分散介质中,得到混合物A;
    在所述混合物A中加入分散助剂和用于与石墨烯形成π-π结合的苯胺低聚物或苯胺低聚物衍生物,使石墨烯与苯胺低聚物或苯胺低聚物衍生物混合均匀并在苯胺低聚物或苯胺低聚 物衍生物与石墨烯之间形成π-π键得到混合物B;
    将混合物B干燥制得苯胺低聚物或苯胺低聚物衍生物修饰改性的石墨烯复合粉体。
  8. 根据权利要求7所述石墨烯复合粉体的制备方法,其特征在于,所述分散介质为去离子水、乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜二氯乙烷中的一种或几种混合溶剂,所述石墨烯与所述分散介质的质量比为1:10~1:10000,所述分散助剂为硅烷偶联剂、聚乙烯醇、聚乙烯吡咯烷酮、有机改性聚硅氧烷二丙二醇单甲醚溶液、有机硅表面活性剂和/或含氟表面活性剂,所述分散助剂与混合物A的质量百分比(0.01-1):100。
  9. 一种石墨烯浆料的制备方法,其包括如下步骤:
    将石墨烯分散于分散介质A1中,得到混合物B1;
    在所述混合物B1中加入分散助剂和用于与石墨烯形成强π-π结合的石墨烯分散剂,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,使苯胺低聚物或苯胺低聚物衍生物与石墨烯混合均匀并在苯胺低聚物或苯胺低聚物衍生物与石墨烯之间形成π-π键得到混合物B2;
    将混合物B2干燥制得苯胺低聚物或苯胺低聚物衍生物修饰改性的石墨烯复合粉体;
    将石墨烯复合粉体分散于分散介质A2中得到所述石墨烯浆料。
  10. 一种如权利要求9所述的石墨烯浆料的制备方法,其特征在于,所述分散介质A1及分散介质A2为去离子水、乙醇、丙酮、异丙醇、丁醇、乙酸乙酯、甲苯、氯仿、二甲基甲酰胺、二甲基亚砜、二氯乙烷、高分子聚合物中的一种或几种混合溶剂,所述石墨烯与所述分散介质A1的质量比为1:10~1:10000,所述苯胺低聚物或苯胺低聚物衍生物与混合物B1的质量百分比为(0.01-10):100。
  11. 一种根据权利要求9或10中任一项所述的制备方法制得的石墨烯浆料。
  12. 一种石墨烯涂料,其特征在于,其由涂料主体、石墨烯分散液及涂料助剂组成,在石墨烯涂料中所述涂料主体所占的质量百分数为40%~60%,所述石墨烯分散液所占的质量百分数为30%~50%及所述涂料助剂所占的质量百分数为3%~10%,所述石墨烯分散液包括石墨烯、石墨烯分散剂及分散介质,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,该石墨烯通过与苯胺低聚物或苯胺低聚物衍生物形成π-π键而均匀分散于所述涂料主体中。
  13. 根据权利要求12所述石墨烯涂料,其特征在于,在所述石墨烯分散液中所述石墨烯所占的质量百分数为0.1%~10%,所述苯胺低聚物或苯胺低聚物衍生物所占的质量百分数为 0.1%~10%,以及所述分散介质所占的质量百分数为80%~90%,所述涂料主体为有机硅树脂、丙烯酸树脂、聚酯树脂、聚氨酯树脂、醇酸树脂和环氧树脂中的一种或组合,所述涂料助剂包括成膜剂、润湿剂、消泡剂和流平剂,所述成膜剂为乙二醇单丁醚、丙二醇单丁醚、二丙二醇甲醚乙醚酯、乙二醇丙醚、二丙醚、丙二醇苯醚、苯甲醇、十二碳醇酯中的一种或组合,所述润湿剂为十二烷基硫酸盐、十二烷基磺酸盐、聚乙烯醇、聚乙烯吡咯烷酮、有机硅化合物和有机氟化合物中的一种或组合,所述消泡剂为二甲基硅油、醚酯化合物、改性矿物油、聚氧乙基甘油醚、小分子金属有机物和改性有机硅聚合物中的一种或组合,所述流平剂为乙二醇丁醚、醋丁纤维素、聚丙烯酸酯类、硅油、羟甲基纤维素、聚二甲基硅烷、聚甲基苯基硅氧烷和改性有机硅化合物中的一种或组合。
  14. 一种石墨烯涂料的制备方法,其包括以下步骤:
    将苯胺低聚物或苯胺低聚物衍生物和分散介质混合,得到混合物A;
    向所述混合物A中加入石墨烯,使苯胺低聚物或苯胺低聚物衍生物与石墨烯混合均匀并在石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键得到石墨烯分散液;
    提供一涂料主体,向所述涂料主体中加入所述石墨烯分散液并混合均匀,得到混合物B;
    向所述混合物B中加入涂料助剂,得到石墨烯涂料,其中,在所述石墨烯涂料中所述涂料主体所占的质量百分数为40%~60%,所述石墨烯分散液所占的质量百分数为30%~50%及所述涂料助剂所占的质量百分数为3%~10%。
  15. 一种石墨烯复合贴膜的制备方法,其包括以下步骤:
    将苯胺低聚物或苯胺低聚物衍生物和分散介质混合,得到混合物A,其中该苯胺低聚物或苯胺低聚物衍生物为电活性高分子;
    向所述混合物A中加入石墨烯,使石墨烯与苯胺低聚物或苯胺低聚物衍生物混合均匀并在石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键得到石墨烯分散液;
    提供一涂料主体,向所述涂料主体中加入所述石墨烯分散液并混合均匀,得到混合物B;
    向所述混合物B中加入涂料助剂,得到石墨烯复合涂料;
    将所述石墨烯复合涂料涂布在基底上,干燥后得到石墨烯复合贴膜,其中,在所述石墨烯复合涂料中所述涂料主体所占的质量百分数为40%~60%,所述石墨烯分散液所占的质量百分数为30%~50%及所述涂料助剂所占的质量百分数为3%~10%。
  16. 一种复合石墨烯纸的制备方法,其包括以下步骤:
    将石墨烯分散于分散介质中,得到混合物A3;
    在所述混合物A3中加入分散助剂和用于与石墨烯形成π-π结合的苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,该石墨烯与苯胺低聚物或苯胺低聚物衍生物混合均匀并在该石墨烯与苯胺低聚物或苯胺低聚物衍生物之间形成π-π键得到混合物B3;
    将微孔滤膜浸入到上述混合物B3中1分钟~10分钟取出,烘干得到滤膜-石墨烯复合体;
    将所述滤膜-石墨烯复合体在碳化炉内在碳化温度下进行碳化,得到复合石墨烯纸。
  17. 根据权利要求16所述的复合石墨烯纸的制备方法,其特征在于,所述微孔滤膜为含有多个贯穿孔的高分子膜,所述贯穿孔的孔径为10纳米~1000微米,所述高分子膜包括聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚氯乙烯、尼龙、聚碳酸酯、聚氨酯、聚四氟乙烯或聚对苯二甲酸乙二醇酯,所述碳化温度为800℃~1400℃,碳化时间为1小时~3小时。
  18. 一种石墨烯复合涂料,其特征在于,其由树脂、石墨烯、苯胺低聚物、分散溶剂及涂料助剂组成,所述苯胺低聚物为电活性高分子,在石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~5%,该石墨烯通过与苯胺低聚物形成π-π键而均匀分散于所述树脂中。
  19. 根据权利要求18所述石墨烯复合涂料,其特征在于,所述苯胺低聚物与石墨烯的质量比为1:10~10:1,所述分散溶剂为甲苯、二甲苯、丙酮、四氢呋喃、乙醇和二甲基亚砜中的一种或组合,所述树脂为环氧树脂、丙烯酸树脂、聚氨酯树脂、丙烯酸聚氨酯树脂和氨基树脂中的一种或组合。
  20. 一种石墨烯复合涂料的制备方法,其包括以下步骤:
    将苯胺低聚物和石墨烯分散于分散溶剂中,使苯胺低聚物与石墨烯混合均匀并在苯胺低聚物与石墨烯之间形成π-π键得到石墨烯分散液,其中,所述苯胺低聚物为电活性高分子;
    提供一树脂,向所述树脂中加入所述石墨烯分散液并混合均匀,得到混合物A4;
    向所述混合物A4中加入涂料助剂,得到石墨烯复合涂料,其中,在所述石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~5%。
  21. 一种水性石墨烯复合涂料,其特征在于,其由水性树脂、石墨烯、苯胺低聚物衍生物、水及涂料助剂组成,所述苯胺低聚物衍生物为电活性高分子,在水性石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~4%,该石墨烯通过与苯胺低聚物衍生物形成π-π键而均匀分散于水中。
  22. 根据权利要求21所述水性石墨烯复合涂料,其特征在于,所述水性树脂为水性环氧树脂、水性丙烯酸树脂、水性聚氨酯树脂、水性丙烯酸聚氨酯树脂和水性氨基树脂中的一种或组合。
  23. 一种水性石墨烯复合涂料的制备方法,其包括以下步骤:
    将等摩尔量的苯胺低聚物衍生物和碱溶解于水,得到混合物A5;
    向所述混合物A5中加入石墨烯,使苯胺低聚物衍生物与石墨烯混合均匀并在苯胺低聚物衍生物与石墨烯之间形成π-π键得到石墨烯分散液;
    提供一水性树脂,向所述水性树脂中加入所述石墨烯分散液并混合均匀,得到混合物B5;
    向所述混合物B5中加入涂料助剂,得到水性石墨烯复合涂料,其中,在所述水性石墨烯复合涂料中所述石墨烯所占的质量百分数为0.01%~4%。
  24. 根据权利要求23所述水性石墨烯复合涂料的制备方法,其特征在于,所述碱为氢氧化钠、三乙胺、氢氧化钾和氨水中的一种或组合。
  25. 一种石墨烯复合金属箔的制备方法,其包括如下步骤:
    将石墨烯与分散剂在溶剂中混合形成石墨烯分散液,其中所述分散剂为与石墨烯之间形成π-π相互作用力而实现结合的苯胺低聚物或苯胺低聚物衍生物;
    将含有多个贯穿孔的金属箔浸入到所述石墨烯分散液中,经1min~10min后取出,干燥得到所述石墨烯复合金属箔,所述金属箔的表面和贯穿孔的孔壁均沉积有所述石墨烯。
  26. 一种采用如权利要求25所述制备方法得到的石墨烯复合金属箔,其特征在于,其包括含有多个贯穿孔的金属箔及石墨烯,所述石墨烯通过液相沉积的方式生长在所述金属箔表面和贯穿孔的孔壁,所述石墨烯与金属箔的结合强度为1Mpa~100Mpa。
  27. 一种石墨烯基导电涂料,其特征在于,其包括石墨烯、石墨烯分散剂和涂料基体,所述石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物,该苯胺低聚物或苯胺低聚物衍生物为电活性高分子,且与石墨烯粉体之间可通过π-π键结合而使所述石墨烯均匀分散于所述涂料基体中。
PCT/CN2015/095742 2014-12-02 2015-11-27 一种石墨烯分散剂及其应用 WO2016086796A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15865917.7A EP3228592A4 (en) 2014-12-02 2015-11-27 GRAPHIC DISPERSION AGENTS AND THE APPLICATION THEREOF
PCT/CN2015/095742 WO2016086796A1 (zh) 2014-12-02 2015-11-27 一种石墨烯分散剂及其应用
US15/607,552 US10696790B2 (en) 2014-12-02 2017-05-29 Graphene dispersant and application thereof

Applications Claiming Priority (31)

Application Number Priority Date Filing Date Title
CN201410722772 2014-12-02
CN201410722468 2014-12-02
CN201410720559.1 2014-12-02
CN201410722468.1 2014-12-02
CN201410720559 2014-12-02
CN201410722772.6 2014-12-02
CN201410781191.XA CN105778740B (zh) 2014-12-16 2014-12-16 石墨烯导电涂料、其制备方法及应用
CN201410781191.X 2014-12-16
CN201410815986.8 2014-12-24
CN201410813889.5 2014-12-24
CN201410816024.4A CN105778136B (zh) 2014-12-24 2014-12-24 一种石墨烯复合贴膜及其制备方法
CN201410816051.1 2014-12-24
CN201410816025.9 2014-12-24
CN201410813889.5A CN105783576B (zh) 2014-12-24 2014-12-24 一种复合导热片
CN201410814945.7A CN105778608B (zh) 2014-12-24 2014-12-24 一种石墨烯复合涂料及其制备方法
CN201410816051.1A CN105778572B (zh) 2014-12-24 2014-12-24 一种石墨烯复合粉体及其制备方法
CN201410814945.7 2014-12-24
CN201410814796.4 2014-12-24
CN201410815986.8A CN105778571B (zh) 2014-12-24 2014-12-24 一种石墨烯复合浆料及其制备方法
CN201410814796.4A CN105788874B (zh) 2014-12-24 2014-12-24 一种复合石墨烯纸及其制备方法
CN201410816024.4 2014-12-24
CN201410819604.9 2014-12-24
CN201410819604.9A CN105789155B (zh) 2014-12-24 2014-12-24 一种石墨烯复合金属箔及其制备方法
CN201410815993.8A CN105778134B (zh) 2014-12-24 2014-12-24 一种石墨烯复合高分子膜材料及其制备方法
CN201410815993.8 2014-12-24
CN201410816025.9A CN105792598B (zh) 2014-12-24 2014-12-24 一种石墨烯复合金属箔
CN201410844601.0A CN105802452B (zh) 2014-12-30 2014-12-30 一种石墨烯复合涂层、石墨烯复合涂料及其制备方法
CN201410841675.9 2014-12-30
CN201410844601.0 2014-12-30
CN201410841675.9A CN105802441B (zh) 2014-12-30 2014-12-30 一种水性石墨烯复合涂层、水性石墨烯复合涂料及其制备方法
PCT/CN2015/095742 WO2016086796A1 (zh) 2014-12-02 2015-11-27 一种石墨烯分散剂及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/607,552 Continuation US10696790B2 (en) 2014-12-02 2017-05-29 Graphene dispersant and application thereof

Publications (1)

Publication Number Publication Date
WO2016086796A1 true WO2016086796A1 (zh) 2016-06-09

Family

ID=56091003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095742 WO2016086796A1 (zh) 2014-12-02 2015-11-27 一种石墨烯分散剂及其应用

Country Status (3)

Country Link
EP (1) EP3228592A4 (zh)
TW (1) TWI602611B (zh)
WO (1) WO2016086796A1 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108047805A (zh) * 2017-12-29 2018-05-18 陈鹏 一种复合型流平剂及其制备方法和应用
CN109266119A (zh) * 2018-09-14 2019-01-25 安庆市泽烨新材料技术推广服务有限公司 石墨烯导电涂料
CN109280434A (zh) * 2018-09-14 2019-01-29 安庆市泽烨新材料技术推广服务有限公司 水性导电涂料
CN109385194A (zh) * 2018-09-14 2019-02-26 安庆市泽烨新材料技术推广服务有限公司 水性弹性导电涂料
CN109912924A (zh) * 2019-03-05 2019-06-21 深圳市驭晟新材料科技有限公司 一种石墨烯-纳米聚四氟乙烯复合改性填料的制备及其应用方法
CN110204760A (zh) * 2019-06-30 2019-09-06 桂林理工大学 一种导电型橡胶基复合电磁屏蔽材料的制备方法
CN110294912A (zh) * 2019-06-30 2019-10-01 桂林理工大学 一种导电型聚合物基复合电磁屏蔽材料的制备方法
CN110310762A (zh) * 2018-08-22 2019-10-08 苏州怡拓生物传感技术有限公司 改性石墨烯导电碳浆
CN110559695A (zh) * 2019-08-29 2019-12-13 安徽銮威化工科技开发有限公司 一种氧化石墨烯改性有机硅消泡剂及其制备方法
CN110581429A (zh) * 2018-06-09 2019-12-17 滨州市腾源电子科技有限公司 一种基于石墨烯材料的太赫兹波辐射源
CN110791167A (zh) * 2019-06-18 2020-02-14 西北工业大学 石墨烯重防腐蚀涂料及其制备方法、重防腐蚀涂层
CN111205727A (zh) * 2020-03-04 2020-05-29 绵阳麦思威尔科技有限公司 用于空调换热器铝翅片上的水性超防腐涂料及其制备方法
CN111860739A (zh) * 2020-07-17 2020-10-30 山东华冠智能卡有限公司 一种石墨烯基rfid天线的制备方法
US10822501B2 (en) * 2016-11-17 2020-11-03 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Hexagonal boron nitride epoxy compound anticorrosive paint, and preparation method and use thereof
CN112175477A (zh) * 2019-07-03 2021-01-05 中国科学院宁波材料技术与工程研究所 氟化石墨烯/CeO2纳米复合物改性防腐涂层及其制备方法
CN112940411A (zh) * 2021-01-29 2021-06-11 大连理工大学 一种石墨烯/聚氯乙烯复合包装材料及其制备方法
CN113363668A (zh) * 2021-06-08 2021-09-07 浙江理工大学 具有准分子紫外光辐照修饰的石墨烯负载玻璃纤维膜及其制备方法
CN113388315A (zh) * 2021-04-25 2021-09-14 中国科学院福建物质结构研究所 一种石墨烯/树脂复合涂料、及石墨烯/树脂复合涂层的制备方法
CN113666363A (zh) * 2021-08-05 2021-11-19 深圳烯创技术有限公司 一种高热辐射系数和高电磁屏蔽的氧化石墨烯材料的制备方法
CN113735101A (zh) * 2021-09-23 2021-12-03 上海烯望新材料科技有限公司 一种剥离法制备亲油性少层石墨烯的方法
CN114854203A (zh) * 2022-06-20 2022-08-05 南通市沃尔克新材料科技有限公司 一种石墨烯浆料的制备方法
CN117285847A (zh) * 2023-09-08 2023-12-26 浙江永通新材料股份有限公司 一种水性聚丙烯薄膜涂覆用涂层及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10077351B2 (en) 2016-12-23 2018-09-18 Angstron Materials (Asia) Limited Graphene dispersion and graphene reinforced polymer
CN107768601B (zh) * 2017-10-13 2020-02-21 南京旭羽睿材料科技有限公司 新型石墨烯膜电极制备方法
TWI708801B (zh) * 2018-02-26 2020-11-01 謙華科技股份有限公司 石墨烯複合薄膜的製造方法
TWI694121B (zh) * 2019-02-12 2020-05-21 台灣中油股份有限公司 石墨烯-奈米銀粒子-高分子溶液、其製備方法及其用途
CN110049661A (zh) * 2019-05-17 2019-07-23 台州思碳科技有限公司 一种石墨多孔金属箔散热膜及其制备方法
JP7492806B2 (ja) * 2020-07-03 2024-05-30 リファインホールディングス株式会社 炭素質材料分散液およびその製造方法
CN117125864A (zh) * 2023-10-26 2023-11-28 湘潭电化科技股份有限公司 一种氨氮工业废水的处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740234A (zh) * 2010-03-03 2010-06-16 中国科学院电工研究所 一种含氧石墨烯及含氧石墨烯/四聚苯胺的粉体的制备方法
CN102492296A (zh) * 2011-11-25 2012-06-13 江南大学 一种水分散聚苯胺/石墨烯复合材料的合成方法
CN103449420A (zh) * 2013-08-22 2013-12-18 中国科学院金属研究所 一种高质量石墨烯的分散和薄膜制备方法
CN103623741A (zh) * 2013-11-27 2014-03-12 中国科学院长春应用化学研究所 石墨烯分散剂、其制备方法及石墨烯的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321254B (zh) * 2011-09-30 2013-02-06 西安交通大学 一种高浓度石墨烯-聚苯胺纳米纤维复合分散液及复合膜的制备方法
CN103086362B (zh) * 2012-12-11 2014-10-15 武汉工程大学 电活性苯胺齐聚物修饰石墨烯的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740234A (zh) * 2010-03-03 2010-06-16 中国科学院电工研究所 一种含氧石墨烯及含氧石墨烯/四聚苯胺的粉体的制备方法
CN102492296A (zh) * 2011-11-25 2012-06-13 江南大学 一种水分散聚苯胺/石墨烯复合材料的合成方法
CN103449420A (zh) * 2013-08-22 2013-12-18 中国科学院金属研究所 一种高质量石墨烯的分散和薄膜制备方法
CN103623741A (zh) * 2013-11-27 2014-03-12 中国科学院长春应用化学研究所 石墨烯分散剂、其制备方法及石墨烯的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, TINGTING ET AL.: "Dispersion behavior of PANI-modified graphene nanosheets obtained by reduction of graphene oxide", JOURNAL OF BEIJING NORMAL UNIVERSITY ( NATURAL SCIENCE, vol. 47, no. 4, 31 August 2011 (2011-08-31), pages 387 - 390, XP008185204 *
JOHN TEXTER: "Graphene dispersions", CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 18 April 2014 (2014-04-18), pages 163 - 174, XP055392406 *
LV , WEI ET AL.: "Research progress of micro/nanostructured oligoanilines formed by self-assembly", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 32, no. 7, 31 December 2013 (2013-12-31), pages 1577 - 1583, XP008185203 *
See also references of EP3228592A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10822501B2 (en) * 2016-11-17 2020-11-03 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Hexagonal boron nitride epoxy compound anticorrosive paint, and preparation method and use thereof
CN108047805A (zh) * 2017-12-29 2018-05-18 陈鹏 一种复合型流平剂及其制备方法和应用
CN110581429A (zh) * 2018-06-09 2019-12-17 滨州市腾源电子科技有限公司 一种基于石墨烯材料的太赫兹波辐射源
CN110310762A (zh) * 2018-08-22 2019-10-08 苏州怡拓生物传感技术有限公司 改性石墨烯导电碳浆
CN109385194A (zh) * 2018-09-14 2019-02-26 安庆市泽烨新材料技术推广服务有限公司 水性弹性导电涂料
CN109280434A (zh) * 2018-09-14 2019-01-29 安庆市泽烨新材料技术推广服务有限公司 水性导电涂料
CN109266119A (zh) * 2018-09-14 2019-01-25 安庆市泽烨新材料技术推广服务有限公司 石墨烯导电涂料
CN109912924A (zh) * 2019-03-05 2019-06-21 深圳市驭晟新材料科技有限公司 一种石墨烯-纳米聚四氟乙烯复合改性填料的制备及其应用方法
CN110791167A (zh) * 2019-06-18 2020-02-14 西北工业大学 石墨烯重防腐蚀涂料及其制备方法、重防腐蚀涂层
CN110204760A (zh) * 2019-06-30 2019-09-06 桂林理工大学 一种导电型橡胶基复合电磁屏蔽材料的制备方法
CN110294912A (zh) * 2019-06-30 2019-10-01 桂林理工大学 一种导电型聚合物基复合电磁屏蔽材料的制备方法
CN110204760B (zh) * 2019-06-30 2021-10-29 桂林理工大学 一种导电型橡胶基复合电磁屏蔽材料的制备方法
CN110294912B (zh) * 2019-06-30 2021-05-25 桂林理工大学 一种导电型聚合物基复合电磁屏蔽材料的制备方法
CN112175477A (zh) * 2019-07-03 2021-01-05 中国科学院宁波材料技术与工程研究所 氟化石墨烯/CeO2纳米复合物改性防腐涂层及其制备方法
CN112175477B (zh) * 2019-07-03 2022-02-11 中国科学院宁波材料技术与工程研究所 氟化石墨烯/CeO2纳米复合物改性防腐涂层及其制备方法
CN110559695A (zh) * 2019-08-29 2019-12-13 安徽銮威化工科技开发有限公司 一种氧化石墨烯改性有机硅消泡剂及其制备方法
CN111205727A (zh) * 2020-03-04 2020-05-29 绵阳麦思威尔科技有限公司 用于空调换热器铝翅片上的水性超防腐涂料及其制备方法
CN111860739A (zh) * 2020-07-17 2020-10-30 山东华冠智能卡有限公司 一种石墨烯基rfid天线的制备方法
CN112940411A (zh) * 2021-01-29 2021-06-11 大连理工大学 一种石墨烯/聚氯乙烯复合包装材料及其制备方法
CN112940411B (zh) * 2021-01-29 2022-08-05 大连理工大学 一种石墨烯/聚氯乙烯复合包装材料及其制备方法
CN113388315A (zh) * 2021-04-25 2021-09-14 中国科学院福建物质结构研究所 一种石墨烯/树脂复合涂料、及石墨烯/树脂复合涂层的制备方法
CN113363668A (zh) * 2021-06-08 2021-09-07 浙江理工大学 具有准分子紫外光辐照修饰的石墨烯负载玻璃纤维膜及其制备方法
CN113666363A (zh) * 2021-08-05 2021-11-19 深圳烯创技术有限公司 一种高热辐射系数和高电磁屏蔽的氧化石墨烯材料的制备方法
CN113735101A (zh) * 2021-09-23 2021-12-03 上海烯望新材料科技有限公司 一种剥离法制备亲油性少层石墨烯的方法
CN113735101B (zh) * 2021-09-23 2024-04-09 上海烯望新材料科技有限公司 一种剥离法制备亲油性少层石墨烯的方法
CN114854203A (zh) * 2022-06-20 2022-08-05 南通市沃尔克新材料科技有限公司 一种石墨烯浆料的制备方法
CN114854203B (zh) * 2022-06-20 2024-02-06 柳州市凯佰化工股份有限公司 一种石墨烯浆料的制备方法
CN117285847A (zh) * 2023-09-08 2023-12-26 浙江永通新材料股份有限公司 一种水性聚丙烯薄膜涂覆用涂层及其制备方法

Also Published As

Publication number Publication date
EP3228592A4 (en) 2019-04-03
TW201620607A (zh) 2016-06-16
EP3228592A1 (en) 2017-10-11
TWI602611B (zh) 2017-10-21

Similar Documents

Publication Publication Date Title
WO2016086796A1 (zh) 一种石墨烯分散剂及其应用
US10696790B2 (en) Graphene dispersant and application thereof
Zhang et al. Constructing mechanochemical durable and self-healing superhydrophobic surfaces
Li et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance
Liu et al. Synthesis of l-histidine-attached graphene nanomaterials and their application for steel protection
Li et al. Robust self-healing graphene oxide-based superhydrophobic coatings for efficient corrosion protection of magnesium alloys
Huang et al. Two-dimensional nanomaterials for anticorrosive polymeric coatings: a review
Si et al. A robust epoxy resins@ stearic acid-Mg (OH) 2 micronanosheet superhydrophobic omnipotent protective coating for real-life applications
Das et al. Acoustic green synthesis of graphene-gallium nanoparticles and PEDOT: PSS hybrid coating for textile to mitigate electromagnetic radiation pollution
Rajitha et al. Application of modified graphene oxide–polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium
Zhang et al. Surface plasma Ag-decorated Bi5O7I microspheres uniformly distributed on a zwitterionic fluorinated polymer with superfunctional antifouling property
Zhang et al. Robust superhydrophobic coatings prepared by cathodic electrophoresis of hydrophobic silica nanoparticles with the cationic resin as the adhesive for corrosion protection
Nooralian et al. Fabrication of a multifunctional graphene/polyvinylphosphonic acid/cotton nanocomposite via facile spray layer-by-layer assembly
Zhang et al. Graphene-like two-dimensional nanosheets-based anticorrosive coatings: A review
Mural et al. Engineering nanostructures by decorating magnetic nanoparticles onto graphene oxide sheets to shield electromagnetic radiations
Miao et al. Mussel-inspired polydopamine-functionalized graphene as a conductive adhesion promoter and protective layer for silver nanowire transparent electrodes
Naghdi et al. Reversible wettability conversion of electrodeposited graphene oxide/titania nanocomposite coating: Investigation of surface structures
Zhang et al. Three-dimensional flower-like shaped Bi5O7I particles incorporation zwitterionic fluorinated polymers with synergistic hydration-photocatalytic for enhanced marine antifouling performance
Sun et al. Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania
KR20100050252A (ko) 강판 표면처리용 수지 조성물 및 이를 이용한 표면처리 강판
Lv et al. Fabrication of magnetically inorganic/organic superhydrophobic fabrics and their applications
Maruthupandy et al. Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires
Guo et al. Achieving superior anticorrosion and antibiofouling performance of polyaniline/graphitic carbon nitride composite coating
Bharathidasan et al. Zinc oxide-containing porous boron–carbon–nitrogen sheets from glycine–nitrate combustion: synthesis, self-cleaning, and sunlight-driven photocatalytic activity
Zhang et al. Hydrophobic modification of ZnO nanostructures surface using silane coupling agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015865917

Country of ref document: EP