WO2016086620A1 - 通信设备及其多风扇控制方法和装置 - Google Patents

通信设备及其多风扇控制方法和装置 Download PDF

Info

Publication number
WO2016086620A1
WO2016086620A1 PCT/CN2015/079404 CN2015079404W WO2016086620A1 WO 2016086620 A1 WO2016086620 A1 WO 2016086620A1 CN 2015079404 W CN2015079404 W CN 2015079404W WO 2016086620 A1 WO2016086620 A1 WO 2016086620A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
value
speed
fans
communication device
Prior art date
Application number
PCT/CN2015/079404
Other languages
English (en)
French (fr)
Inventor
高嵩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016086620A1 publication Critical patent/WO2016086620A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids

Definitions

  • This paper relates to the field of communications, and in particular to a communication device and a multi-fan control method and apparatus.
  • the electronic equipment specific to the communication field and other enterprise-level applications basically uses the cabinet and the frame as the structural carrier of the electronic device. When cooling these devices, you need to use a fan for air cooling.
  • the fan subrack usually has multiple fans distributed on one plane to dissipate heat from the device. The principle of fan heat dissipation is to use the flow of air to remove heat.
  • the noise generated by the fan is mainly composed of wind noise and structural noise.
  • the eddy current generated by the fan blade cutting wind and the wind flowing through the air duct is wind noise; the imbalance of the fan blade, the coaxiality error of the rotating shaft, and the mechanical structure of the equipment.
  • the mounting gap creates friction and impact noise during fan rotation.
  • the heat dissipating unit inside the communication device is generally provided with a plurality of fans in the fan frame to achieve the purpose of dissipating heat.
  • the structure of the device is as shown in FIG. 1 , including the fan frame 1 and multiple winds disposed in the fan frame.
  • the fan 2 and the plurality of fans 2 are connected in parallel.
  • the plurality of fans 2 in the fan frame 1 are simultaneously controlled, and each fan 2 is controlled to have the same rotational speed, so that each fan 2 operates at the same frequency, so that the noise of these fans Overlays are generated on the same spectrum to produce more noise.
  • FIG. 2 the lower solid line in FIG.
  • the noise spectrum of a single fan shows the noise spectrum of a single fan
  • the upper dotted line shows the noise spectrum of a plurality of fans with the same rotational speed. It can be seen from the dotted line that multiple fans are generated. The peak of the noise spectrum produces a superposition.
  • the operation of multiple fans at the same frequency is more likely to cause resonance in the structure of the communication device, which in turn creates additional risks of vibration noise and structural damage.
  • the present invention provides a communication device and a multi-fan control method and apparatus thereof, which solve the problem that a multi-fan operating in a related art communication device operates on the same frequency, and the noise spectrum generates more noise and is prone to resonance after peak superposition.
  • a multi-fan control method for a communication device comprising:
  • the speed control of each of the fans is performed according to the actual temperature control speed value of each of the fans.
  • the calculated actual temperature control rotational speed values for each of the fans are not equal.
  • the calculated average value of the actual temperature-controlled rotational speed value of each of the fans is equal to the system target rotational speed value or greater than the system target rotational speed value.
  • calculating the actual temperature control speed value of each fan of the communication device according to the system target speed value and a preset principle includes:
  • the target speed of the system is separately added to the speed regulation value of each fan to obtain the actual temperature control speed value of each fan.
  • the obtaining the speed regulation value of each fan includes:
  • N of the fans is an even number
  • a preset pseudo-random algorithm is used to generate N/2 speed regulation values in the set second range, and then the obtained N/2 speed regulation values are obtained. Negatively get another N/2 speed regulation values;
  • a preset pseudo-random algorithm is used to generate (N-1)/2 speed regulation values in the set third range, and then the obtained (N-1) ) / 2 speed control values take negative to get another (N-1) / 2 speed control value, and set the remaining speed control value is a fixed value greater than or equal to 0.
  • the speed control process of each fan according to the actual temperature control speed value of each fan further includes: a fan with a low actual temperature control speed value and actual temperature control The fan with high speed value performs rotation control.
  • a multi-fan control device for a communication device comprising a temperature detector and a processor
  • the temperature detector is configured to: acquire a system temperature value of the communication device;
  • the processor is configured to: determine a corresponding system target speed value according to the system temperature value, calculate an actual temperature control speed value of each fan of the communication device according to the system target speed value and a preset principle, and obtain At least two of the actual temperature-controlled rotational speed values are unequal; and each of the fans is controlled in rotational speed according to the actual temperature-controlled rotational speed value of each of the fans.
  • the actual temperature-controlled rotational speed values of each of the fans calculated by the processor are not equal.
  • the average value of the actual temperature-controlled rotational speed value of each fan calculated by the processor is equal to the system target rotational speed value or greater than the system target rotational speed value.
  • the processor is configured to:
  • the target speed of the system is separately added to the speed regulation value of each fan to obtain the actual temperature control speed value of each fan.
  • the processor is configured to:
  • N of the fans is an even number
  • a preset pseudo-random algorithm is used to generate N/2 speed regulation values in the set second range, and then the obtained N/2 speed regulation values are obtained. Negatively get another N/2 speed regulation values;
  • a preset pseudo-random algorithm is used to generate (N-1)/2 speed regulation values in the set third range, and then the obtained (N-1) ) / 2 speed control values take negative to get another (N-1) / 2 speed control value, and set the remaining speed control value is a fixed value greater than or equal to 0.
  • a communication device comprising a plurality of fans and a multi-fan control device of the communication device as described above, the multi-fan control device being coupled to the plurality of fans, configured to: control the plurality of fans.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the communication device and the multi-fan control method and device provided by the embodiment when performing fan control, acquire the system temperature value of the communication device, confirm the corresponding system target speed value according to the system temperature value; and then based on the system target speed value and the pre-
  • the principle calculates the actual temperature control speed value of each fan of the communication device, and at least two of the obtained actual temperature control speed values are not equal; then, the speed control of each fan is performed according to the actual temperature control speed value of each fan. Therefore, the rotation speeds of at least two fans in each fan are not equal, so that all the fans in the communication device are operated at the same frequency, and the peak of the noise spectrum generated by the plurality of fans is prevented from being superimposed, which can reduce the superposition of the multiple fans. The noise and the possibility of resonance are reduced, thereby avoiding the risk of additional vibration noise and structural damage due to resonance.
  • FIG. 1 is a schematic structural diagram of a fan frame of a communication device of the related art
  • FIG. 2 is a noise spectrum diagram of a multi-fan of a communication device of the related art
  • FIG. 3 is a schematic flowchart of a multi-fan control method of a communication device according to Embodiment 1 of the present invention.
  • FIG. 5 is a noise spectrum diagram of a multi-fan according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of a communication device according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a multi-fan control apparatus according to Embodiment 2 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 which includes:
  • Step 301 Acquire a system temperature value of the communication device, where the obtaining process may be detected by a temperature sensor or a detection circuit;
  • Step 302 Confirm the corresponding system target speed value according to the obtained system temperature value; determine a corresponding system target speed value according to a preset speed adjustment curve (temperature-speed speed adjustment curve), for example, assume that the obtained system temperature value is 50. Celsius, according to the speed curve, the system target speed value corresponding to 50 degrees Celsius is 8000 rpm;
  • a preset speed adjustment curve temperature-speed speed adjustment curve
  • Step 303 Calculate the actual temperature control speed value of each fan of the communication device according to the obtained system target speed value and a preset principle, and at least two of the obtained actual temperature control speed values are not equal;
  • Step 304 Perform speed control on each fan according to the actual temperature control speed value of each fan; for example, generate a control signal for controlling each fan speed according to the actual temperature control speed value of each fan, and send it to each corresponding The fan is controlled.
  • the fan control method provided in this embodiment at least two fans in each fan of the communication device can be operated at different rotation speeds, so that all fans in the communication device are operated at the same frequency, thereby preventing multiple fans from being generated.
  • the peak superposition of the noise spectrum can reduce the superimposed noise generated by multiple fans and reduce the possibility of resonance, thereby avoiding the risk of additional vibration noise and structural damage caused by resonance.
  • the communication device has six fans
  • at least two of the fans can be operated at different rotational speeds by the control method provided in this embodiment.
  • each fan is controlled to have a different rotation speed. jobs.
  • FIG. 5 The lower solid line in FIG. 5 shows the noise spectrum of a single fan, and the upper dotted line shows the noise spectrum of a plurality of fans with different rotational speeds.
  • the peaks of the noise spectrum generated by the fans do not produce significant superposition.
  • the power of the superimposed noise peaks is much smaller.
  • the actual total air volume output by each fan in the present embodiment after the above regulation and control should be the total target output when each fan works according to the system target speed value.
  • the air volume is basically the same, and the actual total air volume can be slightly smaller than the target total air volume.
  • the actual total air volume is selected to be equal to the target total air volume, or the actual total air volume is greater than the target total air volume, and the above step 303 is calculated.
  • the average value of the actual temperature-controlled speed value of each fan is equal to the system target speed value or greater than the system target speed value.
  • the actual temperature control speed value of each fan of the communication device is calculated according to the system target speed value and the preset principle in the above step 303, including:
  • Step 3031 Obtain a speed regulation value of each fan, and at least two of the fan speed control values are not equal; if the actual speed of each fan is not equal, the speed regulation value of each fan is required to be equal;
  • the algorithm for obtaining the actual temperature-controlled rotational speed value in this embodiment can perform any conversion as long as the actual temperature-controlled rotational speed value of each fan obtained can be different.
  • the manner of obtaining the speed regulation value of each fan in the above step 3031 may include any one of the following manners:
  • Method 1 directly obtain the preset speed control value of each fan, that is, the speed control value of each fan can be preset, and can be directly extracted when needed.
  • the following describes an example of a control process based on this method in an application scenario:
  • the temperature of the communication device system obtained from the temperature sensor is 50 degrees Celsius; according to the preset speed regulation curve, the temperature value corresponding to the system target speed value X is 8000 rpm.
  • the speed control signal corresponding to each fan is generated and sent to each corresponding fan according to the actual temperature control speed value of each fan, and the rotation speed of each fan is controlled.
  • the foregoing control process in this embodiment may be performed periodically to implement dynamic adjustment of heat dissipation of the communication device.
  • the actual output air volume of the fan frame is consistent with the target total air volume, except that the speed of each fan is opened by a certain distance, that is, the average value of the actual temperature control speed values of the above six fans is equal to the system target speed.
  • the value is 8000 rpm.
  • Manner 2 The preset pseudo-random algorithm is used to generate N speed regulation values in the first range set, and the N is equal to the total number of fans; the following is an example of the control process based on this mode in an application scenario. Description:
  • the temperature of the communication device system obtained from the temperature sensor is 50 degrees Celsius; according to the preset speed regulation curve, the temperature value corresponding to the system target speed value X is 8000 rpm.
  • the foregoing control process in this embodiment may also be performed periodically to implement dynamic adjustment of heat dissipation of the communication device.
  • the actual output air volume of the fan frame is basically the same as the target total air volume except that the speed of each fan is opened by a certain distance. From the above example, the average value of the actual temperature control speed values of the above nine fans can be obtained. Slightly larger than the system target speed value of 8000 rev / min.
  • the temperature of the communication device system obtained from the temperature sensor is 50 degrees Celsius; according to the preset speed regulation curve, the temperature value corresponding to the system target speed value X is 8000 rpm.
  • the foregoing control process in this embodiment may also be performed periodically to implement dynamic adjustment of heat dissipation of the communication device.
  • the actual output air volume of the fan frame is basically the same as the target total air volume except that the speed of each fan is opened by a certain distance. From the above example, the average value of the actual temperature control speed values of the above eight fans can be obtained. It is equal to the system target speed value of 8000 rev / min.
  • Manner 4 When the total number of fans N is an odd number, a preset pseudo-random algorithm is used to generate (N-1)/2 speed regulation values in the set third range, and then the obtained (N-1) ) / 2 speed control values take negative to get another (N-1) / 2 speed control value, and set the remaining speed control value is a fixed value greater than or equal to 0.
  • the temperature of the communication device system obtained from the temperature sensor is 50 degrees Celsius; according to the preset speed regulation curve, the temperature value corresponding to the system target speed value X is 8000 rpm.
  • the foregoing control process in this embodiment may also be performed periodically to implement dynamic adjustment of heat dissipation of the communication device.
  • the actual output air volume of the fan frame is basically the same as the target total air volume except that the speed of each fan is opened by a certain distance. From the above example, the average value of the actual temperature control speed values of the above seven fans can be obtained. It is equal to the system target speed value of 8000 rev / min.
  • different speed regulation schemes may be adopted under the same heat dissipation requirement.
  • the randomly generated speed regulation value may be used, and the randomly generated speed regulation value may be used.
  • each fan can work alternately at high and low speeds throughout the control process, thereby ensuring that the rate of aging failure rate of each fan is substantially the same.
  • the fan with the actual temperature control speed value and the fan with the high actual temperature control speed value may be rotated during the speed control of each fan according to the actual temperature control speed value of each fan. (It can be rotated according to factors such as working time), so that each fan can work alternately at high and low speeds throughout the control process to ensure that the rate of aging failure rate of each fan is basically the same.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides a communication device.
  • the device includes a plurality of fans 3 and a multi-fan control device 4 .
  • the multi-fan control device 4 is connected to the plurality of fans 3 and is configured to: control multiple fans. .
  • the multi-fan control device 4 includes a temperature detector 41 and a processor 42.
  • the temperature detector 41 and the processor 42 may be disposed on the same fan control board, and the temperature detector 41 may also be disposed in the communication device. Other locations, as long as the system temperature value in the communication device can be accurately obtained.
  • the fan control board can be set in the fan frame of the communication device or outside the fan frame.
  • the temperature detector 41 is configured to: acquire a system temperature value of the communication device;
  • the processor 42 is configured to: confirm the corresponding system target speed value according to the system temperature value, calculate the actual temperature control speed value of each fan of the communication device according to the system target speed value and the preset principle, and obtain the actual temperature control speed value. There are at least two unequalities; and each fan is speed controlled according to the actual temperature control speed value of each fan.
  • the multi-fan control device 4 provided in this embodiment, at least two fans in each fan of the communication device can be operated at different rotation speeds, so that all fans in the communication device are operated at the same frequency, thereby avoiding multiple fans.
  • the peak superposition of the generated noise spectrum can reduce the superimposed noise generated by multiple fans and reduce the possibility of resonance, thereby avoiding the risk of additional vibration noise and structural damage caused by resonance.
  • the embodiment may set the actual temperature control speed values of each fan calculated by the processor 42 to be unequal, that is, control each fan to have a different rotation speed. jobs.
  • the processor 42 can individually control each fan 3 separately, and each fan 3 can be independently set with each other.
  • the actual total air volume outputted by each fan after the above regulation is output should be output when each fan works according to the system target speed value.
  • the total air volume of the target is basically the same, and the actual total air volume may be slightly smaller than the target total air volume.
  • the actual total air volume in order to ensure the heat dissipation effect, may be equal to the target total air volume, or the actual total air volume may be greater than the target total air volume.
  • the calculated average value of the actual temperature control speed value of each fan is equal to the system target speed value or greater than the system target speed value.
  • the processor 42 calculates the actual temperature control speed of each fan of the communication device according to the system target speed value and the preset principle, including:
  • the algorithm for obtaining the actual temperature-controlled rotational speed value in this embodiment can perform any conversion as long as the actual temperature-controlled rotational speed value of each fan obtained can be different.
  • the manner in which the processor 42 obtains the speed regulation value of each fan in this embodiment may include any one of the following manners:
  • the preset speed control value of each fan can be directly obtained, that is, the speed control value of each fan can be preset, and can be directly extracted when needed.
  • Manner 2 A preset pseudo-random algorithm is used to generate N speed regulation values in the first range set, and the N is equal to the total number of fans.
  • Manner 3 When the total number of fans N is even, a preset pseudo-random algorithm is used to generate N/2 speed regulation values in the set second range, and then the obtained N/2 speed regulation values are obtained. Take negative to get another N/2 speed regulation values.
  • Manner 4 When the total number of fans N is an odd number, a preset pseudo-random algorithm is used to generate (N-1)/2 speed regulation values in the set third range, and then the obtained (N-1) ) / 2 speed control values take negative to get another (N-1) / 2 speed control values, and set the remaining speed control value to a fixed value greater than or equal to 0 (for example, set to 0).
  • the above control process performed by the multi-fan control device 4 in this embodiment may be periodic to implement dynamic adjustment of heat dissipation of the communication device.
  • the actual output air volume of the fan frame is basically the same as the target total air volume, except that the speed of each fan is opened by a certain distance, so as to ensure the heat dissipation effect.
  • the multi-fan control device 4 may adopt different speed regulation schemes under the same heat dissipation requirement, for example, the optional processor 42 adopts the above-mentioned randomly generated rotation speed.
  • the control value and the randomly generated speed regulation value can generally make each fan work alternately at high and low speeds throughout the control process, thereby ensuring that the rate of aging failure rate of each fan is substantially the same.
  • the processor 42 of the multi-fan control device 4 can also control the fan with the actual temperature control speed value and the actual temperature during the speed control of each fan according to the actual temperature control speed value of each fan.
  • the fan with high control speed is rotated (can be controlled according to working time and other factors), so that each fan alternates between high and low speeds during the whole control process, ensuring that the rate of aging failure rate of each fan is basically the same.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the device/function module/functional unit in the above embodiment can be implemented by using a general-purpose computing device. Now, they can be concentrated on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the speed regulation scheme of the embodiment of the invention By adopting the speed regulation scheme of the embodiment of the invention, the consistency of the noise spectrum caused by the operation of the plurality of fans at the same rotation speed is avoided, and the rotation speed of each fan is different, and the peak points of the generated noise are also different, so that the noise superposition It does not form a very high noise frequency peak, which reduces the impact of noise on the environment.
  • the offset of the center of gravity caused by the error causes the structure to rotate as an eccentric rotation, resulting in structural vibration noise.
  • the different rotation speed of each fan avoids the rotation of all fans at the same speed, which can reduce the amplitude of vibration of the whole equipment, reduce the risk of resonance of the equipment, and reduce the probability of noise and structural damage caused by resonance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种通信设备及其多风扇控制方法和装置,在进行风扇(3)控制时,获取通信设备的系统温度值,根据系统温度值确认对应的系统目标转速值;然后基于系统目标转速值和预设原则计算得到通信设备每个风扇(3)的实际温控转速值,且得到的实际温控转速值中有至少两个不相等;然后根据每个风扇(3)的实际温控转速值对每个风扇(3)进行转速控制。

Description

通信设备及其多风扇控制方法和装置 技术领域
本文涉及通信领域,尤其涉及一种通信设备及其多风扇控制方法和装置。
背景技术
电子技术经过近二十年的飞速发展,电子产品的处理能力基本是遵循摩尔定律不断升高。但是另外一方面,电子产品的功耗也不断的提升,过高的温度会导致电子产品的寿命缩短,失效率提升,因此对电子产品的散热需求也是逐年提升。具体到通讯领域及其他企业级应用的电子设备,基本上还是以机柜、机框作为电子设备的结构载体。在对这些设备散热时,都需要使用风扇进行风冷散热,风扇插框一般有多个风扇分布在一个平面上,实现对设备的散热。风扇散热的原理是利用空气的流动带走热量,设备的热耗越高要求风扇的转速越快,高转速的风扇产生了噪音问题。风扇产生的噪音主要由风噪和结构噪音两部分,扇叶切割风、风流过风道产生的涡流都是风噪;另外风扇扇叶的不平衡、转动轴的同轴度误差、设备机械结构的安装缝隙都会在风扇转动过程中产生摩擦和撞击的噪声。
随着社会环保意识的增强,人们对设备的噪音也提出了更高的要求。这就要求目前的散热技术既要满足更高的散热需求,又要减少散热导致的噪音。最近几年业界提出了多种风扇降噪技术,其中最热门的是主动降噪技术,原理是用麦克采集噪音信号,经过运算放大后用发声单元输出一个反相的噪声,与原噪声对消。其他的技术包括设计特定的扇叶结构和风道结构,应用吸音材料等方法。主动降噪在技术上比较先进,但是目前的应用还是局限在耳机等有限的应用场景,还没有在较大型的设备上成功应用的先例,主要是由于噪声源和发声单元形成的声波的抵消只在一定的区域内有效,如果要实现在较大空间内的抵消,系统会变的很复杂。技术难度和实现成本都是无法实用。
目前通信设备内部的散热单元一般是由风扇框内设置多个风扇达到散热目的,其结构请参见图1所示,包括风扇框1以及设置于风扇框内的多个风 扇2,多个风扇2并联,目前对风扇框1中的多个风扇2同时控制,控制每个风扇2采用相同的转速,导致每个风扇2工作在相同的频率上,这样这些风扇的噪音会在相同的频谱上产生叠加进而产生更大的噪声。请参见图2所示,图2中的下方的实线所示为单个风扇的噪声频谱,上方的虚线为多个转速相同的风扇叠加后的噪声频谱,由虚线部分可以看出多个风扇产生的噪声频谱的峰值产生了叠加。另外,多个风扇工作在相同的频率下也更容易导致通信设备的结构产生共振,进而产生额外的振动噪音和结构损坏等风险。
发明内容
本文提供一种通信设备及其多风扇控制方法和装置,解决相关技术的通信设备中的多风扇工作在相同频率上噪声频谱在峰值叠加后产生更大噪声以及易产生共振的问题。
一种通信设备的多风扇控制方法,包括:
获取所述通信设备的系统温度值;
根据所述系统温度值确认对应的系统目标转速值;
根据所述系统目标转速值和预设原则计算得到所述通信设备的每个风扇的实际温控转速值,得到的实际温控转速值中有至少两个不相等;
根据所述每个风扇的实际温控转速值对所述每个风扇进行转速控制。
在本发明的一种实施例中,计算得到的每个风扇的实际温控转速值都不相等。
在本发明的一种实施例中,计算得到的每个风扇的实际温控转速值的平均值等于所述系统目标转速值,或大于所述系统目标转速值。
在本发明的一种实施例中,根据所述系统目标转速值和预设原则计算得到所述通信设备每个风扇的实际温控转速值包括:
获取每个风扇的转速调控值,所述每个风扇的转速调控值中有至少两个不相等;
将所述系统目标转速分别与每个风扇的转速调控值相加得到每个风扇的实际温控转速值。
在本发明的一种实施例中,所述获取每个风扇的转速调控值包括:
直接获取预先设定好的每个风扇的转速调控值;
或采用预设的伪随机算法在设定的第一范围内生成N个转速调控值,所述N等于所述风扇的总个数;
或所述风扇的总个数N为偶数时,采用预设的伪随机算法在设定的第二范围内生成N/2个转速调控值,然后再对得到的N/2个转速调控值取负得到另外N/2个转速调控值;
或所述风扇的总个数N为奇数时,采用预设的伪随机算法在设定的第三范围内生成(N-1)/2个转速调控值,然后再对得到的(N-1)/2个转速调控值取负得到另外(N-1)/2个转速调控值,并设定剩余的那个转速调控值为一大于等于0的固定值。
在本发明的一种实施例中,根据所述每个风扇的实际温控转速值对所述每个风扇进行转速控制过程中,还包括:将实际温控转速值低的风扇与实际温控转速值高的风扇进行轮换控制。
一种通信设备的多风扇控制装置,包括温度检测器和处理器;
所述温度检测器设置为:获取所述通信设备的系统温度值;
所述处理器设置为:根据所述系统温度值确认对应的系统目标转速值,根据所述系统目标转速值和预设原则计算得到所述通信设备的每个风扇的实际温控转速值,得到的实际温控转速值中有至少两个不相等;并根据所述每个风扇的实际温控转速值对所述每个风扇进行转速控制。
在本发明的一种实施例中,所述处理器计算得到的每个风扇的实际温控转速值都不相等。
在本发明的一种实施例中,所述处理器计算得到的每个风扇的实际温控转速值的平均值等于所述系统目标转速值,或大于所述系统目标转速值。
在本发明的一种实施例中,所述处理器是设置为:
获取每个风扇的转速调控值,所述每个风扇的转速调控值中有至少两个不相等;
将所述系统目标转速分别与每个风扇的转速调控值相加得到每个风扇的实际温控转速值。
在本发明的一种实施例中,所述处理器是设置为:
直接获取预先设定好的每个风扇的转速调控值;
或采用预设的伪随机算法在设定的第一范围内生成N个转速调控值,所述N等于所述风扇的总个数;
或所述风扇的总个数N为偶数时,采用预设的伪随机算法在设定的第二范围内生成N/2个转速调控值,然后再对得到的N/2个转速调控值取负得到另外N/2个转速调控值;
或所述风扇的总个数N为奇数时,采用预设的伪随机算法在设定的第三范围内生成(N-1)/2个转速调控值,然后再对得到的(N-1)/2个转速调控值取负得到另外(N-1)/2个转速调控值,并设定剩余的那个转速调控值为一大于等于0的固定值。
一种通信设备,包括多个风扇和如上所述的通信设备的多风扇控制装置,所述多风扇控制装置与所述多个风扇连接,设置为:对所述多个风扇进行控制。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本实施例提供的通信设备及其多风扇控制方法和装置,在进行风扇控制时,获取通信设备的系统温度值,根据系统温度值确认对应的系统目标转速值;然后基于系统目标转速值和预设原则计算得到通信设备每个风扇的实际温控转速值,且得到的实际温控转速值中有至少两个不相等;然后根据每个风扇的实际温控转速值对每个风扇进行转速控制,使每个风扇中的至少两个风扇的转速不相等,避免通信设备中的所有风扇工作在相同频率上,避免多个风扇产生的噪声频谱的峰值叠加,可以降低多个风扇产生的叠加后的噪声,并降低出现共振的可能,进而避免因产生共振而产生额外的振动噪声和结构损坏等风险。
附图概述
图1为相关技术的通信设备风扇框的结构示意图;
图2为相关技术的通信设备多风扇的噪声频谱图;
图3为本发明实施例一提供的通信设备的多风扇控制方法流程示意图;
图4为本发明实施例一提供的计算每个风扇的实际温控转速值流程示意图;
图5为本发明实施例一提供的多风扇的噪声频谱图;
图6为本发明实施例二提供的通信设备结构示意图;
图7为本发明实施例二提供的多风扇控制装置结构示意图。
本发明的实施方式
下面结合附图对本发明的实施方式进行说明。
实施例一:
本实施例提供的通信设备的多风扇控制方法请参见图3所示,包括:
步骤301:获取通信设备的系统温度值,该获取过程可以通过温度传感器或检测电路检测获取;
步骤302:根据获取的系统温度值确认对应的系统目标转速值;可根据预设的调速曲线(温度-转速调速曲线)确定对应的系统目标转速值,例如假设获取的系统温度值为50摄氏度,根据调速曲线确定50摄氏度对应的系统目标转速值为8000转/分钟;
步骤303:根据得到的系统目标转速值和预设原则计算得到通信设备的每个风扇的实际温控转速值,且得到的实际温控转速值中有至少两个不相等;
步骤304:根据每个风扇的实际温控转速值对每个风扇进行转速控制;例如根据每个风扇的实际温控转速值得到生成控制每个风扇转速的控制信号,并下发给每个对应的风扇进行控制。
可见,通过本实施例提供的风扇控制方法,可以使通信设备每个风扇中的至少两个风扇以不同的转速工作,避免通信设备中的所有风扇工作在相同频率上,进而避免多个风扇产生的噪声频谱的峰值叠加,可以降低多个风扇产生的叠加后的噪声,并降低出现共振的可能,进而避免因产生共振而产生额外的振动噪声和结构损坏等风险。例如,假设通信设备具有六个风扇,通过本实施例提供的控制方法可以使其中的至少两个风扇以不同的转速工作。
为了尽可能避免多个风扇产生的噪声频谱的峰值叠加,本实施例步骤103中可设置计算得到的每个风扇的实际温控转速值都不相等,也即控制每个风扇都以不同的转速工作。此时请参见图5所示,图5中的下方的实线所示为单个风扇的噪声频谱,上方的虚线为多个转速不相同的风扇叠加后的噪声频谱,由虚线部分可以看出每个风扇产生的噪声频谱的峰值并未产生明显的叠加,相对图2所示的相关技术的通信设备多风扇的噪声频谱图,叠加后的噪声峰值对应的功率要小的多。
另外,为了保证能达到预设的散热效果,本实施例中每个风扇的转速经上述调控后所输出的实际总风量应与每个风扇都按照系统目标转速值进行工作时所输出的目标总风量基本保持一致,实际总风量可以略小于目标总风量;本实施例中为了保证散热效果,选择实际总风量等于目标总风量,或实际总风量大于目标总风量,此时上述步骤303中计算得到的每个风扇的实际温控转速值的平均值等于系统目标转速值,或大于系统目标转速值。
请参见图4所示,上述步骤303中根据系统目标转速值和预设原则计算得到通信设备的每个风扇的实际温控转速值包括:
步骤3031:获取每个风扇的转速调控值,每个风扇的转速调控值中有至少两个不相等;如果要求每个风扇的实际转速都不相等,则要求每个风扇的转速调控值都不相等;
步骤3032:将系统目标转速分别与每个风扇的转速调控值相加得到每个风扇的实际温控转速值。假设系统目标转速为X,每个风扇的转速调控值为x(n),n为第n个风扇,则第n个风扇的实际温控转速值X(n)=X+x(n)。
应当理解的是,本实施例中每个风扇的转速调控值x(n)还可以是一个大于1或小于1的调控因子,此时第n个风扇的实际温控转速值X(n)=X*x(n)。 同时,应当理解的是,本实施例中得到实际温控转速值的算法可以进行任意转换,只要能使得到的每个风扇的实际温控转速值不同即可。
上述步骤3031中获取每个风扇的转速调控值的方式可以包括以下方式中的任意一种:
方式一:直接获取预先设定好的每个风扇的转速调控值,也即每个风扇的转速调控值可以预先设定好,需要时直接提取即可。下面以一种应用场景对基于这种方式的控制过程进行示例说明:
假设通信设备的一个风扇插框内共有6个风扇,这6个风扇分别标注为FAN1,FAN2,FAN3,FAN4,FAN5,FAN6。从温度传感器获取的通信设备系统温度值为50摄氏度;根据预设的调速曲线,得到这个温度值对应系统目标转速值X为8000转/分钟。设之前为6个风扇设定的转速调控值分别为x(1)=100,x(2)=200,x(3)=-100,x(4)=-150,x(5)=0,x(6)=-50;最终计算得到的每个风扇的实际温控转速值分别为X(1)=8000+100=8100;X(2)=8000+200=8200;X(3)=8000+(-100)=7900;X(4)=8000+(-150)=7850;X(5)=8000+0=8000;X(6)=8000+(-50)=7950;接下来根据每个风扇的实际温控转速值生成对应每个风扇的转速控制信号下发给每个对应的风扇,控制每个风扇的转速。
应当理解的是,本实施例中的上述控制过程可以是周期性的执行,以实现通信设备散热的动态调整。上述示例中经调控后除了每个风扇的转速拉开一定的距离外,风扇框的实际输出风量与目标总风量一致,也即上述6个风扇的实际温控转速值的平均值等于系统目标转速值8000转/分钟。
方式二:采用预设的伪随机算法在设定的第一范围内生成N个转速调控值,该N等于风扇的总个数;下面以一种应用场景对基于这种方式的控制过程进行示例说明:
假设通信设备的一个风扇插框内共有9个风扇,这9个风扇分别标注为FAN1,FAN2,FAN3,FAN4,FAN5,FAN6,FAN7,FAN8,FAN9。从温度传感器获取的通信设备系统温度值为50摄氏度;根据预设的调速曲线,得到这个温度值对应系统目标转速值X为8000转/分钟。利用一个伪随机算法在第一范围内(取-150到+150)产生9个伪随机数分别作为每个风扇的转 速调控值,假设得到的9个伪随机值为:x(1)=88,x(2)=45,x(3)=-110,x(4)=-70,x(5)=12,x(6)=-50,x(7)=70,x(8)=-12,x(9)=50;最终计算得到的每个风扇的实际温控转速值分别为X(1)=8000+88=8088;X(2)=8000+45=8045;X(3)=8000+(-110)=7890;X(4)=8000+(-70)=7930;X(5)=8000+12=8012;X(6)=8000+(-50)=7950;X(7)=8000+70=8070;X(8)=8000+(-12)=7988;X(9)=8000+50=8050;接下来根据每个风扇的实际温控转速值生成对应每个风扇的转速控制信号下发给每个对应的风扇,控制每个风扇的转速。
应当理解的是,本实施例中的上述控制过程也可以是周期性的执行,以实现通信设备散热的动态调整。上述示例中经调控后除了每个风扇的转速拉开一定的距离外,风扇框的实际输出风量与目标总风量基本一致,从上述示例可以得到上述9个风扇的实际温控转速值的平均值略大于系统目标转速值8000转/分钟。
方式三:当风扇的总个数N为偶数时,采用预设的伪随机算法在设定的第二范围内生成N/2个转速调控值,然后再对得到的N/2个转速调控值取负得到另外N/2个转速调控值;下面以一种应用场景对基于这种方式的控制过程进行示例说明:
假设通信设备的一个风扇插框内共有8个风扇,这8个风扇分别标注为FAN1,FAN2,FAN3,FAN4,FAN5,FAN6,FAN7,FAN8。从温度传感器获取的通信设备系统温度值为50摄氏度;根据预设的调速曲线,得到这个温度值对应系统目标转速值X为8000转/分钟。利用一个伪随机算法在第二范围内(取0到+150)产生4个伪随机数分别作为第1-4个风扇的转速调控值,假设得到的4个伪随机值为:x(1)=88,x(2)=45,x(3)=10,x(4)=70,对这4个伪随机值取负得到第5-8个风扇的转速调控值,分别为x(5)=-88,x(6)=-45,x(7)=-10,x(8)=-70;最终计算得到的每个风扇的实际温控转速值分别为X(1)=8000+88=8088;X(2)=8000+45=8045;X(3)=8000+10=7890;X(4)=8000+70=8070;X(5)=8000+(-88)=7912;X(6)=8000+(-45)=7955;X(7)=8000+(-10)=7990;X(8)=8000+(-70)=7930。接下来根据每个风扇的实际温控转速值生成对应每个风扇的转速控制信号下 发给每个对应的风扇,控制每个风扇的转速。
应当理解的是,本实施例中的上述控制过程也可以是周期性的执行,以实现通信设备散热的动态调整。上述示例中经调控后除了每个风扇的转速拉开一定的距离外,风扇框的实际输出风量与目标总风量基本一致,从上述示例可以得到上述8个风扇的实际温控转速值的平均值等于系统目标转速值8000转/分钟。
方式四:风扇的总个数N为奇数时,采用预设的伪随机算法在设定的第三范围内生成(N-1)/2个转速调控值,然后再对得到的(N-1)/2个转速调控值取负得到另外(N-1)/2个转速调控值,并设定剩余的那个转速调控值为一大于等于0的固定值。
下面以一种应用场景对基于这种方式的控制过程进行示例说明:
假设通信设备的一个风扇插框内共有7个风扇,这7个风扇分别标注为FAN1,FAN2,FAN3,FAN4,FAN5,FAN6,FAN7。从温度传感器获取的通信设备系统温度值为50摄氏度;根据预设的调速曲线,得到这个温度值对应系统目标转速值X为8000转/分钟。利用一个伪随机算法在第三范围内(取10到+150)产生3个伪随机数分别作为第1-3个风扇的转速调控值,假设得到的3个伪随机值为:x(1)=88,x(2)=45,x(3)=10,对这4个伪随机值取负得到第4-6个风扇的转速调控值,分别为x(4)=-88,x(5)=-45,x(6)=-10,设定剩余的那个风扇FAN7的转速调控值x(7)=0;最终计算得到的每个风扇的实际温控转速值分别为X(1)=8000+88=8088;X(2)=8000+45=8045;X(3)=8000+10=7890;X(4)=8000+(-88)=7912;X(5)=8000+(-45)=7955;X(6)=8000+(-10)=7990;X(7)=8000+0=8000。接下来根据每个风扇的实际温控转速值生成对应每个风扇的转速控制信号下发给每个对应的风扇,控制每个风扇的转速。
应当理解的是,本实施例中的上述控制过程也可以是周期性的执行,以实现通信设备散热的动态调整。上述示例中经调控后除了每个风扇的转速拉开一定的距离外,风扇框的实际输出风量与目标总风量基本一致,从上述示例可以得到上述7个风扇的实际温控转速值的平均值等于系统目标转速值8000转/分钟。
本实施例中,为了防止不同的风扇工作转速不同导致老化失效的速率不同,可以在相同的散热要求下采用不同的转速调控方案,例如可采用上述随机生成转速调控值,随机生成的转速调控值一般情况下可以使每个风扇在整个控制过程中高低转速交替工作,进而保证每个风扇老化失效率的速率基本一致。当然,本实施例中还可以在根据每个风扇的实际温控转速值对每个风扇进行转速控制过程中,将实际温控转速值低的风扇与实际温控转速值高的风扇进行轮换控制(可以根据工作时间等因素进行轮换控制),以使每个风扇在整个控制过程中高低转速交替工作,保证每个风扇老化失效率的速率基本一致。
实施例二:
本实施例提供了一种通信设备,请参见图6所示,包括多个风扇3和多风扇控制装置4,多风扇控制装置4与多个风扇3连接,设置为:对多个风扇进行控制。请参见图7所示,多风扇控制装置4包括温度检测器41和处理器42;温度检测器41和处理器42可以设置在同一风扇控制板上,温度检测器41也可以设置在通信设备内的其他位置,只要能准确获取到通信设备内的系统温度值即可。风扇控制板则即可设置在通信设备的风扇框内,也可设置在风扇框外。
温度检测器41设置为:获取通信设备的系统温度值;
处理器42设置为:根据系统温度值确认对应的系统目标转速值,根据系统目标转速值和预设原则计算得到通信设备的每个风扇的实际温控转速值,得到的实际温控转速值中有至少两个不相等;并根据每个风扇的实际温控转速值对每个风扇进行转速控制。
可见,通过本实施例提供的多风扇控制装置4可以使通信设备每个风扇中的至少两个风扇以不同的转速工作,避免通信设备中的所有风扇工作在相同频率上,进而避免多个风扇产生的噪声频谱的峰值叠加,可以降低多个风扇产生的叠加后的噪声,并降低出现共振的可能,进而避免因产生共振而产生额外的振动噪声和结构损坏等风险。
为了尽可能避免多个风扇产生的噪声频谱的峰值叠加,本实施例可设置处理器42计算得到的每个风扇的实际温控转速值都不相等,也即控制每个风扇都以不同的转速工作。此时处理器42可以单独对每个风扇3进行单独控制,每个风扇3之间则可相互独立设置。
另外,为了保证能达到预设的散热效果,本实施例中可选每个风扇的转速经上述调控后所输出的实际总风量应与每个风扇都按照系统目标转速值进行工作时所输出的目标总风量基本保持一致,实际总风量可以略小于目标总风量;本实施例中为了保证散热效果,可选实际总风量等于目标总风量,或实际总风量大于目标总风量,此时处理器42计算得到的每个风扇的实际温控转速值的平均值等于系统目标转速值,或大于系统目标转速值。
本实施例中,处理器42根据系统目标转速值和预设原则计算得到通信设备每个风扇的实际温控转速包括:
获取每个风扇的转速调控值,每个风扇的转速调控值中有至少两个不相等;
将系统目标转速分别与每个风扇的转速调控值相加得到每个风扇的实际温控转速值。假设系统目标转速为X,每个风扇的转速调控值为x(n),n为第n个风扇,则第n个风扇的实际温控转速值X(n)=X+x(n)。
应当理解的是,本实施例中每个风扇的转速调控值x(n)还可以是一个大于1或小于1的调控因子,此时第n个风扇的实际温控转速值X(n)=X*x(n)。同时,应当理解的是,本实施例中得到实际温控转速值的算法可以进行任意转换,只要能使得到的每个风扇的实际温控转速值不同即可。
本实施例中处理器42获取每个风扇的转速调控值方式可以包括以下方式中的任意一种:
方式一:
直接获取预先设定好的每个风扇的转速调控值,也即每个风扇的转速调控值可以预先设定好,需要时直接提取即可。
方式二:采用预设的伪随机算法在设定的第一范围内生成N个转速调控值,该N等于风扇的总个数。
方式三:当风扇的总个数N为偶数时,采用预设的伪随机算法在设定的第二范围内生成N/2个转速调控值,然后再对得到的N/2个转速调控值取负得到另外N/2个转速调控值。
方式四:风扇的总个数N为奇数时,采用预设的伪随机算法在设定的第三范围内生成(N-1)/2个转速调控值,然后再对得到的(N-1)/2个转速调控值取负得到另外(N-1)/2个转速调控值,并设定剩余的那个转速调控值为一大于等于0的固定值(例如设定为0)。
应当理解的是,本实施例中的多风扇控制装置4执行的上述控制过程可以是周期性的,以实现通信设备散热的动态调整。上述示例中经调控后除了每个风扇的转速拉开一定的距离外,风扇框的实际输出风量与目标总风量基本一致,以保证散热效果。
本实施例中,为了防止不同的风扇工作转速不同导致老化失效的速率不同,多风扇控制装置4可以在相同的散热要求下采用不同的转速调控方案,例如可选处理器42采用上述随机生成转速调控值,随机生成的转速调控值一般情况下可以使每个风扇在整个控制过程中高低转速交替工作,进而保证每个风扇老化失效率的速率基本一致。当然,本实施例中多风扇控制装置4的处理器42还可以在根据每个风扇的实际温控转速值对每个风扇进行转速控制过程中,将实际温控转速值低的风扇与实际温控转速值高的风扇进行轮换控制(可以根据工作时间等因素进行轮换控制),以使每个风扇在整个控制过程中高低转速交替工作,保证每个风扇老化失效率的速率基本一致。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实 现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
采用本发明实施例的转速调控方案,避免了多个风扇工作在相同的转速下导致的噪声频谱的一致性,每个风扇的转速不同,所产生的噪音的峰值点也不同,这样这些噪声叠加后不会形成一个很高的噪声频率峰,降低了噪声对环境的影响。另外,由于风扇的转子和轴承等机械结构都会有制造误差,误差导致的重心偏移使结构转动时是一种偏心转动,导致结构震动噪声。每个风扇的转速不同避免所有风扇在同一转速下转动可以降低整个设备震动的幅度,降低了设备产生共振的风险,降低了因共振产生的噪音和结构损坏的概率。

Claims (13)

  1. 一种通信设备的多风扇控制方法,包括:
    获取所述通信设备的系统温度值;
    根据所述系统温度值确认对应的系统目标转速值;
    根据所述系统目标转速值和预设原则计算得到所述通信设备的每个风扇的实际温控转速值,得到的实际温控转速值中有至少两个不相等;
    根据所述每个风扇的实际温控转速值对所述每个风扇进行转速控制。
  2. 如权利要求1所述的通信设备的多风扇控制方法,其中,计算得到的每个风扇的实际温控转速值都不相等。
  3. 如权利要求1所述的通信设备的多风扇控制方法,其中,计算得到的每个风扇的实际温控转速值的平均值等于所述系统目标转速值,或大于所述系统目标转速值。
  4. 如权利要求1-3任一项所述的通信设备的多风扇控制方法,其中,根据所述系统目标转速值和预设原则计算得到所述通信设备每个风扇的实际温控转速值包括:
    获取每个风扇的转速调控值,所述每个风扇的转速调控值中有至少两个不相等;
    将所述系统目标转速分别与每个风扇的转速调控值相加得到每个风扇的实际温控转速值。
  5. 如权利要求4所述的通信设备的多风扇控制方法,其中,所述获取每个风扇的转速调控值包括:
    直接获取预先设定好的每个风扇的转速调控值;
    或采用预设的伪随机算法在设定的第一范围内生成N个转速调控值,所述N等于所述风扇的总个数;
    或所述风扇的总个数N为偶数时,采用预设的伪随机算法在设定的第二范围内生成N/2个转速调控值,然后再对得到的N/2个转速调控值取负得到 另外N/2个转速调控值;
    或所述风扇的总个数N为奇数时,采用预设的伪随机算法在设定的第三范围内生成(N-1)/2个转速调控值,然后再对得到的(N-1)/2个转速调控值取负得到另外(N-1)/2个转速调控值,并设定剩余的那个转速调控值为一大于等于0的固定值。
  6. 如权利要求1-3任一项所述的通信设备的多风扇控制方法,其中,根据所述每个风扇的实际温控转速值对所述每个风扇进行转速控制过程中,还包括:将实际温控转速值低的风扇与实际温控转速值高的风扇进行轮换控制。
  7. 一种通信设备的多风扇控制装置,包括温度检测器和处理器;
    所述温度检测器设置为:获取所述通信设备的系统温度值;
    所述处理器设置为:根据所述系统温度值确认对应的系统目标转速值,根据所述系统目标转速值和预设原则计算得到所述通信设备的每个风扇的实际温控转速值,得到的实际温控转速值中有至少两个不相等;并根据所述每个风扇的实际温控转速值对所述每个风扇进行转速控制。
  8. 如权利要求7所述的通信设备的多风扇控制装置,其中,所述处理器计算得到的每个风扇的实际温控转速值都不相等。
  9. 如权利要求7所述的通信设备的多风扇控制装置,其中,所述处理器计算得到的每个风扇的实际温控转速值的平均值等于所述系统目标转速值,或大于所述系统目标转速值。
  10. 如权利要求7-9任一项所述的通信设备的多风扇控制装置,其中,所述处理器是设置为:
    获取每个风扇的转速调控值,所述每个风扇的转速调控值中有至少两个不相等;
    将所述系统目标转速分别与每个风扇的转速调控值相加得到每个风扇的实际温控转速值。
  11. 如权利要求10所述的通信设备的多风扇控制装置,其中,所述处理器是设置为:
    直接获取预先设定好的每个风扇的转速调控值;
    或采用预设的伪随机算法在设定的第一范围内生成N个转速调控值,所述N等于所述风扇的总个数;
    或所述风扇的总个数N为偶数时,采用预设的伪随机算法在设定的第二范围内生成N/2个转速调控值,然后再对得到的N/2个转速调控值取负得到另外N/2个转速调控值;
    或所述风扇的总个数N为奇数时,采用预设的伪随机算法在设定的第三范围内生成(N-1)/2个转速调控值,然后再对得到的(N-1)/2个转速调控值取负得到另外(N-1)/2个转速调控值,并设定剩余的那个转速调控值为一大于等于0的固定值。
  12. 一种通信设备,包括多个风扇和如权利要求7-11任一项所述的通信设备的多风扇控制装置,所述多风扇控制装置与所述多个风扇连接,设置为:对所述多个风扇进行控制。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-6任一项的方法。
PCT/CN2015/079404 2014-12-01 2015-05-20 通信设备及其多风扇控制方法和装置 WO2016086620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410718327.2A CN105715571A (zh) 2014-12-01 2014-12-01 通信设备及其多风扇控制方法和装置
CN201410718327.2 2014-12-01

Publications (1)

Publication Number Publication Date
WO2016086620A1 true WO2016086620A1 (zh) 2016-06-09

Family

ID=56090924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079404 WO2016086620A1 (zh) 2014-12-01 2015-05-20 通信设备及其多风扇控制方法和装置

Country Status (2)

Country Link
CN (1) CN105715571A (zh)
WO (1) WO2016086620A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111121120A (zh) * 2018-10-31 2020-05-08 宁波方太厨具有限公司 双直流风机转速控制方法、系统及吸油烟机
CN112901545A (zh) * 2021-02-01 2021-06-04 中国神华能源股份有限公司国华电力分公司 一种空冷风机温度场控制方法、装置和系统
CN115729332A (zh) * 2022-11-14 2023-03-03 超聚变数字技术有限公司 电子设备的降温方法、装置以及电子设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106891760B (zh) * 2017-02-10 2019-07-26 上海蔚来汽车有限公司 充换电设备及其主动降噪方法
CN107563130A (zh) * 2017-08-03 2018-01-09 郑州云海信息技术有限公司 一种预估n组风扇阵列噪声的方法
KR102487185B1 (ko) * 2017-12-04 2023-01-10 현대자동차 주식회사 차량용 쿨링팬 제어방법
CN109083857A (zh) * 2018-08-06 2018-12-25 郑州云海信息技术有限公司 一种服务器风扇转速控制方法及装置
CN109324644B (zh) * 2018-09-29 2023-01-17 联想(北京)有限公司 一种控制振动源振动的方法及装置
CN112099599A (zh) * 2020-09-08 2020-12-18 合肥联宝信息技术有限公司 一种电子设备的温度控制方法及装置
JP2022100083A (ja) * 2020-12-23 2022-07-05 理想科学工業株式会社 吸引ファン制御装置
CN113187597B (zh) * 2021-04-20 2022-04-26 潍柴动力股份有限公司 车辆冷却系统控制方法、控制器及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1963233A (zh) * 2006-12-08 2007-05-16 杭州华为三康技术有限公司 一种控制风扇转速的方法和装置
CN101303021A (zh) * 2008-06-23 2008-11-12 中兴通讯股份有限公司 一种温度自适应控制风扇的装置和方法
CN103645786A (zh) * 2013-12-19 2014-03-19 上海大学 一种智能笔记本散热系统及其风扇调速方法
CN103807200A (zh) * 2012-11-15 2014-05-21 英业达科技有限公司 风扇转速控制方法与电子装置
US20140161609A1 (en) * 2012-12-10 2014-06-12 Hon Hai Precision Industry Co., Ltd. Fan control system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201437792U (zh) * 2009-06-09 2010-04-14 丰生微电机(上海)有限公司 模块四风机散热设备
CN102900688A (zh) * 2011-07-26 2013-01-30 技嘉科技股份有限公司 风扇的转速控制方法及其装置
CN104154627B (zh) * 2013-05-14 2017-03-22 珠海格力电器股份有限公司 空调器室外风扇电机的控制方法
CN104154023A (zh) * 2014-08-18 2014-11-19 深圳市杰和科技发展有限公司 一种显示卡多风扇智能控制系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1963233A (zh) * 2006-12-08 2007-05-16 杭州华为三康技术有限公司 一种控制风扇转速的方法和装置
CN101303021A (zh) * 2008-06-23 2008-11-12 中兴通讯股份有限公司 一种温度自适应控制风扇的装置和方法
CN103807200A (zh) * 2012-11-15 2014-05-21 英业达科技有限公司 风扇转速控制方法与电子装置
US20140161609A1 (en) * 2012-12-10 2014-06-12 Hon Hai Precision Industry Co., Ltd. Fan control system and method
CN103645786A (zh) * 2013-12-19 2014-03-19 上海大学 一种智能笔记本散热系统及其风扇调速方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111121120A (zh) * 2018-10-31 2020-05-08 宁波方太厨具有限公司 双直流风机转速控制方法、系统及吸油烟机
CN111121120B (zh) * 2018-10-31 2021-12-24 宁波方太厨具有限公司 双直流风机转速控制方法、系统及吸油烟机
CN112901545A (zh) * 2021-02-01 2021-06-04 中国神华能源股份有限公司国华电力分公司 一种空冷风机温度场控制方法、装置和系统
CN112901545B (zh) * 2021-02-01 2022-06-14 中国神华能源股份有限公司国华电力分公司 一种空冷风机温度场控制方法、装置和系统
CN115729332A (zh) * 2022-11-14 2023-03-03 超聚变数字技术有限公司 电子设备的降温方法、装置以及电子设备
CN115729332B (zh) * 2022-11-14 2023-11-03 超聚变数字技术有限公司 电子设备的降温方法、装置以及电子设备

Also Published As

Publication number Publication date
CN105715571A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2016086620A1 (zh) 通信设备及其多风扇控制方法和装置
US11041500B2 (en) Parallel-series hybrid fan cooling apparatus and optimization
US8265799B2 (en) Circuit for controlling dynamic rotation speed of fan, method of controlling dynamic rotation speed of fan, and program for controlling dynamic rotation speed of fan
US7925028B2 (en) Electronic device having a blower with noise control
US10908661B2 (en) Method for optimizing fan speed control of a computer system
US20150110283A1 (en) System for controlling fan noise
CN105828577A (zh) 电子设备及其控制方法
US10083683B2 (en) Reducing computer fan noise
TWI589112B (zh) 電子裝置的風扇控制方法
JP2016207859A (ja) 放熱構造、排出方法、放熱システムおよび情報処理装置
JP2012048653A (ja) 電子機器
TW201915345A (zh) 風扇噪音控制系統
US11631391B1 (en) Electronic system having heat dissipation and feed-forward active noise control function with wind pressure compensation and related method
US9341228B2 (en) Fan noise and vibration elimination system
US11705104B2 (en) Electronic system with heat dissipation and feed-forward active noise control function and related method
US20140376177A1 (en) Server with a function of generating fan table and method for generating fan table
TW202309708A (zh) 具散熱和前饋式主動噪音控制功能之電子系統
TW202316230A (zh) 具散熱和前饋式主動噪音控制功能之電子系統
TWI592578B (zh) 電子裝置的風扇控制方法
JP6628311B2 (ja) ファン制御装置、冷却ファン・システム、コンピュータ装置、ファン制御方法及びプログラム
JP6536062B2 (ja) 騒音低減装置、電子機器、騒音低減方法、および、騒音低減プログラム
US20240046911A1 (en) Electronic system having heat dissipation and feed-forward active noise control function and related method
TWI614411B (zh) 風量自動補償之控制模組及其風扇系統
TWM546453U (zh) 風量自動補償之控制模組及其風扇系統
TW202411981A (zh) 具散熱和前饋式主動噪音控制功能之電子系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865098

Country of ref document: EP

Kind code of ref document: A1