WO2016084500A1 - カプセル型内視鏡、カプセル型内視鏡起動システム、及び検査システム - Google Patents
カプセル型内視鏡、カプセル型内視鏡起動システム、及び検査システム Download PDFInfo
- Publication number
- WO2016084500A1 WO2016084500A1 PCT/JP2015/078833 JP2015078833W WO2016084500A1 WO 2016084500 A1 WO2016084500 A1 WO 2016084500A1 JP 2015078833 W JP2015078833 W JP 2015078833W WO 2016084500 A1 WO2016084500 A1 WO 2016084500A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- imaging
- capsule endoscope
- frame rate
- unit
- control unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
Definitions
- the present invention relates to a capsule endoscope that is introduced into a subject and performs imaging, a capsule endoscope activation system that activates the capsule endoscope, and an examination of the inside of the subject using the capsule endoscope It relates to an inspection system.
- capsule endoscopes that have been introduced into a subject and imaged have been developed.
- the capsule endoscope is provided with an imaging function and a wireless communication function inside a capsule-shaped casing formed in a size that can be introduced into the digestive tract of a subject, and has been swallowed by the subject.
- imaging is performed while moving in the digestive tract by peristaltic movement or the like, and image data of an image inside the organ of the subject (hereinafter also referred to as in-vivo image) is sequentially generated and wirelessly transmitted (see, for example, Patent Document 1).
- the wirelessly transmitted image data is received by a receiving device provided outside the subject, and further taken into an image display device such as a workstation and subjected to predetermined image processing.
- the in-vivo image of the subject can be displayed as a still image or a moving image.
- the imaging frame rate of the capsule endoscope can be appropriately controlled according to the observation site (organ).
- Patent Document 1 discloses a technique for controlling the imaging frame rate of the capsule endoscope based on information on the position of the capsule endoscope in the subject.
- a sensor that detects a velocity or an angular velocity is provided in a capsule endoscope, and the time is counted by a technique for acquiring information on a position by this sensor or a clock from a clock generator, A technique for predicting the position of a capsule endoscope in a subject based on the counted time is disclosed.
- the present invention has been made in view of the above, and is a capsule endoscope that can change the imaging frame rate at an appropriate timing according to an observation site without increasing the number of components, and a capsule endoscope
- An object is to provide a mirror activation system and an inspection system.
- a capsule endoscope receives an illumination unit that generates light for illuminating the inside of a subject and light reflected in the subject.
- An imaging unit that captures an image and outputs an electrical image signal, an illumination control unit that controls a light emission amount in the illumination unit for each frame based on the image signal, and the light emission amount according to the light emission amount,
- An imaging control unit that executes control for changing an imaging frame rate in the imaging unit.
- the imaging control unit lowers the imaging frame rate when the light emission amount exceeds a threshold value.
- the imaging control unit sets the imaging frame rate when a difference in the light emission amount between the immediately preceding frame and a frame preceding the immediately preceding frame exceeds a threshold value. It is characterized by lowering.
- the imaging control unit lowers the imaging frame rate when an average value or a combined value of the light emission amounts in a plurality of frames exceeds a threshold value.
- the imaging control unit changes the imaging frame rate based on the light emission amount only once.
- the imaging control unit maintains the imaging frame rate at a first value for a predetermined time from when the capsule endoscope is activated, and from when the capsule endoscope is activated.
- the imaging frame rate is switched to a second value higher than the first value, and after the predetermined time has elapsed, the imaging frame rate is changed based on the light emission amount; It is characterized by that.
- the capsule endoscope according to the present invention captures an image by receiving a light that illuminates the inside of the subject and the light reflected in the subject, and outputs an electrical image signal.
- An imaging unit, and an imaging control unit that executes control for switching an imaging frame rate in the imaging unit according to the amount of light received in the imaging unit acquired based on the image signal.
- the imaging control unit lowers the imaging frame rate when the amount of received light falls below a threshold value.
- the imaging control unit sets the imaging frame rate when a difference in the amount of received light between a previous frame and a frame preceding the previous frame is lower than a threshold value. It is characterized by lowering.
- the imaging control unit lowers the imaging frame rate when an average value or a combined value of the received light amounts in a plurality of frames falls below a threshold value.
- the imaging control unit changes the imaging frame rate based on the amount of received light only once.
- the imaging control unit maintains the imaging frame rate at a first value for a predetermined time from when the capsule endoscope is activated, and from when the capsule endoscope is activated.
- the imaging frame rate is switched to a second value higher than the first value, and after the predetermined time has elapsed, the imaging frame rate is changed based on the amount of received light. It is characterized by that.
- the capsule endoscope further includes a counter that counts an elapsed time from the start of the capsule endoscope, and the illumination control unit responds to the remaining time up to the predetermined time based on the elapsed time. The blinking interval of the illumination unit is changed.
- the capsule endoscope activation system includes the capsule endoscope, a switch that activates the capsule endoscope, and a counter that counts an elapsed time from the activation of the capsule endoscope. And a notifying means for notifying that it is time to introduce the capsule endoscope into the subject when the elapsed time reaches the predetermined time.
- the inspection system includes the capsule endoscope further including a transmission unit that wirelessly transmits the image signal output from the imaging unit, and reception that receives the image signal wirelessly transmitted from the transmission unit.
- Unit a counter that counts an elapsed time from the start of reception of the image signal from the capsule endoscope, and the capsule endoscope when the elapsed time reaches the predetermined time, the capsule endoscope A receiving device having notification means for notifying that it is a timing to introduce into the subject.
- the imaging frame rate is controlled based on the amount of light emitted to illuminate the inside of the subject or the amount of light received by the imaging unit. Therefore, without increasing the number of components, at an appropriate timing according to the observation site. It becomes possible to change the imaging frame rate.
- FIG. 1 is a diagram illustrating a configuration example of an inspection system including a capsule endoscope according to the first embodiment of the present invention.
- FIG. 2 is a schematic diagram illustrating a configuration example of the capsule endoscope illustrated in FIG. 1.
- FIG. 3 is a block diagram showing a configuration of the control unit shown in FIG.
- FIG. 4 is a flowchart showing the operation of the capsule endoscope shown in FIG.
- FIG. 5 is a graph showing the transition of the light emission amount of the illumination unit shown in FIG.
- FIG. 6 is a block diagram illustrating a configuration of a control unit included in the capsule endoscope according to the second embodiment of the present invention.
- FIG. 7 is a flowchart showing the operation of the capsule endoscope according to the second embodiment of the present invention.
- FIG. 1 is a diagram illustrating a configuration example of an inspection system including a capsule endoscope according to the first embodiment of the present invention.
- FIG. 2 is a schematic diagram illustrating a configuration example of the capsule
- FIG. 8 is a flowchart showing the operation of the capsule endoscope according to the third embodiment of the present invention.
- FIG. 9 is a schematic diagram showing an appearance of a capsule endoscope activation system according to Embodiment 4 of the present invention.
- FIG. 10 is a block diagram showing a configuration of the activation device shown in FIG.
- FIG. 11 is a block diagram showing a configuration of a receiving apparatus in Modification 4-1 of Embodiment 4 of the present invention.
- FIG. 1 is a schematic diagram showing a schematic configuration of an inspection system including a capsule endoscope according to Embodiment 1 of the present invention.
- An inspection system 1 illustrated in FIG. 1 is introduced into a subject 2 such as a patient, performs imaging, generates an electrical image signal, and wirelessly transmits the capsule endoscope 10, and the capsule endoscope 10.
- Receiving the image signal wirelessly transmitted from the receiving device 3 via the receiving antenna unit 4 attached to the subject 2 acquiring image data from the receiving device 3, performing predetermined image processing, and displaying the image
- the image display device 5 is provided.
- FIG. 2 is a schematic diagram illustrating a configuration example of the capsule endoscope 10.
- the capsule endoscope 10 is introduced into the subject 2 by ingestion or the like, then moves inside the digestive tract, and is finally discharged out of the subject.
- the capsule endoscope 10 moves inside the organ (gastrointestinal tract) by peristaltic motion, images inside the subject, sequentially generates image signals, and wirelessly transmits them.
- the capsule endoscope 10 includes a capsule-type casing 11 that is an exterior case formed in a size that can be easily introduced into the organ of the subject 2, and imaging for imaging the inside of the subject 2.
- a control unit 14 that controls each component of the capsule endoscope 10 while processing a signal input from the imaging unit 12, a lighting unit 13 that generates light for illuminating the inside of the subject,
- a wireless communication unit 15 that wirelessly transmits a signal processed by the control unit 14 to the outside of the capsule endoscope 10 and a power supply unit 16 that supplies power to each component of the capsule endoscope 10 are provided.
- the capsule casing 11 includes a cylindrical casing 111 and dome-shaped casings 112 and 113, and is realized by closing both side opening ends of the cylindrical casing 111 with the dome-shaped casings 112 and 113.
- the cylindrical casing 111 and the dome-shaped casing 113 are colored casings that are substantially opaque to visible light.
- the dome-shaped housing 112 is a dome-shaped optical member that is transparent to light of a predetermined wavelength band such as visible light.
- Such a capsule housing 11 encloses the imaging unit 12, the illumination unit 13, the control unit 14, the wireless communication unit 15, and the power supply unit 16 in a liquid-tight manner.
- the imaging unit 12 includes an optical system 121 such as a condensing lens, and an imaging element 122 composed of a CMOS image sensor or a CCD.
- the optical system 121 collects the reflected light from the imaging field and forms an image on the imaging surface of the imaging element 122.
- the imaging element 122 converts reflected light (optical signal) from the imaging field received on the imaging surface into an electrical signal and outputs it as an image signal.
- the illumination unit 13 includes a light emitting element such as an LED (Light Emitting Diode) or an LD (Laser Diode), and emits illumination light such as white light.
- the illumination unit 13 irradiates the subject in the imaging field of the imaging element 122 with illumination light through the dome-shaped housing 112.
- the monocular capsule endoscope 10 that images one end of the capsule endoscope 10 in the long axis La direction is used.
- a compound-eye capsule endoscope that images the rear side may be used.
- the optical axes of the two imaging units are arranged so that the major axes La of the capsule housing 11 are substantially parallel or substantially coincident with each other and the imaging fields of view are directed in opposite directions. In other words, mounting is performed in which the imaging surface of the imaging element included in each imaging unit is orthogonal to the long axis La.
- FIG. 3 is a block diagram illustrating a configuration of the control unit 14. As illustrated in FIG. 3, the control unit 14 includes an imaging control unit 141, a signal processing unit 142, and an illumination control unit 143.
- the imaging control unit 141 controls the imaging frame rate based on the light emission amount (light emission time) of the illumination unit 13. Specifically, the imaging control unit 141 takes in information indicating the light emission amount of the illumination unit 13 in the immediately previous (that is, latest) frame from the illumination control unit 143, and the image capture frame rate when the light emission amount satisfies a predetermined condition. Switch. Then, the imaging unit 12 is controlled so as to operate at the imaging frame rate after switching, and the illumination control unit 143 is controlled so that the illumination unit 13 emits light at a timing according to the imaging frame rate.
- the illumination unit 13 is controlled by the light emission time control method, the light emission amount changes according to the light emission time.
- the control of the light emission amount includes the case where it is synonymous with the control of the light emission time.
- the signal processing unit 142 performs predetermined signal processing on the image signal output from the imaging unit 12 (imaging element 122), and causes the wireless communication unit 15 to wirelessly transmit the signal.
- the illumination control unit 143 controls the light emission amount (light emission time) of the illumination unit 13 based on the amount of light received by the image sensor 122 (that is, the intensity of the image signal output from the image sensor 122). Specifically, the illumination control unit 143 takes the intensity information of the image signal generated in the immediately previous frame from the signal processing unit 142, and measures the amount of received light by multiplying the average value of the image signal intensity by a predetermined correction coefficient. A value is obtained, and the light emission amount of the illumination unit 13 in the next frame is determined from the ratio between the measured value and a preset target value of the received light amount and the light emission amount in the immediately preceding frame, and illumination is performed with the determined light emission amount. The unit 13 is caused to emit light.
- the wireless communication unit 15 acquires an image signal from the control unit 14, performs a modulation process on the image signal, generates a wireless signal, and transmits the wireless signal to the reception device 3.
- the power supply unit 16 is a power storage unit such as a button-type battery or a capacitor, and has a switch unit such as a magnetic switch or an optical switch. When the power supply unit 16 is configured to have a magnetic switch, the power supply unit 16 switches on and off of the power supply by a magnetic field applied from the outside.
- the power supply unit 16 supplies the power of the power storage unit to each component (the imaging unit 12, the illumination unit 13, the control unit 14, and the wireless communication unit 15) of the capsule endoscope 10 when the power is on. In the state, power supply to each component of the capsule endoscope 10 is stopped.
- the configuration in which the capsule endoscope 10 is passively moved by the peristaltic motion of the subject has been described as an example of the configuration of the capsule endoscope 10, but in the subject by its own driving force or by external guidance. It is good also as a structure which can be moved.
- the capsule endoscope may be guided in the subject by providing a permanent magnet inside the capsule endoscope and causing a magnetic field generated outside the subject to act on the permanent magnet.
- the receiving antenna unit 4 has a plurality (eight in FIG. 1) of receiving antennas 4a to 4h.
- Each of the reception antennas 4a to 4h is realized by using, for example, a loop antenna, and corresponds to a predetermined position on the external surface of the subject 2 (for example, each organ in the subject 2 that is a passage region of the capsule endoscope 10). Arranged).
- the receiving device 3 receives the image signal wirelessly transmitted from the capsule endoscope 10 through the receiving antennas 4a to 4h, performs a predetermined process on the received image signal, and then incorporates a memory therein.
- the image signal and related information are stored in the memory.
- the receiving device 3 may be provided with an input unit such as a display unit for displaying a reception state of an image signal wirelessly transmitted from the capsule endoscope 10 and an operation button for operating the receiving device 3.
- the image display device 5 is configured using, for example, a workstation or a personal computer.
- the image display device 5 captures an image signal and related information stored in the memory of the receiving device 3 and performs predetermined image processing to generate an in-vivo image in the subject 2 and display it on the screen.
- the cradle 3 a is connected to the USB port of the image display device 5, and the reception device 3 is connected to the cradle 3 a by connecting the reception device 3 and the image display device 5.
- the image signal is transferred to the image display device 5.
- FIG. 4 is a flowchart showing the operation of the capsule endoscope 10.
- FIG. 5 is a graph showing the transition of the light emission amount of the illumination unit 13.
- the horizontal axis indicates the number of frames, and the vertical axis indicates the light emission amount.
- the imaging control unit 141 sets the imaging frame rate to an initial value FR 0.
- the imaging control unit 141 sets the imaging frame rate to an initial value FR 0.
- a relatively high value for example, 10 to 50 fps is set as the initial value FR 0 .
- the capsule endoscope 10 starts imaging.
- the illumination control unit 143 causes the illumination unit 13 to emit light at a timing according to the imaging frame rate set by the imaging control unit 141.
- the imaging unit 12 performs imaging at the imaging frame rate set by the imaging control unit 141, generates an image signal, and outputs the image signal to the signal processing unit 142.
- the signal processing unit 142 performs predetermined signal processing on the image signal output from the imaging unit 12 and causes the wireless communication unit 15 to wirelessly transmit the signal.
- the illumination control unit 143 controls the light emission amount of the illumination unit 13 based on the intensity of the image signal in the immediately preceding frame. For example, when the capsule endoscope 10 passes through a narrow organ such as the esophagus, the illumination light becomes the imaging target because the distance from the capsule endoscope 10 to the imaging target (inner wall of the organ) is short. As a result, the reflected light from the imaging target becomes bright. As a result, the intensity of the image signal output from the imaging unit 12 is increased, and thus the illumination control unit 143 decreases the light emission amount of the illumination unit 13 so that the intensity of the image signal does not exceed a predetermined range.
- the illumination control unit 143 increases the light emission amount of the illumination unit 13 so that the intensity of the image signal does not fall below a predetermined range.
- the illumination control unit 143 calculates an average intensity value for each of R, G, and B colors for the image signal output from the designated area of the immediately preceding frame. Then, the average value of the intensity for each color is multiplied by the correction coefficient for each color, and these average values are summed to obtain a measured value of the amount of received light (hereinafter referred to as a photometric value).
- a photometric value a measured value of the amount of received light
- the photometric value is given by the following equation (1) using the average values I R , I G , I B of the intensities for the respective colors of R , G , B, and the correction coefficient.
- (Photometric value) I R ⁇ 0.3 + I G ⁇ 0.6 + I B ⁇ 0.1 ... (1)
- the light emission amount in the next frame is given by the following expression (2) from the photometric value and a preset target value of light reception amount (hereinafter referred to as target light reception amount).
- (Light emission amount in the next frame) (Target received light amount / Metering value) x (Light emission amount in the previous frame) ... (2)
- the imaging control unit 141 takes in information indicating the light emission amount of the illumination unit 13 from the illumination control unit 143, and determines whether or not the light emission amount in the immediately preceding frame is greater than a predetermined threshold value.
- a large amount of light emission is considered to require a large amount of light emission because the distance between the capsule endoscope 10 and the imaging target is long. Therefore, at this time, it is considered that the capsule endoscope 10 was present in a wide space such as the stomach.
- the light emission amount increases rapidly between the frame 20 and the frame 21. Therefore, it can be estimated that the capsule endoscope 10 has moved from a narrow space to a wide space, that is, from the esophagus to the stomach between the frame 20 and the frame 21.
- step S12 the light emission time given by the following equation (2 ′) may be compared with a predetermined threshold value.
- (Light emission time in the next frame) (Target received light amount / photometric value) x Light emission time in the previous frame) ... (2 ')
- step S12 When light emission amount in the previous frame (or emission time) is equal to or less than the threshold (step S12: No), the imaging control unit 141, while maintaining the imaging frame rate to an initial value FR 0, continue to determine the emission amount .
- the imaging control unit 141 switches the imaging frame rate (step S13).
- the capsule endoscope 10 passes through the stomach and later organs more slowly than the esophagus. Therefore, in step S13, the imaging frame rate is set to a value FR 1 (for example, 2 fps) lower than the initial value FR 0 .
- FR 1 for example, 2 fps
- step S14 the control unit 14 determines whether or not to end imaging. Specifically, when a predetermined time (for example, several hours) has elapsed since the capsule endoscope 10 is activated, or when the remaining battery becomes equal to or less than a predetermined value, it is determined that imaging is to be ended.
- a predetermined time for example, several hours
- step S14 the capsule endoscope 10 continues to perform imaging. After that, it is not necessary to execute control of the imaging frame rate based on the light emission amount. The reason for this is that, even in the stomach and subsequent organs, the amount of light emission may fall below the threshold again depending on the distance between the capsule endoscope 10 and the imaging target, but the capsule endoscope 10 has a high frame. This is because the esophagus that needs to be imaged at a rate has already been passed, so that it is not necessary to switch from a low frame rate to a high frame rate again.
- the switching of the imaging frame rate based on the light emission amount may be performed only once at the timing when the capsule endoscope 10 moves from the esophagus to the stomach.
- the capsule endoscope 10 finishes the operation.
- the capsule endoscope 10 since it is determined whether to switch the imaging frame rate according to the light emission amount of the illumination unit 13 in the immediately preceding frame, the capsule endoscope 10 When moving from the esophagus to the stomach, the imaging frame rate can be switched at an appropriate timing. Therefore, imaging can be performed at an imaging frame rate corresponding to the observation site in the subject 2, and unnecessary power consumption can be suppressed and acquisition of in-vivo images more than necessary can be prevented.
- the capsule endoscope in the subject 2 is used. There is no need to provide additional components such as a sensor for detecting the position of the mirror 10 and the observation site. Therefore, it is possible to prevent an increase in the number of parts in the capsule endoscope, a complicated configuration, an increase in size of the capsule itself, and an increase in power consumption.
- Step S12 the imaging frame rate is controlled based on the light emission amount in the immediately preceding frame (see Steps S12 and S13), but the determination in Step S12 is not necessarily performed for each frame. That is, the comparison determination between the light emission amount and the threshold value may be performed every several frames, and the imaging frame rate may be switched when the light emission amount exceeds the threshold value.
- the imaging frame rate is controlled based on the magnitude of the light emission amount (see steps S12 and S13). However, this control may be performed based on the change amount of the light emission amount. .
- the imaging frame rate may be switched to a lower value FR 1 when the difference in the amount of light emission between the previous frame and the previous frame exceeds a threshold value.
- the imaging frame rate is switched.
- the difference between the light emission amounts is compared with the threshold every several frames, and the imaging frame rate is switched when the difference exceeds the threshold. May be performed.
- the imaging frame rate is controlled based on the light emission amount in each frame. However, a predetermined number of consecutive frames are provided as sampling intervals, and the total or average value of the light emission amounts in the sampling interval is set. Based on this, the imaging frame rate may be controlled. Specifically, when the total value or average value of the light emission amounts in the latest sampling interval exceeds the threshold, or the total value or average value of the light emission amounts in the latest sampling interval and the light emission amount in the previous sampling interval When the difference from the total value or the average value exceeds the threshold value, the imaging frame rate is switched.
- the light emission amount data in a specific frame may be an incorrect value due to the influence of noise or the like. In that case, it may happen that the comparison with the threshold value also gives an incorrect result.
- FIG. 6 is a block diagram illustrating a configuration of a control unit included in the capsule endoscope according to the second embodiment.
- the configuration of the capsule endoscope according to the second embodiment is generally the same as that of the first embodiment (see FIG. 2), and includes a control unit 18 shown in FIG. 6 instead of the control unit 14 shown in FIG. .
- the control unit 18 includes an imaging control unit 181, a signal processing unit 182, and an illumination control unit 183, and controls each operation of each component unit in the capsule endoscope 10. The input / output of signals between these components is controlled.
- the operations of the signal processing unit 182 and the illumination control unit 183 are the same as those of the signal processing unit 142 and the illumination control unit 143 shown in FIG.
- the imaging control unit 181 controls the imaging frame rate based on the amount of light received by the imaging element 122 (that is, the intensity of the image signal output from the imaging element 122). Specifically, the imaging control unit 181 takes in the intensity information of the image signal generated in the immediately previous (that is, latest) frame from the signal processing unit 182, and determines the intensity of the image signal for each of R, G, and B colors. An average value is calculated, multiplied by a predetermined correction coefficient, and the average value is summed to obtain a received light amount (photometric value) (see Expression (1)).
- the imaging frame rate is switched, the imaging unit 12 is controlled to operate at the imaging frame rate after the switching, and the illumination unit 13 at a timing according to the imaging frame rate.
- the illumination control unit 183 is controlled so as to emit light.
- FIG. 7 is a flowchart showing the operation of the capsule endoscope according to the second embodiment. Steps S10 and S11 shown in FIG. 7 are the same as those in the first embodiment (see FIG. 4).
- step S20 following step S11 the imaging control unit 181 captures the intensity information of the image signal from the signal processing unit 182 as the amount of received light in the imaging unit 12, and the amount of received light in the immediately preceding frame falls below a predetermined threshold value. It is determined whether or not.
- the small amount of received light means that the illumination light is difficult to reach the imaging target because the distance between the capsule endoscope 10 and the imaging target is long, and as a result, it is difficult to receive the reflected light from the imaging target. It can be thought of as a result.
- the capsule endoscope 10 when the amount of received light falls below the threshold value, it is estimated that the capsule endoscope 10 has moved from a narrow space where it is easy to receive reflected light to a wide space where it is difficult to receive reflected light, that is, moved from the esophagus to the stomach. Is done.
- step S20 If amount of light received at the previous frame is equal to or larger than the threshold (step S20: No), the imaging control unit 181, while maintaining the imaging frame rate to an initial value FR 0, continue to determine the amount of received light.
- the imaging control unit 181 switches the imaging frame rate to a lower value FR 1 (step S13).
- the subsequent operation of the capsule endoscope 10 is the same as that of the first embodiment. In the second embodiment, it is not necessary to execute control of the imaging frame rate based on the amount of received light thereafter. The reason for this is that, even in the stomach and subsequent organs, the amount of light received may again be equal to or greater than the threshold value depending on the distance between the capsule endoscope 10 and the imaging target, but the capsule endoscope 10 has a high frame.
- the switching of the imaging frame rate based on the amount of received light may be performed only once at the timing when the capsule endoscope 10 moves from the esophagus to the stomach.
- the capsule endoscope is used without increasing the number of components in the capsule endoscope 10 by using the received light amount of the imaging unit 12 in the immediately preceding frame.
- the imaging frame rate can be switched at an appropriate timing.
- the amount of received light may be determined every several frames as in Modification 1-1 described above. Further, as in Modification 1-2, the imaging frame rate may be switched based on the difference in the amount of received light between frames. Furthermore, as in Modification 1-3, a predetermined number of consecutive frames may be provided as sampling intervals, and the imaging frame rate may be switched based on the total value or average value of the amount of received light in the sampling interval.
- FIG. 8 is a flowchart showing the operation of the capsule endoscope according to the third embodiment.
- the configuration of the capsule endoscope according to the third embodiment is the same as that of the first embodiment (see FIGS. 2 and 3).
- the imaging control unit 141 sets the imaging frame rate to the initial value FR 2.
- the user a medical worker in charge of the examination
- the capsule endoscope 10 is introduced into the oral cavity in 2 and swallowed. Therefore, the in-vivo image captured before the subject 2 swallows the capsule endoscope 10 is not used for the examination of the subject 2. Therefore, in the third embodiment, a low value of about 2 fps, for example, is set as the initial value FR2.
- step S31 the capsule endoscope 10 starts imaging.
- the details are the same as step S11 in FIG.
- the imaging control unit 141 determines whether or not a predetermined time ⁇ t has elapsed since the capsule endoscope 10 was activated.
- the length of the time ⁇ t is set in advance as a time required for confirming the operation of the capsule endoscope 10 or a time during which the capsule endoscope 10 stays in the oral cavity of the subject 2. Has been. If the capsule endoscope 10 is swallowed by the subject 2 when the time ⁇ t has elapsed, the timing at which the capsule endoscope 10 has moved to the esophagus can be reliably grasped.
- step S32: No When the predetermined time ⁇ t has not yet elapsed (step S32: No), the imaging control unit 141 stands by until the predetermined time ⁇ t has elapsed. On the other hand, when the predetermined time ⁇ t has elapsed (step S32: Yes), the imaging control unit 141 switches the imaging frame rate to the imaging frame rate for esophageal observation (step S33). As described above, the capsule endoscope 10 passes through the esophagus in a short time. Therefore, a value FR 3 (for example, 10 to 50 fps) higher than the initial value FR 2 is set as the imaging frame rate for esophageal observation.
- FR 3 for example, 10 to 50 fps
- the user instructs the subject 2 to swallow the capsule endoscope 10 at a timing when the predetermined time ⁇ t has elapsed.
- the user may observe the image displayed on the image display device 5 (see FIG. 1) and swallow the capsule endoscope 10 into the subject 2 at the timing when the imaging frame rate is increased.
- step S12 The subsequent operations after step S12 are the same as those in the first embodiment (see FIG. 4). That is, when the light emission amount of the illumination unit 13 exceeds a predetermined threshold value (step S12: Yes), it is estimated that the capsule endoscope 10 has moved from the esophagus to the stomach, and the imaging frame rate is set. The value is switched again to a low value FR 2 (for example, 2 fps) (step S13).
- FR 2 for example, 2 fps
- step S12 and the acquisition of information used for this determination may be started after a predetermined time ⁇ t has elapsed (step S32: Yes). Thereby, since the influence by the external illumination before the subject 2 swallows the capsule endoscope 10 can be excluded, more accurate determination can be performed.
- the imaging frame rate is maintained at the low value FR 2 for a predetermined time after activation of the capsule endoscope 10, so that the capsule endoscope 10 While performing the operation check and preparing the subject 2 to swallow the capsule endoscope 10, the power consumption of the capsule endoscope 10 can be suppressed.
- the imaging frame rate may be switched based on the amount of received light in the imaging unit 12 as in the second embodiment (see step S20 in FIG. 7).
- FIG. 9 is a schematic diagram showing an appearance of a capsule endoscope activation system according to Embodiment 4 of the present invention.
- the capsule endoscope activation system 6 according to Embodiment 4 includes a capsule endoscope 10 and an activation device 7 that activates the capsule endoscope 10.
- the capsule endoscope 10 When the capsule endoscope 10 is activated, the capsule endoscope 10 is preferably placed in a predetermined position on the casing 70 of the activation device 7 while being accommodated in the container 8.
- the upper surface of the housing 70 is a placement surface for the container 8, and a guide 70 a indicating the position where the container 8 is placed is displayed.
- Various switches and a display unit are provided on the upper surface of the housing 70.
- FIG. 10 is a block diagram showing the configuration of the activation device 7 shown in FIG.
- the activation device 7 includes a power supply unit 71 that supplies power to each unit of the activation device 7, a power switch 72 that switches an on / off state of power supply from the power supply unit 71 to each unit, and the activation device 7.
- a power supply display unit 73 for displaying the power on / off state of the capsule endoscope 10, a starter 74 for switching the power on / off state of the capsule endoscope 10, a starter switch 75 for starting the operation of the starter 74, and an operation state of the starter 74 are displayed.
- a starter display section 76 that counts the elapsed time after operation of the starter 74, and a counter display section 78 that displays the count by the counter 77.
- the power supply display unit 73 is configured using a light emitting element such as an LED, for example, and displays the on / off state of the activation device 7 by emitting light when the activation device 7 is in the on state.
- the starter 74 is configured according to the configuration of the power supply unit 16 of the capsule endoscope 10. For example, when the power supply unit 16 includes a magnetic switch, the starter 74 is configured by using a coil that receives a power supply from the power supply unit 71 and generates a magnetic field.
- the starter switch 75 is constituted by, for example, an input button that presses the starter 74 to turn it on (for example, the coil is energized).
- the starter display unit 76 is configured using a light emitting element such as an LED.
- the starter display unit 76 displays the operation state of the starter 74 by emitting light in different colors depending on whether the starter 74 is in the on state or in the off state.
- the counter 77 counts the elapsed time from the timing when the starter 74 is turned on.
- the counter display section 78 is a notification means for notifying the timing of introducing the capsule endoscope 10 into the subject 2.
- a time until the subject 2 is swallowed after the capsule endoscope 10 is activated (for example, 1 minute, hereinafter referred to as a set time) is set in advance.
- This set time is the predetermined time ⁇ t determined in step S32 of FIG. 8, that is, after the capsule endoscope 10 is started, the imaging frame rate from the initial value (see step S30) to the imaging frame rate for esophageal observation (see step S30). It is set according to the time until switching to step S33).
- the counter display section 78 includes a count display section 78a and a text display section 78b made of, for example, a liquid crystal display board.
- the elapsed time since the counter 77 started counting is sequentially displayed.
- the remaining time up to the set time may be displayed on the count display part 78a.
- the text display section 78b displays a predetermined text message when the elapsed time reaches the set time.
- a user activates the capsule endoscope 10 using the activation device 7.
- the container 8 containing the capsule endoscope 10 is placed in the guide 70 a on the upper surface of the housing 70, and the starter switch 75 is pressed.
- the starter 74 operates and the capsule endoscope 10 is activated.
- the switch unit of the power supply unit 16 see FIG. 2
- the starter 74 applies a magnetic field to turn on the power supply of the capsule endoscope 10.
- the capsule endoscope 10 is activated.
- the counter 77 starts counting.
- the counter display unit 78 displays a text message such as “please swallow the capsule” on the text display unit 78b. Thereby, the user can easily grasp the timing of swallowing the capsule endoscope 10 by the subject.
- the configuration of the notification means is not limited to the configuration of the counter display unit 78.
- the number displayed on the count display part 78a may be blinked, or the starter display part 76 may be blinked.
- a speaker may be provided in the activation device 7 and a message may be read out by voice instead of displaying a text message or together with a text message, or a notification sound may be sounded.
- FIG. 11 is a block diagram illustrating a configuration example of a receiving device according to Modification 4-1.
- the reception device 3 includes a reception unit 31 that receives an image signal wirelessly transmitted from the capsule endoscope 10 via the reception antenna unit 4 (see FIG. 1), and the reception unit 31 includes A signal processing unit 32 that performs predetermined signal processing on the received image signal, a memory 33 that stores the image signal subjected to the signal processing, and an image signal stored in the memory 33 via the cradle 3a.
- the transmitter 34 which transmits to the display apparatus 5, the counter 35, the display part 36 which displays the various information regarding a test
- the counter 35 starts counting time with the timing when the receiving unit 31 starts receiving the wirelessly transmitted image signal as a trigger.
- the control unit 37 causes the display unit 36 to display the elapsed time since the counter 35 started counting, and when this elapsed time reaches the set time, for example, a text message such as “please swallow the capsule”. Is displayed on the display unit 36.
- a notification means in addition to the display unit 36 that displays a text message, a speaker that reads out a message by voice or sounds a notification sound may be provided.
- Modification 4-2 Modification 4-2 of Embodiment 4 of the present invention will be described.
- a function of notifying the timing of introducing the capsule endoscope 10 into the subject 2 may be provided in the capsule endoscope 10 itself.
- the activation of the capsule endoscope 10 may be used as a trigger for starting counting until the set time.
- a control unit that changes the blinking interval of the illumination unit 13 according to the count by the illumination unit 13 and the counter may be used. For example, when the set time is 1 minute, the blinking interval of the illumination unit 13 is switched short when the remaining time up to the set time is 10 seconds. Thereby, the user can grasp the introduction timing to the subject 2 by viewing the capsule endoscope 10.
- Embodiments 1 to 4 described above and modifications thereof are merely examples for carrying out the present invention, and the present invention is not limited to these.
- the present invention can form various inventions by appropriately combining a plurality of constituent elements disclosed in the first to fourth embodiments and the respective modifications. It is obvious from the above description that the present invention can be variously modified according to specifications and the like, and that various other embodiments are possible within the scope of the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
Abstract
部品点数を増やすことなく、観察部位に応じて適切なタイミングで撮像フレームレートを変更することができるカプセル型内視鏡等を提供する。被検体内を照明する光を発生する照明部13と、被検体内において反射した光を受光することにより撮像を行い、電気的な画像信号を出力する撮像部12と、上記画像信号に基づいて、照明部13における発光量をフレームごとに制御する照明制御部143と、上記発光量に応じて撮像部12における撮像フレームレートを変更する制御を実行する撮像制御部141とを備える。
Description
本発明は、被検体内に導入されて撮像を行うカプセル型内視鏡、カプセル型内視鏡を起動するカプセル型内視鏡起動システム、及びカプセル型内視鏡を用いて被検体内を検査する検査システムに関する。
内視鏡分野においては、被検体内に導入されて撮像を行うカプセル型内視鏡が開発されている。カプセル型内視鏡は、被検体の消化管内に導入可能な大きさに形成されたカプセル形状をなす筐体の内部に撮像機能及び無線通信機能を備えたものであり、被検体に嚥下された後、蠕動運動等によって消化管内を移動しながら撮像を行い、被検体の臓器内部の画像(以下、体内画像ともいう)の画像データを順次生成して無線送信する(例えば特許文献1参照)。無線送信された画像データは、被検体外に設けられた受信装置によって受信され、さらに、ワークステーション等の画像表示装置に取り込まれて所定の画像処理が施される。それにより、被検体の体内画像を静止画又は動画として表示することができる。
ところで、カプセル型内視鏡により被検体内を観察する際、カプセル型内視鏡は食道を短時間で通過するので、食道を十分に観察するためには撮像フレームレートを高くしておく必要がある。一方、カプセル型内視鏡は胃を、食道を通過する場合と比べてゆっくりと通過するので、胃を観察する際にはあまり高い撮像フレームレートは必要ない。そのため、カプセル型内視鏡の撮像フレームレートを常に高い値に設定しておいた場合、観察部位によっては無駄な画像の撮像枚数が増えてしまうと共に、必要以上に電力が消費されてしまう。そのため、カプセル型内視鏡においては、観察部位(臓器)に応じて撮像フレームレートを適切に制御できることが好ましい。
観察部位に応じた撮像フレームレートの制御に関して、上記特許文献1には、被検体内におけるカプセル型内視鏡の位置に関する情報に基づいてカプセル型内視鏡の撮像フレームレートを制御する技術が開示されている。また、この特許文献1には、カプセル型内視鏡内に速度又は角速度を検出するセンサを設け、このセンサによって位置に関する情報を取得する技術や、クロック発生器からのクロックによって時間をカウントし、カウントした時間に基づいて被検体内におけるカプセル型内視鏡の位置を予測する技術が開示されている。
しかしながら、カプセル型内視鏡内に速度又は角速度を検出するセンサを設ける場合、部品点数が増えてしまうので、消費電力が増加するという問題や、カプセル型内視鏡の構成が煩雑になるという問題、カプセル型内視鏡の小型化が困難になるという問題が生じる。一方、カウントした時間に基づいてカプセル型内視鏡の位置を予測する場合、カプセル型内視鏡を被検体内に導入するタイミングや被検体の個人差等によりカプセル型内視鏡の位置に誤差が生じ、観察部位に応じた適切なタイミングで撮像フレームレートを変更することが困難になるという問題が生じる。
本発明は、上記に鑑みてなされたものであって、部品点数を増やすことなく、観察部位に応じて適切なタイミングで撮像フレームレートを変更することができるカプセル型内視鏡、カプセル型内視鏡起動システム、及び検査システムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係るカプセル型内視鏡は、被検体内を照明する光を発生する照明部と、前記被検体内において反射した光を受光することにより撮像を行い、電気的な画像信号を出力する撮像部と、前記画像信号に基づいて、前記照明部における発光量をフレームごとに制御する照明制御部と、前記発光量に応じて、前記撮像部における撮像フレームレートを変更する制御を実行する撮像制御部と、を備えることを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、前記発光量が閾値を超えた場合に、前記撮像フレームレートを低くする、ことを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、直前のフレームと該直前のフレームに対して先行するフレームとの間における前記発光量の差分が閾値を超えた場合に、前記撮像フレームレートを低くする、ことを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、複数のフレームにおける前記発光量の平均値又は合算値が閾値を超えた場合に、前記撮像フレームレートを低くする、ことを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、前記発光量に基づく前記撮像フレームレートの変更を1回のみ実行する、ことを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、前記カプセル型内視鏡の起動時から所定時間、前記撮像フレームレートを第1の値に維持し、前記カプセル型内視鏡の起動時から前記所定時間が経過した際に、前記撮像フレームレートを前記第1の値よりも高い第2の値に切り替え、前記所定時間の経過後、前記発光量に基づいて前記撮像フレームレートを変更する、ことを特徴とする。
本発明に係るカプセル型内視鏡は、被検体内を照明する光を発生する照明部と、前記被検体内において反射した光を受光することにより撮像を行い、電気的な画像信号を出力する撮像部と、前記画像信号に基づいて取得される前記撮像部における受光量に応じて、前記撮像部における撮像フレームレートを切り替える制御を実行する撮像制御部と、を備えることを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、前記受光量が閾値を下回った場合に、前記撮像フレームレートを低くする、ことを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、直前のフレームと該直前のフレームに対して先行するフレームとの間における前記受光量の差分が閾値を下回った場合に、前記撮像フレームレートを低くする、ことを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、複数のフレームにおける前記受光量の平均値又は合算値が閾値を下回った場合に、前記撮像フレームレートを低くする、ことを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、前記受光量に基づく前記撮像フレームレートの変更を1回のみ実行する、ことを特徴とする。
上記カプセル型内視鏡において、前記撮像制御部は、前記カプセル型内視鏡の起動時から所定時間、前記撮像フレームレートを第1の値に維持し、前記カプセル型内視鏡の起動時から前記所定時間が経過した際に、前記撮像フレームレートを前記第1の値よりも高い第2の値に切り替え、前記所定時間の経過後、前記受光量に基づいて前記撮像フレームレートを変更する、ことを特徴とする。
上記カプセル型内視鏡は、当該カプセル型内視鏡の起動時からの経過時間をカウントするカウンタをさらに備え、前記照明制御部は、前記経過時間に基づき、前記所定時間までの残存時間に応じて前記照明部の点滅間隔を変化させる、ことを特徴とする。
本発明に係るカプセル型内視鏡起動システムは、前記カプセル型内視鏡と、前記カプセル型内視鏡を起動させるスイッチと、前記カプセル型内視鏡の起動時からの経過時間をカウントするカウンタと、前記経過時間が前記所定時間に達した際に、前記カプセル型内視鏡を前記被検体内に導入するタイミングである旨を通知する通知手段と、を有する起動装置と、を備えることを特徴とする。
本発明に係る検査システムは、前記撮像部から出力された前記画像信号を無線送信する送信部をさらに有する前記カプセル型内視鏡と、前記送信部から無線送信された前記画像信号を受信する受信部と、前記カプセル型内視鏡から前記画像信号の受信を開始した時からの経過時間をカウントするカウンタと、前記経過時間が前記所定時間に達した際に、前記カプセル型内視鏡を前記被検体内に導入するタイミングである旨を通知する通知手段と、を有する受信装置と、を備えることを特徴とする。
本発明によれば、被検体内を照明する光の発光量又は撮像部における受光量をもとに撮像フレームレートを制御するので、部品点数を増やすことなく、観察部位に応じて適切なタイミングで撮像フレームレートを変更することが可能となる。
以下に、本発明の実施の形態に係るカプセル型内視鏡、カプセル型内視鏡起動システム、及び検査システムについて、図面を参照しながら説明する。以下の説明において、各図は本発明の内容を理解でき得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。従って、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。なお、図面の記載において、同一部分には同一の符号を付している。
(実施の形態1)
図1は、本発明の実施の形態1に係るカプセル型内視鏡を含む検査システムの概略構成を示す模式図である。図1に示す検査システム1は、患者等の被検体2内に導入されて撮像を行い、電気的な画像信号を生成して無線送信するカプセル型内視鏡10と、カプセル型内視鏡10から無線送信された画像信号を、被検体2に装着された受信アンテナユニット4を介して受信する受信装置3と、受信装置3から画像データを取得して所定の画像処理を施し、画像を表示する画像表示装置5とを備える。
図1は、本発明の実施の形態1に係るカプセル型内視鏡を含む検査システムの概略構成を示す模式図である。図1に示す検査システム1は、患者等の被検体2内に導入されて撮像を行い、電気的な画像信号を生成して無線送信するカプセル型内視鏡10と、カプセル型内視鏡10から無線送信された画像信号を、被検体2に装着された受信アンテナユニット4を介して受信する受信装置3と、受信装置3から画像データを取得して所定の画像処理を施し、画像を表示する画像表示装置5とを備える。
図2は、カプセル型内視鏡10の構成例を示す模式図である。カプセル型内視鏡10は、経口摂取等によって被検体2内に導入された後、消化管内部を移動し、最終的に被検体の外部に排出される。その間、カプセル型内視鏡10は、臓器(消化管)内部を蠕動運動によって移動しつつ、被検体内を撮像して画像信号を順次生成し、無線送信する。
図2に示すように、カプセル型内視鏡10は、被検体2の臓器内部に導入し易い大きさに形成された外装ケースであるカプセル型筐体11と、被検体2内を撮像する撮像部12と、被検体内を照明する光を発生する照明部13と、撮像部12から入力された信号を処理すると共に、カプセル型内視鏡10の各構成部を制御する制御部14と、制御部14によって処理された信号をカプセル型内視鏡10の外部に無線送信する無線通信部15と、カプセル型内視鏡10の各構成部に電力を供給する電源部16とを備える。
カプセル型筐体11は、筒状筐体111とドーム状筐体112、113とから成り、この筒状筐体111の両側開口端をドーム状筐体112、113によって塞ぐことによって実現される。筒状筐体111及びドーム状筐体113は、可視光に対して略不透明な有色の筐体である。一方、ドーム状筐体112は、可視光等の所定波長帯域の光に対して透明な、ドーム形状をなす光学部材である。このようなカプセル型筐体11は、撮像部12と、照明部13、制御部14と、無線通信部15、電源部16とを液密に内包する。
撮像部12は、集光レンズ等の光学系121と、CMOSイメージセンサ又はCCD等からなる撮像素子122とを有する。光学系121は、この撮像視野からの反射光を集光し、撮像素子122の撮像面に結像させる。撮像素子122は、撮像面において受光した撮像視野からの反射光(光信号)を電気信号に変換し、画像信号として出力する。
照明部13は、LED(Light Emitting Diode)又はLD(Laser Diode)等の発光素子からなり、白色光等の照明光を発光する。照明部13は、撮像素子122の撮像視野内の被検体に、ドーム状筐体112越しに照明光を照射する。
なお、実施の形態1においては、カプセル型内視鏡10の長軸La方向の一方の端部を撮像する単眼式のカプセル型内視鏡10を用いるが、長軸La方向の両端(前方及び後方)を撮像する複眼式のカプセル型内視鏡を用いても良い。この場合、2つの撮像部の各光軸がカプセル型筐体11の長軸Laと略平行又は略一致し、且つ各撮像視野が互いに反対方向を向くように配置すると良い。即ち、各撮像部が備える撮像素子の撮像面が長軸Laに対して直交する実装を行う。
制御部14は、カプセル型内視鏡10内の各構成部の動作を制御すると共に、これらの構成部間における信号の入出力を制御する。図3は、制御部14の構成を示すブロック図である。図3に示すように、制御部14は、撮像制御部141と、信号処理部142と、照明制御部143とを備える。
撮像制御部141は、照明部13の発光量(発光時間)に基づいて撮像フレームレートを制御する。詳細には、撮像制御部141は、直前の(即ち、最新の)フレームにおける照明部13の発光量を表す情報を照明制御部143から取り込み、発光量が所定の条件を満たす場合に撮像フレームレートを切り替える。そして、切り替え後の撮像フレームレートで動作するように撮像部12を制御すると共に、この撮像フレームレートに応じたタイミングで照明部13を発光させるように、照明制御部143を制御する。ここで、照明部13の制御が発光時間制御方式で行われる場合、発光量は発光時間に応じて変化する。以下において、発光量の制御は、発光時間の制御と同義である場合を含むものとする。
信号処理部142は、撮像部12(撮像素子122)から出力された画像信号に所定の信号処理を施し、無線通信部15から無線送信させる。
照明制御部143は、撮像素子122における受光量(即ち、撮像素子122から出力された画像信号の強度)に基づいて照明部13の発光量(発光時間)を制御する。詳細には、照明制御部143は、直前のフレームにおいて生成された画像信号の強度情報を信号処理部142から取り込み、画像信号の強度の平均値に所定の補正係数を掛けることにより受光量の測定値を求め、この測定値と予め設定されている受光量の目標値との比、及び直前フレームにおける発光量から、次のフレームにおける照明部13の発光量を決定し、決定した発光量で照明部13を発光させる。
無線通信部15は、制御部14から画像信号を取得し、該画像信号に対して変調処理等を施して無線信号を生成し、受信装置3に送信する。
電源部16は、ボタン型電池やキャパシタ等の蓄電部であって、磁気スイッチや光スイッチ等のスイッチ部を有する。電源部16は、磁気スイッチを有する構成とした場合、外部から印加された磁界によって電源のオンオフ状態を切り替える。電源部16は、オン状態のときに、蓄電部の電力をカプセル型内視鏡10の各構成部(撮像部12、照明部13、制御部14、及び無線通信部15)に供給し、オフ状態のときに、カプセル型内視鏡10の各構成部への電力供給を停止する。
なお、図2においては、カプセル型内視鏡10の構成例として、被検体の蠕動運動によって受動的に移動する構成を説明したが、自身の駆動力により、又は外部からの誘導により被検体内を移動可能な構成としても良い。例えば、カプセル型内視鏡の内部に永久磁石を設け、被検体の外部において生成した磁界をこの永久磁石に作用させることにより、被検体内においてカプセル型内視鏡を誘導させても良い。
再び図1を参照すると、受信アンテナユニット4は、複数(図1においては8個)の受信アンテナ4a~4hを有する。各受信アンテナ4a~4hは、例えばループアンテナを用いて実現され、被検体2の体外表面上の所定位置(例えば、カプセル型内視鏡10の通過領域である被検体2内の各臓器に対応した位置)に配置される。
受信装置3は、これらの受信アンテナ4a~4hを介して、カプセル型内視鏡10から無線送信された画像信号を受信し、受信した画像信号に所定の処理を施した上で、内蔵するメモリに画像信号及びその関連情報を記憶する。受信装置3には、カプセル型内視鏡10から無線送信された画像信号の受信状態を表示する表示部や、受信装置3を操作するための操作ボタン等の入力部を設けても良い。
画像表示装置5は、例えばワークステーションやパーソナルコンピュータを用いて構成される。画像表示装置5は、受信装置3のメモリに記憶された画像信号及びその関連情報を取り込み、所定の画像処理を施すことにより、被検体2内の体内画像を生成して画面に表示する。なお、図1においては、画像表示装置5のUSBポートにクレードル3aを接続し、該クレードル3aに受信装置3をセットすることにより受信装置3と画像表示装置5とを接続し、受信装置3から画像表示装置5に画像信号を転送する構成としている。
次に、カプセル型内視鏡10の動作を説明する。図4は、カプセル型内視鏡10の動作を示すフローチャートである。また、図5は、照明部13の発光量の推移を示すグラフである。図5において、横軸はフレーム数を示し、縦軸は発光量を示している。
カプセル型内視鏡10の電源がオンされて動作を開始すると、まず、ステップS10において、撮像制御部141は、撮像フレームレートを初期値FR0に設定する。ここで、カプセル型内視鏡10が最初に通過する臓器である食道は短い上に比較的直線状であるため、カプセル型内視鏡10は食道を短時間(数秒)で通過してしまう。そのため、十分な体内画像を取得するため、初期値FR0としては比較的高い値(例えば、10~50fps)が設定される。
続くステップS11において、カプセル型内視鏡10は撮像を開始する。詳細には、照明制御部143は、撮像制御部141が設定した撮像フレームレートに応じたタイミングで照明部13を発光させる。撮像部12は、撮像制御部141が設定した撮像フレームレートで撮像を行い、画像信号を生成して信号処理部142に出力する。信号処理部142は、撮像部12から出力された画像信号に所定の信号処理を施し、無線通信部15に無線送信させる。
ここで、照明制御部143は、直前のフレームにおける画像信号の強度に基づいて、照明部13の発光量を制御する。例えば、カプセル型内視鏡10が食道のような狭い臓器内を通過している場合、カプセル型内視鏡10から撮像対象(臓器の内壁)までの距離が近いために照明光が撮像対象に届き易く、その結果、撮像対象からの反射光は明るくなる。それにより、撮像部12から出力される画像信号の強度は強くなるため、照明制御部143は、画像信号の強度が所定範囲を超えないように、照明部13の発光量を減少させる。反対に、カプセル型内視鏡10が胃のような広い臓器内を通過している場合、撮像対象までの距離が遠いために照明光が撮像対象に届き難く、その結果、撮像対象からの反射光は暗くなる。それにより、撮像部12から出力される画像信号の強度が弱くなってしまうため、照明制御部143は、画像信号の強度が所定範囲を下回らないように、照明部13の発光量を増加させる。照明制御部143のこのようなフィードバック制御を行うことにより、カプセル型内視鏡10が通過中の部位によらず、画像信号の強度レベル、即ち、体内画像の輝度レベルを一定の範囲に収めている。
具体的には、照明制御部143は、直前フレームの指定エリアから出力された画像信号に対し、R、G、Bの色ごとに強度の平均値を算出する。そして、色ごとの強度の平均値に各色の補正係数を掛け合わせ、これらの平均値を合計することにより、受光量の測定値(以下、測光値という)を求める。撮像素子122(図2参照)が例えばベイヤーパターンのカラーフィルタを有する場合、R、G、Bの補正係数はそれぞれ、0.3、0.6、0.1に設定される。測光値は、R、G、Bの色ごとの強度の平均値IR、IG、IB及び上記補正係数を用いて、次式(1)によって与えられる。
(測光値)=IR×0.3+IG×0.6+IB×0.1 …(1)
(測光値)=IR×0.3+IG×0.6+IB×0.1 …(1)
次のフレームにおける発光量は、上記測光値と、予め設定されている受光量の目標値(以下、目標受光量という)とから、次式(2)によって与えられる。
(次フレームにおける発光量)
=(目標受光量/測光値)×(直前フレームにおける発光量)
…(2)
(次フレームにおける発光量)
=(目標受光量/測光値)×(直前フレームにおける発光量)
…(2)
続くステップS12において、撮像制御部141は、照明部13の発光量を表す情報を照明制御部143から取り込み、直前のフレームにおける発光量が予め定められた所定の閾値より大きいか否かを判定する。ここで、発光量が多いということは、カプセル型内視鏡10と撮像対象との距離が遠いために、多くの発光量が必要であったと考えられる。そのため、このとき、カプセル型内視鏡10は、胃のような広い空間に存在していたものと考えられる。例えば、図5の場合、フレーム20とフレーム21との間で発光量が急激に増加している。従って、フレーム20とフレーム21との間で、カプセル型内視鏡10が狭い空間から広い空間に移動した、即ち、食道から胃に移動したと推定することができる。
なお、ステップS12においては、次式(2’)によって与えられる発光時間を予め定められた所定の閾値と比較しても良い。
(次フレームにおける発光時間)
=(目標受光量/測光値)×直前フレームにおける発光時間)
…(2’)
(次フレームにおける発光時間)
=(目標受光量/測光値)×直前フレームにおける発光時間)
…(2’)
直前のフレームにおける発光量(又は発光時間)が閾値以下である場合(ステップS12:No)、撮像制御部141は、撮像フレームレートを初期値FR0に維持しつつ、発光量の判定を継続する。
一方、直前のフレームにおける発光量(又は発光時間)が閾値より大きい場合(ステップS12:Yes)、撮像制御部141は、撮像フレームレートを切り替える(ステップS13)。ここで、カプセル型内視鏡10は、胃やそれ以降の臓器を食道よりもゆっくり通過する。そのため、ステップS13においては、撮像フレームレートを初期値FR0よりも低い値FR1(例えば、2fps)に設定する。例えば図5の場合、フレーム21において発光量が大きくなっているため、その次のフレーム22から撮像フレームレートが値FR1に切り替えられる。
ステップS14において、制御部14は、撮像を終了するか否かを判定する。具体的には、カプセル型内視鏡10が起動されてから所定時間(例えば数時間)が経過した場合や、残存バッテリが所定値以下となった場合に、撮像を終了すると判定する。
撮像を終了しない場合(ステップS14:No)、カプセル型内視鏡10は引き続き撮像を行う。なお、この後は、発光量に基づく撮像フレームレートの制御を実行する必要はない。その理由は、胃やそれに続く臓器においても、カプセル型内視鏡10と撮像対象との距離に応じて発光量が再び閾値以下になることはあり得るものの、カプセル型内視鏡10は高いフレームレートでの撮像が必要な食道を既に通過してしまっているため、低いフレームレートから高いフレームレートへの再度の切替は必要ないからである。即ち、発光量に基づく撮像フレームレートの切り替えは、カプセル型内視鏡10が食道から胃に移動したタイミングで1回のみ行えば良い。一方、撮像を終了する場合(ステップS14:Yes)、カプセル型内視鏡10は動作を終了する。
以上説明したように、本発明の実施の形態1によれば、直前のフレームにおける照明部13の発光量に応じて、撮像フレームレートを切り替えるか否かを判定するので、カプセル型内視鏡10が食道から胃に移行した際に、適切なタイミングで撮像フレームレートを切り替えることができる。従って、被検体2内の観察部位に応じた撮像フレームレートで撮像を行うことができ、無駄な電力消費を抑制すると共に、必要以上の体内画像の取得を防ぐことが可能となる。
また、本発明の実施の形態1によれば、一般的なカプセル型内視鏡に備えられている光量調節機能を利用して撮像フレームレートを制御するため、被検体2内におけるカプセル型内視鏡10の位置や観察部位を検出するためのセンサ等の追加の部品を設ける必要がない。従って、カプセル型内視鏡内の部品点数の増加や、それに伴う構成の複雑化やカプセル自体の大型化、及び消費電力の増加を防ぐことができる。
(変形例1-1)
次に、本発明の実施の形態1の変形例1-1について説明する。
上記実施の形態1においては、直前のフレームにおける発光量に基づいて撮像フレームレートの制御を行うこととしたが(ステップS12、S13参照)、必ずしもフレームごとにステップS12の判定を行う必要はない。即ち、発光量と閾値との比較判定を数フレームごとに行い、発光量が閾値を超えた際に撮像フレームレートの切り替えを行っても良い。
次に、本発明の実施の形態1の変形例1-1について説明する。
上記実施の形態1においては、直前のフレームにおける発光量に基づいて撮像フレームレートの制御を行うこととしたが(ステップS12、S13参照)、必ずしもフレームごとにステップS12の判定を行う必要はない。即ち、発光量と閾値との比較判定を数フレームごとに行い、発光量が閾値を超えた際に撮像フレームレートの切り替えを行っても良い。
(変形例1-2)
次に、本発明の実施の形態1の変形例1-2について説明する。
上記実施の形態1においては、発光量の大きさに基づいて撮像フレームレートの制御を行うこととしたが(ステップS12、13参照)、発光量の変化量に基づいてこの制御を行っても良い。例えば、直前のフレームとその前のフレームとの間における発光量の差分が閾値を超えた場合に、撮像フレームレートをより低い値FR1に切り替えるようにしても良い。
次に、本発明の実施の形態1の変形例1-2について説明する。
上記実施の形態1においては、発光量の大きさに基づいて撮像フレームレートの制御を行うこととしたが(ステップS12、13参照)、発光量の変化量に基づいてこの制御を行っても良い。例えば、直前のフレームとその前のフレームとの間における発光量の差分が閾値を超えた場合に、撮像フレームレートをより低い値FR1に切り替えるようにしても良い。
例えば図5の場合、フレーム21における発光量とその前のフレーム20における発光量との差分Δaが予め定められた所定の閾値を超えた場合、撮像フレームレートの切り替えが行われる。
なお、本変形例1-2においても、変形例1-1と同様に、数フレームごとに発光量の差分と閾値との比較判定を行い、差分が閾値を超えた際に撮像フレームレートの切り替えを行っても良い。
(変形例1-3)
次に、本発明の実施の形態1の変形例1-3について説明する。
上記実施の形態1においては、各フレームにおける発光量に基づいて撮像フレームレートの制御を行ったが、連続する所定数のフレームをサンプリング区間として設け、サンプリング区間における発光量の合計値や平均値に基づいて、撮像フレームレートの制御を行っても良い。具体的には、最新のサンプリング区間における発光量の合計値又は平均値が閾値を超えた場合、或いは、最新のサンプリング区間における発光量の合計値又は平均値と、その前のサンプリング区間における発光量の合計値又は平均値との差分が閾値を超えた場合に、撮像フレームレートを切り替える。
次に、本発明の実施の形態1の変形例1-3について説明する。
上記実施の形態1においては、各フレームにおける発光量に基づいて撮像フレームレートの制御を行ったが、連続する所定数のフレームをサンプリング区間として設け、サンプリング区間における発光量の合計値や平均値に基づいて、撮像フレームレートの制御を行っても良い。具体的には、最新のサンプリング区間における発光量の合計値又は平均値が閾値を超えた場合、或いは、最新のサンプリング区間における発光量の合計値又は平均値と、その前のサンプリング区間における発光量の合計値又は平均値との差分が閾値を超えた場合に、撮像フレームレートを切り替える。
ここで、例えば1フレーム毎に発光量と閾値との比較判定を行う場合、特定のフレームにおける発光量データがノイズ等の影響により誤った値となることがある。その場合、閾値との比較判定も誤った結果になってしまうことが起こり得る。それに対し、本変形例1-3のように、複数フレームの情報に基づいた演算を行うことにより、判定精度を向上させることが可能となる。
(実施の形態2)
次に、本発明の実施の形態2について説明する。
図6は、実施の形態2に係るカプセル型内視鏡が備える制御部の構成を示すブロック図である。実施の形態2に係るカプセル型内視鏡の構成は全体として実施の形態1と同様であり(図2参照)、図3に示す制御部14の代わりに、図6に示す制御部18を備える。
次に、本発明の実施の形態2について説明する。
図6は、実施の形態2に係るカプセル型内視鏡が備える制御部の構成を示すブロック図である。実施の形態2に係るカプセル型内視鏡の構成は全体として実施の形態1と同様であり(図2参照)、図3に示す制御部14の代わりに、図6に示す制御部18を備える。
図6に示すように、制御部18は、撮像制御部181と、信号処理部182と、照明制御部183とを備え、カプセル型内視鏡10内の各構成部の各動作を制御すると共に、これらの各構成部間における信号の入出力を制御する。このうち、信号処理部182及び照明制御部183の動作は、図3に示す信号処理部142及び照明制御部143とそれぞれ同様である。
撮像制御部181は、撮像素子122における受光量(即ち、撮像素子122が出力した画像信号の強度)に基づいて撮像フレームレートを制御する。詳細には、撮像制御部181は、直前の(即ち、最新の)フレームにおいて生成された画像信号の強度情報を信号処理部182から取り込み、R、G、Bの色ごとに画像信号の強度の平均値を算出し、所定の補正係数を掛けた上でこれらの平均値を合算することにより受光量(測光値)を求める(式(1)参照)。そして、この受光量が所定の条件を満たす場合に撮像フレームレートを切り替え、切り替え後の撮像フレームレートで動作するように撮像部12を制御すると共に、この撮像フレームレートに応じたタイミングで照明部13を発光させるように、照明制御部183を制御する。
次に、実施の形態2に係るカプセル型内視鏡の動作を説明する。図7は、実施の形態2に係るカプセル型内視鏡の動作を示すフローチャートである。なお、図7に示すステップS10、S11は実施の形態1と同様である(図4参照)。
ステップS11に続くステップS20において、撮像制御部181は、画像信号の強度情報を撮像部12における受光量として信号処理部182から取り込み、直前のフレームにおける受光量が予め定められた所定の閾値を下回っているか否かを判定する。ここで、受光量が少ないということは、カプセル型内視鏡10と撮像対象との距離が遠いために照明光が撮像対象に届き難く、その結果、撮像対象からの反射光を受光し難くなったためと考えらえる。従って、受光量が閾値を下回った時、カプセル型内視鏡10が、反射光を受光し易い狭い空間から反射光を受光し難い広い空間に移行した、即ち、食道から胃に移動したと推定される。
直前のフレームにおける受光量が閾値以上である場合(ステップS20:No)、撮像制御部181は、撮像フレームレートを初期値FR0に維持しつつ、受光量の判定を継続する。
一方、直前のフレームにおける受光量が閾値を下回った場合(ステップS20:Yes)、撮像制御部181は、撮像フレームレートをより低い値FR1に切り替える(ステップS13)。以降のカプセル型内視鏡10の動作は、実施の形態1と同様である。なお、実施の形態2においても、この後、受光量に基づく撮像フレームレートの制御を実行する必要はない。その理由は、胃やそれに続く臓器においても、カプセル型内視鏡10と撮像対象との距離に応じて受光量が再び閾値以上になることはあり得るものの、カプセル型内視鏡10は高いフレームレートでの撮像が必要な食道を既に通過してしまっているため、低いフレームレートから高いフレームレートへの再度の切替は必要ないからである。即ち、受光量に基づく撮像フレームレートの切り替えは、カプセル型内視鏡10が食道から胃に移動したタイミングで1回のみ行えば良い。
以上説明したように、実施の形態2によれば、直前のフレームにおける撮像部12の受光量を利用することにより、カプセル型内視鏡10内の部品点数を増加させることなく、カプセル型内視鏡10が食道から胃に移行した際に、適切なタイミングで撮像フレームレートを切り替えることが可能となる。
なお、実施の形態2においても、上述した変形例1-1と同様に、数フレームごとに受光量の判定を行っても良い。また、変形例1-2と同様に、フレーム間での受光量の差分に基づいて撮像フレームレートを切り替えても良い。さらに、変形例1-3と同様に、連続する所定数のフレームをサンプリング区間として設け、サンプリング区間における受光量の合計値や平均値に基づいて、撮像フレームレートの切り替えを行っても良い。
(実施の形態3)
次に、本発明の実施の形態3について説明する。
図8は、実施の形態3に係るカプセル型内視鏡の動作を示すフローチャートである。なお、実施の形態3に係るカプセル型内視鏡の構成は実施の形態1と同様である(図2、図3参照)。
次に、本発明の実施の形態3について説明する。
図8は、実施の形態3に係るカプセル型内視鏡の動作を示すフローチャートである。なお、実施の形態3に係るカプセル型内視鏡の構成は実施の形態1と同様である(図2、図3参照)。
カプセル型内視鏡10の電源がオンされて動作を開始すると、まず、ステップS30において、撮像制御部141は、撮像フレームレートを初期値FR2に設定する。ここで、カプセル型内視鏡10の検査を開始する際、ユーザ(検査担当の医療従事者)は、カプセル型内視鏡10を起動して撮像等の動作確認等を行った後、被検体2内の口腔内にカプセル型内視鏡10を導入して嚥下させる。そのため、被検体2がカプセル型内視鏡10を嚥下する前に撮像された体内画像は、被検体2の検査に使用されるものではない。そこで、実施の形態3においては、初期値FR2として、例えば2fps程度の低い値が設定される。
続くステップS31において、カプセル型内視鏡10は撮像を開始する。詳細については、図4のステップS11と同様である。
続くステップS32において、撮像制御部141は、カプセル型内視鏡10が起動してから所定時間Δtが経過したか否かを判定する。この時間Δtの長さは、図5に示すように、カプセル型内視鏡10の動作確認に要する時間や、カプセル型内視鏡10が被検体2の口腔内に留まっている時間として予め設定されている。この時間Δtが経過した際にカプセル型内視鏡10を被検体2に嚥下させるようにすれば、カプセル型内視鏡10が食道に移行したタイミングを確実に把握することができる。
未だ所定時間Δtが経過していない場合(ステップS32:No)、撮像制御部141は所定時間Δtが経過するまで待機する。一方、所定時間Δtが経過した場合(ステップS32:Yes)、撮像制御部141は、撮像フレームレートを食道観察用の撮像フレームレートに切り替える(ステップS33)。上述したように、カプセル型内視鏡10は食道を短時間で通過してしまう。そのため、食道観察用の撮像フレームレートとしては、初期値FR2よりも高い値FR3(例えば、10~50fps)が設定される。
また、ユーザは、所定時間Δtが経過したタイミングで、カプセル型内視鏡10を嚥下するように被検体2に指示する。或いは、ユーザは、画像表示装置5(図1参照)に表示された画像を観察し、撮像フレームレートが高くなったタイミングで、カプセル型内視鏡10を被検体2に嚥下させても良い。
続くステップS12以降の動作は、実施の形態1(図4参照)と同様である。即ち、照明部13の発光量が予め定められた所定の閾値を上回った際に(ステップS12:Yes)、カプセル型内視鏡10が食道から胃に移動したものと推定し、撮像フレームレートを再び低い値FR2(例えば2fps)に切り替える(ステップS13)。
なお、ステップS12における判定や、この判定に用いる情報の取り込みは、所定時間Δtが経過した後(ステップS32:Yes)で開始すると良い。それにより、被検体2がカプセル型内視鏡10を嚥下する前の外部照明による影響を除外することができるので、より正確な判定を行うことができる。
以上説明したように、本発明の実施の形態3によれば、カプセル型内視鏡10の起動後の所定時間、撮像フレームレートを低い値FR2に維持するので、カプセル型内視鏡10の動作確認や、被検体2にカプセル型内視鏡10を嚥下させる準備を行っている間、カプセル型内視鏡10の消費電力を抑制することが可能となる。
なお、図8のステップS33以降は、実施の形態2と同様に、撮像部12における受光量に基づいて、撮像フレームレートの切り替えを行っても良い(図7のステップS20参照)。
(実施の形態4)
次に、本発明の実施の形態4について説明する。
図9は、本発明の実施の形態4に係るカプセル型内視鏡起動システムの外観を示す模式図である。図9に示すように、実施の形態4に係るカプセル型内視鏡起動システム6は、カプセル型内視鏡10と、カプセル型内視鏡10を起動する起動装置7とを備える。
次に、本発明の実施の形態4について説明する。
図9は、本発明の実施の形態4に係るカプセル型内視鏡起動システムの外観を示す模式図である。図9に示すように、実施の形態4に係るカプセル型内視鏡起動システム6は、カプセル型内視鏡10と、カプセル型内視鏡10を起動する起動装置7とを備える。
カプセル型内視鏡10を起動する際、カプセル型内視鏡10は、好ましくは容器8に収納された状態で、起動装置7の筐体70上の所定位置に載置される。筐体70の上面は、容器8の載置面となっており、容器8を載置する位置を示すガイド70aが表示されている。また、筐体70の上面には、各種スイッチや表示部が設けられている。
図10は、図9に示す起動装置7の構成を示すブロック図である。図10に示すように、起動装置7は、当該起動装置7の各部に電力を供給する電源部71と、電源部71から各部への電力供給のオンオフ状態を切り替える電源スイッチ72と、起動装置7の電源のオンオフ状態を表示する電源表示部73と、カプセル型内視鏡10の電源のオンオフ状態を切り替えるスタータ74と、スタータ74の動作を開始させるスタータスイッチ75と、スタータ74の動作状態を表示するスタータ表示部76と、スタータ74の動作後の経過時間をカウントするカウンタ77と、カウンタ77によるカウントを表示するカウンタ表示部78とを備える。
電源表示部73は、例えばLED等の発光素子を用いて構成され、起動装置7がオン状態の場合に発光することにより起動装置7のオンオフ状態を表示する。
スタータ74は、カプセル型内視鏡10の電源部16の構成に応じて構成される。例えば、電源部16が磁気スイッチを有する場合、スタータ74は、電源部71からの電力供給を受けて磁界を発生するコイルを用いて構成される。
スタータスイッチ75は、例えば、押圧することによりスタータ74をオン状態(例えばコイルが通電されている状態)にする入力ボタンによって構成される。
スタータ表示部76は、LED等の発光素子を用いて構成される。スタータ表示部76は、スタータ74がオン状態の場合とオフ状態の場合とで異なる色で発光することにより、スタータ74の動作状態を表示する。
カウンタ77は、スタータ74がオン状態にされたタイミングからの経過時間をカウントする。
カウンタ表示部78は、被検体2にカプセル型内視鏡10を導入するタイミングを通知する通知手段である。カウンタ表示部78には、カプセル型内視鏡10の起動後、被検体2に嚥下させるまでの時間(例えば1分間、以下、設定時間という)が予め設定されている。この設定時間は、図8のステップS32において判定される所定時間Δt、即ち、カプセル型内視鏡10の起動後、撮像フレームレートが初期値(ステップS30参照)から食道観察用の撮像フレームレート(ステップS33参照)に切り替えられるまでの時間に合わせて設定される。
カウンタ表示部78は、例えば液晶表示板からなる計数表示部78a及びテキスト表示部78bを含んでいる。計数表示部78aには、カウンタ77がカウントを開始してからの経過時間が順次表示される。或いは、計数表示部78aに設定時間までの残存時間を表示しても良い。また、テキスト表示部78bには、経過時間が設定時間に至った際に所定のテキストメッセージが表示される。
次に、図9に示すカプセル型内視鏡起動システム6を用いた検査方法を説明する。
まず、ユーザ(検査担当の医療従事者)は、起動装置7を用いてカプセル型内視鏡10を起動する。具体的には、カプセル型内視鏡10を収容した容器8を筐体70の上面のガイド70a内に載置し、スタータスイッチ75を押圧する。それにより、スタータ74が動作し、カプセル型内視鏡10が起動する。例えば、カプセル型内視鏡10の電源部16(図2参照)のスイッチ部が磁気スイッチで構成される場合、スタータ74は磁界を印加してカプセル型内視鏡10の電源をオンさせることにより、カプセル型内視鏡10を起動する。また、この時からカウンタ77がカウントを開始する。
まず、ユーザ(検査担当の医療従事者)は、起動装置7を用いてカプセル型内視鏡10を起動する。具体的には、カプセル型内視鏡10を収容した容器8を筐体70の上面のガイド70a内に載置し、スタータスイッチ75を押圧する。それにより、スタータ74が動作し、カプセル型内視鏡10が起動する。例えば、カプセル型内視鏡10の電源部16(図2参照)のスイッチ部が磁気スイッチで構成される場合、スタータ74は磁界を印加してカプセル型内視鏡10の電源をオンさせることにより、カプセル型内視鏡10を起動する。また、この時からカウンタ77がカウントを開始する。
カウンタ77がカウントを開始してからの経過時間が設定時間に至ると、カウンタ表示部78は、例えば「カプセルを飲み込んでください。」といったテキストメッセージをテキスト表示部78bに表示する。これにより、ユーザは、被検体にカプセル型内視鏡10を嚥下させるタイミングを容易に把握することができる。
なお、通知手段の構成は、上記カウンタ表示部78の構成に限定されない。例えば、カウンタ77がカウントを開始してからの経過時間が設定時間に至った際に、計数表示部78aに表示された数字を点滅させる、スタータ表示部76を点滅させる、といった構成としても良い。或いは、起動装置7にスピーカを設け、テキストメッセージを表示する代わりに、又は、テキストメッセージと共に、音声によりメッセージを読み上げても良いし、通知音を鳴らすこととしても良い。
(変形例4-1)
次に、本発明の実施の形態4の変形例4-1について説明する。
被検体2内にカプセル型内視鏡10を導入するタイミングを通知する機能(カウンタ及び通知手段)を、図1に示す受信装置3に設けても良い。図11は、変形例4-1における受信装置の構成例を示すブロック図である。
次に、本発明の実施の形態4の変形例4-1について説明する。
被検体2内にカプセル型内視鏡10を導入するタイミングを通知する機能(カウンタ及び通知手段)を、図1に示す受信装置3に設けても良い。図11は、変形例4-1における受信装置の構成例を示すブロック図である。
図11に示すように、受信装置3は、カプセル型内視鏡10から無線送信された画像信号を、受信アンテナユニット4(図1参照)を介して受信する受信部31と、受信部31が受信した画像信号に対して所定の信号処理を施す信号処理部32と、信号処理が施された画像信号を記憶するメモリ33と、メモリ33に記憶された画像信号を、クレードル3aを介して画像表示装置5に送信する送信部34と、カウンタ35と、検査に関する各種情報を表示する表示部36と、これらの各部の動作を制御する制御部37とを備える。
カウンタ35は、無線送信された画像信号を受信部31が受信開始したタイミングをトリガーとして、時間のカウントを開始する。制御部37は、カウンタ35がカウントを開始してからの経過時間を表示部36に表示させると共に、この経過時間が設定時間に至った際に、例えば「カプセルを飲み込んでください。」といったテキストメッセージを表示部36に表示させる。
なお、本変形例4-1においても、通知手段として、テキストメッセージを表示する表示部36の他、音声によりメッセージを読み上げる、又は、通知音を鳴らすスピーカを設けても良い。
(変形例4-2)
次に、本発明の実施の形態4の変形例4-2について説明する。
被検体2内にカプセル型内視鏡10を導入するタイミングを通知する機能(カウンタ及び通知手段)を、カプセル型内視鏡10自体に設けても良い。この場合、カプセル型内視鏡10の起動を、設定時間までのカウント開始のトリガーにすると良い。
次に、本発明の実施の形態4の変形例4-2について説明する。
被検体2内にカプセル型内視鏡10を導入するタイミングを通知する機能(カウンタ及び通知手段)を、カプセル型内視鏡10自体に設けても良い。この場合、カプセル型内視鏡10の起動を、設定時間までのカウント開始のトリガーにすると良い。
また、通知手段としては、照明部13及びカウンタによるカウントに応じて照明部13の点滅間隔を変化させる制御部を用いても良い。例えば設定時間を1分間とした場合、設定時間までの残存時間が10秒となった際に照明部13の点滅間隔を短く切り替える。これにより、ユーザは、カプセル型内視鏡10を目視することで、被検体2への導入タイミングを把握することができる。
以上説明した実施の形態1~4及びこれらの変形例は、本発明を実施するための例にすぎず、本発明はこれらに限定されるものではない。また、本発明は、実施の形態1~4及び各変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成できる。本発明は、仕様等に応じて種々変形することが可能であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは、上記記載から自明である。
1 検査システム
2 被検体
3 受信装置
3a クレードル
4 受信アンテナユニット
4a~4h 受信アンテナ
5 画像表示装置
6 カプセル型内視鏡起動システム
7 起動装置
8 容器
10 カプセル型内視鏡
11 カプセル型筐体
12 撮像部
13 照明部
14、18 制御部
15 無線通信部
16 電源部
31 受信部
32 信号処理部
33 メモリ
34 送信部
35 カウンタ
36 表示部
37 制御部
70 筐体
71 電源部
72 電源スイッチ
73 電源表示部
74 スタータ
75 スタータスイッチ
76 スタータ表示部
77 カウンタ
78 カウンタ表示部
78a 計数表示部
78b テキスト表示部
111 筒状筐体
112、113 ドーム状筐体
121 光学系
122 撮像素子
141、181 撮像制御部
142、182 信号処理部
143、183 照明制御部
2 被検体
3 受信装置
3a クレードル
4 受信アンテナユニット
4a~4h 受信アンテナ
5 画像表示装置
6 カプセル型内視鏡起動システム
7 起動装置
8 容器
10 カプセル型内視鏡
11 カプセル型筐体
12 撮像部
13 照明部
14、18 制御部
15 無線通信部
16 電源部
31 受信部
32 信号処理部
33 メモリ
34 送信部
35 カウンタ
36 表示部
37 制御部
70 筐体
71 電源部
72 電源スイッチ
73 電源表示部
74 スタータ
75 スタータスイッチ
76 スタータ表示部
77 カウンタ
78 カウンタ表示部
78a 計数表示部
78b テキスト表示部
111 筒状筐体
112、113 ドーム状筐体
121 光学系
122 撮像素子
141、181 撮像制御部
142、182 信号処理部
143、183 照明制御部
Claims (15)
- 被検体内を照明する光を発生する照明部と、
前記被検体内において反射した光を受光することにより撮像を行い、電気的な画像信号を出力する撮像部と、
前記画像信号に基づいて、前記照明部における発光量をフレームごとに制御する照明制御部と、
前記発光量に応じて、前記撮像部における撮像フレームレートを変更する制御を実行する撮像制御部と、
を備えることを特徴とするカプセル型内視鏡。 - 前記撮像制御部は、前記発光量が閾値を超えた場合に、前記撮像フレームレートを低くする、ことを特徴とする請求項1に記載のカプセル型内視鏡。
- 前記撮像制御部は、直前のフレームと該直前のフレームに対して先行するフレームとの間における前記発光量の差分が閾値を超えた場合に、前記撮像フレームレートを低くする、ことを特徴とする請求項1に記載のカプセル型内視鏡。
- 前記撮像制御部は、複数のフレームにおける前記発光量の平均値又は合算値が閾値を超えた場合に、前記撮像フレームレートを低くする、ことを特徴とする請求項1に記載のカプセル型内視鏡。
- 前記撮像制御部は、前記発光量に基づく前記撮像フレームレートの変更を1回のみ実行する、ことを特徴とする請求項1~4のいずれか1項に記載のカプセル型内視鏡。
- 前記撮像制御部は、
前記カプセル型内視鏡の起動時から所定時間、前記撮像フレームレートを第1の値に維持し、
前記カプセル型内視鏡の起動時から前記所定時間が経過した際に、前記撮像フレームレートを前記第1の値よりも高い第2の値に切り替え、
前記所定時間の経過後、前記発光量に基づいて前記撮像フレームレートを変更する、
ことを特徴とする請求項1~5のいずれか1項に記載のカプセル型内視鏡。 - 被検体内を照明する光を発生する照明部と、
前記被検体内において反射した光を受光することにより撮像を行い、電気的な画像信号を出力する撮像部と、
前記画像信号に基づいて取得される前記撮像部における受光量に応じて、前記撮像部における撮像フレームレートを切り替える制御を実行する撮像制御部と、
を備えることを特徴とするカプセル型内視鏡。 - 前記撮像制御部は、前記受光量が閾値を下回った場合に、前記撮像フレームレートを低くする、ことを特徴とする請求項7に記載のカプセル型内視鏡。
- 前記撮像制御部は、直前のフレームと該直前のフレームに対して先行するフレームとの間における前記受光量の差分が閾値を下回った場合に、前記撮像フレームレートを低くする、ことを特徴とする請求項7に記載のカプセル型内視鏡。
- 前記撮像制御部は、複数のフレームにおける前記受光量の平均値又は合算値が閾値を下回った場合に、前記撮像フレームレートを低くする、ことを特徴とする請求項7に記載のカプセル型内視鏡。
- 前記撮像制御部は、前記受光量に基づく前記撮像フレームレートの変更を1回のみ実行する、ことを特徴とする請求項7~10のいずれか1項に記載のカプセル型内視鏡。
- 前記撮像制御部は、
前記カプセル型内視鏡の起動時から所定時間、前記撮像フレームレートを第1の値に維持し、
前記カプセル型内視鏡の起動時から前記所定時間が経過した際に、前記撮像フレームレートを前記第1の値よりも高い第2の値に切り替え、
前記所定時間の経過後、前記受光量に基づいて前記撮像フレームレートを変更する、
ことを特徴とする請求項7~11のいずれか1項に記載のカプセル型内視鏡。 - 当該カプセル型内視鏡の起動時からの経過時間をカウントするカウンタをさらに備え、
前記照明制御部は、前記経過時間に基づき、前記所定時間までの残存時間に応じて前記照明部の点滅間隔を変化させる、
ことを特徴とする請求項6又は12に記載のカプセル型内視鏡。 - 請求項6又は12に記載のカプセル型内視鏡と、
前記カプセル型内視鏡を起動させるスイッチと、前記カプセル型内視鏡の起動時からの経過時間をカウントするカウンタと、前記経過時間が前記所定時間に達した際に、前記カプセル型内視鏡を前記被検体内に導入するタイミングである旨を通知する通知手段と、を有する起動装置と、
を備えることを特徴とするカプセル型内視鏡起動システム。 - 前記撮像部から出力された前記画像信号を無線送信する送信部をさらに有する請求項6又は12に記載のカプセル型内視鏡と、
前記送信部から無線送信された前記画像信号を受信する受信部と、前記カプセル型内視鏡から前記画像信号の受信を開始した時からの経過時間をカウントするカウンタと、前記経過時間が前記所定時間に達した際に、前記カプセル型内視鏡を前記被検体内に導入するタイミングである旨を通知する通知手段と、を有する受信装置と、
を備えることを特徴とする検査システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016521368A JPWO2016084500A1 (ja) | 2014-11-28 | 2015-10-09 | カプセル型内視鏡、カプセル型内視鏡起動システム、及び検査システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-242293 | 2014-11-28 | ||
JP2014242293 | 2014-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084500A1 true WO2016084500A1 (ja) | 2016-06-02 |
Family
ID=56074078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078833 WO2016084500A1 (ja) | 2014-11-28 | 2015-10-09 | カプセル型内視鏡、カプセル型内視鏡起動システム、及び検査システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016084500A1 (ja) |
WO (1) | WO2016084500A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019003361A1 (ja) * | 2017-06-28 | 2019-01-03 | マクセル株式会社 | 撮像システム及び撮像装置 |
WO2019053973A1 (ja) * | 2017-09-15 | 2019-03-21 | オリンパス株式会社 | カプセル型内視鏡システム、カプセル型内視鏡及び受信装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004521662A (ja) * | 2000-05-15 | 2004-07-22 | ギブン・イメージング・リミテツド | インビボカメラのキャプチャレートおよび表示レートを制御するためのシステム |
JP2004535878A (ja) * | 2001-07-26 | 2004-12-02 | ギブン・イメージング・リミテッド | 生体内撮像装置において照明または撮像器の利得を制御するための装置および方法 |
JP2005080842A (ja) * | 2003-09-08 | 2005-03-31 | Olympus Corp | 被検体内導入装置および無線型被検体内情報取得システム |
JP2007111205A (ja) * | 2005-10-19 | 2007-05-10 | Olympus Corp | 受信装置およびこれを用いた被検体内情報取得システム |
WO2008143246A1 (ja) * | 2007-05-22 | 2008-11-27 | Olympus Corporation | カプセル型医療装置およびカプセル型医療システム |
WO2010143692A1 (ja) * | 2009-06-10 | 2010-12-16 | オリンパスメディカルシステムズ株式会社 | カプセル型内視鏡装置 |
WO2012137705A1 (ja) * | 2011-04-01 | 2012-10-11 | オリンパスメディカルシステムズ株式会社 | 受信装置及びカプセル型内視鏡システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL155046A (en) * | 2003-03-23 | 2013-12-31 | Given Imaging Ltd | Install in-body imaging capable of defining its location |
JP5057651B2 (ja) * | 2005-02-15 | 2012-10-24 | オリンパス株式会社 | 管腔画像処理装置、管腔画像処理方法及びそのためのプログラム |
JP5265139B2 (ja) * | 2007-06-13 | 2013-08-14 | オリンパスメディカルシステムズ株式会社 | 体内画像取得システム |
JP5065812B2 (ja) * | 2007-08-29 | 2012-11-07 | オリンパスメディカルシステムズ株式会社 | 生体内画像取得装置および生体内画像取得システム |
-
2015
- 2015-10-09 JP JP2016521368A patent/JPWO2016084500A1/ja active Pending
- 2015-10-09 WO PCT/JP2015/078833 patent/WO2016084500A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004521662A (ja) * | 2000-05-15 | 2004-07-22 | ギブン・イメージング・リミテツド | インビボカメラのキャプチャレートおよび表示レートを制御するためのシステム |
JP2004535878A (ja) * | 2001-07-26 | 2004-12-02 | ギブン・イメージング・リミテッド | 生体内撮像装置において照明または撮像器の利得を制御するための装置および方法 |
JP2005080842A (ja) * | 2003-09-08 | 2005-03-31 | Olympus Corp | 被検体内導入装置および無線型被検体内情報取得システム |
JP2007111205A (ja) * | 2005-10-19 | 2007-05-10 | Olympus Corp | 受信装置およびこれを用いた被検体内情報取得システム |
WO2008143246A1 (ja) * | 2007-05-22 | 2008-11-27 | Olympus Corporation | カプセル型医療装置およびカプセル型医療システム |
WO2010143692A1 (ja) * | 2009-06-10 | 2010-12-16 | オリンパスメディカルシステムズ株式会社 | カプセル型内視鏡装置 |
WO2012137705A1 (ja) * | 2011-04-01 | 2012-10-11 | オリンパスメディカルシステムズ株式会社 | 受信装置及びカプセル型内視鏡システム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019003361A1 (ja) * | 2017-06-28 | 2019-01-03 | マクセル株式会社 | 撮像システム及び撮像装置 |
WO2019053973A1 (ja) * | 2017-09-15 | 2019-03-21 | オリンパス株式会社 | カプセル型内視鏡システム、カプセル型内視鏡及び受信装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016084500A1 (ja) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5025720B2 (ja) | 被検体内導入システム | |
US20150031954A1 (en) | Capsule endoscope apparatus and receiving apparatus | |
JP2007082664A (ja) | カプセル内視鏡 | |
JP2007167214A (ja) | 体内画像撮影装置および体内画像撮影システム | |
JP2004535878A5 (ja) | ||
JP6049951B2 (ja) | カプセル型内視鏡システム | |
JP6084339B2 (ja) | カプセル型内視鏡システム及びカプセル型内視鏡システムの作動方法 | |
US20110218398A1 (en) | Image processing system, imaging device, receiving device and image display device | |
JP2012070937A (ja) | 内視鏡システム | |
JP6091118B2 (ja) | 医療システム | |
US20090099418A1 (en) | In-vivo information acquiring apparatus and power supply control method | |
US20120010480A1 (en) | In-vivo information acquiring system | |
WO2016157583A1 (ja) | カプセル型内視鏡システムおよび磁界発生装置 | |
US9763565B2 (en) | Capsule endoscope device | |
WO2016084500A1 (ja) | カプセル型内視鏡、カプセル型内視鏡起動システム、及び検査システム | |
JP6022112B2 (ja) | カプセル型内視鏡誘導システム、誘導装置、及び誘導装置の作動方法 | |
JP6132984B2 (ja) | カプセル内視鏡システム及びその撮像方法 | |
WO2012165299A1 (ja) | 受信装置及びカプセル型内視鏡システム | |
JP4383134B2 (ja) | 無線型被検体内情報取得装置 | |
JP4656824B2 (ja) | 無線型被検体内情報取得装置 | |
JP6346721B1 (ja) | カプセル型内視鏡、受信装置、カプセル型内視鏡の作動方法、及びカプセル型内視鏡の作動プログラム | |
WO2022190256A1 (ja) | 被検体内情報取得装置、検査システム、制御方法およびプログラム | |
WO2019053973A1 (ja) | カプセル型内視鏡システム、カプセル型内視鏡及び受信装置 | |
US12133637B2 (en) | Medical observation system | |
JP5815166B1 (ja) | カプセル型内視鏡装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016521368 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15863897 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15863897 Country of ref document: EP Kind code of ref document: A1 |