WO2016084420A1 - ディジタルホログラフィ装置及びディジタルホログラム生成方法 - Google Patents
ディジタルホログラフィ装置及びディジタルホログラム生成方法 Download PDFInfo
- Publication number
- WO2016084420A1 WO2016084420A1 PCT/JP2015/070019 JP2015070019W WO2016084420A1 WO 2016084420 A1 WO2016084420 A1 WO 2016084420A1 JP 2015070019 W JP2015070019 W JP 2015070019W WO 2016084420 A1 WO2016084420 A1 WO 2016084420A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- light
- hologram
- max
- wavelengths
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000001093 holography Methods 0.000 title claims description 38
- 238000003384 imaging method Methods 0.000 claims abstract description 39
- 238000005286 illumination Methods 0.000 claims abstract description 24
- 230000001427 coherent effect Effects 0.000 claims abstract description 12
- 238000004364 calculation method Methods 0.000 claims description 41
- 230000008569 process Effects 0.000 claims description 13
- 230000000007 visual effect Effects 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims description 3
- 238000011084 recovery Methods 0.000 description 27
- 238000001514 detection method Methods 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 18
- 239000011295 pitch Substances 0.000 description 15
- 230000003287 optical effect Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 10
- 230000007547 defect Effects 0.000 description 8
- 238000004088 simulation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 108010014173 Factor X Proteins 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0465—Particular recording light; Beam shape or geometry
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0866—Digital holographic imaging, i.e. synthesizing holobjects from holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H2001/005—Adaptation of holography to specific applications in microscopy, e.g. digital holographic microscope [DHM]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
- G03H2001/0447—In-line recording arrangement
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/2645—Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
- G03H2001/266—Wavelength multiplexing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2222/00—Light sources or light beam properties
- G03H2222/10—Spectral composition
- G03H2222/13—Multi-wavelengths wave with discontinuous wavelength ranges
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2222/00—Light sources or light beam properties
- G03H2222/34—Multiple light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2226/00—Electro-optic or electronic components relating to digital holography
- G03H2226/02—Computing or processing means, e.g. digital signal processor [DSP]
Definitions
- the present invention relates to a digital holography device and a digital hologram generation method for calculating a reproduced image of an object from a hologram in which interference fringes between an object wave and a reference wave are recorded, and in particular, to calculate phase information from a plurality of recorded holograms.
- the present invention relates to a digital holography apparatus and a digital hologram generation method.
- a predetermined light beam is generated based on an interference pattern (hologram) formed on a detection surface of an image sensor or the like by object light reflected or transmitted by the light source from the light source and reference light directly reaching from the same light source.
- a reproduced image of the object is obtained by performing arithmetic processing.
- a hologram is an image representing the intensity distribution of interference light, and this intensity distribution is determined based on the amplitude difference and phase difference between the object wave, which is a complex wavefront, and the reference wave. However, the phase that is the imaginary component of the wave cannot be recorded on the hologram.
- a false image (conjugate image) having an amplitude complex with the real image is calculated at a position symmetrical to the real image (the desired reconstructed image) with respect to the detection surface. Is done. When these two images are superimposed, the visibility of the real image is reduced, and a clear image to be observed may not be obtained.
- Patent Document 1 describes a method of imaging a plurality of holograms with the phase of a reference wave shifted and calculating phase information by linear calculation.
- the method described in this document requires a piezoelectric element for performing phase shift with high accuracy and an optical system such as a mirror and a lens, which complicates the device configuration and increases the size of the device itself.
- Non-Patent Document 1 describes a phase recovery method using an in-line type digital holography apparatus that does not require such a complicated optical system.
- a highly light-transmitting object for example, a cell
- a plurality of holograms having different distances from the object to the detection surface are generated.
- phase information is calculated by repeatedly calculating propagation / reverse propagation of the light wave between the object surface and the detection surface based on the plurality of captured holograms.
- a driving mechanism such as a piezoelectric element for moving the detector with high accuracy is still necessary.
- Non-Patent Document 2 a phase recovery method in which the wavelength of light emitted from a light source is changed in a plurality of stages and light wave propagation is repeatedly calculated based on holograms imaged at the respective wavelengths. According to this method, phase recovery is possible with a simple apparatus configuration that does not require a complicated optical system or drive system.
- the biomicroscope which is one of the applications of digital holography technology, has so far focused on making it possible to observe intracellular structures or objects that are much smaller than that, that is, improving resolution.
- phase contrast microscope Although such confirmation is made by microscopic observation, although the phase contrast microscope is used because the cells themselves are difficult to visually recognize, it is not easy to judge the occurrence of a defect, which is a heavy burden on the observer. It has become. Therefore, it is considered to automate this by using digital holography technology.
- the above-mentioned defects that occur during the culture of induced pluripotent stem cells are judged based on the state of the macro structure (specifically, the shape and texture of the colony including thickness) compared to the intracellular structure.
- the state of the macro structure specifically, the shape and texture of the colony including thickness
- the above-described conjugate image is superimposed on the target region and the visibility of the real image is reduced. Confirmed by calculation. That is, it is difficult to say that the configuration described in Non-Patent Document 2 is suitable for determining good or bad in the culture of induced pluripotent stem cells.
- Non-Patent Document 2 Even if the method described in Non-Patent Document 2 is used, it is difficult to completely recover the phase, and it is difficult to avoid conjugation of conjugate images in inline digital holography. This is because a numerical value serving as a clear index indicating the degree of phase recovery is not defined.
- a correlation coefficient of estimated amplitude values between holograms with a plurality of wavelengths is used as an evaluation index of approximation accuracy.
- the correlation coefficient as the evaluation index can be used as a measure of convergence of the iterative calculation, but is not accurate as an index representing the accuracy of phase recovery.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a digital holography device and a digital hologram generation method capable of reproducing a clear image for an observation object having a different size according to the purpose. Is to provide.
- the phase information calculation process is an algorithm that estimates the phase of an object wave by light wave propagation calculation based on a plurality of captured holograms. An example is shown in FIG. Details of each step will be described later. It should be noted that the term “light wave propagation” in this specification includes the concepts of both propagation and back propagation described above unless otherwise specified.
- E (x, y, 0) is the complex amplitude distribution on the object plane
- E (x, y, z) is the complex amplitude distribution on the detection plane
- z corresponds to the propagation distance
- K represents the wave number.
- the above equation (1) corresponds to obtaining an object image as a sum of diffraction gratings having various pitches by diffraction calculation.
- the diffraction angle ⁇ of the light incident on the diffraction grating is expressed by the following formula (2).
- ⁇ represents the wavelength
- the fine pitch of the diffraction grating corresponds to the fine structure in the image.
- a fine structure for example, intracellular structure
- a large structure for example, the shape of a colony
- FIGS. 7A and 7B are conceptual diagrams illustrating a phenomenon in which a real image and a conjugate image reproduced by light wave propagation calculation are superimposed.
- a conjugate image having a fine structure corresponding to a high-frequency grating is greatly spread (blurred) during back-propagation to the object plane, and thus has an effect on the visibility of a real image superimposed on the object plane.
- Small FIG. 7A
- the conjugate image having a large structure corresponding to the low-frequency grating has a small spread as described above, and thus reaches the object plane while maintaining almost the same size as the real image (FIG. 7B). In this case, a similar line is superimposed on the object plane in the vicinity of each boundary line of the real image, and the visibility of the real image is greatly reduced.
- the wavelength condition of illumination light for recovering the phase of the low frequency component will be described next.
- the diffraction angle of the low-frequency component is small compared to the high-frequency component, when the optical path length difference between the detection surfaces H1 and H2 is small (d1 in the figure), the amount of interference fringe deviation due to diffraction is very small.
- the amount of shift at d1 of the low frequency component is so small that it cannot be shown with respect to the amount of shift g1 related to the high frequency component.
- the difference between the two holograms imaged on the detection surfaces H1 and H2 is difficult to appear for the low frequency component, and the phase recovery is difficult. Therefore, in order to easily recover the phase of the low frequency component, it is only necessary to increase the amount of interference fringe by increasing the optical path length difference (d2 in the figure) like the detection surfaces H1 and H3 in the figure. (G2 in d2).
- these multiple detection surfaces can be regarded as conceptually showing detection surfaces at the same position for detecting illumination light of different wavelengths, and detection surfaces close to the object surface have short wavelengths and detections far away.
- the surface corresponds to long wavelengths.
- An optical path length difference ⁇ z AB generated when two wavelengths ⁇ A and ⁇ B ( ⁇ A ⁇ B ) are used is expressed by the following equation (3).
- z represents the propagation distance as in the above formula (1). According to the above equation (3), the greater the difference between the two wavelengths ⁇ A and ⁇ B , the greater the optical path length difference ⁇ z AB, and thus the phase recovery of the low frequency component becomes easier.
- the structure to be observed corresponds to a lattice having a pitch width p lim .
- the influence on the visibility of the superimposed real image is sufficiently small if the wavefront of the conjugate image spreads more than X times the pitch width p lim on the object plane.
- the following expression (4) Holds. 2z is twice the propagation distance z and corresponds to the calculated distance from the conjugate image to the object plane.
- the following formula (5) is derived from the above formula (4).
- phase of the component corresponding to the grating having the pitch width p lim that satisfies the above equation (5) may be recovered.
- the conjugate image of the fine structure spreads larger than the coarse structure, if phase recovery of the component corresponding to the lattice of p lim that is the observation target is performed, It is considered that the influence of the high frequency component having a pitch width p smaller than p lim is sufficiently small.
- the difference between the holograms is most noticeable, that is, phase recovery of the component corresponding to the pitch width p lim is facilitated by two interferences.
- the digital holography device made to solve the above-mentioned problems is a) a light source that emits coherent light; b) a detector for imaging a hologram that is an interference fringe between an object wave and a reference wave caused by light emitted from the light source; c) wavelength setting means for setting a plurality of wavelengths of illumination light for generating a hologram to be imaged by the detector, and
- the wavelength setting means enlarges the conjugate image set by the user as not to hinder the visual recognition of the real image and the conjugate image reproduced by the predetermined computing means for the structure to be observed when superimposed on the corresponding real image.
- the shortest wavelength ⁇ min and the longest wavelength ⁇ max of the plurality of wavelengths set by the wavelength setting means are ⁇ max / ⁇ min ⁇ (1 / X + 1) (9) It is characterized by setting to satisfy.
- “does not disturb the visual recognition of the superimposed real image” means, in other words, that the boundary line (edge) particularly noticed in the real image is clear.
- this conjugate image does not hinder the real image from being visually recognized. Be taken care of.
- the hologram which is an interference fringe of the object wave and reference wave resulting from the coherent light radiate
- the wavelength setting means for determining the plurality of wavelengths sets the plurality of wavelengths so that the shortest wavelength ⁇ min and the longest wavelength ⁇ max satisfy the above formula.
- the phase recovery accuracy for the structure to be observed is improved. Further, even if a conjugate image remaining without phase recovery is superimposed on the real image, the conjugate image is enlarged by X times or more of the real image, so that the visual recognition of the real image is not hindered. Therefore, a clear image can be obtained even for a relatively large observation target such as a cell colony.
- the calculation of the phase information may be performed by arithmetic means included in the digital holography apparatus, or may be performed on an external computer for control / analysis connected to the digital holography apparatus.
- the number of wavelengths to be used may be appropriately determined from the viewpoint of hardware, calculation cost, required image quality, and the like. Increasing the number of wavelengths used increases the calculation cost, but enables phase recovery in a wider frequency range.
- the wavelength setting means of the present invention may be one of the functions provided in the light source, or may be realized on the detector side.
- a typical example of the former is a light source capable of switching the wavelength of emitted light, and a configuration in which a detector is realized by a hyperspectral camera and images of a plurality of wavelengths are individually extracted from a captured image is considered as the latter example.
- a switching element connected to a plurality of light sources by an optical fiber or the like may be provided, and a configuration in which an object is irradiated with light emitted from which light source can be switched.
- a digital holography device made to solve the above-mentioned problems is as follows. a) a light source that emits coherent light; b) a detector for imaging a hologram that is an interference fringe between an object wave and a reference wave caused by light emitted from the light source; c) wavelength setting means for setting a plurality of wavelengths of illumination light for generating a hologram to be imaged by the detector, and
- the wavelength setting means is configured such that the shortest wavelength ⁇ min and the longest wavelength ⁇ max of the plurality of wavelengths are ⁇ max / ⁇ min ⁇ 1.3 (10) It is characterized by setting to satisfy.
- the wavelength setting means includes: 1.3 ⁇ ⁇ max / ⁇ min ⁇ 2.0 (11)
- the shortest wavelength ⁇ min and the longest wavelength ⁇ max are set so as to satisfy the above condition.
- a digital hologram generating method made to solve the above-described problem is a) a light emitting step of emitting coherent light from a light source; b) an imaging step in which a detector images a hologram that is an interference fringe between an object wave and a reference wave caused by light emitted from the light source; c) a wavelength setting step for setting a plurality of wavelengths of illumination light for generating a hologram to be imaged by the detector, and Based on the magnification X of the conjugate image set by the user as not to hinder the visual recognition of the real image and the conjugate image reproduced by the predetermined calculation means for the structure to be observed when superimposed on the corresponding real image, A plurality of wavelengths set in the wavelength setting step, the shortest wavelength ⁇ min and the longest wavelength ⁇ max are ⁇ max / ⁇ min ⁇ (1 / X + 1) (12) It is characterized by setting to satisfy.
- the wavelengths of the plurality of light sources are set to 1.3 ⁇ ⁇ max / ⁇ min ⁇ 2.0 as described above. This is also useful in the phase unwrapping method.
- multiple wavelengths are set to 1.3 ⁇ ⁇ max / ⁇ min ⁇ 2.0 It is a preferable condition even when the phase unwrapping method is applied.
- the ratio between the maximum value and the minimum value of the wavelength used is 1.3 or more.
- a relatively clear image can be obtained for the target structure.
- the method according to the present invention can be used when applying the phase unwrapping method.
- FIG. 1 is a block diagram showing a schematic configuration of a measurement system including a digital holography device according to an embodiment of the present invention.
- the flowchart which shows the flow of the process which the measurement system shown in FIG. 1 performs.
- the flowchart which shows an example of the flow of a hologram imaging process.
- the flowchart which shows an example of the flow of a phase information calculation process.
- Explanatory drawing which shows the difference in the diffraction angle of incident light by the difference in the pitch width of a diffraction grating.
- the conceptual diagram for demonstrating the phenomenon in which the real image reproduced
- FIG. 1 is a block diagram showing a schematic configuration of a measurement system including a digital holography device according to an embodiment of the present invention.
- the measurement system includes a digital holography device 100 and a workstation 1 that is communicably connected to the digital holography device 100.
- the digital holography apparatus 100 is a microscope, and includes N laser diodes (LD) 101 (1) to 101 (N), a switching element 102 (corresponding to the wavelength setting means of the present invention), an irradiation unit 103, a detector 104, and an interface. (I / F) 105 is provided.
- Each of the LDs 101 (1) to 101 (N) is a light source that oscillates and emits coherent light, and the oscillation wavelengths ⁇ 1 to ⁇ N are set to become longer in that order.
- These LDs 101 (1) to 101 (N) are connected to the switching element 102 through optical fibers.
- the switching element 102 switches the LDs 101 (1) to 101 (N) used as the light source of the illumination light 120 in accordance with an instruction from the workstation 1.
- the irradiation unit 103 emits the illumination light 120 determined as described above toward the object 110. In an actual measurement, the illumination light 120 passes through a plate, a medium, and the like in addition to the object 110, so these should also be made of a light transmissive material.
- the detector 104 images the interference fringes generated by the illumination light 120 emitted from the irradiation unit 103 as a hologram.
- a light wave diffracted by the object 110 is converted into an object wave (arc-shaped line on the right side of the object 110 in the figure), and a light wave (including transmitted light) that is not diffracted is a reference wave (a line on the right side of the object 110).
- the interference fringes produced by these are recorded.
- the detector 104 is realized by a CCD image sensor, for example.
- the actual state of the workstation 1 is a computer, a CPU (Central Processing Unit) 10 which is a central processing unit, a memory 12, a monitor 14 including an LCD (Liquid Crystal Display), an input unit 16 including a keyboard and a mouse, and a memory.
- the parts 20 are connected to each other.
- the memory 12 is a volatile storage device such as a RAM (Random Access Memory), and the storage unit 20 is a ROM (Read only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (registered trademark) (Electrically EPROM). ) ⁇ HDD (Hard Disc Drive) ⁇ SSD (Solid State Drive) and other nonvolatile storage devices.
- the storage unit 20 is provided with an imaging control / data analysis program 21. Each element described later included in the imaging control / data analysis program 21 is a functional unit that is realized by the CPU 10 reading this program into the memory 12 and executing it.
- the storage unit 20 also stores an OS (Operating System) 29.
- the workstation 1 includes an interface (I / F) 18 for direct connection with an external device and connection with a network such as a LAN (Local Area Network) with the external apparatus.
- the I / F 18 is connected to the digital holography device 100 via a network cable NW (or wireless LAN).
- NW or wireless LAN
- a plurality of digital holography apparatuses 100 connected to the workstation 1 may be provided.
- the workstation 1 and the digital holography device 100 may be directly connected by a USB cable or the like.
- the imaging control / data analysis program 21 controls hologram imaging by the digital holography device 100, reproduces an image of the object 110 by a predetermined calculation process based on the captured hologram, and displays the reproduced image on the monitor 14.
- an imaging parameter setting unit 31 As in the imaging control / data analysis program 21, an imaging parameter setting unit 31, an imaging instruction unit 32, a hologram acquisition unit 33, a phase information calculation unit 34, an image generation unit 35, a display control unit 36, and a hologram A storage unit 37 is shown.
- the imaging control / data analysis program 21 is not necessarily a single program.
- the digital holography apparatus 100 may include some of the elements described above as functions.
- FIGS. 2 to 4 are flowcharts.
- the program 21 When the program 21 is activated, the program 21 first prompts the user to input a value of the center wavelength ⁇ mid for hologram imaging.
- the input of the value of the center wavelength ⁇ mid may allow input of an arbitrary value, but any one of N LDs 101 (1) to 101 (N) provided in advance in the digital holography apparatus 100 may be allowed. It is also possible to make a selection.
- the imaging control / data analysis program 21 next prompts the input of the value of the conjugate image area magnification X 2 (or magnification X). .
- the imaging parameter setting unit 31 of the imaging control / data analysis program 21 receives the input center wavelength ⁇ mid.
- a plurality of LD light sources satisfying the equation (9) are selected from the LDs 101 (1) to 101 (N) (step S13).
- the imaging target object 110 is a colony of induced pluripotent stem cells such as ES cells and iPS cells.
- the value of the area ratio X 2 of conjugate image input by the user is described as being 10 ( ⁇ 10 in magnification X). This is because, when the object 110 to be observed is a cell colony, it is sufficient that the area of the conjugate image superimposed on the real image is about 10 times that of the real image in order to obtain a clear reproduction image of the shape. This is determined from the results of preliminary experiments. On the other hand, if the wavelength difference between the longest wavelength ⁇ max and the shortest wavelength ⁇ min is too large, as described above, part of the diffracted light protrudes from the detection surface, which causes a decrease in phase recovery accuracy.
- the wavelength input by the user may be the longest wavelength ⁇ max or the shortest wavelength ⁇ min instead of the center wavelength ⁇ mid .
- the center wavelength ⁇ mid is a visible region (about 600 nm) that avoids the low wavelength region in which cell toxicity is a concern and the far infrared region in which heat generation due to light absorption is a concern.
- this value is not a problem in the following explanation.
- the switching element 102 switches the light source of the illumination light 120 to the j-th LD 101 (j) (step S105).
- the irradiation unit 103 emits the illumination light 120 toward the object 110 (step S106).
- the interference fringes between the object wave diffracted by the object 110 and the reference wave that has not been diffracted are imaged by the detector 104 as a hologram (step S107).
- the imaged hologram data is transmitted to the I / F 18 of the workstation 1 via the I / F 105 (step S108).
- the hologram acquisition unit 33 acquires the received hologram data and stores it in the hologram storage unit 37 (step S109).
- the hologram storage unit 37 stores a plurality of (J2 ⁇ J1 + 1 in this embodiment) hologram data used for phase information calculation processing and object image reproduction, which will be described later, for each measurement object designated by the user. is there.
- the imaging parameter setting unit 31 When the set hologram data is stored, the imaging parameter setting unit 31 then increments j (step S110). If j does not exceed the maximum value J2 (No in step S111), the process proceeds to step S102. Returning to the front, steps S102 to S111 are executed for the next wavelength ⁇ j .
- step S111 if j exceeds J2 as a result of the increment in step S110 (Yes in step S111), the determination result is that hologram data corresponding to all the light wavelengths from ⁇ J1 to ⁇ J2 set in step S100 is obtained. It means that they are ready.
- step S ⁇ b> 15 the phase information calculation unit 34 next executes the phase information calculation process for each hologram data. Details of the processing in this step will be described later with reference to FIG. If phase recovery is performed for each hologram data in step S15, the image generator 35 reproduces the object image based on the hologram data after the phase recovery (step S16). The reproduced object image (hereinafter referred to as “reproduced image”) is displayed on the screen of the monitor 14 by the display control unit 36 (step S17). This is the end of the rough processing by the measurement system.
- the phase information calculation unit 34 converts each hologram into an amplitude image (step S201). Since the hologram has a distribution of intensity values, it cannot be applied to Fourier transform used in propagation calculation described later. Therefore, each intensity value is converted into an amplitude value in this step. Conversion to an amplitude image is performed by calculating the square root of each pixel value.
- the initial value of the phase image can be arbitrarily determined. For example, all pixel values may be set to 0, or each pixel value may be set at random.
- j is an identifier of the LD 101 that is the light source of the illumination light 120 (J1 ⁇ j ⁇ J2)
- a is a direction value that takes a value of 1 or ⁇ 1
- n (1 ⁇ n) is calculated as described above. Is the number of repetitions.
- phase information calculation unit 34 calculates back propagation to the object plane (step S204).
- the phase information calculation unit 34 determines whether or not the value of j + a falls within the range of J1 to J2 (step S205).
- the determination result in Step S205 is Yes, and j is incremented (Step S207).
- the phase information calculation unit 34 inverts the sign of a (step S206), and decrements j (step S207).
- step S207 If j decreases to 1 by repeating decrement in step S207, j ⁇ 1 becomes 0. Therefore, the determination result in step S205 is No, and the sign of a is reversed again in step S206. Thus, in this flowchart, the positive / negative inversion of a and the increment / decrement of j by it are repeated.
- the phase information calculation unit 34 updates the phase of the object wave based on ⁇ j (step S208). Specifically, in the complex wavefront on the object plane calculated in step S204, the phase is converted to that of the next wavelength by calculation (the amplitude is not updated). In this way, propagation to the detection surface is calculated in a state where only the phase is converted to the next wavelength (step S209), and the difference (that is, error) between the calculation result and the square root of each intensity value of the measured hologram. ) Is larger than the threshold ⁇ (No in step S210), the phase information calculation unit 34 increments n (step S211) and repeats the above processing.
- step S210 the phase information calculation unit 34 considers that sufficient phase recovery has been performed, and ends the phase information calculation process.
- FIG. 5 shows a simulation result of the reproduced object image based on the above method.
- the center wavelength ⁇ mid (or the longest wavelength ⁇ max or the shortest wavelength ⁇ min ) input by the user from among a number of laser diodes (LD) 101 (1) to 101 (N) provided in advance.
- the appropriate light sources LD101 (J1) to 101 (J2) are selected according to the magnification ratio X, and they are used by switching them.
- it is not necessary to set such degrees of freedom, and the object to be photographed (observed) is If it is determined in advance, only a plurality of light sources set in advance according to the equation (9) may be provided in the digital holography apparatus 100, and only these may be used. In this case, the calculation time can be shortened by setting the number of light sources (the number of wavelengths) to 2, and in the case of the inspection of the defect of the cell colony as described above, a sufficiently clear image for practical use. Recovery is also possible.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Holo Graphy (AREA)
Abstract
Description
但し、ホログラムには波の虚数成分である位相を記録することができない。そのため、ホログラムに基いて物体の再生像を得る際、検出面に対して実像(所期の再生像)と対称な位置に、該実像と複素共役な振幅を持つ偽像(共役像)が算出される。これら2つの像が重畳すると、実像の視認性が低下し、観察対象の鮮明な像を得られない場合がある。
位相情報算出処理は、撮像された複数のホログラムに基き、光波伝搬計算により物体波の位相を推定するアルゴリズムである。図4に一例を示す。各ステップの詳細については後述する。なお、本明細書での「光波伝搬」なる文言には、特に断りがない限り、上述した伝搬と逆伝搬との両方の概念が含まれるものとする。
上記の式(1)は、様々なピッチの回折格子の総和としての物体像を回折計算により求めることに相当する。回折格子に入射した光の回折角度φは以下の式(2)で表される。λは波長、pは格子のピッチ幅を表す。
なお、本明細書で参照する各図面において、各部材の寸法比は説明の簡略化のため適宜変更されており、実際とは異なる場合がある。
さらに、2つの波長λAとλBとでホログラムを撮像したとき、ホログラム間の差異が最も顕著になる、すなわちピッチ幅plimに相当する成分の位相回復が容易になるのは、2つの干渉縞がピッチ幅plimのちょうど半分ずれた場合である。従って、式(2)及び式(3)より、以下の式(6)が成り立つ。
a)コヒーレント光を出射する光源と、
b)前記光源からの出射光に起因する物体波と参照波との干渉縞であるホログラムを撮像するための検出器と、
c)前記検出器に撮像させるホログラムを生成する照明光の波長を複数設定する波長設定手段と
を備え、
前記波長設定手段は、観察対象となる構造について所定の演算手段により再生される実像及び共役像について、対応する実像に重畳したときにその視認を妨げないとして使用者により設定された共役像の拡大率Xに基き、前記波長設定手段が設定する複数の波長を、その最短の波長λminと最長の波長λmaxとが
λmax/λmin ≧ (1/X + 1) …(9)
を満たすように設定することを特徴とする。
a)コヒーレント光を出射する光源と、
b)前記光源からの出射光に起因する物体波と参照波との干渉縞であるホログラムを撮像するための検出器と、
c)前記検出器に撮像させるホログラムを生成する照明光の波長を複数設定する波長設定手段と
を備え、
前記波長設定手段は、前記複数の波長を、その最短の波長λminと最長の波長λmaxとが
λmax/λmin ≧ 1.3 …(10)
を満たすように設定することを特徴とする。
1.3 ≦ λmax/λmin ≦ 2.0 …(11)
を満たすよう、前記最短の波長λminと前記最長の波長λmaxとを設定する。
a)光源からコヒーレント光を出射する光出射工程と、
b)前記光源からの出射光に起因する物体波と参照波との干渉縞であるホログラムを検出器が撮像する撮像工程と、
c)前記検出器に撮像させるホログラムを生成する照明光の波長を複数設定する波長設定工程と
を含み、
観察対象となる構造について所定の演算手段により再生される実像及び共役像について、対応する実像に重畳したときにその視認を妨げないとして使用者により設定された共役像の拡大率Xに基き、前記波長設定工程にて設定する複数の波長を、その最短の波長λminと最長の波長λmaxとが
λmax/λmin ≧ (1/X + 1) …(12)
を満たすように設定することを特徴とする。
1.3 ≦ λmax/λmin ≦ 2.0 …(13)
としておけば、十分明瞭な実像回復を行うことができる。
1.3 ≦ λmax/λmin ≦ 2.0
とすることは、位相アンラッピング法においても有用なものとなる。
λAB=(λA×λB)/(λB-λA)=λB/(λB/λA-1)
で計算される。この擬似波長λABが大きくなると位相の折り返しを生じることなく位相画像を表示することができるというメリットがあるが、位相の分解能が低下するというデメリットがある。そのため、撮影した物体の位相レンジに合わせて適切な波長λA、λBを選択することが望ましい。図9に合成前の両波長λA、λB(λB/λA)と合成後の波長λABの関係を示すが、λB/λA=1(λA=λB)の場合、λABは無限に発散し、λB/λA=2の場合(λB=2×λA)、λAB=λBとなり、合成前の波長と同じになる。
1.3 ≦ λmax/λmin ≦ 2.0
となるように設定することは、位相アンラッピング法を適用する場合においても好適な条件である。
ディジタルホログラフィ装置100は顕微鏡であり、N個のレーザーダイオード(LD)101(1)~101(N)、スイッチング素子102(本発明の波長設定手段に相当)、照射部103、検出器104及びインターフェース(I/F)105を備える。
スイッチング素子102は、ワークステーション1からの指示に従い、照明光120の光源として使用するLD101(1)~101(N)を切り替える。
照射部103は、上記のようにして定められた照明光120を物体110に向けて出射するものである。なお、実際の測定では照明光120は物体110以外にプレートや培地等も透過するので、これらも光透過性の材料にて構成すべきである。
検出器104は、照射部103から出射された照明光120によって生じた干渉縞をホログラムとして撮像するものである。このホログラムは、物体110によって回折した光波を物体波(同図中において物体110の右側の円弧型の線)、回折しなかった光波(透過光を含む)を参照波(物体110の右側の線分)とし、これらによって生じた干渉縞を記録したものである。検出器104は例えばCCDイメージセンサによって実現される。
ワークステーション1の実態はコンピュータであり、中央演算処理装置であるCPU(Central Processing Unit)10にメモリ12、LCD(Liquid Crystal Display)等から成るモニタ14、キーボードやマウス等から成る入力部16及び記憶部20が互いに接続されている。このうち、上記のメモリ12はRAM(Random Access Memory)等の揮発性記憶装置、記憶部20はROM(Read only Memory)・フラッシュメモリ・EPROM(Erasable Programmable ROM)・EEPROM(登録商標)(Electrically EPROM)・HDD(Hard Disc Drive)・SSD(Solid State Drive)等の不揮発性記憶装置によって構成される。記憶部20には撮像制御・データ解析プログラム21が設けられている。撮像制御・データ解析プログラム21が備える後述の各要素は、CPU10がこのプログラムをメモリ12に読み出して実行することで実現される機能手段である。記憶部20にはまた、OS(Operating System)29も記憶されている。
以下、フローチャートである図2~図4を参照しつつ、本実施形態に係るディジタルホログラフィ装置100を含む測定システムが実行する処理の流れについて説明を行う。
λJ2/λJ1 ≧ 1/X + 1、
average(λJ1, …, λJ2)≒ λmid
を満たす。
まず、j = J1(J1 ≦ j ≦ J2)とし(ステップS101)、撮像パラメータ設定部31は照射部103から出射される照明光120(図1参照)の波長をλjに設定する(ステップS102)。続いて撮像指示部32がディジタルホログラフィ装置100に対し、λjのホログラム撮像を指示する(ステップS103)。撮像指示部32による上記指示は、撮像指示信号としてI/F18からディジタルホログラフィ装置100のI/F105に対し送信される(ステップS104)。
ステップS15にて各ホログラムデータについて位相回復がなされれば、該位相回復後のホログラムデータに基いて、画像生成部35が物体画像を再生する(ステップS16)。再生された物体画像(以下「再生像」と称す)は表示制御部36によってモニタ14の画面上に表示される(ステップS17)。以上で測定システムによる大まかな処理は終了となる。
上述のステップS15における位相情報算出処理の流れの一例を図4に示す。この位相情報算出処理は、ステップS109にてホログラム記憶部37に保存されたJ2-J1+1個のホログラムデータに基いて行われる。
上記実施形態では、予め備えられた多数のレーザーダイオード(LD)101(1)~101(N)の中から、使用者が入力する中心波長λmid(或いは最長波長λmax又は最短波長λmin)と拡大率Xに応じて適切な光源LD101(J1)~101(J2)を選択し、それらを切り替えて使用するとしたが、そのような自由度の設定が必要でなく、撮影(観察)対象が予め定まっている場合には、前記式(9)に従って予め設定した複数の光源のみをディジタルホログラフィ装置100に設けておき、それらのみを使うようにしてもよい。この場合、光源の数(波長の数)を2とすることにより計算時間を短縮することができ、前記のような細胞コロニーの不良の検査等の目的の場合には、実用上十分鮮明な画像回復も可能となる。
12…メモリ
14…モニタ
16…入力部
18…I/F
20…記憶部
21…撮像制御・データ解析プログラム
31…撮像パラメータ設定部
32…撮像指示部
33…ホログラム取得部
34…位相情報算出部
35…画像生成部
36…表示制御部
37…ホログラム記憶部
100…ディジタルホログラフィ装置
101(1)~101(N)…レーザーダイオード(LD)
102…スイッチング素子
103…照射部
104…検出器
105…I/F
110…物体
120…照明光
Claims (9)
- a)コヒーレント光を出射する光源と、
b)前記光源からの出射光に起因する物体波と参照波との干渉縞であるホログラムを撮像するための検出器と、
c)前記検出器に撮像させるホログラムを生成する照明光の波長を複数設定する波長設定手段と
を備え、
前記波長設定手段は、観察対象となる構造について所定の演算手段により再生される実像及び共役像について、対応する実像に重畳したときにその視認を妨げないとして使用者により設定された共役像の拡大率Xに基き、前記波長設定手段が設定する複数の波長を、その最短の波長λminと最長の波長λmaxとが
λmax/λmin ≧ (1/X + 1)
を満たすように設定することを特徴とするディジタルホログラフィ装置。 - a)コヒーレント光を出射する光源と、
b)前記光源からの出射光に起因する物体波と参照波との干渉縞であるホログラムを撮像するための検出器と、
c)前記検出器に撮像させるホログラムを生成する照明光の波長を複数設定する波長設定手段と
を備え、
前記波長設定手段は、前記複数の波長を、その最短の波長λminと最長の波長λmaxとが
λmax/λmin ≧ 1.3
を満たすように設定することを特徴とするディジタルホログラフィ装置。 - 前記波長設定手段は、前記複数の波長を、その最短の波長λminと最長の波長λmaxとが
1.3 ≦ λmax/λmin ≦ 2.0
を満たすように設定することを特徴とする請求項2に記載のディジタルホログラフィ装置。 - 前記波長設定手段は、光ファイバを介して複数の前記光源と接続されたスイッチング素子であり、該接続された複数の光源を切り替えて使用することを特徴とする請求項1~3のいずれかに記載のディジタルホログラフィ装置。
- a)共にコヒーレント光を出射する2つの光源であって、各発光波長λ1及び波長λ2がλ2/λ1≧1.3を満たす光源と、
b)前記両光源のそれぞれについて、各出射光に起因する物体波と参照波との干渉縞であるホログラムを撮像するための検出器と、
c)前記検出器に撮像させるホログラムを生成する照明光の波長を複数設定する波長設定手段と
を備えることを特徴とするディジタルホログラフィ装置。 - a)光源からコヒーレント光を出射する光出射工程と、
b)前記光源からの出射光に起因する物体波と参照波との干渉縞であるホログラムを検出器が撮像する撮像工程と、
c)前記検出器に撮像させるホログラムを生成する照明光の波長を複数設定する波長設定工程と
を含み、
観察対象となる構造について所定の演算手段により再生される実像及び共役像について、対応する実像に重畳したときにその視認を妨げないとして使用者により設定された共役像の拡大率Xに基き、前記波長設定工程にて設定する複数の波長を、その最短の波長λminと最長の波長λmaxとが
λmax/λmin ≧ (1/X + 1)
を満たすように設定することを特徴とするディジタルホログラム生成方法。 - a)コヒーレント光を出射する光出射工程と、
b)前記光源からの出射光に起因する物体波と参照波との干渉縞であるホログラムを撮像するための撮像工程と、
c)前記検出器に撮像させるホログラムを生成する照明光の波長を複数設定する波長設定工程と
を含み、
前記波長設定工程において、前記複数の波長を、その最短の波長λminと最長の波長λmaxとが
λmax/λmin ≧ 1.3
を満たすように設定することを特徴とするディジタルホログラム生成方法。 - 前記波長設定工程において、前記複数の波長を、その最短の波長λminと最長の波長λmaxとが
1.3 ≦ λmax/λmin ≦ 2.0
を満たすように設定することを特徴とする請求項7に記載のディジタルホログラム生成方法。 - 共にコヒーレント光を出射する2つの光源であって、各発光波長λ1及び波長λ2がλ2/λ1≧1.3を満たす光源を用意し、
前記両光源のそれぞれについて、各出射光に起因する物体波と参照波との干渉縞であるホログラムを撮像する
ことを特徴とするディジタルホログラム生成方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580064772.4A CN107003638B (zh) | 2014-11-27 | 2015-07-13 | 数字全息摄像装置以及数字全息图生成方法 |
US15/529,538 US10281877B2 (en) | 2014-11-27 | 2015-07-13 | Digital holography device and digital hologram generation method |
EP15863320.6A EP3223083A4 (en) | 2014-11-27 | 2015-07-13 | Digital holography device and digital hologram generation method |
JP2016561420A JP6388036B2 (ja) | 2014-11-27 | 2015-07-13 | ディジタルホログラフィ装置及びディジタルホログラム生成方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-239506 | 2014-11-27 | ||
JP2014239506 | 2014-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084420A1 true WO2016084420A1 (ja) | 2016-06-02 |
Family
ID=56074004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/070019 WO2016084420A1 (ja) | 2014-11-27 | 2015-07-13 | ディジタルホログラフィ装置及びディジタルホログラム生成方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10281877B2 (ja) |
EP (1) | EP3223083A4 (ja) |
JP (1) | JP6388036B2 (ja) |
CN (1) | CN107003638B (ja) |
WO (1) | WO2016084420A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108513031A (zh) * | 2017-02-28 | 2018-09-07 | 株式会社岛津制作所 | 细胞观察系统 |
GB2561964A (en) * | 2017-02-28 | 2018-10-31 | Shimadzu Corp | Cell observation apparatus |
WO2018235476A1 (ja) * | 2017-06-22 | 2018-12-27 | ソニー株式会社 | 情報処理装置、情報処理方法、及びプログラム |
WO2019171453A1 (ja) * | 2018-03-06 | 2019-09-12 | 株式会社島津製作所 | 細胞画像解析方法、細胞画像解析装置、及び学習モデル作成方法 |
WO2019171546A1 (ja) * | 2018-03-08 | 2019-09-12 | 株式会社島津製作所 | 細胞画像解析方法、細胞画像解析装置、及び学習モデル作成方法 |
WO2020105534A1 (ja) * | 2018-11-22 | 2020-05-28 | 株式会社島津製作所 | 逐次近似計算方法、逐次近似計算装置およびプログラム |
WO2020262551A1 (ja) * | 2019-06-26 | 2020-12-30 | 株式会社島津製作所 | 細胞機能の評価方法及び細胞解析装置 |
US11106178B2 (en) | 2017-03-03 | 2021-08-31 | Shimadzu Corporation | Cell observation device |
US11609537B2 (en) | 2017-03-02 | 2023-03-21 | Shimadzu Corporation | Cell analysis method and cell analysis system using a holographic microscope |
US11686721B2 (en) | 2018-03-20 | 2023-06-27 | Shimadzu Corporation | Cell image analysis apparatus, cell image analysis system, method of generating training data, method of generating trained model, training data generation program, and method of producing training data |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017006370A1 (ja) * | 2015-07-07 | 2017-01-12 | オリンパス株式会社 | デジタルホログラフィック撮影装置 |
JP6995975B2 (ja) | 2018-03-12 | 2022-02-04 | 富士フイルム株式会社 | 判定方法 |
CN110895389B (zh) * | 2018-09-10 | 2021-08-24 | 英属开曼群岛商音飞光电科技股份有限公司 | 全像影像片体、全像影像记录方法与重建方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010092739A1 (ja) * | 2009-02-13 | 2010-08-19 | 国立大学法人京都工芸繊維大学 | 干渉計測装置および干渉計測方法 |
JP2012531584A (ja) * | 2009-06-25 | 2012-12-10 | フェイズ ホログラフィック イメージング ペーホーイー アーベー | デジタルホログラフィック撮像による卵又は胚の分析 |
US20140268105A1 (en) * | 2013-03-15 | 2014-09-18 | Zygo Corporation | Optical defect inspection system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3471556B2 (ja) | 1997-03-27 | 2003-12-02 | 理化学研究所 | 位相シフトディジタルホログラフィ装置 |
US7312875B2 (en) * | 2003-04-23 | 2007-12-25 | Ut-Battelle Llc | Two-wavelength spatial-heterodyne holography |
US7978336B2 (en) * | 2009-03-16 | 2011-07-12 | Ut-Battelle, Llc | Three wavelength quantitative imaging systems |
DE102011016660B4 (de) * | 2011-04-04 | 2012-10-25 | Universität Stuttgart | Verfahren und Anordnung zur Kurz-Kohärenz-Holografie |
US20130250383A1 (en) * | 2012-03-21 | 2013-09-26 | Coherix, Inc. | Apparatus for multi-wavelength holographic imaging |
FR2997518B1 (fr) * | 2012-10-30 | 2014-12-05 | Centre Nat Rech Scient | Systeme d'imagerie holographique auto-reference |
US10126709B2 (en) * | 2013-12-02 | 2018-11-13 | Imec Vzw | Apparatus and method for performing in-line lens-free digital holography of an object |
EP2879004A1 (en) * | 2013-12-02 | 2015-06-03 | IMEC vzw | Apparatus and method for performing in-line lens-free digital holography of an object |
-
2015
- 2015-07-13 US US15/529,538 patent/US10281877B2/en active Active
- 2015-07-13 EP EP15863320.6A patent/EP3223083A4/en not_active Withdrawn
- 2015-07-13 CN CN201580064772.4A patent/CN107003638B/zh not_active Expired - Fee Related
- 2015-07-13 JP JP2016561420A patent/JP6388036B2/ja active Active
- 2015-07-13 WO PCT/JP2015/070019 patent/WO2016084420A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010092739A1 (ja) * | 2009-02-13 | 2010-08-19 | 国立大学法人京都工芸繊維大学 | 干渉計測装置および干渉計測方法 |
JP2012531584A (ja) * | 2009-06-25 | 2012-12-10 | フェイズ ホログラフィック イメージング ペーホーイー アーベー | デジタルホログラフィック撮像による卵又は胚の分析 |
US20140268105A1 (en) * | 2013-03-15 | 2014-09-18 | Zygo Corporation | Optical defect inspection system |
Non-Patent Citations (2)
Title |
---|
MEMMOLO P.: "Multi-wavelength digital holography: reconstruction, synthesis and display of holograms using adaptive transformation", OPTICS LETTERS, vol. 37, no. 9, pages 1445 - 1447, XP001575318, DOI: doi:10.1364/OL.37.001445 * |
See also references of EP3223083A4 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2561964A (en) * | 2017-02-28 | 2018-10-31 | Shimadzu Corp | Cell observation apparatus |
CN108513031A (zh) * | 2017-02-28 | 2018-09-07 | 株式会社岛津制作所 | 细胞观察系统 |
CN108513031B (zh) * | 2017-02-28 | 2020-09-25 | 株式会社岛津制作所 | 细胞观察系统 |
US10798333B2 (en) | 2017-02-28 | 2020-10-06 | Shimadzu Corporation | Cell observation system |
US11609537B2 (en) | 2017-03-02 | 2023-03-21 | Shimadzu Corporation | Cell analysis method and cell analysis system using a holographic microscope |
US11106178B2 (en) | 2017-03-03 | 2021-08-31 | Shimadzu Corporation | Cell observation device |
WO2018235476A1 (ja) * | 2017-06-22 | 2018-12-27 | ソニー株式会社 | 情報処理装置、情報処理方法、及びプログラム |
JPWO2018235476A1 (ja) * | 2017-06-22 | 2020-04-23 | ソニー株式会社 | 情報処理装置、情報処理方法、及びプログラム |
JPWO2019171453A1 (ja) * | 2018-03-06 | 2021-02-04 | 株式会社島津製作所 | 細胞画像解析方法、細胞画像解析装置、及び学習モデル作成方法 |
WO2019171453A1 (ja) * | 2018-03-06 | 2019-09-12 | 株式会社島津製作所 | 細胞画像解析方法、細胞画像解析装置、及び学習モデル作成方法 |
JP7070656B2 (ja) | 2018-03-06 | 2022-05-18 | 株式会社島津製作所 | 細胞画像解析方法、細胞画像解析装置、及び学習モデル作成方法 |
WO2019171546A1 (ja) * | 2018-03-08 | 2019-09-12 | 株式会社島津製作所 | 細胞画像解析方法、細胞画像解析装置、及び学習モデル作成方法 |
JPWO2019171546A1 (ja) * | 2018-03-08 | 2021-02-04 | 株式会社島津製作所 | 細胞画像解析方法、細胞画像解析装置、及び学習モデル作成方法 |
JP7163955B2 (ja) | 2018-03-08 | 2022-11-01 | 株式会社島津製作所 | 細胞画像解析方法、細胞画像解析装置、及び学習モデル作成方法 |
US11978211B2 (en) | 2018-03-08 | 2024-05-07 | Shimadzu Corporation | Cellular image analysis method, cellular image analysis device, and learning model creation method |
US11686721B2 (en) | 2018-03-20 | 2023-06-27 | Shimadzu Corporation | Cell image analysis apparatus, cell image analysis system, method of generating training data, method of generating trained model, training data generation program, and method of producing training data |
JPWO2020105534A1 (ja) * | 2018-11-22 | 2021-09-30 | 株式会社島津製作所 | 逐次近似計算方法、逐次近似計算装置およびプログラム |
WO2020105534A1 (ja) * | 2018-11-22 | 2020-05-28 | 株式会社島津製作所 | 逐次近似計算方法、逐次近似計算装置およびプログラム |
JPWO2020262551A1 (ja) * | 2019-06-26 | 2020-12-30 | ||
WO2020261455A1 (ja) * | 2019-06-26 | 2020-12-30 | 株式会社島津製作所 | 細胞機能の評価方法及び細胞解析装置 |
WO2020262551A1 (ja) * | 2019-06-26 | 2020-12-30 | 株式会社島津製作所 | 細胞機能の評価方法及び細胞解析装置 |
Also Published As
Publication number | Publication date |
---|---|
US10281877B2 (en) | 2019-05-07 |
CN107003638B (zh) | 2019-08-20 |
JP6388036B2 (ja) | 2018-09-12 |
US20170329281A1 (en) | 2017-11-16 |
JPWO2016084420A1 (ja) | 2017-07-06 |
EP3223083A4 (en) | 2017-12-27 |
EP3223083A1 (en) | 2017-09-27 |
CN107003638A (zh) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6388036B2 (ja) | ディジタルホログラフィ装置及びディジタルホログラム生成方法 | |
JP4772961B2 (ja) | ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法 | |
KR101810637B1 (ko) | 티코그래피에서 프로브의 보정 | |
EP2592459B1 (en) | Holographic microscope and method for processing microscopic subject hologram image | |
JP5802110B2 (ja) | 光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置 | |
JP4594114B2 (ja) | 画像処理装置および屈折率分布測定装置 | |
KR101605178B1 (ko) | 다중 기준 영상들을 이용한 3차원 물체 형상 복원 장치 및 방법 | |
JP2013504780A (ja) | 波動場の位相を回復する方法及び装置 | |
KR20160019308A (ko) | 홀로그래픽 영상에 대한 품질 측정 장치 및 방법 | |
JP4499331B2 (ja) | 波面の位相情報を回復するためのシステムおよび方法 | |
Kocsis et al. | Single exposure lensless subpixel phase imaging: optical system design, modelling, and experimental study | |
Ma et al. | Fast algorithm for reliability-guided phase unwrapping in digital holographic microscopy | |
US11430144B2 (en) | Device and process for the contemporary capture of standard images and plenoptic images via correlation plenoptic imaging | |
Xu et al. | Enhanced multiple-plane phase retrieval using a transmission grating | |
Petrov et al. | Image reconstruction using measurements in volume speckle fields formed by different wavelengths | |
Kuś et al. | Advances in design and testing of limited angle optical diffraction tomographysystem for biological applications | |
Besaga et al. | Monitoring of photochemically induced changes in phase-modulating samples with digital holographic microscopy | |
Huang et al. | Infrared Digital Holography | |
Besaga et al. | Performance evaluation of digital holographic microscopy for rapid inspection | |
WO2022224722A1 (ja) | 評価値の取得方法 | |
Li et al. | Wavefront sensing and optical surface measurement method based on reference light modulation | |
Loparev et al. | A high-speed modulation interference microscope for biomedical studies | |
Bae et al. | Beam propagation analysis on thickness measurements in quantitative phase microscopy | |
Stuerwald et al. | Imaging micro-optical components with short coherent digital holographic microscopy | |
Haouat et al. | Visualizing the fine structure and dynamics of living cells with temporal polychromatic digital holographic microscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15863320 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016561420 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15529538 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015863320 Country of ref document: EP |