WO2016082111A1 - 增压器的降噪结构 - Google Patents

增压器的降噪结构 Download PDF

Info

Publication number
WO2016082111A1
WO2016082111A1 PCT/CN2014/092204 CN2014092204W WO2016082111A1 WO 2016082111 A1 WO2016082111 A1 WO 2016082111A1 CN 2014092204 W CN2014092204 W CN 2014092204W WO 2016082111 A1 WO2016082111 A1 WO 2016082111A1
Authority
WO
WIPO (PCT)
Prior art keywords
high pressure
pressure pipe
noise reduction
supercharger
reduction structure
Prior art date
Application number
PCT/CN2014/092204
Other languages
English (en)
French (fr)
Inventor
向福泉
谢凯
金吉刚
刘全有
崔发成
吴成明
冯擎峰
Original Assignee
浙江吉利汽车研究院有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利汽车研究院有限公司, 浙江吉利控股集团有限公司 filed Critical 浙江吉利汽车研究院有限公司
Priority to US15/529,893 priority Critical patent/US20170261006A1/en
Priority to PCT/CN2014/092204 priority patent/WO2016082111A1/zh
Priority to JP2017528214A priority patent/JP6449460B2/ja
Priority to EP14906715.9A priority patent/EP3211198B1/en
Publication of WO2016082111A1 publication Critical patent/WO2016082111A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/665Sound attenuation by means of resonance chambers or interference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/023Details or means for fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/10Purpose of the control system to cope with, or avoid, compressor flow instabilities
    • F05D2270/101Compressor surge or stall

Definitions

  • the present invention relates to the field of supercharged engine technology, and more particularly to a noise reduction structure of a supercharger.
  • the methods commonly used to improve the deflation sound of a supercharger include: 1. increasing the pressure relief passage in the supercharger; 2. adding a silencer to the inlet and outlet of the supercharger; 3. adjusting the calibration data of the ECU, and controlling Pressure relief timing (to control the pressure value when pressure relief, improve the deflation sound); 4, the built-in pressure relief mode of the supercharger is changed to external (relative to the supercharger), by a three-way solenoid valve ( It is composed of ECU and manifold negative pressure control), a mechanical pressure relief valve (controlled by solenoid valve) and its connecting pipeline; 5. The built-in pressure relief mode of the supercharger is changed to external type, and the pressure relief valve solenoid valve , silencer and its connecting pipeline.
  • An object of the present invention is to provide a noise reduction structure of a supercharger which has a good venting sound effect and a low cost.
  • the invention provides a noise reduction structure of a supercharger, comprising: a pressure relief passage of a supercharger, a pressure relief passage having a high pressure pipeline and a low pressure pipeline; a noise reduction component disposed at a gas circulation position between the high pressure pipeline and the low pressure pipeline,
  • the muffler assembly has a plurality of vent holes having a bore diameter of less than 20 mm, and the muffler assembly is configured to enter the low pressure pipe only after the high pressure pipe and the low pressure pipe are in communication when the high pressure gas passes through the vent hole.
  • the outlet end of the high-pressure pipe is inserted into the low-pressure pipe; the muffler assembly is sleeved at the outlet end of the high-pressure pipe, and the connection between the muffler assembly and the high-pressure pipe is a sealed connection.
  • the sound absorbing component is a tubular structure, and a plurality of vent holes are arranged on the wall of the sound absorbing component.
  • vent hole has a pore diameter ranging from 1 mm to 2 mm.
  • the plurality of vent holes are evenly distributed along the tube wall of the sound absorbing assembly, and the hole spacing between each of the two vent holes is 6 to 7 times the aperture of the vent hole.
  • the noise reduction structure further includes: a pressure relief valve disposed at an interface between the high pressure pipe and the low pressure pipe to isolate or connect the high pressure pipe and the low pressure pipe by controlling a switch of the pressure relief valve.
  • valve seat of the pressure relief valve is integrated on the supercharger, the inner cavity of the valve seat forms part of the low pressure pipeline, the outlet end of the high pressure pipeline is disposed in the inner cavity of the valve seat; the valve of the pressure relief valve is abutted at the high pressure At the outlet end of the pipeline, when the pressure relief valve is closed, the valve closes the outlet end of the high pressure pipeline; when the pressure relief valve is opened, an outlet passage is formed between the valve and the outlet end of the high pressure pipeline.
  • the sound absorbing component is disposed in the inner cavity of the valve seat, and the sound absorbing component is sleeved on the outer side of the air outlet end of the high pressure pipe, one end of the sound absorbing component is sealingly connected with the inner wall of the inner cavity of the valve seat, and the other end is sealingly connected with the outer wall of the high pressure pipe.
  • the muffler assembly is a muffler plate with a vent hole, and the muffler plate is disposed at an air outlet end of the high pressure pipe, and the periphery of the muffler plate is sealingly connected to the inner wall of the high pressure pipe.
  • the muffling principle of the muffler component is based on the fact that the air passes through the small aperture vent to reduce the audible sound of the injection noise.
  • the gas of the high pressure pipe enters the low pressure pipe, the gas can only be from less than 20mm.
  • the vent hole enters the low-pressure pipeline, and the noise of the injection noise is reduced during the process of passing through the vent hole, which reduces the sound frequency of the deflation sound during the pressure-relieving process, and shifts the frequency of the deflation sound to make the ear insensitive. Range, and achieve the effect of reducing noise.
  • the muffler assembly is disposed in the pressure relief passage of the supercharger, and is easy to install and add. It does not require too complicated structure, and only needs to have multiple apertures compared to the muffler in the prior art.
  • a structural component of the venting hole of less than 20 mm can achieve an unexpected noise reduction effect at a lower cost.
  • FIG. 1 is a schematic view showing the external structure of a pressure relief structure of a supercharger according to the prior art
  • FIG. 2 is a schematic view showing the internal structure of a pressure relief structure of a supercharger according to the prior art
  • Figure 3 is a schematic view showing the internal structure of the pressure relief valve in the pressure relief structure of the supercharger of Figure 2;
  • FIG. 4 is a schematic diagram of a noise reduction structure of a supercharger according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing the internal structure of the pressure relief valve in the noise reduction structure of the supercharger of Figure 4;
  • Figure 6 is a schematic illustration of a sound attenuating assembly in accordance with the noise reduction structure of the supercharger of Figure 4.
  • FIG. 1 to FIG. 3 show the integration of the supercharger of the automobile engine.
  • a pressure relief passage a structure for controlling the pressure relief by a pressure relief valve, wherein the valve seat of the pressure relief valve 30 is integrated on the supercharger 40, and the pressure relief passage of the supercharger 40 includes a high pressure pipe 11 and a low pressure pipe 12,
  • the valve 32 of the pressure relief valve 30 abuts against the outlet end of the high pressure pipe 11,
  • FIG. 2 is a schematic view of the valve 32 closing the high pressure pipe 11, and FIG.
  • FIG. 3 is the valve 32 opened, and the air passage is formed between the valve 32 and the outlet end of the high pressure pipe 11.
  • a schematic diagram of the high pressure pipe 11 communicating with the low pressure pipe 12 for pressure relief, and the direction of the arrow shown in the high pressure pipe 11 and the low pressure pipe 12 in FIG. 3 is the gas flow direction.
  • FIG. 4 is a schematic diagram of a noise reduction structure of a supercharger according to an embodiment of the present invention.
  • the noise reduction structure is also applied to a structure in which a pressure relief passage is integrated on a supercharger and a pressure relief is controlled by a pressure relief valve.
  • the noise reduction structure of the supercharger of the present embodiment includes a pressure relief passage of the supercharger 40 and a sound absorbing assembly 20 having a high pressure conduit 11 and a low pressure conduit 12, and the sound absorbing assembly 20 is disposed at the high pressure conduit 11 and the low pressure conduit 12 Between the gas circulation positions, the muffler assembly 20 has a plurality of vent holes 21 having a hole diameter of less than 20 mm, and the muffler assembly 20 is configured to enter the low pressure only after the high pressure pipe 11 and the low pressure pipe 12 are in communication when the high pressure gas passes through the vent hole 21 Pipe 12. As can be seen from Fig. 5, during the pressure relief process, the high pressure gas passes through the vent hole 21 of the muffling assembly 20 after passing through the high pressure pipe 11 and enters the low pressure pipe 12, wherein the direction of the arrow in Fig. 5 is the gas flow direction.
  • the muffling principle of the muffler assembly 20 of the present embodiment is based on the fact that the air can reduce the audible sound of the injection noise through the small aperture vent.
  • the high pressure gas enters the low pressure pipe from the high pressure pipe 11, and the gas can only enter the low pressure pipe 12 from the plurality of vent holes 21 of less than 20 mm, and the injection noise is performed during the passage through the vent hole 21.
  • the noise reduction process reduces the sound frequency of the deflation sound during the pressure relief process, and shifts the frequency of the deflation sound to a range that is insensitive to the human ear, thereby achieving the effect of reducing noise.
  • the muffling component is disposed in the pressure relief passage of the supercharger, and the installation and the addition are easy to implement, and the structure is not excessively complicated, and only the belt is required compared with the muffler in the prior art.
  • a structural component having a plurality of vent holes having a hole diameter of less than 20 mm can be realized at a lower cost.
  • the noise reduction structure further includes a pressure relief valve 30 disposed at an interface between the high pressure pipe 11 and the low pressure pipe 12 to isolate or connect by controlling the switch of the pressure relief valve 30.
  • the high pressure pipe 11 and the low pressure pipe 12 wherein FIG. 4 is a schematic structural view of the pressure relief valve 30 when the high pressure pipe 11 and the low pressure pipe 12 are isolated, and the valve 32 of the pressure relief valve 30 abuts against the outlet end 13 of the high pressure pipe 11.
  • Figure 5 shows the gas between the valve 32 and the outlet end 13 of the high pressure conduit 11 when the pressure relief valve 30 is open. In the body circulation space, the gas enters the low pressure pipe 12 through the muffler assembly 20, and the direction of the arrow in Fig. 5 is the gas flow direction.
  • valve seat of the pressure relief valve 30 is integrated on the supercharger 40, the inner chamber 31 of the valve seat forms part of the low pressure line 12, and the outlet end 13 of the high pressure line 11 is disposed in the inner chamber 31 of the valve seat.
  • the muffler assembly 20 is disposed in the inner cavity 31 of the valve seat, the muffler assembly 20 is sleeved on the outer side of the air outlet end 13 of the high pressure pipe 11, and one end of the muffler assembly 20 is sealingly connected with the inner wall of the inner cavity 31 of the valve seat, and the other end is connected to the high pressure pipe 11 The outer wall is sealed.
  • the valve 32 of the pressure relief valve 30 abuts against the outlet end 13 of the high pressure line 11.
  • the valve 32 closes the outlet end 13 of the high pressure line 11;
  • the pressure relief valve 30 is open, the valve 32 and the high pressure line
  • An air outlet passage is formed between the air outlet ends 13 of the air, and the sound absorbing assembly 20 is disposed on the air outlet passage to allow the circulating gas to flow from the vent holes to the low pressure pipe 12 to complete the noise elimination process.
  • the outlet end 13 of the high pressure pipe 11 is inserted into the low pressure pipe 12.
  • the muffler assembly 20 is sleeved on the air outlet end 13 of the high pressure pipe 11, and the connection between the muffler assembly 20 and the high pressure pipe 11 is a sealed connection.
  • the embodiment of the noise reduction structure of the supercharger provided by the present invention is in its high pressure pipeline compared to the pressure relief structure of the supercharger shown in FIGS. 1 to 3.
  • a muffling assembly 20 is interposed between the outer side of the air outlet end 13 and the inner side of the low pressure duct 12, and since the diameter of the low pressure duct 12 is larger than the diameter of the high pressure duct 11, the inner wall of the low pressure duct 12 and the outer wall of the high pressure duct 11 A portion of the space is formed for placing the muffling assembly 20, and just as the muffler assembly 20 is disposed at this position, the deflation sound can be directly noise-reduced without adding other complicated structures.
  • valve 32 of the pressure relief valve 30 is disposed inside the muffling assembly 20 and abuts against the air outlet end 13 of the high pressure pipe 11, and the end of the muffler assembly 20 and the valve 32 is sealed and connected with the pressure relief valve 30, and simultaneously
  • the side wall of the inner chamber 31 of the valve seat is also hermetically connected such that the gas of the high pressure pipe 11 can only flow through the vent hole of the muffler assembly 20 into the low pressure pipe 12, and the noise reduction process is completed in the process.
  • the muffling assembly 20 is of a tubular structure, and the tube wall of the muffling assembly 20 is provided with a plurality of vent holes 21, and the plurality of vent holes 21 are evenly distributed along the wall of the muffler assembly 20, see the muffler assembly shown in FIG.
  • the muffler assembly is generally made into a tubular shape or a cylindrical shape, and can also be formed into a square or irregular tubular structure according to actual space and arrangement requirements.
  • the aperture of the vent hole 21 can be changed, the sound power after each octave band board is lowered, and the octave band is pushed to a higher human ear insensitive range.
  • the aperture is large (11.8-20.08mm)
  • it can be reduced by about 9dB.
  • the aperture is small, such as the aperture range of the vent hole 21 is 1-2 mm
  • the octave frequency and the A sound power of the small hole noise can be reduced by about 15 dB, and when the aperture of the vent hole is reduced, the noise emitted per unit area can be reduced. Sound power, and can make the highest sound
  • the center frequency band of the pressure level is pushed high to the double frequency band.
  • the center frequency band is above 8000 Hz, the human ear is slow to feel the noise, which can also reduce the subjective perception of the human ear to noise, while maintaining the flow equal. It can replace a large hole with a large number of small holes. Its function can not only reduce the A sound level, but also eliminate the impact noise of the injection.
  • the aperture of the vent hole 21 ranges from 1 mm to 2 mm, and the hole pitch between each of the two vent holes 21 is 6 to 7 times the aperture of the vent hole 21.
  • the muffler component is optimal in both gas throughput and noise cancellation effects.
  • the sound absorbing assembly 20 is different from the tubular sound absorbing assembly of the above embodiment, the sound absorbing assembly is a sound absorbing panel with a venting opening 21, and the sound absorbing panel is disposed at the air outlet end 13 of the high pressure conduit 11.
  • the periphery of the muffler plate is sealingly connected to the inner wall of the high pressure pipe 11.
  • the aperture and aperture spacing of the venting opening 21 of the muffling assembly may be determined according to actual noise reduction requirements, or a mesh with venting holes may be used in place of the tubular sound absorbing assembly, and the mesh size and shape. And spacing can be determined according to the actual noise reduction needs.
  • the pressure relief passage of the supercharger is disposed outside the supercharger, and the pressure relief passage is not integrated with the supercharger, and is independent of the supercharger, which is different from the external structure of the above embodiment.
  • the structure also uses a high pressure pipeline connected to the low pressure pipeline and controls the pressure relief structure through the pressure relief valve, the principle of which is consistent with the integrated pressure relief passage of the supercharger.
  • the muffler components are disposed at a gas flow position between the high pressure pipe and the low pressure pipe, and the muffler assembly has a plurality of vent holes having a hole diameter of less than 20 mm, and is configured to allow high pressure gas only when the high pressure pipe and the low pressure pipe are connected. After the vent hole passes through and enters the low-pressure pipe, the noise reduction structure can still achieve the above technical effects, which will not be described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Supercharger (AREA)
  • Details Of Valves (AREA)

Abstract

一种增压器(40)的降噪结构,包括:增压器(40)的泄压通道,泄压通道具有高压管道(11)和低压管道(12);消音组件(20),设置在高压管道(11)和低压管道(12)之间的气体流通位置,消音组件(20)具有孔径小于20mm的多个通气孔(21),消音组件(20)并被配置为在高压管道(11)和低压管道(12)连通时高压气体仅从通气孔(21)穿过后进入到低压管道(12)。上述增压器的降噪结构消除放气声效果好、成本低。

Description

增压器的降噪结构 技术领域
本发明涉及增压发动机技术领域,特别是涉及增压器的降噪结构。
背景技术
目前随着客户对车辆燃油经济性、动力性的要求越来越高,采用增压技术发动机的车辆发展越来越快。而随着增压发动机的使用,会产生诸如增压器放气声(当松开油门时,节气门关闭而增压器仍在工作,增压器到节气门间的压力急剧增高,为了保证驾驶性需要把高压的压力卸除,而伴随着高压气体的卸压就产生了放气声,特别是在急松油门工况)、增压器啸叫、增压器喘振等不良噪声,影响客户主观感受。
目前普遍用于改进增压器放气声问题的方法有:1、加大增压器内的泄压通道;2、在增压器进、出口加消音器;3、调整ECU标定数据,控制泄压时机(以控制泄压时的压力值,改善放气声);4、把增压器内置式泄压方式改为外置式(相对增压器而言),由一个三通电磁阀(受ECU及歧管负压控制)、一个机械泄压阀(受电磁阀控制)及其连接管路组成;5、把增压器内置式泄压方式改为外置式,由泄压阀电磁阀、消音器及其连接管路组成。
以上5种方法均在一定程度上改善了放气声,但消除放气声的效果均较差,而且有的改进方法成本较高,如方法4。
发明内容
本发明的一个目的是要提供一种消除放气声效果好、成本低的增压器的降噪结构。
本发明提供了一个增压器的降噪结构,包括:增压器的泄压通道,泄压通道具有高压管道和低压管道;消音组件,设置在高压管道和低压管道之间的气体流通位置,消音组件具有孔径小于20mm的多个通气孔,消音组件并被配置为在高压管道和低压管道连通时高压气体仅从通气孔穿过后进入到低压管道。
进一步地,高压管道的出气端插入到低压管道中;消音组件套设在高压管道的出气端,消音组件与高压管道之间的连接处为密封连接。
进一步地,消音组件为管状结构,消音组件的管壁上设置有多个通气孔。
进一步地,通气孔的孔径范围为1mm-2mm。
进一步地,多个通气孔沿消音组件的管壁均匀分布,每两个通气孔之间的孔间距为通气孔的孔径的6倍至7倍。
进一步地,降噪结构还包括:泄压阀,设置在高压管道和低压管道之间的接口处,通过控制泄压阀的开关以隔离或者连通高压管道和低压管道。
进一步地,泄压阀的阀座集成在增压器上,阀座的内腔形成低压管道的一部分,高压管道的出气端设置在阀座的内腔中;泄压阀的阀门抵顶在高压管道的出气端,在泄压阀关闭时,阀门封闭高压管道的出气端;在泄压阀打开时,阀门与高压管道的出气端之间形成出气通道。
进一步地,消音组件设置在阀座的内腔中,消音组件套设在高压管道出气端的外侧,消音组件的一端与阀座的内腔内壁密封连接、另一端与高压管道的外壁密封连接。
进一步地,消音组件为带有通气孔的消音板,消音板设置在高压管道的出气端处,消音板的周边密封连接在高压管道的内壁上。
消音组件的消声原理是建立在空气在经过小孔径的通气孔可以降低喷注噪声可听声的基础上,在高压管道的气体进入到低压管道时,其气体仅能从小于20mm的多个通气孔进入到低压管道中,在经过通气孔过程中对喷注噪声进行降噪处理,降低了泄压过程中放气声的带声频率,将放气声的频率转向使人耳不敏感的范围,而达到降低噪声的效果。消音组件是设置在增压器的泄压通道中,其安装、添加均容易实现,不要过多复杂的结构,而且相比于现有技术中的消音器来说,只需要带有多个孔径小于20mm的通气孔的结构组件即可实现意想不到的消声效果,成本更低。
附图说明
图1是根据现有技术中增压器的泄压结构的外部结构示意图;
图2是根据现有技术中增压器的泄压结构的内部结构示意图;
图3是根据图2中增压器的泄压结构中泄压阀打开时的内部结构示意图;
图4是根据本发明一个实施例的增压器的降噪结构的示意图;
图5是根据图4中增压器的降噪结构中泄压阀打开时的内部结构示意图;
图6是根据图4中增压器的降噪结构的消音组件的示意图。
具体实施方式
以下是本发明的具体实施例,并结合附图对本发明的技术方案作进一步的 描述,但本发明并不限于这些实施例。
本实施例的增压器的降噪结构应用于汽车领域,现有技术中增压器的泄压结构参见图1至图3,图1至图3示出了汽车发动机的增压器上集成了泄压通道、通过泄压阀控制泄压的结构,其中,泄压阀30的阀座集成在增压器40上,增压器40的泄压通道包括有高压管道11和低压管道12,泄压阀30的阀门32抵顶在高压管道11的出气端,图2为阀门32封闭高压管道11的示意图,图3为阀门32打开,阀门32与高压管道11的出气端之间形成气流通道,使高压管道11与低压管道12连通进行泄压时的示意图,图3中在高压管道11和低压管道12示出的箭头方向,为气体流动方向。
图4是根据本发明一个实施例的增压器的降噪结构的示意图,降噪结构同样是应用在增压器上集成了泄压通道、通过泄压阀控制泄压的结构上。本实施例的增压器的降噪结构包括有增压器40的泄压通道和消音组件20,泄压通道具有高压管道11和低压管道12,消音组件20设置在高压管道11和低压管道12之间的气体流通位置,消音组件20具有多个孔径小于20mm的通气孔21,消音组件20并被配置为在高压管道11和低压管道12连通时高压气体仅从通气孔21穿过后进入到低压管道12。由图5中可以看出,在泄压过程中,高压气体在经过高压管道11后经过消音组件20的通气孔21后进入到低压管道12,其中图5中的箭头方向为气体流通方向。
本实施例的消音组件20的消声原理是建立在空气在经过小孔径的通气孔可以降低喷注噪声可听声的基础上进行设计的。在泄压过程中,高压气体由在高压管道11进入到低压管道,其气体仅能从小于20mm的多个通气孔21进入到低压管道12中,在经过通气孔21过程中对喷注噪声进行降噪处理,降低了泄压过程中放气声的带声频率,将放气声的频率转向使人耳不敏感的范围,而达到降低噪声的效果。本实施例中消音组件是设置在增压器的泄压通道中,其安装、添加均容易实现,不要过多复杂的结构,而且相比于现有技术中的消音器来说,只需要带有多个孔径小于20mm的通气孔的结构组件即可实现,成本更低。
如图4和图5所示,降噪结构还包括泄压阀30,泄压阀30设置在高压管道11和低压管道12之间的接口处,通过控制泄压阀30的开关以隔离或者连通高压管道11和低压管道12,其中图4为泄压阀30在隔离高压管道11和低压管道12时的结构示意图,泄压阀30的阀门32抵顶在高压管道11的出气端13。图5为泄压阀30打开时,阀门32与高压管道11的出气端13之间具有气 体流通空间,气体经过消音组件20进入到低压管道12中,图5中的箭头方向为气体流通方向。
更具体地,泄压阀30的阀座集成在增压器40上,阀座的内腔31形成低压管道12的一部分,高压管道11的出气端13设置在阀座的内腔31中。消音组件20设置在阀座的内腔31中,消音组件20套设在高压管道11出气端13的外侧,消音组件20的一端与阀座的内腔31内壁密封连接、另一端与高压管道11的外壁密封连接。
泄压阀30的阀门32抵顶在高压管道11的出气端13,在泄压阀30关闭时,阀门32封闭高压管道11的出气端13;在泄压阀30打开时,阀门32与高压管道11的出气端13之间形成出气通道,消音组件20就设置在出气通道上,以使流通的气体从通气孔流通至低压管道12中,进而完成消声处理。
高压管道11的出气端13插入到低压管道12中。消音组件20套设在高压管道11的出气端13,消音组件20与高压管道11之间的连接处为密封连接。
根据图4和图5可以看出本发明提供的增压器的降噪结构的实施例,相比于图1至图3所示的增压器的泄压结构来说,是在其高压管道11的出气端13的外侧以及低压管道12的内侧之间套设了消音组件20,由于低压管道12的管径大于高压管道11的管径,所以低压管道12的内壁与高压管道11的外壁之间形成的一部分空间以用于放置该消音组件20,而恰恰消音组件20设置在此处位置,可以直接地对放气声进行降噪,而无需添加其他复杂的结构。
并且,泄压阀30的阀门32穿设在消音组件20的内侧并抵顶至高压管道11的出气端13,消音组件20与阀门32配合的一端与泄压阀30是密封连接的、同时与阀座的内腔31侧壁也是密封连接的,这样以使高压管道11的气体仅能通过消音组件20的通气孔流通至低压管道12中,并在此过程中完成降噪处理。
进一步优选地,消音组件20为管状结构,消音组件20的管壁上设置有多个通气孔21,多个通气孔21沿消音组件20的管壁均匀分布,参见图6所示的消音组件。消音组件一般做成圆管状或者圆柱形的管状,也可根据实际空间及布置需要可做成方形、异形等管状结构。
在通过消音组件进行消音的条件下,可以改变通气孔21的孔径,降低各倍频带计板后的声功率,将倍频带推向更高的人耳不敏感的范围。在孔径大时(11.8-20.08mm),则可减少9dB左右。在孔径较小时,如通气孔21的孔径范围为1-2mm时,小孔噪声各倍频带和A声功率可减少15dB左右,在通气孔的孔径减小时,不但能够降低单位面积所发出的噪声声功率,而且能够把最高声 压级的中心频带往高推向1倍频带。所以孔径越小,占主要成分的频带会越高,当中心频带在8000Hz以上时,人耳对噪声的感觉迟钝了,从而也可以降低人耳对噪声的主观感觉,在保持流量相等的条件下,可以用大量小孔代替一个大孔,它的功能不但能降低A声级,还可以消除喷注的冲击噪声。在实际制造和使用过程中,通气孔21的孔径范围为1mm-2mm,且每两个通气孔21之间的孔间距为通气孔21的孔径的6倍至7倍时。该消音组件的气体通过量和消声效果两方面是最佳的。
在一种未示出的实施例中,消音组件20与上述实施例中管状的消音组件不同,该消音组件为带有通气孔21的消音板,消音板设置在高压管道11的出气端13处,消音板的周边密封连接在高压管道11的内壁上。在其他未示出的实施例中,消音组件的通气孔21的孔径、孔间距可根据实际降噪需要确定,或使用带有通气孔的网状物代替管状消音组件,而网孔大小、形状、及间距可根据实际降噪需要确定。
在其他实施例中,增压器的泄压通道分置于增压器外,泄压通道不与增压器集成,而独立于增压器,其与上述实施例的外部结构不尽相同,但是该结构同样采用高压管路与低压管路相连并通过泄压阀控制泄压的结构,其原理与增压器集成泄压通道一致。而消音组件均是设置在高压管道和低压管道之间的气体流通位置即可,且消音组件具有多个孔径小于20mm的通气孔,并被配置为在高压管道和低压管道连通时高压气体仅从通气孔穿过后进入到低压管道,这种降噪结构依旧可以实现上述的技术效果,此处不再对其进行赘述。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (9)

  1. 一种增压器的降噪结构,其特征在于,包括:
    所述增压器(40)的泄压通道,所述泄压通道具有高压管道(11)和低压管道(12);
    消音组件(20),设置在所述高压管道(11)和所述低压管道(12)之间的气体流通位置,所述消音组件(20)具有孔径小于20mm的多个通气孔(21),所述消音组件(20)并被配置为在所述高压管道(11)和所述低压管道(12)连通时高压气体仅从通气孔(21)穿过后进入到所述低压管道(12)。
  2. 根据权利要求1所述的降噪结构,其特征在于,
    所述高压管道(11)的出气端(13)插入到所述低压管道(12)中;
    所述消音组件(20)套设在所述高压管道(11)的出气端(13),所述消音组件(20)与所述高压管道(11)之间的连接处为密封连接。
  3. 根据权利要求2所述的降噪结构,其特征在于,所述消音组件(20)为管状结构,所述消音组件(20)的管壁上设置有所述多个通气孔(21)。
  4. 根据权利要求3所述的降噪结构,其特征在于,所述通气孔(21)的孔径范围为1mm-2mm。
  5. 根据权利要求4所述的降噪结构,其特征在于,多个所述通气孔(21)沿所述消音组件(20)的管壁均匀分布,每两个所述通气孔(21)之间的孔间距为所述通气孔(21)的孔径的6倍至7倍。
  6. 根据权利要求3所述的降噪结构,其特征在于,所述降噪结构还包括:
    泄压阀(30),设置在所述高压管道(11)和所述低压管道(12)之间的接口处,通过控制所述泄压阀(30)的开关以隔离或者连通所述高压管道(11)和所述低压管道(12)。
  7. 根据权利要求6所述的降噪结构,其特征在于,
    所述泄压阀(30)的阀座集成在所述增压器(40)上,所述阀座的内腔(31)形成所述低压管道(12)的一部分,所述高压管道(11)的出气端(13)设置在所述阀座的内腔(31)中;
    所述泄压阀(30)的阀门(32)抵顶在所述高压管道(11)的出气端(13),在所述泄压阀(30)关闭时,所述阀门(32)封闭所述高压管道(11)的出气端(13);在所述泄压阀(30)打开时,所述阀门(32)与所述高压管道(11) 的出气端(13)之间形成出气通道。
  8. 根据权利要求6所述的降噪结构,其特征在于,所述消音组件(20)设置在所述阀座的内腔(31)中,所述消音组件(20)套设在所述高压管道(11)出气端(13)的外侧,所述消音组件(20)的一端与所述阀座的内腔(31)内壁密封连接、另一端与所述高压管道(11)的外壁密封连接。
  9. 根据权利要求1所述的降噪结构,其特征在于,所述消音组件(20)为带有所述通气孔(21)的消音板,所述消音板设置在所述高压管道(11)的出气端(13)处,所述消音板的周边密封连接在所述高压管道(11)的内壁上。
PCT/CN2014/092204 2014-11-25 2014-11-25 增压器的降噪结构 WO2016082111A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/529,893 US20170261006A1 (en) 2014-11-25 2014-11-25 Noise reduction structure of supercharger
PCT/CN2014/092204 WO2016082111A1 (zh) 2014-11-25 2014-11-25 增压器的降噪结构
JP2017528214A JP6449460B2 (ja) 2014-11-25 2014-11-25 過給機の騒音低減機構
EP14906715.9A EP3211198B1 (en) 2014-11-25 2014-11-25 Noise reduction structure of supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092204 WO2016082111A1 (zh) 2014-11-25 2014-11-25 增压器的降噪结构

Publications (1)

Publication Number Publication Date
WO2016082111A1 true WO2016082111A1 (zh) 2016-06-02

Family

ID=56073318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092204 WO2016082111A1 (zh) 2014-11-25 2014-11-25 增压器的降噪结构

Country Status (4)

Country Link
US (1) US20170261006A1 (zh)
EP (1) EP3211198B1 (zh)
JP (1) JP6449460B2 (zh)
WO (1) WO2016082111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630255A (zh) * 2019-01-31 2019-04-16 重庆长安汽车股份有限公司 一种涡轮增压器的泄气管与空滤器出管的连接结构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109113854A (zh) * 2018-09-07 2019-01-01 湖南天雁机械有限责任公司 带消声器的涡轮增压器泄压阀
CN113350652A (zh) * 2021-07-05 2021-09-07 湖南比扬医疗科技有限公司 一种高压氧气降噪装置和高流量湿化系统
CN114321024B (zh) * 2021-12-31 2024-03-26 广东美的白色家电技术创新中心有限公司 一种降噪装置的控制方法、控制装置、存储介质及降噪装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304097A (en) * 1978-07-25 1981-12-08 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Exhaust gas vent valve device for exhaust gas driven turbocharger
US20060013682A1 (en) * 2003-04-15 2006-01-19 Martin Steven P Turbocharger with compressor stage flow conditioner
CN101285417A (zh) * 2008-04-30 2008-10-15 滁州悦达实业有限公司 带有泄压保护的汽油轿车用涡轮增压器
CN201786446U (zh) * 2010-08-17 2011-04-06 芜湖杰锋汽车动力系统有限公司 一种带泄压装置的汽油机涡轮增压器
CN102444743A (zh) * 2010-10-08 2012-05-09 费希尔控制国际公司 具有降噪内件的增压器
CN203035620U (zh) * 2012-12-04 2013-07-03 上海汽车集团股份有限公司 降噪增压器压气机
CN104389677A (zh) * 2014-11-25 2015-03-04 浙江吉利汽车研究院有限公司 增压器的降噪结构
CN204371483U (zh) * 2014-11-25 2015-06-03 浙江吉利汽车研究院有限公司 增压器的降噪结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4618779Y1 (zh) * 1967-01-11 1971-06-30
JPH01111888U (zh) * 1988-01-25 1989-07-27
JPH0348086A (ja) * 1989-07-13 1991-03-01 Mitsubishi Electric Corp 制御弁装置
GB2246395A (en) * 1990-07-26 1992-01-29 Garrett Automotive Limited Noise attenuation in a turbocharger
ITBO20060400A1 (it) * 2006-05-24 2007-11-25 Omt Off Mecc Tartarini Regolatore di pressione per gas perfezionato.
JP2009209976A (ja) * 2008-02-29 2009-09-17 Osaka Gas Co Ltd サイレンサおよびこれを備える圧力制御装置
DE102009011938B3 (de) * 2009-03-10 2010-09-09 Pierburg Gmbh Schubumluftventilvorrichtung für eine Brennkraftmaschine
DE102010044683A1 (de) * 2010-09-08 2012-03-08 Volkswagen Ag Abgasturbolader mit einem Bypassventil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304097A (en) * 1978-07-25 1981-12-08 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Exhaust gas vent valve device for exhaust gas driven turbocharger
US20060013682A1 (en) * 2003-04-15 2006-01-19 Martin Steven P Turbocharger with compressor stage flow conditioner
CN101285417A (zh) * 2008-04-30 2008-10-15 滁州悦达实业有限公司 带有泄压保护的汽油轿车用涡轮增压器
CN201786446U (zh) * 2010-08-17 2011-04-06 芜湖杰锋汽车动力系统有限公司 一种带泄压装置的汽油机涡轮增压器
CN102444743A (zh) * 2010-10-08 2012-05-09 费希尔控制国际公司 具有降噪内件的增压器
CN203035620U (zh) * 2012-12-04 2013-07-03 上海汽车集团股份有限公司 降噪增压器压气机
CN104389677A (zh) * 2014-11-25 2015-03-04 浙江吉利汽车研究院有限公司 增压器的降噪结构
CN204371483U (zh) * 2014-11-25 2015-06-03 浙江吉利汽车研究院有限公司 增压器的降噪结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630255A (zh) * 2019-01-31 2019-04-16 重庆长安汽车股份有限公司 一种涡轮增压器的泄气管与空滤器出管的连接结构

Also Published As

Publication number Publication date
EP3211198A4 (en) 2017-12-13
EP3211198B1 (en) 2019-07-17
JP6449460B2 (ja) 2019-01-09
US20170261006A1 (en) 2017-09-14
EP3211198A1 (en) 2017-08-30
JP2017535721A (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2016082111A1 (zh) 增压器的降噪结构
CN107429585B (zh) 排气系统
EP3392479B1 (en) Road vehicle with an internal combustion engine and provided with an exhaust noise transmission device
US20020033302A1 (en) Controllable muffler system for internal combustion engine
EP2531710B1 (de) Brennkraftmaschine mit zylinderabschaltung
KR20110024740A (ko) 자동차의 소음기 장치
CN104389677A (zh) 增压器的降噪结构
CN204371483U (zh) 增压器的降噪结构
CN103603707A (zh) 小孔喷注微穿孔式消声装置
US10738744B2 (en) Vacuum actuated multi-frequency quarter-wave resonator for an internal combustion engine
CN206158895U (zh) 进气消声器组件以及车辆
CN108138707A (zh) 用于进气管线的声音衰减装置
US10436085B2 (en) Road vehicle with an internal combustion engine and provided with a device for the transmission of the exhaust noise
US20210108544A1 (en) Exhaust system for internal combustion engine
CN203856544U (zh) 一种亥姆霍兹共振消声单元
CN209195512U (zh) 一种汽车排气系统辅助消声器
KR20150051350A (ko) 구조 개선된 배기시스템용 소음 및 배압 조절식 가변 밸브
US9212595B2 (en) Structure of exhaust system for CDA engine
CN104481760A (zh) 一种进气消声器
CN202467974U (zh) 双模态排气消声器
CN217582414U (zh) 一种空气压缩机泄气消音装置
CN114776555A (zh) 一种空气压缩机泄气消音方法及其装置
US20050189167A1 (en) Noise suppression system and method
CN208330584U (zh) 一种进气系统降噪结构
CN208198315U (zh) 用于汽车的蒸汽管路系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906715

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014906715

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017528214

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15529893

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE