WO2016082110A1 - 一种导频信号的生成方法及装置 - Google Patents

一种导频信号的生成方法及装置 Download PDF

Info

Publication number
WO2016082110A1
WO2016082110A1 PCT/CN2014/092199 CN2014092199W WO2016082110A1 WO 2016082110 A1 WO2016082110 A1 WO 2016082110A1 CN 2014092199 W CN2014092199 W CN 2014092199W WO 2016082110 A1 WO2016082110 A1 WO 2016082110A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel information
ues
pilot
downlink channel
current downlink
Prior art date
Application number
PCT/CN2014/092199
Other languages
English (en)
French (fr)
Inventor
邱晶
贾明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480082935.7A priority Critical patent/CN107078836B/zh
Priority to PCT/CN2014/092199 priority patent/WO2016082110A1/zh
Priority to EP14906665.6A priority patent/EP3214782B1/en
Publication of WO2016082110A1 publication Critical patent/WO2016082110A1/zh
Priority to US15/603,626 priority patent/US10404435B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for generating a pilot signal.
  • multi-user multiple input multiple output (English: multi-user multiple input multiple output, abbreviation: MU-MIMO) technology has become the third generation partnership project long term evolution (English: third generation partnership project long term evolution , abbreviation: 3GPP LTE) and one of the core technologies of wireless communication systems.
  • MU-MIMO since a plurality of user equipments (English equipment: abbreviation: UE) transmit data streams on the same time-frequency resource, each UE needs to be assigned a different dedicated pilot signal. To properly demodulate each data stream for multiple UEs.
  • the 3GPP LTE system can only support parallel transmission of up to 8 data streams without affecting the correct transmission of the data stream. For this reason, 8 standards are defined in the standard of the 3GPP LTE system.
  • Dedicated pilot signal (English: dedicated pilot).
  • the base station transmits data streams of multiple UEs in parallel, the base station allocates a different dedicated pilot signal for each UE, and uses each dedicated pilot signal and the data stream of the UE corresponding to the dedicated pilot signal.
  • the precoding vectors are multiplied to generate a pilot signal corresponding to each UE, and the pilot signal is transmitted to the UE.
  • each UE can receive interference from other pilot signals when receiving its pilot signal, so that the UE can obtain the pilot signal according to its pilot signal.
  • Equivalent channel information between the UE and the base station the product of the precoding vector and channel information used by the data stream of the UE, and demodulating the UE from the data signal received by the UE according to the equivalent channel information data flow.
  • each UE may be interfered by the pilot signals of other UEs when receiving its pilot signal, thereby failing to The data stream of the UE is demodulated, so there is a need to provide a pilot signal design method to achieve sharing of one pilot by multiple UEs, thereby reducing pilot overhead.
  • the present invention provides a method and a device for generating a pilot signal.
  • a method for designing a pilot signal it is possible to implement a method for ensuring that each of a plurality of UEs can correctly demodulate a data stream.
  • the UEs share one pilot, thereby reducing the pilot overhead.
  • the present invention provides a method for generating a pilot signal, including:
  • the pilot precoding vector of the first UE satisfies the following conditions:
  • a product of a pilot precoding vector of the first UE and current downlink channel information of each UE of the plurality of UEs other than the first UE is 0;
  • the product of the pilot precoding vector of the first UE and the current downlink channel information of the first UE is a received equalization vector of the first UE.
  • Determining, according to the current downlink channel information of the multiple UEs, the pilot precoding vector of the first UE and the received data stream gain of the first UE including:
  • the determining, according to the current downlink channel information of the multiple UEs and the received equalization vector of the first UE, a pilot precoding vector of the first UE including:
  • the method further includes:
  • the present invention provides a device for generating a pilot signal, including:
  • a determining unit configured to determine a first pilot signal shared by multiple user equipment UEs, where Determining, by the plurality of UEs, a plurality of UEs that transmit data streams on the same time-frequency resource, and determining a pilot precoding vector of the first UE and the first UE according to current downlink channel information of the multiple UEs Receiving a data stream gain, the first UE being one of the plurality of UEs;
  • a generating unit configured to generate, according to the first pilot signal determined by the determining unit, a received data stream gain of the first UE, and a pilot precoding vector of the first UE, to be sent to the first A second pilot signal of a UE.
  • the pilot precoding vector of the first UE determined by the determining unit satisfies the following conditions:
  • a product of a pilot precoding vector of the first UE and current downlink channel information of each UE of the plurality of UEs other than the first UE is 0;
  • the product of the pilot precoding vector of the first UE and the current downlink channel information of the first UE is a received equalization vector of the first UE.
  • the generating apparatus further includes an acquiring unit
  • the acquiring unit is configured to acquire current downlink channel information of the multiple UEs
  • the determining unit is configured to determine a data precoding vector of the first UE according to current downlink channel information of the multiple UEs acquired by the acquiring unit, and according to current downlink channel information of the first UE And determining, by the data precoding vector of the first UE, a received equalization vector of the first UE, and determining, according to current downlink channel information of the multiple UEs and a received equalization vector of the first UE, a pilot precoding vector of a UE, and determining, according to current downlink channel information of the first UE, a received equalization vector of the first UE, and a data precoding vector of the first UE, Receive data stream gain.
  • the determining unit is specifically configured to determine, according to current downlink channel information of all UEs in the other UEs, 0 space of a set of channel information of all UEs in the other UE, and according to the receiving of the first UE An equalization vector, the current state of the first UE Determining a pilot precoding vector of the first UE by using 0 space of the downlink channel information and a set of channel information of all UEs in the other UEs.
  • the generating apparatus further includes a sending unit ,
  • the sending unit after the generating unit generates the second pilot signal, sending, by using the current downlink channel of the first UE, the second guide generated by the generating unit to the first UE Frequency signal.
  • the present invention provides a base station, including:
  • a processor configured to determine a first pilot signal shared by multiple user equipment UEs, where the multiple UEs are multiple UEs that transmit data streams on the same time-frequency resource, and according to current downlinks of the multiple UEs Channel information, determining a pilot precoding vector of the first UE and a received data stream gain of the first UE, the first UE being one of the plurality of UEs, and according to the first pilot signal, And receiving, by the first UE, a data stream gain and a pilot precoding vector of the first UE, to generate a second pilot signal to be sent to the first UE.
  • the pilot precoding vector of the first UE determined by the processor satisfies the following conditions:
  • a product of a pilot precoding vector of the first UE and current downlink channel information of each UE of the plurality of UEs other than the first UE is 0;
  • the product of the pilot precoding vector of the first UE and the current downlink channel information of the first UE is a received equalization vector of the first UE.
  • the processor is configured to acquire current downlink channel information of the multiple UEs, determine a data precoding vector of the first UE according to current downlink channel information of the multiple UEs, and according to the first Determining, by the current downlink channel information of the UE, the data precoding vector of the first UE, the received equalization vector of the first UE, and according to the current downlink channel information of the multiple UEs and the receiving equalization of the first UE Vector, ok a pilot precoding vector of the first UE, and determining, according to current downlink channel information of the first UE, a received equalization vector of the first UE, and a data precoding vector of the first UE, Receive data stream gain for a UE.
  • the processor is specifically configured to determine, according to current downlink channel information of all UEs in the other UEs, 0 space of a set of channel information of all UEs in the other UE, and according to the receiving of the first UE And determining, by the equalization vector, the current downlink channel information of the first UE, and the 0 space of the set of channel information of all UEs in the other UE, determining a pilot precoding vector of the first UE.
  • the base station further includes a transceiver
  • the transceiver after the processor generates the second pilot signal, sends the second guide generated by the processor to the first UE by using a current downlink channel of the first UE Frequency signal.
  • the present invention provides a method and a device for generating a pilot signal, which specifically includes a base station determining a first pilot signal shared by multiple UEs, where the multiple UEs are multiple UEs that transmit data streams on the same time-frequency resource, and Determining, according to current downlink channel information of the multiple UEs, a pilot precoding vector of the first UE and a received data stream gain of the first UE, where the first UE is one of the multiple UEs, and the base station according to the first pilot signal, The received data stream gain of the first UE and the pilot precoding vector of the first UE generate a second pilot signal to be transmitted to the first UE.
  • each UE when multiple UEs that transmit data streams in the same time-frequency resource share one pilot, each UE does not interfere with pilot signals of other UEs when receiving its pilot signal, thereby ensuring multiple UEs.
  • Each of the UEs can correctly demodulate the data stream of the UE according to its pilot signal, so that multiple UEs share one pilot, thereby reducing pilot overhead.
  • FIG. 1 is a flowchart 1 of a method for generating a pilot signal according to an embodiment of the present invention
  • FIG. 2 is a second flowchart of a method for generating a pilot signal according to an embodiment of the present invention
  • FIG. 3 is a flowchart 3 of a method for generating a pilot signal according to an embodiment of the present invention
  • FIG. 4 is a flowchart 4 of a method for generating a pilot signal according to an embodiment of the present invention
  • FIG. 5 is a flowchart 5 of a method for generating a pilot signal according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of system capacity according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram 1 of a device for generating a pilot signal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram 2 of a device for generating a pilot signal according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram 3 of a device for generating a pilot signal according to an embodiment of the present invention.
  • FIG. 10 is a first schematic structural diagram of a hardware structure of a base station according to an embodiment of the present disclosure.
  • FIG. 11 is a second schematic structural diagram of a hardware structure of a base station according to an embodiment of the present invention.
  • the space division multiplexing mode refers to the method of transmitting data streams by using different spatial channels on the same time-frequency resource. formula.
  • the base station needs to separately send pilot signals to the k UEs, so that after receiving the pilot signals, each UE can obtain an equivalent channel between the UE and the base station according to the pilot signals.
  • An embodiment of the present invention provides a method for generating a pilot signal, where the UE can correctly obtain the equivalent channel information between the UE and the base station, if multiple UEs share one pilot. And obtaining the received equalization vector and the received data stream gain used by the UE to receive the data signal, and further, correctly demodulating the data stream of the UE, that is, the UE can ensure that each UE in the multiple UEs is correct by the method. In the case of demodulating the data stream, multiple pilots are implemented to share one pilot, thereby reducing pilot overhead.
  • An embodiment of the present invention provides a method for generating a pilot signal. As shown in FIG. 1, the method may include:
  • the base station determines a first pilot signal shared by multiple UEs, where the multiple UEs are multiple UEs that transmit data streams on the same time-frequency resource.
  • the base station determines, according to current downlink channel information of the multiple UEs, a pilot precoding vector of the first UE and a received data stream gain of the first UE, where the first UE is one of the multiple UEs.
  • the base station generates, according to the first pilot signal, the received data stream gain of the first UE, and the pilot precoding vector of the first UE, a second pilot signal to be sent to the first UE.
  • the base station transmits a data stream to each UE, the base station A pilot signal needs to be sent to each UE to enable the UE to correctly demodulate the data stream of the UE from the received data signal.
  • the base station first allocates the same pilot signal, that is, the first pilot signal, to multiple UEs. Determining, by the base station, the pilot precoding vector of the first UE and the first UE according to current downlink channel information of multiple UEs, including current downlink channel information of each UE of the multiple UEs.
  • the pilot overhead can be reduced.
  • the first UE can obtain the equivalent channel information between the first UE and the base station according to the second pilot signal (the pilot precoding vector of the first UE, the first The product of the current downlink channel information of the UE and the received data stream gain of the first UE).
  • the first UE calculates a receiving equalization vector actually used when receiving the data signal according to the obtained equivalent channel information, and a received data stream gain actually used when the first UE receives the data signal, so that according to the received equalization vector and the received data stream Gain, demodulating the first data stream from the received data signal.
  • the pilot precoding vector of the first UE determined by the base station needs to meet the following two conditions:
  • the product of the pilot precoding vector of the first UE and the current downlink channel information of the first UE is the received equalization vector of the first UE.
  • the current downlink channel information of UE i may be represented as H i
  • the pilot precoding vector of UE i may be represented as P i pilot
  • the received equalization vector of UE i may be represented as w i ;
  • the jth For each UE (which may be denoted as UE j ), the current downlink channel information of UE j may be represented as H j .
  • the method may further include:
  • the base station acquires current downlink channel information of multiple UEs.
  • the base station may obtain current downlink channel information of each of the multiple UEs by receiving downlink channel information feedback sent by each of the multiple UEs.
  • the base station can also utilize the characteristics of the uplink channel and the downlink channel in the TDD mode (ie, the uplink channel response and the downlink channel). The response is the same), and acquiring current downlink channel information of each of the plurality of UEs according to current uplink channel information of each of the plurality of UEs.
  • TDD time division duplexing
  • S104 only needs to be executed before S102, and the execution order of S104 and S101 is not limited in the embodiment of the present invention.
  • the foregoing S102 shown in FIG. 2 may specifically include:
  • the base station determines a data precoding vector of the first UE according to current downlink channel information of the multiple UEs.
  • the base station determines, according to current downlink channel information of multiple UEs, that there are multiple algorithms for determining a data precoding vector of the first UE.
  • the algorithm may include a linear precoding algorithm, a nonlinear precoding algorithm, and the like.
  • the linear precoding algorithm may include zero forcing (ZF) algorithm, block diagonalization (BD) algorithm and signal to noise ratio (English: signalto leakage plus noise ratio, abbreviation) SLNR) algorithm and so on.
  • the nonlinear precoding algorithm may include a dirty paper coding (English: dirty paper coding, abbreviated DPC) algorithm and a vector perturbation (English: vector perturbation, abbreviated: VP) algorithm.
  • the algorithm for determining the data precoding vector of the first UE according to the current downlink channel information of the multiple UEs is only an exemplary enumeration.
  • the base station according to the current downlink channel of multiple UEs the base station according to the current downlink channel of multiple UEs.
  • the algorithm for determining the data precoding vector of the first UE includes but is not limited to the foregoing, and any other algorithm for determining the data precoding vector of the first UE according to the current downlink channel information of the multiple UEs is in the present Within the scope of protection.
  • the base station determines, by using the ZF algorithm, the data precoding vector of the first UE according to the current downlink channel information of multiple UEs as follows:
  • H i represents current downlink channel information of UE i (ie, the first UE).
  • H i of the singular value decomposition (English: singular value decomposition, abbreviation: SVD), thereby obtaining a right singular vector matrix V i H i of the matrix U i left singular vectors and singular values D i.
  • a matrix of H eff (including H 1 eff , H 2 eff , ..., and H k eff ) representing a plurality of UEs (i.e., k UEs transmitting data streams using the same time-frequency resource) is arranged in a row.
  • the i-th column vector P i of P is calculated.
  • P i will be normalized, i.e. divided by P i P i-mode is
  • the P i data is a data precoding vector of the first UE that is determined by the base station according to current downlink channel information of multiple UEs.
  • the base station determines, according to current downlink channel information of the first UE and a data precoding vector of the first UE, a received equalization vector of the first UE.
  • the base station determines, according to the current downlink channel information of the first UE and the data precoding vector of the first UE, that there are multiple algorithms for determining the received equalization vector of the first UE.
  • the algorithm may include a maximum ratio ratio (MRC) algorithm, a minimum mean square error (MMSE) algorithm, and the like.
  • the algorithm for determining the received equalization vector of the first UE according to the current downlink channel information of the first UE and the data precoding vector of the first UE is only an exemplary enumeration.
  • the base station The algorithm for determining the received equalization vector of the first UE according to the current downlink channel information of the first UE and the data precoding vector of the first UE includes, but is not limited to, the foregoing, and any other base station according to the current downlink channel information of the first UE and The data precoding vector of the first UE, and the algorithm for determining the received equalization vector of the first UE are all within the protection scope of the present invention.
  • the base station determines the reception of the first UE according to the data precoding vector (which may be denoted as P i data ) of the first UE and the current downlink channel information of the first UE (which may be represented as H i ) by using the MRC algorithm.
  • the equilibrium vector (which can be expressed as w i ), the specific formula is as follows:
  • the base station can calculate w i according to the above formula (7). among them, Indicates the 2 norm of H i ⁇ P i data .
  • the received equalization vector of the first UE is the received equalization vector of the first UE calculated by the base station according to the preset algorithm for calculating the received equalization vector.
  • the algorithm used to calculate the received equalization vector may be the same as the algorithm preset by the base station, or may be different from the algorithm preset by the base station. Therefore, the received equalization vector of the first UE determined by the base station may be the first The receiving equalization vector actually used by the UE when receiving the data signal may not be the receiving equalization vector actually used when the first UE receives the data signal.
  • the base station determines a pilot precoding vector of the first UE according to the current downlink channel information of the multiple UEs and the received equalization vector of the first UE.
  • the two conditions that the pilot precoding vector of the first UE needs to satisfy are:
  • the product of the pilot precoding vector of the first UE and the current downlink channel information of the first UE is the received equalization vector of the first UE.
  • the base station determines, according to the current downlink channel information of the first UE, the received equalization vector of the first UE, and the data precoding vector of the first UE, the received data stream gain of the first UE.
  • the base station according to the current downlink channel information of the first UE (which may be represented as H i ), the received equalization vector of the first UE (which may be represented as w i ), and the data precoding vector of the first UE (may be denoted as P i data ), the calculation formula for determining the received data stream gain of the first UE (which can be expressed as ⁇ i ) is as follows:
  • the base station can calculate ⁇ i according to the above formula (8), where w i H is a conjugate transpose of w i .
  • the received data stream gain of the first UE is a received data stream gain determined by the base station according to the data precoding vector of the first UE and the received equalization vector of the first UE determined by the base station.
  • the base station determines, according to the current downlink channel information of the multiple UEs and the received equalization vector of the first UE, that there are multiple algorithms for determining the pilot precoding vector of the first UE.
  • An optional algorithm is provided below to describe the above S102c in detail.
  • the foregoing S102c shown in FIG. 3 may specifically include:
  • the base station determines, according to current downlink channel information of all UEs in other UEs, the 0 space of the set of channel information of all UEs in other UEs.
  • the other UEs refer to other UEs except the first UE among the multiple UEs.
  • the calculation process of the 0 space (which can be expressed as V -i (0) ) of the set of channel information of all UEs in the other UEs is determined as follows:
  • H -i [H 1 ...H i-1 H i+1 ...H k ] H formula (9)
  • the base station calculates a set H- i of channel information of all UEs in other UEs according to formula (9), where -i denotes an integer set other than i in 1 to k.
  • UE - i can be understood as a set of all UEs except UE i (ie, the first UE) among multiple UEs (ie, k UEs transmitting data streams on the same time-frequency resource).
  • the base station calculates the 0 space V -i (0) of H - i according to the formula (10 ) .
  • the base station determines a pilot precoding vector of the first UE according to the received equalization vector of the first UE, the current downlink channel information of the first UE, and the 0 space of the set of channel information of all UEs in other UEs.
  • the calculation process of the base station determining the pilot precoding vector (which can be expressed as P i pilot ) with the first UE according to w i , H i and V ⁇ i (0) is as follows:
  • the base station can calculate the vector P i * according to the above formula (10).
  • the base station can calculate P i pilot according to the above formula (12).
  • the base station may use the foregoing S102d1-S102d2 method, according to the first UE's receive equalization vector (which may be denoted as w i ), the first UE's current downlink channel information (which may be denoted as H i ), and multiple UEs.
  • the 0 space of the set of channel information of all UEs in other UEs other than the UE (which may be denoted as V -i (0) ) determines the pilot precoding vector of the first UE (which may be denoted as P i pilot ).
  • the foregoing S103 that is, the method for the base station to generate the second pilot signal to be sent to the first UE according to the first pilot signal, the received data stream gain of the first UE, and the pilot precoding vector of the first UE may be used. for:
  • the base station generates a second pilot signal (which may be denoted as y i pilot ) to be transmitted to the first UE according to P i pilot , ⁇ i and the first pilot signal (which may be denoted as s pilot ) as follows:
  • the base station may determine, according to the foregoing method of S101-S104, a first pilot signal shared by multiple UEs that transmit a data stream on the same time-frequency resource, and determine pilots of all UEs in multiple UEs. Precoding vectors (including P 1 pilot , P 2 pilot , ..., and P k pilot ), and received data stream gains (including ⁇ 1 , ⁇ 2 , ..., and ⁇ k ) for all UEs in multiple UEs. The base station obtains multiple UEs by multiplying the first pilot signal with the pilot precoding vector of each UE of the multiple UEs and the received data stream gain of the UE according to the above formula (13).
  • Second pilot signals for all UEs in the range (including y 1 pilot , y 2 pilot , ..., and y k pilot ).
  • the base station since the base station allocates the same first pilot signal to the plurality of UEs that transmit the data stream on the same time-frequency resource, the multiple UEs share one pilot, and thus Save pilot overhead.
  • the base station needs to send the current downlink channel to the first UE by using the current downlink channel of the first UE. Second pilot signal.
  • a method for generating a pilot signal according to an embodiment of the present invention may further include:
  • the base station sends the second pilot signal to the first UE by using a current downlink channel of the first UE.
  • the system generates a second pilot signal by using a method for generating a pilot signal according to an embodiment of the present invention, and then uses the second pilot signal to obtain a system capacity simulation result obtained by using the MU-MIMO system.
  • the abscissa shown in Figure 6 represents the signal to noise ratio (English: signal to noise ratio, abbreviation: SNR), the unit of SNR is decibel (the unit symbol is dB), and the ordinate indicates the throughput as shown in Figure 6. :throughput), the unit of throughput is bits per second (unit symbol is bps).
  • the method for generating a pilot signal provided by the embodiment of the present invention can enable the MU-MIMO system to obtain higher throughput.
  • An embodiment of the present invention provides a method for generating a pilot signal, which specifically includes: determining, by a base station, a first pilot signal shared by multiple UEs, where the multiple UEs are multiple UEs that transmit data streams on the same time-frequency resource, and Determining, according to current downlink channel information of the multiple UEs, a pilot precoding vector of the first UE and a received data stream gain of the first UE, where the first UE is one of the multiple UEs, and the base station according to the first pilot signal, The received data stream gain of the first UE and the pilot precoding vector of the first UE generate a second pilot signal to be transmitted to the first UE.
  • each UE when multiple UEs that transmit data streams in the same time-frequency resource share one pilot, each UE does not interfere with pilot signals of other UEs when receiving its pilot signal, thereby ensuring multiple UEs.
  • Each of the UEs can correctly demodulate the data stream of the UE according to its pilot signal, so that multiple UEs share one pilot, thereby reducing pilot overhead.
  • An embodiment of the present invention provides a device for generating a pilot signal. As shown in FIG. 7, the device includes:
  • a determining unit 10 configured to determine a first pilot signal shared by multiple user equipment UEs, where the multiple UEs are multiple UEs that transmit data streams on the same time-frequency resource, and according to the current status of the multiple UEs Downlink channel information, determining a pilot precoding vector of the first UE And a received data stream gain of the first UE, the first UE being one of the plurality of UEs.
  • the generating unit 11 is configured to generate, according to the first pilot signal determined by the determining unit 10, the received data stream gain of the first UE, and the pilot precoding vector of the first UE, to be sent to the The second pilot signal of the first UE is described.
  • the pilot precoding vector of the first UE determined by the determining unit 10 satisfies the following conditions:
  • a product of a pilot precoding vector of the first UE and current downlink channel information of each of the plurality of UEs other than the first UE is 0; and the first UE
  • the product of the pilot precoding vector and the current downlink channel information of the first UE is the received equalization vector of the first UE.
  • the generating apparatus further includes an obtaining unit 12:
  • the acquiring unit 12 is configured to acquire current downlink channel information of the multiple UEs.
  • the determining unit 10 is configured to determine a data precoding vector of the first UE according to the current downlink channel information of the multiple UEs acquired by the acquiring unit 12, and according to the current downlink of the first UE. And determining a received equalization vector of the first UE by using the channel information and the data precoding vector of the first UE, and determining, according to the current downlink channel information of the multiple UEs and the received equalization vector of the first UE, a pilot precoding vector of the first UE, and determining the first according to current downlink channel information of the first UE, a received equalization vector of the first UE, and a data precoding vector of the first UE Receive data stream gain of the UE.
  • the determining unit 10 is configured to determine, according to current downlink channel information of all UEs in the other UEs, 0 space of a set of channel information of all UEs in the other UE, according to the Determining, by the first UE, the received equalization vector, the current downlink channel information of the first UE, and the 0 space of the set of channel information of all UEs in the other UE, the pilot precoding vector of the first UE.
  • the generating apparatus further includes:
  • the sending unit 13 is configured to generate, by the generating unit 11, the second pilot signal Transmitting, by the first downlink channel of the first UE, the second pilot signal generated by the generating unit 11 to the first UE.
  • the apparatus for generating a pilot signal provided by the embodiment of the present invention may be a base station.
  • An embodiment of the present invention provides a device for generating a pilot signal, where the generating device is configured to determine a first pilot signal shared by multiple UEs, where the multiple UEs are multiple UEs that transmit data streams on the same time-frequency resource. And determining, according to current downlink channel information of the multiple UEs, a pilot precoding vector of the first UE and a received data stream gain of the first UE, where the first UE is one of the multiple UEs, and the base station is configured according to the first pilot signal And a received data stream gain of the first UE and a pilot precoding vector of the first UE, to generate a second pilot signal to be sent to the first UE.
  • each UE when a plurality of UEs transmitting data streams in the same time-frequency resource share one pilot, each UE does not interfere with pilot signals of other UEs when receiving its pilot signal, thereby ensuring multiple Each UE in the UE can correctly demodulate the data stream of the UE according to its pilot signal, so that multiple UEs share one pilot, thereby reducing pilot overhead.
  • an embodiment of the present invention provides a base station, which may include a processor 20, a memory 21, and a system bus 22.
  • the processor 20 and the memory 21 are connected by the system bus 22 and complete communication with each other.
  • the processor 21 may be a central processing unit (English: central processing unit, abbreviated as CPU), or an application specific integrated circuit (ASIC), or configured to implement the implementation of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 21 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 21 may also include a non-volatile memory (English: Non-volatilememory), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: Solid-state drive, Abbreviation: SSD); the memory 21 may also include a combination of the above types of memories.
  • a volatile memory such as a random access memory (English: random-access memory, abbreviation: RAM)
  • the memory 21 may also include a non-volatile memory (English: Non-volatilememory), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English
  • the processor 20 and the memory 21 may perform the method according to any one of the methods of FIG. 1 to FIG.
  • the processor 20 is configured to determine a first pilot signal shared by multiple user equipment UEs, where the multiple UEs are multiple UEs that transmit data streams on the same time-frequency resource, and according to the multiple UEs Current downlink channel information, determining a pilot precoding vector of the first UE and a received data stream gain of the first UE, the first UE being one of the plurality of UEs, and according to the first a frequency signal, a received data stream gain of the first UE, and a pilot precoding vector of the first UE, generating a second pilot signal to be sent to the first UE; the memory 21 for storing a code of the first pilot signal, a code of current downlink channel information of the plurality of UEs, a code of a pilot precoding vector of the first UE, a code of a received data stream gain of the first UE, a code of the second pilot signal, and a software program that controls the processor 20 to perform the above process, such that the processor 20 executes the software program and invokes
  • the pilot precoding vector of the first UE determined by the processor 20 satisfies the following conditions:
  • a product of a pilot precoding vector of the first UE and current downlink channel information of each UE of the plurality of UEs other than the first UE is 0, and the first UE
  • the product of the pilot precoding vector and the current downlink channel information of the first UE is the received equalization vector of the first UE.
  • the processor 20 is configured to acquire current downlink channel information of the multiple UEs, and determine data of the first UE according to current downlink channel information of the multiple UEs. Precoding a vector, and determining, according to current downlink channel information of the first UE and a data precoding vector of the first UE, a received equalization vector of the first UE, and according to a current downlink channel of the multiple UEs Information and a received equalization vector of the first UE, determining a pilot precoding vector of the first UE, and a root And determining, according to the current downlink channel information of the first UE, the received equalization vector of the first UE, and the data precoding vector of the first UE, a received data stream gain of the first UE.
  • the processor 20 is configured to determine, according to current downlink channel information of all UEs in the other UEs, 0 space of a set of channel information of all UEs in the other UE, according to the Determining, by the first UE, the received equalization vector, the current downlink channel information of the first UE, and the 0 space of the set of channel information of all UEs in the other UE, the pilot precoding vector of the first UE.
  • the base station further includes a transceiver 23.
  • the transceiver 23 can be a module with transceiver function integrated by a transmitter and a receiver, or a module with a separate transmitter and a separate receiver.
  • An embodiment of the present invention provides a base station, where the base station is capable of determining a first pilot signal shared by multiple UEs, where the multiple UEs are multiple UEs that transmit data streams on the same time-frequency resource, and according to multiple UEs. Determining, by the current downlink channel information, a pilot precoding vector of the first UE and a received data stream gain of the first UE, where the first UE is one of the multiple UEs, and the base station receives the first UE according to the first pilot signal The data stream gain and the pilot precoding vector of the first UE generate a second pilot signal to be transmitted to the first UE.
  • each UE when a plurality of UEs transmitting data streams in the same time-frequency resource share one pilot, each UE does not interfere with pilot signals of other UEs when receiving its pilot signal, thereby ensuring multiple Each UE in the UE can correctly demodulate the data stream of the UE according to its pilot signal, so that multiple UEs share one pilot, thereby reducing pilot overhead.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种导频信号的生成方法及装置,涉及通信技术领域,能够在保证多个UE中的每个UE都能正确解调数据流的情况下,实现多个UE共享一个导频,从而降低导频开销。该方法包括:确定多个UE共享的第一导频信号,该多个UE为在相同的时频资源上传输数据流的多个UE;并根据多个UE的当前下行信道信息,确定第一UE的导频预编码向量和第一UE的接收数据流增益,第一UE为所述多个UE中的一个;以及根据第一导频信号、第一UE的接收数据流增益以及第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号。该方法应用于MU-MIMO系统。

Description

一种导频信号的生成方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种导频信号的生成方法及装置。
背景技术
在通信技术领域中,多用户多输入多输出(英文:multi-user multiple input multiple output,缩写:MU-MIMO)技术已经成为第三代合作伙伴计划长期演进(英文:third generation partnership project long term evolution,缩写:3GPP LTE)等无线通信系统的核心技术之一。在MU-MIMO技术中,由于多个用户设备(英文:user equipment,缩写:UE)在相同的时频资源上传输数据流,因此,需要为每个UE分别分配一个不同的专用导频信号,以用于多个UE正确解调每个数据流。
目前的3GPP LTE系统中,在不影响数据流的正确传输的情况下,3GPP LTE系统最多只能支持8个数据流的并行传输,为此,3GPP LTE系统的标准中定义了8个相互正交的专用导频信号(英文:dedicated pilot)。当基站并行传输多个UE的数据流时,基站为每个UE分别分配一个不同的专用导频信号,并将每个专用导频信号和与该专用导频信号对应的UE的数据流使用的预编码向量相乘,生成与每个UE对应的导频信号,并将该导频信号发送给该UE。由于每个专用导频信号之间是相互正交的,因此每个UE在接收其导频信号时,可以不受其他导频信号的干扰,从而使得该UE可根据其导频信号,获得该UE与基站之间的等效信道信息(为该UE的数据流使用的预编码向量和信道信息的乘积),并根据该等效信道信息从该UE接收的数据信号中解调出该UE的数据流。
然而,当需要并行传输的数据流逐渐增多时,若仍为每个UE分配不同的专用导频信号,则会导致导频开销增加,因此,若通过 为多个UE分配相同的专用导频信号来降低导频开销,则按照上述导频信号的生成方法,每个UE在接收其导频信号时会受到其他UE的导频信号的干扰,从而无法解调出该UE的数据流,因此亟需提供一种导频信号的设计方法来实现多个UE共享一个导频,从而降低导频开销。
发明内容
本发明的提供一种导频信号的生成方法及装置,通过提供一种导频信号的设计方法,能够在保证多个UE中的每个UE都能正确解调数据流的情况下,实现多个UE共享一个导频,从而降低导频开销。
为达到上述目的,本发明采用如下技术方案:
一方面,本发明提供一种导频信号的生成方法,包括:
确定多个用户设备UE共享的第一导频信号,所述多个UE为在相同的时频资源上传输数据流的多个UE;
根据所述多个UE的当前下行信道信息,确定第一UE的导频预编码向量和所述第一UE的接收数据流增益,所述第一UE为所述多个UE中的一个;
根据所述第一导频信号、所述第一UE的接收数据流增益以及所述第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号。
在第一方面的第一种可能的实现方式中,所述第一UE的导频预编码向量满足如下条件:
所述第一UE的导频预编码向量和所述多个UE中除所述第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0;且
所述第一UE的导频预编码向量和所述第一UE的当前下行信道信息的乘积为所述第一UE的接收均衡向量。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述根据所述多个UE的当前下行信道信息,确定所述第一UE的导频预编码向量和所述第一UE的接收数据流增益之前,所述方法还包括:
获取所述多个UE的当前下行信道信息;
所述根据所述多个UE的当前下行信道信息,确定所述第一UE的导频预编码向量和所述第一UE的接收数据流增益,包括:
根据所述多个UE的当前下行信道信息,确定所述第一UE的数据预编码向量;
根据所述第一UE的当前下行信道信息和所述第一UE的数据预编码向量,确定所述第一UE的接收均衡向量;
根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定所述第一UE的导频预编码向量;
根据所述第一UE的当前下行信道信息、所述第一UE的接收均衡向量以及所述第一UE的数据预编码向量,确定所述第一UE的接收数据流增益。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定所述第一UE的导频预编码向量,包括:
根据所述其他UE中的所有UE的当前下行信道信息,确定所述其他UE中的所有UE的信道信息的集合的0空间;
根据所述第一UE的接收均衡向量、所述第一UE的当前下行信道信息和所述其他UE中的所有UE的信道信息的集合的0空间,确定所述第一UE的导频预编码向量。
结合第一方面和第一方面的第一种可能的实现方式至第三种可能的实现方式中的任一种实现方式,在第四种可能的实现方式中,所述根据所述第一导频信号、所述第一UE的接收数据流增益以及所述第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号之后,所述方法还包括:
通过所述第一UE的当前下行信道,向所述第一UE发送所述第二导频信号。
第二方面,本发明提供一种导频信号的生成装置,包括:
确定单元,用于确定多个用户设备UE共享的第一导频信号,所 述多个UE为在相同的时频资源上传输数据流的多个UE,并根据所述多个UE的当前下行信道信息,确定第一UE的导频预编码向量和所述第一UE的接收数据流增益,所述第一UE为所述多个UE中的一个;
生成单元,用于根据所述确定单元确定的所述第一导频信号、所述第一UE的接收数据流增益以及所述第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号。
在第二方面的第一种可能的实现方式中,所述确定单元确定的所述第一UE的导频预编码向量满足如下条件:
所述第一UE的导频预编码向量和所述多个UE中除所述第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0;且
所述第一UE的导频预编码向量和所述第一UE的当前下行信道信息的乘积为所述第一UE的接收均衡向量。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述生成装置还包括获取单元,
所述获取单元,用于获取所述多个UE的当前下行信道信息;
所述确定单元,具体用于根据所述获取单元获取的所述多个UE的当前下行信道信息,确定所述第一UE的数据预编码向量,并根据所述第一UE的当前下行信道信息和所述第一UE的数据预编码向量,确定所述第一UE的接收均衡向量,且根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定所述第一UE的导频预编码向量,以及根据所述第一UE的当前下行信道信息、所述第一UE的接收均衡向量以及所述第一UE的数据预编码向量,确定所述第一UE的接收数据流增益。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,
所述确定单元,具体用于根据所述其他UE中的所有UE的当前下行信道信息,确定所述其他UE中的所有UE的信道信息的集合的0空间,并根据所述第一UE的接收均衡向量、所述第一UE的当前 下行信道信息和所述其他UE中的所有UE的信道信息的集合的0空间,确定所述第一UE的导频预编码向量。
结合第二方面和第二方面的第一种可能的实现方式至第三种可能的实现方式中的任一种实现方式,在第四种可能的实现方式中,所述生成装置还包括发送单元,
所述发送单元,用于所述生成单元生成所述第二导频信号之后,通过所述第一UE的当前下行信道,向所述第一UE发送所述生成单元生成的所述第二导频信号。
第三方面,本发明提供一种基站,包括:
处理器,用于确定多个用户设备UE共享的第一导频信号,所述多个UE为在相同的时频资源上传输数据流的多个UE,并根据所述多个UE的当前下行信道信息,确定第一UE的导频预编码向量和所述第一UE的接收数据流增益,所述第一UE为所述多个UE中的一个,以及根据所述第一导频信号、所述第一UE的接收数据流增益以及所述第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号。
在第三方面的第一种可能的实现方式中,所述处理器确定的所述第一UE的导频预编码向量满足如下条件:
所述第一UE的导频预编码向量和所述多个UE中除所述第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0;且
所述第一UE的导频预编码向量和所述第一UE的当前下行信道信息的乘积为所述第一UE的接收均衡向量。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述处理器,具体用于获取所述多个UE的当前下行信道信息,根据所述多个UE的当前下行信道信息,确定所述第一UE的数据预编码向量,并根据所述第一UE的当前下行信道信息和所述第一UE的数据预编码向量,确定所述第一UE的接收均衡向量,且根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定 所述第一UE的导频预编码向量,以及根据所述第一UE的当前下行信道信息、所述第一UE的接收均衡向量以及所述第一UE的数据预编码向量,确定所述第一UE的接收数据流增益。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,
所述处理器,具体用于根据所述其他UE中的所有UE的当前下行信道信息,确定所述其他UE中的所有UE的信道信息的集合的0空间,并根据所述第一UE的接收均衡向量、所述第一UE的当前下行信道信息和所述其他UE中的所有UE的信道信息的集合的0空间,确定所述第一UE的导频预编码向量。
结合第三方面和第三方面的第一种可能的实现方式至第三种可能的实现方式中的任一种实现方式,在第四种可能的实现方式中,所述基站还包括收发器,
所述收发器,用于所述处理器生成所述第二导频信号之后,通过所述第一UE的当前下行信道,向所述第一UE发送所述处理器生成的所述第二导频信号。
本发明提供一种导频信号的生成方法及装置,具体包括基站确定多个UE共享的第一导频信号,该多个UE为在相同的时频资源上传输数据流的多个UE,并根据多个UE的当前下行信道信息,确定第一UE的导频预编码向量和第一UE的接收数据流增益,第一UE为多个UE中的一个,以及基站根据第一导频信号、第一UE的接收数据流增益以及第一UE的导频预编码向量,生成待发送至第一UE的第二导频信号。通过该方法,当在相同时频资源传输数据流的多个UE共享一个导频时,每个UE在接收其导频信号时不会受到其他UE的导频信号的干扰,从而保证多个UE中的每个UE都能够根据其导频信号正确解调出该UE的数据流,实现多个UE共享一个导频,进而降低导频开销。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例的附图,而不是全部的实施例的附图。
图1为本发明实施例提供的一种导频信号的生成方法的流程图一;
图2为本发明实施例提供的一种导频信号的生成方法的流程图二;
图3为本发明实施例提供的一种导频信号的生成方法的流程图三;
图4为本发明实施例提供的一种导频信号的生成方法的流程图四;
图5为本发明实施例提供的一种导频信号的生成方法的流程图五;
图6为本发明实施例提供的一种系统容量的仿真图;
图7为本发明实施例提供的一种导频信号的生成装置的结构示意图一;
图8为本发明实施例提供的一种导频信号的生成装置的结构示意图二;
图9为本发明实施例提供的一种导频信号的生成装置的结构示意图三;
图10为本发明实施例提供的一种基站的硬件结构示意图一;
图11为本发明实施例提供的一种基站的硬件结构示意图二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在MU-MIMO系统中,k(k=1,2,...,k)个UE的数据流可以在相同的时频资源上基于空分复用的方式进行传输。其中,空分复用的方式是指在相同的时频资源上利用不同的空间信道传输数据流的方 式。在k个UE传输数据流的过程中,基站需向k个UE分别发送导频信号,以使每个UE接收到导频信号后,可根据导频信号获取该UE与基站间的等效信道信息,并根据该等效信道信息计算该UE接收数据信号时采用的接收均衡向量以及接收数据流增益,从而根据该接收均衡向量和该接收数据流增益,从该UE接收的数据信号中解调出该UE的数据流,进而完成数据流的传输。
本发明实施例提供一种导频信号的生成方法,通过该方法,可以在多个UE共享一个导频的情况下,使得每个UE都能正确获取该UE与基站之间的等效信道信息,并获得该UE接收数据信号时采用的接收均衡向量和接收数据流增益,进而,正确解调出该UE的数据流,即通过该方法能够在保证多个UE中的每个UE都能正确解调数据流的情况下,实现多个数据流共享一个导频,从而降低导频开销。
实施例一
本发明实施例提供一种导频信号的生成方法,如图1所示,该方法可以包括:
S101、基站确定多个UE共享的第一导频信号,该多个UE为在相同的时频资源上传输数据流的多个UE。
S102、基站根据多个UE的当前下行信道信息,确定第一UE的导频预编码向量和第一UE的接收数据流增益,第一UE为多个UE中的一个。
S103、基站根据第一导频信号、第一UE的接收数据流增益以及第一UE的导频预编码向量,生成待发送至第一UE的第二导频信号。
在MU-MIMO系统中,为了使得在相同时频资源上传输数据流的多个UE中的每个UE都能够正确解调基站发送的数据流,基站在向每个UE发送数据流时,基站需向每个UE发送一个导频信号,以使该UE能够从接收的数据信号中正确解调该UE的数据流。本发明实施例中,基站首先为多个UE分配相同的导频信号,即第一导频信号。基站再根据多个UE的当前下行信道信息(包括多个UE中的每个UE的当前下行信道信息),确定第一UE的导频预编码向量和第一UE的 接收数据流增益,并根据第一UE的导频预编码向量、第一UE的接收数据流增益以及第一导频信号,生成待发送至第一UE的第二导频信号。由于,基站为多个UE中的每个UE分配的导频信号都是第一导频信号,因此能够降低导频开销。
需要说明的是,第一UE接收到第二导频信号后,能够根据该第二导频信号获取第一UE与基站间的等效信道信息(第一UE的导频预编码向量、第一UE的当前下行信道信息和第一UE的接收数据流增益的乘积)。第一UE根据获取的等效信道信息计算其接收数据信号时实际采用的接收均衡向量,以及第一UE接收数据信号时实际采用的接收数据流增益,从而根据该接收均衡向量和该接收数据流增益,从接收的数据信号中解调出第一数据流。
需要说明的是,上述S102中,基站确定的第一UE的导频预编码向量需满足如下两个条件:
(1)第一UE的导频预编码向量,和多个UE中除第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0。
(2)第一UE的导频预编码向量和第一UE的当前下行信道信息的乘积为第一UE的接收均衡向量。
示例性的,假设基站在相同时频资源上向k(k=1,2,...,k)个UE传输数据流,若k个UE中的第i个UE(可以表示为UEi)表示第一UE,则UEi的当前下行信道信息可以表示为Hi,UEi的导频预编码向量可以表示为Pi pilot,UEi的接收均衡向量可以表示为wi;k个UE中的第j
Figure PCTCN2014092199-appb-000001
个UE(可以表示为UEj),则UEj的当前下行信道信息可以表示为Hj。则Pi pilot需满足的第一个条件可以表示为:Hj·Pi pilot=0。
需要说明的是,由于j表示1到k中除i以外的任一个整数,因此,Pi pilot和k个UE中除UEi外的其他UE中的每一个UE的当前下行信号信息的乘积0,均可以公式Hj·Pi pilot=0来表示。
Pi pilot需满足的第二个条件可以表示为:wi=Hi·Pi pilot
可选的,如图2所示,在上述如图1所示的S102之前,该方法还可以包括:
S104、基站获取多个UE的当前下行信道信息。
具体的,基站可以通过接收多个UE中的每个UE发送的下行信道信息反馈,来获取多个UE中的每个UE的当前下行信道信息;。
或者,若MU-MIMO系统采用的是时分双工(英文:time division duplexing,缩写TDD)模式,则基站也可以利用TDD模式中上行信道与下行信道互易的特性(即上行信道响应与下行信道响应相同),根据多个UE中的每个UE的当前上行信道信息获取多个UE中的每个UE的当前下行信道信息。
需要说明的是,在本发明实施例中,S104只需在S102之前执行即可,S104与S101的执行顺序在本发明实施例中不作限制。
可选的,如图3所示,上述如图2所示的S102具体可以包括:
S102a、基站根据多个UE的当前下行信道信息,确定第一UE的数据预编码向量。
可选的,基站根据多个UE的当前下行信道信息,确定第一UE的数据预编码向量的算法有多种。示例性的,该算法可以包括线性预编码算法和非线性预编码算法等。其中,线性预编码算法可以包括迫零(英文:zero forcing,缩写:ZF)算法、块对角化(英文:block diagonalization,缩写:BD)算法和信漏噪比(英文:signalto leakage plusnoise ratio,缩写SLNR)算法等。非线性预编码算法可以包括脏纸编码(英文:dirty paper coding,缩写DPC)算法和矢量扰动(英文:vector perturbation,缩写:VP)算法等。
需要说明的是,上述基站根据多个UE的当前下行信道信息,确定第一UE的数据预编码向量的算法仅是示例性的列举,本发明实施例中,基站根据多个UE的当前下行信道信息,确定第一UE的数据预编码向量的算法包括但不限于上述几种,其他任何根据多个UE的当前下行信道信息,确定第一UE的数据预编码向量的算法均在本发 明的保护范围之内。
假设,基站通过ZF算法,根据多个UE的当前下行信道信息,确定第一UE的数据预编码向量的计算过程如下:
[UiDiVi]=svd(Hi)   公式(1)
Hi eff=(Ui(:,1))H*Hi   公式(2)
Figure PCTCN2014092199-appb-000002
   公式(3)
Figure PCTCN2014092199-appb-000003
   公式(4)
Pi=P(:,i)   公式(5)
Figure PCTCN2014092199-appb-000004
   公式(6)
上述计算过程中,Hi表示UEi(即第一UE)的当前下行信道信息。
根据公式(1),对Hi进行奇异值分解(英文:singular value decomposition,缩写:SVD),从而获得Hi的右奇异向量矩阵Vi、左奇异向量矩阵Ui以及奇异值Di
根据公式(2),计算Ui的第一列向量的共轭转置(Ui(:,1))H与Hi的乘积Hi eff
根据公式(3),计算矩阵
Figure PCTCN2014092199-appb-000005
Figure PCTCN2014092199-appb-000006
表示多个UE(即使用相同时频资源传输数据流的k个UE)的Heff(包括H1 eff、H2 eff、…,以及Hk eff)按行排在一起所组成的矩阵。
根据公式(4),计算
Figure PCTCN2014092199-appb-000007
的伪逆矩阵P。
根据公式(5),计算P的第i列向量Pi
最后,根据公式(6),将Pi进行归一化处理,即Pi除以Pi的模|Pi|,计算Pi data。其中,Pi data即为基站根据多个UE的当前下行信道信息,确定的第一UE的数据预编码向量。
S102b、基站根据第一UE的当前下行信道信息和第一UE的数据预编码向量,确定第一UE的接收均衡向量。
具体的,基站根据第一UE的当前下行信道信息和第一UE的数据预编码向量,确定第一UE的接收均衡向量的算法有多种。示例性的,该算法可以包括最大合并比(英文:maximum ratio combining,缩写:MRC)算法,最小均方误差(英文:minimum mean-square error,缩写:MMSE)算法等。
需要说明的是,上述基站根据第一UE的当前下行信道信息和第一UE的数据预编码向量,确定第一UE的接收均衡向量的算法仅是示例性的列举,本发明实施例中,基站根据第一UE的当前下行信道信息和第一UE的数据预编码向量,确定第一UE的接收均衡向量的算法包括但不限于上述几种,其他任何基站根据第一UE的当前下行信道信息和第一UE的数据预编码向量,确定第一UE的接收均衡向量的算法均在本发明的保护范围之内。
举例来说,假设基站通过MRC算法,根据第一UE的数据预编码向量(可以表示为Pi data)和第一UE的当前下行信道信息(可以表示为Hi),确定第一UE的接收均衡向量(可以表示为wi),则具体的计算公式如下:
Figure PCTCN2014092199-appb-000008
公式(7)
基站可根据上述公式(7),计算wi。其中,
Figure PCTCN2014092199-appb-000009
表示Hi·Pi data的2范数。
需要说明的是,在本发明实施例中,第一UE的接收均衡向量为基站根据其预设的计算接收均衡向量的算法,计算出的第一UE的接收均衡向量。而第一UE在接收数据信号时,实际采用的计算接收均衡向量的算法可能与基站预设的算法相同,也可能与基站预设的算法不相同。因此,基站确定的第一UE的接收均衡向量可能为第一 UE接收数据信号时实际采用的接收均衡向量,也可能不为第一UE接收数据信号时实际采用的接收均衡向量。
S102c、基站根据多个UE的当前下行信道信息和第一UE的接收均衡向量,确定第一UE的导频预编码向量。
其中,第一UE的导频预编码向量需满足的两个条件为:
(1)第一UE的导频预编码向量和多个UE中除第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0。
(2)第一UE的导频预编码向量和第一UE的当前下行信道信息的乘积为第一UE的接收均衡向量。
S102d、基站根据第一UE的当前下行信道信息、第一UE的接收均衡向量以及第一UE的数据预编码向量,确定第一UE的接收数据流增益。
示例性的,基站根据第一UE的当前下行信道信息(可以表示为Hi)、第一UE的接收均衡向量(可以表示为wi)和第一UE的数据预编码向量(可以表示为Pi data),确定第一UE的接收数据流增益(可以表示为βi)的计算公式如下:
βi=wi H·Hi·Pi data   公式(8)
基站可根据上述公式(8),计算βi,其中,wi H为wi的共轭转置。
需要说明的是,在本发明实施例中,第一UE的接收数据流增益为基站根据第一UE的数据预编码向量,和基站确定的第一UE的接收均衡向量确定的接收数据流增益。
进一步的,上述S102c中,基站根据多个UE的当前下行信道信息和第一UE的接收均衡向量,确定第一UE的导频预编码向量的算法有多种。下面提供一种可选的算法,对上述S102c进行详细地说明。
可选的,如图4所示,上述如图3所示的S102c具体可以包括:
S102c1、基站根据其他UE中的所有UE的当前下行信道信息,确定其他UE中的所有UE的信道信息的集合的0空间。
其中,其他UE是指多个UE中除第一UE外其他UE。
示例性的,基站确定其他UE中的所有UE的信道信息的集合的0空间(可以表示为V-i (0))的计算过程如下:
H-i=[H1…Hi-1Hi+1…Hk]H   公式(9)
H-i=U-iD-i[V-i (1)V-i (0)]H   公式(10)
在上述计算过程中,基站根据公式(9),计算其他UE中的所有UE的信道信息的集合H-i,其中-i表示1到k中,除i以外的整数集合。例如,UE-i可以理解为多个UE(即在相同时频资源上传输数据流的k个UE)中,除UEi(即第一UE)外的所有的UE的集合。
基站根据公式(10),计算H-i的0空间V-i (0)。该V-i (0)能够保证其与H-i的乘积不为0,与Hj的乘积为0,即Hi·V-i (0)≠0且Hj·V-i (0)=0。
S102c2、基站根据第一UE的接收均衡向量、第一UE的当前下行信道信息和其他UE中的所有UE的信道信息的集合的0空间,确定第一UE的导频预编码向量。
示例性的,基站根据wi、Hi和V-i (0)确定与第一UE的导频预编码向量(可以表示为Pi pilot)的计算过程如下:
Figure PCTCN2014092199-appb-000010
   公式(11)
Pi pilot=V-i (0)·Pi *   公式(12)
在上述计算过程中,基站可根据上述公式(10),计算向量Pi *。其中,该Pi *能够保证其与Hi和V-i (0)的乘积为wi,即wi=Hi·V-i (0)·Pi *
基站可根据上述公式(12),计算Pi pilot
至此,基站可通过上述S102d1-S102d2的方法,根据第一UE的接收均衡向量(可以表示为wi)、第一UE的当前下行信道信息(可以表示为Hi)和多个UE中除第一UE外的其他UE中的所有UE的信道信息的集合的0空间(可以表示为V-i (0)),确定第一UE的导频预编码 向量(可以表示为Pi pilot)。
需要说明的是,由于Hj·V-i (0)=0,因此,Hj·V-i (0)·Pi *=0,由于Pi pilot=V-i (0)·Pi *,因此Hj·Pi pilot=Hj·V-i (0)·Pi *,则Hj·Pi pilot=0,因此,基站确定的Pi pilot满足上述的条件(1);由于wi=Hi·V-i (0)·Pi *,且Pi pilot=V-i (0)·Pi *,因此wi=Hi·Pi pilot,因此,基站确定的Pi pilot满足上述的条件(2)。
进一步地,上述S103,即基站根据第一导频信号、第一UE的接收数据流增益以及第一UE的导频预编码向量,生成待发送至第一UE的第二导频信号的方法可以为:
基站根据Pi pilot、βi和第一导频信号(可表示为spilot),生成待发送至第一UE的第二导频信号(可表示为yi pilot)的公式如下所示:
yi pilot=Pi pilot·βi·spilot   公式(13)
需要说明的是,基站可以根据上述S101-S104的方法,确定在相同的时频资源上传输数据流的多个UE共享的第一导频信号,并确定多个UE中的所有UE的导频预编码向量(包括P1 pilot、P2 pilot、…,和Pk pilot),和多个UE中的所有UE的接收数据流增益(包括β1、β2、…,和βk)。最后基站根据上述公式(13),将该第一导频信号分别与多个UE中的每一个UE的导频预编码向量,和该UE的接收数据流增益相乘后,分别得到多个UE中的所有UE的第二导频信号(包括y1 pilot、y2 pilot、…,和yk pilot)。由于在上述S101-104的方法中,由于基站为在相同时频资源上传输数据流的多个UE分配了一个相同的第一导频信号,因此,实现了多个UE共享一个导频,进而节省导频开销。
进一步地,基站通过上述实施例提供的导频信号的生成方法,生成与待发送至第一UE的第二导频信号之后,基站需通过第一UE的当前下行信道,向第一UE发送该第二导频信号。
示例性的,结合图2,如图5所示,本发明实施例提供的一种导频信号的生成方法还可以包括:
S105、基站通过第一UE的当前下行信道,向第一UE发送该第二导频信号。
如图6所示,为通过本发明实施例提供的导频信号的生成方法,生成的第二导频信号后,将该第二导频信号用于MU-MIMO系统后得到的系统容量仿真结果。如图6所示的横坐标表示信噪比(英文:signal to noise ratio,缩写:SNR),SNR的单位为分贝(单位符号为dB),如图6所示的纵坐标表示吞吐量(英文:throughput),吞吐量的单位为比特/秒(单位符号为bps)。从图6可以看出,采用本发明实施例提供的导频信号的生成方法的仿真结果(如图6所示的曲线1),与采用现有技术提供的导频信号的生成方法的仿真结果(如图6所示的曲线3)相比,采用本发明实施例提供的导频信号的生成方法能够使MU-MIMO系统获得更高的吞吐量。
本发明实施例提供一种导频信号的生成方法,具体包括基站确定多个UE共享的第一导频信号,该多个UE为在相同的时频资源上传输数据流的多个UE,并根据多个UE的当前下行信道信息,确定第一UE的导频预编码向量和第一UE的接收数据流增益,第一UE为多个UE中的一个,以及基站根据第一导频信号、第一UE的接收数据流增益以及第一UE的导频预编码向量,生成待发送至第一UE的第二导频信号。通过该方法,当在相同时频资源传输数据流的多个UE共享一个导频时,每个UE在接收其导频信号时不会受到其他UE的导频信号的干扰,从而保证多个UE中的每个UE都能够根据其导频信号正确解调出该UE的数据流,实现多个UE共享一个导频,进而降低导频开销。
实施例二
本发明实施例提供一种导频信号的生成装置,如图7所示,该生成装置包括:
确定单元10,用于确定多个用户设备UE共享的第一导频信号,所述多个UE为在相同的时频资源上传输数据流的多个UE,并根据所述多个UE的当前下行信道信息,确定第一UE的导频预编码向量 和所述第一UE的接收数据流增益,所述第一UE为所述多个UE中的一个。
生成单元11,用于根据所述确定单元10确定的所述第一导频信号、所述第一UE的接收数据流增益以及所述第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号。
可选的,所述确定单元10确定的所述第一UE的导频预编码向量满足如下条件:
所述第一UE的导频预编码向量和所述多个UE中除所述第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0;且所述第一UE的导频预编码向量和所述第一UE的当前下行信道信息的乘积为所述第一UE的接收均衡向量。
可选的,结合图7,如图8所示,所述生成装置还包括获取单元12:
所述获取单元12,用于获取所述多个UE的当前下行信道信息;
所述确定单元10,具体用于根据所述获取单元12获取的所述多个UE的当前下行信道信息,确定所述第一UE的数据预编码向量,并根据所述第一UE的当前下行信道信息和所述第一UE的数据预编码向量,确定所述第一UE的接收均衡向量,且根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定所述第一UE的导频预编码向量,以及根据所述第一UE的当前下行信道信息、所述第一UE的接收均衡向量以及所述第一UE的数据预编码向量,确定所述第一UE的接收数据流增益。
可选的,所述确定单元10,具体用于根据所述其他UE中的所有UE的当前下行信道信息,确定所述其他UE中的所有UE的信道信息的集合的0空间,并根据所述第一UE的接收均衡向量、所述第一UE的当前下行信道信息和所述其他UE中的所有UE的信道信息的集合的0空间,确定所述第一UE的导频预编码向量。
可选的,结合图8,如图9所示,所述生成装置还包括:
发送单元13,用于所述生成单元11生成所述第二导频信号之 后,通过所述第一UE的当前下行信道,向所述第一UE发送所述生成单元11生成的所述第二导频信号
需要说明的是,本发明实施例提供的导频信号的生成装置可以为基站。
本发明实施例提供一种导频信号的生成装置,该生成装置能够确定多个UE共享的第一导频信号,该多个UE为在相同的时频资源上传输数据流的多个UE,并根据多个UE的当前下行信道信息,确定第一UE的导频预编码向量和第一UE的接收数据流增益,第一UE为多个UE中的一个,以及基站根据第一导频信号、第一UE的接收数据流增益以及第一UE的导频预编码向量,生成待发送至第一UE的第二导频信号。通过该生成装置,当在相同时频资源传输数据流的多个UE共享一个导频时,每个UE在接收其导频信号时不会受到其他UE的导频信号的干扰,从而保证多个UE中的每个UE都能够根据其导频信号正确解调出该UE的数据流,实现多个UE共享一个导频,进而降低导频开销。
实施例三
如图10所示,本发明实施例提供一种基站,该基站可以包括:处理器20、存储器21,以及系统总线22。所述处理器20和所述存储器21之间通过所述系统总线22连接并完成相互间的通信。
所述处理器21可以是一个中央处理器(英文:central processing unit,缩写:CPU),或者是特定集成电路(英文:application specific integrated circuit,缩写:ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
所述存储器21可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);所述存储器21也可以包括非易失性存储器(英文:non-volatilememory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive, 缩写:SSD);所述存储器21还可以包括上述种类的存储器的组合。
当所述基站运行时,所述处理器20和所述存储器21可以执行图1至图5任意之一所述的方法流程,具体包括:
所述处理器20,用于确定多个用户设备UE共享的第一导频信号,所述多个UE为在相同的时频资源上传输数据流的多个UE,并根据所述多个UE的当前下行信道信息,确定第一UE的导频预编码向量和所述第一UE的接收数据流增益,所述第一UE为所述多个UE中的一个,以及根据所述第一导频信号、所述第一UE的接收数据流增益以及所述第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号;所述存储器21,用于存储所述第一导频信号的代码、所述多个UE的当前下行信道信息的代码、所述第一UE的导频预编码向量的代码、所述第一UE的接收数据流增益的代码、所述第二导频信号的代码,以及控制所述处理器20完成上述过程的软件程序,从而所述处理器20通过执行所述软件程序并调用所述第一导频信号的代码、所述多个UE的当前下行信道信息的代码、所述第一UE的导频预编码向量的代码、所述第一UE的接收数据流增益的代码以及所述第二导频信号的代码,完成上述过程。
可选的,所述处理器20确定的所述第一UE的导频预编码向量满足如下条件:
所述第一UE的导频预编码向量和所述多个UE中除所述第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0,且所述第一UE的导频预编码向量和所述第一UE的当前下行信道信息的乘积为所述第一UE的接收均衡向量。
可选的,所述处理器20,所述处理器,具体用于获取所述多个UE的当前下行信道信息,根据所述多个UE的当前下行信道信息,确定所述第一UE的数据预编码向量,并根据所述第一UE的当前下行信道信息和所述第一UE的数据预编码向量,确定所述第一UE的接收均衡向量,且根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定所述第一UE的导频预编码向量,以及根 据所述第一UE的当前下行信道信息、所述第一UE的接收均衡向量以及所述第一UE的数据预编码向量,确定所述第一UE的接收数据流增益。
可选的,所述处理器20,具体用于根据所述其他UE中的所有UE的当前下行信道信息,确定所述其他UE中的所有UE的信道信息的集合的0空间,并根据所述第一UE的接收均衡向量、所述第一UE的当前下行信道信息和所述其他UE中的所有UE的信道信息的集合的0空间,确定所述第一UE的导频预编码向量。
可选的,结合图10,如图11所示,所述基站还包括收发器23。
所述收发器23,用于所述处理器20生成所述第二导频信号之后,通过所述第一UE的当前下行信道,向所述第一UE发送所述处理器20生成的所述第二导频信号。
所述收发器23可以为一个由发送器和接收器集成的具有收发功能的模块,也可以为一个具有独立的发送器和独立的接收器的模块。
本发明实施例提供一种基站,该基站能够确定多个UE共享的第一导频信号,该多个UE为在相同的时频资源上传输数据流的多个UE,并根据多个UE的当前下行信道信息,确定第一UE的导频预编码向量和第一UE的接收数据流增益,第一UE为多个UE中的一个,以及基站根据第一导频信号、第一UE的接收数据流增益以及第一UE的导频预编码向量,生成待发送至第一UE的第二导频信号。通过该生成装置,当在相同时频资源传输数据流的多个UE共享一个导频时,每个UE在接收其导频信号时不会受到其他UE的导频信号的干扰,从而保证多个UE中的每个UE都能够根据其导频信号正确解调出该UE的数据流,实现多个UE共享一个导频,进而降低导频开销。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结 构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、R0M、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (15)

  1. 一种导频信号的生成方法,其特征在于,包括:
    确定多个用户设备UE共享的第一导频信号,所述多个UE为在相同的时频资源上传输数据流的多个UE;
    根据所述多个UE的当前下行信道信息,确定第一UE的导频预编码向量和所述第一UE的接收数据流增益,所述第一UE为所述多个UE中的一个;
    根据所述第一导频信号、所述第一UE的接收数据流增益以及所述第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一UE的导频预编码向量满足如下条件:
    所述第一UE的导频预编码向量和所述多个UE中除所述第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0;且
    所述第一UE的导频预编码向量和所述第一UE的当前下行信道信息的乘积为所述第一UE的接收均衡向量。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述多个UE的当前下行信道信息,确定所述第一UE的导频预编码向量和所述第一UE的接收数据流增益之前,所述方法还包括:
    获取所述多个UE的当前下行信道信息;
    所述根据所述多个UE的当前下行信道信息,确定所述第一UE的导频预编码向量和所述第一UE的接收数据流增益,包括:
    根据所述多个UE的当前下行信道信息,确定所述第一UE的数据预编码向量;
    根据所述第一UE的当前下行信道信息和所述第一UE的数据预编码向量,确定所述第一UE的接收均衡向量;
    根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定所述第一UE的导频预编码向量;
    根据所述第一UE的当前下行信道信息、所述第一UE的接收均衡 向量以及所述第一UE的数据预编码向量,确定所述第一UE的接收数据流增益。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定所述第一UE的导频预编码向量,包括:
    根据所述其他UE中的所有UE的当前下行信道信息,确定所述其他UE中的所有UE的信道信息的集合的0空间;
    根据所述第一UE的接收均衡向量、所述第一UE的当前下行信道信息和所述其他UE中的所有UE的信道信息的集合的0空间,确定所述第一UE的导频预编码向量。
  5. 根据权利要求1-4任一项所述的方法、其特征在于,所述根据所述第一导频信号、所述第一UE的接收数据流增益以及所述第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号之后,所述方法还包括:
    通过所述第一UE的当前下行信道,向所述第一UE发送所述第二导频信号。
  6. 一种导频信号的生成装置,其特征在于,包括:
    确定单元,用于确定多个用户设备UE共享的第一导频信号,所述多个UE为在相同的时频资源上传输数据流的多个UE,并根据所述多个UE的当前下行信道信息,确定第一UE的导频预编码向量和所述第一UE的接收数据流增益,所述第一UE为所述多个UE中的一个;
    生成单元,用于根据所述确定单元确定的所述第一导频信号、所述第一UE的接收数据流增益以及所述第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号。
  7. 根据权利要求6所述的生成装置,其特征在于,所述确定单元确定的所述第一UE的导频预编码向量满足如下条件:
    所述第一UE的导频预编码向量和所述多个UE中除所述第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0;且
    所述第一UE的导频预编码向量和所述第一UE的当前下行信道信 息的乘积为所述第一UE的接收均衡向量。
  8. 根据权利要求7所述的生成装置,其特征在于,所述生成装置还包括获取单元,
    所述获取单元,用于获取所述多个UE的当前下行信道信息;
    所述确定单元,具体用于根据所述获取单元获取的所述多个UE的当前下行信道信息,确定所述第一UE的数据预编码向量,并根据所述第一UE的当前下行信道信息和所述第一UE的数据预编码向量,确定所述第一UE的接收均衡向量,且根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定所述第一UE的导频预编码向量,以及根据所述第一UE的当前下行信道信息、所述第一UE的接收均衡向量以及所述第一UE的数据预编码向量,确定所述第一UE的接收数据流增益。
  9. 根据权利要求8所述的生成装置,其特征在于,
    所述确定单元,具体用于根据所述其他UE中的所有UE的当前下行信道信息,确定所述其他UE中的所有UE的信道信息的集合的0空间,并根据所述第一UE的接收均衡向量、所述第一UE的当前下行信道信息和所述其他UE中的所有UE的信道信息的集合的0空间,确定所述第一UE的导频预编码向量。
  10. 根据权利要求6-9任一项所述的生成装置,其特征在于,所述生成装置还包括发送单元,
    所述发送单元,用于所述生成单元生成所述第二导频信号之后,通过所述第一UE的当前下行信道,向所述第一UE发送所述生成单元生成的所述第二导频信号。
  11. 一种基站,其特征在于,包括:
    处理器,用于确定多个用户设备UE共享的第一导频信号,所述多个UE为在相同的时频资源上传输数据流的多个UE,并根据所述多个UE的当前下行信道信息,确定第一UE的导频预编码向量和所述第一UE的接收数据流增益,所述第一UE为所述多个UE中的一个,以及根据所述第一导频信号、所述第一UE的接收数据流增益以及所述 第一UE的导频预编码向量,生成待发送至所述第一UE的第二导频信号。
  12. 根据权利要求11所述的基站,其特征在于,所述处理器确定的所述第一UE的导频预编码向量满足如下条件:
    所述第一UE的导频预编码向量和所述多个UE中除所述第一UE外的其他UE中的每一个UE的当前下行信道信息的乘积均为0;且
    所述第一UE的导频预编码向量和所述第一UE的当前下行信道信息的乘积为所述第一UE的接收均衡向量。
  13. 根据权利要求12所述的基站,其特征在于,
    所述处理器,具体用于获取所述多个UE的当前下行信道信息,根据所述多个UE的当前下行信道信息,确定所述第一UE的数据预编码向量,并根据所述第一UE的当前下行信道信息和所述第一UE的数据预编码向量,确定所述第一UE的接收均衡向量,且根据所述多个UE的当前下行信道信息和所述第一UE的接收均衡向量,确定所述第一UE的导频预编码向量,以及根据所述第一UE的当前下行信道信息、所述第一UE的接收均衡向量以及所述第一UE的数据预编码向量,确定所述第一UE的接收数据流增益。
  14. 根据权利要求13所述的基站,其特征在于,
    所述处理器,具体用于根据所述其他UE中的所有UE的当前下行信道信息,确定所述其他UE中的所有UE的信道信息的集合的0空间,并根据所述第一UE的接收均衡向量、所述第一UE的当前下行信道信息和所述其他UE中的所有UE的信道信息的集合的0空间,确定所述第一UE的导频预编码向量。
  15. 根据权利要求11-14任一项所述的基站,其特征在于,所述基站还包括收发器,
    所述收发器,用于所述处理器生成所述第二导频信号之后,通过所述第一UE的当前下行信道,向所述第一UE发送所述处理器生成的所述第二导频信号。
PCT/CN2014/092199 2014-11-25 2014-11-25 一种导频信号的生成方法及装置 WO2016082110A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480082935.7A CN107078836B (zh) 2014-11-25 2014-11-25 一种导频信号的生成方法及装置
PCT/CN2014/092199 WO2016082110A1 (zh) 2014-11-25 2014-11-25 一种导频信号的生成方法及装置
EP14906665.6A EP3214782B1 (en) 2014-11-25 2014-11-25 Method and apparatus for generating pilot frequency signal
US15/603,626 US10404435B2 (en) 2014-11-25 2017-05-24 Pilot signal generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092199 WO2016082110A1 (zh) 2014-11-25 2014-11-25 一种导频信号的生成方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/603,626 Continuation US10404435B2 (en) 2014-11-25 2017-05-24 Pilot signal generation method and apparatus

Publications (1)

Publication Number Publication Date
WO2016082110A1 true WO2016082110A1 (zh) 2016-06-02

Family

ID=56073317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092199 WO2016082110A1 (zh) 2014-11-25 2014-11-25 一种导频信号的生成方法及装置

Country Status (4)

Country Link
US (1) US10404435B2 (zh)
EP (1) EP3214782B1 (zh)
CN (1) CN107078836B (zh)
WO (1) WO2016082110A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107566677A (zh) * 2016-06-30 2018-01-09 华为技术有限公司 一种资源转移的方法和设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082110A1 (zh) * 2014-11-25 2016-06-02 华为技术有限公司 一种导频信号的生成方法及装置
US10862603B2 (en) * 2016-02-22 2020-12-08 Mitsubishi Electric Corporation Transmission apparatus, reception apparatus, control station, communication system, and transmission precoding method
US11025471B2 (en) * 2017-01-20 2021-06-01 Wisig Networks Private Limited Method and system for providing code cover to OFDM symbols in multiple user system
CN112953602B (zh) * 2019-12-10 2022-06-24 安徽大学 Tdd大规模mimo系统中的下行预编码方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101273595A (zh) * 2005-07-26 2008-09-24 高通股份有限公司 在ofdma系统中以专用导频作信道和干扰估计
CN102098085A (zh) * 2009-12-15 2011-06-15 上海贝尔股份有限公司 自适应mimo发送方法和设备
CN103546264A (zh) * 2013-11-13 2014-01-29 东南大学 基于导频复用的大规模mimo无线通信方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705659B2 (en) * 2003-11-06 2014-04-22 Apple Inc. Communication channel optimization systems and methods in multi-user communication systems
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
CN101043235B (zh) * 2006-04-14 2010-10-27 华为技术有限公司 一种导频信号发射功率控制方法
WO2008103313A2 (en) * 2007-02-16 2008-08-28 Interdigital Technology Corporation Method and apparatus for transmitting control signaling for mimo transmission
US7809074B2 (en) * 2007-03-16 2010-10-05 Freescale Semiconductor, Inc. Generalized reference signaling scheme for multi-user, multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
EP3493427A1 (en) * 2007-07-16 2019-06-05 BlackBerry Limited Providing space division multiple access in a wireless network
US20130016680A1 (en) * 2007-08-30 2013-01-17 Research In Motion Limited Systems and Methods for Multi-User MIMO
US8687480B2 (en) * 2008-06-12 2014-04-01 Apple Inc. Systems and methods for SC-FDMA transmission diversity
EP2454827B1 (en) * 2009-06-19 2019-03-27 BlackBerry Limited Downlink reference signal for type ii relay
WO2010148550A1 (en) * 2009-06-22 2010-12-29 Huawei Technologies Co., Ltd. A method and system for assigning reference signals in multi antenna context
EP2457342A1 (en) * 2009-07-22 2012-05-30 Nokia Siemens Networks OY Method of coordinating the transmission resources in a coordinated multipoint transmission/receiving communication network
CN101867533B (zh) * 2010-05-27 2012-10-24 东南大学 空分多址多天线传输下行链路导频与信道估计方法
US9077413B2 (en) * 2010-06-15 2015-07-07 Futurewei Technologies, Inc. System and method for transparent coordinated beam-forming
US8521199B2 (en) * 2010-06-15 2013-08-27 Futurewei Technologies, Inc. System and method for transparent coordinated beam-forming
US9553641B2 (en) 2010-08-24 2017-01-24 Telefonaktiebolaget Lm Ericsson (Publ) Device and method for HSPA WCDMA uplink pilots
JP5687524B2 (ja) * 2011-03-01 2015-03-18 シャープ株式会社 送信装置、受信装置、通信システム、通信方法、および集積回路
CN102684819B (zh) * 2011-03-15 2015-06-03 华为技术有限公司 一种数据传输方法及相关设备、系统
JP5689353B2 (ja) * 2011-04-22 2015-03-25 シャープ株式会社 フィルタ算出装置、送信装置、受信装置、プロセッサおよびフィルタ算出方法
MX2014003741A (es) * 2011-09-30 2014-08-08 Fujitsu Ltd Sistema de comunicacion inalambrico, estacion base, estacion movil y metodo de comunicacion inalambrico.
US9247563B2 (en) * 2011-12-23 2016-01-26 Blackberry Limited Method implemented in a user equipment
KR102109655B1 (ko) * 2012-02-23 2020-05-12 한국전자통신연구원 대규모 안테나 시스템에서의 다중 입력 다중 출력 통신 방법
CN103312389B (zh) * 2012-03-06 2016-05-25 华为技术有限公司 一种多用户干扰抑制方法、终端及基站
WO2013168958A1 (ko) * 2012-05-07 2013-11-14 엘지전자 주식회사 하향링크 데이터 수신 방법 및 사용자기기와 하향링크 데이터 전송 방법 및 기지국
CN103580782B (zh) * 2012-07-24 2017-10-17 华为技术有限公司 无线通信系统的基带处理装置和无线通信系统
CN107196689B (zh) * 2012-11-29 2021-03-02 华为技术有限公司 一种上行mu-mimo的方法及系统
US9503171B2 (en) * 2013-01-04 2016-11-22 Electronics And Telecommunications Research Institute Method for transmitting signal using multiple antennas
US20150163036A1 (en) * 2013-12-11 2015-06-11 Nokia Solutions And Networks Oy High Resolution Channel Sounding for FDD Communications
EP3076748A4 (en) * 2014-01-07 2016-12-28 Huawei Tech Co Ltd CO-OPERATIVE COMMUNICATION PROCESS, DEVICE AND SYSTEM FOR USER DEVICES
EP3128692B1 (en) * 2014-04-25 2019-08-14 Huawei Technologies Co., Ltd. Method and device for signal transmitting
JP6509255B2 (ja) * 2014-04-28 2019-05-08 華為技術有限公司Huawei Technologies Co.,Ltd. マルチアンテナデータ伝送方法、基地局、ユーザ機器、およびシステム
EP3136802B1 (en) * 2014-05-26 2019-07-10 Huawei Technologies Co., Ltd. Pilot configuration method and apparatus
EP3148145B1 (en) * 2014-06-12 2019-02-20 Huawei Technologies Co. Ltd. Resource allocation method and device
US9602178B2 (en) * 2014-06-23 2017-03-21 Nokia Technologies Oy Joint precoder and receiver design for MU-MIMO downlink
WO2016082110A1 (zh) * 2014-11-25 2016-06-02 华为技术有限公司 一种导频信号的生成方法及装置
US10020860B2 (en) * 2014-12-02 2018-07-10 Samsung Electronics Co., Ltd. Downlink signaling for partially precoded CSI-RS and CSI feedback
JP6386672B2 (ja) * 2014-12-11 2018-09-05 華為技術有限公司Huawei Technologies Co.,Ltd. データ処理方法、装置、及びデバイス
US20170180020A1 (en) * 2015-12-18 2017-06-22 Qualcomm Incorporated Per-tone precoding for downlink mimo transmission
US10033550B2 (en) * 2016-03-21 2018-07-24 Huawei Technologies Co., Ltd. User equipment detection for uplink random access in dispersive fading environments
US11546929B2 (en) * 2017-01-09 2023-01-03 Huawei Technologies Co., Ltd. Systems and methods for signaling for semi-static configuration in grant-free uplink transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101273595A (zh) * 2005-07-26 2008-09-24 高通股份有限公司 在ofdma系统中以专用导频作信道和干扰估计
CN102098085A (zh) * 2009-12-15 2011-06-15 上海贝尔股份有限公司 自适应mimo发送方法和设备
CN103546264A (zh) * 2013-11-13 2014-01-29 东南大学 基于导频复用的大规模mimo无线通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107566677A (zh) * 2016-06-30 2018-01-09 华为技术有限公司 一种资源转移的方法和设备

Also Published As

Publication number Publication date
EP3214782A1 (en) 2017-09-06
US20170257194A1 (en) 2017-09-07
CN107078836A (zh) 2017-08-18
US10404435B2 (en) 2019-09-03
EP3214782A4 (en) 2017-09-20
CN107078836B (zh) 2019-11-19
EP3214782B1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP7216088B2 (ja) 通信方法、通信装置、およびシステム
CN101877689B (zh) 数据发送处理方法与装置、数据接收处理方法与装置
KR102326701B1 (ko) Mimo 수신기가 mimo 송신기와의 통신을 위한 파라미터를 결정하는 방법
US10404435B2 (en) Pilot signal generation method and apparatus
US10236949B2 (en) Multiple-antenna data transmission method, base station, user equipment, and system
US10243631B2 (en) Method and apparatus for performing distributed computation of precoding estimates
CN102100045B (zh) 数据发送处理方法与装置、数据接收处理方法与装置
WO2017050212A1 (zh) 一种导频分配的方法及装置
CN109661786B (zh) 用于利用多址的无线通信的设备和方法
US10064197B2 (en) Network assisted interference suppression
KR20100065865A (ko) 멀티 인풋 멀티 아웃풋 시스템의 하향링크 컨트롤 정보 송수신 방법 및 장치
WO2015180009A1 (zh) 一种配置导频的方法及装置
US9450657B2 (en) Low-complexity precoder design for large-scale MIMO communication systems
WO2014107888A1 (zh) 下行多输入多输出发射方法及基站
TW201424290A (zh) 用於兩社區間的合作多點下行傳輸的方法和裝置
US10637548B2 (en) System and method for reduced overhead feedback scheme for interference mitigation in cellular networks
CN110050451B (zh) 导频序列发生器及相应的方法和信道估计器及相应的方法
US20170041107A1 (en) Method and apparatus for sending and receiving signal
WO2018188584A1 (zh) 一种空分复用的方法及装置
CN105790819B (zh) 一种mimo信号接收方法和装置
CN102439931B (zh) 数据发送处理方法与装置、数据接收处理方法与装置
WO2022222896A1 (zh) 一种发送、接收方法、装置、电子设备和存储介质
KR102603813B1 (ko) 통신 시스템에서 중첩 전송을 위한 방법 및 장치
KR20150096240A (ko) 기지국장치 및 기지국장치의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014906665

Country of ref document: EP