WO2016080324A1 - Dicing film - Google Patents

Dicing film Download PDF

Info

Publication number
WO2016080324A1
WO2016080324A1 PCT/JP2015/082059 JP2015082059W WO2016080324A1 WO 2016080324 A1 WO2016080324 A1 WO 2016080324A1 JP 2015082059 W JP2015082059 W JP 2015082059W WO 2016080324 A1 WO2016080324 A1 WO 2016080324A1
Authority
WO
WIPO (PCT)
Prior art keywords
dicing
meth
film
dicing film
resin
Prior art date
Application number
PCT/JP2015/082059
Other languages
French (fr)
Japanese (ja)
Inventor
佳典 長尾
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2016524156A priority Critical patent/JP6103140B2/en
Priority to CN201580062296.2A priority patent/CN107004587A/en
Publication of WO2016080324A1 publication Critical patent/WO2016080324A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers

Definitions

  • the present invention relates to a dicing film.
  • This application claims priority based on Japanese Patent Application No. 2014-234102 for which it applied to Japan on November 19, 2014, and uses the content here.
  • a method of forming a mounted substrate using a collective substrate is as follows. Components are mounted on the collective substrate, and then the collective substrate is held by an adhesive dicing film on the surface, and then the collective substrate is diced into individual pieces. And a mounted substrate in which components are mounted on each individual substrate is formed.
  • This dicing film for semiconductor substrate processing generally has a base material (film base material) and an adhesive layer formed on the base material, and the substrate is fixed by the adhesive layer. Between the adhesive layer and the substrate, it is necessary to have adhesiveness that does not allow the separated substrate to scatter during dicing (so-called chip jump).
  • the adhesive layer is usually composed of a resin composition containing an adhesive base resin, a photocurable resin, and the like so that the semiconductor chip can be easily picked up after the dicing process of the semiconductor substrate. . That is, when energy is applied to the adhesive layer after the dicing step, the resin composition is cured, the adhesiveness of the adhesive layer is lowered, and the semiconductor element can be easily picked up.
  • the cutting waste derived from the dicing film (base material waste) generated in the dicing step contaminates the substrate and reduces the yield of the mounted substrate. Therefore, it is necessary to reduce the generation of the cutting waste as much as possible.
  • the dicing film also has a characteristic that it can be expanded more uniformly and smoothly without being torn or cut (hereinafter referred to as expandability). Required.
  • the dicing film is usually manufactured, stored, transported and wound in a roll shape. However, when blocking between the films occurs, the quality deteriorates, and thus blocking resistance is also required.
  • Patent Document 2 90 to 70% by mass of an ionomer obtained by crosslinking a copolymer containing ethylene and (meth) acrylic acid as a polymer component with a metal ion, and an antistatic resin 10 to 10 containing a polyether component.
  • a dicing film characterized by containing 30% by mass has been proposed.
  • An object of the present invention is to provide a dicing film that suppresses chip fly during dicing and has a high effect of suppressing generation of cutting waste during dicing.
  • a substrate film for dicing film comprising a substrate layer and a surface layer disposed on one main surface of the substrate layer,
  • the substrate layer contains low density polyethylene
  • the surface layer contains an ionomer resin
  • the ionomer resin is obtained by crosslinking a terpolymer having ethylene, (meth) acrylic acid, and (meth) acrylic acid alkyl ester as a constituent component of the polymer with a metal ion.
  • the substrate film for dicing film according to (1) (3) The base film for a dicing film according to (2), wherein the metal ions are zinc ions. (4) The base film for a dicing film according to any one of (1) to (3), wherein the low-density polyethylene has a melting point of 90 ° C. or higher and 140 ° C. or lower. (5) The base film for a dicing film according to any one of (1) to (4), wherein the base material layer contains an antistatic agent. (6) The substrate film for a dicing film according to any one of (1) to (5), wherein the surface layer is a cut layer cut by a dicing blade.
  • (11) A dicing film with a semiconductor substrate in which a semiconductor substrate is laminated on the dicing film according to any one of (7) to (10).
  • the present invention is a substrate film for dicing film comprising a substrate layer and a surface layer disposed on one main surface of the substrate layer, wherein the substrate layer contains low-density polyethylene. Since the surface layer contains an ionomer resin, it relates to a dicing film that can reduce cutting waste and is excellent in expandability and restoration property in the dicing step.
  • the dicing film of the present invention will be described in detail.
  • the dicing film 100 of the present invention used in the substrate manufacturing method hereinafter, sometimes simply referred to as “adhesive tape 100” will be described.
  • FIG. 3 is a longitudinal sectional view showing an embodiment of the adhesive tape for processing a semiconductor substrate of the present invention.
  • the upper side in FIG. 3 is referred to as “upper” and the lower side is referred to as “lower”.
  • the dicing film 100 (the dicing film of the present invention) includes a base film 4 for dicing film (hereinafter sometimes referred to as the base material 4) and an adhesive layer 2 laminated on the base film 4 for dicing film. It is comprised by the laminated body provided.
  • the substrate film 4 for dicing film and the adhesive layer 2 included in the dicing film 100 will be described in detail.
  • the dicing film 100 has a function of reducing the adhesiveness of the adhesive layer 2 to the semiconductor substrate 7 by applying energy to the adhesive layer 2 included in the dicing film 100.
  • Examples of a method for applying energy to the adhesive layer 2 include a method of irradiating the adhesive layer 2 with energy rays and a method of heating the adhesive layer 2.
  • the semiconductor chip 20 has an unnecessary heat history. Since it is not necessary to pass through, the method of irradiating the adhesive layer 2 with energy rays is preferably used. Therefore, below, the adhesive layer 2 will be described as a representative one in which the adhesiveness is reduced by irradiation with energy rays.
  • the base material 4 is mainly made of a resin material and has a function of supporting the adhesive layer 2 provided on the base material 4.
  • the thickness of the base material 4 is not specifically limited, For example, it is preferable that they are 10 micrometers or more and 300 micrometers or less, It is more preferable that they are 30 micrometers or more and 200 micrometers or less, It is more preferable that they are 80 micrometers or more and 200 micrometers or less. When the thickness of the base material 4 is within this range, dicing of the semiconductor substrate 7 can be performed with excellent workability.
  • the substrate 4 has two or more layers of a surface layer and a substrate layer. Thereby, the suppression effect of generation
  • the surface layer 42 and the base material layer 41 of the base material 4 will be sequentially described.
  • the surface layer 42 which comprises the base film 4 for dicing films of this invention is a cutting layer cut with a dicing blade in one or some embodiment.
  • the surface layer 42 contains an ionomer resin.
  • the dicing blade can be cut only into the surface layer 42, and cutting waste can be remarkably reduced, and the expandability is improved when the dicing blade is expanded radially. That is, in the dicing process, when cutting a semiconductor substrate or the like, frictional heat is generated between the dicing blade and the dicing film. Therefore, a contact part with a dicing blade is exposed to high temperature, and a base material will be in a molten state. For this reason, the molten resin clings to the blade surface and causes clogging and normal dicing is hindered, or the melted and softened substrate is pulled by the rotation of the dicing blade and stretched. This is one of the causes.
  • the surface layer 42 which is a cut layer cut by the dicing blade, contains an ionomer resin, the melt viscosity of the surface layer 42 is increased, so that the resin is clinging to the blade even when frictional heat is generated during dicing. There is no, and cutting scraps can be remarkably reduced. Further, since the surface layer 42 which is a cut layer cut by a dicing blade contains an ionomer resin, the surface layer 42 becomes relatively flexible at normal temperature, and expandability when expanded radially by an expanding apparatus is preferable. .
  • the ionomer resin is a binary copolymer having ethylene and (meth) acrylic acid as constituents of a polymer, or ethylene, (meth) acrylic acid and (meth) acrylic acid ester as constituents of a polymer. It is a resin obtained by crosslinking a terpolymer with metal ions.
  • the metal ion include potassium ion (K +), sodium ion (Na +), lithium ion (Li +), magnesium ion (Mg ++), and zinc ion (Zn ++).
  • zinc ion As the metal ion, zinc ion (Zn ++) is preferable in that it stabilizes the cross-linked structure, thereby making it difficult to produce dicing waste, and also has high water resistance, and by cutting water during dicing,
  • the surface layer 42 is preferable without expanding.
  • the degree of neutralization by the cation in the carboxyl group of the polymer is preferably 40 to 75 mol%.
  • the said ionomer resin may use what is obtained by synthesize
  • the ionomer resin is preferably a resin obtained by crosslinking a terpolymer having ethylene, (meth) acrylic acid, and (meth) acrylic acid alkyl ester as constituents of the polymer with metal ions. That is, by containing (meth) acrylic acid alkyl ester as a constituent component of the polymer, moderate flexibility and workability effects can be obtained.
  • the melting point of the ionomer resin is preferably 80 ° C. or higher. This is preferable because the heat resistance of the surface layer 42 is improved.
  • the upper limit of the melting point of the ionomer resin is not particularly limited, but is substantially about 100 ° C.
  • the ionomer resin preferably has an MFR of 3 g / 10 min or less at a test temperature of 190 ° C. and a test load of 21.18 N in the test method shown in JIS K 7210 “Thermoplastic Plastic Flow Test Method”. Thereby, generation
  • the lower limit value of the MFR of the ionomer resin is not particularly limited, but is substantially 0.8 g / 10 min.
  • the content of the ionomer resin in the surface layer 42 is preferably 60% or more and 100% or less. If it is 60% or more, it is preferable in terms of suppressing dicing waste.
  • the surface layer 42 may contain other resin materials.
  • the resin material is not particularly limited, and for example, polyethylene such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, and ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolymer.
  • Polypropylenes such as polypropylene, polyvinyl chloride, polybutene, polybutadiene, polymethylpentene, and other polyolefin resins, ethylene-vinyl acetate copolymers, ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic Olefin copolymers such as acid ester (random, alternating) copolymer, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate Polyester resins such as tarate and polybutylene naphthalate, polyether ketones such as polyurethane, polyimide, polyamide, polyetheretherketone, polyethersulfone, polystyrene, fluorine resin, silicone resin, cellulose resin, styrene thermoplastic elastomer An olefin
  • the surface layer 42 may contain additives such as antioxidants, fillers, and the like as long as the spirit of the invention is not impaired.
  • the thickness of the surface layer 42 is preferably thicker than the depth of cut into the surface layer by the dicing blade (hereinafter also referred to as the depth of cut) from the viewpoint of reducing cutting waste.
  • the thickness of the surface layer is The thickness is 10 to 140 ⁇ m, preferably 20 to 120 ⁇ m.
  • the thickness of the surface layer is 10 to 90%, preferably 20 to 80% with respect to the thickness of the base film for dicing film.
  • the surface layer 42 may be composed of a laminate (multilayer body) in which a plurality of layers made of different resin materials are laminated.
  • the base material layer 41 which comprises the base film 4 for dicing films of this invention is demonstrated.
  • the base material layer 41 contains low density polyethylene. Thereby, when expand
  • Low density polyethylene is preferable because it has a higher melting point and higher heat resistance than the ionomer resin, so that it does not melt by frictional heat during dicing and does not stick to the chuck table during dicing.
  • the low density polyethylene refers to polyethylene having a density of 0.880 g / cm 3 or more and less than 0.940 g / cm 3.
  • the density of the low density polyethylene is particularly preferably 0.910 g / cm 3 or more and 0.930 g / cm 3 or less.
  • the low density polyethylene is a polymer having a long chain branch (the branch chain length is not particularly limited) obtained by polymerizing an ethylene monomer by a high pressure method, so-called “low density polyethylene” or “very low density polyethylene”.
  • linear low density polyethylene obtained by polymerizing ethylene and an ⁇ -olefin monomer having 3 to 8 carbon atoms by a low pressure method (in this case, the length of the short chain branch is 1 to 6 carbon atoms)
  • ethylene- ⁇ -olefin copolymer elastomer included in the above density range.
  • the density of the low density polyethylene can be measured according to JIS K 7112.
  • the melting point of the low density polyethylene is preferably 90 ° C. or higher and 140 ° C. or lower. It is preferable at 100 ° C. or higher because of the heat resistance effect. Moreover, when it is 140 degrees C or less, the rigidity at normal temperature becomes low and it is preferable at the effect which expand property is excellent.
  • the content rate of the low density polyethylene of the base material layer 41 is 40% or more and 100% or less. If it is 40% or more, it is preferable in terms of the adhesiveness with the surface layer and the cost.
  • the ionomer resin contained in the surface layer 42 is composed of a binary copolymer having ethylene and (meth) acrylic acid as constituents of the polymer, ethylene, (meth) acrylic acid and (meth) acrylic acid ester. It is a resin obtained by crosslinking a ternary copolymer as a constituent component of a polymer with metal ions, and contains ethylene as a monomer component. Moreover, the monomer component of the low density polyethylene contained in the base material layer 41 is ethylene.
  • both the surface layer 42 and the base material layer 41 contain ethylene as a monomer component, in the base film 4 for dicing film, due to the effect of intermolecular interaction between the surface layer 42 and the base material layer 41, the surface layer 42 And the base material layer 41 can suppress delamination.
  • the base material layer 41 may contain other resin materials.
  • the resin material is not particularly limited, and examples thereof include linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene such as polyethylene, random copolymer polypropylene, block copolymer polypropylene, and homopolypropylene.
  • Polyolefin resins such as polypropylene, polyvinyl chloride, polybutene, polybutadiene, polymethylpentene, etc., ionomers such as ethylene-vinyl acetate copolymer, zinc ion crosslinked body, sodium ion crosslinked body, ethylene- (meth) acrylic acid Copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-propylene copolymer, ethylene-butene copolymer, olefin copolymer such as ethylene-hexene copolymer, polyethylene Terephthalate, poly Polyester resins such as reethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, etc., polyether ketones such as polyurethane, polyimide, polyamide, polyether ether ketone, polyether sulfone, polystyrene, fluororesin, silicone resin,
  • the base material layer 41 may contain an additive such as an antioxidant, a filler, and the like as long as the spirit of the invention is not impaired.
  • the thickness of the base material layer 41 is 40 to 95 ⁇ m, or 60 to 80 ⁇ m, from the viewpoint of securing a strength that does not break the film when the film is stretched in the expanding step. Further, the thickness 41 of the base material layer is 40 to 95%, or 60 to 80% with respect to the thickness of the base film for dicing film.
  • the base material layer 41 may be composed of a laminate (multilayer body) in which a plurality of layers made of different resin materials are laminated.
  • the base material layer 41 preferably contains an antistatic agent. Thereby, generation
  • this antistatic agent For example, surfactant, permanent antistatic polymer (IDP), a metal material, a metal oxide material, a carbonaceous material etc. are mentioned, Among these, 1 type or 2 A combination of more than one species can be used.
  • examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • the permanent antistatic polymer for example, all IDPs such as polyester amide series, polyester amide, polyether ester amide, polyurethane series and the like can be used.
  • the metal material include gold, silver, copper, silver-coated copper, nickel, and the like, and these metal powders are preferably used.
  • the metal oxide material include indium tin oxide (ITO), indium oxide (IO), antimony tin oxide (ATO), indium zinc oxide (IZO), tin oxide (SnO2), and the like. Is preferably used.
  • examples of the carbon-based material include carbon nanotubes such as carbon black, single-walled carbon nanotubes, and multi-walled carbon nanotubes, carbon nanofibers, CN nanotubes, CN nanofibers, BCN nanotubes, BCN nanofibers, and graphene.
  • carbon nanotubes such as carbon black, single-walled carbon nanotubes, and multi-walled carbon nanotubes
  • at least one of a surfactant, a permanent antistatic polymer (IDP), a metal oxide material, and carbon black is preferable. Since these materials have low temperature dependency of resistivity, even when the substrate 4 is heated when dicing, the amount of change in the surface resistance value of the substrate layer 41 can be reduced. .
  • the content of the antistatic agent in the base material layer 41 is preferably 5% or more and 40% or less. If it is 5% or more, the antistatic performance is sufficiently exhibited, which is preferable. Moreover, it is preferable from the surface of cost that it is 40% or less.
  • the total thickness of the substrate film for dicing film of the present disclosure is 50 to 200 ⁇ m, preferably 80 to 150 ⁇ m in one or more embodiments.
  • the thickness of the substrate film for dicing film can be appropriately set according to the type of the object to be diced. By setting the total thickness of the base film for dicing film to 50 ⁇ m or more, the substrate can be protected from impact when dicing the substrate.
  • the adhesive layer 2 has a function of adhering and supporting the semiconductor substrate 7 when the semiconductor substrate 7 is diced. In addition, the adhesive layer 2 is in a state in which the adhesiveness to the semiconductor substrate 7 is reduced by applying energy to the adhesive layer 2, and thus, the adhesive layer 2 and the semiconductor substrate 7 can be easily peeled off. Is.
  • the pressure-sensitive adhesive layer 2 having such a function is composed of a resin composition containing, as main materials, (1) an adhesive base resin and (2) a curable resin for curing the pressure-sensitive adhesive layer 2.
  • a resin composition containing, as main materials, (1) an adhesive base resin and (2) a curable resin for curing the pressure-sensitive adhesive layer 2.
  • Base resin has adhesiveness, and is included in the resin composition in order to impart adhesiveness to the semiconductor substrate 7 to the adhesive layer 2 before irradiation of the energy layer to the adhesive layer 2. Is.
  • Such base resins include acrylic resins (adhesives), silicone resins (adhesives), polyester resins (adhesives), polyvinyl acetate resins (adhesives), and polyvinyl ether resins (adhesives). Or well-known thing used as adhesion layer components like urethane type resin (adhesive) is mentioned, but it is preferred to use acrylic resin especially. Acrylic resins are preferably used as base resins because they are excellent in heat resistance and are relatively easy and inexpensive to obtain.
  • the acrylic resin refers to a polymer having a (meth) acrylic acid ester as a main monomer component (homopolymer or copolymer) as a base polymer.
  • (meth) acrylic acid ester For example, (meth) acrylic acid methyl, (meth) acrylic acid ethyl, (meth) acrylic acid propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid butyl , Isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (meth) Octyl acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, (meth ) Undecyl, 2-ethyl
  • (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl (meth) acrylate It is preferable that The (meth) acrylic acid alkyl ester is particularly excellent in heat resistance, and can be obtained relatively easily and inexpensively.
  • (meth) acrylic acid ester is used to include both acrylic acid esters and methacrylic acid esters.
  • this acrylic resin preferably has a glass transition point of 20 ° C. or lower. Thereby, the adhesiveness excellent in the adhesive layer 2 can be exhibited before the energy layer is irradiated to the adhesive layer 2.
  • acrylic resin a resin containing a copolymerizable monomer is used as a monomer component constituting the polymer, if necessary, for the purpose of modifying cohesive force, heat resistance and the like.
  • Such a copolymerizable monomer is not particularly limited.
  • the content of these copolymerizable monomers is preferably 40% by weight or less, and more preferably 10% by weight or less, based on all monomer components constituting the acrylic resin.
  • the copolymerizable monomer may be contained at the end of the main chain in the polymer constituting the acrylic resin, or may be contained in the main chain, and further, the end of the main chain and the main chain It may be included in both the inside and the inside.
  • the copolymerizable monomer may contain a polyfunctional monomer for the purpose of crosslinking between polymers.
  • polyfunctional monomer examples include 1,6-hexanediol (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, and neopentyl glycol di (meth) acrylate.
  • Pentaerythritol di (meth) acrylate trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin di (meth) acrylate, epoxy (meth) acrylate, polyester ( And (meth) acrylate, urethane (meth) acrylate, divinylbenzene, butyl di (meth) acrylate, hexyl di (meth) acrylate, etc., one or two of these It can be used in combination on.
  • ethylene-vinyl acetate copolymer and vinyl acetate polymer can be used as copolymerizable monomer components.
  • Such an acrylic resin can be produced by polymerizing a single monomer component or a mixture of two or more monomer components.
  • the polymerization of these monomer components can be carried out using a polymerization method such as a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, a suspension polymerization method, or the like.
  • the acrylic resin obtained by polymerizing the monomer components described above is an acrylic resin having a carbon-carbon double bond in the side chain, in the main chain, or at the end of the main chain (“double” It is sometimes referred to as “bond-introducing acrylic resin”.
  • the acrylic resin is a double bond-introducing acrylic resin, even if the addition of the curable resin described later is omitted, the obtained adhesive layer 2 is allowed to exhibit the function as the adhesive layer 2 described above. Can do.
  • Such a double bond-introducing acrylic resin has one carbon-carbon double bond in each of the side chains of 1/100 or more of the side chains in the polymer constituting the acrylic resin. It is preferably a double bond-introducing acrylic resin (sometimes referred to as “double-bond side chain-introducing acrylic resin”).
  • double-bond side chain-introducing acrylic resin sometimes referred to as “double-bond side chain-introducing acrylic resin”.
  • This double bond side chain introduction type acrylic resin may have a carbon-carbon double bond in the main chain or at the end of the main chain.
  • a method for synthesizing such a double bond-introducing acrylic resin is not particularly limited.
  • a functional group as a copolymerizable monomer may be used.
  • a compound having a functional group capable of reacting and a carbon-carbon double bond (sometimes referred to as a “carbon-carbon double bond-containing reactive compound”) is added to a functional group-containing acrylic resin as a carbon-carbon.
  • Examples include a method of synthesizing a double bond-introducing acrylic resin by performing a condensation reaction or an addition reaction in a state where the energy bond curability (energy beam polymerizability) of the double bond is maintained.
  • control means for introducing a carbon-carbon double bond into an acrylic resin into 1/100 or more of all side chains for example, a condensation reaction or addition to a functional group-containing acrylic resin
  • examples thereof include a method performed by appropriately adjusting the content of a reactive compound containing a carbon-carbon double bond that is a compound to be reacted.
  • a catalyst is not particularly limited, but a tin-based catalyst such as dibutyltin dilaurate is preferably used.
  • the content of the tin-based catalyst is not particularly limited, but for example, it is preferably 0.05 parts by weight or more and 1 part by weight or less with respect to 100 parts by weight of the functional group-containing acrylic resin.
  • Examples of the functional group A in the functional group-containing acrylic resin and the functional group B in the carbon-carbon double bond-containing reactive compound include a carboxyl group, an acid anhydride group, a hydroxyl group, an amino group, an epoxy group, and an isocyanate.
  • Examples of the combination of the functional group A in the functional group-containing acrylic resin and the functional group B in the carbon-carbon double bond-containing reactive compound include, for example, a carboxylic acid group (carboxyl group). Group) and an epoxy group, a combination of a carboxylic acid group and an aziridyl group, a combination of a hydroxyl group and an isocyanate group, and a combination of a hydroxyl group and a carboxyl group.
  • a combination of a group and an isocyanate group Arbitrariness. Thereby, the reaction tracking between these functional groups A and B can be easily performed.
  • any functional group may be the functional group A of the functional group-containing acrylic resin or the functional group B of the carbon-carbon double bond-containing reactive compound.
  • the hydroxyl group is the functional group A in the functional group-containing acrylic resin
  • the isocyanate group is a functional group in the reactive compound containing a carbon-carbon double bond.
  • the group B is preferred.
  • examples of the monomer having the functional group A constituting the functional group-containing acrylic resin include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • carboxylic group those having an acid anhydride group such as maleic anhydride, itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth) acrylic acid 4-hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethyl (Cyclohexyl) methyl (meth) ac Hydroxyl groups such as rate, vinyl alcohol, allyl alcohol, 2-hydroxyethyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, ethylene glycol monovinyl ether, diethylene glycol monovinyl ether, propylene glycol monovinyl ether, dipropylene glycol monovinyl ether And those having an epoxy group such as glycidyl
  • Examples of the reactive compound containing a carbon-carbon double bond having a functional group B include those having an isocyanate group such as (meth) acryloyl isocyanate, (meth) acryloyloxymethyl isocyanate, 2- (meth) acryloyloxy. Examples include ethyl isocyanate, 2- (meth) acryloyloxypropyl isocyanate, 3- (meth) acryloyloxypropyl isocyanate, 4- (meth) acryloyloxybutyl isocyanate, m-propenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and epoxy. Examples of the group having a group include glycidyl (meth) acrylate.
  • the acrylic resin preferably has a low content of low molecular weight substances from the viewpoint of preventing contamination of the semiconductor substrate 7 and the like when the semiconductor substrate 7 is diced.
  • the weight average molecular weight of the acrylic resin is preferably set to 300,000 to 5,000,000, more preferably set to 500,000 to 5,000,000, and further preferably set to 800,000 to 3,000,000. If the weight-average molecular weight of the acrylic resin is less than 500,000 depending on the type of monomer component, etc., the anti-contamination property to the semiconductor substrate 7 and the like will be reduced, and adhesive residue will be left when the semiconductor chip 20 is peeled off. May occur.
  • the acrylic resin has a functional group (reactive functional group) having reactivity with a crosslinking agent or photopolymerization initiator, such as a hydroxyl group or a carboxyl group (particularly, a hydroxyl group). Is preferred.
  • a crosslinking agent and a photoinitiator connect with the acrylic resin which is a polymer component, it can suppress or prevent that these crosslinking agents and a photoinitiator leak from the adhesion layer 2 exactly.
  • the adhesiveness of the adhesive layer 2 to the semiconductor substrate 7 is reliably reduced by the energy ray irradiation.
  • Curable resin A curable resin is provided with the curability hardened
  • a curable resin for example, a low molecular weight having at least two polymerizable carbon-carbon double bonds that can be three-dimensionally cross-linked by irradiation with energy rays such as ultraviolet rays and electron beams as functional groups.
  • energy rays such as ultraviolet rays and electron beams as functional groups.
  • a compound is used.
  • trimethylolpropane tri (meth) acrylate pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, 1,4-butylene glycol di (meth) ) Esterified products of (meth) acrylic acid and polyhydric alcohols such as acrylate, polyethylene glycol di (meth) acrylate, glycerin di (meth) acrylate, Cyanurate compounds having a carbon-
  • an oligomer having 6 or more functional groups is included, and an oligomer having 15 or more functional groups is more preferable.
  • curable resin can be hardened more reliably by irradiation of an energy ray.
  • curable resin is urethane acrylate.
  • the urethane acrylate is not particularly limited, and for example, a polyol compound such as a polyester type or a polyether type and a polyvalent isocyanate compound (for example, 2,4-tolylene diisocyanate, 2,6-tolylene diene).
  • a polyol compound such as a polyester type or a polyether type
  • a polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate, 2,6-tolylene diene.
  • (Isocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, diphenylmethane 4,4-diisocyanate, etc.) having a hydroxyl group in the terminal isocyanate urethane prepolymer obtained by reaction examples thereof include those obtained by reacting (meth) acrylate (for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol (meth) acrylate, etc.)).
  • the curable resin is not particularly limited, but it is preferable that two or more curable resins having different weight average molecular weights are mixed. If such a curable resin is used, the degree of cross-linking of the resin by irradiation with energy rays can be easily controlled, and the pickup property of the semiconductor chip 20 can be improved.
  • a curable resin for example, a mixture of a first curable resin and a second curable resin having a weight average molecular weight larger than that of the first curable resin may be used.
  • the weight average molecular weight of the first curable resin is preferably about 100 to 1000, preferably 200 to More preferably, it is about 500.
  • the weight average molecular weight of the second curable resin is preferably about 1000 to 30000, more preferably about 1000 to 10000, and still more preferably about 2000 to 5000.
  • the number of functional groups of the first curable resin is preferably 1 to 5 functional groups, and the number of functional groups of the second curable resin is preferably 6 functional groups or more.
  • the curable resin is preferably blended in an amount of 5 parts by weight or more and 500 parts by weight or less, more preferably 10 parts by weight or more and 300 parts by weight or less, and more preferably 20 parts by weight or more. More preferably, it is blended at 200 parts by weight or less.
  • this curable resin uses a double bond-introducing acrylic resin as the acrylic resin described above, that is, a carbon-carbon double bond is present in the side chain, main chain, or end of the main chain.
  • a double bond-introducing acrylic resin as the acrylic resin described above, that is, a carbon-carbon double bond is present in the side chain, main chain, or end of the main chain.
  • the acrylic resin is a double bond-introducing acrylic resin
  • the pressure-sensitive adhesive layer 2 is formed by the function of the carbon-carbon double bond of the double bond-introducing acrylic resin by irradiation with energy rays. This is because the adhesive force of the pressure-sensitive adhesive layer 2 is reduced.
  • the adhesive layer 2 is one whose adhesiveness to the semiconductor substrate 7 is reduced by irradiation with energy rays, but when ultraviolet rays or the like are used as energy rays, it is preferable to contain a photopolymerization initiator.
  • photopolymerization initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1 -Propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one, benzyldiphenyl sulfide, Tetramethylthiuram monosulfide, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, 1 -Hydroxycyclohexyl phenyl ketone, Michler's ketone, acetophenone, methoxyacetophenone, 2 2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyaceto
  • benzophenone derivatives and alkylphenone derivatives are preferred. These compounds have a hydroxyl group as a reactive functional group in the molecule, and can be linked to a base resin or a curable resin via this reactive functional group, and more function as a photopolymerization initiator. It can be demonstrated reliably.
  • the photopolymerization initiator is preferably blended in an amount of 0.1 to 50 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the base resin. .
  • the pickup property of the pressure-sensitive adhesive tape 100 becomes suitable.
  • the curable resin may contain a crosslinking agent. Inclusion of the crosslinking agent can improve the curability of the curable resin.
  • the crosslinking agent is not particularly limited.
  • an isocyanate crosslinking agent an epoxy crosslinking agent, a urea resin crosslinking agent, a methylol crosslinking agent, a chelate crosslinking agent, an aziridine crosslinking agent, a melamine crosslinking agent, and a polyvalent crosslinking agent.
  • examples include metal chelate-based crosslinking agents, acid anhydride-based crosslinking agents, polyamine-based crosslinking agents, and carboxyl group-containing polymer-based crosslinking agents.
  • an isocyanate type crosslinking agent is preferable.
  • the trimer of the terminal isocyanate compound obtained by making the polyisocyanate compound of polyvalent isocyanate and the trimer of a polyisocyanate compound, and making a polyisocyanate compound and a polyol compound react.
  • the blocked polyisocyanate compound etc. which blocked the terminal isocyanate urethane prepolymer with phenol, oximes, etc. are mentioned.
  • polyvalent isocyanate examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-diisocyanate, diphenylmethane.
  • At least one polyisocyanate selected from the group consisting of 2,4-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate and hexamethylene diisocyanate is preferable.
  • the crosslinking agent is preferably blended in an amount of 0.01 to 50 parts by weight, more preferably 5 to 50 parts by weight, based on 100 parts by weight of the base resin.
  • the pickup property of the pressure-sensitive adhesive tape 100 becomes suitable.
  • the resin composition constituting the pressure-sensitive adhesive layer 2 includes, as other components, an antistatic agent, a tackifier, and an anti-aging agent.
  • An adhesion regulator, a filler, a colorant, a flame retardant, a softener, an antioxidant, a plasticizer, a surfactant, and the like may be contained.
  • the thickness of the pressure-sensitive adhesive layer 2 is not particularly limited, but is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 5 ⁇ m or more and 30 ⁇ m or less, and still more preferably 10 ⁇ m or more and 20 ⁇ m or less. By making the thickness of the pressure-sensitive adhesive layer 2 within such a range, the pressure-sensitive adhesive layer 2 exhibits a good adhesive force before applying energy to the pressure-sensitive adhesive layer 2, and after applying energy to the pressure-sensitive adhesive layer 2, Good peelability is exhibited between the adhesive layer 2 and the semiconductor substrate 7.
  • the semiconductor substrate processing dicing film 100 having such a configuration can be manufactured as follows, for example.
  • a base film 4 for dicing film is prepared, and the adhesive layer 2 is formed on the base film 4 for dicing film.
  • the production method of the substrate film 4 for dicing film is not particularly limited, and includes known methods such as an extrusion method using a T die or a circular die, a calendar method, etc.
  • the thickness of the substrate film 4 for dicing film From the viewpoint of accuracy, an extrusion method using a T die is preferable.
  • each layer forming resin is supplied to a screw-type extruder, extruded from a multilayer T die adjusted to 180 to 240 ° C. into a film, and cooled while passing through a cooling roll adjusted to 10 to 50 ° C. Wind up.
  • each layer forming resin is once obtained as pellets, it may be extruded as described above. The thickness of each layer formed can be adjusted by adjusting the screw speed of the extruder.
  • the film In the process of winding the film by cooling while passing through the cooling roll, the film is wound substantially unstretched from the viewpoint of securing a strength sufficient to prevent the film from being broken at the time of expansion and improving the restoration property after expansion. It is preferable.
  • Substantially non-stretching means that no positive stretching is performed, and includes non-stretching or slight stretching that does not affect the warpage of the substrate during dicing.
  • the film may be pulled to such an extent that no sagging occurs when the film is wound.
  • the adhesive layer 2 is obtained by applying or spraying a liquid material obtained by dissolving a resin composition, which is a constituent material of the adhesive layer 2, in a solvent to form a varnish on the substrate film 4 for dicing film. It can be obtained by volatilizing to form the adhesive layer 2.
  • a solvent for example, methyl ethyl ketone, acetone, toluene, a dimethylformaldehyde etc. are mentioned, Among these, it can use 1 type or in combination of 2 or more types.
  • the application or dispersion of the liquid material onto the substrate film 4 for dicing film can be performed using a method such as die coating, curtain die coating, gravure coating, comma coating, bar coating, and lip coating.
  • the base material 4 is left in the thickness direction of the adhesive layer 2 so that the center side and the outer peripheral side are separated from the adhesive layer 2 formed on the base film 4 for dicing film.
  • the pressure-sensitive adhesive layer 2 is provided with a center portion 122 and an outer peripheral portion 121.
  • the punching of the region to be removed can be performed using, for example, a method using a roll mold or a method using a press mold. Especially, the method of using the roll-shaped metal mold
  • a part of the adhesive layer 2 is punched into a ring shape (circular shape) to form the center part 122 and the outer peripheral part 121.
  • the shape of the part of the adhesive layer 2 punched out is the semiconductor device described above.
  • the outer peripheral portion 121 of the adhesive layer 2 may have any shape as long as the outer peripheral portion 121 can be fixed by the wafer ring 9.
  • examples of the shape to be punched include, in addition to the circular shape described above, an elliptical shape such as an elliptical shape and a saddle shape, and a polygonal shape such as a quadrangular shape and a pentagonal shape.
  • a dicing film 100 in which the pressure-sensitive adhesive layer 2 is coated with the separator is obtained by laminating a separator on the pressure-sensitive adhesive layer 2 formed on the base film 4 for dicing film.
  • the method for laminating the separator on the adhesive layer 2 is not particularly limited, and for example, a laminating method using a roll or a laminating method using a press can be used. Among these, a laminate method using a roll is preferable from the viewpoint of productivity that can be continuously produced.
  • the separator is not particularly limited, and examples thereof include a polypropylene film, a polyethylene film, and a polyethylene terephthalate film.
  • a separator whose surface is subjected to a release treatment may be used.
  • the release treatment include a treatment for coating a release agent on the separator surface and a treatment for forming fine irregularities on the separator surface.
  • the release agent include silicone-based, alkyd-based, and fluorine-based agents.
  • the dicing film 100 covered with the separator can be formed.
  • the dicing film 100 covered with the separator manufactured in this embodiment is used after the dicing film 100 is peeled from the separator in the semiconductor device manufacturing method using the dicing film 100 described above.
  • the separator when peeling off the separator from the adhesive layer 2 covered by the separator, it is preferable to peel the separator at an angle of 90 ° to 180 ° with respect to the surface of the adhesive layer 2. By setting the angle at which the separator is peeled within the above range, peeling at other than the interface between the pressure-sensitive adhesive layer 2 and the separator can be reliably prevented.
  • FIG. 1 is a longitudinal sectional view showing an example of a semiconductor device manufactured using the dicing film of the present invention.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
  • a semiconductor device 10 illustrated in FIG. 1 is a QFP (Quad Flat Package) type semiconductor package, and includes a semiconductor chip (semiconductor element) 20, a die pad 30 that supports the semiconductor chip 20 via an adhesive layer 60, and the semiconductor chip 20. And leads 40 electrically connected to each other and a mold part (sealing part) 50 for sealing the semiconductor chip 20.
  • QFP Quad Flat Package
  • the die pad 30 is made of a metal substrate and functions as a support for supporting the semiconductor chip 20.
  • the die pad 30 includes, for example, a metal substrate made of various metal materials such as Cu, Fe, Ni, and alloys thereof (for example, Cu-based alloys and iron / nickel-based alloys such as Fe-42Ni),
  • the surface of the metal substrate is plated with silver or Ni—Pd, and the surface of the Ni—Pd plating is provided with a gold plating (gold flash) layer provided to improve the stability of the Pd layer.
  • gold flash gold plating
  • planar view shape of the die pad 30 usually corresponds to the planar view shape of the semiconductor chip 20 and is, for example, a square such as a square or a rectangle.
  • a plurality of leads 40 are provided radially on the outer periphery of the die pad 30. An end portion of the lead 40 opposite to the die pad 30 protrudes (exposes) from the mold portion 50.
  • the lead 40 is made of a conductive material, and for example, the same material as that of the die pad 30 described above can be used.
  • the lead 40 may be tin-plated on the surface thereof. Thereby, when the semiconductor device 10 is connected to the terminals provided on the mother board via the solder, the adhesion between the solder and the leads 40 can be improved.
  • the semiconductor chip 20 is fixed (fixed) to the die pad 30 via the adhesive layer 55.
  • the adhesive layer 55 is not particularly limited, and is formed using various adhesives such as an epoxy adhesive, an acrylic adhesive, a polyimide adhesive, and a cyanate adhesive. Further, the adhesive layer 55 may include metal particles such as silver powder or copper powder. As a result, the thermal conductivity of the adhesive layer 55 is improved, so that heat is efficiently transferred from the semiconductor chip 20 to the die pad 30 via the adhesive layer 55, so that heat dissipation during driving of the semiconductor chip 20 is improved. .
  • the semiconductor chip 20 has an electrode pad 21, and the electrode pad 21 and the lead 40 are electrically connected by a wire 22. Thereby, the semiconductor chip 20 and each lead 40 are electrically connected.
  • the material of the wire 22 is not particularly limited, but the wire 22 can be composed of, for example, Au wire or Al wire.
  • the die pad 30, each member provided on the upper surface side of the die pad 30, and the inner portion of the lead 40 are sealed by the mold part 50.
  • the outer end portion of the lead 40 protrudes from the mold portion 50 made of a cured product of the semiconductor sealing material.
  • the semiconductor device having such a configuration is manufactured, for example, as follows using the dicing film of the present invention.
  • FIG. 2 is a longitudinal sectional view for explaining a method of manufacturing the semiconductor device shown in FIG. 1 using the dicing film of the present invention.
  • the upper side in FIG. 2 is referred to as “upper” and the lower side is referred to as “lower”.
  • the dicing film 100 which has the base material 4 and the adhesion layer 2 laminated
  • this dicing film 100 is comprised with the dicing film of this invention, the detailed description shall be given later.
  • the dicing film 100 is placed on a dicer table (not shown), and the surface of the semiconductor substrate 7 on the side without the semiconductor element is placed on the center portion 122 of the adhesive layer 2.
  • the semiconductor substrate 7 is stacked by placing it on top and pressing lightly.
  • the semiconductor substrate 7 after adhering the semiconductor substrate 7 to the dicing film 100 in advance, it may be installed on a dicer table.
  • the semiconductor substrate 7 is cut (diced) using a dicing saw (blade) (not shown) to separate the semiconductor substrate 7 (see FIG. 2C).
  • a dicing saw blade (blade) (not shown) to separate the semiconductor substrate 7 (see FIG. 2C).
  • cutting water is applied to the semiconductor substrate 7 for the purpose of preventing the dust generated during the cutting of the semiconductor substrate 7 from being scattered and further suppressing the semiconductor substrate 7 from being heated unnecessarily.
  • the semiconductor substrate 7 is cut while supplying.
  • the dicing film 100 has a buffering action, and prevents cracks, chips, etc. when the semiconductor substrate 7 is cut.
  • the cutting of the semiconductor substrate 7 using a blade is performed so as to reach the middle of the base material 4 in the thickness direction, as shown in FIG. Thereby, the semiconductor substrate can be surely separated.
  • the adhesiveness with respect to the semiconductor substrate 7 of the adhesion layer 2 is reduced by giving energy to the adhesion layer 2 with which the dicing film 100 is provided. As a result, peeling occurs between the adhesive layer 2 and the semiconductor substrate 7.
  • the method of applying energy to the adhesive layer 2 is not particularly limited, and examples thereof include a method of irradiating the adhesive layer 2 with energy rays, a method of heating the adhesive layer 2, and the like. It is preferable to use a method of irradiating a wire from the substrate 4 side of the adhesive tape 100.
  • Such a method does not require the semiconductor chip 20 to go through an unnecessary thermal history, and energy can be imparted to the adhesive layer 2 relatively easily and efficiently. It is done.
  • Examples of energy rays include particle beams such as ultraviolet rays, electron beams, and ion beams, or combinations of two or more of these energy rays. Among these, it is particularly preferable to use ultraviolet rays. According to ultraviolet rays, the adhesiveness of the adhesive layer 2 to the semiconductor substrate 7 can be efficiently reduced.
  • the dicing film 100 is radially expanded by an expanding device (not shown), and the separated semiconductor substrate 7 (semiconductor chip 20) is opened at regular intervals (see FIG. 2D), and then the semiconductor chip. 20 is in a state of being pushed up using a needle or the like, and in this state, pickup is performed by suction or the like using a vacuum collet or air tweezers (see FIG. 2E).
  • the dicing film 100 can be applied to the manufacture of various types of semiconductor packages without being limited to such a case.
  • Dual Inline Package DIP
  • Plastic Leaded Chip Carrier PLCC
  • LQFP Low Profile Quad Flat Package
  • SOP Small Outline Package
  • SOJ Small Outline J Lead Package
  • TSOP Thin Small Outline Package
  • TQFP Thin Quad Flat Package
  • TCP Tape Carrier Package
  • BGA Ball Grid Array
  • C P Chip Size Package
  • MABGA matrix array package Ball Grid Array
  • a memory or logic system element such as a chip-stacked chip size package.
  • ⁇ Raw material for adhesive layer The following raw materials were used for the pressure-sensitive adhesive layers of Examples and Comparative Examples.
  • Example 1 ⁇ Creation of substrate film for dicing film> An ionomer resin “Himiran 1855” was used as the surface layer forming resin. Further, 80% by mass of low density polyethylene LDPE “F222NH” and 20% by mass of the antistatic agent “Pelestat 212” were dry blended to obtain a base layer forming resin. Then, each obtained layer forming resin is supplied to each extruder adjusted to 200 ° C., and extruded from a two-layer die at 200 ° C. so as to be in the order of surface layer / base material layer. It cooled and solidified with the set cooling roll, wound up in the substantially unstretched state, and obtained the base film for dicing films of a 2 layer structure. In Example 1, the thickness of the surface layer was 100 ⁇ m, the thickness of the base material layer was 50 ⁇ m, and the total thickness of the base film for dicing film was 150 ⁇ m.
  • a pressure-sensitive adhesive layer was provided on the surface layer of the base film for dicing film of Example 1 produced as described above to obtain a dicing film. Specifically, after 49.8% by mass of the base resin, 39.8% by mass of the UV curable resin, 6.5% by mass of the crosslinking agent, and 3.9% by mass of the photoinitiator were dissolved and mixed in ethyl acetate. Then, after bar coating was applied on the surface layer of the substrate film for dicing film so that the thickness after drying was 20 ⁇ m, it was dried at 80 ° C. for 10 minutes to obtain a dicing film.
  • Examples 2 to 9, Comparative Examples 1 and 2 A substrate film for dicing film and a dicing film were produced in the same manner as in Example 1 except that the resin composition was changed as shown in Table 1.
  • the cutting waste characteristics were evaluated as follows. First, a glass epoxy dummy substrate (sealing material: G760L, manufactured by Sumitomo Bakelite Co., Ltd.) (60 mm x 15 mm x 1.2 mm thickness) was attached to the dicing films of Examples 1 to 9 and Comparative Examples 1 and 2, and dicing was performed under the following conditions. The cutting line was observed, the number of cutting scraps having a length of 100 ⁇ m or more coming out from the cutting line was counted, the cutting scrap characteristics were evaluated, and the evaluation results are shown in Table 1. The determination results are as follows.
  • the number of cutting waste is 0-5: ⁇ Number of cutting scraps 6-10: ⁇ The number of cutting scraps is 11 or more: ⁇ [Dicing condition] Dicing machine: “DAD-3350” (trade name, manufactured by DISCO) Dicing blade: “P08-SDC220” (trade name, manufactured by DISCO) Blade rotation speed: 30000 rpm Cutting speed: 100mm / sec Cutting: 100 ⁇ m from the dicing film surface (the cutting depth for the surface layer is 80 ⁇ m) Cut size: 10mm x 10mm Blade cooler: 2L / min
  • the anti-fusing property was evaluated as follows. First, a glass epoxy dummy substrate (sealing material: G760L, manufactured by Sumitomo Bakelite Co., Ltd.) (60 mm x 15 mm x 1.2 mm thickness) was attached to the dicing films of Examples 1 to 9 and Comparative Examples 1 and 2, and dicing was performed under the following conditions. Carried out. Under the present circumstances, the melt
  • the base material was composed of two layers of a base material layer and a surface layer disposed on one main surface of the base material layer. Since the material layer contains low density polyethylene and the surface layer contains an ionomer resin, the material layer was excellent in cutting dust characteristics and anti-fusing characteristics. On the other hand, the dicing film of Comparative Example 1 was inferior in the anti-fusing property because the substrate was composed solely of an ionomer resin. Moreover, since the base material consists only of low density polyethylene, the dicing film of the comparative example 2 was inferior in cutting waste characteristics.
  • the cutting waste can be reduced in the dicing process, and the expandability and the recoverability are excellent, which is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention provides a substrate film for a dicing film, the substrate film including a substrate layer and an outer surface layer disposed on one primary surface of the substrate layer. The substrate film for a dicing film is characterized in that the substrate layer contains low-density polyethylene, the outer surface layer contains an ionomer resin, and the MFR (measurement method: conforming to JIS K7210, measuring conditions: temperature of 190°C, load of 21.18 N) of the ionomer resin is 3 g/10 min or less. Further provided are: a dicing film having an adhesive layer provided on the primary surface of the outer surface layer side of the substrate film for the dicing film; and a blade dicing method using the dicing film.

Description

ダイシングフィルムDicing film
本発明は、ダイシングフィルムに関するものである。
本願は、2014年11月19日に、日本に出願された特願2014-234102号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a dicing film.
This application claims priority based on Japanese Patent Application No. 2014-234102 for which it applied to Japan on November 19, 2014, and uses the content here.
従来から、携帯電話のカメラモジュールなどのように、電子素子や光学素子を小さな基板に実装してモジュール化した部品を製作するに当たり、部品実装用の複数の基板を1枚に集合して一体状態で形成した集合基板を用いる方法が知られている。 Conventionally, when manufacturing modularized parts by mounting electronic elements and optical elements on a small board, such as a camera module of a mobile phone, a plurality of boards for mounting parts are assembled into a single piece. A method using a collective substrate formed in (1) is known.
集合基板を用いて実装済基板を形成する方法は、集合基板に部品を実装し、その後、表面に粘着性を有するダイシングフィルムに集合基板を保持させた状態で、集合基板をダイシングして個片化し、個々の個片化基板に部品実装した実装済基板を形成する。 A method of forming a mounted substrate using a collective substrate is as follows. Components are mounted on the collective substrate, and then the collective substrate is held by an adhesive dicing film on the surface, and then the collective substrate is diced into individual pieces. And a mounted substrate in which components are mounted on each individual substrate is formed.
このような半導体装置の製造に用いられる半導体基板加工用ダイシングフィルムについて、近年、種々の検討がなされている(例えば、特許文献1参照。)。 In recent years, various studies have been made on a dicing film for processing a semiconductor substrate used for manufacturing such a semiconductor device (see, for example, Patent Document 1).
この半導体基板加工用ダイシングフィルムは、一般に、基材(フィルム基材)と、この基材上に形成された粘着層とを有するものであり、粘着層により基板が固定される。
粘着層と基板間には、ダイシング時に個片化した基板を飛散させない(いわゆるチップ飛び)だけの密着性が必要である。
また、半導体基板のダイシング工程後に半導体チップを容易にピックアップすることができるように、粘着層は、通常、粘着性を有するベース樹脂および光硬化性樹脂等を含有する樹脂組成物で構成されている。つまり、ダイシング工程後、粘着層にエネルギーが付与されると、樹脂組成物が硬化して粘着層の粘着性が低下し、半導体素子のピックアップが容易となるようになっている。
This dicing film for semiconductor substrate processing generally has a base material (film base material) and an adhesive layer formed on the base material, and the substrate is fixed by the adhesive layer.
Between the adhesive layer and the substrate, it is necessary to have adhesiveness that does not allow the separated substrate to scatter during dicing (so-called chip jump).
The adhesive layer is usually composed of a resin composition containing an adhesive base resin, a photocurable resin, and the like so that the semiconductor chip can be easily picked up after the dicing process of the semiconductor substrate. . That is, when energy is applied to the adhesive layer after the dicing step, the resin composition is cured, the adhesiveness of the adhesive layer is lowered, and the semiconductor element can be easily picked up.
ところで、ダイシング工程で発生するダイシングフィルム由来の切削屑(基材屑)は、基板を汚染し、実装済基板の歩留まりを低下させるため、切削屑の発生を極力低減する必要がある。また、基板のピッキングの精度を高め、さらに生産性を向上させるため、ダイシングフィルムには、裂けたり切断したりすることなく、均一により広く円滑に拡張できるという特性(以下、エキスパンド性という。)も要求される。また、ダイシングフィルムは、通常ロール状に巻いて製造、保管、運搬等されるが、フィルム同士のブロッキングが生じると品質の低下につながるため、耐ブロッキング性も要求される。 By the way, the cutting waste derived from the dicing film (base material waste) generated in the dicing step contaminates the substrate and reduces the yield of the mounted substrate. Therefore, it is necessary to reduce the generation of the cutting waste as much as possible. Further, in order to improve the picking accuracy of the substrate and further improve the productivity, the dicing film also has a characteristic that it can be expanded more uniformly and smoothly without being torn or cut (hereinafter referred to as expandability). Required. In addition, the dicing film is usually manufactured, stored, transported and wound in a roll shape. However, when blocking between the films occurs, the quality deteriorates, and thus blocking resistance is also required.
このような要求に対して、様々なダイシングフィルムが提案されている。例えば、特許文献2では、エチレンと(メタ)アクリル酸を重合体の構成成分とする共重合体が金属イオンで架橋されたアイオノマー90~70質量%と、ポリエーテル成分を含む帯電防止樹脂10~30質量%を含有することを特徴とするダイシングフィルムが提案されている。 Various dicing films have been proposed for such demands. For example, in Patent Document 2, 90 to 70% by mass of an ionomer obtained by crosslinking a copolymer containing ethylene and (meth) acrylic acid as a polymer component with a metal ion, and an antistatic resin 10 to 10 containing a polyether component. A dicing film characterized by containing 30% by mass has been proposed.
特開2009-245989号公報JP 2009-245989 A 特開2011-210887号公報JP 2011-210887 A
本発明は、ダイシング時のチップ飛びを抑制し、かつ、ダイシング時の切削屑の発生の抑制効果の高いダイシングフィルムを提供することにある。 An object of the present invention is to provide a dicing film that suppresses chip fly during dicing and has a high effect of suppressing generation of cutting waste during dicing.
すなわち、本発明は、以下のものである。
(1)基材層と、前記基材層の一主面上に配置された表面層と、を含むダイシングフィルム用基材フィルムであって、
 前記基材層は、低密度ポリエチレンを含有し、
前記表面層は、アイオノマー樹脂を含有し、
前記アイオノマー樹脂のMFR(測定方法:JIS K 7210準拠、測定条件:温度190℃、荷重21.18N)が3g/10min以下であることを特徴とすることを特徴とするダイシングフィルム用基材フィルム。
(2)前記アイオノマー樹脂は、エチレン、(メタ)アクリル酸、および、(メタ)アクリル酸アルキルエステルを重合体の構成成分とする3元共重合体を金属イオンで架橋したものであることを特徴とする(1)記載のダイシングフィルム用基材フィルム。
(3)前記金属イオンが、亜鉛イオンであることを特徴とする(2)記載のダイシングフィルム用基材フィルム。
(4)前記低密度ポリエチレンの融点が90℃以上140℃以下であることを特徴とする、(1)ないし(3)のいずれか1項に記載のダイシングフィルム用基材フィルム。
(5)前記基材層は帯電防止剤を含有することを特徴とする、(1)ないし(4)のいずれか1項に記載のダイシングフィルム用基材フィルム。
(6)前記表面層は、ダイシングブレードによって切り込まれる切込み層である、(1)ないし(5)のいずれか1項に記載のダイシングフィルム用基材フィルム。
(7)(1)ないし(6)のいずれか1項に記載のダイシングフィルム用基材フィルムの表面層側の主面上に、粘着層が設けられた、ダイシングフィルム。
(8)前記粘着層は、粘着性を有するベース樹脂を含有する(7)に記載のダイシングフィルム。
(9)前記ベース樹脂は、アクリル系樹脂である(7)または(8)に記載のダイシングフィルム。
(10)前記粘着層は、さらに、エネルギーの付与により硬化する硬化性樹脂を含有する(7)ないし(9)のいずれか1項に記載のダイシングフィルム。
(11)(7)ないし(10)のいずれか1項に記載のダイシングフィルム上に、半導体基板が積層された半導体基板付きダイシングフィルム。
(12)(7)ないし(11)のいずれかの1項に記載のダイシングフィルムを用いたブレードダイシング方法。
That is, the present invention is as follows.
(1) A substrate film for dicing film comprising a substrate layer and a surface layer disposed on one main surface of the substrate layer,
The substrate layer contains low density polyethylene,
The surface layer contains an ionomer resin,
A base film for a dicing film characterized in that the ionomer resin has an MFR (measurement method: JIS K 7210 compliant, measurement conditions: temperature 190 ° C., load 21.18 N) of 3 g / 10 min or less.
(2) The ionomer resin is obtained by crosslinking a terpolymer having ethylene, (meth) acrylic acid, and (meth) acrylic acid alkyl ester as a constituent component of the polymer with a metal ion. The substrate film for dicing film according to (1).
(3) The base film for a dicing film according to (2), wherein the metal ions are zinc ions.
(4) The base film for a dicing film according to any one of (1) to (3), wherein the low-density polyethylene has a melting point of 90 ° C. or higher and 140 ° C. or lower.
(5) The base film for a dicing film according to any one of (1) to (4), wherein the base material layer contains an antistatic agent.
(6) The substrate film for a dicing film according to any one of (1) to (5), wherein the surface layer is a cut layer cut by a dicing blade.
(7) A dicing film in which an adhesive layer is provided on the main surface of the surface layer side of the substrate film for dicing film according to any one of (1) to (6).
(8) The dicing film according to (7), wherein the adhesive layer contains a base resin having adhesiveness.
(9) The dicing film according to (7) or (8), wherein the base resin is an acrylic resin.
(10) The dicing film according to any one of (7) to (9), wherein the adhesive layer further contains a curable resin that is cured by application of energy.
(11) A dicing film with a semiconductor substrate in which a semiconductor substrate is laminated on the dicing film according to any one of (7) to (10).
(12) A blade dicing method using the dicing film according to any one of (7) to (11).
 本発明は、基材層と、前記基材層の一主面上に配置された表面層と、を含むダイシングフィルム用基材フィルムであって、前記基材層は、低密度ポリエチレンを含有し、前記表面層は、アイオノマー樹脂を含有するため、ダイシング工程において、切削屑を低減でき、かつ、エキスパンド性及び復元性に優れる、ダイシングフィルムに関する。 The present invention is a substrate film for dicing film comprising a substrate layer and a surface layer disposed on one main surface of the substrate layer, wherein the substrate layer contains low-density polyethylene. Since the surface layer contains an ionomer resin, it relates to a dicing film that can reduce cutting waste and is excellent in expandability and restoration property in the dicing step.
本発明の半導体基板加工用ダイシングフィルムを用いた半導体装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the semiconductor device using the dicing film for semiconductor substrate processing of this invention. 図1に示す半導体装置を、本発明の半導体基板加工用ダイシングフィルムを用いて製造する方法を説明するための縦断面図である。It is a longitudinal cross-sectional view for demonstrating the method to manufacture the semiconductor device shown in FIG. 1 using the dicing film for semiconductor substrate processing of this invention. 本発明の、半導体基板加工用ダイシングフィルムの実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows embodiment of the dicing film for semiconductor substrate processing of this invention.
 以下、本発明のダイシングフィルムについて詳細に説明する。
まず、基板の製造方法に用いられる本発明のダイシングフィルム100(以下、単に「粘着テープ100」ということもある)について説明する。
Hereinafter, the dicing film of the present invention will be described in detail.
First, the dicing film 100 of the present invention used in the substrate manufacturing method (hereinafter, sometimes simply referred to as “adhesive tape 100”) will be described.
<半導体基板加工用ダイシングフィルム>
図3は、本発明の半導体基板加工用粘着テープの実施形態を示す縦断面図である。
なお、以下の説明では、図3中の上側を「上」、下側を「下」と言う。
<Dicing film for semiconductor substrate processing>
FIG. 3 is a longitudinal sectional view showing an embodiment of the adhesive tape for processing a semiconductor substrate of the present invention.
In the following description, the upper side in FIG. 3 is referred to as “upper” and the lower side is referred to as “lower”.
ダイシングフィルム100(本発明のダイシングフィルム)は、ダイシングフィルム用基材フィルム4(以下、基材4と言うこともある)と、このダイシングフィルム用基材フィルム4に積層された粘着層2とを備える積層体により構成されるものである。
以下、ダイシングフィルム100が有するダイシングフィルム用基材フィルム4および粘着層2について、詳述する。
The dicing film 100 (the dicing film of the present invention) includes a base film 4 for dicing film (hereinafter sometimes referred to as the base material 4) and an adhesive layer 2 laminated on the base film 4 for dicing film. It is comprised by the laminated body provided.
Hereinafter, the substrate film 4 for dicing film and the adhesive layer 2 included in the dicing film 100 will be described in detail.
なお、ダイシングフィルム100は、このものが備える粘着層2にエネルギーを付与することで、粘着層2の半導体基板7に対する粘着性が低下する機能を有するものである。
このような粘着層2にエネルギーを付与する方法としては、粘着層2にエネルギー線を照射する方法および粘着層2を加熱する方法等が挙げられるが、中でも、半導体チップ20が不要な熱履歴を経る必要がないことから、粘着層2にエネルギー線を照射する方法が好適に用いられる。そのため、以下では、粘着層2として、エネルギー線の照射により前記粘着性が低下するものを代表に説明する。
The dicing film 100 has a function of reducing the adhesiveness of the adhesive layer 2 to the semiconductor substrate 7 by applying energy to the adhesive layer 2 included in the dicing film 100.
Examples of a method for applying energy to the adhesive layer 2 include a method of irradiating the adhesive layer 2 with energy rays and a method of heating the adhesive layer 2. Among them, the semiconductor chip 20 has an unnecessary heat history. Since it is not necessary to pass through, the method of irradiating the adhesive layer 2 with energy rays is preferably used. Therefore, below, the adhesive layer 2 will be described as a representative one in which the adhesiveness is reduced by irradiation with energy rays.
 <基材4>
 基材4は、主として樹脂材料から成り、この基材4上に設けられた粘着層2を支持する機能を有している。基材4の厚さは、特に限定されないが、例えば、10μm以上300μm以下であるのが好ましく、30μm以上200μm以下であるのがより好ましく、80μm以上200μm以下であるのがさらに好ましい。基材4の厚さがこの範囲内であると、半導体基板7のダイシングを、優れた作業性により実施することができる。
<Substrate 4>
The base material 4 is mainly made of a resin material and has a function of supporting the adhesive layer 2 provided on the base material 4. Although the thickness of the base material 4 is not specifically limited, For example, it is preferable that they are 10 micrometers or more and 300 micrometers or less, It is more preferable that they are 30 micrometers or more and 200 micrometers or less, It is more preferable that they are 80 micrometers or more and 200 micrometers or less. When the thickness of the base material 4 is within this range, dicing of the semiconductor substrate 7 can be performed with excellent workability.
本発明においては、基材4が表面層と基材層の2層以上の層を有する。これによりダイシング時の切削屑の発生の抑制効果が大きくなる。
以下、基材4の表面層42と基材層41について順次説明する。
In the present invention, the substrate 4 has two or more layers of a surface layer and a substrate layer. Thereby, the suppression effect of generation | occurrence | production of the cutting waste at the time of dicing becomes large.
Hereinafter, the surface layer 42 and the base material layer 41 of the base material 4 will be sequentially described.
<表面層>
本発明のダイシングフィルム用基材フィルム4を構成する表面層42は、一又は複数の実施形態において、ダイシングブレードによって切り込まれる切込み層である。表面層42はアイオノマー樹脂を含有する。これにより、ダイシングブレードを表面層42にのみ切り込ませ、切削屑を著しく低減できるとともに、エキスパンド装置で放射状にエキスパンドした際に、エキスパンド性が良好となる。
すなわち、ダイシング工程において、半導体基板等を切削する際、ダイシングブレードとダイシングフィルムとの間には摩擦熱が発生する。そのため、ダイシングブレードとの接触部は、高温に晒され、基材が溶融状態となる。そのため、溶融した樹脂がブレード表面にまとわりついて目つまりを起こし正常なダイシングが阻害されたり、溶融し軟らかくなった基材がダイシングブレードの回転に引っ張られ伸長したりすることがダイシング工程で基材ヒゲが発生する一因である。
<Surface layer>
The surface layer 42 which comprises the base film 4 for dicing films of this invention is a cutting layer cut with a dicing blade in one or some embodiment. The surface layer 42 contains an ionomer resin. Thus, the dicing blade can be cut only into the surface layer 42, and cutting waste can be remarkably reduced, and the expandability is improved when the dicing blade is expanded radially.
That is, in the dicing process, when cutting a semiconductor substrate or the like, frictional heat is generated between the dicing blade and the dicing film. Therefore, a contact part with a dicing blade is exposed to high temperature, and a base material will be in a molten state. For this reason, the molten resin clings to the blade surface and causes clogging and normal dicing is hindered, or the melted and softened substrate is pulled by the rotation of the dicing blade and stretched. This is one of the causes.
ダイシングブレードによって切り込まれる切込み層である表面層42がアイオノマー樹脂を含有することで、表面層42の溶融粘度が高なるため、ダイシング時、摩擦熱が発生した状況下でもブレードに樹脂がまとわりつくことがなく、切削屑を著しく低下させることができる。
また、ダイシングブレードによって切り込まれる切込み層である表面層42がアイオノマー樹脂を含有することで、表面層42が常温で比較的柔軟となり、エキスパンド装置で放射状にエキスパンドした際のエキスパンド性が良好となり好ましい。
Since the surface layer 42, which is a cut layer cut by the dicing blade, contains an ionomer resin, the melt viscosity of the surface layer 42 is increased, so that the resin is clinging to the blade even when frictional heat is generated during dicing. There is no, and cutting scraps can be remarkably reduced.
Further, since the surface layer 42 which is a cut layer cut by a dicing blade contains an ionomer resin, the surface layer 42 becomes relatively flexible at normal temperature, and expandability when expanded radially by an expanding apparatus is preferable. .
前記アイオノマー樹脂とは、エチレン及び(メタ)アクリル酸を重合体の構成成分とする2元共重合体や、エチレン、(メタ)アクリル酸および(メタ)アクリル酸エステルを重合体の構成成分とする3元共重合体を、金属イオンで架橋した樹脂である。前記、金属イオンとしては、カリウムイオン(K+)、ナトリウムイオン(Na+)、リチウムイオン(Li+)、マグネシウムイオン(Mg++)、亜鉛イオン(Zn++)等が挙げられる。 The ionomer resin is a binary copolymer having ethylene and (meth) acrylic acid as constituents of a polymer, or ethylene, (meth) acrylic acid and (meth) acrylic acid ester as constituents of a polymer. It is a resin obtained by crosslinking a terpolymer with metal ions. Examples of the metal ion include potassium ion (K +), sodium ion (Na +), lithium ion (Li +), magnesium ion (Mg ++), and zinc ion (Zn ++).
前記金属イオンとしては、亜鉛イオン(Zn++)は、架橋構造を安定化させ、それにより、ダイシング屑を出難くするという点で好ましく、また、耐水性が高く、ダイシング時の切削水によって、表面層42が膨張することなく好ましい。 As the metal ion, zinc ion (Zn ++) is preferable in that it stabilizes the cross-linked structure, thereby making it difficult to produce dicing waste, and also has high water resistance, and by cutting water during dicing, The surface layer 42 is preferable without expanding.
前記、エチレン及び(メタ)アクリル酸を重合体の構成成分とする2元共重合体、もしくは、エチレン、(メタ)アクリル酸および(メタ)アクリル酸エステルを重合体の構成成分とする3元共重合体のカルボキシル基における陽イオンによる中和度は、好ましくは40~75mol%である。前記アイオノマー樹脂は、合成することにより得られるものを使用してもよいが、市販のものを用いることもできる。 The binary copolymer having ethylene and (meth) acrylic acid as constituent components of the polymer, or the ternary copolymer having ethylene, (meth) acrylic acid and (meth) acrylic acid ester as constituent components of the polymer. The degree of neutralization by the cation in the carboxyl group of the polymer is preferably 40 to 75 mol%. Although the said ionomer resin may use what is obtained by synthesize | combining, a commercially available thing can also be used.
前記、アイオノマー樹脂はエチレン、(メタ)アクリル酸および(メタ)アクリル酸アルキルエステルを重合体の構成成分とする3元共重合体を、金属イオンで架橋した樹脂であることが好ましい。すなわち、(メタ)アクリル酸アルキルエステルを重合体の構成成分として含有することで、適度な柔軟性および加工性な効果が得られる。 The ionomer resin is preferably a resin obtained by crosslinking a terpolymer having ethylene, (meth) acrylic acid, and (meth) acrylic acid alkyl ester as constituents of the polymer with metal ions. That is, by containing (meth) acrylic acid alkyl ester as a constituent component of the polymer, moderate flexibility and workability effects can be obtained.
前記アイオノマー樹脂の融点は80℃以上であることが好ましい。これにより表面層42の耐熱性が向上し好ましい。前記アイオノマー樹脂の融点の上限値は特に限定されないが、実質的には100℃程度である。 The melting point of the ionomer resin is preferably 80 ° C. or higher. This is preferable because the heat resistance of the surface layer 42 is improved. The upper limit of the melting point of the ionomer resin is not particularly limited, but is substantially about 100 ° C.
前記アイオノマー樹脂の、JIS K 7210「熱可塑性プラスチックの流れ試験方法」に示される試験方法における試験温度190℃、試験荷重21.18NでのMFRが3g/10min以下であることが好ましい。これにより、ダイシングフィルム100の切削屑発生を抑制することができる。前記アイオノマー樹脂のMFRの下限値は特に限定されないが、実質的には0.8g/10minである。 The ionomer resin preferably has an MFR of 3 g / 10 min or less at a test temperature of 190 ° C. and a test load of 21.18 N in the test method shown in JIS K 7210 “Thermoplastic Plastic Flow Test Method”. Thereby, generation | occurrence | production of the cutting waste of the dicing film 100 can be suppressed. The lower limit value of the MFR of the ionomer resin is not particularly limited, but is substantially 0.8 g / 10 min.
 表面層42のアイオノマー樹脂の含有率は60%以上100%以下であることが好ましい。60%以上であるとダイシング屑を抑制する点な効果で好ましい。 The content of the ionomer resin in the surface layer 42 is preferably 60% or more and 100% or less. If it is 60% or more, it is preferable in terms of suppressing dicing waste.
 表面層42は他の樹脂材料を含有してもよい。
かかる樹脂材料としては、特に限定されず、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレンのようなポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレンのようなポリプロピレン、ポリ塩化ビニル、ポリブテン、ポリブタジエン、ポリメチルペンテン、等のポリオレフィン系樹脂、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体等のオレフィン系共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等のポリエステル系樹脂、ポリウレタン、ポリイミド、ポリアミド、ポリエーテルエーテルケトンのようなポリエーテルケトン、ポリエーテルスルホン、ポリスチレン、フッ素樹脂、シリコーン樹脂、セルロース系樹脂、スチレン系熱可塑性エラストマー、ポリプロピレン系熱可塑性エラストマーのようなオレフィン系熱可塑性エラストマー、アクリル樹脂、ポリエステル系熱可塑性エラストマー、ポリビニルイソプレン、ポリカーボネート等の熱可塑性樹脂や、これらの熱可塑性樹脂の混合物が用いられる。
The surface layer 42 may contain other resin materials.
The resin material is not particularly limited, and for example, polyethylene such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, and ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolymer. Polypropylenes such as polypropylene, polyvinyl chloride, polybutene, polybutadiene, polymethylpentene, and other polyolefin resins, ethylene-vinyl acetate copolymers, ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic Olefin copolymers such as acid ester (random, alternating) copolymer, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate Polyester resins such as tarate and polybutylene naphthalate, polyether ketones such as polyurethane, polyimide, polyamide, polyetheretherketone, polyethersulfone, polystyrene, fluorine resin, silicone resin, cellulose resin, styrene thermoplastic elastomer An olefin thermoplastic elastomer such as a polypropylene thermoplastic elastomer, an acrylic resin, a polyester thermoplastic elastomer, a polyvinyl isoprene, a polycarbonate, or a thermoplastic resin, or a mixture of these thermoplastic resins is used.
表面層42は、発明の趣旨を損ねない範囲で、酸化防止剤等の添加剤、フィラー等を含有していてもよい。 The surface layer 42 may contain additives such as antioxidants, fillers, and the like as long as the spirit of the invention is not impaired.
表面層42の厚みは、切削屑低減の点から、ダイシングブレードによる表面層への切り込みの深さ(以下、切込み量ともいう。)よりも厚いことが好ましい。表面層の厚みは、
10~140μm、好ましくは20~120μmである。また、表面層の厚みは、ダイシングフィルム用基材フィルムの厚みに対し、10~90%、好ましくは20~80%である。
The thickness of the surface layer 42 is preferably thicker than the depth of cut into the surface layer by the dicing blade (hereinafter also referred to as the depth of cut) from the viewpoint of reducing cutting waste. The thickness of the surface layer is
The thickness is 10 to 140 μm, preferably 20 to 120 μm. The thickness of the surface layer is 10 to 90%, preferably 20 to 80% with respect to the thickness of the base film for dicing film.
表面層42は、異なる前記樹脂材料で構成される層を複数積層した積層体(多層体)で構成されるものであってもよい。 The surface layer 42 may be composed of a laminate (multilayer body) in which a plurality of layers made of different resin materials are laminated.
<基材層>
本発明のダイシングフィルム用基材フィルム4を構成する基材層41について説明する。
基材層41は低密度ポリエチレンを含有する。これにより、エキスパンド装置で放射状にエキスパンドした際に、エキスパンド性が良好となる。
また、低密度ポリエチレンは前記アイオノマー樹脂よりも融点が高く、耐熱性が高いため、ダイシング時に、摩擦熱で溶融することなく、ダイシング時にチャックテーブルに貼りつくことがなく、好ましい。
<Base material layer>
The base material layer 41 which comprises the base film 4 for dicing films of this invention is demonstrated.
The base material layer 41 contains low density polyethylene. Thereby, when expand | expanding radially with an expand apparatus, expandability becomes favorable.
Low density polyethylene is preferable because it has a higher melting point and higher heat resistance than the ionomer resin, so that it does not melt by frictional heat during dicing and does not stick to the chuck table during dicing.
前記、低密度ポリエチレンとは、密度が0.880g/cm3以上0.940g/cm3未満のポリエチレンをいう。上記低密度ポリエチレンの密度は、0.910g/cm3以上0.930g/cm3以下であることが特に好ましい。上記低密度ポリエチレンとは、エチレンモノマーを高圧法により重合して得られる、長鎖分岐(分岐鎖長は特に限定されない)を有するもの、いわゆる「低密度ポリエチレン」や「超低密度ポリエチレン」と称するもの、及びエチレンと炭素数が3~8のα-オレフィンモノマーとを低圧法により重合して得られる「直鎖状低密度ポリエチレン」(この場合の短鎖分岐の長さは炭素数1~6)と称するもの、さらには上記密度範囲に包含される「エチレン-α-オレフィン共重合体エラストマー」の総称として定義される。なお、低密度ポリエチレンの密度は、JIS K 7112に準拠して測定し得る。 The low density polyethylene refers to polyethylene having a density of 0.880 g / cm 3 or more and less than 0.940 g / cm 3. The density of the low density polyethylene is particularly preferably 0.910 g / cm 3 or more and 0.930 g / cm 3 or less. The low density polyethylene is a polymer having a long chain branch (the branch chain length is not particularly limited) obtained by polymerizing an ethylene monomer by a high pressure method, so-called “low density polyethylene” or “very low density polyethylene”. And "linear low density polyethylene" obtained by polymerizing ethylene and an α-olefin monomer having 3 to 8 carbon atoms by a low pressure method (in this case, the length of the short chain branch is 1 to 6 carbon atoms) ), And a generic term for “ethylene-α-olefin copolymer elastomer” included in the above density range. The density of the low density polyethylene can be measured according to JIS K 7112.
前記低密度ポリエチレンの融点は90℃以上140℃以下であることが好ましい。100℃以上であると耐熱性な効果で好ましい。また140℃以下であると常温での剛性が低くなりエキスパンド性が優れる効果で好ましい。 The melting point of the low density polyethylene is preferably 90 ° C. or higher and 140 ° C. or lower. It is preferable at 100 ° C. or higher because of the heat resistance effect. Moreover, when it is 140 degrees C or less, the rigidity at normal temperature becomes low and it is preferable at the effect which expand property is excellent.
 基材層41の低密度ポリエチレンの含有率は40%以上100%以下であることが好ましい。40%以上であると前記表面層との接着性やコストの面で効果で好ましい。 It is preferable that the content rate of the low density polyethylene of the base material layer 41 is 40% or more and 100% or less. If it is 40% or more, it is preferable in terms of the adhesiveness with the surface layer and the cost.
ここで、前記表面層42に含まれるアイオノマー樹脂はエチレン及び(メタ)アクリル酸を重合体の構成成分とする2元共重合体や、エチレン、(メタ)アクリル酸および(メタ)アクリル酸エステルを重合体の構成成分とす3元共重合体を、金属イオンで架橋した樹脂であり、モノマー成分としてエチレンを含む。
また、前記基材層41に含まれる低密度ポリエチレンは、モノマー成分がエチレンである。
表面層42、基材層41ともにエチレンをモノマー成分として含むため、ダイシングフィルム用基材フィルム4において、表面層42と基材層41との間での分子間相互作用の効果により、表面層42と基材層41との間で層間剥離を抑制することができる。
Here, the ionomer resin contained in the surface layer 42 is composed of a binary copolymer having ethylene and (meth) acrylic acid as constituents of the polymer, ethylene, (meth) acrylic acid and (meth) acrylic acid ester. It is a resin obtained by crosslinking a ternary copolymer as a constituent component of a polymer with metal ions, and contains ethylene as a monomer component.
Moreover, the monomer component of the low density polyethylene contained in the base material layer 41 is ethylene.
Since both the surface layer 42 and the base material layer 41 contain ethylene as a monomer component, in the base film 4 for dicing film, due to the effect of intermolecular interaction between the surface layer 42 and the base material layer 41, the surface layer 42 And the base material layer 41 can suppress delamination.
基材層41は他の樹脂材料を含有してもよい。
かかる樹脂材料としては、特に限定されず、例えば、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレンのようなポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレンのようなポリプロピレン、ポリ塩化ビニル、ポリブテン、ポリブタジエン、ポリメチルペンテン、等のポリオレフィン系樹脂、エチレン-酢酸ビニル共重合体、亜鉛イオン架橋体、ナトリウムイオン架橋体のようなアイオノマー、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体等のオレフィン系共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等のポリエステル系樹脂、ポリウレタン、ポリイミド、ポリアミド、ポリエーテルエーテルケトンのようなポリエーテルケトン、ポリエーテルスルホン、ポリスチレン、フッ素樹脂、シリコーン樹脂、セルロース系樹脂、スチレン系熱可塑性エラストマー、ポリプロピレン系熱可塑性エラストマーのようなオレフィン系熱可塑性エラストマー、アクリル樹脂、ポリエステル系熱可塑性エラストマー、ポリビニルイソプレン、ポリカーボネート等の熱可塑性樹脂や、これらの熱可塑性樹脂の混合物が用いられる。
The base material layer 41 may contain other resin materials.
The resin material is not particularly limited, and examples thereof include linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene such as polyethylene, random copolymer polypropylene, block copolymer polypropylene, and homopolypropylene. Polyolefin resins such as polypropylene, polyvinyl chloride, polybutene, polybutadiene, polymethylpentene, etc., ionomers such as ethylene-vinyl acetate copolymer, zinc ion crosslinked body, sodium ion crosslinked body, ethylene- (meth) acrylic acid Copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-propylene copolymer, ethylene-butene copolymer, olefin copolymer such as ethylene-hexene copolymer, polyethylene Terephthalate, poly Polyester resins such as reethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, etc., polyether ketones such as polyurethane, polyimide, polyamide, polyether ether ketone, polyether sulfone, polystyrene, fluororesin, silicone resin, cellulose resin Olefin-based thermoplastic elastomers such as styrene-based thermoplastic elastomers and polypropylene-based thermoplastic elastomers, thermoplastic resins such as acrylic resins, polyester-based thermoplastic elastomers, polyvinyl isoprene and polycarbonate, and mixtures of these thermoplastic resins are used. It is done.
基材層41は、発明の趣旨を損ねない範囲で、酸化防止剤等の添加剤、フィラー等を含有していてもよい。 The base material layer 41 may contain an additive such as an antioxidant, a filler, and the like as long as the spirit of the invention is not impaired.
基材層41の厚みは、一又は複数の実施形態において、エキスパンド工程においてフィルムを引き延ばしたときにフィルムが破れない程度の強度を確保できる観点から、40~95μm、又は60~80μmである。また、基材層の厚み41は、ダイシングフィルム用基材フィルムの厚みに対し、40~95%、又は60~80%である。 In one or more embodiments, the thickness of the base material layer 41 is 40 to 95 μm, or 60 to 80 μm, from the viewpoint of securing a strength that does not break the film when the film is stretched in the expanding step. Further, the thickness 41 of the base material layer is 40 to 95%, or 60 to 80% with respect to the thickness of the base film for dicing film.
基材層41は、異なる前記樹脂材料で構成される層を複数積層した積層体(多層体)で構成されるものであってもよい。 The base material layer 41 may be composed of a laminate (multilayer body) in which a plurality of layers made of different resin materials are laminated.
基材層41は、帯電防止剤を含有することが好ましい。これにより、テープマウント工程、ダイシング工程および、ピックアップ工程における、半導体素子での静電気の発生が的確に抑制または防止される。
この帯電防止剤としては、特に限定されないが、例えば、界面活性剤、永久帯電防止高分子(IDP)、金属材料、金属酸化物材料および炭素系材料等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
これらのうち界面活性剤としては、例えば、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、両イオン性界面活性剤等が挙げられる。
永久帯電防止高分子(IDP)としては、例えば、ポリエステルアミド系列、ポリエステルアミド、ポリエーテルエステルアミド、ポリウレタン系列等の全てのIDPを用いることができる。
また、金属材料としては、金、銀、銅または銀コート銅、ニッケル等が挙げられ、これらの金属粉が好ましく用いられる。
金属酸化物材料としては、インジウムティンオキサイド(ITO)、インジウムオキサイド(IO)、アンチモンティンオキサイド(ATO)、インジウムジンクオキサイド(IZO)、酸化スズ(SnO2)等が挙げられ、これらの金属酸化物粉が好ましく用いられる。
 さらに、炭素系材料としては、カーボンブラック、単層カーボンナノチューブ、多層カーボンナノチューブのようなカーボンナノチューブ、カーボンナノファイバー、CNナノチューブ、CNナノファイバー、BCNナノチューブ、BCNナノファイバー、グラフェン等が挙げられる。
これらの中でも、界面活性剤、永久帯電防止高分子(IDP)、金属酸化物材料およびカーボンブラックのうちの少なくとも1種であることが好ましい。これらのものは、抵抗率の温度依存性が小さいものであることからダイシングする際に、基材4が加熱されたとしても、基材層41の表面抵抗値の変化量を小さくすることができる。
The base material layer 41 preferably contains an antistatic agent. Thereby, generation | occurrence | production of the static electricity in a semiconductor element in a tape mounting process, a dicing process, and a pick-up process is suppressed or prevented exactly.
Although it does not specifically limit as this antistatic agent, For example, surfactant, permanent antistatic polymer (IDP), a metal material, a metal oxide material, a carbonaceous material etc. are mentioned, Among these, 1 type or 2 A combination of more than one species can be used.
Among these, examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant.
As the permanent antistatic polymer (IDP), for example, all IDPs such as polyester amide series, polyester amide, polyether ester amide, polyurethane series and the like can be used.
In addition, examples of the metal material include gold, silver, copper, silver-coated copper, nickel, and the like, and these metal powders are preferably used.
Examples of the metal oxide material include indium tin oxide (ITO), indium oxide (IO), antimony tin oxide (ATO), indium zinc oxide (IZO), tin oxide (SnO2), and the like. Is preferably used.
Furthermore, examples of the carbon-based material include carbon nanotubes such as carbon black, single-walled carbon nanotubes, and multi-walled carbon nanotubes, carbon nanofibers, CN nanotubes, CN nanofibers, BCN nanotubes, BCN nanofibers, and graphene.
Among these, at least one of a surfactant, a permanent antistatic polymer (IDP), a metal oxide material, and carbon black is preferable. Since these materials have low temperature dependency of resistivity, even when the substrate 4 is heated when dicing, the amount of change in the surface resistance value of the substrate layer 41 can be reduced. .
 基材層41の帯電防止剤の含有率は5%以上40%以下であることが好ましい。5%以上であると帯電防止性能が十分発現し好ましい。また40%以下であるとコストの面から好ましい。 The content of the antistatic agent in the base material layer 41 is preferably 5% or more and 40% or less. If it is 5% or more, the antistatic performance is sufficiently exhibited, which is preferable. Moreover, it is preferable from the surface of cost that it is 40% or less.
本開示のダイシングフィルム用基材フィルムの全体の厚みとしては、一又は複数の実施形態において、50~200μm、好ましくは80~150μmである。ダイシングフィルム用基材フィルムの厚みは、ダイシングする目的物の種類に応じて適宜設定可能である。ダイシングフィルム用基材フィルムの全体の厚みを50μm以上とすることで、基板をダイシングする際に衝撃から保護できる。 The total thickness of the substrate film for dicing film of the present disclosure is 50 to 200 μm, preferably 80 to 150 μm in one or more embodiments. The thickness of the substrate film for dicing film can be appropriately set according to the type of the object to be diced. By setting the total thickness of the base film for dicing film to 50 μm or more, the substrate can be protected from impact when dicing the substrate.
<粘着層>
 粘着層2は、半導体基板7をダイシングする際に、半導体基板7を粘着して支持する機能を有している。また、この粘着層2は、このものに対するエネルギーの付与により半導体基板7への粘着性が低下し、これにより、粘着層2と半導体基板7との間で容易に剥離を生じさせ得る状態となるものである。
<Adhesive layer>
The adhesive layer 2 has a function of adhering and supporting the semiconductor substrate 7 when the semiconductor substrate 7 is diced. In addition, the adhesive layer 2 is in a state in which the adhesiveness to the semiconductor substrate 7 is reduced by applying energy to the adhesive layer 2, and thus, the adhesive layer 2 and the semiconductor substrate 7 can be easily peeled off. Is.
 かかる機能を備える粘着層2は、(1)粘着性を有するベース樹脂と、(2)粘着層2を硬化させる硬化性樹脂とを主材料として含有する樹脂組成物で構成される。
 以下、樹脂組成物に含まれる各成分について、順次、詳述する。
The pressure-sensitive adhesive layer 2 having such a function is composed of a resin composition containing, as main materials, (1) an adhesive base resin and (2) a curable resin for curing the pressure-sensitive adhesive layer 2.
Hereinafter, each component contained in the resin composition will be described in detail.
 (1)ベース樹脂
 ベース樹脂は、粘着性を有し、粘着層2へのエネルギー線の照射前に、半導体基板7に対する粘着性を粘着層2に付与するために、樹脂組成物中に含まれるものである。
(1) Base resin The base resin has adhesiveness, and is included in the resin composition in order to impart adhesiveness to the semiconductor substrate 7 to the adhesive layer 2 before irradiation of the energy layer to the adhesive layer 2. Is.
 このようなベース樹脂としては、アクリル系樹脂(粘着剤)、シリコーン系樹脂(粘着剤)、ポリエステル系樹脂(粘着剤)、ポリ酢酸ビニル系樹脂(粘着剤)、ポリビニルエーテル系樹脂(粘着剤)またはウレタン系樹脂(粘着剤)のような粘着層成分として用いられる公知のものが挙げられるが、中でも、アクリル系樹脂を用いることが好ましい。アクリル系樹脂は、耐熱性に優れ、また、比較的容易かつ安価に入手できることから、ベース樹脂として好ましく用いられる。 Such base resins include acrylic resins (adhesives), silicone resins (adhesives), polyester resins (adhesives), polyvinyl acetate resins (adhesives), and polyvinyl ether resins (adhesives). Or well-known thing used as adhesion layer components like urethane type resin (adhesive) is mentioned, but it is preferred to use acrylic resin especially. Acrylic resins are preferably used as base resins because they are excellent in heat resistance and are relatively easy and inexpensive to obtain.
 アクリル系樹脂は、(メタ)アクリル酸エステルをモノマー主成分とするポリマー(ホモポリマーまたはコポリマー)をベースポリマーとするもののことを言う。 The acrylic resin refers to a polymer having a (meth) acrylic acid ester as a main monomer component (homopolymer or copolymer) as a base polymer.
 (メタ)アクリル酸エステルとしては、特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシルのような(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸シクロヘキシルのような(メタ)アクリル酸シクロアルキルエステル、(メタ)アクリル酸フェニルのような(メタ)アクリル酸アリールエステル等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチルのような(メタ)アクリル酸アルキルエステルであることが好ましい。(メタ)アクリル酸アルキルエステルは、特に、耐熱性に優れ、また、比較的容易かつ安価に入手できる。 Although it does not specifically limit as (meth) acrylic acid ester, For example, (meth) acrylic acid methyl, (meth) acrylic acid ethyl, (meth) acrylic acid propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid butyl , Isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (meth) Octyl acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, (meth ) Undecyl acrylate, dodecyl (meth) acrylate, (meth) acrylic acid (Meth) acrylic acid alkyl esters such as decyl, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, (meth) Examples include (meth) acrylic acid cycloalkyl esters such as cyclohexyl acrylate, (meth) acrylic acid aryl esters such as phenyl (meth) acrylate, and one or more of these are used in combination. be able to. Among these, (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl (meth) acrylate It is preferable that The (meth) acrylic acid alkyl ester is particularly excellent in heat resistance, and can be obtained relatively easily and inexpensively.
 なお、本明細書において、(メタ)アクリル酸エステルとは、アクリル酸エステルとメタクリル酸エステルとの双方を含む意味で用いることとする。 In this specification, the term “(meth) acrylic acid ester” is used to include both acrylic acid esters and methacrylic acid esters.
 また、このアクリル系樹脂は、そのガラス転移点が20℃以下であることが好ましい。これにより、粘着層2へのエネルギー線の照射前において、粘着層2に優れた粘着性を発揮させることができる。 Further, this acrylic resin preferably has a glass transition point of 20 ° C. or lower. Thereby, the adhesiveness excellent in the adhesive layer 2 can be exhibited before the energy layer is irradiated to the adhesive layer 2.
 アクリル系樹脂は、凝集力、耐熱性等の改質等を目的として、必要に応じて、ポリマーを構成するモノマー成分として、共重合性モノマーを含むものが用いられる。 As the acrylic resin, a resin containing a copolymerizable monomer is used as a monomer component constituting the polymer, if necessary, for the purpose of modifying cohesive force, heat resistance and the like.
 このような共重合性モノマーとしては、特に限定されないが、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシルのようなヒドロキシル基含有モノマー、(メタ)アクリル酸グリシジルのようなエポキシ基含有モノマー、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸のようなカルボキシル基含有モノマー、無水マレイン酸、無水イタコン酸のような酸無水物基含有モノマー、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミドのようなアミド系モノマー、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチルのようなアミノ基含有モノマー、(メタ)アクリロニトリルのようなシアノ基含有モノマー、エチレン、プロピレン、イソプレン、ブタジエン、イソブチレンのようなオレフィン系モノマー、スチレン、α-メチルスチレン、ビニルトルエンのようなスチレン系モノマー、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル系モノマー、メチルビニルエーテル、エチルビニルエーテルのようなビニルエーテル系モノマー、塩化ビニル、塩化ビニリデンのようなハロゲン原子含有モノマー、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルのようなアルコキシ基含有モノマー、N-ビニル-2-ピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、N-ビニルモルホリン、N-ビニルカプロラクタム、N-(メタ)アクリロイルモルホリン等の窒素原子含有環を有するモノマー等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Such a copolymerizable monomer is not particularly limited. For example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, (meth) Hydroxyl group-containing monomers such as 6-hydroxyhexyl acrylate, epoxy group-containing monomers such as glycidyl (meth) acrylate, (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid Carboxyl group-containing monomers, maleic anhydride, acid anhydride group-containing monomers such as itaconic anhydride, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol ( (Meth) acrylamide, N-methylolpropane (meta) Amide monomers such as acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, (meth) Amino group-containing monomers such as t-butylaminoethyl acrylate, cyano group-containing monomers such as (meth) acrylonitrile, olefinic monomers such as ethylene, propylene, isoprene, butadiene and isobutylene, styrene, α-methylstyrene, Styrenic monomers such as vinyl toluene, vinyl ester monomers such as vinyl acetate and vinyl propionate, vinyl ether monomers such as methyl vinyl ether and ethyl vinyl ether, halo such as vinyl chloride and vinylidene chloride Gene atom-containing monomer, alkoxy group-containing monomer such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N-vinylcaprolactam, N- (meth) acryloylmorpholine, etc. Examples include monomers having a nitrogen atom-containing ring, and one or more of these can be used in combination.
 これら共重合性モノマーの含有量は、アクリル系樹脂を構成する全モノマー成分に対して、40重量%以下であることが好ましく、10重量%以下であることがより好ましい。 The content of these copolymerizable monomers is preferably 40% by weight or less, and more preferably 10% by weight or less, based on all monomer components constituting the acrylic resin.
 また、共重合性モノマーは、アクリル系樹脂を構成するポリマーにおける主鎖の末端に含まれるものであってもよいし、その主鎖中に含まれるもの、さらには、主鎖の末端と主鎖中との双方に含まれるものであってもよい。 Further, the copolymerizable monomer may be contained at the end of the main chain in the polymer constituting the acrylic resin, or may be contained in the main chain, and further, the end of the main chain and the main chain It may be included in both the inside and the inside.
 さらに、共重合性モノマーには、ポリマー同士の架橋等を目的として、多官能性モノマーが含まれていてもよい。 Further, the copolymerizable monomer may contain a polyfunctional monomer for the purpose of crosslinking between polymers.
 多官能性モノマーとしては、例えば、1,6-ヘキサンジオール(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、ジビニルベンゼン、ブチルジ(メタ)アクリレート、ヘキシルジ(メタ)アクリレート等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of the polyfunctional monomer include 1,6-hexanediol (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, and neopentyl glycol di (meth) acrylate. , Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin di (meth) acrylate, epoxy (meth) acrylate, polyester ( And (meth) acrylate, urethane (meth) acrylate, divinylbenzene, butyl di (meth) acrylate, hexyl di (meth) acrylate, etc., one or two of these It can be used in combination on.
 また、エチレン-酢酸ビニルコポリマーおよび酢酸ビニルポリマー等も、共重合性モノマー成分として用いることができる。 Also, ethylene-vinyl acetate copolymer and vinyl acetate polymer can be used as copolymerizable monomer components.
 なお、このようなアクリル系樹脂(ポリマー)は、単一のモノマー成分または2種以上のモノマー成分の混合物を重合させることにより生成させることができる。また、これらモノマー成分の重合は、例えば、溶液重合方法、乳化重合方法、塊状重合方法、懸濁重合方法等の重合方法を用いて実施することができる。 Such an acrylic resin (polymer) can be produced by polymerizing a single monomer component or a mixture of two or more monomer components. In addition, the polymerization of these monomer components can be carried out using a polymerization method such as a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, a suspension polymerization method, or the like.
 以上、説明したモノマー成分を重合することにより得られるアクリル系樹脂としては、炭素-炭素二重結合を、側鎖、主鎖中または主鎖の末端に有しているアクリル系樹脂(「二重結合導入型アクリル系樹脂」と言うこともある。)であることが好ましい。アクリル系樹脂が二重結合導入型アクリル系樹脂である場合には、後述する硬化性樹脂の添加を省略したとしても、得られる粘着層2に、上述した粘着層2としての機能を発揮させることができる。 As described above, the acrylic resin obtained by polymerizing the monomer components described above is an acrylic resin having a carbon-carbon double bond in the side chain, in the main chain, or at the end of the main chain (“double” It is sometimes referred to as “bond-introducing acrylic resin”. When the acrylic resin is a double bond-introducing acrylic resin, even if the addition of the curable resin described later is omitted, the obtained adhesive layer 2 is allowed to exhibit the function as the adhesive layer 2 described above. Can do.
 このような二重結合導入型アクリル系樹脂としては、アクリル系樹脂を構成するポリマー内の側鎖のうち、1/100以上の側鎖のそれぞれに、炭素-炭素二重結合を1個有している二重結合導入型アクリル系樹脂(「二重結合側鎖導入型アクリル系樹脂」と言うこともある。)であることが好ましい。このように、炭素-炭素二重結合を、アクリル系樹脂の側鎖に導入することは、分子設計の点からも有利である。なお、この二重結合側鎖導入型アクリル系樹脂は、主鎖中や、主鎖の末端にも、炭素-炭素二重結合を有していてもよい。 Such a double bond-introducing acrylic resin has one carbon-carbon double bond in each of the side chains of 1/100 or more of the side chains in the polymer constituting the acrylic resin. It is preferably a double bond-introducing acrylic resin (sometimes referred to as “double-bond side chain-introducing acrylic resin”). Thus, introducing a carbon-carbon double bond into the side chain of an acrylic resin is advantageous from the viewpoint of molecular design. This double bond side chain introduction type acrylic resin may have a carbon-carbon double bond in the main chain or at the end of the main chain.
 このような二重結合導入型アクリル系樹脂の合成方法(すなわち、アクリル系樹脂に炭素-炭素二重結合を導入する方法)としては、特に限定されず、例えば、共重合性モノマーとして官能基を有するモノマーを用いて共重合して、官能基を含有するアクリル系樹脂(「官能基含有アクリル系樹脂」と言うこともある。)を合成した後、官能基含有アクリル系樹脂中の官能基と反応し得る官能基と、炭素-炭素二重結合とを有する化合物(「炭素-炭素二重結合含有反応性化合物」と言うこともある。)を、官能基含有アクリル系樹脂に、炭素-炭素二重結合のエネルギー線硬化性(エネルギー線重合性)を維持した状態で、縮合反応または付加反応させることにより、二重結合導入型アクリル系樹脂を合成する方法等が挙げられる。 A method for synthesizing such a double bond-introducing acrylic resin (that is, a method for introducing a carbon-carbon double bond into an acrylic resin) is not particularly limited. For example, a functional group as a copolymerizable monomer may be used. After synthesizing an acrylic resin containing a functional group (also referred to as a “functional group-containing acrylic resin”) by copolymerization using a monomer having the functional group in the functional group-containing acrylic resin, A compound having a functional group capable of reacting and a carbon-carbon double bond (sometimes referred to as a “carbon-carbon double bond-containing reactive compound”) is added to a functional group-containing acrylic resin as a carbon-carbon. Examples include a method of synthesizing a double bond-introducing acrylic resin by performing a condensation reaction or an addition reaction in a state where the energy bond curability (energy beam polymerizability) of the double bond is maintained.
 なお、アクリル系樹脂に炭素-炭素二重結合を、全側鎖のうちの1/100以上の側鎖に導入する際の制御手段としては、例えば、官能基含有アクリル系樹脂に縮合反応または付加反応させる化合物である炭素-炭素二重結合含有反応性化合物の含有量を適宜調節することにより行う方法等が挙げられる。 As a control means for introducing a carbon-carbon double bond into an acrylic resin into 1/100 or more of all side chains, for example, a condensation reaction or addition to a functional group-containing acrylic resin Examples thereof include a method performed by appropriately adjusting the content of a reactive compound containing a carbon-carbon double bond that is a compound to be reacted.
 また、官能基含有アクリル系樹脂に炭素-炭素二重結合含有反応性化合物を縮合反応又は付加反応させる際には、触媒を用いることにより、前記反応を効果的に進行させることができる。このような触媒としては、特に制限されないが、ジラウリン酸ジブチルスズのようなスズ系触媒が好ましく用いられる。このスズ系触媒の含有量としては、特に制限されないが、例えば、官能基含有アクリル系樹脂100重量部に対して0.05重量部以上1重量部以下であることが好ましい。 Further, when a carbon-carbon double bond-containing reactive compound is subjected to a condensation reaction or addition reaction with a functional group-containing acrylic resin, the reaction can be effectively advanced by using a catalyst. Such a catalyst is not particularly limited, but a tin-based catalyst such as dibutyltin dilaurate is preferably used. The content of the tin-based catalyst is not particularly limited, but for example, it is preferably 0.05 parts by weight or more and 1 part by weight or less with respect to 100 parts by weight of the functional group-containing acrylic resin.
 また、官能基含有アクリル系樹脂における官能基Aおよび炭素-炭素二重結合含有反応性化合物における官能基Bとしては、例えば、カルボキシル基、酸無水物基、ヒドロキシル基、アミノ基、エポキシ基、イソシアネート基、アジリジン基等が挙げられ、さらに、官能基含有アクリル系樹脂における官能基Aと、炭素-炭素二重結合含有反応性化合物における官能基Bとの組み合わせとしては、例えば、カルボン酸基(カルボキシル基)とエポキシ基との組み合わせ、カルボン酸基とアジリジル基との組み合わせ、ヒドロキシル基とイソシアネート基との組み合わせ、ヒドロキシル基とカルボキシル基との組み合わせ等の各種の組み合わせが挙げられ、これらの中でも、ヒドロキシル基とイソシアネート基との組み合わせであることが好ましい。これにより、これら官能基A、B同士の反応追跡を容易に行うことができる。 Examples of the functional group A in the functional group-containing acrylic resin and the functional group B in the carbon-carbon double bond-containing reactive compound include a carboxyl group, an acid anhydride group, a hydroxyl group, an amino group, an epoxy group, and an isocyanate. Examples of the combination of the functional group A in the functional group-containing acrylic resin and the functional group B in the carbon-carbon double bond-containing reactive compound include, for example, a carboxylic acid group (carboxyl group). Group) and an epoxy group, a combination of a carboxylic acid group and an aziridyl group, a combination of a hydroxyl group and an isocyanate group, and a combination of a hydroxyl group and a carboxyl group. Preferably a combination of a group and an isocyanate group Arbitrariness. Thereby, the reaction tracking between these functional groups A and B can be easily performed.
 さらに、これらの官能基A、Bの組み合わせにおいて、何れの官能基が、官能基含有アクリル系樹脂の官能基Aまたは炭素-炭素二重結合含有反応性化合物の官能基Bとなっていてもよいが、例えば、ヒドロキシル基とイソシアネート基との組み合わせの場合、ヒドロキシル基が、官能基含有アクリル系樹脂における官能基Aとなっており、イソシアネート基が、炭素-炭素二重結合含有反応性化合物における官能基Bとなっていることが好ましい。 Furthermore, in the combination of these functional groups A and B, any functional group may be the functional group A of the functional group-containing acrylic resin or the functional group B of the carbon-carbon double bond-containing reactive compound. For example, in the case of a combination of a hydroxyl group and an isocyanate group, the hydroxyl group is the functional group A in the functional group-containing acrylic resin, and the isocyanate group is a functional group in the reactive compound containing a carbon-carbon double bond. The group B is preferred.
 この場合、官能基含有アクリル系樹脂を構成する官能基Aを有するモノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸のようなカルボキシル基を有するもの、無水マレイン酸、無水イタコン酸のような酸無水物基を有するもの、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレート、ビニルアルコール、アリルアルコール、2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、エチレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、プロピレングリコールモノビニルエーテル、ジプロピレングリコールモノビニルエーテルのようなヒドロキシル基を有するもの、(メタ)アクリル酸グリシジル、アリルグリシジルエーテルのようなエポキシ基を有するもの等が挙げられる。 In this case, examples of the monomer having the functional group A constituting the functional group-containing acrylic resin include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid. Having a carboxylic group, those having an acid anhydride group such as maleic anhydride, itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth) acrylic acid 4-hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethyl (Cyclohexyl) methyl (meth) ac Hydroxyl groups such as rate, vinyl alcohol, allyl alcohol, 2-hydroxyethyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, ethylene glycol monovinyl ether, diethylene glycol monovinyl ether, propylene glycol monovinyl ether, dipropylene glycol monovinyl ether And those having an epoxy group such as glycidyl (meth) acrylate and allyl glycidyl ether.
 また、官能基Bを有する炭素-炭素二重結合含有反応性化合物としては、イソシアネート基を有するものとして、例えば、(メタ)アクリロイルイソシアネート、(メタ)アクリロイルオキシメチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(メタ)アクリロイルオキシプロピルイソシアネート、3-(メタ)アクリロイルオキシプロピルイソシアネート、4-(メタ)アクリロイルオキシブチルイソシアネート、m-プロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられ、エポキシ基を有するものとして、(メタ)アクリル酸グリシジル等が挙げられる。 Examples of the reactive compound containing a carbon-carbon double bond having a functional group B include those having an isocyanate group such as (meth) acryloyl isocyanate, (meth) acryloyloxymethyl isocyanate, 2- (meth) acryloyloxy. Examples include ethyl isocyanate, 2- (meth) acryloyloxypropyl isocyanate, 3- (meth) acryloyloxypropyl isocyanate, 4- (meth) acryloyloxybutyl isocyanate, m-propenyl-α, α-dimethylbenzyl isocyanate, and epoxy. Examples of the group having a group include glycidyl (meth) acrylate.
 アクリル系樹脂は、半導体基板7をダイシングする際に、半導体基板7等の汚染を防止するという観点から、低分子量物の含有量が少ないものであることが好ましい。この場合、アクリル系樹脂の重量平均分子量としては、好ましくは30万~500万に設定され、より好ましくは50万~500万に設定され、さらに好ましくは80万~300万に設定される。なお、アクリル系樹脂の重量平均分子量が、モノマー成分の種類等によっては、50万未満であると、半導体基板7等に対する汚染防止性が低下し、半導体チップ20を剥離させた際に糊残りが生じるおそれがある。 The acrylic resin preferably has a low content of low molecular weight substances from the viewpoint of preventing contamination of the semiconductor substrate 7 and the like when the semiconductor substrate 7 is diced. In this case, the weight average molecular weight of the acrylic resin is preferably set to 300,000 to 5,000,000, more preferably set to 500,000 to 5,000,000, and further preferably set to 800,000 to 3,000,000. If the weight-average molecular weight of the acrylic resin is less than 500,000 depending on the type of monomer component, etc., the anti-contamination property to the semiconductor substrate 7 and the like will be reduced, and adhesive residue will be left when the semiconductor chip 20 is peeled off. May occur.
 なお、アクリル系樹脂は、ヒドロキシル基やカルボキシル基(特に、ヒドロキシル基)のような、架橋剤や光重合開始剤に対して反応性を有する官能基(反応性官能基)を有していることが好ましい。これにより、架橋剤や光重合開始剤がポリマー成分であるアクリル樹脂に連結するため、粘着層2からこれら架橋剤や光重合開始剤が漏出することを的確に抑制または防止することができる。その結果、エネルギー線照射時により、粘着層2の半導体基板7に対する粘着性が確実に低下される。 The acrylic resin has a functional group (reactive functional group) having reactivity with a crosslinking agent or photopolymerization initiator, such as a hydroxyl group or a carboxyl group (particularly, a hydroxyl group). Is preferred. Thereby, since a crosslinking agent and a photoinitiator connect with the acrylic resin which is a polymer component, it can suppress or prevent that these crosslinking agents and a photoinitiator leak from the adhesion layer 2 exactly. As a result, the adhesiveness of the adhesive layer 2 to the semiconductor substrate 7 is reliably reduced by the energy ray irradiation.
 (2)硬化性樹脂
 硬化性樹脂は、例えば、エネルギー線の照射により硬化する硬化性を備えるものである。この硬化によってベース樹脂が硬化性樹脂の架橋構造に取り込まれた結果、粘着層2の粘着力が低下する。
(2) Curable resin A curable resin is provided with the curability hardened | cured by irradiation of an energy ray, for example. As a result of this curing, the base resin is taken into the crosslinked structure of the curable resin, and as a result, the adhesive strength of the adhesive layer 2 is reduced.
 このような硬化性樹脂としては、例えば、紫外線、電子線等のエネルギー線の照射によって三次元架橋可能な重合性炭素-炭素二重結合を、官能基として少なくとも2個以上分子内に有する低分子量化合物が用いられる。具体的には、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレートのような(メタ)アクリル酸と多価アルコールとのエステル化物、エステルアクリレートオリゴマー、2-プロペニル-ジ-3-ブテニルシアヌレート等の炭素-炭素二重結合含有基を有しているシアヌレート系化合物、トリス(2-アクリロキシエチル)イソシアヌレート、トリス(2-メタクリロキシエチル)イソシアヌレート、2-ヒドロキシエチル ビス(2-アクリロキシエチル)イソシアヌレート、ビス(2-アクリロキシエチル) 2-[(5-アクリロキシヘキシル)-オキシ]エチルイソシアヌレート、トリス(1,3-ジアクリロキシ-2-プロピル-オキシカルボニルアミノ-n-ヘキシル)イソシアヌレート、トリス(1-アクリロキシエチル-3-メタクリロキシ-2-プロピル-オキシカルボニルアミノ-n-ヘキシル)イソシアヌレート、トリス(4-アクリロキシ-n-ブチル)イソシアヌレートのような炭素-炭素二重結合含有基を有しているイソシアヌレート系化合物、市販のオリゴエステルアクリレート、芳香族系、脂肪族系等のウレタンアクリレート等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、官能基数が6官能以上であるオリゴマーが含まれることが好ましく、官能基数が15官能以上であるオリゴマーが含まれることがより好ましい。これにより、エネルギー線の照射により硬化性樹脂をより確実に硬化させることができる。また、このような硬化性樹脂は、ウレタンアクリレートであることが好ましい。これにより、適度な柔軟性によるピックアップ時の糊割れを抑制できるという効果が得られる。 As such a curable resin, for example, a low molecular weight having at least two polymerizable carbon-carbon double bonds that can be three-dimensionally cross-linked by irradiation with energy rays such as ultraviolet rays and electron beams as functional groups. A compound is used. Specifically, for example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, 1,4-butylene glycol di (meth) ) Esterified products of (meth) acrylic acid and polyhydric alcohols such as acrylate, polyethylene glycol di (meth) acrylate, glycerin di (meth) acrylate, Cyanurate compounds having a carbon-carbon double bond-containing group, such as relate oligomers, 2-propenyl-di-3-butenyl cyanurate, tris (2-acryloxyethyl) isocyanurate, tris (2-methacrylic) Loxyethyl) isocyanurate, 2-hydroxyethyl bis (2-acryloxyethyl) isocyanurate, bis (2-acryloxyethyl) 2-[(5-acryloxyhexyl) -oxy] ethyl isocyanurate, tris (1, 3-Diacryloxy-2-propyl-oxycarbonylamino-n-hexyl) isocyanurate, tris (1-acryloxyethyl-3-methacryloxy-2-propyl-oxycarbonylamino-n-hexyl) isocyanurate, tris (4- (Acryloxy-n-butyl) iso Isocyanurate compounds having a carbon-carbon double bond-containing group such as nurate, commercially available oligoester acrylates, aromatic and aliphatic urethane acrylates, etc., and one of these Alternatively, two or more kinds can be used in combination. Among these, it is preferable that an oligomer having 6 or more functional groups is included, and an oligomer having 15 or more functional groups is more preferable. Thereby, curable resin can be hardened more reliably by irradiation of an energy ray. Moreover, it is preferable that such curable resin is urethane acrylate. Thereby, the effect that the adhesive crack at the time of the pick-up by moderate softness | flexibility can be suppressed is acquired.
 なお、このウレタンアクリレートとしては、特に限定されないが、例えば、ポリエステル型またはポリエーテル型等のポリオール化合物と、多価イソシアナート化合物(例えば、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、1,3-キシリレンジイソシアナート、1,4-キシリレンジイソシアナート、ジフェニルメタン4,4-ジイソシアナート等)を反応させて得られる末端イソシアナートウレタンプレポリマーに、ヒドロキシル基を有する(メタ)アクリレート(例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等)を反応させて得られたものが挙げられる。 The urethane acrylate is not particularly limited, and for example, a polyol compound such as a polyester type or a polyether type and a polyvalent isocyanate compound (for example, 2,4-tolylene diisocyanate, 2,6-tolylene diene). (Isocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, diphenylmethane 4,4-diisocyanate, etc.) having a hydroxyl group in the terminal isocyanate urethane prepolymer obtained by reaction ( Examples thereof include those obtained by reacting (meth) acrylate (for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol (meth) acrylate, etc.)).
 また、硬化性樹脂には、特に限定されないが、重量平均分子量の異なる2つ以上の硬化性樹脂が混合されているのが好ましい。このような硬化性樹脂を利用すれば、エネルギー線照射による樹脂の架橋度を容易に制御することができ、半導体チップ20のピックアップ性を向上させることができる。また、このような硬化性樹脂として、例えば、第1の硬化性樹脂と、第1の硬化性樹脂よりも重量平均分子量が大きい第2の硬化性樹脂との混合物等が用いられてもよい。 The curable resin is not particularly limited, but it is preferable that two or more curable resins having different weight average molecular weights are mixed. If such a curable resin is used, the degree of cross-linking of the resin by irradiation with energy rays can be easily controlled, and the pickup property of the semiconductor chip 20 can be improved. In addition, as such a curable resin, for example, a mixture of a first curable resin and a second curable resin having a weight average molecular weight larger than that of the first curable resin may be used.
 硬化性樹脂を、第1の硬化性樹脂と、第2の硬化性樹脂との混合物とする場合、第1の硬化性樹脂の重量平均分子量は、100~1000程度であることが好ましく、200~500程度であることがより好ましい。また、第2の硬化性樹脂の重量平均分子量は、1000~30000程度であることが好ましく、1000~10000程度であることがより好ましく、2000~5000程度であることがさらに好ましい。さらに、第1の硬化性樹脂の官能基数は、1~5官能基であることが好ましく、第2の硬化性樹脂の官能基数は、6官能基以上であることが好ましい。かかる関係を満足することにより、前記効果をより顕著に発揮させることができる。 When the curable resin is a mixture of the first curable resin and the second curable resin, the weight average molecular weight of the first curable resin is preferably about 100 to 1000, preferably 200 to More preferably, it is about 500. The weight average molecular weight of the second curable resin is preferably about 1000 to 30000, more preferably about 1000 to 10000, and still more preferably about 2000 to 5000. Further, the number of functional groups of the first curable resin is preferably 1 to 5 functional groups, and the number of functional groups of the second curable resin is preferably 6 functional groups or more. By satisfying such a relationship, the effect can be exhibited more remarkably.
 硬化性樹脂は、ベース樹脂100重量部に対して5重量部以上500重量部以下で配合されることが好ましく、10重量部以上300重量部以下で配合されることがより好ましく、20重量部以上200重量部以下で配合されることがさらに好ましい。上記のように硬化性樹脂の配合量を調整することによって、半導体チップ20のピックアップ性を優れたものとすることができる。 The curable resin is preferably blended in an amount of 5 parts by weight or more and 500 parts by weight or less, more preferably 10 parts by weight or more and 300 parts by weight or less, and more preferably 20 parts by weight or more. More preferably, it is blended at 200 parts by weight or less. By adjusting the blending amount of the curable resin as described above, the pickup property of the semiconductor chip 20 can be made excellent.
 なお、この硬化性樹脂は、前述したアクリル系樹脂として、二重結合導入型アクリル系樹脂を用いた場合、すなわち、炭素-炭素二重結合を、側鎖、主鎖中または主鎖の末端に有しているものを用いた場合には、その樹脂組成物中への添加を省略するようにしてもよい。これは、アクリル系樹脂が二重結合導入型アクリル系樹脂である場合には、エネルギー線の照射により、二重結合導入型アクリル系樹脂が備える炭素-炭素二重結合の機能によって、粘着層2が硬化し、これにより、粘着層2の粘着力が低下することによる。 Note that this curable resin uses a double bond-introducing acrylic resin as the acrylic resin described above, that is, a carbon-carbon double bond is present in the side chain, main chain, or end of the main chain. When using what has, you may make it abbreviate | omit the addition to the resin composition. This is because, when the acrylic resin is a double bond-introducing acrylic resin, the pressure-sensitive adhesive layer 2 is formed by the function of the carbon-carbon double bond of the double bond-introducing acrylic resin by irradiation with energy rays. This is because the adhesive force of the pressure-sensitive adhesive layer 2 is reduced.
 (3)光重合開始剤
 また、粘着層2は、エネルギー線の照射により半導体基板7に対する粘着性が低下するものであるが、エネルギー線として紫外線等を用いる場合には、硬化性樹脂には、硬化性樹脂の重合開始を容易とするために光重合開始剤を含有することが好ましい。
(3) Photopolymerization initiator In addition, the adhesive layer 2 is one whose adhesiveness to the semiconductor substrate 7 is reduced by irradiation with energy rays, but when ultraviolet rays or the like are used as energy rays, In order to facilitate the initiation of polymerization of the curable resin, it is preferable to contain a photopolymerization initiator.
 光重合開始剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α´-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、ミヒラーズケトン、アセトフェノン、メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジル、ベンゾイン、ジベンジル、α-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2-ヒドロキシメチルフェニルプロパン、2-ナフタレンスルホニルクロリド、1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシム、ベンゾフェノン、ベンゾイル安息香酸、4,4'-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、o-アクリルオキシベンゾフェノン、p-アクリルオキシベンゾフェノン、o-メタクリルオキシベンゾフェノン、p-メタクリルオキシベンゾフェノン、p-(メタ)アクリルオキシエトキシベンゾフェノン、1,4-ブタンジオールモノ(メタ)アクリラート、1,2-エタンジオールモノ(メタ)アクリラート、1,8-オクタンジオールモノ(メタ)アクリラートのようなアクリラートのベンゾフェノン-4-カルボン酸エステル、チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、アゾビスイソブチロニトリル、β-クロールアンスラキノン、カンファーキノン、ハロゲン化ケトン、アシルホスフィノキシド、アシルホスフォナート、ポリビニルベンゾフェノン、クロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、2-エチルアントラキノン、t-ブチルアントラキノン、2,4,5-トリアリ-ルイミダゾール二量体、等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of the photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1 -Propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, benzyldiphenyl sulfide, Tetramethylthiuram monosulfide, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α'-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, 1 -Hydroxycyclohexyl phenyl ketone, Michler's ketone, acetophenone, methoxyacetophenone, 2 2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholinopropane-1, benzoin methyl ether, benzoin ethyl ether, benzoin propyl Ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl, benzoin, dibenzyl, α-hydroxycyclohexyl phenyl ketone, benzyl dimethyl ketal, 2-hydroxymethylphenylpropane, 2-naphthalenesulfonyl chloride, 1-phenone-1,1-propanedione -2- (o-ethoxycarbonyl) oxime, benzophenone, benzoylbenzoic acid, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone, 4,4'-dichlorobenzophenone, 3,3'-dimethyl-4-methoxybenzophenone, o-acryloxybenzophenone, p-acryloxybenzophenone, o-methacryloxybenzophenone, p-methacryloxybenzophenone, p- (meth) acrylic Benzophenone-4-carboxylic acid of acrylate such as oxyethoxybenzophenone, 1,4-butanediol mono (meth) acrylate, 1,2-ethanediol mono (meth) acrylate, 1,8-octanediol mono (meth) acrylate Ester, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone 2,4-diisopropylthioxanthone, azobisisobutyronitrile, β-chloranthraquinone, camphorquinone, halogenated ketone, acyl phosphinoxide, acyl phosphonate, polyvinyl benzophenone, chlorothioxanthone, dodecyl thioxanthone, dimethyl Examples include thioxanthone, diethylthioxanthone, 2-ethylanthraquinone, t-butylanthraquinone, 2,4,5-triallylimidazole dimer, and the like, and one or more of these may be used in combination. it can.
 また、これらの中でも、ベンゾフェノン誘導体およびアルキルフェノン誘導体であることが好ましい。これらの化合物は分子中に反応性官能基として水酸基を備えるものであり、この反応性官能基を介して、ベース樹脂や硬化性樹脂に連結することができ、光重合開始剤としての機能をより確実に発揮させることができる。 Of these, benzophenone derivatives and alkylphenone derivatives are preferred. These compounds have a hydroxyl group as a reactive functional group in the molecule, and can be linked to a base resin or a curable resin via this reactive functional group, and more function as a photopolymerization initiator. It can be demonstrated reliably.
 光重合開始剤は、ベース樹脂100重量部に対して0.1重量部以上50重量部以下で配合されることが好ましく、0.5重量部以上10重量部以下で配合されることがより好ましい。上記のように光重合開始剤の配合量を調整することによって、粘着テープ100のピックアップ性は好適なものとなる。 The photopolymerization initiator is preferably blended in an amount of 0.1 to 50 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the base resin. . By adjusting the blending amount of the photopolymerization initiator as described above, the pickup property of the pressure-sensitive adhesive tape 100 becomes suitable.
 (4)架橋剤
 さらに、硬化性樹脂には、架橋剤が含まれていてもよい。架橋剤が含まれることで、硬化性樹脂の硬化性の向上が図られる。
(4) Crosslinking agent Furthermore, the curable resin may contain a crosslinking agent. Inclusion of the crosslinking agent can improve the curability of the curable resin.
 架橋剤としては、特に限定されないが、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、尿素樹脂系架橋剤、メチロール系架橋剤、キレート系架橋剤、アジリジン系架橋剤、メラミン系架橋剤、多価金属キレート系架橋剤、酸無水物系架橋剤、ポリアミン系架橋剤、カルボキシル基含有ポリマー系架橋剤等が挙げられる。これらの中でもイソシアネート系架橋剤が好ましい。 The crosslinking agent is not particularly limited. For example, an isocyanate crosslinking agent, an epoxy crosslinking agent, a urea resin crosslinking agent, a methylol crosslinking agent, a chelate crosslinking agent, an aziridine crosslinking agent, a melamine crosslinking agent, and a polyvalent crosslinking agent. Examples include metal chelate-based crosslinking agents, acid anhydride-based crosslinking agents, polyamine-based crosslinking agents, and carboxyl group-containing polymer-based crosslinking agents. Among these, an isocyanate type crosslinking agent is preferable.
 イソシアネート系架橋剤としては、特に限定されないが、例えば、多価イソシアネートのポリイソシアネート化合物およびポリイソシアネート化合物の三量体、ポリイソシアネート化合物とポリオール化合物とを反応させて得られる末端イソシアネート化合物の三量体または末端イソシアネートウレタンプレポリマーをフェノール、オキシム類等で封鎖したブロック化ポリイソシアネート化合物等が挙げられる。 Although it does not specifically limit as an isocyanate type crosslinking agent, For example, the trimer of the terminal isocyanate compound obtained by making the polyisocyanate compound of polyvalent isocyanate and the trimer of a polyisocyanate compound, and making a polyisocyanate compound and a polyol compound react. Or the blocked polyisocyanate compound etc. which blocked the terminal isocyanate urethane prepolymer with phenol, oximes, etc. are mentioned.
 また、多価イソシアネートとして、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’-〔2,2-ビス(4-フェノキシフェニル)プロパン〕ジイソシアネート、2,2,4-トリメチル-ヘキサメチレンジイソシアネート等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも2,4-トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネートおよびヘキサメチレンジイソシアネートから成る群より選択される少なくとも1種の多価イソシアネートが好ましい。 Examples of the polyvalent isocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-diisocyanate, diphenylmethane. -2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, 4,4'-diphenyl ether diisocyanate, 4 , 4 '-[2,2-bis (4-phenoxyphenyl) propane] diisocyanate, 2,2,4-trimethyl-hexamethylene diisocyanate, etc. It is, can be used singly or in combination of two or more of them. Among these, at least one polyisocyanate selected from the group consisting of 2,4-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate and hexamethylene diisocyanate is preferable.
 架橋剤は、ベース樹脂100重量部に対して0.01重量部以上50重量部以下で配合されることが好ましく、5重量部以上50重量部以下で配合されることがより好ましい。上記のように架橋剤の配合量を調整することによって、粘着テープ100のピックアップ性は好適なものとなる。 The crosslinking agent is preferably blended in an amount of 0.01 to 50 parts by weight, more preferably 5 to 50 parts by weight, based on 100 parts by weight of the base resin. By adjusting the blending amount of the crosslinking agent as described above, the pickup property of the pressure-sensitive adhesive tape 100 becomes suitable.
 (5)その他の成分
 さらに、粘着層2を構成する樹脂組成物には、上述した各成分(1)~(4)の他に他の成分として、帯電防止剤、粘着付与剤、老化防止剤、粘着調整剤、充填材、着色剤、難燃剤、軟化剤、酸化防止剤、可塑剤、界面活性剤等のうちの少なくとも1種が含まれていてもよい。
(5) Other components In addition to the components (1) to (4) described above, the resin composition constituting the pressure-sensitive adhesive layer 2 includes, as other components, an antistatic agent, a tackifier, and an anti-aging agent. , An adhesion regulator, a filler, a colorant, a flame retardant, a softener, an antioxidant, a plasticizer, a surfactant, and the like may be contained.
 また、粘着層2の厚さは、特に限定されないが、例えば、1μm以上30μm以下であるのが好ましく、5μm以上30μm以下であるのがより好ましく、10μm以上20μm以下であるのがさらに好ましい。粘着層2の厚さをかかる範囲内とすることで、粘着層2は、粘着層2へのエネルギー付与前には、良好な粘着力を発揮するとともに、粘着層2へのエネルギー付与後には、粘着層2と半導体基板7との間において、良好な剥離性を発揮する。 The thickness of the pressure-sensitive adhesive layer 2 is not particularly limited, but is preferably 1 μm or more and 30 μm or less, more preferably 5 μm or more and 30 μm or less, and still more preferably 10 μm or more and 20 μm or less. By making the thickness of the pressure-sensitive adhesive layer 2 within such a range, the pressure-sensitive adhesive layer 2 exhibits a good adhesive force before applying energy to the pressure-sensitive adhesive layer 2, and after applying energy to the pressure-sensitive adhesive layer 2, Good peelability is exhibited between the adhesive layer 2 and the semiconductor substrate 7.
次に、かかる構成の半導体基板加工用ダイシングフィルム100は、例えば、以下のようにして製造することができる。 Next, the semiconductor substrate processing dicing film 100 having such a configuration can be manufactured as follows, for example.
<半導体基板加工用ダイシングフィルムの製造方法>
まず、ダイシングフィルム用基材フィルム4を用意し、このダイシングフィルム用基材フィルム4上に粘着層2を形成する。
<Manufacturing method of dicing film for semiconductor substrate processing>
First, a base film 4 for dicing film is prepared, and the adhesive layer 2 is formed on the base film 4 for dicing film.
ダイシングフィルム用基材フィルム4の製造方法としては、特に限定されず、Tダイス又は環状ダイスを使用した押出法やカレンダー法等の公知の方法が挙げられるが、ダイシングフィルム用基材フィルム4の厚み精度の点から、Tダイスを使用した押出法が好ましい。 The production method of the substrate film 4 for dicing film is not particularly limited, and includes known methods such as an extrusion method using a T die or a circular die, a calendar method, etc. The thickness of the substrate film 4 for dicing film From the viewpoint of accuracy, an extrusion method using a T die is preferable.
以下、Tダイスを使用した押出法について説明する。 Hereinafter, an extrusion method using a T die will be described.
まず、表面層42及び基材層41を構成する樹脂成分をそれぞれドライブレンド又は溶融混練し、各層形成用樹脂を得る。そして、各層形成用樹脂をスクリュー式押出機に供給し、180~240℃に調整された多層Tダイからフィルム状に押出し、これを10~50℃に調整された冷却ロールに通しながら冷却して巻き取る。あるいは、各層形成用樹脂を一旦ペレットとして取得した後、上記のように押出成形してもよい。形成される各層の厚みは、押出機のスクリュー回転数を調整することで、調整できる。 First, the resin component which comprises the surface layer 42 and the base material layer 41 is each dry blended or melt-kneaded, and each layer forming resin is obtained. Then, each layer forming resin is supplied to a screw-type extruder, extruded from a multilayer T die adjusted to 180 to 240 ° C. into a film, and cooled while passing through a cooling roll adjusted to 10 to 50 ° C. Wind up. Alternatively, after each layer forming resin is once obtained as pellets, it may be extruded as described above. The thickness of each layer formed can be adjusted by adjusting the screw speed of the extruder.
上記冷却ロールに通しながら冷却してフィルムを巻き取る工程では、エキスパンド時にフィルムが破れない程度の強度を確保し、エキスパンド後の復元性を向上できる観点から、実質的に無延伸で巻き取りを行うことが好ましい。実質的に無延伸とは、積極的な延伸を行わないことをいい、無延伸、あるいは、ダイシング時の基板の反りに影響を与えない程度の僅少の延伸を含むものである。通常、フィルムの巻き取りの際に、たるみの生じない程度の引っ張りであればよい。 In the process of winding the film by cooling while passing through the cooling roll, the film is wound substantially unstretched from the viewpoint of securing a strength sufficient to prevent the film from being broken at the time of expansion and improving the restoration property after expansion. It is preferable. Substantially non-stretching means that no positive stretching is performed, and includes non-stretching or slight stretching that does not affect the warpage of the substrate during dicing. Usually, the film may be pulled to such an extent that no sagging occurs when the film is wound.
また、粘着層2は、ダイシングフィルム用基材フィルム4上に、粘着層2の構成材料である樹脂組成物を溶剤に溶解してワニス状にした液状材料を、塗布または散布した後、溶剤を揮発させて粘着層2を形成することにより得ることができる。 In addition, the adhesive layer 2 is obtained by applying or spraying a liquid material obtained by dissolving a resin composition, which is a constituent material of the adhesive layer 2, in a solvent to form a varnish on the substrate film 4 for dicing film. It can be obtained by volatilizing to form the adhesive layer 2.
 なお、溶剤としては、特に限定されないが、例えば、メチルエチルケトン、アセトン、トルエン、ジメチルホルムアルデヒド等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 In addition, although it does not specifically limit as a solvent, For example, methyl ethyl ketone, acetone, toluene, a dimethylformaldehyde etc. are mentioned, Among these, it can use 1 type or in combination of 2 or more types.
 また、ダイシングフィルム用基材フィルム4上への液状材料の塗布または散布は、例えば、ダイコート、カーテンダイコート、グラビアコート、コンマコート、バーコートおよびリップコート等の方法を用いて行うことができる。 Further, the application or dispersion of the liquid material onto the substrate film 4 for dicing film can be performed using a method such as die coating, curtain die coating, gravure coating, comma coating, bar coating, and lip coating.
次に、ダイシングフィルム用基材フィルム4上に形成された粘着層2に対して、中心側と外周側とが分離されるように、粘着層2の厚さ方向に基材4を残存させて円環状に粘着層2の一部を除去することにより、粘着層2を中心部122と外周部121とを備えるものとする。 Next, the base material 4 is left in the thickness direction of the adhesive layer 2 so that the center side and the outer peripheral side are separated from the adhesive layer 2 formed on the base film 4 for dicing film. By removing a part of the pressure-sensitive adhesive layer 2 in an annular shape, the pressure-sensitive adhesive layer 2 is provided with a center portion 122 and an outer peripheral portion 121.
 粘着層2の一部を円環状に除去する方法としては、例えば、除去すべき領域を取り囲むように打ち抜いた後、この打ち抜かれた領域に位置する粘着層2を除去する方法が挙げられる。 As a method for removing a part of the adhesive layer 2 in an annular shape, for example, after punching out so as to surround a region to be removed, a method of removing the adhesive layer 2 located in the punched region can be mentioned.
 また、除去すべき領域に対する打ち抜きは、例えば、ロール状金型を用いる方法や、プレス金型を用いる方法を用いて行うことができる。中でも、連続的に粘着テープ100を製造することができるロール状金型を用いる方法が好ましい。 Further, the punching of the region to be removed can be performed using, for example, a method using a roll mold or a method using a press mold. Especially, the method of using the roll-shaped metal mold | die which can manufacture the adhesive tape 100 continuously is preferable.
 なお、本工程では、粘着層2の一部をリング状(円形状)に打ち抜いて中心部122と外周部121とを形成したが、粘着層2の一部を打ち抜く形状は、前述した半導体装置の製造方法において、粘着層2の外周部121をウエハリング9で固定できる形状となっていれば如何なる形状のものであってもよい。具体的には、打ち抜く形状としては、例えば、上述した円形状の他、楕円状、俵型状のような長円状や、四角形状、五角形状のような多角形状等が挙げられる。 In this step, a part of the adhesive layer 2 is punched into a ring shape (circular shape) to form the center part 122 and the outer peripheral part 121. However, the shape of the part of the adhesive layer 2 punched out is the semiconductor device described above. In this manufacturing method, the outer peripheral portion 121 of the adhesive layer 2 may have any shape as long as the outer peripheral portion 121 can be fixed by the wafer ring 9. Specifically, examples of the shape to be punched include, in addition to the circular shape described above, an elliptical shape such as an elliptical shape and a saddle shape, and a polygonal shape such as a quadrangular shape and a pentagonal shape.
次に、ダイシングフィルム用基材フィルム4上に形成された粘着層2に対して、セパレーターを積層することにより、粘着層2がセパレーターで被覆されたダイシングフィルム100を得る。 Next, a dicing film 100 in which the pressure-sensitive adhesive layer 2 is coated with the separator is obtained by laminating a separator on the pressure-sensitive adhesive layer 2 formed on the base film 4 for dicing film.
 粘着層2にセパレーターを積層する方法としては、特に制限されないが、例えば、ロールを用いたラミネート方法、プレスを用いたラミネート方法を用いることができる。これらの中でも、連続的に生産できるという生産性の観点から、ロールを用いたラミネート方法が好ましい。 The method for laminating the separator on the adhesive layer 2 is not particularly limited, and for example, a laminating method using a roll or a laminating method using a press can be used. Among these, a laminate method using a roll is preferable from the viewpoint of productivity that can be continuously produced.
 なお、セパレーターとしては、特に限定されないが、ポリプロピレンフィルム、ポリエチレンフィルム、ポリエチレンテレフタラートフィルム等が挙げられる。 The separator is not particularly limited, and examples thereof include a polypropylene film, a polyethylene film, and a polyethylene terephthalate film.
 また、セパレーターは、ダイシングフィルム100の使用時に剥がされるために、表面を離型処理を施されたものを使用してもよい。離型処理としては離型剤をセパレーター表面にコーティングする処理や、セパレーター表面に細かい凹凸をつける処理等が挙げられる。なお、離型剤としては、シリコーン系、アルキッド系、フッ素系等のものが挙げられる。 Further, since the separator is peeled off when the dicing film 100 is used, a separator whose surface is subjected to a release treatment may be used. Examples of the release treatment include a treatment for coating a release agent on the separator surface and a treatment for forming fine irregularities on the separator surface. Examples of the release agent include silicone-based, alkyd-based, and fluorine-based agents.
 以上のような工程を経て、セパレーターで被覆されたダイシングフィルム100を形成することができる。 Through the steps as described above, the dicing film 100 covered with the separator can be formed.
 なお、本実施形態で製造されたセパレーターで被覆されたダイシングフィルム100は、前述したダイシングフィルム100を用いた半導体装置の製造方法において、ダイシングフィルム100をセパレーターから剥離した後に使用される。 In addition, the dicing film 100 covered with the separator manufactured in this embodiment is used after the dicing film 100 is peeled from the separator in the semiconductor device manufacturing method using the dicing film 100 described above.
 また、セパレーターが被覆する粘着層2から、このセパレーターを剥がす際には、粘着層2の面に対してセパレーターを90度以上180度以下の角度で剥離を行うことが好ましい。セパレーターを剥離する角度を前記範囲とすることで、粘着層2とセパレーターとの界面以外での剥離を確実に防止することができる。 Further, when peeling off the separator from the adhesive layer 2 covered by the separator, it is preferable to peel the separator at an angle of 90 ° to 180 ° with respect to the surface of the adhesive layer 2. By setting the angle at which the separator is peeled within the above range, peeling at other than the interface between the pressure-sensitive adhesive layer 2 and the separator can be reliably prevented.
次に、本発明のダイシングフィルムを用いて製造された半導体装置について説明する。 Next, a semiconductor device manufactured using the dicing film of the present invention will be described.
<半導体装置>
 図1は、本発明のダイシングフィルムを用いて製造された半導体装置の一例を示す縦断面図である。なお、以下の説明では、図1中の上側を「上」、下側を「下」と言う。
<Semiconductor device>
FIG. 1 is a longitudinal sectional view showing an example of a semiconductor device manufactured using the dicing film of the present invention. In the following description, the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
 図1に示す半導体装置10は、QFP(Quad Flat Package)型の半導体パッケージであり、半導体チップ(半導体素子)20と、半導体チップ20を接着層60を介して支持するダイパッド30と、半導体チップ20と電気的に接続されたリード40と、半導体チップ20を封止するモールド部(封止部)50とを有している。 A semiconductor device 10 illustrated in FIG. 1 is a QFP (Quad Flat Package) type semiconductor package, and includes a semiconductor chip (semiconductor element) 20, a die pad 30 that supports the semiconductor chip 20 via an adhesive layer 60, and the semiconductor chip 20. And leads 40 electrically connected to each other and a mold part (sealing part) 50 for sealing the semiconductor chip 20.
 ダイパッド30は、金属基板で構成され、半導体チップ20を支持する支持体として機能を有するものである。 The die pad 30 is made of a metal substrate and functions as a support for supporting the semiconductor chip 20.
 このダイパッド30は、例えば、Cu、Fe、Niやこれらの合金(例えば、Cu系合金や、Fe-42Niのような鉄・ニッケル系合金)等の各種金属材料で構成される金属基板や、この金属基板の表面に銀メッキや、Ni-Pdメッキが施されているもの、さらにNi-Pdメッキの表面にPd層の安定性を向上するために設けられた金メッキ(金フラッシュ)層が設けられているもの等が用いられる。 The die pad 30 includes, for example, a metal substrate made of various metal materials such as Cu, Fe, Ni, and alloys thereof (for example, Cu-based alloys and iron / nickel-based alloys such as Fe-42Ni), The surface of the metal substrate is plated with silver or Ni—Pd, and the surface of the Ni—Pd plating is provided with a gold plating (gold flash) layer provided to improve the stability of the Pd layer. Are used.
 また、ダイパッド30の平面視形状は、通常、半導体チップ20の平面視形状に対応し、例えば、正方形、長方形等の四角形とされる。 Further, the planar view shape of the die pad 30 usually corresponds to the planar view shape of the semiconductor chip 20 and is, for example, a square such as a square or a rectangle.
 ダイパッド30の外周部には、複数のリード40が、放射状に設けられている。
 このリード40のダイパッド30と反対側の端部は、モールド部50から突出(露出)している。
A plurality of leads 40 are provided radially on the outer periphery of the die pad 30.
An end portion of the lead 40 opposite to the die pad 30 protrudes (exposes) from the mold portion 50.
 リード40は、導電性材料で構成され、例えば、前述したダイパッド30の構成材料と同一のものを用いることができる。 The lead 40 is made of a conductive material, and for example, the same material as that of the die pad 30 described above can be used.
 また、リード40には、その表面に錫メッキ等が施されていてもよい。これにより、マザーボードが備える端子に半田を介して半導体装置10を接続する場合に、半田とリード40との密着性を向上させることができる。 Further, the lead 40 may be tin-plated on the surface thereof. Thereby, when the semiconductor device 10 is connected to the terminals provided on the mother board via the solder, the adhesion between the solder and the leads 40 can be improved.
 ダイパッド30には、接着層55を介して半導体チップ20が固着(固定)されている。 The semiconductor chip 20 is fixed (fixed) to the die pad 30 via the adhesive layer 55.
 この接着層55は、特に限定されないが、例えば、エポキシ系接着剤、アクリル系接着剤、ポリイミド系接着剤およびシアネート系接着剤等の各種接着剤を用いて形成される。また、接着層55には、銀粉や銅粉のような金属粒子が含まれていてもよい。これにより、接着層55の熱伝導性が向上することから、接着層55を介して半導体チップ20からダイパッド30に効率よく熱が伝達されるため、半導体チップ20の駆動時における放熱性が向上する。 The adhesive layer 55 is not particularly limited, and is formed using various adhesives such as an epoxy adhesive, an acrylic adhesive, a polyimide adhesive, and a cyanate adhesive. Further, the adhesive layer 55 may include metal particles such as silver powder or copper powder. As a result, the thermal conductivity of the adhesive layer 55 is improved, so that heat is efficiently transferred from the semiconductor chip 20 to the die pad 30 via the adhesive layer 55, so that heat dissipation during driving of the semiconductor chip 20 is improved. .
 また、半導体チップ20は、電極パッド21を有しており、この電極パッド21とリード40とが、ワイヤー22で電気的に接続されている。これにより、半導体チップ20と各リード40とが電気的に接続されている。 The semiconductor chip 20 has an electrode pad 21, and the electrode pad 21 and the lead 40 are electrically connected by a wire 22. Thereby, the semiconductor chip 20 and each lead 40 are electrically connected.
 このワイヤー22の材質は、特に限定されないが、ワイヤー22は、例えば、Au線やAl線で構成することができる。 The material of the wire 22 is not particularly limited, but the wire 22 can be composed of, for example, Au wire or Al wire.
 そして、ダイパッド30、ダイパッド30の上面側に設けられた各部材およびリード40の内側の部分は、モールド部50により封止されている。その結果として、リード40の外側の端部が、半導体封止材料の硬化物で構成されるモールド部50から突出している。 Further, the die pad 30, each member provided on the upper surface side of the die pad 30, and the inner portion of the lead 40 are sealed by the mold part 50. As a result, the outer end portion of the lead 40 protrudes from the mold portion 50 made of a cured product of the semiconductor sealing material.
 かかる構成の半導体装置は、例えば、本発明のダイシングフィルムを用いて以下のようにして製造される。 The semiconductor device having such a configuration is manufactured, for example, as follows using the dicing film of the present invention.
<半導体装置の製造方法>
図2は、図1に示す半導体装置を、本発明のダイシングフィルムを用い製造する方法を説明するための縦断面図である。なお、以下の説明では、図2中の上側を「上」、下側を「下」と言う。
<Method for Manufacturing Semiconductor Device>
FIG. 2 is a longitudinal sectional view for explaining a method of manufacturing the semiconductor device shown in FIG. 1 using the dicing film of the present invention. In the following description, the upper side in FIG. 2 is referred to as “upper” and the lower side is referred to as “lower”.
まず、基材4と、基材4上に積層された粘着層2とを有するダイシングフィルム100を用意する(図2(a)参照。)。 First, the dicing film 100 which has the base material 4 and the adhesion layer 2 laminated | stacked on the base material 4 is prepared (refer Fig.2 (a)).
このダイシングフィルム100が本発明のダイシングフィルムで構成されるが、その詳細な説明は後に行うこととする。 Although this dicing film 100 is comprised with the dicing film of this invention, the detailed description shall be given later.
次に、図2(b)に示すように、図示しないダイサーテーブルの上に、ダイシングフィルム100を設置し、その中心部122に半導体基板7の半導体素子の無い側の面を、粘着層2の上に置き、軽く押圧し、半導体基板7を積層する。 Next, as shown in FIG. 2 (b), the dicing film 100 is placed on a dicer table (not shown), and the surface of the semiconductor substrate 7 on the side without the semiconductor element is placed on the center portion 122 of the adhesive layer 2. The semiconductor substrate 7 is stacked by placing it on top and pressing lightly.
なお、ダイシングフィルム100に半導体基板7を予め貼着した後に、ダイサーテーブルに設置しても良い。 In addition, after adhering the semiconductor substrate 7 to the dicing film 100 in advance, it may be installed on a dicer table.
次に、図示しない、ダイシングソー(ブレード)を用いて半導体基板7を切断(ダイシング)して半導体基板7を個片化する(図2(c)参照)。 Next, the semiconductor substrate 7 is cut (diced) using a dicing saw (blade) (not shown) to separate the semiconductor substrate 7 (see FIG. 2C).
この際、半導体基板7の切断時に生じる粉塵が飛散するのを防止すること、さらには、半導体基板7が不必要に加熱されるのを抑制することを目的に、半導体基板7には切削水を供給しつつ、半導体基板7を切断する。 At this time, cutting water is applied to the semiconductor substrate 7 for the purpose of preventing the dust generated during the cutting of the semiconductor substrate 7 from being scattered and further suppressing the semiconductor substrate 7 from being heated unnecessarily. The semiconductor substrate 7 is cut while supplying.
また、ダイシングフィルム100は、緩衝作用を有しており、半導体基板7を切断する際の割れ、欠け等を防止する。 Further, the dicing film 100 has a buffering action, and prevents cracks, chips, etc. when the semiconductor substrate 7 is cut.
さらに、ブレードを用いた半導体基板7の切断は、図2(c)に示すように、基材4の厚さ方向の途中まで到達するように実施される。これにより、半導体基板の個片化を確実に実施することができる。 Furthermore, the cutting of the semiconductor substrate 7 using a blade is performed so as to reach the middle of the base material 4 in the thickness direction, as shown in FIG. Thereby, the semiconductor substrate can be surely separated.
次に、ダイシングフィルム100が備える粘着層2にエネルギーを付与することで、粘着層2の半導体基板7に対する粘着性を低下させる。
これにより、粘着層2と半導体基板7との間で剥離が生じる状態とする。
Next, the adhesiveness with respect to the semiconductor substrate 7 of the adhesion layer 2 is reduced by giving energy to the adhesion layer 2 with which the dicing film 100 is provided.
As a result, peeling occurs between the adhesive layer 2 and the semiconductor substrate 7.
粘着層2にエネルギーを付与する方法としては、特に限定されないが、例えば、粘着層2にエネルギー線を照射する方法、粘着層2を加熱する方法等が挙げられるが、中でも、粘着層2にエネルギー線を粘着テープ100の基材4側から照射する方法を用いるのが好ましい。 The method of applying energy to the adhesive layer 2 is not particularly limited, and examples thereof include a method of irradiating the adhesive layer 2 with energy rays, a method of heating the adhesive layer 2, and the like. It is preferable to use a method of irradiating a wire from the substrate 4 side of the adhesive tape 100.
かかる方法は、半導体チップ20が不要な熱履歴を経る必要がなく、また、粘着層2に対して比較的簡単に効率よくエネルギーを付与することができるので、エネルギーを付与する方法として好適に用いられる。 Such a method does not require the semiconductor chip 20 to go through an unnecessary thermal history, and energy can be imparted to the adhesive layer 2 relatively easily and efficiently. It is done.
また、エネルギー線としては、例えば、紫外線、電子線、イオンビームのような粒子線等や、またはこれらのエネルギー線を2種以上組み合わせたものが挙げられる。これらの中でも、特に、紫外線を用いるのが好ましい。紫外線によれば、粘着層2の半導体基板7に対する粘着性を効率よく低下させることができる。 Examples of energy rays include particle beams such as ultraviolet rays, electron beams, and ion beams, or combinations of two or more of these energy rays. Among these, it is particularly preferable to use ultraviolet rays. According to ultraviolet rays, the adhesiveness of the adhesive layer 2 to the semiconductor substrate 7 can be efficiently reduced.
次に、ダイシングフィルム100を図示しないエキスパンド装置で放射状に伸ばして、個片化した半導体基板7(半導体チップ20)を一定の間隔に開き(図2(d)参照。)、その後、この半導体チップ20を、ニードル等を用いて突き上げた状態とし、この状態で、真空コレットまたはエアピンセットによる吸着等によりピックアップする(図2(e)参照。)。 Next, the dicing film 100 is radially expanded by an expanding device (not shown), and the separated semiconductor substrate 7 (semiconductor chip 20) is opened at regular intervals (see FIG. 2D), and then the semiconductor chip. 20 is in a state of being pushed up using a needle or the like, and in this state, pickup is performed by suction or the like using a vacuum collet or air tweezers (see FIG. 2E).
以上のような工程を有する半導体装置の製造方法により、半導体装置10が得られるが、かかる場合に限定されず、各種の形態の半導体パッケージの製造に、ダイシングフィルム100を適用することができ、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)、マトリクス・アレイ・パッケージ・ボール・グリッド・アレイ(MAPBGA)、チップ・スタックド・チップ・サイズ・パッケージ等のメモリやロジック系素子に適用することができる。 Although the semiconductor device 10 is obtained by the method for manufacturing a semiconductor device having the steps as described above, the dicing film 100 can be applied to the manufacture of various types of semiconductor packages without being limited to such a case. , Dual Inline Package (DIP), Plastic Leaded Chip Carrier (PLCC), Low Profile Quad Flat Package (LQFP), Small Outline Package (SOP), Small Outline J Lead Package (SOJ), Thin Small Outline Package (TSOP), Thin Quad Flat Package (TQFP), Tape Carrier Package (TCP), Ball Grid Array (BGA), Chip Size Package (C P), matrix array package Ball Grid Array (MAPBGA), can be applied to a memory or logic system element such as a chip-stacked chip size package.
 以上、本発明の半導体基板加工用ダイシングフィルムについて説明したが、本発明は、これらに限定されるものではない。 As mentioned above, although the dicing film for semiconductor substrate processing of this invention was demonstrated, this invention is not limited to these.
 次に、本発明の具体的実施例について説明する。
 なお、本発明はこれらの実施例の記載に何ら限定されるものではない。
Next, specific examples of the present invention will be described.
In addition, this invention is not limited to description of these Examples at all.
<原料>
実施例及び比較例のダイシングフィルム用基材フィルムの作製に使用した原料は以下の通りである。
 アイオノマー樹脂「ハイミラン1855」(三井デュポンポリケミカル製;金属原子Zn、MFR1.0 融点86℃)
 アイオノマー樹脂「ハイミラン1554」(三井デュポンポリケミカル製;金属原子Zn、MFR1.3 融点97℃)
 アイオノマー樹脂「ハイミラン1650」(三井デュポンポリケミカル製;金属原子Zn、MFR1.5 融点96℃)
アイオノマー樹脂「ハイミラン1652」(三井デュポンポリケミカル製;金属原子Zn、MFR5.5 融点98℃)
アイオノマー樹脂「ハイミラン1601」(三井デュポンポリケミカル製;金属原子Na、MFR1.3 融点97℃)
低密度ポリエチレンLDPE「L211」(住友化学製;融点113℃)
低密度ポリエチレンLDPE「1520F」(宇部丸善ポリエチレン製、114℃)
帯電防止剤「ペレスタット212」(三洋化成工業製;ポリエーテル/ポリオレフィンブロックポリマー)
帯電防止剤「ペレスタット230」(三洋化成工業製;ポリエーテル/ポリオレフィンブロックポリマー)
帯電防止剤「エレクトロストリッパー AC」(花王製;両性界面活性剤)
<Raw material>
The raw material used for preparation of the base film for dicing films of Examples and Comparative Examples is as follows.
Ionomer resin "High Milan 1855" (Mitsui DuPont Polychemicals; metal atom Zn, MFR1.0 melting point 86 ° C)
Ionomer resin "High Milan 1554" (Mitsui DuPont Polychemicals; metal atom Zn, MFR1.3 melting point 97 ° C)
Ionomer resin "High Milan 1650" (Mitsui DuPont Polychemicals; metal atom Zn, MFR1.5 melting point 96 ° C)
Ionomer resin “High Milan 1652” (Mitsui DuPont Polychemicals; metal atom Zn, MFR 5.5 melting point 98 ° C.)
Ionomer resin "High Milan 1601" (Mitsui DuPont Polychemicals; metal atom Na, MFR1.3 melting point 97 ° C)
Low density polyethylene LDPE “L211” (manufactured by Sumitomo Chemical; melting point 113 ° C.)
Low density polyethylene LDPE “1520F” (Ube Maruzen polyethylene, 114 ° C.)
Antistatic agent “Pelestat 212” (manufactured by Sanyo Chemical Industries; polyether / polyolefin block polymer)
Antistatic agent "Pelestat 230" (manufactured by Sanyo Chemical Industries; polyether / polyolefin block polymer)
Antistatic agent "Electro Stripper AC" (manufactured by Kao; amphoteric surfactant)
<粘着剤層原料>
実施例および比較例の粘着剤層には下記原料を使用した。
<ベース樹脂>
 下記アクリル共重合体は、ブチルアクリレート(BA)とアクリル酸(AA)を下記重量比率にて混合し、常法によりトルエン溶媒中にて溶液重合させて得た。
アクリル共重合体1(BA/AA=90/10,重量平均分子量60万)
<UV硬化樹脂>
ウレタンアクリレート1(新中村化学工業株式会社、品名:UA-33H):20重量部
<架橋剤>
ポリイソシアネート化合物(商品名「コロネートL」、日本ポリウレタン工業株式会社製)
<光開始剤>
ベンゾフェノン系光開始剤(商品名「イルガキュア651」、チバ・スペシャリティ・ケミカルズ株式会社製)
<Raw material for adhesive layer>
The following raw materials were used for the pressure-sensitive adhesive layers of Examples and Comparative Examples.
<Base resin>
The following acrylic copolymer was obtained by mixing butyl acrylate (BA) and acrylic acid (AA) in the following weight ratio and solution polymerizing in a toluene solvent by a conventional method.
Acrylic copolymer 1 (BA / AA = 90/10, weight average molecular weight 600,000)
<UV curable resin>
Urethane acrylate 1 (Shin Nakamura Chemical Co., Ltd., product name: UA-33H): 20 parts by weight <crosslinking agent>
Polyisocyanate compound (trade name “Coronate L”, manufactured by Nippon Polyurethane Industry Co., Ltd.)
<Photoinitiator>
Benzophenone photoinitiator (trade name “Irgacure 651”, manufactured by Ciba Specialty Chemicals Co., Ltd.)
 (実施例1)
 <ダイシングフィルム用基材フィルムの作成>
 表面層形成用樹脂として、アイオノマー樹脂「ハイミラン1855」を用いた。
 また、低密度ポリエチレンLDPE「F222NH」80質量%と、帯電防止剤「ペレスタット212」20質量%をドライブレンドし、基材層形成用樹脂を得た。そして、得られた各層形成用樹脂を、200℃に調整されたそれぞれの押出機に供給し、表面層/基材層の順序になるように、200℃の2層ダイスから押出し、20℃に設定された冷却ロールにて冷却固化して、実質的に無延伸の状態で巻き取り、2層構造のダイシングフィルム用基材フィルムを得た。実施例1において、表面層の厚みは100μm、基材層の厚みは50μm、ダイシングフィルム用基材フィルム全体の厚みは150μmであった。
(Example 1)
<Creation of substrate film for dicing film>
An ionomer resin “Himiran 1855” was used as the surface layer forming resin.
Further, 80% by mass of low density polyethylene LDPE “F222NH” and 20% by mass of the antistatic agent “Pelestat 212” were dry blended to obtain a base layer forming resin. Then, each obtained layer forming resin is supplied to each extruder adjusted to 200 ° C., and extruded from a two-layer die at 200 ° C. so as to be in the order of surface layer / base material layer. It cooled and solidified with the set cooling roll, wound up in the substantially unstretched state, and obtained the base film for dicing films of a 2 layer structure. In Example 1, the thickness of the surface layer was 100 μm, the thickness of the base material layer was 50 μm, and the total thickness of the base film for dicing film was 150 μm.
 <ダイシングフィルムの作成>
以上のようにして作製した実施例1のダイシングフィルム用基材フィルムの表面層上に粘着剤層を設け、ダイシングフィルムを得た。具体的には、上記ベース樹脂49.8質量%、UV硬化樹脂39.8質量%、架橋剤6.5質量%および光開始剤3.9質量%を使用し、酢酸エチルに溶解混合した後、乾燥後の厚さが20μmになるようにダイシングフィルム用基材フィルムの表面層上にバーコート塗工した後、80℃で10分間乾燥してダイシングフィルムを得た。
<Creating a dicing film>
A pressure-sensitive adhesive layer was provided on the surface layer of the base film for dicing film of Example 1 produced as described above to obtain a dicing film. Specifically, after 49.8% by mass of the base resin, 39.8% by mass of the UV curable resin, 6.5% by mass of the crosslinking agent, and 3.9% by mass of the photoinitiator were dissolved and mixed in ethyl acetate. Then, after bar coating was applied on the surface layer of the substrate film for dicing film so that the thickness after drying was 20 μm, it was dried at 80 ° C. for 10 minutes to obtain a dicing film.
(実施例2~9、比較例1、2)
表1に記載のように樹脂配合を変更した以外は、実施例1と同様にして、ダイシングフィルム用基材フィルムおよびダイシングフィルムを作製した。
(Examples 2 to 9, Comparative Examples 1 and 2)
A substrate film for dicing film and a dicing film were produced in the same manner as in Example 1 except that the resin composition was changed as shown in Table 1.
 <切削屑特性>
切削屑特性は、次のようにして評価した。まず、実施例1~9、比較例1、2のダイシングフィルムに、ガラスエポキシ製ダミー基板(封止材:G760L、住友ベークライト株式会社製)(60mmx15mmx1.2mm厚)を貼り付け、下記条件でダイシングを実施し、カットラインの観察を行い、カットラインから出てくる長さ100μm以上の切削屑の数をカウントし、切削屑特性を評価し、評価結果を表1に示した。
判定結果は以下の通りである。
切削屑の数が0~5本:◎
切削屑の数が6~10本 :○
切削屑の数が11本以上 :×
[ダイシング条件] 
ダイシング装置:「DAD―3350」(商品名、DISCO社製)
ダイシングブレード:「P08-SDC220」(商品名、DISCO社製)
ブレード回転数:30000rpm
カット速度:100mm/sec
切込み:ダイシングフィルム表面から100μm(表面層に対する切込み量は80μm)
カットサイズ:10mm×10mm
ブレードクーラー:2L/min
<Cutting properties>
The cutting waste characteristics were evaluated as follows. First, a glass epoxy dummy substrate (sealing material: G760L, manufactured by Sumitomo Bakelite Co., Ltd.) (60 mm x 15 mm x 1.2 mm thickness) was attached to the dicing films of Examples 1 to 9 and Comparative Examples 1 and 2, and dicing was performed under the following conditions. The cutting line was observed, the number of cutting scraps having a length of 100 μm or more coming out from the cutting line was counted, the cutting scrap characteristics were evaluated, and the evaluation results are shown in Table 1.
The determination results are as follows.
The number of cutting waste is 0-5: ◎
Number of cutting scraps 6-10: ○
The number of cutting scraps is 11 or more: ×
[Dicing condition]
Dicing machine: “DAD-3350” (trade name, manufactured by DISCO)
Dicing blade: “P08-SDC220” (trade name, manufactured by DISCO)
Blade rotation speed: 30000 rpm
Cutting speed: 100mm / sec
Cutting: 100 μm from the dicing film surface (the cutting depth for the surface layer is 80 μm)
Cut size: 10mm x 10mm
Blade cooler: 2L / min
 <耐融着特性>
耐融着特性は、次のようにして評価した。まず、実施例1~9、比較例1、2のダイシングフィルムに、ガラスエポキシ製ダミー基板(封止材:G760L、住友ベークライト株式会社製)(60mmx15mmx1.2mm厚)を貼り付け、下記条件でダイシングを実施した。この際、ダイサーテーブルへの基材フィルムの融着特性を評価した。ダイシング後、ダイサーテーブルへの融着が見られるかどうかを評価した。
ダイサーテーブルへの融着が見られない:○
ダイサーテーブルへの融着が見られる :×
[ダイシング条件] 
ダイシング装置:「DAD―3350」(商品名、DISCO社製)
ダイシングブレード:「P08-SDC220」(商品名、DISCO社製)
ブレード回転数:30000rpm
カット速度:100mm/sec
切込み:ダイシングフィルム表面から100μm(表面層に対する切込み量は80μm)
カットサイズ:2mm×2mm
ブレードクーラー:0.5L/min
<Fusing resistance>
The anti-fusing property was evaluated as follows. First, a glass epoxy dummy substrate (sealing material: G760L, manufactured by Sumitomo Bakelite Co., Ltd.) (60 mm x 15 mm x 1.2 mm thickness) was attached to the dicing films of Examples 1 to 9 and Comparative Examples 1 and 2, and dicing was performed under the following conditions. Carried out. Under the present circumstances, the melt | fusion characteristic of the base film to a dicer table was evaluated. After dicing, whether or not fusion to the dicer table was observed was evaluated.
No fusion to the dicer table: ○
Fusion to the dicer table can be seen: ×
[Dicing condition]
Dicing machine: “DAD-3350” (trade name, manufactured by DISCO)
Dicing blade: “P08-SDC220” (trade name, manufactured by DISCO)
Blade rotation speed: 30000 rpm
Cutting speed: 100mm / sec
Cutting: 100 μm from the dicing film surface (the cutting depth for the surface layer is 80 μm)
Cut size: 2mm x 2mm
Blade cooler: 0.5L / min
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
表1に示すように、実施例1~9のダイシングフィルムは、基材が、基材層と、前記基材層の一主面上に配置された表面層との2層からなり、前記基材層は、低密度ポリエチレンを含有し、前記表面層は、アイオノマー樹脂を含有するため、切削屑特性、耐融着特性に優れていた。
 対して、比較例1のダイシングフィルムは、基材が、アイオノマー樹脂からのみなるため 耐融着特性が劣るものとなった。
また、比較例2のダイシングフィルムは、基材が、低密度ポリエチレンからのみなるため 切削屑特性が劣るものとなった。
As shown in Table 1, in the dicing films of Examples 1 to 9, the base material was composed of two layers of a base material layer and a surface layer disposed on one main surface of the base material layer. Since the material layer contains low density polyethylene and the surface layer contains an ionomer resin, the material layer was excellent in cutting dust characteristics and anti-fusing characteristics.
On the other hand, the dicing film of Comparative Example 1 was inferior in the anti-fusing property because the substrate was composed solely of an ionomer resin.
Moreover, since the base material consists only of low density polyethylene, the dicing film of the comparative example 2 was inferior in cutting waste characteristics.
本発明のダイシングフィルム用記載フィルムを使用することにより、ダイシング工程において、切削屑を低減でき、かつ、エキスパンド性及び復元性に優れるので、産業上有用である。 By using the description film for dicing film of the present invention, the cutting waste can be reduced in the dicing process, and the expandability and the recoverability are excellent, which is industrially useful.
4 基材
41 基材層
42 表面層
7 半導体基板
9 ウエハリング
10 半導体装置
20 半導体チップ
21 電極パッド
22 ワイヤー
30 ダイパッド
40 リード
50 モールド部
60 接着層
100 ダイシングフィルム
121 外周部
122 中心部
4 base material 41 base material layer 42 surface layer 7 semiconductor substrate 9 wafer ring 10 semiconductor device 20 semiconductor chip 21 electrode pad 22 wire 30 die pad 40 lead 50 mold part 60 adhesive layer 100 dicing film 121 outer peripheral part 122 central part

Claims (12)

  1. 基材層と、前記基材層の一主面上に配置された表面層と、を含むダイシングフィルム用基材フィルムであって、
     前記基材層は、低密度ポリエチレンを含有し、
    前記表面層は、アイオノマー樹脂を含有し、
    前記アイオノマー樹脂のMFR(測定方法:JIS K 7210準拠、測定条件:温度190℃、荷重21.18N)が3g/10min以下であることを特徴とすることを特徴とするダイシングフィルム用基材フィルム。
    A base film for a dicing film comprising a base layer and a surface layer disposed on one main surface of the base layer,
    The substrate layer contains low density polyethylene,
    The surface layer contains an ionomer resin,
    A base film for a dicing film characterized in that the ionomer resin has an MFR (measurement method: JIS K 7210 compliant, measurement conditions: temperature 190 ° C., load 21.18 N) of 3 g / 10 min or less.
  2. 前記アイオノマー樹脂は、エチレン、(メタ)アクリル酸、および、(メタ)アクリル酸アルキルエステルを重合体の構成成分とする3元共重合体を金属イオンで架橋したものであることを特徴とする請求項1記載のダイシングフィルム用基材フィルム。 The ionomer resin is obtained by crosslinking a terpolymer having ethylene, (meth) acrylic acid, and (meth) acrylic acid alkyl ester as a constituent component of the polymer with a metal ion. Item 8. A substrate film for dicing film according to Item 1.
  3. 前記金属イオンが、亜鉛イオンであることを特徴とする請求項2記載のダイシングフィルム用基材フィルム。 The base film for a dicing film according to claim 2, wherein the metal ions are zinc ions.
  4. 前記低密度ポリエチレンの融点が90℃以上140℃以下であることを特徴とする、請求項1ないし3のいずれか1項に記載のダイシングフィルム用基材フィルム。 The base film for a dicing film according to any one of claims 1 to 3, wherein the low-density polyethylene has a melting point of 90 ° C or higher and 140 ° C or lower.
  5. 前記基材層は帯電防止剤を含有することを特徴とする、請求項1ないし4のいずれか1項に記載のダイシングフィルム用基材フィルム。 The base film for a dicing film according to claim 1, wherein the base material layer contains an antistatic agent.
  6. 前記表面層は、ダイシングブレードによって切り込まれる切込み層である、請求項1ないし5のいずれか1項に記載のダイシングフィルム用基材フィルム。 The base film for a dicing film according to any one of claims 1 to 5, wherein the surface layer is a cut layer cut by a dicing blade.
  7. 請求項1ないし6のいずれか1項に記載のダイシングフィルム用基材フィルムの表面層側の主面上に、粘着層が設けられた、ダイシングフィルム。 A dicing film in which an adhesive layer is provided on the main surface of the surface layer side of the base film for dicing film according to any one of claims 1 to 6.
  8. 前記粘着層は、粘着性を有するベース樹脂を含有する請求項7に記載のダイシングフィルム。 The dicing film according to claim 7, wherein the adhesive layer contains a base resin having adhesiveness.
  9. 前記ベース樹脂は、アクリル系樹脂である請求項7または8に記載のダイシングフィルム。 The dicing film according to claim 7 or 8, wherein the base resin is an acrylic resin.
  10. 前記粘着層は、さらに、エネルギーの付与により硬化する硬化性樹脂を含有する請求項7ないし9のいずれか1項に記載のダイシングフィルム。 The dicing film according to any one of claims 7 to 9, wherein the adhesive layer further contains a curable resin that is cured by application of energy.
  11. 請求項7ないし10のいずれか1項に記載のダイシングフィルム上に、半導体基板が積層された半導体基板付きダイシングフィルム。 A dicing film with a semiconductor substrate, wherein a semiconductor substrate is laminated on the dicing film according to any one of claims 7 to 10.
  12. 請求項7ないし11のいずれかの1項に記載のダイシングフィルムを用いたブレードダイシング方法。 A blade dicing method using the dicing film according to any one of claims 7 to 11.
PCT/JP2015/082059 2014-11-19 2015-11-16 Dicing film WO2016080324A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016524156A JP6103140B2 (en) 2014-11-19 2015-11-16 Dicing film
CN201580062296.2A CN107004587A (en) 2014-11-19 2015-11-16 Cutting film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234102 2014-11-19
JP2014234102 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016080324A1 true WO2016080324A1 (en) 2016-05-26

Family

ID=56013865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082059 WO2016080324A1 (en) 2014-11-19 2015-11-16 Dicing film

Country Status (5)

Country Link
JP (1) JP6103140B2 (en)
CN (1) CN107004587A (en)
MY (1) MY164338A (en)
TW (1) TWI642717B (en)
WO (1) WO2016080324A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186444A (en) * 2016-04-05 2017-10-12 パナック株式会社 Carrier sheet and method for producing cut member
CN109312199A (en) * 2016-09-20 2019-02-05 琳得科株式会社 Semiconductor machining bonding sheet
JP2019091860A (en) * 2017-11-16 2019-06-13 リンテック株式会社 Method for manufacturing semiconductor device
JP2019091861A (en) * 2017-11-16 2019-06-13 リンテック株式会社 Method for manufacturing semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154686B2 (en) * 2018-06-06 2022-10-18 株式会社ディスコ Wafer processing method
KR102359469B1 (en) * 2020-01-31 2022-02-08 주식회사 케이비엘러먼트 Dicing tape and manufacturing method for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200076A (en) * 2008-02-19 2009-09-03 Furukawa Electric Co Ltd:The Tape for processing wafer
WO2012014487A1 (en) * 2010-07-28 2012-02-02 三井・デュポンポリケミカル株式会社 Laminate film, and film for use in production of semiconductor comprising same
JP2012089732A (en) * 2010-10-21 2012-05-10 Achilles Corp Base material film of tape for semiconductor manufacturing process
WO2012172959A1 (en) * 2011-06-14 2012-12-20 電気化学工業株式会社 Adhesive sheet, and method for manufacturing electronic component
JP2015162561A (en) * 2014-02-27 2015-09-07 住友ベークライト株式会社 dicing film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744196B2 (en) * 2005-05-31 2011-08-10 電気化学工業株式会社 Adhesive sheet
JP2011210887A (en) * 2010-03-29 2011-10-20 Furukawa Electric Co Ltd:The Adhesive tape for processing radiation curing wafer
JP4976522B2 (en) * 2010-04-16 2012-07-18 日東電工株式会社 Thermosetting die bond film, dicing die bond film, and semiconductor device manufacturing method
JP5210346B2 (en) * 2010-04-19 2013-06-12 電気化学工業株式会社 Method for manufacturing adhesive sheet and electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200076A (en) * 2008-02-19 2009-09-03 Furukawa Electric Co Ltd:The Tape for processing wafer
WO2012014487A1 (en) * 2010-07-28 2012-02-02 三井・デュポンポリケミカル株式会社 Laminate film, and film for use in production of semiconductor comprising same
JP2012089732A (en) * 2010-10-21 2012-05-10 Achilles Corp Base material film of tape for semiconductor manufacturing process
WO2012172959A1 (en) * 2011-06-14 2012-12-20 電気化学工業株式会社 Adhesive sheet, and method for manufacturing electronic component
JP2015162561A (en) * 2014-02-27 2015-09-07 住友ベークライト株式会社 dicing film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186444A (en) * 2016-04-05 2017-10-12 パナック株式会社 Carrier sheet and method for producing cut member
CN109312199A (en) * 2016-09-20 2019-02-05 琳得科株式会社 Semiconductor machining bonding sheet
CN109312199B (en) * 2016-09-20 2021-11-02 琳得科株式会社 Adhesive sheet for semiconductor processing
JP2019091860A (en) * 2017-11-16 2019-06-13 リンテック株式会社 Method for manufacturing semiconductor device
JP2019091861A (en) * 2017-11-16 2019-06-13 リンテック株式会社 Method for manufacturing semiconductor device
JP7067904B2 (en) 2017-11-16 2022-05-16 リンテック株式会社 Manufacturing method of semiconductor device
JP7174518B2 (en) 2017-11-16 2022-11-17 リンテック株式会社 Semiconductor device manufacturing method

Also Published As

Publication number Publication date
TWI642717B (en) 2018-12-01
TW201629141A (en) 2016-08-16
MY164338A (en) 2017-12-15
JP6103140B2 (en) 2017-03-29
JPWO2016080324A1 (en) 2017-04-27
CN107004587A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6103140B2 (en) Dicing film
JP6278164B1 (en) Adhesive tape for semiconductor substrate processing
CN110352472B (en) Adhesive tape for processing semiconductor substrate and method for manufacturing semiconductor device
JP6318750B2 (en) Adhesive tape for semiconductor wafer processing
JP6330468B2 (en) Dicing film base film and dicing film
JP2016096239A (en) Adhesive tape for processing wafer for semiconductor
JP6303754B2 (en) Dicing film
JP6477284B2 (en) Adhesive tape for semiconductor wafer processing
JP6623639B2 (en) Temporary fixing tape
JP6733804B1 (en) Adhesive tape and base material for adhesive tape
JP6733803B1 (en) Adhesive tape for sticking substrates and base material for adhesive tape
JP6128043B2 (en) Adhesive tape for semiconductor wafer processing
JP7035720B2 (en) Adhesive tape for processing semiconductor substrates
JP2016009822A (en) Dicing film
JP7205596B1 (en) Adhesive tape
JP6870760B1 (en) Adhesive tape for attaching the substrate and base material for the adhesive tape
JP2016162787A (en) Base material film for dicing film and dicing film
JP2017228663A (en) Semiconductor element protecting adhesive tape and method of producing semiconductor element protecting adhesive tape
JP2024049225A (en) Adhesive tape
JP2023084049A (en) Adhesive tape
JP2022145299A (en) Adhesive tape
JP2022145297A (en) Adhesive tape
JP2021129088A (en) Adhesive tape for sticking to substrate, and base material for adhesive tape
JP2023119535A (en) Adhesive tape
JP2017143124A (en) Adhesive tape for processing semiconductor wafer and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016524156

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861270

Country of ref document: EP

Kind code of ref document: A1