WO2016078411A1 - 一种功放电压调节方法及装置 - Google Patents

一种功放电压调节方法及装置 Download PDF

Info

Publication number
WO2016078411A1
WO2016078411A1 PCT/CN2015/082242 CN2015082242W WO2016078411A1 WO 2016078411 A1 WO2016078411 A1 WO 2016078411A1 CN 2015082242 W CN2015082242 W CN 2015082242W WO 2016078411 A1 WO2016078411 A1 WO 2016078411A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power amplifier
voltage
peak
operating voltage
Prior art date
Application number
PCT/CN2015/082242
Other languages
English (en)
French (fr)
Inventor
陈永红
郭天生
张金超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15862102.9A priority Critical patent/EP3209071B1/en
Priority to JP2017527324A priority patent/JP2018500809A/ja
Publication of WO2016078411A1 publication Critical patent/WO2016078411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • This paper relates to the field of communication technologies, and in particular, to a power amplifier voltage adjustment method and device.
  • the power amplifier is a high-power transmitting module on the mobile base station.
  • the power consumption of the power amplifier on the 80W rated power base station accounts for about 80% of the total power consumption of the base station, so it is very important for the energy-saving design of the power amplifier.
  • the mobile base station has low transmission power when the bearer service and traffic are low. At this time, the power supply voltage of the power amplifier can be adjusted to a lower position. When the bearer service and traffic increase, the power supply voltage needs to be increased as the power of the power amplifier increases.
  • the related art mobile base station power amplifier voltage regulation technology generally uses the average power as the voltage gear position judgment reference, which is suitable for a single application scenario in which the signal configuration has a certain peak-to-average ratio remains unchanged. If the transmission signal configuration changes, the output signal peak-to-average ratio occurs. In the case of large changes, the corresponding relationship between the average power and the power supply voltage of the power amplifier will change. When the power supply voltage does not meet the power output of the power amplifier, the output RF index will be seriously deteriorated, which may cause the transmitter to fail to work normally.
  • GSM Global System for Mobile Communication
  • LTE Long Term Evolution
  • Pressure design these methods can be used in single-standard wireless base station products, and can not be applied to multi-system common platform base station products.
  • the related art power amplifier voltage regulation technology is only applicable to a single system base station cannot be applied to multiple systems. Base station, and there will be cases where the transmitter does not work properly after the power amplifier is adjusted.
  • the embodiment of the invention provides a power amplifier voltage adjusting method and device, which can solve the problem that the power amplifier voltage regulating technology in the related art may have a problem that the transmitter cannot work normally after the power amplifier is adjusted and cannot be applied to the multi-standard base station.
  • the embodiment of the invention provides a power amplifier voltage adjustment method, which is applied to a multi-standard base station, and includes the following steps:
  • the operating voltage of the power amplifier is adjusted according to the peak power and the saturation power of the power amplifier.
  • the step of adjusting an operating voltage of the power amplifier according to the peak power and a saturation power of the power amplifier includes:
  • the peak power is less than a minimum power in a power range corresponding to a current working voltage of the power amplifier, acquiring a target operating voltage of the power amplifier according to the peak power and a saturation power of the power amplifier, according to the target operating voltage reduction The working voltage of the power amplifier.
  • the step of acquiring the target working voltage of the power amplifier according to the peak power and the saturation power of the power amplifier includes:
  • the correspondence table includes: a correspondence table between the saturation power of the power amplifier and the working voltage at the multi-frequency point;
  • the table is obtained according to the corresponding relationship between the peak power, the preset power saturation power and the working voltage
  • the steps of taking the target working voltage include:
  • the corresponding target working voltage is directly obtained from the correspondence table according to the peak power
  • the step of obtaining an average power of the transmitted signal includes:
  • the power of the transmitted signal is detected to obtain the average power of the transmitted signal.
  • the step of performing power detection on the transmit signal to obtain an average power of the transmit signal includes:
  • the method further includes:
  • the method before acquiring the target working voltage and increasing or decreasing the working voltage of the power amplifier according to the target working voltage, the method further includes:
  • the step of adjusting a peak power of the transmit signal includes:
  • the peak power of the transmitted signal is adjusted by adjusting the peak clipping threshold of the transmitted signal to the second peak clipping threshold.
  • the method before the increasing or decreasing the operating voltage of the power amplifier according to the target operating voltage, the method further includes:
  • the amount of gain compensation performed on the transmitted signal during radio frequency processing is adjusted to the gain change amount.
  • the step of acquiring the gain variation of the power amplifier includes:
  • the correspondence table between the preset working voltage and the power amplifier gain variation includes: a correspondence table between the working voltage of the multi-frequency point and the power amplifier gain variation;
  • the step of acquiring the gain change amount of the power amplifier according to the correspondence table between the target working voltage, the preset working voltage, and the power amplifier gain change amount includes:
  • the embodiment of the invention further provides a power amplifier voltage adjusting device, which is applied to a multi-standard base station, comprising: a first acquiring module, a second acquiring module and a voltage adjusting module, wherein:
  • the first acquiring module is configured to acquire an average power and a peak-to-average ratio of the transmitted signal
  • the second obtaining module is configured to obtain a peak power of the transmitting signal according to the average power and a peak-to-average ratio;
  • the voltage regulation module is configured to be based on the peak power and a saturation power of the power amplifier The operating voltage of the power amplifier is adjusted.
  • the voltage regulation module is configured to:
  • the peak power is less than a minimum power in a power range corresponding to a current working voltage of the power amplifier, acquiring a target operating voltage of the power amplifier according to the peak power and a saturation power of the power amplifier, according to the target operating voltage reduction The working voltage of the power amplifier.
  • the voltage adjustment module acquires the target working voltage of the power amplifier according to the peak power and the saturation power of the power amplifier, which means that the voltage adjustment module is based on the peak power, the preset power amplifier saturation power, and A correspondence table of operating voltages obtains the target operating voltage.
  • the device further includes: a power adjustment module;
  • the power adjustment module is configured to adjust a peak power of the transmit signal to be less than or equal to the peak power before the voltage adjustment module acquires a target operating voltage and increases an operating voltage of the power amplifier according to the target operating voltage The saturated power corresponding to the target operating voltage.
  • the device further includes: a gain adjustment module:
  • the gain adjustment module is configured to acquire a gain variation of the power amplifier before the voltage adjustment module raises or lowers an operating voltage of the power amplifier according to the target operating voltage, and the transmitting the radio frequency during the processing The amount of gain compensation performed by the signal is adjusted to the amount of gain change.
  • the gain adjustment module acquires the gain change amount of the power amplifier, where the gain adjustment module acquires the power amplifier according to the correspondence relationship between the target working voltage, the preset working voltage, and the power amplifier gain change amount. The amount of gain change.
  • the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
  • the embodiment of the present invention provides a method and a device for adjusting a power amplifier voltage, which can effectively improve the power consumption of a power amplifier in a multi-standard base station.
  • the power amplifier voltage adjustment method provided by the embodiment of the present invention is applied to a multi-standard base station, including: acquiring and transmitting Average power and peak-to-average ratio of the signal; obtaining peak power of the transmitted signal according to the average power and peak-to-average ratio; according to the peak power and the power amplifier The saturation power is used to adjust the working voltage of the power amplifier.
  • the voltage of the power amplifier can be adjusted according to the peak power and the saturation power of the power amplifier, so that the peak power of the transmitted signal and the saturation power point of the power amplifier Consistent, no matter how the peak power of the transmitted signal changes, the power amplifier module always works near the saturation point; since the power amplifier module always works near the saturation point, it avoids the situation that the transmitter cannot work normally after the voltage regulation, in addition, from the above method
  • the method of the embodiment of the present invention is not limited by the type of the base station system, so it can also be applied to a multi-standard base station.
  • the voltage regulation method of the embodiment of the present invention implements low-voltage power supply at low transmission power and high-voltage power supply at high transmission power. The power consumption of the power amplifier is reduced, thereby improving the efficiency of the entire base station system and reducing power consumption.
  • FIG. 1 is a schematic flow chart of a method for adjusting a power amplifier voltage according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a power amplifier voltage adjustment method according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a frame for adjusting a power amplifier voltage according to Embodiment 4 of the present invention.
  • FIG. 4 is a schematic flowchart of a power amplifier adjustment main control according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic flowchart of a voltage setting according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic diagram of a power amplifier voltage initialization initialization process according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic structural diagram of a first power amplifier voltage adjusting device according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic structural diagram of a second power amplifier voltage adjusting device according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic structural diagram of a third power amplifier voltage adjusting device according to Embodiment 5 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides a new voltage regulation method according to the change of the peak power.
  • the power amplifier working voltage is adapted to make the power amplifier work at a saturated power point, which effectively reduces the power consumption of the power amplifier; as shown in FIG. 1 , the embodiment provides a power amplifier voltage adjustment method, which is applied to a multi-standard base station, including the following Steps:
  • Step 101 Obtain an average power and a peak-to-average ratio of the transmitted signal.
  • the timing of obtaining the average power and the peak-to-average ratio in this step may be arbitrary, and may be simultaneous or sequential.
  • the average power of the transmitted signal obtained in this step may include the following two methods:
  • the power of the transmitted signal configured by the network management system is generally the average power of the transmitted signal, so the average power can be obtained by directly obtaining the configuration data.
  • the method is to perform power detection on the transmitted signal in real time to obtain average power, for example, monitoring and detecting changes in the transmitted digital power in real time.
  • the average power is the maximum slot power of the GSM system; the GSM baseband data needs to be adjusted according to the maximum slot power according to the time slot corresponding user;
  • the average power is the maximum symbol power of the LTE system product
  • the LTE baseband signal takes the symbol as the duration
  • the general reference symbol power is relatively high
  • the result of the base station system's own transmit power TSSI detection can be used. At this time, the detected transmit power is the average power.
  • the peak-to-average ratio of the transmitted signal is calculated by software at the time of initialization.
  • the peak-to-average ratio is the ratio of the peak value to the mean value.
  • the calculation formula is as follows:
  • Cfr_e_gate is the corresponding clipping peak limit at rated power
  • power_e_abs_ave is the mean square power of the output data after peak clipping at rated power.
  • Step 102 Obtain a peak power of the transmitted signal according to the average power and a peak-to-average ratio
  • the peak power of the transmitted signal is obtained by summing the peak-to-average ratio of the signal and the average power.
  • Step 103 Working on the power amplifier according to the peak power and the saturation power of the power amplifier The voltage is adjusted.
  • This step can include:
  • the peak power is greater than the maximum power in the power range corresponding to the current working voltage of the power amplifier, acquiring a target working voltage of the power amplifier according to the peak power and the saturation power of the power amplifier, and increasing according to the target working voltage
  • the working voltage of the power amplifier that is, boosting the power amplifier
  • the operating voltage of the power amplifier is the voltage drop of the power amplifier.
  • the method of the embodiment can adjust the voltage of the power amplifier according to the peak power and the saturation power of the power amplifier, so that the peak power of the transmitted signal and the saturation power point of the power amplifier are consistent, and the power amplifier module always works near the saturation point regardless of the peak power of the transmitted signal. Since the power amplifier module always works in the vicinity of the saturation point, the situation that the transmitter does not work normally after the voltage regulation is avoided.
  • the method of the embodiment of the present invention is not limited by the type of the base station system, so It can be applied to a multi-standard base station; the voltage regulation method of the embodiment realizes low-voltage power supply at low transmission power, high-voltage power supply at high transmission power, and reduces power consumption of the power amplifier, thereby improving efficiency of the entire base station system and reducing power consumption.
  • the process of acquiring the target operating voltage of the power amplifier according to the peak power and the saturation power of the power amplifier may include:
  • a correspondence table between the saturation power of the power amplifier and the working voltage (hereinafter referred to as a saturation power meter) may be pre-stored. After the peak power is obtained, the peak power is matched in the saturation power meter to obtain a corresponding target voltage.
  • the saturated power meter When the saturated power meter has a saturated power equal to the peak power, the working voltage corresponding to the saturated power is directly obtained, and the working voltage is the target working voltage, that is, the voltage that the power amplifier needs to be finally adjusted;
  • the saturation power meter needs to be actually tested.
  • Each power amplifier can be tested on the production line and a table can be established for the power amplifier individual.
  • Each type of power amplifier can be tested in the laboratory to establish a table for each model. Creating a table for each model will reduce the complexity of the production process, but the table content does not correspond to each power amplifier.
  • the power amplifier itself has a certain batch dispersion due to the production and raw materials.
  • the voltage obtained by the test needs to be saturated.
  • the power is subjected to a certain retreat processing, which generally returns 0.3dB to 0.5dB, ensuring that each amplifier can meet the power supply requirements.
  • the voltage gear interval of the power amplifier is determined by the adjustment accuracy of the power module, which is generally 1V or 2V.
  • the saturated power meter is a multi-frequency point saturated power meter, which records the correspondence between the saturation power and the power amplifier operating voltage at each frequency point. Since the center frequency of the transmitting base station is not accurately corresponding to the existing frequency point on the voltage regulating table when the base station is actually applied on the network, the saturated power meter needs to be processed in actual use.
  • the process of obtaining the target working voltage according to the relationship between the peak power and the preset power saturation power and the operating voltage includes:
  • the corresponding target working voltage is directly obtained according to the peak power and the correspondence table, and the saturation power meter does not need to be processed.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the transmission power will increase.
  • the power module for mobile base stations in the industry can achieve a boost of 100 milliseconds.
  • the judgment period of the general transmission power is several hundred milliseconds.
  • the embodiment provides a power amplifier voltage adjustment method, including the following steps:
  • Step 201 Perform power detection on the transmitted signal according to a preset period to obtain an average power of the transmitted signal, and calculate a peak-to-average ratio of the transmitted signal.
  • the preset period can be set to 200ms.
  • Step 202 Obtain a current peak power of the transmitted signal according to an average power and a peak-to-average ratio
  • Step 203 When the peak power is less than the minimum power in the power range corresponding to the current working voltage of the power amplifier, determine whether the current power of the peak power is less than or equal to a preset threshold. If yes, go to step 204. If not, return to step 201;
  • the counter can be used to record the current number of times that the peak power is less than the minimum power, that is, the number of times the step-down operation is required is determined.
  • the counter is incremented by one, and if it is determined that the step is not the step-down operation, the counter is cleared. . That is to say, the step-down operation can be performed when it is continuously determined that the number of times the step-down operation is required is greater than a preset threshold, and if not, the power is continuously detected for determination.
  • the step-down operation is performed.
  • Step 204 Acquire a target operating voltage according to the peak power and the saturation power of the power amplifier, and reduce the working voltage of the power amplifier according to the target operating voltage.
  • the step-down operation in the case that the average power is the digital power detected in real time, if the power amplifier step-down operation is required for the n times, the step-down operation is performed, and if not, the step-down operation is not performed;
  • the method lengthens the determination time of the step-down operation, and the judgment condition becomes stricter, and the voltage adjustment ping-pong repetition is avoided at a certain voltage position or voltage value.
  • the power amplifier voltage when the difference between the target working voltage and the current working voltage is relatively large, the power amplifier voltage can be adjusted to the target working voltage by stepwise adjustment, that is, multi-step adjustment is in place;
  • the working voltage of the power amplifier can be divided into multiple gear positions.
  • the rated working voltage of the power amplifier can be used as a reference point for division; therefore, while the target working voltage is obtained, the target voltage file is obtained. Bit; if the voltage adjustment is large, if one-time adjustment will result in multi-step adjustment in place, for example, when the three gears are different, it can be adjusted three times and one gear at a time.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the power amplifier voltage adjustment method may further include: adjusting a peak power of the transmission signal to be less than or equal to a saturation power corresponding to the target operating voltage, before adjusting (raising or decreasing) the operating voltage of the power amplifier. After the target operating voltage is raised or decreased according to the target working voltage, the peak power of the transmitting signal is adjusted to be less than or equal to the saturated power corresponding to the target working voltage. .
  • the peak power of the digital domain corresponds to the peak clipping threshold. Therefore, in this embodiment, the peak power is adjusted by adjusting the peak clipping threshold.
  • the step of adjusting the peak power of the transmitting signal in the embodiment includes:
  • the peak power of the transmitted signal is adjusted by adjusting the peak clipping threshold of the transmitted signal to the second peak clipping threshold.
  • the rated power is the rated power of the base station where the power amplifier is located.
  • the peak clipping threshold after power amplifier voltage regulation is calculated by the input rated peak clipping threshold cfr_e_gate, the rated power corresponding to the saturation power p e and the target voltage corresponding to the saturation power p0:
  • p e and p 0 both have the saturation power in the voltage regulation table.
  • the former is the rated power corresponding to the saturation power
  • the latter is the target adjustment voltage corresponding to the saturation power. This is not the same as the digital power after peak clipping in the peak-to-average ratio estimation calculation.
  • the target voltage is searched according to the maximum target output power, and the peak clipping threshold is according to the maximum transmit power channel p e and p 0
  • the calculation is performed, but the rated power clipping threshold cfr_e_gate needs to distinguish the channels, so the clipping threshold is calculated and configured by the sub-channel.
  • the adjustment of the working voltage of the power amplifier changes the linearity and gain of the power amplifier.
  • the method of the embodiment is, after adjusting the operating voltage of the power amplifier according to the target operating voltage, after adjusting the peak power of the transmitting signal; or increasing or decreasing the power amplifier according to the target operating voltage Before the operating voltage, it also includes:
  • the amount of gain compensation performed on the transmitted signal during radio frequency processing is adjusted to the gain change amount.
  • the gain variation of the power amplifier refers to the difference between the gain corresponding to the current working voltage of the power amplifier and the gain corresponding to the target operating voltage.
  • the gain of the power amplifier will increase.
  • the signal needs to be attenuated in the RF numerical control attenuator of the transmitter, and the attenuation is the increase of the gain of the power amplifier.
  • the gain of the power amplifier will be reduced.
  • the signal needs to be amplified in the RF numerical control attenuator of the transmitter, and the amplification amount is the reduction of the gain of the power amplifier.
  • the method of the embodiment needs to obtain the gain variation of the power amplifier according to the correspondence table between the target working power and the operating voltage and the power amplifier gain variation (hereinafter referred to as the power amplifier gain table).
  • the power amplifier gain table is a corresponding relationship between the power amplifier voltage gear position and the power amplifier gain change.
  • the power amplifier gain varies with the power supply voltage.
  • the software needs to compensate the power amplifier gain on the transmitter link. The change ensures that the actual size of the transmit power does not change with the power amplifier voltage regulation.
  • the power amplifier gain sub-table is adaptively detected by the software program. The standard source signal is transmitted on the base station product, the transmitter digital and RF gain are fixed, the voltage position of the power amplifier is traversed, and the output power of each voltage gear is detected. The amount of change in amplifier gain.
  • the correspondence table between the operating voltage and the power amplifier gain variation in the embodiment includes: a correspondence table between the operating voltage of the multi-frequency point and the power amplifier gain variation;
  • the step of acquiring the gain change amount of the power amplifier according to the correspondence table between the target working voltage, the preset working voltage, and the power amplifier gain change amount includes:
  • the method first calculates which two frequency points of the power amplifier gain table fall in the middle of the power amplifier gain table, and performs the linear interpolation on the compensation gains of the two frequency points to obtain the power amplifier gain table at the actual transmission frequency point. If the frequency of the transmitting center and the frequency of the power amplifier gain table coincide exactly, the gain variable of the corresponding frequency point is directly taken for gain compensation.
  • the power amplifier gain table in the embodiment and the saturation power meter described in the first embodiment may be represented in the same table, and the table is referred to as a power amplifier voltage regulating table, as shown in Table 1 below.
  • Table 1 Corresponding relationship between saturation power and voltage gear position, compensation gain due to power amplifier gain variation and voltage gear position need to be tested separately.
  • the power amplifier gain at the rated voltage is the reference value, so the compensation gain corresponding to the rated voltage is 0 dB.
  • Both saturation power and power amplifier gain compensation are sensitive to frequency, so multiple frequency points in the transmit band need to be tested. Fa is the lowest frequency point of the transmitting frequency band, and Fb is the highest frequency point of the transmitting frequency band.
  • the voltage regulating table is tested with a certain step ⁇ 2 to obtain the saturated power and gain changes corresponding to different voltage positions at different frequency points.
  • the frequency step ⁇ 2 can be taken from 10MHz to 20MHz.
  • the cutoff frequency Fb is generally not at the step value, but this frequency is still required to be tested.
  • Ve is the rated working voltage of the power amplifier
  • ⁇ 1 is the step of the voltage gear
  • Fa is the lowest of the transmitting frequency.
  • Frequency point Fb is the highest frequency of the transmitting band
  • ⁇ 2 is the calibration step of the compensation gain corresponding to the frequency domain.
  • the power amplifier voltage regulation table is characterized by the hardware properties of the power amplifier, which needs to be tested on the production line of the power amplifier module or the base station production line, and written into the non-volatile memory of the power amplifier or the transmitter for voltage regulation.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 3 a schematic diagram of implementing power amplifier voltage regulation by using the method of the foregoing embodiment is provided for the implementation, wherein the voltage regulation main control performs voltage adjustment judgment according to the baseband configuration power or the power detection of the transmitter, and the power amplifier adjustment table is obtained.
  • Target adjustment voltage and compensation gain, etc. adjust and control the peak clipping, RF gain and power amplifier operating voltage of the transmitter link.
  • the voltage regulating main control needs to adjust the peak clipping threshold of the peak of the transmitted signal and the gain compensation in the radio frequency processing before the voltage regulation of the power amplifier.
  • the definition of the power amplifier voltage regulator in Figure 3 is shown in Table 1. It characterizes the variation of the saturation power and power amplifier gain for different voltage ranges at different frequency points.
  • the rated working voltage Ve of the power amplifier is the rated working power corresponding to the working power, which is determined by the power amplifier hardware.
  • the voltage gear step ⁇ 1 is determined according to the power supply adjustment accuracy, and is generally set to 1V or 2V, not exceeding 2V. When the operating voltage of the power amplifier changes by more than 2V, the linear and saturated power changes are relatively large.
  • the process is adaptively adjusted to reduce the power consumption of the power amplifier in the base station operation process, and the energy consumption of the mobile base station is improved to improve the operation efficiency of the entire network, including the following steps:
  • Step 401 Acquire a power range corresponding to a current working voltage of the power amplifier and a peak-to-average ratio of the transmitted signal.
  • Step 402 Determine whether the preset type of the voltage is static or dynamic, if it is dynamic, go to step 403, if it is static, go to step 404;
  • the basis of the power amplifier voltage regulation may be the digital power of the transmitter detected in real time. At this time, the voltage adjustment speed is relatively fast, and is defined as dynamic voltage regulation in this embodiment.
  • the voltage regulation basis may also be the value of the transmission power directly configured by the network management system to the transmitter, and the delivery of the configuration power is less likely to occur. In this embodiment, Define this as static voltage regulation.
  • Step 403 Perform power detection on the transmit signal according to a preset period to obtain an average power of the transmit signal.
  • the transmitter digital power is detected every 200 ms.
  • Step 404 Read an average power of a transmit signal configured in the background
  • Step 405 Calculate a peak power of the transmitted signal according to the peak-to-average ratio and the average power;
  • the peak power is obtained by adding.
  • Step 406 The peak power is compared with the power range, if it is less than the power range, step 406 is performed, if it is greater than the power range, step 410 is performed, and if it falls within the range, step 411 is performed;
  • the peak power is less than the minimum value in the power range, that is, less than the power range, if it is greater than the maximum value in the power amplifier range, it is greater than the power range.
  • Step 407 Determine whether the preset voltage type is static or dynamic, if it is dynamic, go to step 407, if it is static, go to step 409;
  • Step 408 The buck counter is incremented by one
  • Step 409 Determine whether the value of the buck counter is greater than or equal to a preset threshold, and if so, proceed to step 409, and if not, perform step 403;
  • Step 410 voltage setting process (boost or step down);
  • Step 411 The buck counter is cleared, and the process returns to step 403.
  • the boosting process needs to be started immediately and the buck counter is cleared. If the transmitted digital power is lower than the corresponding power range of the current voltage range, the buck counter is incremented by one to determine whether the current buck count has reached the set value. When the set value is reached, the buck process is started, and the buck counter is cleared after the buck. zero.
  • the set value of the buck counter in the example of FIG. 4 is 600, corresponding to 2 minutes at a timing of 200 ms.
  • the boosting requirement is as fast as possible to ensure that the mobile base station bears services and coverage as far as possible.
  • the response at the time of voltage reduction is relatively slow, and the judgment condition is strict. This is to ensure that the power amplifier operating voltage is not repeatedly adjusted at a certain critical power.
  • the period of the general power judgment is 100-600ms, that is, the fastest speed of the boost operation is 100-600ms, and the speed of the buck operation is minute-level, in the example, 2 minutes.
  • Step 501 Stop the closed loop power control
  • Step 502 Stop digital pre-distortion training
  • Step 503 Calculate and configure a peak clipping threshold
  • Step 504 Query the voltage regulation table according to the peak power to obtain the target voltage V0;
  • Step 506 Acquire a gain compensation value Gc according to the Vs query voltage regulation table, and set Gc to set the RF gain compensation;
  • Step 508 Determine whether V0 is equal to Vp, if not, return to step 503, and if yes, go to step 509;
  • Step 509 Turn on digital predistortion training
  • Step 510 Turn on the closed loop power control.
  • the voltage adjustment needs to be gradually completed according to the step value of the voltage gear position. If the primary voltage adjustment spans multiple voltage gear positions, it needs to be adjusted step by step.
  • digital predistortion adaptive training and closed loop power control are turned on.
  • the power amplifier adaptive voltage regulation process completes a closed loop, waiting for the next power judgment cycle to perform target voltage judgment and adaptive adjustment processing.
  • the initialization process may be performed during the initialization and configuration process of the base station power-on.
  • the initialization process is as shown in FIG. 6, and includes steps 601-603. This initialization process does not directly operate the transmitted signal, so no matter when the power supply voltage regulation is started, the service that the base station is running will not be interrupted.
  • the hardware needs to be judged first. Among them, the relevant hardware information is obtained, mainly the information of the power module, whether the voltage is adjustable and the range that can be adjusted, whether the power supply separately supplies power to the power amplifier, and the electric adjustment antenna is simultaneously provided. In the case of power supply, it is necessary to re-evaluate the voltage adjustable range. If the power supply voltage is not adjustable, then directly exit the power amplifier voltage regulator.
  • the initialization process is followed by the inspection and processing of the power regulator table, wherein it is checked whether there is a voltage regulation table, and a linear interpolation method is adopted according to the transmission center frequency point of the base station, and the voltage regulation table is processed to obtain different voltage files corresponding to the transmission frequency points.
  • the bit saturates the power and compensates for the gain value.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the embodiment provides a power amplifier voltage adjusting device, which is applied to a multi-standard base station, and includes: a first acquiring module 701, a second obtaining module 702, and a voltage adjusting module 703;
  • the first obtaining module 701 is configured to acquire an average power and a peak-to-average ratio of the transmitted signal
  • the second obtaining module 702 is configured to obtain a peak power of the transmit signal according to the average power and a peak-to-average ratio;
  • the voltage adjustment module 703 is configured to adjust an operating voltage of the power amplifier according to the peak power and a saturation power of the power amplifier.
  • the voltage adjustment module 703 in this embodiment is configured to:
  • the voltage adjustment module 703 acquires the target operating voltage of the power amplifier according to the peak power and the saturation power of the power amplifier, which means that the voltage adjustment module 703 is saturated according to the peak power and the preset power amplifier.
  • the correspondence between the power and the operating voltage obtains the target operating voltage.
  • a power adjustment module 704 may further include a power adjustment module 704;
  • the power adjustment module 704 is configured to adjust a peak power of the transmit signal to be less than or equal to the target before acquiring the target working voltage before the operating voltage of the power amplifier is raised according to the target operating voltage The saturation power corresponding to the operating voltage.
  • a gain adjustment module 705 may further include: a gain adjustment module 705;
  • the gain adjustment module 705 is configured to acquire a gain variation of the power amplifier before adjusting an operating voltage of the power amplifier, and adjust an amount of gain compensation performed on the transmission signal during the radio frequency processing to the The amount of gain change.
  • the gain adjustment module 705 acquires the gain change amount of the power amplifier, and the gain adjustment module 705 obtains the corresponding relationship table according to the target operating voltage, the preset working voltage, and the power amplifier gain change amount. The gain variation of the power amplifier.
  • the power amplifier voltage regulation method provided by the embodiment of the invention can be based on the peak power and the saturation work of the power amplifier Rate to adjust the voltage of the power amplifier, so that the peak power of the transmitted signal is consistent with the saturation power point of the power amplifier. No matter how the peak power of the transmitted signal changes, the power amplifier module always works near the saturation point; since the power amplifier module always works near the saturation point, it avoids In the case that the transmitter does not work normally after the voltage regulation, the method of the embodiment of the present invention is not limited by the type of the base station system, so it can also be applied to the multi-standard base station; the voltage regulation method of the embodiment of the invention achieves low transmission power. Low-voltage power supply, high-voltage power supply at high transmit power, reducing the power consumption of the power amplifier, thereby improving the efficiency of the entire base station system and reducing power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种功放电压调节方法及装置。所述方法应用于多制式基站,包括:获取发射信号的平均功率和峰均比;根据所述平均功率和峰均比得到所述发射信号的峰值功率;根据所述峰值功率和所述功放的饱和功率对所述功放的工作电压进行调节。

Description

一种功放电压调节方法及装置 技术领域
本文涉及通信技术领域,尤其涉及一种功放电压调节方法及装置。
背景技术
随着数据流量激增和网络规模的快速扩张,电信运营商的节能减排压力日趋增大。根据统计,传统基站单站年耗电量高达1.5万千瓦时左右,因此,如何降低基站运营能耗,成为运营商越来越关注的问题。移动基站作为移动通信网络最主要的组成部分,能源消耗占到了90%,所以移动基站的节能设计成为了移动网络节能减排最重要和关键的因素,是目前移动基站产品技术演进和提高市场竞争力的重要方向。
功率放大器是移动基站上的大功率发射模块,80W额定功率基站上功放的功耗占到基站总功耗的80%左右,所以对于功放的节能设计是至为重要的。移动基站在承载业务和流量较低时发射功率低,此时可以调整功放供电电压至较低位置,而当承载业务和流量升高时,随着功放发射功率的升高需要提高供电电压。
相关技术的移动基站功放调压技术一般使用平均功率作为电压档位判断基准,这适用于信号配置一定峰均比维持不变的单一应用场景,如果发射信号配置发生变化,输出信号峰均比发生较大变化的情况下,平均功率和功放供电电压的对应关系会发生变化,在供电电压不满足功放输出功率的要求下,输出射频指标会严重恶化,可能导致发信机无法正常工作。
此外,还有一些针对单一制式无线产品的功放调压设计。如GSM(Global System for Mobile Communication,全球移动通讯系统)产品根据发射功率等级或者激活的载波数进行功放供电电压索引,LTE(Long Term Evolution,长期演进)产品根据符号功率和业务统计量进行功放调压设计,这些方法可用于单一制式无线基站产品,无法适用于多制式共平台基站产品。
所以,相关技术功放调压技术仅适用于单一制式的基站无法适用于多制 式基站,并且会存在对功放调压后发信机无法正常工作的情况。
发明内容
本发明实施例提供一种功放电压调节方法及装置,能够解决相关技术中功放调压技术在对功放调压后会存在发信机无法正常工作的情况和无法适用于多制式基站的问题。
本发明实施例提供一种功放电压调节方法,应用于多制式基站,包括如下步骤:
获取发射信号的平均功率和峰均比;
根据所述平均功率和峰均比得到所述发射信号的峰值功率;
根据所述峰值功率和所述功放的饱和功率对所述功放的工作电压进行调节。
可选地,所述根据所述峰值功率和所述功放的饱和功率对所述功放的工作电压进行调节的步骤包括:
当所述峰值功率大于所述功放当前工作电压对应的功率范围内最大功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压升高所述功放的工作电压;
当所述峰值功率小于所述功放当前工作电压对应的功率范围内最小功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压降低所述功放的工作电压。
可选地,所述根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压的步骤包括:
根据所述峰值功率、预置功放饱和功率与工作电压的对应关系表获取所述目标工作电压。
可选地,所述对应关系表包括:多频点下功放饱和功率与工作电压的对应关系表;
所述根据所述峰值功率、预置功放饱和功率与工作电压的对应关系表获 取所述目标工作电压的步骤包括:
当发射信号的实际发射频点在对应关系表中存在时,直接根据所述峰值功率从所述对应关系表中获取对应的目标工作电压;
当发射信号的实际发射频点在所述对应关系表中不存在时,确定所述发射实际频点落在所述对应关系表中哪两个频点之间;
对所述两个频点下对应的饱和功率进行线性插值处理得到实际发射频点下饱和功率与工作电压的对应关系表;
根据所述峰值功率、所述实际发射频点下饱和功率与工作电压的对应关系表获取所述目标工作电压。
可选地,所述获取发射信号的平均功率的步骤包括:
获取后台配置的所述发射信号的平均功率;或者
对发射信号进行功率检测获取发射信号的平均功率。
可选地,所述对发射信号进行功率检测获取发射信号的平均功率的步骤包括:
根据预设周期对发射信号进行功率检测获取发射信号的平均功率;
当所述峰值功率小于所述功放当前工作电压对应的功率范围内最小功率时,在根据峰值功率和功放的饱和功率获取目标工作电压之前,所述方法还包括:
判断所述峰值功率小于所述最小功率的当前次数是否大于等于预设阈值时,若是,则根据峰值功率和功放的饱和功率获取目标工作电压。
可选地,在获取目标工作电压与根据所述目标工作电压升高或降低所述功放的工作电压之前,所述方法还包括:
调节所述发射信号的峰值功率,使其小于等于所述目标工作电压对应的饱和功率。
可选地,所述调节所述发射信号的峰值功率的步骤包括:
根据额定功率对应的第一削峰门限、额定功率对应的饱和功率和所述目标工作电压对应的饱和功率计算出功放调压后的第二削峰门限;
通过将所述发射信号的削峰门限调整为所述第二削峰门限的方式调节所述发射信号的峰值功率。
可选地,在所述根据所述目标工作电压升高或降低所述功放的工作电压之前,所述方法还包括:
获取所述功放的增益变化量;
将射频处理过程中对所述发射信号进行的增益补偿的量调整为所述增益变化量。
可选地,所述获取所述功放的增益变化量的步骤包括:
根据所述目标工作电压、预置工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量。
可选地,所述预置工作电压与功放增益变化量的对应关系表包括:多频点下工作电压与功放增益变化量的对应关系表;
所述根据所述目标工作电压、预置工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量的步骤包括:
当发射信号的实际发射频点在所述对应关系表中不存在时,确定所述发射实际频点落在对应关系表中哪两个频点之间;
对所述两个频点下对应的增益变化量进行线性插值处理得到实际发射频点下工作电压与功放增益变化量的对应关系表;
根据所述目标工作电压、所述实际发射频点下工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量。
本发明实施例还提供了一种功放电压调节装置,应用于多制式基站,包括:第一获取模块、第二获取模块和电压调节模块,其中:
所述第一获取模块,设置为获取发射信号的平均功率和峰均比;
所述第二获取模块,设置为根据所述平均功率和峰均比得到所述发射信号的峰值功率;
所述电压调节模块,设置为根据所述峰值功率和所述功放的饱和功率对 所述功放的工作电压进行调节。
可选地,所述电压调节模块是设置为:
当所述峰值功率大于所述功放当前工作电压对应的功率范围内最大功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压升高所述功放的工作电压;
当所述峰值功率小于所述功放当前工作电压对应的功率范围内最小功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压降低所述功放的工作电压。
可选地,所述电压调节模块根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,是指:所述电压调节模块根据所述峰值功率、预置功放饱和功率与工作电压的对应关系表获取所述目标工作电压。
可选地,所述装置还包括:功率调节模块;
所述功率调节模块,设置为在所述电压调节模块获取目标工作电压与根据所述目标工作电压升高所述功放的工作电压之前,调节所述发射信号的峰值功率,使其小于等于所述目标工作电压对应的饱和功率。
可选地,所述装置还包括:增益调节模块:
所述增益调节模块,设置为在所述电压调节模块根据所述目标工作电压升高或降低所述功放的工作电压之前,获取所述功放的增益变化量,将射频处理过程中对所述发射信号进行的增益补偿的量调整为所述增益变化量。
可选地,所述增益调节模块获取所述功放的增益变化量,是指:所述增益调节模块根据所述目标工作电压、预置工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上述方法。
本发明实施例提供了一种功放电压调节方法及装置,可以有效地提高降低多制式基站中功放的功耗;本发明实施例提供的功放电压调节方法,应用于多制式基站,包括:获取发射信号的平均功率和峰均比;根据所述平均功率和峰均比得到所述发射信号的峰值功率;根据所述峰值功率和所述功放的 饱和功率对所述功放的工作电压进行调节;本发明实施例提供的功放调压方法,可以根据峰值功率和功放的饱和功率来调节功放的电压,使得发射信号的峰值功率和功放的饱和功率点一致,无论发射信号峰值功率怎么变化,功放模块始终工作在饱和点附近;由于功放模块始终工作在饱和点附近,所以避免了在调压后发信机无法正常工作的情况,另外,从上述方法步骤来看,本发明实施例方法不受基站制式类型的限制,所以还可以应用于多制式基站;本发明实施例调压方法实现了低发射功率时低电压供电,高发射功率时高电压供电,降低了功放的功耗,从而提高整个基站系统的效率降低功耗。
附图概述
图1为本发明实施例一提供的一种功放电压调节方法的流程示意图;
图2为本发明实施例二提供的一种功放电压调节方法的流程示意图;
图3为本发明实施例四提供的一种调节功放电压的框架示意图;
图4为本发明实施例四提供的一种功放调节主控的流程示意图;
图5为本发明实施例四提供的一种电压设置的流程示意图;
图6为本发明实施例四提供的一种功放调压初始化流程示意图;
图7为本发明实施例五提供的第一种功放电压调节装置的结构示意图;
图8为本发明实施例五提供的第二种功放电压调节装置的结构示意图;
图9为本发明实施例五提供的第三种功放电压调节装置的结构示意图。
本发明的实施方式
实施例一:
考虑到相关技术中调压技术在对功放调压后会存在发信机无法正常工作和无法适用于多制式基站产品,本实施例提供了一种新的调压方法,根据峰值功率的变化进行功放工作电压的适配,使得功放工作在饱和功率点,有效地降低了功放的功耗;如图1所示,本实施例提供了一种功放电压调节方法,应用于多制式基站,包括如下步骤:
步骤101:获取发射信号的平均功率和峰均比;
本步骤中获取平均功率和峰均比这两个过程的时序可以为任意,可以同时或先后。
本步骤中获取发射信号的平均功率可以包括下面两种方式:
1、获取后台配置的所述发射信号的平均功率。
网管后台配置的发射信号的功率一般为发射信号的平均功率,所以只需直接获取配置数据即可得到平均功率。
2、对发射信号进行功率检测获取发射信号的平均功率。
该方式是实时对发射信号进行功率检测以获取平均功率,例如实时对发射数字功率的变化进行监控和检测。
对应基站的不同制式,本实施例中平均功率的取值也不同:
当基站的制式包括:GSM制式时,所述平均功率为GSM制式的最大时隙功率;GSM基带数据按照时隙对应用户,需要按照最大的时隙功率进行功放电压调整;
当基站的制式包括:LTE实时时,所述平均功率为LTE制式产品的最大符号功率,LTE基带信号以符号为时长,一般参考符号功率比较高;
而对于UMTS和CDMA制式产品,使用基站系统自有的发射功率TSSI检测的结果即可,此时检测到发射功率即为平均功率。
本实施例中获取发射信号的峰均比的过程包括:
发射信号的峰均比需要在初始化时由软件计算得到,峰均比是峰值与均值的比值,其计算公式如下:
PAR=20*lg(cfr_e_gate/power_e_abs_ave)
cfr_e_gate为额定功率下对应的削峰门限,power_e_abs_ave为额定功率下削峰后输出数据的均方功率。
步骤102:根据所述平均功率和峰均比得到所述发射信号的峰值功率;
本步骤中通过信号的峰均比和平均功率求和得到发射信号的峰值功率。
步骤103:根据所述峰值功率和所述功放的饱和功率对所述功放的工作 电压进行调节。
本步骤可以包括:
当所述峰值功率大于所述功放当前工作电压对应的功率范围内最大功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压升高所述功放的工作电压;即对功放进行升压;
当所述峰值功率小于所述功放当前工作电压对应的功率范围内最小功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压降低所述功放的工作电压,即对功放进行降压。
本实施例方法可以根据峰值功率和功放的饱和功率来调节功放的电压,使得发射信号的峰值功率和功放的饱和功率点一致,无论发射信号峰值功率怎么变化,功放模块始终工作在饱和点附近;由于功放模块始终工作在饱和点附近,所以避免了在调压后发信机无法正常工作的情况,另外,从上述方法步骤来看,本发明实施例方法不受基站制式类型的限制,所以还可以应用于多制式基站;本实施例的调压方法实现了低发射功率时低电压供电,高发射功率时高电压供电,降低了功放的功耗,从而提高整个基站系统的效率降低功耗。
在本实施例中,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压的过程可以包括:
根据所述峰值功率、预置功放饱和功率与工作电压的对应关系表获取所述目标工作电压。
本实施例方法可以预先存储功放饱和功率与工作电压的对应关系表(以下简称饱和功率表),在得到峰值功率之后,利用峰值功率在饱和功率表中进行匹配,得到相应的目标电压。
当饱和功率表存在与峰值功率相等的饱和功率时,直接获取与饱和功率对应的工作电压,该工作电压为目标工作电压,即功放需要最终调节到的电压;
当饱和功率表不存在与峰值功率相等的饱和功率时,先确定峰值功率落在哪两个饱和功率值之间,获取这两个饱和功率值对应的工作电压,最后将 最大的工作电压作为目标工作电压。
本实施例中饱和功率表需要实际测试得到,可以在生产线对每一台功放进行测试并针对功放个体建立表格,也可以在实验室对每一个型号的功放进行测试针对每个型号建立表格。对每个型号建立表格会减少生产流程复杂性,但是表格内容并不完全与每台功放对应,功放本身因为生产和原材料存在一定批次离散性,制定表格时需要将测试得到的电压对应的饱和功率进行一定的回退处理,一般回退0.3dB到0.5dB,保证每一台功放均能满足供电需求。功放的电压档位间隔由电源模块的调整精度确定,一般为1V或者2V。
一般地饱和功率表为多频点下饱和功率表,其记载了每个频点下饱和功率与功放工作电压之间的对应关系。由于基站在网络上实际应用时发射中心频点一般不准确对应调压表上已有的频点,所以在实际使用时还需要对饱和功率表进行一定处理。上述根据所述峰值功率、预置功放饱和功率与工作电压的对应关系表获取所述目标工作电压的过程包括:
当发射信号的实际发射频点在所述对应关系表中不存在时,确定所述发射实际频点落在对应关系表中哪两个频点之间;
对所述两个频点下对应的饱和功率进行线性插值处理得到实际发射频点下饱和功率与工作电压的对应关系表;
根据所述峰值功率、所述实际发射频点下饱和功率与工作电压的对应关系表获取所述目标工作电压;
而当发射信号的实际发射频点在对应关系表中存在时,直接根据所述峰值功率和所述对应关系表获取对应的目标工作电压,不需要对饱和功率表进行处理。
实施例二:
基站承载的用户和业务增加时,发射功率会升高,为避免影响基站的覆盖和性能,需要迅速升高功放工作电压从而提高功放的线性范围,所以升高电压需要快速响应,工程应用上肯定是越快越好,但是实际切换频率受限于电源模块的技术限制。目前业界移动基站用电源模块能做到百毫秒级的升压 响应,因此一般发射功率的判断周期为数百个毫秒,一旦发现发射功率对应的电压档位比当前电压高,就需要进行升压操作。
基站承载的用户和业务减少时,发射功率会降低,此时为提高基站的效率和降低功放模块的静态功耗,可以降低功放的线性范围,需要降低功放模块的工作电压。因为降压并不实时影响基站的覆盖,为了避免临界情况下在某个档位上电压调整乒乓反复,降压操作的判断周期需要拉长,且判断条件需要更严格。一般降压判断和调整的周期为若干分钟。下面针对降压操作情况,本实施例提供了一种功放电压调节方法,如包括如下步骤:
步骤201:根据预设周期对发射信号进行功率检测获取发射信号的平均功率,计算出发射信号的峰均比;
预设周期可以设置为200ms,
步骤202:根据平均功率和峰均比得到发射信号的当前峰值功率;
步骤203:当所述峰值功率小于所述功放当前工作电压对应的功率范围内最小功率时,判断所述峰值功率小于所述最小功率的当前次数是否大于等于预设阈值,若是,则执行步骤204,若否,返回步骤201;
本实施例方法可以在利用计数器来记录峰值功率小于最小功率的当前次数即判定需要降压操作的次数,每次判定需要降压操作时,计数器加1,若判定不是降压操作时计数器清零。也就是说,要在连续判定需要降压操作的次数大于预设阈值时才可以进行降压操作,若否,继续检测功率进行判定。
例如当连续判定需要降压操作的次数大于600次数时,则进行降压操作。
步骤204:根据峰值功率和功放的饱和功率获取目标工作电压,根据所述目标工作电压降低所述功放的工作电压。
本实施例方法,在平均功率为实时检测的数字功率的情况下,若连续n次判定需要对功放降压操作时,才进行降压操作,如否,则不进行降压操作;本实施例方法拉长了降压操作的判定时间,且判断条件变得更严格,避免了在某个电压档位或者电压值上电压调整乒乓反复。
在本实施例中,当目标工作电压与当前工作电压差距比较大时,可以才用逐步调整的方式将功放电压调整为目标工作电压,即多步调整到位;避免 了电压一次调整到位带来的功放特性变化更大,发射信号的功率随功放增益会发生变化更大,对业务的接入可能造成中断,对功放的数字预失真自适应的影响也更大,导致射频指标的适应调整周期更长等问题。
在本实施例中可以将功放的工作电压划分为多个档位,例如,可以以额功放额定工作电压为参考点进行划分;因此,在获取目标工作电压的同时,也就相当获取目标电压档位;在电压调整幅度较大时如果一次性调整会造成可以采用多步调整到位,例如相差三个档位时,可以分三次调整,一次调整一个档位。
实施例三:
为了保证业务的正常传输,在功放调压过程中,需要输入给功放的峰值功率不超过目标电位对应的饱和功率,因此,在上述实施例一和二的基础上,本实施例提供了一种功放电压调节方法,在对所述功放的工作电压进行调节(升高或降低)之前,还可以包括:调节所述发射信号的峰值功率,使其小于等于所述目标工作电压对应的饱和功率。其中,在获取目标工作电压之后,根据目标工作电压升高或降低所述功放的工作电压之前,还包括:调节所述发射信号的峰值功率,使其小于等于所述目标工作电压对应的饱和功率。
通常数字域的峰值功率与削峰门限对应,所以,本实施例可以采用调整削峰门限的方式来调整峰值功率,本实施例中所述调节所述发射信号的峰值功率的步骤包括:
根据额定功率对应的第一削峰门限、额定功率对应的饱和功率和所述目标工作电压对应的饱和功率计算出功放调压后的第二削峰门限;
通过将所述发射信号的削峰门限调整为所述第二削峰门限的方式调节所述发射信号的峰值功率。
本实施例中额定功率为功放所在基站的额定功率。
功放调压后的削峰门限由输入的额定削峰门限cfr_e_gate、额定功率对应饱和功率pe和目标电压对应饱和功率p0按比例计算得到:
Figure PCTCN2015082242-appb-000001
这里的pe和p0均功放调压表中的饱和功率,前者是额定功率对应饱和功率,后者为目标调整电压对应饱和功率。这与峰均比评估计算中取削峰后数字功率是不一样的。
对于多发射通道共电源模块的基站产品,需要对多个发射通道的功放设置相同的工作电压,此时按照最大目标输出功率查找目标电压,削峰门限按照最大发射功率通道的pe和p0进行计算,但是额定功率削峰门限cfr_e_gate需要区分通道,所以削峰门限是需要分通道计算和配置的。
考虑到功放工作电压的调整会改变功放的线性和增益,在调压过程中对工作电压进行调整之前,需要根据功放增益变化,在发信机射频处理中针对功放增益的变化进行补偿;例如,可以在调压过程中对工作电压进行调整之前,上述调节所述发射信号的峰值功率之后,需要根据功放增益变化,在发信机射频处理中针对功放增益的变化进行补偿。
本实施例方法在根据所述目标工作电压升高或降低所述功放的工作电压之前,在调节所述发射信号的峰值功率之后;或者在根据所述目标工作电压升高或降低所述功放的工作电压之前,还包括:
获取所述功放的增益变化量;
将射频处理过程中对所述发射信号进行的增益补偿的量调整为所述增益变化量。
本实施例中功放的增益变化量指得是:功放当前工作电压对应的增益与目标工作电压对应的增益之差。
其中,功放工作电压升高时,功放增益会增大,为保证发射功率与基带的一致,需要在发信机射频数控衰减器中对信号进行衰减,衰减量为功放增益的增大量。
功放工作电压降低时,功放增益会减小,同样为保证发射功率与基带的一致,需要在发信机射频数控衰减器中对信号进行放大,放大量为功放增益的减小量。
本实施例方法中获取所述功放的增益变化量的过程可以包括:
根据所述目标工作电压、预置工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量。
也就是说,本实施例方法在对功放调压调整之后,还需要根据目标工作电业和工作电压与功放增益变化量的对应关系表(以下简称功放增益表)来得到功放的增益变化量。
本实施例中功放增益表是功放电压档位与功放增益变化的对应关系,功放的增益是随供电电压不同而变化的,软件在调整功放电压后,需要在发信机链路上补偿功放增益的变化,保证发射功率的实际大小不随功放调压而变化。功放增益子表通过软件程序自适应检测得到,在基站整机产品上发射标准源信号,发信机数字和射频增益一定,遍历功放的电压档位,检测每个电压档位的输出功率即得到功放增益的变化量。
同样考虑到基站在网络上实际应用时实际发射频点一般不准确对应调压表上已有的频点,所以在实际使用时还需要对功放增益表进行一定处理。本实施例中所述工作电压与功放增益变化量的对应关系表包括:多频点下工作电压与功放增益变化量的对应关系表;
所述根据所述目标工作电压、预置工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量的步骤包括:
当发射信号的实际发射频点在所述对应关系表中不存在时,确定所述发射实际频点落在对应关系表中哪两个频点之间;
对这两个频点下对应的增益变化量进行线性插值处理得到实际发射频点下工作电压与功放增益变化量的对应关系表;
根据所述目标工作电压、所述实际发射频点下工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量。
本实施例方法先计算实际发射频点落在功放增益表的哪两个频点中间,取这两个频点的补偿增益分别做线性插值得到实际发射频点下功放增益表。如果发射中心频点和功放增益表的一个频点刚好重合,那么直接取对应频点的增益变量进行增益补偿。
可选地,本实施例中功放增益表和上述实施例一所述的饱和功率表可以在同一个表格中表示,该表格称为功放调压表,如下表1所示。饱和功率和电压档位的对应关系、功放增益变化带来的补偿增益与电压档位对应关系需要分别测试得到。在表1中,额定电压下的功放增益是基准值,所以额定电压对应的补偿增益均为0dB。饱和功率、功放增益补偿均对频率较为敏感,所以需要对发射带内多个频点进行测试。Fa为发射频段最低频点,Fb为发射频段最高频点,从Fa开始,以一定步进Δ2对调压表进行测试得到不同频点下不同电压档位对应的饱和功率和增益变化,一般频率步进Δ2取10MHz到20MHz即可。截止频点Fb一般不在步进值上,但是这个频点仍然是需要进行测试的。
表1
Figure PCTCN2015082242-appb-000002
注:Ve为功放额定工作电压,Δ1为电压档位步进,Fa为发射频段最低 频点,Fb为发射频段最高频率,Δ2为补偿增益对应频域的校准步进。
其中功放调压表表征的是功放的硬件属性,需要在功放模块的生产线或者基站整机生产线上测试得到,写入功放或者发信机的非易失性存贮器供调压使用。
实施例四:
如图3所示,为本实施提供了采用上述实施例方法实现功放调压的示意图,其中调压主控根据基带配置功率或者发信机的功率检测进行电压调整判断,查询功放调压表获取目标调整电压和补偿增益等,对发信机链路的削峰、射频增益以及功放工作电压进行调整和控制。
本实施例中调压主控在对功放调压之前,还需要调整对发射信号削峰的削峰门限和在射频处理中进行增益补偿。
图3中功放调压表的定义如表1所示,表征的是不同频点下不同电压档位对应的饱和功率和功放增益的变化。这里需要根据基站产品硬件的情况先拟定最左列的电压档位。功放额定工作电压Ve是额定发射功率对应工作电压,由功放硬件决定,电压档位步进Δ1根据电源调整精度确定,一般设定为1V或者2V,不超过2V。功放工作电压的变化超过2V时,线性和饱和功率等变化相对会较大。
下面介绍图调压主控的流程,如图4所示,调压使能后在基站运行过程利用这个流程自适应调整功放工作电压,降低移动基站能耗提高整个网络运行效率,包括如下步骤:
步骤401:获取功放当前工作电压对应的功率范围和发射信号的峰均比;
步骤402:判断预设调压类型为静态还是动态,若是动态,则执行步骤403,若是静态,执行步骤404;
功放调压的依据可以是实时检测的发信机数字功率,此时电压调整速度会比较快,本实施例中定义为动态调压。调压依据也可以是网管后台直接配置给发信机的发射功率值,这个配置功率的下发是较少发生的,本实施例中 将这种情况定义为静态调压。
步骤403:按照预设周期对发射信号进行功率检测获取发射信号的平均功率;
例如,每隔200ms检测发信机数字功率。
步骤404:读取后台配置的发射信号的平均功率;
步骤405:根据所述峰均比和平均功率计算出发射信号的峰值功率;
其中,通过相加得到峰值功率。
步骤406:将峰值功率与所述功率范围进行比较,若小于功率范围,则执行步骤406,若大于功率范围,执行步骤410,若落在范围内,则执行步骤411;
其中,若峰值功率小于功率范围内最小值,即小于功率范围,若大于功放范围内最大值,则大于功率范围。
步骤407:再次判断预设调压类型为静态还是动态,若是动态,则执行步骤407,若是静态,执行步骤409;
步骤408:降压计数器加1;
步骤409:判断降压计数器的值是否大于等于预设阈值,若是,则,执行步骤409,若否,执行步骤403;
步骤410:电压设置流程(升压或者降压);
步骤411:降压计数器清零,返回步骤403。
根据图4所示,静态调压模式下,定时判断后台配置功率是否不在当前电压对应功率范围,一旦超出范围则立即启动升压或者降压流程。
动态调压模式下,一旦检测到发射数字功率高出当前电压档位对应功率范围,那么就需要立即启动升压流程,并将降压计数器清零。如果发射数字功率低于当前电压档位对应功率范围,那么降压计数器加1,判断当前降压计数是否到达设定值,到达设定值则启动降压流程,降压后将降压计数器清零。图4的示例中降压计数器的设定值为600,在200ms的定时下对应2分钟。升压要求尽量快是为了保证移动基站承载业务和覆盖范围尽量不受影响, 而降压时的响应相对会慢很多,且判断条件严格,这是为了保证不在某个临界功率上对功放工作电压进行反复调整。一般功率判断的周期为100-600ms,即升压操作的最快速度为100-600ms,而降压操作的速度都是分钟级的,示例中为2分钟。
下面介绍本实施例中电压设置的过程,本实施例方法中在进入电压设置流程后,先停止闭环功控和数字预失真自适应训练,然后根据目标电压档位对应的最大功率计算和配置削峰门限;如图5所示在电压设置使能之后,包括:
步骤501:停止闭环功控;
步骤502:停止数字预失真训练;
步骤503:计算和配置削峰门限;
步骤504:根据峰值功率查询调压表获取目标电压V0;
步骤505:通过公式Vs=Vp+Δ1*sign(Vo-Vp)计算设置电压,Vp为当前电压;
步骤506:根据Vs查询调压表获取增益补偿值Gc,将Gc设置射频增益补偿;
步骤507:设置电源电压为Vs,此时Vp=Vs;
步骤508:判断V0是否等于Vp,若否,返回步骤503,若是,执行步骤509;
步骤509:开启数字预失真训练;
步骤510:开启闭环功控。
根据图5的描述,电压调整需要按照电压档位的步进值渐进完成,如果一次电压调整跨越多个电压档位,那么需要逐档进行调整到位。
电压档位切换调整时,先计算配置削峰门限,然后在射频链路的数控衰减器上对功放增益的变化进行补偿,最后设置电源电压。
在电源电压设置到目标电压档位后,打开数字预失真自适应训练和闭环功控。
至此,功放自适应调压流程完成一次闭环,等待下一个功率判断周期进行目标电压判断和自适应调整处理。
在本实施例中,功放调压功能启动后可以有一个初始化的过程,这个初始化流程可以在基站上电初始化配置过程中进行,初始化流程如图6所示,包括步骤601-603。这个初始化流程没有对发射信号进行直接操作,所以无论在什么时候启动功放电源调压,都不会中断基站正在运行的业务。功放调压启动后首先需要进行硬件判断,其中,获取相关硬件信息,主要是电源模块的信息,判断电压是否可调以及可以调整的范围,电源是否单独为功放供电,在同时给电调天线等供电的情况下需要重新判断电压可调范围。如果电源电压不可调,那么直接退出功放调压。
初始化流程接下来功率调压表的检查和处理,其中,检查是否存在调压表,并按照基站的发射中心频点采用线性插值的方法,对调压表处理得到对应发射频点的不同电压档位下饱和功率、补偿增益值。
最后,是基准PAR评估计算。
实施例五:
如图7所示,本实施例提供了一种功放电压调节装置,应用于多制式基站,包括:第一获取模块701、第二获取模块702和电压调节模块703;
所述第一获取模块701,设置为获取发射信号的平均功率和峰均比;
所述第二获取模块702,设置为根据所述平均功率和峰均比得到所述发射信号的峰值功率;
所述电压调节模块703,设置为根据所述峰值功率和所述功放的饱和功率对所述功放的工作电压进行调节。
可选地,本实施例中所述电压调节模块703是设置为:
当所述峰值功率大于所述功放当前工作电压对应的功率范围内最大功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压升高所述功放的工作电压;
当所述峰值功率小于所述功放当前工作电压对应的功率范围内最小功率 时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压降低所述功放的工作电压。
可选地,所述电压调节模块703根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,是指:所述电压调节模块703根据所述峰值功率和预置功放饱和功率与工作电压的对应关系表获取所述目标工作电压。
可选地,如图8所示,在上述装置基础上,还可以包括功率调节模块704;
所述功率调节模块704,设置为在所述根据所述目标工作电压升高所述功放的工作电压之前,获取目标工作电压之前,调节所述发射信号的峰值功率,使其小于等于所述目标工作电压对应的饱和功率。
可选地,如图9所示,在上述装置基础上,还可以包括:增益调节模块705;
所述增益调节模块705,设置为在对所述功放的工作电压进行调节之前,获取所述功放的增益变化量,将射频处理过程中对所述发射信号进行的增益补偿的量调整为所述增益变化量。
可选地,所述增益调节模块705获取所述功放的增益变化量,是指:所述增益调节模块705根据所述目标工作电压、预置工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,上述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明实施例不限制于任何特定形式的硬件和软件的结合。
工业实用性
本发明实施例提供的功放调压方法,可以根据峰值功率和功放的饱和功 率来调节功放的电压,使得发射信号的峰值功率和功放的饱和功率点一致,无论发射信号峰值功率怎么变化,功放模块始终工作在饱和点附近;由于功放模块始终工作在饱和点附近,所以避免了在调压后发信机无法正常工作的情况,另外,本发明实施例方法不受基站制式类型的限制,所以还可以应用于多制式基站;本发明实施例调压方法实现了低发射功率时低电压供电,高发射功率时高电压供电,降低了功放的功耗,从而提高整个基站系统的效率降低功耗。

Claims (18)

  1. 一种功放电压调节方法,应用于多制式基站,包括如下步骤:
    获取发射信号的平均功率和峰均比;
    根据所述平均功率和峰均比得到所述发射信号的峰值功率;
    根据所述峰值功率和所述功放的饱和功率对所述功放的工作电压进行调节。
  2. 如权利要求1所述的方法,其中,所述根据所述峰值功率和所述功放的饱和功率对所述功放的工作电压进行调节的步骤包括:
    当所述峰值功率大于所述功放当前工作电压对应的功率范围内最大功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压升高所述功放的工作电压;
    当所述峰值功率小于所述功放当前工作电压对应的功率范围内最小功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压降低所述功放的工作电压。
  3. 如权利要求2所述的方法,其中,所述根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压的步骤包括:
    根据所述峰值功率、预置功放饱和功率与工作电压的对应关系表获取所述目标工作电压。
  4. 如权利要求3所述的方法,其中,所述对应关系表包括:多频点下功放饱和功率与工作电压的对应关系表;
    所述根据所述峰值功率、预置功放饱和功率与工作电压的对应关系表获取所述目标工作电压的步骤包括:
    当发射信号的实际发射频点在对应关系表中存在时,直接根据所述峰值功率从所述对应关系表中获取对应的目标工作电压;
    当发射信号的实际发射频点在所述对应关系表中不存在时,确定所述发射实际频点落在所述对应关系表中哪两个频点之间;
    对所述两个频点下对应的饱和功率进行线性插值处理得到实际发射频点 下饱和功率与工作电压的对应关系表;
    根据所述峰值功率、所述实际发射频点下饱和功率与工作电压的对应关系表获取所述目标工作电压。
  5. 如权利要求2或3或4所述的方法,其中,所述获取发射信号的平均功率的步骤包括:
    获取后台配置的所述发射信号的平均功率;或者
    对发射信号进行功率检测获取发射信号的平均功率。
  6. 如权利要求5所述的方法,其中,所述对发射信号进行功率检测获取发射信号的平均功率的步骤包括:
    根据预设周期对发射信号进行功率检测获取发射信号的平均功率;
    当所述峰值功率小于所述功放当前工作电压对应的功率范围内最小功率时,在根据峰值功率和功放的饱和功率获取目标工作电压之前,所述方法还包括:
    判断所述峰值功率小于所述最小功率的当前次数是否大于等于预设阈值时,若是,则根据峰值功率和功放的饱和功率获取目标工作电压。
  7. 如权利要求2所述的方法,在获取目标工作电压与根据所述目标工作电压升高或降低所述功放的工作电压之前,所述方法还包括:
    调节所述发射信号的峰值功率,使其小于等于所述目标工作电压对应的饱和功率。
  8. 如权利要求7所述的方法,其中,所述调节所述发射信号的峰值功率的步骤包括:
    根据额定功率对应的第一削峰门限、额定功率对应的饱和功率和所述目标工作电压对应的饱和功率计算出功放调压后的第二削峰门限;
    通过将所述发射信号的削峰门限调整为所述第二削峰门限的方式调节所述发射信号的峰值功率。
  9. 如权利要求2或3或7所述的方法,在所述根据所述目标工作电压升高或降低所述功放的工作电压之前,所述方法还包括:
    获取所述功放的增益变化量;
    将射频处理过程中对所述发射信号进行的增益补偿的量调整为所述增益变化量。
  10. 如权利要求9所述的方法,其中,所述获取所述功放的增益变化量的步骤包括:
    根据所述目标工作电压、预置工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量。
  11. 如权利要求10所述的方法,其中,所述预置工作电压与功放增益变化量的对应关系表包括:多频点下工作电压与功放增益变化量的对应关系表;
    所述根据所述目标工作电压、预置工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量的步骤包括:
    当发射信号的实际发射频点在所述对应关系表中不存在时,确定所述发射实际频点落在对应关系表中哪两个频点之间;
    对所述两个频点下对应的增益变化量进行线性插值处理得到实际发射频点下工作电压与功放增益变化量的对应关系表;
    根据所述目标工作电压、所述实际发射频点下工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量。
  12. 一种功放电压调节装置,应用于多制式基站,包括:第一获取模块、第二获取模块和电压调节模块,其中:
    所述第一获取模块,设置为获取发射信号的平均功率和峰均比;
    所述第二获取模块,设置为根据所述平均功率和峰均比得到所述发射信号的峰值功率;
    所述电压调节模块,设置为根据所述峰值功率和所述功放的饱和功率对所述功放的工作电压进行调节。
  13. 如权利要求12所述的装置,所述电压调节模块是设置为:
    当所述峰值功率大于所述功放当前工作电压对应的功率范围内最大功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压, 根据所述目标工作电压升高所述功放的工作电压;
    当所述峰值功率小于所述功放当前工作电压对应的功率范围内最小功率时,根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,根据所述目标工作电压降低所述功放的工作电压。
  14. 如权利要求13所述的装置,所述电压调节模块根据所述峰值功率和所述功放的饱和功率获取所述功放的目标工作电压,是指:
    所述电压调节模块根据所述峰值功率、预置功放饱和功率与工作电压的对应关系表获取所述目标工作电压。
  15. 权利要求13或14所述的装置,所述装置还包括功率调节模块;
    所述功率调节模块,设置为在所述电压调节模块获取目标工作电压与根据所述目标工作电压升高所述功放的工作电压之前,调节所述发射信号的峰值功率,使其小于等于所述目标工作电压对应的饱和功率。
  16. 如权利要求13或14所述的装置,其特征在于,所述装置还包括:增益调节模块;
    所述增益调节模块,设置为在所述电压调节模块根据所述目标工作电压升高或降低所述功放的工作电压之前,获取所述功放的增益变化量,将射频处理过程中对所述发射信号进行的增益补偿的量调整为所述增益变化量。
  17. 如权利要求16所述的装置,所述增益调节模块获取所述功放的增益变化量,是指:
    所述增益调节模块根据所述目标工作电压、预置工作电压与功放增益变化量的对应关系表获取所述功放的增益变化量。
  18. 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求1-11任一项所述的方法。
PCT/CN2015/082242 2014-11-20 2015-06-24 一种功放电压调节方法及装置 WO2016078411A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15862102.9A EP3209071B1 (en) 2014-11-20 2015-06-24 Voltage regulation method and apparatus for power amplifier
JP2017527324A JP2018500809A (ja) 2014-11-20 2015-06-24 パワーアンプ電圧調整方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410667925.1 2014-11-20
CN201410667925.1A CN105611620B (zh) 2014-11-20 2014-11-20 一种功放电压调节方法及装置

Publications (1)

Publication Number Publication Date
WO2016078411A1 true WO2016078411A1 (zh) 2016-05-26

Family

ID=55991079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082242 WO2016078411A1 (zh) 2014-11-20 2015-06-24 一种功放电压调节方法及装置

Country Status (4)

Country Link
EP (1) EP3209071B1 (zh)
JP (1) JP2018500809A (zh)
CN (1) CN105611620B (zh)
WO (1) WO2016078411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505174A (zh) * 2019-08-22 2019-11-26 北京聚利科技股份有限公司 调制深度调节装置及路侧单元

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863973A (zh) * 2016-09-22 2018-03-30 深圳市中兴微电子技术有限公司 一种功率定标方法和装置
CN107241072B (zh) * 2017-05-03 2020-11-06 京信通信系统(中国)有限公司 功率放大装置和方法
CN109462382B (zh) * 2018-10-26 2022-07-29 京信网络系统股份有限公司 功率放大系统、功率测控方法、装置及基站设备
CN111313952B (zh) * 2018-12-12 2022-05-13 中国移动通信集团北京有限公司 直放站增益智能调节方法、装置、直放站及存储介质
CN109799458B (zh) * 2019-01-14 2022-02-25 欣旺达电子股份有限公司 测试峰值功率的方法、测试装置和计算机可读存储介质
CN111615181A (zh) * 2020-04-14 2020-09-01 福州瑞芯微电子股份有限公司 一种功率放大器内环功控指标优化的方法、装置、设备和介质
CN111717066A (zh) * 2020-06-29 2020-09-29 蜂巢能源科技有限公司 电池包的功率控制方法、计算机可读存储介质及控制系统
CN113726364B (zh) * 2021-09-01 2022-09-13 广州开信通讯系统有限公司 一种多频段信号收发系统的远端装置、多频段信号收发系统及功耗计量方法
CN113949358B (zh) * 2021-12-16 2022-03-22 广东省新一代通信与网络创新研究院 一种基于机器学习的功放电压调整方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316128A (zh) * 2008-06-30 2008-12-03 华为技术有限公司 一种改善发射机效率的方法和发射机
CN102033555A (zh) * 2010-12-17 2011-04-27 中兴通讯股份有限公司 一种lte系统中功放电压调节方法及装置
CN102740437A (zh) * 2012-06-18 2012-10-17 中兴通讯股份有限公司 基站发射功率动态调整方法和装置
CN103098525A (zh) * 2010-10-08 2013-05-08 阿尔卡特朗讯 优化基站的功率消耗

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492867B2 (en) * 2000-03-10 2002-12-10 Paragon Communications Ltd. Method and apparatus for improving the efficiency of power amplifiers, operating under a large peak-to-average ratio
WO2008044276A1 (fr) * 2006-10-06 2008-04-17 Panasonic Corporation Appareil d'amplification d'alimentation électrique
EP2226932B1 (en) * 2009-03-02 2013-10-16 Alcatel Lucent Method for amplifying a signal by a power amplifier, power amplifier system, device, computer program product, and digital storage medium thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316128A (zh) * 2008-06-30 2008-12-03 华为技术有限公司 一种改善发射机效率的方法和发射机
CN103098525A (zh) * 2010-10-08 2013-05-08 阿尔卡特朗讯 优化基站的功率消耗
CN102033555A (zh) * 2010-12-17 2011-04-27 中兴通讯股份有限公司 一种lte系统中功放电压调节方法及装置
CN102740437A (zh) * 2012-06-18 2012-10-17 中兴通讯股份有限公司 基站发射功率动态调整方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505174A (zh) * 2019-08-22 2019-11-26 北京聚利科技股份有限公司 调制深度调节装置及路侧单元

Also Published As

Publication number Publication date
CN105611620A (zh) 2016-05-25
EP3209071B1 (en) 2018-12-19
EP3209071A1 (en) 2017-08-23
JP2018500809A (ja) 2018-01-11
CN105611620B (zh) 2020-03-17
EP3209071A4 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
WO2016078411A1 (zh) 一种功放电压调节方法及装置
US20230378915A1 (en) Devices and methods for detecting a saturation condition of a power amplifier
CN101032093B (zh) 无线通信设备中的基于信号配置的发射机调节
US8558615B2 (en) Apparatus for and method of controlling a predistorter, and method of detecting power control state
CA2956847C (en) Power amplifier, radio remote unit, and base station
CN101977022B (zh) 互补增强功率补偿方法、装置及通信设备
US8964716B2 (en) Estimating signal characteristics
CN107222916A (zh) 一种温度控制方法及装置、终端
EP2649726B1 (en) Real time transmission power control
US20180124716A1 (en) Systems and methods providing adaptive power tracking
CN102404831B (zh) 一种wcdma移动终端的内环功率控制方法
CN102811454A (zh) 一种移动终端灵敏度的测试方法、装置及系统
CN105450183A (zh) 一种线性功率放大器的温度补偿方法及装置
EP3223109B1 (en) Power control method, device and communication terminal for improving power amplifier switch spectrum
CN103945448B (zh) 提高通话性能的方法及系统
JP2013247501A (ja) 電力増幅装置
JP2010154017A (ja) 送信増幅器
WO2011131155A2 (zh) 功率频率补偿方法及设备
CN103517296A (zh) 一种频点切换检测方法、设备和系统
Glock et al. A novel power amplifier behavioral model for improving the linearity-efficiency tradeoff
EP2343831A2 (en) Analytical computation of cubic metric
KR20140040552A (ko) 송신장치에서의 전력제어장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527324

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015862102

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE