WO2016076000A1 - 各種新型マルチ波長合波器及び合波器を用いる新型マルチ波長光源 - Google Patents

各種新型マルチ波長合波器及び合波器を用いる新型マルチ波長光源 Download PDF

Info

Publication number
WO2016076000A1
WO2016076000A1 PCT/JP2015/075277 JP2015075277W WO2016076000A1 WO 2016076000 A1 WO2016076000 A1 WO 2016076000A1 JP 2015075277 W JP2015075277 W JP 2015075277W WO 2016076000 A1 WO2016076000 A1 WO 2016076000A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
multiplexer
output
light guide
fiber
Prior art date
Application number
PCT/JP2015/075277
Other languages
English (en)
French (fr)
Inventor
潤 成沢
Original Assignee
フォトンリサーチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014240554A external-priority patent/JP2016095479A/ja
Priority claimed from JP2014267190A external-priority patent/JP6535848B2/ja
Application filed by フォトンリサーチ株式会社 filed Critical フォトンリサーチ株式会社
Priority to CN201580006643.XA priority Critical patent/CN106062600B/zh
Publication of WO2016076000A1 publication Critical patent/WO2016076000A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • AWG Array Wave-Guide Grating
  • Patent Document 2 a miniaturized waveguide type RGB three-wavelength multiplexer
  • Patent Document 3 a low-cost and high-coupling-efficiency fiber output and filter-type RGB multiplexer
  • Various conventional multi-wavelength multiplexers can be made by the conventional technology as described above, but these conventional multiplexers are generally used for applications other than optical communication, for example, devices and apparatuses such as a projection display using a laser.
  • As evaluation criteria there are several conditions and limitations to be applied, such as light loss, wavelength band and beam transverse mode, productivity and cost.
  • the loss of light is insignificant due to the optical coupling efficiency from the light source to the multiplexer and the loss of the multiplexing optical system inside the multiplexer, the light propagation loss inside the multiplexer, etc.
  • Such an optical loss increases as the number of wavelengths to be combined or the number of light sources increases.
  • the conventional multiplexing technique depends considerably on the transverse modes of the incident and outgoing beams, whether the light source is an LD or an LED, and whether the component on the multiplexer side is a fiber or a waveguide.
  • the conventional multiplexer uses a transmission or reflection filter or diffraction element depending on the wavelength difference of each light to be multiplexed, so depending on the wavelength dependence of these optical components.
  • the characteristics of the multiplexer depend on the wavelength bandwidth of the combined light.
  • the confinement of light in the waveguide or fiber is due to the difference in refractive index between the core and clad materials, and is also related to the transverse mode of the confined light. .
  • the bandwidth of light sources such as LDs can be extended to 1200 nm by adding a light source of 200 nm or more, and up to 1600 nm for sensors to the blue-green-red wavelengths of the three primary colors for projection-type television displays.
  • the technology is completely incompatible. That is, most conventional multiplexers have wavelength dependence and beam transverse mode dependence.
  • the conventional problems such as the optical loss of the multiplexer and the limitations and dependence on the transverse mode, wavelength and wavelength bandwidth of the beam are the main problems to be solved by the present invention.
  • Projection TVs, especially for in-vehicle and mobile phones, require mass production, are highly productive with technology like semiconductor processes, product reliability, low cost and high performance, and extremely small like chip types. Since it is indispensable, the method of making a multiplexer that meets these requirements is also a problem to be solved by the present invention.
  • the light propagation medium may be a hollow light guide having no wavelength dependency in the multiplexer according to the first aspect of the present invention.
  • a reflective thin film that is hardly dependent on the wavelength, such as metal, is attached to the inner wall surface of the light guide described in claim 1 so that the light beam can be transmitted regardless of the wavelength of the incident light. It is trapped in the light guide. The light beam propagating in the light guide is reflected by the thin film attached to the side of the light guide regardless of the transverse mode, that is, whatever beam diameter and beam divergence angle.
  • each fiber strand bundled according to the wavelength characteristic and beam transverse mode characteristic of each incident light source Since each type is individually selected, it is not affected by various limiting factors such as the wavelength of the light source to be combined, the bandwidth, and the transverse mode of the beam. Therefore, a multiplexer made up of components such as the hollow light guide described in claim 2 and the bundle fiber described in claim 4 is an LED including a very high-order mode from a single transverse mode LD.
  • the present invention is also applicable to a surface light source such as the above, and has little dependency on the wavelength band from the ultraviolet to the near infrared.
  • a surface light source such as the above
  • Specific points such as improvement of wave efficiency, overcoming of optical propagation loss and output end loss inside the multiplexer can be mentioned.
  • the light guide is made hollow in the multiplexer of claim 1 as a means for improving the light efficiency.
  • the fibers are independently selected in accordance with the wavelength and beam characteristics of the incident light source, so that the maximum coupling efficiency can be obtained by the optimum coupling method for each incident light by this means. can get.
  • a method for making a hollow light guide for a multiplexer according to claim 1 of the present invention that is, with a reflective thin film
  • a method of making a multiplexer by bonding a substrate having a groove and a cover plate with a reflective thin film is a means for solving this problem.
  • the groove for the light guide described in claim 2 can be easily raised using a semiconductor process etching device or a laser beam direct drawing device. Finish with precision. Further, a metal or a dielectric is formed on both sides and bottom of the light guide groove carved on the substrate according to claim 2 by electroplating, or vapor deposition methods such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition). Can be coated.
  • the manufacturing method described above is the same as semiconductor component manufacturing and can be mass-produced at low cost. Note that making the multiplexer described in claim 4 from a bundle fiber is also a means for mass production at low cost.
  • the multi-wavelength light source according to any one of claims 5 and 6 is a low-cost, high-reliability, mass-produced multiplexer as in the above-described claims 1 and 4, which is divided into parts. Since it can be prepared separately from N light sources, it can be mass-produced at low cost and with high reliability in terms of management and production.
  • the hollow light guide having no wavelength dependency is used in the first aspect, it is possible to multiplex a plurality of wavelengths of light with a very wide band of 1000 nm or more from ultraviolet to visible and near infrared. Since the coupler of claim 4 also uses a bundle fiber, it can be applied to a wide band from ultraviolet to near infrared within the transmission band of fiber strand glass. In other words, the two-way multiplexer according to claims 1 and 4 of the present invention has little dependency on the wavelength and wavelength bandwidth, and has an excellent effect on wavelength characteristics. Further, the hollow light guide can confine light almost independently of the divergence angle of the input light beam by the reflective thin film attached to each side with respect to the light propagation direction.
  • the type of each fiber is selected in accordance with the characteristics of each transverse mode of the incident light source beam. That is, the two-way multiplexers of the first and fourth aspects of the present invention have excellent applicability to the transverse mode of the incident light source beam.
  • neither the light guide 1 nor the fiber bundled 4 is incident and the incident light is directly connected from the light receiving end surface to the output end without passing through other components for each light source to be combined. Therefore, there is almost no loss and the efficiency of the multiplexer main body is close to 100%.
  • the overall light efficiency from the light emission to the output of the multiplexer can be obtained at 70% in the case of claim 1 and 90% or more in the case of claim 4, thereby improving efficiency. Is very expensive.
  • the propagation path of light inside the multiplexer is directly connected between the incident and outgoing ends as described above, and is being propagated at a very short distance. It also has the effect of maintaining the beam's spatial coherence to the maximum.
  • the dual multiplexer according to claims 1 and 4 is a compact and thin chip type as an indispensable key component of a multi-wavelength light source made from a plurality of surface-mount LD light sources having a plurality of wavelengths, the product reliability and It is also effective in improving practicality. Since a semiconductor manufacturing method such as etching of the hollow light guide groove and reflection film deposition according to claim 2 is used, the multiplexer as in claim 1 can be mass-produced at low cost. The chip type multiplexer using the bundle fiber as claimed in claim 4 can drastically reduce the cost as compared with the conventional waveguide type or filter type multiplexer.
  • a multi-wavelength light source having a fiber output can be formed with a compact and thin chip type multiplexer.
  • a light source transmits light through a fiber, so that it can be installed separately between the light source and the display device.
  • the light source and the driver power source are connected to the pocket, and the light is connected by a fiber and only the projector optical system is placed on the glasses.
  • the head-up projector In the case of in-vehicle use, the head-up projector is placed in a place where the temperature change in the vehicle is large. Therefore, the operating conditions of the apparatus are in the range from minus 30 ° C to plus 90 ° C, and this is a wide range for the LD as the light source. Although the operation of temperature is severe, the head-up projector that transmits the light through the fiber is installed only in the optical system by installing the RGB three-wavelength LD and the driver in a place where the temperature can be easily managed by using the fiber multiplexer. It can be put up and can withstand cold and intense places. When the multiplexer according to the present invention is used for each application field described above, there is great convenience in making each device.
  • the surface mount LD chip of claim 6 is a cylindrical type of about 3 mm to 5 mm square, or a wearable type electronic device with a diameter of 3 mm to 5 mm.
  • a multi-wavelength laser light source used in the device there is an effect of miniaturization in a form that is mountable.
  • the conceptual diagram which shows the structure of the multiplexer which uses the N-injection of Claim 1 made from the method described in Claim 2, and a single-outgoing hollow type light guide.
  • the upper tier is a cover plate with a light reflecting thin film attached to the lower surface
  • the lower tier is a substrate with N + 1 light guide grooves with a light reflecting film carved on each side and bottom.
  • FIG. 5 shows a cross-sectional structure of a light guide of a multiplexer formed by a method of carving a groove on a substrate according to claim 2, that is, a formation pattern of incident and outgoing light guides on the substrate as Example 1.
  • FIG. 2 the structure of each light guide groove and coupling portion is easy to see, and is enlarged and drawn without being proportional.
  • the incident and exit light guides and the external dimensions of the multiplexer made from this substrate are described in detail in Example 1 later.
  • a spatial multiplexer of a 3-to-1 light beam with a 3-beam input and a 1-beam output using a plurality of N 3 bundle fibers according to claim 4 in the second embodiment Fig.
  • FIG. 6 is a three-dimensional CAD design diagram showing an example of Example 3, a structure of an RGB light source having a cylindrical outer shape.
  • FIG. 6 is a three-dimensional CAD design diagram illustrating a structure of a multi-wavelength light source in which an LD is three-dimensionally mounted as a further example of Embodiment 3.
  • the right part of the figure is an RGB and NIR four-wavelength light source with a square rod-shaped outer shape.
  • Four surface-mounting LDs are mounted symmetrically on the four-round surface of the cube, and the 4-to-1 multiplexer is A bundle fiber type of claim 4 is used.
  • Example 3 and Example 4 Outline photographs of prototypes.
  • the photograph 801 on the left is a cylindrical RGB three-wavelength LD light source according to the third embodiment
  • the photograph 802 on the right is an RGB three-wavelength using a fiber output multiplexer via the light guide described in claim 3 as the fourth embodiment. light source.
  • FIG. 1 schematically shows the structure of a multiplexer using the hollow light guide according to claim 1 which is made by the method described in claim 2 of the present invention.
  • the detailed shapes and sizes of the entrance and exit light guides and couplings shown in the figure vary depending on the transverse mode of the incident light source and the transverse mode of the exit side beam related thereto. Since the basic portions of these structures are easy to see, the size of the light guide is not proportional to the size of the substrate and is arbitrarily enlarged in FIG.
  • each groove on the substrate shown in FIG. 2 is actually the shape of the light guide itself, and is also the formation pattern of the multiplexer light guide.
  • the cross section of each light guide of the multiplexer that is, the cross-sectional shape of the groove on the substrate is a square of about several microns ( ⁇ m) at a practical level and extremely thin.
  • the dimensions of the grooves are drawn in FIG.
  • a high-intensity single transverse mode LD is used as a light source at three wavelengths of red 660 nm, green 520 nm, and blue 450 nm.
  • FIG. 2 only three light guides with three RGB wavelengths can be seen.
  • the FA and SA of the LD are respectively placed in the vertical and horizontal directions of the present multiplexer, and the light emission points of the LD are respectively set to the vertical of the light guide light receiving surface on the input side of the present multiplexer. Aligning with the center position in both lateral directions and aligning with the light receiving surface in the optical axis direction at a distance of about 5 ⁇ m, the red light from the output on the multiplexer output side of this example is output to the LD source output. The overall efficiency of light is obtained at a ratio of 75%, green 71%, and blue 68%.
  • the multiplexer of this example is small, the light guide has an optical path length of only a few millimeters from incidence to emission, and the beam is not yet sufficiently diffused to the expected higher-order transverse mode.
  • the beam is shaped into a substantially square and coupled to the multiplexer.
  • the cross-sectional shape of each of the RGB light guides on the wave incident side was also made a square of 5 ⁇ m in both the horizontal and vertical directions in accordance with the incident beam shape.
  • Example 1 there is also a process in which a groove having the above-mentioned cross-sectional shape is formed by dry etching on the upper surface of a silicon wafer substrate having a thickness of about 1 mm or less, and a gold thin film is deposited on the side and bottom surfaces of the groove.
  • FIG. 2 is not in proportion to the actual size, in the multiplexer of this example, the three light guides arranged side by side on the incident side are 5 mm in the length direction with an interval of 1.5 mm from each other, and the width W is 5 mm.
  • this light multiplexer was mounted in accordance with the surface mount chip type RGB three-wavelength LD, and a light source was prototyped.
  • This light source is an RGB three-primary-color single transverse mode output, and the outer dimensions are W5 mm ⁇ L8 mm ⁇ t2.5 mm when directly coupled, and the outer dimensions are W5 mm ⁇ L12 mm ⁇ t2.8 mm when coupled lenses, both of which are compact chip types. .
  • the spatial coherence of the beam output from the multiplexer is not destroyed.
  • the commercially available single transverse mode fiber is not applied to the second embodiment because the clad diameter is ⁇ 125 ⁇ m.
  • the ideal fiber strand has a core diameter of ⁇ 4 ⁇ m and a cladding diameter of ⁇ 6-8 ⁇ m.
  • NA 0.2
  • core diameter of ⁇ 7 ⁇ m a single transverse mode strand fiber having a cladding diameter of 10 ⁇ m or less is under development, but is made of a low melting point inorganic glass or plastic.
  • FIG. 4 shows a photomicrograph of the emission end face of the three fibers bundled on the output side of the RGB three-wavelength single transverse mode multiplexer of Example 2 configured in FIG.
  • the distance between adjacent cores of three fibers that are closely bundled in an equilateral triangle delta shape is approximately 10 ⁇ m.
  • the end face of the bundled three fibers is polished by polishing, and the three strands are put into a glass tube ferrule with a ⁇ 1mm outer diameter with a hole of ⁇ 25 ⁇ m in the center. It is fixed with.
  • the incident end faces of the three fibers are arranged side by side at an interval of 2 mm on the input side of the multiplexer.
  • the optical coupling efficiency between the LD and the multiplexer fiber is about 65% when the width is 6 mm, the length is 8.5 mm, and the thickness is 1.8 mm, and between the light source LD and the multiplexer.
  • the multiplexer in FIG. 5 can be switched from the bundle fiber system of claim 4 to the hollow light guide system of claim 1. The characteristics of the two are almost the same as described above, and the produced RGB light source can obtain a single transverse mode output with the same chip-type outer shape and a coupling efficiency of the same level. That is, the RGB light source according to the fifth aspect of the present invention, which is the target of the second embodiment shown in FIG.
  • the transverse mode characteristics of the RGB three-wavelength light beam emitted from the bundle fiber on the output side of the second embodiment were also examined.
  • the quality index Msquare M ⁇ 2 regarding the beam transverse mode is 3.5 at the red wavelength 638 nm, 4.2 at the green wavelength 520 nm, and 4 at the blue wavelength 450 nm.
  • the measured values for both red, green and blue are 2 or less and are almost similar to the single transverse mode.
  • the length of the multiplexer fiber is about 6 mm, and the propagation distance of the beam in the fiber is extremely short, so the effect of mixing into the higher mode has not yet been revealed. This is because the transverse mode of the input beam reaches the output end without being destroyed.
  • the same optical axis property of the RGB three-wavelength beam emitted from the light source of Example 2 was also examined.
  • the beam spot diameters (FWHM) of the three R, G, and B measured were about ⁇ 0.5 mm or less.
  • the three-wavelength three-beams are separated from each other by about 0.5 mm, and one ⁇ 1.5 mm concentric circle can be used, so that it can be used as one beam of three wavelengths at a practical level.
  • the output of the light emitted from the original LD after passing through the multiplexer of Example 2 is 135 mW for 160 mW of red 638 nm, 65 mW for 80 mW of green 520 nm, and 62 mW for 80 mW of blue 450 nm.
  • the beams of the three wavelengths emitted from the multiplexer fiber are almost in a single transverse mode, and satisfy the high luminance and high output required for the projection projectors for in-vehicle use and mobile phones.
  • the RGB multi-wavelength light sources such as the first and second embodiments described above are of a type that is mounted side by side on a single plane capable of radiating a plurality of LDs, the output is increased by 100 mW or more for each wavelength. Even in the case of a multi-surface mounted LD chip, the heat dissipation problem becomes apparent due to the high current consumption due to the high current consumption and the high density mounting.
  • the RGB light source of the third embodiment uses the same surface mount type LD chip on the same plane as the above two examples, but is mounted three-dimensionally by the method described in claim 6. Thus, the outer shape becomes a solid shape such as a cylindrical shape and a polygonal rod shape.
  • FIG. 6 shows, as an example, an assembly of an RGB light source that is three-dimensionally mounted by the method described in claim 6 from the three methods of a surface mount chip type LD, a coupling lens, and a bundle fiber coupler described in claim 4. It shows the principle and structure.
  • this light source is cylindrical, three light emitting points from the RGB LD that are three-dimensionally assembled inside the cylindrical metal case and three of the three fibers on the incident side of the multiplexer
  • Each fiber end face has a light receiving end face, a light emitting point and a light receiving face in a one-to-one correspondence with each other, and an equitriangular delta type distribution of the same size, and three output lights of three LDs using three coupling lenses.
  • the thing of this FIG. 6 was designed and prototyped in the external shape of the cylinder body of length 8mm and diameter (PHI) 5.6mm.
  • FIG. 7 is an assembly structure diagram of a visible RGB and near-infrared four-wavelength LD light source module mounted in a square shape as another example. As in the example of FIG. 6, a four-wavelength beam from four LDs having a three-dimensional distribution is combined into a four-to-one bundle fiber multiplexer having the same three-dimensional distribution using a four-coupled lens.
  • the square four-color LD module (set from 711 to 732 in the figure) on the right side of FIG.
  • RGB-NIR light source packaged in this way is shown in the photograph on the left in FIG. 8 as one of the prototypes.
  • This module has an outer diameter of 6 mm and a length of 12 mm.
  • Example 4 is an RGB light source using a fiber-type multiplexer via a light guide described in claim 3, and is shown in the photograph on the right side of FIG.
  • Laser light from a ⁇ 3.8 can type single transverse mode RGB LD is coupled to the light input side light guide using a lens, and output light from the output light guide is also 1 using the lens. It is coupled to a single transverse mode fiber and is finally output from the fiber with an efficiency of about 60% of the output from the LD.
  • the key point is the fiber output.
  • the required light can be output to the application device at a location away from the light source.
  • the body of the RGB light source including the LD is placed separately even if the ambient temperature at the place where the head-up projector that outputs light is in a wide range from minus 35 ° C. to plus 90 ° C. or more. So it can operate normally. In other words, such a light source is indispensable for in-vehicle applications.
  • a thin and compact multi-wavelength light source can be made by plane mounting. It can be used for applications such as cellular phones and other wearable display devices that are required to be small, such as laser projectors using MEMS, DMD, LCOS, or the like. Further, in the multi-wavelength light source using the fiber output type multiplexer, since it is transmitted by the fiber between the LD light source and the projector to which the light reaches, it is easy to have resistance to an environment where the temperature is severe such as a car and the outdoors. Thus, it can be used for applications such as in-vehicle field.
  • a multi-wavelength light source such as a cylindrical type with an outer diameter of ⁇ 5 mm or less can be made by three-dimensionally mounting a plurality of high-power LDs with multiple wavelengths together in claim 6, the heat dissipation is improved to an easy-to-mount outer shape. Therefore, it can be used for wearable laser display devices such as laser pointers and glasses.
  • the mounting operation of the multiplexer itself by mounting for each internal part, Because it is divided into two major tasks, such as the mounting work that couples the light to the multiplexer, especially in the case of mass production, both the management and manufacturing are performed rather than the mounting work involving multiple conventional LDs. This makes it easier to reduce costs and improve product reliability.
  • references relating to FIG. 110 A substrate 111 on which a light guide groove of the multiplexer is engraved A surface on the substrate 110, and a light guide groove is engraved on this surface 112 An N + 1 light guide carved on the surface 111
  • n 1,..., N is an Nth incident light guide
  • n N + 1 is one outgoing light guide.
  • the cover plate 121 that covers the light guide groove to be bonded to the upper surface of the substrate 110 that is coated with a metal thin film or a dielectric thin film that totally reflects light on the side surface and the bottom surface of the cover plate 120, That is, a surface for forming the light guide by covering the groove for the light guide carved in the surface 111 on the opposite substrate 110 to be bonded to this surface.
  • the light beam input end 203 of the first blue wavelength incident light guide The third light beam input end 210 of the green light incident light guide
  • the outgoing light guide groove 211 The first red wavelength incident light guide groove 212
  • the second Blue wavelength incident light guide groove 213 Third green wavelength incident light guide groove 222
  • Second blue wavelength incident and outgoing light guide coupling portion 223 Third green wavelength incident and outgoing light guide coupling portion * *
  • the input light guide 201 is in a straight line from the input terminal 201 to the output terminal 200. That is, the incident light guide 211 has no coupling portion and is directly connected to the output light guide 210. ,
  • the two are one. References relating to FIG.
  • the strands of the three fibers are bundled by satisfying the condition described in claim 1 on the output side of the 514 multiplexer having a core diameter of ⁇ 7 ⁇ m, NA of 0.2 and a cladding diameter of ⁇ 10 ⁇ m.
  • the RGB three-color LD light source body includes the 611-i LD, 612-j LD electrode, 613-k heat sink, 621-s coupling lens, and 630 multiplexer, etc.
  • a beam emitting port 640 of a 632 bundle fiber combiner that is composed of parts and is three-dimensionally mounted according to the arrangement relationship in the drawing to form a single module.
  • Three-color RGB laser light source on the right side in the above-described drawing An outer case for housing the main body module, and the outer shape is a L8 mm ⁇ ⁇ 5.6 mm cylindrical shape.
  • Single transverse mode fiber 822 that combines light beams from RGB three-wavelength LD and outputs light from light source body 810 to the outside. Ferrule at the output end of fiber 821

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 携帯電話と車載用途のレーザープロジェクタに、より高い耐環境性と高い光効率、低いコストで大量生産できる小型の合波器であって、赤緑青又は近赤外の複数波長の光ビームを合波する合波器、及び、当該合波器を用いる光源に関する。 請求項1の中空型ライトガイド又は請求項4のφ10μm以下の細いクラッド径のバンドルファイバで、波長及び波長帯域幅のビーム縦と横モードに左右されず、上述の耐環境性、光効率と生産性の向上等の諸課題を解決できる合波器、並びに、当該合波器と表面実装用チップ型LDとの併用で、請求項3のファイバ出力型と、請求項5のLD平面実装による薄いチップ型と、請求項6のLD立体実装による外形円柱型又は角型と、のそれぞれ実用レベルでのマルチ波長小型レーザ光源を、低コストで量産できる。

Description

各種新型マルチ波長合波器及び合波器を用いる新型マルチ波長光源
 本発明は画像処理装置、内視鏡と眼科装置等光による医療診断と治療、尚光通信及び、MEMSかDMDによるスキャン型或いはLCOSによる投影型プロジェクタ三原色RGB(R=Red、G=Green、B=Blue波長)光源技術に関する。
 従来光通信にファイバ波長多重での合波器にアレイ導波路グレーティング(AWG=Array Wave−Guide Grating)を多く使っている(特許文献1)。最近、プロジェクタ方式小型レーザーディスプレーは、携帯電話と車載に実用化される為、小型化された導波路方式のRGB三波長合波器もある(特許文献2)。尚低コスト且つ高結合効率のファイバ出力、フィルタ方式のRGB合波器もある(特許文献3)。
特開2005−234245号公報 特開2013−195603号公報 特開2013−228651
 上述の様な従来の技術で様々なマルチ波長の合波器を作れるが、光通信以外の応用、例えばレーザーを用いる投射型ディスプレイ等デバイスと装置に、これら従来の合波器は、一般的な評価基準として、光の損失、波長帯域とビーム横モード、尚生産性とコスト等に、適用される条件と制限が以下の様に幾つかがある。
 従来の技術で光の損失は、光源から合波器への光結合効率と合波器内部の合波光学系のロス、尚合波器内部の光伝搬ロス等で、無視できないほど存在し、尚、この様な光学ロスは、合波される波長の本数または光源の数量の増加に伴って大きくなる。
 又今までの合波技術は光源をLDにしてもLEDにしても、合波器側の構成要素をファイバにしても導波路にしても、入射と出射ビームの横モードにかなり依存される。
 尚、従来の合波器に、合波しようとする各光の波長の差による合波で、波長による透過か反射型フィルタ或いは回折素子を使われているので、それら光学部品の波長依存性により、合波器の特性は、合波される複数光の波長尚波長の帯域幅に依存される。導波路型とファイバ型合波器の場合、導波路或いはファイバ中に光を閉じ込めるのは、コアとクラッドの材質の屈折率差によるものであり、閉じ込められる光の横モードにも関係している。それらの波長依存性によって、LD等光源の帯域幅は、投射型テレビ表示用三原色の青緑赤波長に200nm以上、尚センサ用1600nmまでの光源を加え、1200nmに延べ、従来のファイバ或いは導波路技術では全く対応不能になる。つまり殆どの従来型合波器は波長の依存性、又ビーム横モードの依存性がある。
 以上によって、合波器の光学ロス、又、ビームの横モード及び波長と波長帯域幅に対する制限と依存性等従来の問題点は、本発明が解決しようとする主要な課題である。
 投射型テレビ、特に車載用と携帯電話用の場合、大量生産を要求され、半導体プロセスの様な技術による生産性と製品の信頼性、低コスト且つ高パフォーマンスのもの、チップ型の様な極めて小型化のものは、必須なので、それらの要求に応じる合波器を作り上げる方法も、本発明が解決しようとする課題である。
 本発明に解決しようとする主要課題の一つは、従来型合波器で合波される光の波長依存性と合波されるビームの横モード依存性である。先ずこれらの問題を解決する手段として、光を伝搬される媒体は、本発明請求項1の合波器に波長依存性が無い中空のライトガイドを使う事を挙げる。更にこれらの問題のもう一つの解決手段として、請求項1に述べたライトガイドの内壁面にメタルなど波長に殆ど依存されない反射薄膜を付ける事で、それにより入射光の波長と関係なく光ビームをライトガイド中に閉じ込められる。尚、ライトガイド中に伝搬される光ビームは、どの様な横モードになっても、つまりどの様なビーム径でどの様なビーム発散角があってもライトガイド側面に付けてある薄膜の反射により、閉じ込められるので、以上諸手段で合波器のビーム横モードの依存性も解消出来る。
 尚請求項4の合波器に、以上に述べた諸課題を解決する手段としてバンドルファイバを用いているので、各々入射光源の波長特性とビーム横モード特性に合わせてバンドルされる各々ファイバ素線の種類が一本一本独自に選ばれる事より、合波される光源の波長と帯域幅尚ビームの横モード等諸制限要素にも左右されなくなる。
 従って、請求項2に述べた中空型ライトガイドと請求項4に述べたバンドルファイバの様な構成要素を手段にして作り上げる合波器は、シングル横モードのLDから、極めて高次モードを含むLEDの様な面光源までにも適用し、尚紫外から近赤外までの波長に対しても、波長の帯域に対しても依存性は殆どない。
 又、合波器の総合的な光効率に対する課題について、合波器に入射ビーム結合効率の向上、合波器内部に入射された複数のビームを一つビームになる際に用いる光学系の合波効率の向上、尚合波器内部における光の伝搬ロス及び出射端ロスの克服等具体的な点を挙げられる。請求項1の合波器に光効率の向上する為の手段としてライトガイドを中空にすることである。先ず中空なので光の吸収は無く、中空ライトガイドの内壁に高い反射率持つ薄膜を付けているので、光を良く閉じ込めて伝搬ロスは少ない。又入射ビーム特性に合わせてライトガイドの入射端の形状設計も出来るので、入射光の結合効率を上げられる。又請求項4バンドルファイバ合波器の場合、各々入射光源の波長とビーム特性に合わせてファイバを各々独立に選ばれるので、この手段により各々入射光に対し最適な結合方法で最大の結合効率を得られる。尚、各ファイバに結合される光をそのまま出射端に直結して出力するので、入射端に入射光の結合際のロス以外に合波器本体のロスは殆ど無い。
 又は、高信頼性に小型化尚且つ低コストで大量生産の課題に対し、先ず本発明請求項2に述べた請求項1の合波器の中空型ライトガイドの作る方法、つまり、反射薄膜付の溝がある基板と反射薄膜付のカバー板の貼り合わせから合波器を作り上げる方法は、この課題に解決する手段である。つまり、請求項2の基板についてシリコンとガラス等一般的な材質とすれば、半導体プロセス用エッチング装置とかレーザービーム直描装置を用いて、請求項2に述べたライトガイド用の溝を容易に高精度で仕上げる。又電化メッキ、或いはPVD(Physical Vapor Deposition)とCVD(Chemical Vapor Deposition)等の蒸着方法で請求項2記載の基板上に彫り上げられたライトガイド用の溝の両側面と底面にメタルか誘電体の薄膜をコーティング出来る。以上述べた作り方法は、半導体部品作りと同じで低コストに大量生産出来る。尚、請求項4に述べた合波器をバンドルファイバから作り上げる事は、低コストで大量生産出来る手段でもある。尚本発明請求項5と請求項6のいずれによるマルチ波長光源は、上記請求項1と請求項4の様な低コスト且つ高信頼性、量産出来る合波器を部品化されて、元の複数N個光源から分立して予め用意出来るので、管理上でも生産上でも低コスト且つ高信頼性に大量生産出来る。
 請求項1に波長依存性が無い中空ライトガイドを用いるので、紫外から可視尚近赤外まで1000nm以上非常に広帯域で複数波長光の合波は出来る。請求項4の合波器もバンドルファイバを用いるので紫外から近赤外までの広帯域にファイバ素線ガラスの透過バンド内であれば適用出来る。つまり本発明請求項1と請求項4の二種合波器は、波長と波長帯域幅に依存性が殆ど無いもので、波長特性に優れた効果はある。
 又請求項1中空型ライトガイドは光伝搬方向に対する各側面に付けてある反射薄膜により、入力される光ビームの発散角と殆ど関係なく光を閉じ込められるので、横モードシングルのLDから面光源で高次マルチ横モードのLEDまで、ビーム横モードと殆ど依存性が無くそれぞれ応用に応じてそれぞれ波長尚それぞれ横モードの光源の合波は出来る。又請求項4のバンドルファイバにも入射光源ビームの各々横モードの特性に合わせて各々のファイバ素線の種類を選ばれる。つまり、本発明請求項1と請求項4の二種合波器は、入射光源ビームの横モードに優れた適用性を持っている。
 基本構造から見ると請求項1ライトガイドも、請求項4バンドルされるファイバも、合波される光源ごとに他の部品を介してなく入射光は受光端面から出射端までに直結して出射されるので、ロスが殆ど無く合波器本体の効率は100%に近い。特にシングル横モードLDを光源とする際に光出射から合波器出力まで総合的な光効率は、請求項1場合に70%、請求項4場合に90%以上に得られ、効率の向上効果は非常に高い。更に以上二種の合波器は、コンパクトで作られているので、合波器内部に光の伝搬光路は上述の様に入射と出射両端の間に直結型且つ非常に短距離で、伝搬中にビームの空間コヒーレンスを最大限に保てる効果もある。
 又、請求項1と請求項4の二種合波器は、前述複数波長の複数表面実装LD光源から作り上げるマルチ波長光源の欠かせないキー部品として、コンパクトで薄いチップ型なので、製品信頼性と実用性の向上に効果もある。
 請求項2に記載の中空ライトガイド溝のエッチングと反射膜の蒸着等半導体製造方法を用いているので請求項1の様な合波器は低コストで量産出来る。尚、請求項4の様なバンドルファイバを用いるチップ型合波器は、従来導波路型かフィルタ型合波器と比べ、コストを劇的に低減出来る。マルチ波長の光源のキー部品として、本発明請求項1と請求項4の二種合波器は、量産性とコストの面でも顕在の効果がある。
 更に、請求項3により、コンパクトに薄いチップ型合波器でファイバ出力のマルチ波長光源も出来る。メガネ型と車載ヘッドアップ型プロジェクタの場合、この様な光源はファイバで光を伝送するので、光源とディスプレイ表示装置の間に分離して設置出来る。例えば、掛けメガネ方式の場合、光源とドライバ電源はポケットに、光がファイバで繋いでメガネにプロジェクタ光学系だけ置かれるので、軽量且つ小型で出来る。車載の場合に、ヘッドアッププロジェクタの置く場所は車内の気温変化が大きいところなので、マイナス30℃からプラス90℃までの範囲に装置の作動条件になり、光源とするLDに対してこの様な広範囲温度の作動は厳しいが、ファイバ合波器を用いる事で、RGB三波長LDとドライバを別の温度管理し易い場所に設置し、光をファイバで伝送されてくるヘッドアッププロジェクタは、光学系だけ置かれ、冷熱激しい場所にも耐えられる。以上に述べた各応用分野へ本発明による合波器を用いるとそれぞれの装置作りに大きな利便性はある。尚、請求項6の表面実装用LDチップを立体化に実装して放熱性を改善する事により、Φ3mmからΦ6mm程円柱型、或いは3mmから5mm角の立方体棒型で、ウェアラブル(Wearable)式電子デバイスに使われるマルチ波長レーザー光源として、実装性がある形で極めて小型化の効果はある。
請求項2に述べた方法から作られる請求項1のN本入射と1本出射中空型ライトガイドを用いる合波器の構成を示す概念図。上の段は下の面に光反射薄膜を付けてあるカバー板、下の段は各側面と底面に光反射膜付N+1本のライトガイド用溝を彫ってある基板。二者の貼り合わせで、N本の入射及び1本の出射、つまりN+1本のライトガイドは形成される。カバー板下の面及び、N+1本ライトガイド用溝の各側面と底面にコートしてある光全反射薄膜を付ける事により、入射ライトガイド中に入力される各波長の光ビームは、出射ライトガイドの出力端までに閉じ込められる。 実施例1として、請求項2に示す基板上に溝を彫る方法によって作り上げる合波器のライトガイドの断面構造、つまり基板上に入射及び出射ライトガイドの形成パターンを示す図面。図2は各ライトガイド用溝及び結合部の構造を見易い為、拡大して、比例しないで描かれている。シングル横モードLDの場合にこの基板から作られる合波器の各入射と出射ライトガイド及び外形寸法について、後の実施例1にて詳細に述べてある。 実施例2に請求項4に複数N=3のバンドルファイバを用いる3ビーム入力、1ビーム出力の3対1光ビームの空間的な合波器 図3合波器出力端に付くフェルールの中心にある内径Φ25μm穴の中にバンドルされてある3本クラッド径Φ10μファイバの出射端面の顕微鏡写真 実施例2とするコンパクトで薄いチップ型RGBレーザー光源、図中に合波器は図3による3対1のもので、合波器入射側の光源は638nm、520nm及び450nmのRGB三波長シングル横モード表面実装型LDである 実施例3の一例、円柱体外形を持つRGB光源の構造を示す3次元CAD設計図。図中に表面実装型LD三個を円心対称で立体的に実装、尚請求項4バンドルファイバ型3対1合波器を用いられている。 実施例3の更に一例、LDを立体的に実装されるマルチ波長光源の構造を示す3次元CAD設計図。図中の右部分は、角の棒型外形を持つRGBとNIRの四波長光源で、表面実装型LD四個は、立方体四周の面に中心対称で実装され、4対1の合波器は、請求項4バンドルファイバ型のものを用いられている。また、図中右側の角の棒型光源(図中711から732までの部品で組立てられるもの)を図中左側にある放熱為尚保護為の円柱型金属ケース(図中740)に入れて、円柱体の外形にすることも可能。 実施例3と実施例4試作品の外形写真。左側の写真801は、実施例3による円柱型RGB三波長LD光源で、右側の写真802は、実施例4として請求項3に述べたライトガイドに介してファイバ出力型合波器によるRGB三波長光源。
 本発明請求項2に述べる方法で作り上げる請求項1の中空型ライトガイドを用いる合波器の構造を図1に概要的に示している。図中に示す入射と出射ライトガイド及び結合部の詳細形状とサイズは、入射光源の横モード、又それと関連して出射側ビームの横モードによって変わる。尚それら諸構造の基本部分を見易い為、図1中にライトガイドの寸法は、基板のサイズと比例してなく、任意的に拡大して描かれている。
 先ず波長RGB(=赤緑青)のシングル横モードLD用3対1の三波長合波器に通じて、本発明請求項2に述べる中空型ライトガイドの形成方法を図2に示す。請求項2に述べる基板上に溝を彫ってライトガイドを作る方法により、図2の基板上に入力側の3本と出力側の1本計4本の溝は、それら中空型ライトガイドの光伝達媒体の中空部分を形成する。つまり、図2に示す基板上各々溝の形状は実際ライトガイドそのものの形状であり、合波器ライトガイドの形成パターンでもある。本例の光源は、RGBシングル横モードLDなので、合波器各ライトガイドの断面、つまり基板上溝の断面形状は、実用化レベルで数ミクロン(μm)程度の四角形で、極めて細いものになる。それらライトガイドの詳細形状を分り易く示す為、図2に溝の寸法は、基板サイズと比例しなく、任意に拡大して描かれている。
 本実施例1に、赤660nm、緑520nm、及び青450nmの三波長で共に高輝度シングル横モードLDを光源にする。典型的なビーム特性は、発散全角FAHM(Full Angle at Half Maximum)=25°のファスト軸FA(Fast Axis)に発光点(エミッタ)幅は約1.5μm、FAHM=10°のスロー軸SA(Slow Axis)に発光点幅約5μmで、ビーム品質指数エムスクエアM^2は、大よそ1.2になっている。
 本発明請求項1によると、本例にN=3で、ライトガイドの本数は入射光N=3本、出射光1本の計4本だが、出射光の1本は入射光3本の内に波長が赤の1本と統合して図2上にRGB三波長の3本のライトガイドのみと見られる。
 先ずLDとライトガイドの間にレンズを使わず光を直接結合する場合、図2中に描かれたライトガイドの光伝搬方向と垂直する断面形状は、3本共に横方向(=図2中溝の幅方向)に6.5±0.5μm、縦方向(=溝の深さ方向)に3.5±0.5μmになるものを試作した。この場合にRGB三色で計3個のシングル横モードLDを用いて本合波器の光効率を調べた。先ずLDのFAとSAをそれぞれ本例合波器の縦と横の方向に置かれて、尚、各々LDの発光点を、本例合波器入力側にある各々ライトガイド受光面の縦と横両方向の中心位置に合わせ、尚光軸方向に前記受光面と大よそ5μmに離れる位置に合わせて調芯すると、LD元の出力に対して、本例合波器出力側の出口から、赤75%、緑71%、青68%の割合で、光の総合効率を得られている。合波器からの出射ビームは、M^2=1.6程度で、これは、M^2の予想値2.1よりかなり良い。こうなる理由について、本例の合波器は小型で、入射から出射までライトガイドの光路長が僅か数mm程度で、ビームは未だ充分に予想の高次横モードまでに拡散されてない。
 又、LDとライトガイド間に、FA方向に倍率1対2.5、SA方向に倍率1対1の円筒形レンズを用いてビームをほぼ正方形に整形して合波器へ結合する場合、合波器入射側にRGB各ライトガイドの断面形状も入射ビーム形状に合わせて、横と縦両方向共に5μmの正方形にした。この合波器を用いるRGB光源からの出力は、M^2=1.3のシングル横モードビームで、大よそ90%の総合光効率を得られている。
 本実施例1の場合、厚み1mm以下程度のシリコンウエハー基板の上面にフォトレジストに通じてドライエッチングにより以上に述べた断面形状の溝を作り、溝の側面と底面に金薄膜を蒸着するプロセスも用いた。図2は実寸と比率してないが、本例の合波器は、入射側に横並びになる3本のライトガイドは、お互いに1.5mmの間隔をもって、長さ方向に5mmにし、幅W5mm×長さL5mm×厚みt1.5mm程度のチップの形になる。更に、この合波器と、表面実装チップ型RGB三波長LDに合わせて実装し、光源を試作した。この光源は、RGB三原色シングル横モード出力で、直接結合場合に外形W5mm×L8mm×t2.5mmに、レンズ結合場合に外形W5mm×L12mm×t2.8mmで、両方共にコンパクトなチップ型になっている。
 本発明請求項4に述べるバンドルファイバを用いるチップ型に複数N=3のRGB三波長シングル横モードLDに適用される合波器は、実施例2として図3のCAD図面に基本構造を示されている。また、本実施例2の目標物は、この合波器を用いる本発明請求項5のRGB三原色LDのチップ型光源であり、この光源の基本構成は図5に示されてある。
 上述合波器にバンドルされる素線ファイバはシングル横モード、つまりNA=0.12~0.13、コア径Φ=3.5~4.0μmのものであれば、元々光源とするLDの横モードとマッチングし、合波器から出力されるビームの空間的な可干渉性は崩されない。但し市販シングル横モードファイバは、クラッド径Φ125μmのため、本実施例2に適用されない。理想的なファイバ素線はコア径Φ4μmにクラッド径Φ6~8μm程度のものだが、本発明出願時点に実用レベルで、NA=0.2、コア径Φ7μm、クラッド径Φ10μmのファイバ素線の既存品を使って、合波器を作った。クラッド径10μm以下のシングル横モード素線ファイバは、今開発中だが、低融点無機ガラス、或いはプラスチックを材質とするものである。
 図3で構成される実施例2のRGB三波長シングル横モード合波器の出力側にバンドルされた3本ファイバの出射端面の顕微鏡写真を図4に示している。正三角形デルタ型で密接的にバンドルされたファイバ3本の相隣コア間の距離は大よそ10μmになっている。図4写真のものの作り方として、バンドルされる3本ファイバ端面を研磨で仕上げる為、中心にΦ25μm程度の穴を開いてあるΦ1mm外径のガラスチューブ型フェルール中に3本素線を入れて接着剤で固定してある。合波器入力側に3本ファイバの入射端面はお互い2mmの間隔で横並びされている。この様な請求項4にN=3のRGB合波器は、幅と長さ共に6mm、厚み2mm程度のチップ型になっている。
 現時点で以上NA0.2、コア径Φ7μm素線、N=3本でのバンドルファイバ合波器を用いるRGB三波長チップ型光源は、LDとファイバの間にレンズ無しで光を直接結合する場合、図5に示す通り、幅6mm、長さ8.5mm、厚み1.8mmの外形で、LDと合波器ファイバ間の光結合効率は最大の場合に65%程度、光源LDと合波器間に結合レンズを用いる場合に光の結合効率は最大85%に上がれるが、外形は長さ方向に11mmになってしまう。現状バンドルファイバ入射と出射両端面に反射防止誘電体薄膜を付けてないが、付けると光の結合効率を更に5%以上に向上出来る。基本的に図5中の合波器について、請求項4のバンドルファイバ方式から請求項1の中空型ライトガイド方式に切換え出来る。二者に関する特性は前述の様にほぼ同じで、作られるRGB光源も同じチップ型の外形尚同等レベルの結合効率でシングル横モード出力を得られている。つまり、図5に示す本実施例2の目標物とする本発明請求項5のRGB光源は、請求項1と請求項4の二種類方式のチップ型合波器の場合を含んでいる。
 尚、実施例2合波器出力側にバンドルファイバから出射されるRGB三波長光ビームの横モード特性も調べた。ファイバ素線コア径7μm、NA0.2から試算されると、ビーム横モードに関する品質指数エムスクエアM^2は、赤波長638nmに3.5、緑波長520nmに4.2、青波長450nmに4.9に対し、実測値は、赤緑青共に2以下、ほぼシングル横モードに近い。こうなった理由は、本例に合波器ファイバ素線の長さが約6mm程度で、ビームのファイバ中での伝搬距離として極めて短いなので、高次モードへの混ぜる効果が未だ顕在されてなく、入力されたビームの横モードが崩れてないままに出力端に到ってしまう為である。
 更に本実施例2光源から出射するRGB三波長ビームの同光軸性も調べたが、バンドルファイバ出射口に焦点距離20mmのアクロマティック(=消色収差)レンズを置いて、1メートル先でビーム径を最小になる様にコリメートして、測れたRとGとB三つのビームスポット径(FWHM)は、大よそΦ0.5mm以下になった。尚三波長三つビームのお互いに離れた距離は、大よそ0.5mm程度で、一つΦ1.5mm同心円の中に入っているため、実用レベルで三波長の一つビームとして使える。
 以上の評価結果により、元LDからの出射光に対して本実施例2合波器に通った後の出力は、赤色638nmの160mWに135mW、緑色520nmの80mWに65mW、青色450nmの80mWに62mWで、合波器ファイバから出射三波長のビーム共にほぼシングル横モードになって、車載と携帯電話用の投射型プロジェクタに要求される高輝度高出力を満たしている。
 以上に述べた実施例1と実施例2の様なRGBマルチ波長光源は、複数LDを放熱出来る一つ平面上に並ばれて実装されるタイプなので、波長ごとに100mW以上の高出力化に伴って、複数表面実装型LDチップであっても高い消費電流によって、尚極めて小型化為高密度で実装される事によって放熱問題は顕在化される。本実施例3のRGB光源は、前述2例の様な一つ平面上に複数LDチップの実装と違って、同じ表面実装型LDチップを用いるが請求項6に述べる方法で立体的に実装されて、外形を円柱型と多角形の棒型の様な立体形になる。本例の光源は、この様に多数のLDに立体的に実装される事により、放熱性に改善される上、円柱型等外形に変えられる事で色々な応用に実装し易い形にもなる。
 図6は、一例として、表面実装チップ型LDと、結合レンズ及び、請求項4に述べるバンドルファイバ式合波器の三者から請求項6に述べる方法で立体的に実装されるRGB光源の組立原理と構造を示すものである。この光源の外形を円柱型にしている為、円柱形金属ケースの内側に立体的に組立されるRGBのLDからの三つ発光点と、合波器の入射側にある3本ファイバの三つ受光端面を、面対面に発光点と受光面を1対1に合わせて同サイズの等三角形デルタ型分布で、三つの結合レンズを用いて三つのLDの各々出力光を三つとする各々ファイバ端面に通じて3本中の各々ファイバに結合する。本図6のものは、長さ8mm、径Φ5.6mmの円柱体の外形に設計し、試作された。レンズを使わず直接結合方式で実装されれば、径Φ4.8mm、長さ6mmまでに小型化出来る。
 図7は、もう一つの例として、四角形の角型で実装される可視RGBと近赤外四波長LD光源モジュールの組立構造図である。図6の例と同様、4個結合レンズを用いて立体型分布の四個LDからの4波長ビームは、同じ立体型分布を持つ4対1バンドルファイバ合波器に結合される。図7右側にある角型4色LDモジュール(図中に711から732までの一式)を左側にある外径Φ5mm、長さ8mmの円柱型収納ケース(図中に740)の中にパッケージも出来る。今までこの様にパッケージされたRGB−NIR光源は、試作された実物の一つとして、図8中に左側の写真で写されている。このモジュールは、外径Φ6mm、長さ12mmになっている。
 実施例4は、請求項3に述べたライトガイドに介されるファイバ型合波器によるRGB光源で、図8右側の写真に示される。Φ3.8のカン型シングル横モードRGBのLDからのレーザー光は、レンズを用いて前記合波器入力側ライトガイドに結合されて、そして出射ライトガイドからの出力光も、レンズを用いて1本のシングル横モードファイバに結合されて、元々LDからの出力に対して約60%の効率で最後にファイバから出力されている。
 本実施例4方式の合波器を用いるマルチ波長LD光源での応用デバイスに対して、キーポイントは、ファイバ出力である。LDを含む光源とファイバ出力端の間にファイバによる光伝送なので、光源と離れた所に応用デバイスに所要の光を出力出来る事で、光源本体のみを別置きする事により、放熱対策は容易になる。前述車載の場合、光出力されるヘッドアッププロジェクタの設置場所における環境温度は、マイナスの35℃からプラスの90℃以上の広範囲になっても、LDを含まれるRGB光源の本体は別置きされるので、正常作動出来る。つまりこの様な光源は、車載での応用にとって不可欠なものである。
 請求項1と請求項4に述べる薄くてコンパクトなチップ型合波器をキー部品として用いて、請求項5の様な実装技術と併用すれば、平面実装で薄くコンパクトなマルチ波長光源を作れ、小型と要求される携帯電話やその他ウェアラブル表示装置、例えばMEMSかDMD、LCOS等を用いるレーザープロジェクタ等応用へ利用出来る。
 また請求項4ファイバ出力型合波器を用いるマルチ波長光源では、LD光源と光が届く先プロジェクタの間にファイバで伝送されるため、車と野外等温度が厳しい環境への耐性を持たせ易くなり、車載分野等応用への利用は可能になる。
 更に請求項6に多波長複数の高出力LDを一緒に立体的に実装する事で、外径Φ5mm以下円柱型の様な多波長光源を作れるので、実装し易い外形に放熱性も改善される為、レーザーポインタやメガネ式等ウェアラブルレーザー表示装置に利用出来る。
 尚、小型マルチ波長レーザー光源の実装に関して、請求項1と請求項4の合波器の様な要素部品を用いれば、内部部品毎の実装による合波器そのものの実装作業と、各単体LDからの光を合波器へ結合する実装作業の様に、二つ大きな作業に分担されるので、特に大量生産の場合に、従来方式複数LDを絡んでの実装作業より管理と製造の両面に行ない易くなり、コストダウンの上に製品の信頼性も向上できる。
図1に関する符号:
110 請求項1合波器のライトガイド用溝が彫られている基板
111 基板110の上の面、この面上にライトガイド用溝を彫られている
112 面111に彫られたN+1本ライトガイド用の溝、図中に、n=1,…,NはN本目入射ライトガイド、n=N+1は1本の出射ライトガイドを示す
113 入射と出射ライトガイド用溝の側面と底面、光を閉じ込む為これらの側面と底面に光を全反射するメタル薄膜、或いは誘電体薄膜をコートしてある
120 基板110の上面と貼り合わせるライトガイド溝をカバーするカバー板
121 カバー板120の下の面、つまり、この面と貼りあわせる対向の基板110上の面111に彫ってあるライトガイド用の溝をカバーしてライトガイドを形成する面。形成されるライトガイドに光を閉じ込む為この面に光を全反射するメタル薄膜、或いは誘電体薄膜をコートしてある
図2に関する符号:
200 請求項2の方法で作られる請求項1合波器の出射ライトガイド用溝の出力端
201 複数N=3本の内に、1本目赤波長の入射ライトガイドの光ビームの入力端
202 2本目青波長の入射ライトガイドの光ビームの入力端
203 3本目緑波長の入射ライトガイドの光ビームの入力端
210 出射ライトガイド用の溝
211 1本目赤波長の入射ライトガイド用の溝
212 2本目青波長の入射ライトガイド用の溝
213 3本目緑波長の入射ライトガイド用の溝
222 2本目青波長の入射と出射ライトガイドの結合部
223 3本目緑波長の入射と出射ライトガイドの結合部 ※
 ※ 図2中に示した様に1本目赤波長にとって、入力端201から出力端200まで一直線になって、つまり、入射ライトガイド211は、結合部を持ってなく出射ライトガイド210と直結して、二者を1本になっている。
図3に関する符号:
300 請求項4バンドルファイバ型合波器にファイバを固定されてあるチップ型板
301 合波器の入力側
302 合波器の出力側
310 合波器出力側に密接にバンドルされてある複数N=3本ファイバの出射端
31i i=1,2,3;合波器入力側に3本ファイバの入射端面
32j j=1,2,3;チップ型板300上に3本ファイバの高精度位置決め及び固定為の3本溝
図4(顕微鏡写真)に関する符号:
400 図3に示す合波器出力側にファイバをバンドルされたフェルールの研磨されてある出射端面
41i i=1,2,3;フェルール端面にバンドルされたクラッド径Φ10μmの3本ファイバ素線、写真からこの3本ファイバが正三角形デルタ型で密接的にバンドルされてある事が判明出来る
421 ファイバ素線のコア
422 ファイバ素線のクラッド
430 顕微鏡写真に示すスケール、単位長さ=10μm
図5に関する符号:
501 青(Blue)450nm波長表面実装COS型シングル横モードLD
502 赤(Red)638nm波長COS型シングル横モードLD
503 緑(Green)520nm波長COS型シングル横モードLD
504 RGB三波長LDのヒートシンク銅板
505 請求項1に述べる合波器のファイバを固定されてあるチップ型板;合波器はこの板505と3本バンドルファイバ51i(i=B,R,G三色)から構成される
51i 図中左からi=B,R,G三色,合波器入力端にRGBのLD光源と1対1直接光結合方式で実装されてある複数N=3本のファイバ、本実施例1の場合に3本ファイバの素線は、コア径Φ7μmにNA0.2尚クラッド径Φ10μmのものである
514 合波器出力側に請求項1に述べる条件を満たしてバンドルされている複数N=3本ファイバの出射端面
図6に関する符号:
611−i 三色i=R,G,B表面実装型COS型LD(3個)
612−j 三色j=R,G,BのLD電極(陰極と陽極3セットで6個)
613−k 三色k=R,G,BのLD放熱用ヒートシンク(3式)
621−s 三色s=R,G,BのLDから合波器へ光の結合レンズ(3式)
630 3本バンドルファイバ631−i(i=R,G,B)で構成される合波器本体
631−t 三色t=R,G,BのLDからの光を受け入れる合波器の三本バンドルファイバ ※
※ RGB三色LD光源本体は、以上リストされた611−iのLD、612−jのLD電極、613−kのヒートシンク、621−sの結合レンズ及び630の合波器等図中右側の諸部品から構成され、図中の配置関係で立体的に実装されて、一つのモジュールになっている
632 バンドルファイバ方式合波器のビーム出射口
640 上述された図中右側にある三色RGBレーザー光源本体モジュールを収納される外部ケース、外形はL8mm×Φ5.6mm円柱形になる
図7に関する符号:
711−i 四色i=R,G,B,NIR近赤外表面実装COS型LD(4個)
712a−j 四色j=R,G,B,NIRのLDの+電極(陽極計4個)
712b−j 四色j=R,G,B,NIRのLDの−電極(陰極計4個)
713 RGBとNIR四つLDを一緒にボンディングされる放熱用ヒートシンク
721−k 四色k=R,G,B,NIRのLDから合波器への四式結合レンズ
730 バンドルファイバ方式4対1合波器本体
731−s 四色s=R,G,B,NIRのLDからの光を受ける合波器の四本バンドルファイバ
732 請求項4バンドルファイバ型合波器のビーム出射口
※ RGB+NIR四色LD光源本体は、以上リストされた711−iのLD、712a−jと712b−jのLD電極、713のヒートシンク、721−kの結合レンズ及び730の合波器等図中右側の諸部品から構成され、図中の配置関係で立体的に実装されて、一つのモジュールになっている
740 図中右側RGB+NIRの4色LD光源本体を収納する外部ケース、外形L8mm×Φ5mmの円柱型になる
図8(写真)に関する符号:
801 請求項6による実施例3、LDを立体的に実装される円柱型RGB三波長光源モジュールの試作品の写真
802 請求項3による実施例4のライトガイド型合波器を用いるファイバ出力RGB三波長光源モジュールの写真
810 LDと合波器尚出射ファイバを実装されたRGB三波長光源本体
811 緑520nm波長、Can−3.8パッケージ、シングル横モードLD
812 赤638nm波長、Can−3.8パッケージ、シングル横モードLD
813 青450nm波長、Can−3.8パッケージ、シングル横モードLD
821 RGB三波長LDからの光ビームを結合されて、光源本体810から外部へ光を出力するシングル横モードファイバ
822 ファイバ821出力端のフェルール、RGB三波長の光は、このフェルールの端面から出力される

Claims (6)

  1.  複数N本の光ビームを入射させるN本の入射ライトガイドから、1本の出射ライトガイドに前記N本の入射光を合波して出力する目的であって、前記N本中第n(n=1,2,…,N)本ライトガイドに光進行方向の終端とする第n(n=1,2,…,N)個ターミナルがあって、前記N本中第n(n=1,2,…,N)本目光ビームを前記N個中第n(n=1,2,…,N)個目のターミナルから前記出射ライトガイドに移させて出射する為に備えるN個の結合部を設けて、前記N本のライトガイドのN個入射端面から入射させる前記N本の光ビームを全て前記1本の出射ライトガイドに合波して出力する目的を実現させる事があって、尚、前記N本の入射光と前記1本の出射光を伝搬させる為のN+1本のライトガイドの形成に関して、ライトガイド本体を中空にして、ライトガイドの内側壁の全面に光に対して全反射のメタル薄膜、或いは誘電体薄膜をコーティングする事で、光ビームをライトガイド中に完全に閉じ込んで伝搬出来る構造にして、前記N本の入射ライトガイド中に入射される前記N本の光に対して効率が良く前記1本の出射ライトガイドに合波して出力させることを特徴とするN対1の光の合波器
  2.  請求項1のN対1合波器に構成の基本要素とするN+1本の反射薄膜コート付中空型の入射と出射ライトガイドの形成に関して、先ずシリコンかメタル、もしくはセラミックかガラス、もしくは光結晶を材質とする基板1枚を予め設けて、前記N本の入射ライトガイドと前記1本出射ライトガイド及び入射と出射ライトガイド間の前記N個の結合部の形成パターンを予め設計し、前記基板の上の面から深さ方向に、ウエットエッチングかドライエッチング、或いは基板材によって、レーザービームかイオンビーム等ビームの微細加工により前記N個の結合部付N+1本ライトガイドと形成するパターンに沿って、N+1本ライトガイド用の溝を彫り、前記手段で彫られたライトガイド用の前記N+1本溝の底面と両側面の全ての表面に、光に対し全反射のメタル薄膜、或いは、誘電体薄膜のコートを施し、尚、前記基板上に彫られた前記N+1本のライトガイド用の溝の上方に開放されているので、カバーする為もう一枚の(出来れば前記基板と同じ材質)カバー板を設けて、前記カバー板の下の面に光に対して全反射のメタル薄膜か誘電体薄膜をコーティングし、前記手段で作り上げた底面と両側面に全反射薄膜コート付のN+1本ライトガイド用の溝が有った前記基板の上の面に前記手段で作り上げた全反射薄膜コートが有った前記カバー板の下の面と合わせてカバー板を貼り付ける事により前記基板のN+1本ライトガイド用溝の両側面と底の面、尚前記貼られたカバー板の下の面、つまりライトガイドとして光伝搬方向に沿って全ての側面に光の全反射薄膜を付けてある事により、前記N+1本中空の溝の中に光を閉じ込める事を特徴とする請求項1のN対1合波器に前記のN+1本のライトガイドの作る方法。
  3.  請求項1の中空型ライトガイド方式の複数N対1基本合波器にベースして、
     上記合波器の出射ライトガイドからの出力光を予め設ける1本のファイバに結合して、N本の入力ライトガイドと1本の出力ファイバを備えるタイプ1の合波器;
     または、予め設ける複数N本ファイバと上記基本合波器のN本入射ライトガイドの間に1対1で光ビームを直接結合、或いはレンズを用いて結合し、N本の入力ファイバと1本の出力ライトガイドを備えるタイプ2の合波器;
     または、予め設ける上記タイプ2の合波器の出射ライトガイドからの出力光を、タイプ1の合波器と同じく、予め設ける1本のファイバに結合して、N本の入力ファイバと1本の出力ファイバを備えるタイプ3の合波器;
     以上の三タイプの内にいずれの構成のファイバに介されるN対1の合波器
  4.  入力側に複数N個の点光源、或いは複数N本の平行光出力レーザーからの空間的に独立されているN本の光ビームから、出力側に光軸を揃えて一つの点光源になって合波して出力する目的であって、
     材質がガラスか金属のチップ型板1枚と、入射端面と出射端面に導光の為研磨されるコア及びクラッドで構成される光ファイバ素線N本を予め用意し、前記チップ型板の両脇に光の入力側と出力側を設けて、前記チップ型板の入力側の縁に沿って、前記N本ファイバ素線の入射端を合波しようとする空間的に独立されている前記N個光源からのN本光ビームの入射位置に合わせて一定的な間隔に置いて一列横並びにして接着剤で固定し、又、前記チップ型板の出力側の縁に、前記N本ファイバ素線の出射端をお互いに密接的に束ねて接着剤で固定すると、
     前記N個点光源或いはN本平行光ビームを前記チップ型板の入力側のN本ファイバ素線の入射端面にレンズ等光学系を用いて1対1で入力すれば、前記チップ型板の出力側にバンドルされているN本ファイバの出射端面からN本の光ビームをそのままストレートで出力する事になるが、
     更に、前記コア及びクラッドから構成されるN本ファイバ素線を予め用意される際に、素線のコアに包まれるクラッド層を一層限界までの厚み(例えば1μm程度まで)に薄くして、つまり前記N本ファイバ素線の外径(つまりクラッド径)を極端に細くする事(例えばシングル横モードの場合コア径Φ4μm以下で、尚前述クラッド層の厚み1μm以下によると素線の外径がΦ6μm以下)により、
     通常N個の点光源と見られる前記N本ファイバ出射端面から出力されるN本光ビームを、前記N本ファイバの出射端に密接的にバンドルされて、尚且つコアとコアの間に極めて接近している(前述クラッド厚み1μm以下の場合二者の間隔が2μm以下)為、収束して一つの点光源と見做して出力される事、つまり、空間的に独立されたN個光源からのN本光ビームを、出力端に実用レベルで一つの点光源として空間的に一つの光ビームに合波されて出力される事を特徴とするバンドルファイバを用いるチップ型N対1のビームの空間的な合波器。
  5.  コンパクトで薄いチップ型のマルチ波長光源を作る目的であって、予め設けるマウント上に予め設ける複数N個表面実装用チップ型LDを横一列に並んで平面的に実装し、又、請求項1の中空ライトガイド型、或いは請求項4のバンドルファイバ型のいずれの方式で作られる薄くてコンパクトなチップ型の複数N対1合波器を予め設けて、前記平面実装されたN個LDと、前記合波器N本中空ライトガイド或いはN本のバンドルファイバのN個受光用入射端面間に、1対1で光を直接結合、或いはレンズを用いて結合し、前記合波器を通じて合波して一つの点光源で出力するコンパクトで薄いチップ型と特徴するマルチ波長レーザー光源モジュール。
  6.  コンパクトなマルチ波長光源を作る目的であって、また高密度で実装される複数のLDの発熱を逃がし易い尚且つ応用デバイスの実装に要求される外形に合わせてデザイン出来る為、
     予め設けた円柱型或いは立方体型等立体形状を持つLDの発熱を逃がし易いマウントの上に立体的に実装されている薄いチップ型の複数N本波長が異なる複数N個の表面実装用チップ型LDと、請求項1の中空ライトガイド型、或いは請求項4のバンドルファイバ型のいずれの方式での複数N対1の合波器を設けて、
     次に、前記合波器の入射側の手前に設けてある前記複数N個LDからの光の受光為のライトガイド、或いはバンドルファイバのN個入射端面も前記複数N個LDと同様な立体的な分布に合わせて合波器本体の入力側に配置し、更に複数N個の結合レンズを予め設けて、各々レンズの調芯により前記合波器入力側の各々の前記入射端面に合わせて各々前記LDからの光を合波器に結合して、合波器の働きにより入射されたN本の光をまとめて出射側に一つ点光源で出力する事により、
     立体分布に実装される複数N個LD光源と、それと同様な立体分布で複数N個入射端を持つ合波器と、光源から合波器へ光を入力する為の複数N個の結合レンズと諸要素部品の構成から立体的に組立される事で、LDの発熱を逃がし易い構造、尚いろいろ応用に実装され易いコンパクトな円柱型或いは立方体型等外形を持たせる点光源で出力する事と特徴になるマルチ波長レーザー光源モジュール。
PCT/JP2015/075277 2014-11-11 2015-08-31 各種新型マルチ波長合波器及び合波器を用いる新型マルチ波長光源 WO2016076000A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580006643.XA CN106062600B (zh) 2014-11-11 2015-08-31 光束的合波器及芯片型多波长激光光源

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-240554 2014-11-11
JP2014240554A JP2016095479A (ja) 2014-11-11 2014-11-11 中空型ライトガイドを用いる合波器
JP2014267190A JP6535848B2 (ja) 2014-12-18 2014-12-18 チップ型バンドルファイバ合波器及びチップ型マルチ波長光源
JP2014-267190 2014-12-18

Publications (1)

Publication Number Publication Date
WO2016076000A1 true WO2016076000A1 (ja) 2016-05-19

Family

ID=55954094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075277 WO2016076000A1 (ja) 2014-11-11 2015-08-31 各種新型マルチ波長合波器及び合波器を用いる新型マルチ波長光源

Country Status (2)

Country Link
CN (1) CN106062600B (ja)
WO (1) WO2016076000A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111149262B (zh) * 2017-09-29 2021-09-28 株式会社藤仓 光纤激光系统及其控制方法
WO2020184106A1 (ja) * 2019-03-13 2020-09-17 国立大学法人福井大学 光導波路型光合波器、光導波路型合波光源光学装置及び画像投影装置
CN109828331A (zh) * 2019-03-27 2019-05-31 浙江大学 一种波长锁定器及波长可调激光器
CN111638577B (zh) * 2020-06-29 2021-05-18 中国科学院半导体研究所 表贴式集成化光模块
CN113193468B (zh) * 2021-05-27 2023-09-12 三序光学科技(苏州)有限公司 基于平面波导型合波器的半导体激光光源模块及制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124940A (en) * 1975-04-17 1976-10-30 Siemens Ag Light signal distributing device by planar technique
JP2005516253A (ja) * 2002-01-29 2005-06-02 キネティック リミテッド 光学回路製造方法及び装置
JP2006126373A (ja) * 2004-10-27 2006-05-18 Univ Of Tokyo 光波回路モジュールの光ファイバ用ガイド基板
JP2006520924A (ja) * 2003-03-22 2006-09-14 キネテイツク・リミテツド 光波長分割多重化/逆多重化装置
JP2013228651A (ja) * 2012-04-24 2013-11-07 Jun Narusawa マルチ波長ファイバ合波器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116202B (zh) * 2013-03-08 2015-03-18 深圳大学 可见光合波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124940A (en) * 1975-04-17 1976-10-30 Siemens Ag Light signal distributing device by planar technique
JP2005516253A (ja) * 2002-01-29 2005-06-02 キネティック リミテッド 光学回路製造方法及び装置
JP2006520924A (ja) * 2003-03-22 2006-09-14 キネテイツク・リミテツド 光波長分割多重化/逆多重化装置
JP2006126373A (ja) * 2004-10-27 2006-05-18 Univ Of Tokyo 光波回路モジュールの光ファイバ用ガイド基板
JP2013228651A (ja) * 2012-04-24 2013-11-07 Jun Narusawa マルチ波長ファイバ合波器

Also Published As

Publication number Publication date
CN106062600A (zh) 2016-10-26
CN106062600B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2016076000A1 (ja) 各種新型マルチ波長合波器及び合波器を用いる新型マルチ波長光源
US8096668B2 (en) Illumination systems utilizing wavelength conversion materials
US20100202129A1 (en) Illumination system utilizing wavelength conversion materials and light recycling
CN102782394B (zh) 光学元件、光源装置和投影显示装置
JP6582968B2 (ja) 光源装置
US20150104180A1 (en) High brightness dense wavelength multiplexing laser
KR20200047802A (ko) 광 어셈블리
JP2003202463A (ja) 波長多重双方向光伝送モジュール
JP2024024010A (ja) マルチkWクラスの青色レーザーシステム
CN105938975A (zh) 一种温度不敏感激光器
JP6489001B2 (ja) 光モジュール、光モジュールを作製する方法、及び光学装置
JP2010191231A (ja) 光モジュール
CN108429129A (zh) 多线阵半导体激光器光栅外腔光谱的合束系统及方法
CN102611505B (zh) 一种用于多波长高速率传输的光发射器件
JP2016118750A (ja) チップ型バンドルファイバ合波器及びチップ型マルチ波長光源
JP2009146992A (ja) 光モジュール
JP6697423B2 (ja) 光集積回路
JP7163478B2 (ja) 光導波路、平面型光回路および光源モジュール
JP7201945B2 (ja) 光合波回路および光源
US20220373737A1 (en) Optical Multiplexing Circuit
JP5428506B2 (ja) 半導体レーザモジュール及びその製造方法
CN110967794A (zh) 多光束合束组件、发射光组件及光模块
JP2016051603A (ja) 光源装置及び該光源装置を備えたプロジェクタ
WO2018167819A1 (ja) 波長多重光送信モジュールおよびその製造方法
JP5921327B2 (ja) マルチ波長ファイバ合波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858976

Country of ref document: EP

Kind code of ref document: A1