WO2016075236A1 - Procédé de fabrication d'une cellule photovoltaique - Google Patents

Procédé de fabrication d'une cellule photovoltaique Download PDF

Info

Publication number
WO2016075236A1
WO2016075236A1 PCT/EP2015/076435 EP2015076435W WO2016075236A1 WO 2016075236 A1 WO2016075236 A1 WO 2016075236A1 EP 2015076435 W EP2015076435 W EP 2015076435W WO 2016075236 A1 WO2016075236 A1 WO 2016075236A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
holes
pattern
front face
cigs
Prior art date
Application number
PCT/EP2015/076435
Other languages
English (en)
Inventor
Brendan Dunne
Original Assignee
Nexcis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexcis filed Critical Nexcis
Publication of WO2016075236A1 publication Critical patent/WO2016075236A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a method of manufacturing a photovoltaic cell and a photovoltaic cell obtained by such a method.
  • the methods of manufacturing photovoltaic cells of the prior art generally comprise:
  • This metal layer 2 is preferably molybdenum;
  • the trench is etched over the entire thickness of the rear metal layer;
  • a step 103 of deposition of an active layer 3 made of CIGS alloy that is to say of Cu (In, Ga) alloy (Se, S) 2 );
  • the trench P2 is etched over the entire thickness of the active layer 3, but not through the thickness of the rear metal layer;
  • Such a method makes it possible to manufacture a module comprising a plurality of photovoltaic cells C1, C2, the cells C1 and C2 being separated by the trench P1. It is then said that cells C1, C2 are interconnected according to a series interconnection mode "p1 p2p3".
  • the document FR No. 1452463 proposes depositing the CIGS layer by electrodeposition on a molybdenum strip.
  • both ends of the molybdenum strip are connected to a power supply so that an electric current passes through the molybdenum layer.
  • the molybdenum strip is then immersed in a copper bath so that a layer of copper is electrodeposited on the molybdenum strip.
  • the same process is repeated to deposit the indium and gallium layers so as to form the CIGS layer.
  • the assembly is then annealed to form the final CIGS layer.
  • This method is particularly advantageous since it is simple and inexpensive.
  • the molybdenum band on which the CIGS layer is to be deposited has a small width, for example of the order of 50 or 100 microns, or even of the order of a few centimeters, and a great length, for example greater than 10 cm, this method does not allow to obtain a uniform deposit of CIGS on the entire molybdenum band.
  • the electric current applied between the ends of the molybdenum band badly circulates through the band when it has a small width and a great length. Therefore, the deposit of CIGS made on such a band by electrolysis is generally of poor quality, not very uniform, and sometimes even it can not be realized at all.
  • Photovoltaic cells of small width and great length have another drawback: they have a very high resistance at their contacts front and at their contacts back, which greatly degrades their effectiveness. In addition, in the case of narrow photovoltaic cells, it is difficult to lay collecting fingers without creating too much shading.
  • the invention aims to overcome the drawbacks of the state of the art by proposing a method of manufacturing a photovoltaic cell which is simple and inexpensive, and which makes it possible to produce photovoltaic cells of good quality, including when have a small width, for example of the order of 50 to 100 microns, and a large length, for example greater than 10 cm.
  • the invention proposes to make holes through the substrate. These holes are then filled with a metal. Connection tracks are then made on the rear face of the substrate so as to allow the selective connection of these holes to a power supply. On the front face of the substrate, a metallic pattern is made. The holes filled with metal can selectively connect the parts of the metal pattern on which it is desired to deposit a metal layer by electrodeposition.
  • a first aspect of the invention relates to a method of manufacturing a photovoltaic cell on a substrate comprising a front face and a rear face, the method comprising the following steps:
  • the method thus makes it possible to connect to a power supply, selectively, a part of the metallic pattern deposited on the front face of the substrate so as to deposit by electrolysis a CIGS pattern on the part of the metallic pattern which is connected to the power supply. electric. Parts of the metal pattern that are not connected to the power supply are therefore not covered with the CIGS layer. We therefore easily choose the parts of the metal pattern on which the layer of CIGS settles and the one on which the CIGS layer does not settle. In addition, flowing the current through holes through the substrate provides a uniform CIGS deposit on the entire metal pattern, even when it has a long length and a small width. The holes can also be reused later to make contacts through the substrate.
  • the method may also have one or more of the following features taken individually or in any technically possible combination.
  • steps (a) and (b) can be performed before step (c).
  • This embodiment makes it possible not to damage the metallic pattern once it is made.
  • This embodiment is particularly advantageous when the holes are dug through the substrate thanks to an etching process that is difficult to control, as is the case, for example, with laser etching.
  • step (c) can be performed before steps (a) and (b).
  • This embodiment can be preferred when the holes are made by an easy method of controlling thickness such as by chemical etching.
  • the holes can be made by laser engraving; or
  • the holes can be made by chemical etching.
  • the holes have a diameter of between 5 ⁇ and 500 ⁇ .
  • the distance between two consecutive holes is between 5 mm and 20 mm.
  • the step of forming the metallic pattern comprises the following steps: depositing a metal layer on the front face of the substrate;
  • step (e) a layer is formed by immersing the front face (2) of the substrate successively in:
  • the layer formed is annealed under a sulfur atmosphere and / or under a selenium atmosphere.
  • the method further comprises a step of depositing a transparent conductive oxide layer on the CIGS pattern.
  • FIGS. 1a to 1f a schematic representation of the steps of a method of manufacturing a thin-film photovoltaic cell of the prior art
  • the substrate 1 comprises a first face, called “front face” 2, and a second face, called “back face” 3.
  • the substrate may for example be made of glass.
  • the method comprises a first step 101 during which holes 4 are dug through the substrate 1.
  • Each hole 4 passes through the substrate 1 from one side to the other.
  • Each hole 4 thus has a first end 5, called “front end”, which opens on the front face of the substrate, and a second end, called “rear end 6", which opens on the rear face of the substrate.
  • Each hole preferably has a diameter of between 5 ⁇ and 500 ⁇ .
  • the distance between two consecutive holes is preferably between 5 mm and 20 mm.
  • the holes can be dug using different techniques such as laser engraving or chemical etching.
  • Each hole is then filled with an electrically conductive material. This material is preferably a metal. For example, you can choose to fill each hole with copper.
  • the method then comprises a step 102 of producing a metal pattern 7 on the front face 2 of the substrate.
  • This metal pattern 7 will fulfill the function of rear metal contact in the future photovoltaic cell.
  • This metal pattern 7 is preferably made of molybdenum. It may comprise several portions separated from each other as shown in the figures.
  • the metal pattern comprises a main portion 14 and a secondary portion 15.
  • the metal pattern is preferably made by depositing a metal layer 8 on the front face of the substrate ( Figures 2c and 3c). The metal layer 8 is then etched to form the metallic pattern 8.
  • the step 102 of forming the metallic pattern can be performed before the step 101 of forming the holes in the substrate.
  • the method then comprises a step of connecting a portion of the rear ends 6 of the holes to a power supply. Only the rear ends 6 of the holes 4 located under parts of the metal pattern that is to be covered with a layer of CIGS by electrodeposition are connected to a power supply 9.
  • CIGS refers to an alloy of copper, indium, gallium and selenium.
  • connection tracks 12 are formed on the rear face 3 of the substrate so as to connect individually or collectively some holes 4a to the power supply 9. In this embodiment, only the holes 4a located under the main part 14 of each metallic pattern are connected to the power supply.
  • the holes 4b located under the abutment 15 of each metal pattern are not connected to any power supply.
  • the holes 4a whose rear end 6 is connected to the power supply are said to belong to a "first set of holes”. Holes not connected to the power supply are said to belong to a "second set of holes” 4b. This step makes it possible to pass a current through selected portions of the metallic pattern, via the rear face 3 of the substrate.
  • the method then comprises a step of immersing the front face 2 of the substrate in an electrolysis bath so as to form a CIGS pattern 10 by electrodeposition on the parts 14 of the metallic pattern which are connected to the power supply via the first set of holes 4a.
  • the front face 2 of the substrate is successively immersed in a copper bath and / or an indium bath, and / or a gallium bath.
  • the electrodeposited layer is then annealed under a sulfur and / or selenium atmosphere.
  • a CIGS pattern 10 deposited on selected portions of the metal pattern 7 is obtained.
  • the CIGS pattern 10 is deposited on the main part 14 of each metallic pattern. while the secondary part 15 of each metallic pattern remains uncovered.
  • the unenclosed abutment 15 and the holes 4b of the second set of holes disposed under this portion will then be used to contact the transparent conductive oxide by the rear face 3 of the substrate.
  • the method is particularly advantageous because it makes it possible to select the parts 14 of the metal pattern on which the CIGS pattern is deposited by electrodeposition.
  • the current flows through these parts 14 through the holes 4a located under its parts and distributed under each of these parts, so that the deposit made by electroplating is uniform and of good quality.
  • the method comprises a step 104 for depositing a transparent conductive oxide layer 11 on the previously deposited layers.
  • the transparent conductive oxide layer may for example be made of ZnO. It can for example be deposited by PVD, CVD or by MOCVD see by electroplating.
  • the conductive transparent oxide layer is deposited on both the CIGS pattern and the portions of the metallic pattern not covered by the CIGS pattern. In this embodiment, the conductive transparent oxide layer is therefore deposited on both the CIGS pattern 10 and on the secondary portion 15 of each metallic pattern 7.
  • the transparent conductive oxide layer 1 1 is therefore electrically connected. to the holes 4b of the second set of holes by the abutment 15 of each metallic pattern.
  • the holes 4b of the second series of holes can then be used to electrically connect the conductive oxide layer 1 1 to an electrical network via the rear face 3 of the substrate, while the holes 4a of the first series of holes make it possible to connect the main part of the metal pattern 7 to an electrical network via the rear face 3 of the substrate. All the electrical contacts of the photovoltaic cell can thus be established via the rear face 3 of the substrate.
  • the photovoltaic cell thus produced has a greater efficiency than those of the prior art even when it has a small width due to the presence of holes that can reduce its resistance at the contacts without using a finger. collection.
  • the photovoltaic cell can be connected to the electrical network via a multitude of contacts formed by the holes filled with electrically conductive material so that the electrical contact is distributed uniformly over the entire photovoltaic cell.
  • Figures 4a to 4d show another embodiment in which holes 4 are dug during a step 101 through the substrate so as to be aligned as shown in Figures 4a and 5a.
  • the method comprises a step 102 of producing a metal pattern 7 on the front face 2 of the substrate.
  • the metal pattern 7 forms a longitudinal band that extends above the holes 4 ( Figures 4b and 5b).
  • the metal pattern 7 is pierced by openings 13 made above certain holes 4b so as to make them accessible from the front face 2 of the substrate.
  • the metal pattern 7 is preferably made of molybdenum and is preferably formed by depositing a layer of molybdenum on the front face of the substrate, then by etching this layer so as to form the desired pattern.
  • the method then comprises a step 103 of electrodeposition deposition of a CIGS pattern on parts of the metal pattern 7. More specifically, in this embodiment, the CIGS pattern is deposited everywhere except at the openings 13 which have were made in the metal pattern 7. For this, the holes 4b located at the openings 13 are not connected to a power supply, while the other holes 4a are connected to a power supply. The holes whose rear end is connected to the power supply are said to belong to a "first set of holes" 4a. Holes not connected to the power supply are said to belong to a "second set of holes” 4b. This step makes it possible to pass a current through selected portions of the metallic pattern, via the substrate rear face.
  • the front face 2 of the substrate is then immersed in successive electrolysis baths of copper and / or indium, and / or gallium.
  • the layer 10 deposited by electrodeposition is then annealed under a sulfur and / or selenium atmosphere.
  • a CIGS pattern 10 deposited by electroplating is then obtained on the whole of the metal pattern 7, except at the openings 13 so that the holes 4b of the second series of holes remain accessible from the front face of the substrate.
  • the method then comprises a step 104 for depositing a transparent conductive oxide 1 1 on the previously deposited layers.
  • the transparent conductive oxide layer 1 1 may for example be made of ZnO. It can for example be deposited by PVD, CVD or by MOCVD see by electroplating.
  • the transparent conductive oxide layer 1 1 is deposited in the openings 13 so that it contacts the holes 4b of the second series of holes on which the CIGS pattern had not been deposited.
  • the holes 4b of the second A series of holes can then be used to connect the conductive transparent oxide layer to an electrical network through the rear face of the substrate.
  • the holes 4a of the first series of holes, at which the CIGS pattern has been deposited enable them to connect the metal pattern 7 to an electrical network, also through the rear face 3 of the substrate. A photovoltaic cell is thus obtained, all of whose electrical contacts are located on the rear face 3 of the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une cellule photovoltaïque sur un substrat (1) comportant une face avant (2) et une face arrière (3), le procédé comportant les étapes suivantes : - réalisation de trous (4) à travers le substrat (1), chaque trou (4) présentant une extrémité avant (5) débouchant sur la face avant (2) du substrat (1) et une extrémité arrière (6) débouchant sur la face arrière (3) du substrat (1); - remplissage des trous (4) par un matériau conducteur électriquement; - formation d'un motif métallique (7) sur la face avant (2) du substrat; - connexion d'au moins une partie des extrémités arrières (6) des trous (4a) à une alimentation électrique (9); - immersion de la face avant (2) du substrat (1) dans au moins un premier bain d'électrolyse de façon à former par électrodépôt un motif en CIGS (10) sur le motif métallique (7).

Description

PROCÉDÉ DE FABRICATION D'UNE CELLULE PHOTOVOLTAIQUE
DOMAINE TECHNIQUE
La présente invention concerne un procédé de fabrication d'une cellule photovoltaïque et une cellule photovoltaïque obtenue par un tel procédé.
ETAT DE LA TECHNIQUE ANTERIEUR
En référence aux figures 1 a à 1 f, les procédés de fabrication de cellules photovoltaïques de l'art antérieur comportent généralement :
- Une étape 101 de dépôt d'une couche métallique arrière 2 sur un substrat 1 en verre. Cette couche métallique 2 est de préférence en molybdène ;
- Une étape 102 de gravure d'une tranchée P1 dans la couche métallique arrière 2. La tranchée est gravée sur toute l'épaisseur de la couche métallique arrière;
- Une étape 103 de dépôt d'une couche active 3 en alliage CIGS (c'est-à-dire en alliage Cu(ln,Ga)(Se,S)2) ;
- Une étape 104 de gravure d'une tranchée P2 dans la couche active 3. La tranchée P2 est gravée sur toute l'épaisseur de la couche active 3, mais pas à travers l'épaisseur de la couche métallique arrière ;
- Une étape de dépôt d'une couche en oxyde conducteur transparent 4 sur la couche active 2 ;
- Une étape de gravure d'une tranchée P3 à travers la couche active 3 et la couche en oxyde conducteur transparent 4.
Un tel procédé permet de fabriquer un module comportant plusieurs cellules photovoltaïques C1 , C2, les cellules C1 et C2 étant séparées par la tranchée P1 . On dit alors que les cellules C1 , C2 sont interconnectées selon un mode d'interconnexion en série « p1 p2p3 ».
Toutefois, ces techniques de dépôt de la couche active en CIGS par dépôt physique en phase vapeur ou par évaporation sont chères et compliquées à mettre en œuvre, notamment parce qu'elles nécessitent l'établissement d'un vide poussé pour permettre au flux de vapeur d'atteindre le substrat et pour éviter les impuretés.
Pour résoudre ces problèmes, le document FR n°1452463 propose de déposer la couche de CIGS par électrodépôt sur une bande de molybdène. Pour cela, les deux extrémités de la bande de molybdène sont connectées à une alimentation électrique de sorte qu'un courant électrique traverse la couche de molybdène. La bande de molybdène est ensuite immergée dans un bain de cuivre de façon à ce qu'une couche de cuivre se dépose par électrodéposition sur la bande de molybdène. Le même procédé est répété pour déposer les couches d'indium et de gallium de façon à former la couche de CIGS. L'ensemble est ensuite recuit de façon à former la couche de CIGS finale.
Ce procédé est particulièrement avantageux puisqu'il est simple et peu coûteux.
Toutefois, lorsque la bande de molybdène sur laquelle on veut déposer la couche de CIGS présente une faible largeur, par exemple de l'ordre de 50 ou 100 microns, voir même de l'ordre de quelques centimètres, et une grande longueur, par exemple supérieure à 10 cm, ce procédé ne permet pas d'obtenir un dépôt de CIGS uniforme sur l'ensemble de la bande de molybdène. En effet, le courant électrique appliqué entre les extrémités de la bande de molybdène circule mal à travers la bande lorsque celle-ci présente une faible largeur et une grande longueur. Par conséquent, le dépôt de CIGS effectué sur une telle bande par électrolyse est généralement de mauvaise qualité, pas très uniforme, et parfois même il ne peut pas du tout être réalisé.
Par conséquent, il est difficile de réaliser des cellules photovoltaïques de faible largeur et de grande longueur en déposant la couche de CIGS par électrodéposition.
Les cellules photovoltaïques de faible largeur et de grande longueur présentent un autre inconvénient : elles présentent une résistance très élevée au niveau de leurs contacts face avant et au niveau de leurs contacts face arrière, ce qui dégrade fortement leur efficacité. En outre, dans le cas des cellules photovoltaïques étroites, il est difficile de poser des doigts de collecte sans créer trop d'ombrage.
EXPOSE DE L'INVENTION L'invention vise à remédier aux inconvénients de l'état de la technique en proposant un procédé de fabrication d'une cellule photovoltaïque qui soit simple, peu coûteux, et qui permettent de réaliser des cellules photovoltaïques de bonne qualité, y compris lorsqu'elles présentent une faible largeur, par exemple de l'ordre de 50 à 100 microns, et une grande longueur, par exemple supérieure à 10 cm.
Pour ce faire, l'invention propose de réaliser des trous à travers le substrat. Ces trous sont ensuite remplis d'un métal. Des pistes de connexion sont ensuite réalisées sur la face arrière du substrat de façon à permettre la connexion sélective de ces trous à une alimentation électrique. Sur la face avant du substrat, un motif métallique est réalisé. Les trous remplis de métal permettent de connecter sélectivement les parties du motif métallique sur lesquelles on veut déposer une couche métallique par électrodéposition.
Plus précisément, un premier aspect de l'invention concerne un procédé de fabrication d'une cellule photovoltaïque sur un substrat comportant une face avant et une face arrière, le procédé comportant les étapes suivantes :
- (a) réalisation de trous à travers le substrat, chaque trou présentant une extrémité avant débouchant sur la face avant du substrat et une extrémité arrière débouchant sur la face arrière du substrat ;
- (b) remplissage des trous par un matériau conducteur électriquement ;
- (c) formation d'un motif métallique sur la face avant du substrat ;
- (d) connexion d'au moins une partie des extrémités arrières des trous à une alimentation électrique ;
- (e) immersion de la face avant du substrat dans au moins un premier bain d'électrolyse de façon à former par électrodépôt un motif en CIGS sur le motif métallique.
Le procédé permet donc de connecter à une alimentation électrique, de façon sélective, une partie du motif métallique déposé sur la face avant du substrat de façon à déposer par électrolyse un motif en CIGS sur la partie du motif métallique qui est reliée à l'alimentation électrique. Les parties du motif métallique qui ne sont pas reliées à l'alimentation électrique ne sont donc pas recouverte de la couche de CIGS. On choisit donc facilement les parties du motif métallique sur lesquelles la couche de CIGS se dépose et celle sur laquelle la couche de CIGS ne se dépose pas. En outre, le fait de faire circuler le courant via des trous traversant le substrat permet d'obtenir un dépôt de CIGS uniforme sur l'ensemble du motif métallique, même lorsque celui- ci présente une grande longueur et une faible largeur. Les trous peuvent également être réutilisés par la suite pour établir des contacts à travers le substrat.
Le procédé peut également présenter une ou plusieurs des caractéristiques ci-après prises individuellement ou selon toutes les combinaisons techniquement possibles.
Selon un mode de réalisation, les étapes (a) et (b) peuvent être réalisées avant l'étape (c). Ce mode de réalisation permet de ne pas endommager le motif métallique une fois qu'il est réalisé. Ce mode de réalisation est particulièrement avantageux lorsque les trous sont creusés à travers le substrat grâce à un procédé de gravure difficile à contrôler, comme c'est par exemple le cas pour la gravure laser.
Selon un autre mode de réalisation, l'étape (c) peut être réalisée avant les étapes (a) et (b). Ce mode de réalisation peut être privilégié lorsque les trous sont réalisés grâce à un procédé facile de contrôler en épaisseur comme par exemple par gravure chimique.
Selon différents modes de réalisation :
- les trous peuvent être réalisés par gravure laser ; ou
- les trous peuvent être réalisés par gravure chimique. Avantageusement, les trous présentent un diamètre compris entre 5 μηι et 500 μηι.
Avantageusement, la distance entre deux trous consécutifs est comprise entre 5 mm et 20 mm.
Avantageusement, l'étape de formation du motif métallique comporte les étapes suivantes : - dépôt d'une couche métallique sur la face avant du substrat ;
- gravure de la couche métallique de façon à former le motif métallique.
En effet, le procédé est particulièrement avantageux lorsque le motif métallique présente une faible épaisseur. Avantageusement, lors de l'étape (e), une couche est formée en immergeant la face avant (2) du substrat successivement dans :
- un bain de cuivre ;
- un bain d'indium ; - un bain de gallium.
Avantageusement, lors de l'étape (e), la couche formée est recuite sous atmosphère soufre et/ou sous atmosphère sélénium.
Avantageusement, le procédé comporte en outre une étape de dépôt d'une couche en oxyde conducteur transparent sur le motif en CIGS.
BREVES DESCRIPTION DES FIGURES
D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description détaillée qui suit, en référence aux figures annexées, qui illustrent :
- Les figures 1 a à 1 f, une représentation schématique des étapes d'un procédé de fabrication d'une cellule photovoltaïque en couches minces de l'art antérieur ;
- Les figures 2a à 2f, des vues en perspective d'un substrat pendant un procédé de fabrication selon un mode de réalisation de l'invention ;
- Les figures 3a à 3f, des vues en coupe transversale suivant une ligne B-B du substrat des figures 2a à 2f ;
- Les figures 4a à 4d, des vues en perspective d'un autre substrat pendant un procédé de fabrication selon un mode de réalisation de l'invention ;
- Les figures 5a à 5d, des vues en coupe longitudinale effectuées suivant une ligne A-A du substrat des figures 4a à 4d.
Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de références identiques sur l'ensemble des figures.
DESCRIPTION DETAILLEE D'AU MOINS UN MODE DE REALISATION Un procédé de fabrication d'une cellule photovoltaïque sur un substrat selon un premier mode de réalisation de l'invention va être décrit en référence aux figures 2a à 2f et 3a à 3f .
En référence aux figures 2a et 3a, le substrat 1 comporte une première face, appelée « face avant » 2, et une deuxième face, appelée « face arrière » 3. Le substrat peut par exemple être réalisé en verre.
En référence aux figures 2b et 3b, le procédé comporte une première étape 101 au cours de laquelle des trous 4 sont creusés à travers le substrat 1 . Chaque trou 4 traverse le substrat 1 de part en part. Chaque trou 4 comporte donc une première extrémité 5, appelée « extrémité avant », qui débouche sur la face avant du substrat, et une deuxième extrémité, appelée « extrémité arrière 6 », qui débouche sur la face arrière du substrat. Chaque trou présente de préférence un diamètre compris entre 5 μηι et 500 μηι. La distance entre deux trous consécutifs est de préférence comprise entre 5 mm et 20 mm. Les trous peuvent être creusés en utilisant différentes techniques comme par exemple la gravure laser ou la gravure chimique. Chaque trou est ensuite rempli par un matériau conducteur électriquement. Ce matériau est de préférence un métal. On peut par exemple choisir de remplir chaque trou avec du cuivre.
En référence aux figures 2c-2d et 3c-3d, le procédé comporte ensuite une étape 102 de réalisation d'un motif métallique 7 sur la face avant 2 du substrat. Ce motif métallique 7 remplira la fonction de contact métallique arrière dans la future cellule photovoltaïque. Ce motif métallique 7 est de préférence réalisé en molybdène. Il peut comporter plusieurs portions séparées les unes des autres comme représenté sur les figures. Ainsi dans ce mode de réalisation, le motif métallique comporte une partie principale 14 et une partie secondaire 15. Le motif métallique est de préférence réalisé en déposant une couche métallique 8 sur la face avant du substrat (figures 2c et 3c). La couche métallique 8 est ensuite gravée de façon à former le motif métallique 8.
Alternativement, l'étape 102 de formation du motif métallique peut être réalisée avant l'étape 101 de formation des trous dans le substrat. En référence aux figures 2e et 3e, le procédé comporte ensuite une étape de connexion d'une partie des extrémités arrière 6 des trous à une alimentation électrique. Seules les extrémités arrière 6 des trous 4 situés sous des parties du motif métallique que l'on veut recouvrir d'une couche de CIGS par électrodéposition sont connectées à une alimentation électrique 9. Par CIGS, on entend un alliage de cuivre, indium, gallium et sélénium. Ainsi, des pistes de connexion 12 sont réalisées sur la face arrière 3 du substrat de façon à pouvoir relier individuellement ou collectivement certains trous 4a à l'alimentation électrique 9. Dans ce mode de réalisation, seuls les trous 4a situés sous la partie principale 14 de chaque motif métallique sont reliés à l'alimentation électrique. Les trous 4b situés sous la partie secondaire 15 de chaque motif métallique ne sont reliés à aucune alimentation électrique. Les trous 4a dont l'extrémité arrière 6 est reliée à l'alimentation électrique sont dits appartenir à une « première série de trous ». Les trous non reliés à l'alimentation électriques sont dits appartenir à une « deuxième série de trous » 4b. Cette étape permet de faire passer un courant à travers des parties choisies du motif métallique, via la face arrière 3 du substrat.
Le procédé comporte ensuite une étape d'immersion de la face avant 2 du substrat dans un bain d'électrolyse de façon à former un motif en CIGS 10 par électrodéposition sur les parties 14 du motif métallique qui sont reliées à l'alimentation électrique via la première série de trous 4a. Pour cela, la face avant 2 du substrat est successivement immergée dans un bain de cuivre et/ou un bain d'indium, et/ou un bain de gallium. On recuit ensuite sous atmosphère soufre et/ou sélénium la couche déposée par électrodéposition. On obtient à l'issue de cette étape un motif en CIGS 10 déposée sur des parties choisies du motif métallique 7. Ainsi, dans ce mode de réalisation, le motif en CIGS 10 s'est déposé sur la partie principale 14 de chaque motif métallique, tandis que la partie secondaire 15 de chaque motif métallique reste découverte. La partie secondaire 15 non recouverte et les trous 4b de la deuxième série de trous disposés sous cette partie serviront ensuite pour contacter l'oxyde conducteur transparent par la face arrière 3 du substrat. Le procédé est particulièrement avantageux car il permet de sélectionner les parties 14 du motif métallique sur lesquelles on dépose le motif en CIGS par électrodéposition. En outre, même lorsque les parties 14 du motif métallique sur lesquelles on veut déposer le motif en CIGS par électrodéposition présentent une faible largeur et une grande longueur, le courant circule bien à travers ces parties 14 grâce aux trous 4a situés sous ses parties et répartis sous chacune de ces parties, de sorte que le dépôt effectué par électrodéposition est uniforme et de bonne qualité.
Le procédé comporte une étape 104 de dépôt d'une couche d'oxyde conducteur transparent 1 1 sur les couches précédemment déposées. La couche en oxyde conducteur transparent peut par exemple être réalisée en ZnO. Elle peut par exemple être déposée par PVD, CVD ou encore par MOCVD voir par électrodéposition. La couche d'oxyde transparent conducteur se dépose à la fois sur le motif en CIGS et sur les parties du motif métallique non recouvertes par le motif en CIGS. Dans ce mode de réalisation, la couche d'oxyde transparent conducteur se dépose donc à la fois sur le motif en CIGS 10 et sur la partie secondaire 15 de chaque motif métallique 7. La couche d'oxyde transparent conducteur 1 1 est donc reliée électriquement aux trous 4b de la deuxième série de trous par la partie secondaire 15 de chaque motif métallique. Les trous 4b de la deuxième série de trous peuvent alors servir pour relier électriquement la couche d'oxyde conducteur 1 1 à un réseau électrique via la face arrière 3 du substrat, tandis que les trous 4a de la première série de trous permettent de relier la partie principale du motif métallique 7 à un réseau électrique via la face arrière 3 du substrat. Tous les contacts électriques de la cellule photovoltaïque peuvent donc être établis via la face arrière 3 du substrat.
En outre, la cellule photovoltaïque ainsi réalisée présente une efficacité plus importante que celles de l'art antérieur même lorsqu'elle présente une faible largeur du fait de la présence des trous qui permettent de diminuer sa résistance au niveau des contacts sans utiliser de doigt de collecte. En effet, la cellule photovoltaïque peut être reliée au réseau électrique via une multitude de contacts formés par les trous remplis de matériau conducteur électriquement de sorte que le contact électrique est réparti uniformément sur l'ensemble de la cellule photovoltaïque.
Les figures 4a à 4d représentent un autre mode de réalisation dans lequel des trous 4 sont creusés lors d'une étape 101 à travers le substrat de façon à être alignés comme représenté sur les figures 4a et 5a. Comme précédemment, le procédé comporte une étape 102 de réalisation d'un motif métallique 7 sur la face avant 2 du substrat. Le motif métallique 7 forme une bande longitudinale qui s'étend au dessus des trous 4 (figures 4b et 5b). Le motif métallique 7 est percé par des ouvertures 13 pratiquées au dessus de certains trous 4b de façon à les rendre accessibles depuis la face avant 2 du substrat. Comme précédemment, le motif métallique 7 est de préférence en molybdène et il est de préférence formé par dépôt d'une couche de molybdène sur la face avant du substrat, puis par gravure de cette couche de façon à former le motif voulu.
Le procédé comporte ensuite une étape 103 de dépôt par électrodéposition d'un motif en CIGS 10 sur des parties du motif métallique 7. Plus précisément, dans ce mode de réalisation, le motif en CIGS est déposé partout sauf au niveau des ouvertures 13 qui ont été réalisées dans le motif métallique 7. Pour cela, les trous 4b situés au niveau des ouvertures 13 ne sont pas reliés à une alimentation électrique, tandis que les autres trous 4a sont reliés à une alimentation électrique. Les trous dont l'extrémité arrière est reliée à l'alimentation électrique sont dits appartenir à une « première série de trous » 4a. Les trous non reliés à l'alimentation électriques sont dits appartenir à une « deuxième série de trous » 4b. Cette étape permet de faire passer un courant à travers des parties choisies du motif métallique, via la face arrière substrat. La face avant 2 du substrat est ensuite immergée dans des bains électrolyse successifs de cuivre et/ou d'indium, et/ou de gallium. On recuit ensuite sous atmosphère soufre et/ou sélénium la couche 10 déposée par électrodéposition. On obtient alors un motif en CIGS 10 déposée par électrodéposition sur l'ensemble du motif métallique 7, sauf au niveau des ouvertures 13 de sorte que les trous 4b de la deuxième série de trous restent accessibles depuis la face avant du substrat.
Le procédé comporte ensuite une étape 104 de dépôt d'un oxyde conducteur transparent 1 1 sur les couches précédemment déposées. La couche en oxyde conducteur transparent 1 1 peut par exemple être réalisée en ZnO. Elle peut par exemple être déposée par PVD, CVD ou encore par MOCVD voir par électrodéposition. La couche en oxyde transparent conducteur 1 1 se dépose dans les ouvertures 13 de sorte qu'elle contacte les trous 4b de la deuxième série de trous sur lesquels le motif en CIGS n'avait pas été déposé. Les trous 4b de la deuxième série de trous peuvent alors servir à relier la couche en oxyde transparent conducteur à un réseau électrique par la face arrière du substrat. Par ailleurs, les trous 4a de la première série de trous, au niveau desquels le motif en CIGS a été déposé, permettent eux de relier le motif métallique 7 à un réseau électrique, également par la face arrière 3 du substrat. On obtient donc une cellule photovoltaïque dont tous les contacts électriques sont situés sur la face arrière 3 du substrat.
Naturellement, l'invention n'est pas limitée aux modes de réalisation décrits en référence aux figures et des variantes pourraient être envisagées sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'une cellule photovoltaïque sur un substrat (1 ) comportant une face avant (2) et une face arrière (3), le procédé comportant les étapes suivantes :
(a) réalisation de trous (4) à travers le substrat (1 ), chaque trou (4) présentant une extrémité avant (5) débouchant sur la face avant (2) du substrat (1 ) et une extrémité arrière (6) débouchant sur la face arrière (3) du substrat (1 );
(b) remplissage des trous (4) par un matériau conducteur électriquement ;
(c) formation d'un motif métallique (7) sur la face avant (2) du substrat ;
(d) connexion d'au moins une partie des extrémités arrières (6) des trous (4a) à une alimentation électrique (9) ;
(e) immersion de la face avant (2) du substrat (1 ) dans au moins un premier bain d'électrolyse de façon à former par électrodépôt un motif en CIGS (10) sur le motif métallique (7).
2. Procédé selon la revendication 1 , dans lequel les étapes (a) et (b) sont réalisées avant l'étape (c).
3. Procédé selon la revendication 1 , dans lequel l'étape (c) est réalisée avant les étapes (a) et (b).
4. Procédé selon l'une des revendications 1 à 3, dans lequel les trous (4) sont réalisés par gravure laser.
5. Procédé selon l'une des revendications 1 à 3, dans lequel les trous (4) sont réalisés par gravure chimique.
6. Procédé selon l'une des revendications précédentes, dans lequel les trous présentent un diamètre compris entre 5 μηι et 500 μηι.
7. Procédé selon l'une des revendications précédentes, dans lequel la distance entre deux trous consécutifs est comprise entre 5 mm et 20 mm.
8. Procédé selon l'une des revendications précédentes, dans lequel l'étape de formation du motif métallique (7) comporte les étapes suivantes :
- dépôt d'une couche métallique sur la face avant du substrat ;
- gravure de la couche métallique de façon à former le motif métallique.
9. Procédé selon l'une des revendications précédentes, dans lequel, lors de l'étape (e), une couche est formée en immergeant la face avant (2) du substrat successivement dans :
- un bain de cuivre ;
- un bain d'indium ;
- un bain de gallium.
10. Procédé selon la revendication précédente, dans lequel, lors de l'étape (e), la couche formée est recuite sous atmosphère soufre et/ou sous atmosphère sélénium
1 1 . Procédé selon l'une des revendications précédentes, comportant en outre une étape de dépôt d'une couche en oxyde conducteur transparent (1 1 ) sur le motif en CIGS (10).
PCT/EP2015/076435 2014-11-13 2015-11-12 Procédé de fabrication d'une cellule photovoltaique WO2016075236A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460925A FR3028668B1 (fr) 2014-11-13 2014-11-13 Procede de fabrication d'une cellule photovoltaique
FR1460925 2014-11-13

Publications (1)

Publication Number Publication Date
WO2016075236A1 true WO2016075236A1 (fr) 2016-05-19

Family

ID=52130489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/076435 WO2016075236A1 (fr) 2014-11-13 2015-11-12 Procédé de fabrication d'une cellule photovoltaique

Country Status (2)

Country Link
FR (1) FR3028668B1 (fr)
WO (1) WO2016075236A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1452463A (fr) 1965-10-29 1966-02-25 Tsnii Morskogo Flota Procédé de réalisation d'échangeurs thermiques à surface tubulaire et à ailettes
US20090065060A1 (en) * 2005-05-24 2009-03-12 Honda Motor Co., Ltd. Chalcopyrite type solar cell
EP2469580A1 (fr) * 2010-12-27 2012-06-27 Nexcis Interface améliorée entre une couche de matériau I-III-VI2 et un substrat de molybdène
WO2013013226A1 (fr) * 2011-07-20 2013-01-24 Nanosolar, Inc. Structures pour toiture solaire
US20130112564A1 (en) * 2008-05-15 2013-05-09 Solopower, Inc. Electroplating Solutions and Methods For Deposition of Group IIIA-VIA Films
WO2013122067A1 (fr) * 2012-02-17 2013-08-22 富士電機株式会社 Elément de conversion photoélectrique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1452463A (fr) 1965-10-29 1966-02-25 Tsnii Morskogo Flota Procédé de réalisation d'échangeurs thermiques à surface tubulaire et à ailettes
US20090065060A1 (en) * 2005-05-24 2009-03-12 Honda Motor Co., Ltd. Chalcopyrite type solar cell
US20130112564A1 (en) * 2008-05-15 2013-05-09 Solopower, Inc. Electroplating Solutions and Methods For Deposition of Group IIIA-VIA Films
EP2469580A1 (fr) * 2010-12-27 2012-06-27 Nexcis Interface améliorée entre une couche de matériau I-III-VI2 et un substrat de molybdène
WO2013013226A1 (fr) * 2011-07-20 2013-01-24 Nanosolar, Inc. Structures pour toiture solaire
WO2013122067A1 (fr) * 2012-02-17 2013-08-22 富士電機株式会社 Elément de conversion photoélectrique

Also Published As

Publication number Publication date
FR3028668A1 (fr) 2016-05-20
FR3028668B1 (fr) 2016-12-30

Similar Documents

Publication Publication Date Title
FR2985606A1 (fr) Procede pour realiser un module photovoltaique avec deux etapes de gravure p2 et p3 et module photovoltaique correspondant.
FR2914501A1 (fr) Dispositif photovoltaique a structure a heterojonctions interdigitee discontinue
WO2015055943A1 (fr) Procédé de réalisation d'une cellule photovoltaïque
FR2487581A1 (fr) Assemblage de cellules photovoltaiques et procede de fabrication d'un tel assemblage
FR2503457A1 (fr) Systeme de cellules solaires connectees en serie sur un substrat unique
BE1022988B1 (fr) Interconnexion parallele de cellules solaires voisines via un plan arriere commun
FR3094570A1 (fr) Cellule et chaîne photovoltaïques et procédés associés
WO2015033291A1 (fr) Module photovoltaique semi-transparent et procédé d'obtention correspondant
EP2845227A1 (fr) Gravure par laser d'un empilement de couches minces pour une connexion de cellule photovoltaïque
WO2013105024A1 (fr) Procede pour realiser un module photovoltaïque avec deux etapes de gravure p1 et p3 et module photovoltaïque correspondant
EP3353815A1 (fr) Procédé de fabrication de structures pour cellule photovoltaïque
FR2989223A1 (fr) Procede pour realiser un module photovoltaique avec une etape de gravure p3 et une eventuelle etape p1.
EP2681768B1 (fr) Procédé pour la mise en série électrique monolithique de cellules photovoltaïques d'un module solaire et module photovoltaïque obtenu par ce procédé
WO2016075236A1 (fr) Procédé de fabrication d'une cellule photovoltaique
EP2852981A2 (fr) Module photovoltaïque avec cellules photovoltaïques a elargissement local du bus
EP3227925A1 (fr) Fil textile photovoltaïque
WO2015117715A1 (fr) Procede de fabrication d'un empilement de couches minces decollable de son substrat
EP3042397B1 (fr) Procede de formation d'une cellule photovoltaique
FR2989224A1 (fr) Procede pour realiser un module photovoltaique avec une etape de gravure p3 et une eventuelle etape p2.
FR2994767A1 (fr) Procede de realisation de contacts electriques d'un dispositif semi-conducteur
EP4158694A1 (fr) Cellule et chaîne photovoltaïques et procédés associés
FR3039707A1 (fr) Procede de fabrication de dispositifs hybrides
FR3031624A1 (fr) Interconnexion parallele de cellules solaires voisines via un plan arriere commun
FR3043254A1 (fr) Procede de realisation d'un dispositif electronique
FR2983643A1 (fr) Dispositif et procede d'interconnexion electrique de cellules photovoltaiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793837

Country of ref document: EP

Kind code of ref document: A1