WO2016074645A1 - 数字影棚摄影灯光系统 - Google Patents

数字影棚摄影灯光系统 Download PDF

Info

Publication number
WO2016074645A1
WO2016074645A1 PCT/CN2015/094595 CN2015094595W WO2016074645A1 WO 2016074645 A1 WO2016074645 A1 WO 2016074645A1 CN 2015094595 W CN2015094595 W CN 2015094595W WO 2016074645 A1 WO2016074645 A1 WO 2016074645A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
color temperature
green
red
blue
Prior art date
Application number
PCT/CN2015/094595
Other languages
English (en)
French (fr)
Inventor
牛强
吴杰阳
余长新
Original Assignee
牛强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 牛强 filed Critical 牛强
Priority to EP15858875.6A priority Critical patent/EP3249461A4/en
Publication of WO2016074645A1 publication Critical patent/WO2016074645A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/06Special arrangements of screening, diffusing, or reflecting devices, e.g. in studio
    • G03B15/07Arrangements of lamps in studios
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources

Definitions

  • the present invention relates to the field of photography, and more particularly to a digital studio photography lighting system.
  • the technical problem to be solved by the present invention is that the white light source of the fixed color temperature of the prior art cannot set the color temperature according to the change of the ambient light, and thus the amount and color of the flash cannot satisfy the digital studio under different environmental conditions.
  • a defect in the requirements of the photographic lighting system provides a digital studio photographic lighting system that can be color-adjusted as required to achieve lighting requirements in different environments in a digital studio.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a digital studio photography lighting system, comprising:
  • a red primary color light source a green primary color light source, and a blue primary color light source
  • an instruction receiving device configured to receive a color instruction input by a user
  • a matching controller configured to respectively generate a red color temperature control signal, a red light energy control signal, a green color temperature control signal, a green light energy control signal, a blue color temperature control signal, and a blue light energy control signal according to the color instruction;
  • a red light controller configured to control a color temperature and energy of the red light emitted by the red primary light source based on the red color temperature control signal and the red light energy control signal;
  • a green light controller configured to control the location based on the green color temperature control signal and the green light energy control signal The color temperature and energy of the green light emitted by the green primary light source;
  • a blue light controller for controlling color temperature and energy of blue light emitted by the blue primary light source based on the blue color temperature control signal and the blue light energy control signal.
  • the matching controller includes:
  • a color temperature control module configured to respectively generate the red color temperature control signal, the green color temperature control signal, and the blue color temperature control signal based on the color instruction;
  • an energy ratio generating module configured to determine an energy ratio of the red light, the green light, and the blue light based on the color instruction
  • an energy control module that generates the red light energy control signal, the green light energy control signal, and the blue light energy control signal based on the energy ratio.
  • the matching controller further includes: [0016] a color temperature energy database for storing a plurality of red color temperature, green color temperature, and blue light in a lookup table format Color temperature, red light energy, green light energy and blue light energy;
  • a color temperature searching module configured to search for a corresponding red color temperature, a green color temperature, and a blue color temperature based on the color instruction to generate the red color temperature control signal, the green color temperature control signal, and the blue color temperature control Signal
  • an energy ratio finding module configured to search for corresponding red, green, and blue light energy ratios based on the color instruction
  • an energy generating module that generates the red light energy control signal, the green light energy control signal, and the blue light energy control signal based on the energy ratio.
  • the matching controller further includes an update module, configured to update a plurality of red color temperature, green color temperature, and blue color temperature stored in the color temperature energy database, Red light energy, green light energy and blue light energy.
  • a flashing device for receiving a flash trigger to generate a strobe signal is further included.
  • the matching controller further includes: a flash control module, configured to generate a proportional brightening pulse signal based on the flash signal; the red light control The green light controller and the blue light controller for controlling the said based on the proportional bright pulse signal
  • the red primary color light source, the green primary color light source, and the blue primary color light source emit high-intensity red, green, and blue light, respectively.
  • the pulse interval between the equal-brightness pulse signals ranges from lms to 100 ms.
  • the red light controller includes a red light PWM generating module, configured to generate a control station based on the red color temperature control signal and the red light energy control signal a PWM control signal of a red primary light source;
  • the green light controller includes a green light PWM generating module, configured to generate a PWM control for controlling the green primary light source based on the green color temperature control signal and the green light energy control signal
  • the blue light controller includes a blue light PWM generating module for generating a PWM control signal for controlling the blue primary light source based on the blue color temperature control signal and the blue light energy control signal.
  • the matching controller further includes a power-off processing module, configured to store the current red color temperature control signal, the red light energy, before powering off a control signal, the green color temperature control signal, the green light energy control signal, the blue color temperature control signal, and the blue light energy control signal, and directly calling the stored red light color temperature control signal at a continuous power
  • a power-off processing module configured to store the current red color temperature control signal, the red light energy, before powering off a control signal, the green color temperature control signal, the green light energy control signal, the blue color temperature control signal, and the blue light energy control signal, and directly calling the stored red light color temperature control signal at a continuous power
  • the red light energy control signal, the green color temperature control signal, the green light energy control signal, the blue color temperature control signal, and the blue light energy control signal are examples of the red light energy control signal, the green color temperature control signal, the green light energy control signal, the blue color temperature control signal, and the blue light energy control signal.
  • the red primary color light source is a red LED
  • the green primary color light source is a green LED
  • the blue primary color light source is a blue LED
  • the digital studio photography lighting system embodying the present invention can adjust the color temperature of the light source according to requirements to realize the lighting requirements under different environmental conditions in the digital studio. Further, by generating a proportional highlighting pulse signal, it is possible to control the illumination of the subject, which can effectively avoid image quality problems caused by photographic blur.
  • FIG. 1 is a schematic block diagram of a first embodiment of a digital studio photographic lighting system of the present invention
  • FIG. 2 is a schematic block diagram of a second embodiment of the digital studio photographic lighting system of the present invention.
  • FIG. 3 is a schematic block diagram of a third embodiment of the digital studio photographic lighting system of the present invention.
  • the digital studio photography lighting system of the present invention comprises a red primary light source 220, a green primary light source 320, a blue primary light source 420, a red light controller 210, a green light controller 310, a blue light controller 410, and an instruction receiving device. 400 and match controller 100.
  • the instruction receiving device 400 is configured to receive a color instruction input by a user.
  • the command receiving device 400 may be a keyboard group for promptly responding to a keyboard group trigger signal.
  • the matching controller 100 is configured to respectively generate a red color temperature control signal, a red light energy control signal, a green light color temperature control signal, a green light energy control signal, a blue color temperature control signal, and a blue light energy control signal based on the color instruction.
  • the matching controller 100 can store a plurality of sets of red color temperature control signals, red light energy control signals, green color temperature control signals, green light energy control signals, and manners in a lookup table. Blue color temperature control signal and blue light energy control signal.
  • the matching controller 100 After receiving the color command, the matching controller 100 selects a set of red color temperature control signals, a red light energy control signal, a green light color temperature control signal, a green light energy control signal, and a blue color temperature corresponding to the color command. Control signal and blue light energy control signal.
  • the command receiving device 400 receives a data signal including a desired color temperature and brightness. After receiving the data signal of the desired color temperature and brightness, the matching controller 100 converts it into a red color temperature control signal, a red light energy control signal, and a green color temperature control by using a transfer function known in the prior art. Signal, green light control signal, blue color temperature control signal and blue light energy control signal.
  • the red light controller 210 is electrically connected to the matching controller 100, and is configured to control a color temperature of the red light emitted by the red primary light source 220 based on the red color temperature control signal and the red light energy control signal. energy.
  • the green light controller 310 is electrically connected to the matching controller 100, and configured to control a color temperature of the green light emitted by the green primary light source 320 based on the green color temperature control signal and the green light energy control signal. energy.
  • the blue light controller 410 is electrically connected to the matching controller 100 for using the blue color temperature control signal and the blue light energy The control signal controls the color temperature and energy of the blue light emitted by the blue primary light source 420.
  • the red light controller 210, the green light controller 310, and the blue light controller 410 are respectively a red LED driving circuit, a green LED driving circuit, and a blue LE driving circuit
  • the red primary color light source 220 is a red LED
  • the green primary color light source 320 is a green LED
  • the blue primary color light source 420 is a blue LED. The resulting red, green, and blue light are mixed with each other to generate the desired light color requirements for the low light state.
  • the digital studio photography lighting system embodying the present invention can adjust the color temperature of the light source according to requirements to realize the lighting requirements under different environmental conditions in the digital studio.
  • the digital studio photography lighting system of the present invention includes a red primary color light source 220, a green primary color light source 320, a blue primary color light source 420, a red light controller 210, a green light controller 310, a blue light controller 410, and an instruction receiving device. 400, the bow I flash device 500 and the matching controller 100.
  • the matching controller 100 further includes a color temperature control module 111, an energy ratio generating module 112, an energy control module 113, and a flash control module 114.
  • the instruction receiving device 400 is configured to receive a color instruction input by a user.
  • the command receiving device 400 may be a keyboard group for promptly responding to a keyboard group trigger signal.
  • the color temperature control module 111 is configured to respectively generate the red color temperature control signal, the green color temperature control signal, and the blue color temperature control signal based on the color instruction.
  • the color temperature control module 111 can convert it into a red color temperature control signal, a green color temperature control signal, and a blue color temperature control signal using a color temperature conversion function known in the art.
  • the red light controller 210, the green light controller 310, and the blue light controller 410 respectively control the red primary light source 20 and the green primary light source 320 based on the red color temperature control signal, the green color temperature control signal, and the blue color temperature control signal.
  • the energy ratio generation module 112 is configured to determine an energy ratio of the red light, the green light, and the blue light based on the color instruction. For example, the energy ratio generation module 112 can convert it into an energy ratio of the red light, the green light, and the blue light using an energy transfer function known in the art.
  • the energy control module 113 converts the red light energy control signal, the green light energy control signal, and the blue light energy control signal based on the energy ratio.
  • the red light controller 210, the green light controller 310, and the blue light controller 410 respectively control the red primary light source 220 based on the red light energy control signal, the green light energy control signal, and the blue light energy control signal, The energy of the green primary light source 320 and the blue primary light source 420. In this way, the generated red, green and blue light are mixed with each other, ie Generate the light color requirements for the actual low light state you need.
  • the flash device 500 will receive a flash trigger to generate a flash signal and transmit the flash signal to the flash control module 114.
  • the flash control module 114 generates a proportional brightening pulse signal based on the flash signal, and transmits the ratio brightening pulse signal to the red light controller 210, the green light controller 310, and the blue light.
  • Controller 410 The red light controller 210, the green light controller 310 and the blue light controller 410 will control the red primary light source 220, the green primary light source 320, and the light based on the equal ratio highlight pulse signal.
  • the blue primary light source 420 is equivalent to emitting high-intensity red, green, and blue light.
  • the high-brightness red, green, and blue emission periods are the same as the pulse interval between the equal-brightness pulse signals, and the range is lm S -100 ms.
  • the green primary light source 320 and the blue primary light source 420 emit high-intensity red, green, and blue light in equal proportions.
  • the green primary light source 320 and the blue primary light source 420 are turned off. In this way, the generated red, green and blue light are mixed with each other, that is, the light color requirement of the actual desired highlight state is generated.
  • the digital studio photography lighting system embodying the present invention can adjust the color temperature of the light source according to requirements to realize the lighting requirements under different environmental conditions in the digital studio. Further, by generating a proportional highlighting pulse signal, it is possible to control the illumination of the subject, which can effectively avoid image quality problems caused by photographic blur.
  • the digital studio photographic lighting system of the present invention includes a red primary color light source 220, a green primary color light source 320, a blue primary color light source 420, a red light controller 210, a green light controller 310, a blue light controller 410, and an instruction receiving device. 400, the bow I flash device 500 and the matching controller 100.
  • the matching controller 100 further includes a color temperature energy database 121, a color temperature finding module 122, an energy ratio finding module 123, an energy generating module 124, an updating module 125, and a flash control module 126.
  • the red light controller 210 includes a red light PWM generating module 211.
  • the green light controller 310 includes a green PWM generation module 311.
  • the blue light controller 410 includes a blue light PWM generating module 411.
  • the instruction receiving device 400 is configured to receive a color instruction input by a user.
  • the command receiving device 400 may be a keyboard group for promptly responding to a keyboard group trigger signal.
  • the color temperature energy database 121 is configured to store a plurality of red color temperature, green color temperature, and blue color temperature, red light energy, and green in a lookup table format. Light energy and blue light energy.
  • the update module 125 can be configured to update the red color temperature, the green color temperature, and the blue color temperature, the red light energy, the green light energy, and the blue light energy stored in the color temperature energy database 121.
  • the color temperature searching module 122 is configured to search for a corresponding red color temperature, a green color temperature, and a blue color temperature based on the color instruction to generate the red color temperature control signal, the green color temperature control signal, and the blue color temperature control signal.
  • the energy ratio finding module 123 is configured to find a corresponding red, green, and blue light energy ratio based on the color instruction.
  • the energy generating module 124 is configured to generate the red light energy control signal, the green light energy control signal, and the blue light energy control signal based on the energy ratio.
  • the red light controller 210, the green light controller 310, the red light PWM generating module 211, the green light PW M generating module 311 and the blue light PWM generating module 411 in the blue light controller 410 respectively generate and control the red primary light source 220, The PWM signals of the green primary light source 320 and the blue primary light source 420. Based on the PWM signals, the red light controller 210, the green light controller 310, and the blue light controller 410 can respectively control the energy of the red primary color light source 220, the green primary color light source 320, and the blue primary color light source 420. In this way, the generated red, green and blue light are mixed with each other, that is, the light color requirement of the low-light state actually required is generated.
  • the flash device 500 will receive a flash trigger to generate a flash signal and transmit the flash signal to the flash control module 114.
  • the flash control module 114 generates a proportional brightening pulse signal based on the flash signal, and transmits the ratio brightening pulse signal to the red light controller 210, the green light controller 310, and the blue light.
  • Controller 410 The red light controller 210, the green light controller 310 and the blue light controller 410 will control the red primary light source 220, the green primary light source 320, and the light based on the equal ratio highlight pulse signal.
  • the blue primary light source 420 is equivalent to emitting high-intensity red, green, and blue light.
  • the high-brightness red, green, and blue emission periods are the same as the pulse interval between the equal-brightness pulse signals, and the range is lm S -100 ms.
  • the green primary light source 320 and the blue primary light source 420 emit high-intensity red, green, and blue light in equal proportions.
  • the green primary light source 320 and the blue primary light source 420 are turned off. In this way, the generated red, green and blue light are mixed with each other, that is, the light color requirement of the actual desired highlight state is generated.
  • the matching controller 100 further includes a power-off processing module 127, configured to store the current red color temperature control signal, the red light energy control signal, and the green before powering off. a light color temperature control signal, the green light energy control signal, the blue color temperature control signal, and the blue light energy control Signaling, and directly recalling the stored red light color temperature control signal, the red light energy control signal, the green light color temperature control signal, the green light energy control signal, the blue light color temperature control signal, and The blue light energy control signal.
  • a power-off processing module 127 configured to store the current red color temperature control signal, the red light energy control signal, and the green before powering off. a light color temperature control signal, the green light energy control signal, the blue color temperature control signal, and the blue light energy control Signaling, and directly recalling the stored red light color temperature control signal, the red light energy control signal, the green light color temperature control signal, the green light energy control signal, the blue light color temperature control signal, and The blue light energy control signal.
  • the digital studio photography lighting system embodying the present invention can adjust the color temperature of the light source according to requirements to realize the lighting requirements under different environmental conditions in the digital studio. Further, by generating a proportional highlighting pulse signal, it is possible to control the illumination of the subject, which can effectively avoid image quality problems caused by photographic blur. Moreover, the stored color temperature and energy data can be updated so that the user can input color temperature and energy data according to actual needs. Furthermore, after the power failure or the last use, the last data can be automatically matched, which is further convenient for the user.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种数字影棚摄影灯光系统,包括:红基色光源(220)、绿基色光源(320)和蓝基色光源(420);红光控制器(210)、绿光控制器(310)和蓝光控制器(410);指令接收装置(400),用于接收用户输入的颜色指令;匹配控制器(100),用于基于所述颜色指令分别生成红、绿、蓝光色温控制信号和红、绿、蓝光能量控制信号。实施所述数字影棚摄影灯光系统,可以按照要求对光源色温进行调整,实现数字影棚中不同环境条件下的灯光要求。

Description

数字影棚摄影灯光系统
技术领域
[0001] 本实用新型涉及摄影领域, 更具体地说, 涉及一种数字影棚摄影灯光系统。
背景技术
[0002] 传统的影棚系统基本上采用画布配合传统灯光技术进行拍摄。 而现有的数字影 棚摄影灯光系统通常采用固定色温的白光光源进行照明。 而固定色温的白光光 源不能依照环境光的变化对其色温进行设定, 因而闪光的光量和颜色不能满足 数字影棚在不同环境条件下对摄影灯光系统的要求。
技术问题
[0003] 本发明要解决的技术问题在于, 针对现有技术的固定色温的白光光源不能依照 环境光的变化对其色温进行设定, 因而闪光的光量和颜色不能满足数字影棚在 不同环境条件下对摄影灯光系统的要求的缺陷, 提供一种可以依照要求进行颜 色调整, 从而实现数字影棚中不同环境条件下灯光要求的数字影棚摄影灯光系 统。
问题的解决方案
技术解决方案
[0004] 本发明解决其技术问题所采用的技术方案是: 构造一种数字影棚摄影灯光系统 , 包括:
[0005] 红基色光源、 绿基色光源和蓝基色光源;
[0006] 指令接收装置, 用于接收用户输入的颜色指令;
[0007] 匹配控制器, 用于基于所述颜色指令分别生成红光色温控制信号、 红光能量控 制信号、 绿光色温控制信号、 绿光能量控制信号、 蓝光色温控制信号和蓝光能 量控制信号;
[0008] 红光控制器, 用于基于所述红光色温控制信号和所述红光能量控制信号控制所 述红基色光源发射的红光的色温和能量;
[0009] 绿光控制器, 用于基于所述绿光色温控制信号和所述绿光能量控制信号控制所 述绿基色光源发射的绿光的色温和能量;
[0010] 蓝光控制器, 用于基于所述蓝光色温控制信号和所述蓝光能量控制信号控制所 述蓝基色光源发射的蓝光的色温和能量。
[0011] 在本发明所述的数字影棚摄影灯光系统中, 所述匹配控制器包括:
[0012] 色温控制模块, 用于基于所述颜色指令分别生成所述红光色温控制信号、 所述 绿光色温控制信号和所述蓝光色温控制信号;
[0013] 能量比生成模块, 用于基于所述颜色指令确定所述红光、 所述绿光和所述蓝光 的能量比;
[0014] 能量控制模块, 基于所述能量比生成所述红光能量控制信号、 所述绿光能量控 制信号和所述蓝光能量控制信号。
[0015] 在本发明所述的数字影棚摄影灯光系统中, 所述匹配控制器进一步包括: [0016] 色温能量数据库, 用于以査找表的格式存储多个红光色温、 绿光色温和蓝光色 温、 红光能量、 绿光能量和蓝光能量;
[0017] 色温査找模块, 用于基于所述颜色指令査找对应的红光色温、 绿光色温和蓝光 色温以生成所述红光色温控制信号、 所述绿光色温控制信号和所述蓝光色温控 制信号;
[0018] 能量比査找模块, 用于基于所述颜色指令査找对应的红光、 绿光和蓝光能量比
[0019] 能量生成模块, 基于所述能量比生成所述红光能量控制信号、 所述绿光能量控 制信号和所述蓝光能量控制信号。
[0020] 在本发明所述的数字影棚摄影灯光系统中, 所述匹配控制器进一步包括更新模 块, 用于更新所述色温能量数据库中存储的多个红光色温、 绿光色温和蓝光色 温、 红光能量、 绿光能量和蓝光能量。
[0021] 在本发明所述的数字影棚摄影灯光系统中, 进一步包括用于接收引闪触发从而 生成引闪信号的引闪装置。
[0022] 在本发明所述的数字影棚摄影灯光系统中, 所述匹配控制器进一步包括: 引闪 控制模块, 用于基于所述引闪信号生成等比高亮脉冲信号; 所述红光控制器、 所述绿光控制器和所述蓝光控制器, 用于基于所述等比高亮脉冲信号控制所述 红基色光源、 所述绿基色光源和所述蓝基色光源等比发射高亮度的红光、 绿光 和蓝光。
[0023] 在本发明所述的数字影棚摄影灯光系统中, 所述等比高亮脉冲信号的脉冲吋间 间隔范围为 lms-100ms。
[0024] 在本发明所述的数字影棚摄影灯光系统中, 所述红光控制器包括红光 PWM生 成模块, 用于基于所述红光色温控制信号和所述红光能量控制信号生成控制所 述红基色光源的 PWM控制信号; 所述绿光控制器包括绿光 PWM生成模块, 用于 基于所述绿光色温控制信号和所述绿光能量控制信号生成控制所述绿基色光源 的 PWM控制信号; 所述蓝光控制器包括蓝光 PWM生成模块, 用于基于所述蓝光 色温控制信号和所述蓝光能量控制信号生成控制所述蓝基色光源的 PWM控制信 号。
[0025] 在本发明所述的数字影棚摄影灯光系统中, 所述匹配控制器进一步包括断电处 理模块, 用于在断电前存储当前的所述红光色温控制信号、 所述红光能量控制 信号、 所述绿光色温控制信号、 所述绿光能量控制信号、 所述蓝光色温控制信 号和所述蓝光能量控制信号, 并且在续电吋直接调用存储的所述红光色温控制 信号、 所述红光能量控制信号、 所述绿光色温控制信号、 所述绿光能量控制信 号、 所述蓝光色温控制信号和所述蓝光能量控制信号。
[0026] 在本发明所述的数字影棚摄影灯光系统中, 所述红基色光源为红色 LED、 所述 绿基色光源为绿色 LED和所述蓝基色光源为蓝色 LED。
发明的有益效果
有益效果
[0027] 实施本发明的数字影棚摄影灯光系统, 可以按照要求对光源色温进行调整, 实 现数字影棚中不同环境条件下的灯光要求。 更进一步地, 通过生成等比高亮脉 冲信号, 可以控制被摄物体的光照吋间按, 能够有效避免因为摄影抖动导致的 图像质量问题。
对附图的简要说明
附图说明
[0028] 下面将结合附图及实施例对本发明作进一步说明, 附图中: [0029] 图 1是本发明的数字影棚摄影灯光系统的第一实施例的原理框图;
[0030] 图 2是本发明的数字影棚摄影灯光系统的第二实施例的原理框图;
[0031] 图 3是本发明的数字影棚摄影灯光系统的第三实施例的原理框图。
本发明的实施方式
[0032] 图 1是本发明的数字影棚摄影灯光系统的第一实施例的原理框图。 如图 1所示, 本发明的数字影棚摄影灯光系统包括红基色光源 220、 绿基色光源 320、 蓝基色 光源 420、 红光控制器 210、 绿光控制器 310、 蓝光控制器 410、 指令接收装置 400 和匹配控制器 100。
[0033] 所述指令接收装置 400用于接收用户输入的颜色指令。 例如, 所述指令接收装 置 400可以是键盘组, 用于即吋响应键盘组触发信号。 所述匹配控制器 100用于 基于所述颜色指令分别生成红光色温控制信号、 红光能量控制信号、 绿光色温 控制信号、 绿光能量控制信号、 蓝光色温控制信号和蓝光能量控制信号。 例如 , 在本发明的一个实施例中, 所述匹配控制器 100中可以査找表的方式存储多组 红光色温控制信号、 红光能量控制信号、 绿光色温控制信号、 绿光能量控制信 号、 蓝光色温控制信号和蓝光能量控制信号。 当接收到所述颜色指令之后, 所 述匹配控制器 100选择与该颜色指令对应的一组红光色温控制信号、 红光能量控 制信号、 绿光色温控制信号、 绿光能量控制信号、 蓝光色温控制信号和蓝光能 量控制信号。 例如, 在本发明另一个实施例中, 所述指令接收装置 400接收到的 是一个包括期望的色温和亮度的数据信号。 所述匹配控制器 100在接收到该期望 的色温和亮度的数据信号后, 利用现有技术中已知的转换函数将其转换成红光 色温控制信号、 红光能量控制信号、 绿光色温控制信号、 绿光能量控制信号、 蓝光色温控制信号和蓝光能量控制信号。 所述红光控制器 210与所述匹配控制器 100电连接, 从而用于基于所述红光色温控制信号和所述红光能量控制信号控制 所述红基色光源 220发射的红光的色温和能量。 所述绿光控制器 310与所述匹配 控制器 100电连接, 从而用于基于所述绿光色温控制信号和所述绿光能量控制信 号控制所述绿基色光源 320发射的绿光的色温和能量。 所述蓝光控制器 410与所 述匹配控制器 100电连接, 从而用于基于所述蓝光色温控制信号和所述蓝光能量 控制信号控制所述蓝基色光源 420发射的蓝光的色温和能量。 在本发明中, 所述 红光控制器 210、 绿光控制器 310、 蓝光控制器 410分别为红色 LED驱动电路、 绿 色 LED驱动电路和蓝色 LE驱动电路, 所述红基色光源 220为红色 LED、 所述绿基 色光源 320为绿色 LED和所述蓝基色光源 420为蓝色 LED。 产生的红光、 绿光和蓝 光相互混合, 即生成实际所需要的低亮状态的灯光颜色要求。
[0034] 实施本发明的数字影棚摄影灯光系统, 可以按照要求对光源色温进行调整, 实 现数字影棚中不同环境条件下的灯光要求。
[0035] 图 2是本发明的数字影棚摄影灯光系统的第二实施例的原理框图。 如图 2所示, 本发明的数字影棚摄影灯光系统包括红基色光源 220、 绿基色光源 320、 蓝基色 光源 420、 红光控制器 210、 绿光控制器 310、 蓝光控制器 410、 指令接收装置 400 、 弓 I闪装置 500和匹配控制器 100。 在本实施例中, 所述匹配控制器 100进一步包 括色温控制模块 111、 能量比生成模块 112、 能量控制模块 113和引闪控制模块 11 4。
[0036] 所述指令接收装置 400用于接收用户输入的颜色指令。 例如, 所述指令接收装 置 400可以是键盘组, 用于即吋响应键盘组触发信号。 所述色温控制模块 111用 于基于所述颜色指令分别生成所述红光色温控制信号、 所述绿光色温控制信号 和所述蓝光色温控制信号。 例如所述色温控制模块 111可以采用现有技术中已知 的色温转换函数将其转换成红光色温控制信号、 绿光色温控制信号和蓝光色温 控制信号。 所述红光控制器 210、 绿光控制器 310、 蓝光控制器 410基于该红光色 温控制信号、 绿光色温控制信号和蓝光色温控制信号分别控制所述红基色光源 2 20、 绿基色光源 320、 蓝基色光源 420的色温。 所述能量比生成模块 112用于基于 所述颜色指令确定所述红光、 所述绿光和所述蓝光的能量比。 例如能量比生成 模块 112可以采用现有技术中已知的能量转换函数将其转换成所述红光、 所述绿 光和所述蓝光的能量比。 所述能量控制模块 113基于所述能量比换算所述红光能 量控制信号、 所述绿光能量控制信号和所述蓝光能量控制信号。 所述红光控制 器 210、 绿光控制器 310、 蓝光控制器 410基于所述红光能量控制信号、 所述绿光 能量控制信号和所述蓝光能量控制信号分别控制所述红基色光源 220、 绿基色光 源 320、 蓝基色光源 420的能量。 这样, 产生的红光、 绿光和蓝光相互混合, 即 生成实际所需要的低亮状态的灯光颜色要求。
[0037] 如果引闪装置 500受到触发, 那么所述引闪装置 500将接收引闪触发从而生成引 闪信号, 并将引闪信号传送给所述引闪控制模块 114。 引闪控制模块 114将基于 所述引闪信号生成等比高亮脉冲信号, 并将该等比高亮脉冲信号传送给所述红 光控制器 210、 所述绿光控制器 310和所述蓝光控制器 410。 此吋所述红光控制器 210、 所述绿光控制器 310和所述蓝光控制器 410将基于所述等比高亮脉冲信号控 制所述红基色光源 220、 所述绿基色光源 320和所述蓝基色光源 420等比发射高亮 度的红光、 绿光和蓝光。 该高亮度的红光、 绿光和蓝光的发射吋间与所述等比 高亮脉冲信号的脉冲吋间间隔相同, 范围为 lmS-100ms。 在该等比高亮脉冲信号 的脉冲幵始吋, 所述绿基色光源 320和所述蓝基色光源 420等比发射高亮度的红 光、 绿光和蓝光。 当该等比高亮脉冲信号的脉冲终止吋, 所述绿基色光源 320和 所述蓝基色光源 420关闭。 这样, 产生的红光、 绿光和蓝光相互混合, 即生成实 际所需要的高亮状态的灯光颜色要求。
[0038] 实施本发明的数字影棚摄影灯光系统, 可以按照要求对光源色温进行调整, 实 现数字影棚中不同环境条件下的灯光要求。 更进一步地, 通过生成等比高亮脉 冲信号, 可以控制被摄物体的光照吋间按, 能够有效避免因为摄影抖动导致的 图像质量问题。
[0039] 图 3是本发明的数字影棚摄影灯光系统的第三实施例的原理框图。 如图 3所示, 本发明的数字影棚摄影灯光系统包括红基色光源 220、 绿基色光源 320、 蓝基色 光源 420、 红光控制器 210、 绿光控制器 310、 蓝光控制器 410、 指令接收装置 400 、 弓 I闪装置 500和匹配控制器 100。 在本实施例中, 所述匹配控制器 100进一步包 括色温能量数据库 121、 色温査找模块 122、 能量比査找模块 123、 能量生成模块 124、 更新模块 125和引闪控制模块 126。 所述红光控制器 210包括红光 PWM生成 模块 211。 所述绿光控制器 310包括绿光 PWM生成模块 311。 所述蓝光控制器 410 包括蓝光 PWM生成模块 411。
[0040] 所述指令接收装置 400用于接收用户输入的颜色指令。 例如, 所述指令接收装 置 400可以是键盘组, 用于即吋响应键盘组触发信号。 所述色温能量数据库 121 用于以査找表的格式存储多个红光色温、 绿光色温和蓝光色温、 红光能量、 绿 光能量和蓝光能量。 所述更新模块 125可以用于更新所述色温能量数据库 121中 存储的这些红光色温、 绿光色温和蓝光色温、 红光能量、 绿光能量和蓝光能量 。 所述色温査找模块 122用于基于所述颜色指令査找对应的红光色温、 绿光色温 和蓝光色温以生成所述红光色温控制信号、 所述绿光色温控制信号和所述蓝光 色温控制信号。 所述能量比査找模块 123用于基于所述颜色指令査找对应的红光 、 绿光和蓝光能量比。 所述能量生成模块 124用于基于所述能量比生成所述红光 能量控制信号、 所述绿光能量控制信号和所述蓝光能量控制信号。 所述红光控 制器 210、 绿光控制器 310、 蓝光控制器 410中的红光 PWM生成模块 211、 绿光 PW M生成模块 311和蓝光 PWM生成模块 411分别生成控制所述红基色光源 220、 所述 绿基色光源 320和所述蓝基色光源 420的 PWM控制信号。 基于这些 PWM信号, 所 述红光控制器 210、 绿光控制器 310、 蓝光控制器 410可以分别控制所述红基色光 源 220、 绿基色光源 320、 蓝基色光源 420的能量。 这样, 产生的红光、 绿光和蓝 光相互混合, 即生成实际所需要的低亮状态的灯光颜色要求。
[0041] 如果引闪装置 500受到触发, 那么所述引闪装置 500将接收引闪触发从而生成引 闪信号, 并将引闪信号传送给所述引闪控制模块 114。 引闪控制模块 114将基于 所述引闪信号生成等比高亮脉冲信号, 并将该等比高亮脉冲信号传送给所述红 光控制器 210、 所述绿光控制器 310和所述蓝光控制器 410。 此吋所述红光控制器 210、 所述绿光控制器 310和所述蓝光控制器 410将基于所述等比高亮脉冲信号控 制所述红基色光源 220、 所述绿基色光源 320和所述蓝基色光源 420等比发射高亮 度的红光、 绿光和蓝光。 该高亮度的红光、 绿光和蓝光的发射吋间与所述等比 高亮脉冲信号的脉冲吋间间隔相同, 范围为 lmS-100ms。 在该等比高亮脉冲信号 的脉冲幵始吋, 所述绿基色光源 320和所述蓝基色光源 420等比发射高亮度的红 光、 绿光和蓝光。 当该等比高亮脉冲信号的脉冲终止吋, 所述绿基色光源 320和 所述蓝基色光源 420关闭。 这样, 产生的红光、 绿光和蓝光相互混合, 即生成实 际所需要的高亮状态的灯光颜色要求。
[0042] 在本实施例中, 所述匹配控制器 100进一步包括断电处理模块 127用于在断电前 存储当前的所述红光色温控制信号、 所述红光能量控制信号、 所述绿光色温控 制信号、 所述绿光能量控制信号、 所述蓝光色温控制信号和所述蓝光能量控制 信号, 并且在续电吋直接调用存储的所述红光色温控制信号、 所述红光能量控 制信号、 所述绿光色温控制信号、 所述绿光能量控制信号、 所述蓝光色温控制 信号和所述蓝光能量控制信号。
[0043] 实施本发明的数字影棚摄影灯光系统, 可以按照要求对光源色温进行调整, 实 现数字影棚中不同环境条件下的灯光要求。 更进一步地, 通过生成等比高亮脉 冲信号, 可以控制被摄物体的光照吋间按, 能够有效避免因为摄影抖动导致的 图像质量问题。 并且, 存储的色温和能量数据可以进行更新, 从而使得用户可 以根据实际需要输入色温和能量数据。 再者, 在断电故障或者上次使用之后, 可以自动匹配上次的数据, 从而进一步方便用户使用。
[0044] 虽然本发明是通过具体实施例进行说明的, 本领域技术人员应当明白, 在不脱 离本发明范围的情况下, 还可以对本发明进行各种变换及等同替代。 因此, 本 发明不局限于所公幵的具体实施例, 而应当包括落入本发明权利要求范围内的 全部实施方式。

Claims

权利要求书
[权利要求 1] 一种数字影棚摄影灯光系统, 其特征在于, 包括: 红基色光源、 绿基 色光源和蓝基色光源; 指令接收装置, 用于接收用户输入的颜色指令 ; 匹配控制器, 用于基于所述颜色指令分别生成红光色温控制信号、 红光能量控制信号、 绿光色温控制信号、 绿光能量控制信号、 蓝光色 温控制信号和蓝光能量控制信号; 红光控制器, 用于基于所述红光色 温控制信号和所述红光能量控制信号控制所述红基色光源发射的红光 的色温和能量; 绿光控制器, 用于基于所述绿光色温控制信号和所述 绿光能量控制信号控制所述绿基色光源发射的绿光的色温和能量; 蓝 光控制器, 用于基于所述蓝光色温控制信号和所述蓝光能量控制信号 控制所述蓝基色光源发射的蓝光的色温和能量。
[权利要求 2] 根据权利要求 1所述的数字影棚摄影灯光系统, 其特征在于, 所述匹 配控制器包括: 色温控制模块, 用于基于所述颜色指令分别生成所述 红光色温控制信号、 所述绿光色温控制信号和所述蓝光色温控制信号 ; 能量比生成模块, 用于基于所述颜色指令确定所述红光、 所述绿光 和所述蓝光的能量比; 能量控制模块, 基于所述能量比生成所述红光 能量控制信号、 所述绿光能量控制信号和所述蓝光能量控制信号。
[权利要求 3] 根据权利要求 1所述的数字影棚摄影灯光系统, 其特征在于, 所述匹 配控制器进一步包括: 色温能量数据库, 用于以査找表的格式存储多 个红光色温、 绿光色温和蓝光色温、 红光能量、 绿光能量和蓝光能量 ; 色温査找模块, 用于基于所述颜色指令査找对应的红光色温、 绿光 色温和蓝光色温以生成所述红光色温控制信号、 所述绿光色温控制信 号和所述蓝光色温控制信号; 能量比査找模块, 用于基于所述颜色指 令査找对应的红光、 绿光和蓝光能量比; 能量生成模块, 基于所述能 量比生成所述红光能量控制信号、 所述绿光能量控制信号和所述蓝光 能量控制信号。
[权利要求 4] 根据权利要求 3所述的数字影棚摄影灯光系统, 其特征在于, 所述匹 配控制器进一步包括更新模块, 用于更新所述色温能量数据库中存储 的多个红光色温、 绿光色温和蓝光色温、 红光能量、 绿光能量和蓝光 能量。
根据权利要求 1-4中任意一项权利要求所述的数字影棚摄影灯光系统 , 其特征在于, 进一步包括用于接收引闪触发从而生成引闪信号的引 闪装置。
根据权利要求 5所述的数字影棚摄影灯光系统, 其特征在于, 所述匹 配控制器进一步包括: 引闪控制模块, 用于基于所述引闪信号生成等 比高亮脉冲信号; 所述红光控制器、 所述绿光控制器和所述蓝光控制 器, 用于基于所述等比高亮脉冲信号控制所述红基色光源、 所述绿基 色光源和所述蓝基色光源等比发射高亮度的红光、 绿光和蓝光。 根据权利要求 6所述的数字影棚摄影灯光系统, 其特征在于, 所述等 比高亮脉冲信号的脉冲吋间间隔范围为 lmS-100ms。
根据权利要求 5所述的数字影棚摄影灯光系统, 其特征在于, 所述红 光控制器包括红光 PWM生成模块, 用于基于所述红光色温控制信号 和所述红光能量控制信号生成控制所述红基色光源的 PWM控制信号 ; 所述绿光控制器包括绿光 PWM生成模块, 用于基于所述绿光色温 控制信号和所述绿光能量控制信号生成控制所述绿基色光源的 PWM 控制信号; 所述蓝光控制器包括蓝光 PWM生成模块, 用于基于所述 蓝光色温控制信号和所述蓝光能量控制信号生成控制所述蓝基色光源 的 PWM控制信号。
根据权利要求 5所述的数字影棚摄影灯光系统, 其特征在于, 所述匹 配控制器进一步包括断电处理模块, 用于在断电前存储当前的所述红 光色温控制信号、 所述红光能量控制信号、 所述绿光色温控制信号、 所述绿光能量控制信号、 所述蓝光色温控制信号和所述蓝光能量控制 信号, 并且在续电吋直接调用存储的所述红光色温控制信号、 所述红 光能量控制信号、 所述绿光色温控制信号、 所述绿光能量控制信号、 所述蓝光色温控制信号和所述蓝光能量控制信号。
根据权利要求 9所述的数字影棚摄影灯光系统, 其特征在于, 所述红 基色光源为红色 LED、 所述绿基色光源为绿色 LED和所述蓝基色光源 为蓝色 LED。
PCT/CN2015/094595 2014-11-14 2015-11-13 数字影棚摄影灯光系统 WO2016074645A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15858875.6A EP3249461A4 (en) 2014-11-14 2015-11-13 Digital studio photography lighting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410650503.3A CN104375358B (zh) 2014-11-14 2014-11-14 数字影棚摄影灯光系统
CN2014106505033 2014-11-14

Publications (1)

Publication Number Publication Date
WO2016074645A1 true WO2016074645A1 (zh) 2016-05-19

Family

ID=52554373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094595 WO2016074645A1 (zh) 2014-11-14 2015-11-13 数字影棚摄影灯光系统

Country Status (3)

Country Link
EP (1) EP3249461A4 (zh)
CN (1) CN104375358B (zh)
WO (1) WO2016074645A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375358B (zh) * 2014-11-14 2017-04-19 牛强 数字影棚摄影灯光系统
CN106061014B (zh) * 2016-06-08 2018-03-06 广州市升龙灯光设备有限公司 线性色温数据库构建方法、色温调节方法及装置、led灯具
CN110461076A (zh) * 2019-08-26 2019-11-15 武汉众果科技有限公司 一种拍照摄影智能灯自动调色控制装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818774A (zh) * 2005-02-10 2006-08-16 安捷伦科技有限公司 改进的影室灯
JP2007189300A (ja) * 2006-01-11 2007-07-26 Ricoh Co Ltd 撮像装置、撮像方法、及び撮像プログラム
JP2009122294A (ja) * 2007-11-14 2009-06-04 Nikon Corp 撮影用照明装置
CN101697654A (zh) * 2009-10-30 2010-04-21 中山大学 多光色组成led光源的相关色温及显色指数自校准电路
CN202857052U (zh) * 2012-09-05 2013-04-03 上海汽车集团股份有限公司 汽车室内三基色led控制装置
CN202941028U (zh) * 2011-12-28 2013-05-15 宁波五马电器有限公司 一种影室灯数码控制系统
CN103781250A (zh) * 2014-01-21 2014-05-07 扬州市第一人民医院 自动调色led医用冷光源
CN104375358A (zh) * 2014-11-14 2015-02-25 牛强 数字影棚摄影灯光系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2451271T3 (es) * 2001-12-19 2014-03-26 Philips Solid-State Lighting Solutions, Inc. Métodos y aparato de iluminación controlada
JP4355500B2 (ja) * 2003-01-31 2009-11-04 富士フイルム株式会社 デジタルカメラ
JP2005215634A (ja) * 2004-02-02 2005-08-11 Fujinon Corp 発光装置及び撮影装置
DE102007042573A1 (de) * 2007-09-07 2009-03-12 Osram Opto Semiconductors Gmbh Optisches Beleuchtungsgerät
CN101384114B (zh) * 2007-09-07 2012-01-25 比亚迪股份有限公司 一种光源控制系统及光源箱
US8564205B2 (en) * 2011-05-23 2013-10-22 General Electric Company Configurable vehicle solid state lighting
CN103631069B (zh) * 2013-12-09 2016-06-22 牛强 多功能数字影棚系统
CN203630491U (zh) * 2013-12-24 2014-06-04 牛强 摄影灯光路系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818774A (zh) * 2005-02-10 2006-08-16 安捷伦科技有限公司 改进的影室灯
JP2007189300A (ja) * 2006-01-11 2007-07-26 Ricoh Co Ltd 撮像装置、撮像方法、及び撮像プログラム
JP2009122294A (ja) * 2007-11-14 2009-06-04 Nikon Corp 撮影用照明装置
CN101697654A (zh) * 2009-10-30 2010-04-21 中山大学 多光色组成led光源的相关色温及显色指数自校准电路
CN202941028U (zh) * 2011-12-28 2013-05-15 宁波五马电器有限公司 一种影室灯数码控制系统
CN202857052U (zh) * 2012-09-05 2013-04-03 上海汽车集团股份有限公司 汽车室内三基色led控制装置
CN103781250A (zh) * 2014-01-21 2014-05-07 扬州市第一人民医院 自动调色led医用冷光源
CN104375358A (zh) * 2014-11-14 2015-02-25 牛强 数字影棚摄影灯光系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249461A4 *

Also Published As

Publication number Publication date
EP3249461A4 (en) 2018-02-21
CN104375358B (zh) 2017-04-19
CN104375358A (zh) 2015-02-25
EP3249461A1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US20200209716A1 (en) Lighting system and control thereof
CN103631069A (zh) 多功能数字影棚系统
US9064443B2 (en) Projection apparatus, projection method, and storage medium storing program, for reducing energy consumption by shortening color mixing period
WO2016074645A1 (zh) 数字影棚摄影灯光系统
CN102314056A (zh) 具有自动调整投影亮度功能的投影仪及方法
JP2011009077A (ja) 照明装置
TWI392399B (zh) 用於一發光二極體之調光裝置及其相關調光方法與發光裝置
US20130278156A1 (en) Light-emitting diode lighting apparatus, illuminating apparatus and illuminating method
JP2016213140A (ja) 照明システム
CN203595885U (zh) 多功能数字影棚系统
TWI542253B (zh) Wireless lighting control interface display method
JP2005121688A (ja) 投写型表示装置及びホワイトバランス制御方式
JP2010250979A (ja) 照明装置、照明システムおよび照明制御方法
US20210227120A1 (en) Led driver and method of operating a camera
WO2020124704A1 (zh) 主从控制灯管和主从控制灯具组件
WO2018192470A1 (zh) 多功能led调光接口电路
CN110958730A (zh) 一种低成本蓝牙自组网led驱动电路
JP2010218794A (ja) Led自動調光照明装置
JP3227918U (ja) 映像取得装置の調光設備
TWI517754B (zh) 光源模組及發光控制方法
US20170215251A1 (en) Modeling illumination device
JP2013200322A (ja) Ledフラッシュ光源の発光制御方法と、ledフラッシュ光源装置
TW201334624A (zh) 隨環境光之變化來調整照度之照明裝置及其方法
JP2011003297A (ja) 照明装置および照明制御方法
KR20160095773A (ko) 조명 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015858875

Country of ref document: EP