WO2016072499A1 - タイヤ用ゴム組成物の製造方法およびタイヤ - Google Patents

タイヤ用ゴム組成物の製造方法およびタイヤ Download PDF

Info

Publication number
WO2016072499A1
WO2016072499A1 PCT/JP2015/081343 JP2015081343W WO2016072499A1 WO 2016072499 A1 WO2016072499 A1 WO 2016072499A1 JP 2015081343 W JP2015081343 W JP 2015081343W WO 2016072499 A1 WO2016072499 A1 WO 2016072499A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
silica
rubber
parts
tire
Prior art date
Application number
PCT/JP2015/081343
Other languages
English (en)
French (fr)
Inventor
亜由子 山名
結香 横山
雅子 中谷
三木 孝之
堀口 卓也
水野 洋一
貴浩 河地
岡部 昇
奈津希 杉本
上坂 憲市
哲哉 前川
祐美 鈴木
史也 加藤
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014227018A external-priority patent/JP6030104B2/ja
Priority claimed from JP2015001129A external-priority patent/JP6358964B2/ja
Priority claimed from JP2015001132A external-priority patent/JP6395614B2/ja
Priority claimed from JP2015001134A external-priority patent/JP6482875B2/ja
Priority claimed from JP2015001131A external-priority patent/JP6358966B2/ja
Priority claimed from JP2015001137A external-priority patent/JP6358968B2/ja
Priority claimed from JP2015001136A external-priority patent/JP6362546B2/ja
Priority claimed from JP2015001128A external-priority patent/JP6525593B2/ja
Priority claimed from JP2015001133A external-priority patent/JP6358967B2/ja
Priority claimed from JP2015001130A external-priority patent/JP6358965B2/ja
Priority claimed from JP2015001135A external-priority patent/JP6395615B2/ja
Priority to CN201580057806.7A priority Critical patent/CN107108908B/zh
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP15856571.3A priority patent/EP3196233B8/en
Priority to US15/519,061 priority patent/US10369843B2/en
Publication of WO2016072499A1 publication Critical patent/WO2016072499A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/02Guanidine; Salts, complexes or addition compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2407/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a method for producing a tire rubber composition and a tire having a tire member composed of the tire rubber composition produced by the production method.
  • silica-containing rubber compositions are used not only for treads but also for various tire members due to demands for reducing fuel consumption of tires.
  • silica has a hydrophilic silanol group on its surface, it has lower affinity with rubber components (especially natural rubber, butadiene rubber, styrene butadiene rubber, etc., which are often used for tire members) and wear resistance compared to carbon black.
  • rubber components especially natural rubber, butadiene rubber, styrene butadiene rubber, etc., which are often used for tire members
  • wear resistance compared to carbon black.
  • property and mechanical strength tensile strength and elongation at break
  • a method for improving such a problem a method of enhancing the reaction between a rubber component and silica using a coupling agent is known.
  • ordinary coupling agents have a problem that their own functional groups react and aggregate before reacting with silica, and there is a limit to the dispersion effect of silica.
  • a method is known in which a modifying group that reacts with silica is introduced into a rubber component to increase the reactivity between the rubber component and silica.
  • these methods still have room for improvement in both workability and fuel efficiency.
  • Patent Document 1 discloses a technique for improving the fuel economy, wet grip performance, and processability of a rubber composition in a well-balanced manner by using a predetermined silane coupling agent 1 and silane coupling agent 2 together. Yes. However, there is still room for improvement in achieving both wet grip performance and low fuel consumption. In addition, improvement of wear resistance is not considered.
  • Patent Document 2 describes a tire in which rolling resistance is reduced without reducing the conductivity of the tire by laying a conductive thin film on a tread portion and a sidewall portion.
  • this technique complicates the tire manufacturing process and has a problem in cost, and therefore, a rubber composition that can easily improve fuel economy and conductivity in a well-balanced manner is required.
  • the present invention provides a method for producing a tire rubber composition having improved fuel economy and wear resistance in a well-balanced manner, and a tire having a tire member composed of the tire rubber composition produced by the production method.
  • the purpose is to do.
  • the inventors of the present invention kneaded the components other than the vulcanizing agent at the same time, the base kneading step X, and the kneaded product obtained in step X by adding the vulcanizing agent and kneading.
  • the conventional kneading method for performing the final kneading step F coupling is performed by adding the filler and the coupling agent separately, kneading the step X1 and the step X2 for kneading, and the kneading method for performing the step F.
  • the present inventors have found that the above-mentioned problems can be solved by preventing the aggregation of the agent and promoting the reaction with the filler, and have succeeded in completing the present invention through further studies.
  • the present invention relates to a rubber component (A) containing at least one selected from the group consisting of natural rubber and diene synthetic rubber, a filler, a coupling agent (D) represented by the following chemical formula (1), and an additive.
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the rubber component preferably contains styrene butadiene rubber and / or butadiene rubber having a functional group that reacts with silica.
  • the present invention also relates to a tire having a tire member made of the tire rubber composition manufactured by the method for manufacturing a tire rubber composition.
  • a method for producing a rubber composition for a tire containing a predetermined rubber component (A), a filler, a predetermined coupling agent (D), and a vulcanizing agent (E) containing a vulcanizing agent and a vulcanization accelerator According to the method for producing a rubber composition for a tire of the present invention including the predetermined step X1, step X2 and step F, the method for producing a tire rubber composition having improved fuel economy and wear resistance in a well-balanced manner In addition, a tire having a tire member composed of the rubber composition for tire manufactured by the manufacturing method can be provided.
  • the present invention includes the first to eleventh inventions.
  • the first to eleventh inventions will be described below.
  • the first invention relates to a rubber component (A-1) containing at least two selected from the group consisting of natural rubber and diene synthetic rubber, silica (B-1), carbon black (C-1), the following chemical formula (
  • a method for producing a rubber composition for a tire comprising the coupling agent (D-1) shown in 1) and a vulcanizing agent (E-1) containing a vulcanizing agent and a vulcanization accelerator, (Step X1-1) Step X1-1 for kneading all of A-1, a part of B-1 and a part of D-1.
  • Step X2-1 Kneaded product of Step X1-1, Step X2-1 for kneading the remaining amount of B-1 and D-1, and (Step F-1) Kneaded product of Step X2-1, and Step F-1 for kneading E
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1
  • p represents an integer of 1 to 3
  • q represents an integer of 1 to 5
  • k represents an integer of 5 to 12.
  • the rubber component preferably contains styrene butadiene rubber and / or butadiene rubber having a functional group that reacts with silica.
  • the nitrogen adsorption specific surface area of silica is 160 m 2 / g or more, and the total addition amount of silica is 40 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the amount of coupling agent added in each step of Step X1-1 and Step X2-1 is preferably 4 to 10 parts by mass with respect to 100 parts by mass of silica added in each step.
  • the amount of silica added in step X1-1 is preferably 50 to 95% by mass of the total amount of silica added.
  • step X1-1 it is a method for producing a rubber composition containing a plasticizer, In step X1-1, it is preferable to knead 50% by mass or more of the total amount of plasticizer added.
  • the first invention relates to a tire having a tire member made of a tire rubber composition manufactured by the above manufacturing method.
  • a rubber composition for tires with improved workability, low fuel consumption, and wear resistance in a well-balanced manner. Furthermore, a tire having a tire member composed of the manufactured tire rubber composition can be used to manufacture a tire with improved fuel efficiency and wear resistance in a well-balanced manner.
  • the tire rubber composition according to the first invention comprises a predetermined rubber component (A-1), silica (B-1), carbon black (C-1), a predetermined coupling agent (D-1), and A vulcanizing agent (E-1) containing a vulcanizing agent and a vulcanization accelerator is contained.
  • the rubber component (A-1) includes at least two selected from the group consisting of natural rubber and diene synthetic rubber. By blending a plurality of diene rubbers, defects of a specific rubber can be compensated and physical properties can be improved in a balanced manner.
  • These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride. In addition, what is necessary is just to select suitably according to an application member etc. about a rubber component kind and compounding quantity.
  • NR natural rubber
  • modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), deproteinized natural rubber (DPNR), and high-purity natural rubber (HPNR). Etc. are also included.
  • NR is not particularly limited, and those generally used in the tire industry such as SIR20, RSS # 3, TSR20, and the like can be used.
  • the content in the rubber component (A-1) is preferably 5% by mass or more, more preferably 10% by mass or more, because the fracture resistance of the rubber composition is improved. Further, the content of NR is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 50% by mass or less, because it is excellent in fuel efficiency and wear resistance.
  • diene synthetic rubber examples include isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), and styrene isoprene butadiene rubber (SIBR).
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • the SBR is not particularly limited, but includes unmodified solution polymerization SBR (S-SBR), unmodified emulsion polymerization SBR (E-SBR), and these modified SBRs (modified S-SBR, modified E-SBR), etc. Is mentioned.
  • S-SBR unmodified solution polymerization SBR
  • E-SBR unmodified emulsion polymerization SBR
  • modified SBR modified SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like).
  • S-SBR and modified S-SBR are preferable because the grip performance and wear resistance can be improved in a well-balanced manner.
  • a silyl group, amino group, amide group is preferable.
  • SBRs may be used alone, but it is more preferable to use SBRs having different physical properties such as styrene content depending on the use from the viewpoint of balance of physical properties. In addition, what is necessary is just to select suitably according to an application member.
  • the styrene content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more from the viewpoint of grip performance and rubber strength. Further, the styrene content of SBR is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less from the viewpoint of low fuel consumption. In the present specification, the styrene content of SBR is a value calculated by 1 H-NMR measurement.
  • the vinyl bond amount of SBR is preferably 10 mol% or more, more preferably 15 mol% or more, and further preferably 20 mol% or more from the viewpoint of grip performance and rubber strength.
  • the vinyl bond amount of SBR is preferably 65 mol% or less, more preferably 60 mol% or less, and further preferably 30 mol% or less from the viewpoint of low fuel consumption.
  • the vinyl bond amount of SBR indicates the vinyl bond amount of the butadiene part, and is a value calculated by 1 H-NMR measurement.
  • the content in the rubber component (A-1) when SBR is contained is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more. Moreover, 90 mass% or less is preferable from a wear-resistant viewpoint, and, as for content of SBR, 80 mass% or less is more preferable.
  • BR for the reason of excellent wear resistance.
  • a rubber composition in which a white filler such as silica (B-1) is blended with BR generally has a problem that the dispersibility of the filler is low and it is difficult to obtain desired performance.
  • the interaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent (D-1). Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent abrasion resistance can be obtained.
  • modified BR having a modified terminal and / or main chain particularly a silyl group.
  • a modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferred. In addition, what is necessary is just to select suitably according to an application member.
  • the content in the rubber component (A-1) is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance. Moreover, 80 mass% or less is preferable from a viewpoint of workability, and, as for content of BR, 70 mass% or less is more preferable.
  • the modified SBR and the modified BR usually have a strong functional group interaction, so that the rubber component itself is often aggregated to make it difficult to disperse the filler.
  • the agent (D-1) By dividing and kneading the agent (D-1), the rubber component is prevented from agglomerating and the interaction with silica is promoted.
  • silica (B-1) is not particularly limited, and those commonly used in the tire industry can be used. For example, dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid) and the like can be mentioned, but wet process silica is preferred because of the large number of silanol groups.
  • Silica nitrogen adsorption specific surface area (N 2 SA) of (B-1) is, in view 40 m 2 / g or more is preferred from the breaking strength, more preferably at least 100 m 2 / g, more preferably more than 130m 2 / g, 160 m 2 / g or more is particularly preferable.
  • N 2 SA of the silica (B-1) is preferably from 500 meters 2 / g or less from the viewpoint of fuel economy and workability, more preferably not more than 300 meters 2 / g, more preferably 200 meters 2 / g or less.
  • N 2 SA of silica (B-1) is a value measured by the BET method according to ATSM D3037-81.
  • the content (total addition amount) of silica (B-1) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more from the viewpoint of low fuel consumption with respect to 100 parts by mass of the rubber component (A-1). 30 parts by mass or more is more preferable, and 40 parts by mass or more is particularly preferable.
  • the content of silica (B-1) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and still more preferably 100 parts by mass or less from the viewpoint of dispersibility of the filler in the rubber component and processability. .
  • Carbon black (C-1) The carbon black (C-1) is not particularly limited, and those generally used in the tire industry such as GPF, FEF, HAF, ISAF, SAF, etc. can be used alone or in combination of two or more. Also good.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black (C-1) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and antistatic performance. Also, N 2 SA of the carbon black (C-1), it is preferably from 200 meters 2 / g from the viewpoint of workability, more preferably at most 150m 2 / g. In the present specification, N 2 SA of carbon black (C-1) is a value measured according to JIS K6217, Method A.
  • the content (total addition amount) of carbon black (C-1) is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component (A-1). When the content of carbon black (C-1) is less than 1 part by mass, the effect of containing carbon black may not be sufficiently obtained. Further, the content of carbon black (C-1) is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoints of low fuel consumption and processability.
  • the predetermined coupling agent (D-1) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • k is an integer of 5 to 12, preferably an integer of 6 to 10, more preferably an integer of 7, because both reactivity with rubber molecules and processability are compatible.
  • the content of the coupling agent (D-1) represented by the chemical formula (1) is 4 with respect to 100 parts by mass of the silica (C-1) content from the viewpoint of reaction with the filler and an effect of improving workability. It is preferably at least 5 parts by mass, more preferably at least 5 parts by mass, even more preferably at least 6 parts by mass. Further, the content of the coupling agent (D-1) is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of silica dispersion effect commensurate with an increase in cost. .
  • the vulcanizing agent (E-1) includes a vulcanizing agent (E1-1) and a vulcanization accelerator (E2-1). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-1) The vulcanizing agent (E1-1) is not particularly limited, and those commonly used in the tire industry can be used. From the point that the effect of the first invention can be obtained satisfactorily, sulfur is preferable, and powdered sulfur is more preferable. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-1) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-1). Further, the content of the vulcanizing agent (E1-1) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-1) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-1) The vulcanization accelerator (E2-1) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable, and guanidine-based vulcanization accelerators are particularly preferable from the viewpoint of achieving both rubber elastic modulus and processability.
  • the content of the vulcanization accelerator (E2-1) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-1). Further, the content of the vulcanization accelerator (E2-1) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-1) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the first invention includes other compounding agents conventionally used in the rubber industry, such as plasticizer (F-1), silica and carbon black.
  • F-1 plasticizer
  • silica silica
  • carbon black a reinforcing filler
  • G-1 anti-aging agent
  • antioxidant antioxidant
  • stearic acid wax, and the like
  • the rubber composition for tires according to the first invention preferably contains the plasticizer (F-1) for the reason that processability is improved and the strength of the rubber can be increased.
  • the plasticizer (F-1) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, and liquid resin. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content with respect to 100 parts by mass of the rubber component (A-1) is preferably 2 parts by mass or more and more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-1) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions.
  • a naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.
  • 2,2 Quinoline anti-aging agents such as a polymer of 1,4-trimethyl-1,2-d
  • the content relative to 100 parts by mass of the rubber component (A-1) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • the method for producing a tire rubber composition of the first invention is characterized in that the kneading step is step X1-1, step X2-1 and step F.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • the total amount of the rubber component (A-1), a part of silica (B-1), and a part of the silane coupling agent (D-1) are kneaded (step X1-1), and further B -1 and D-1 are kneaded (step X2-1), and the entire amount of the vulcanizing agent (E-1) including the vulcanizing agent and the vulcanization accelerator is further kneaded (step F).
  • -1) is a method for producing a tire rubber composition including a step of obtaining an unvulcanized rubber composition by kneading. The obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the first invention.
  • Step X1-1, Step X2-1, or Step F-1 may be added, or may be added separately.
  • the production method of the first invention is characterized in that the coupling agent (D-1) represented by the chemical formula (1) is divided and kneaded.
  • the coupling agent (D-1) since a plurality of alkoxysilyl groups do not exist in the molecule, aggregation of the coupling agents is small, and a mercapto group that reacts favorably with the polymer portion becomes a fatty acid thioester, thereby rapidly Therefore, even in the kneading with divided injection as in the first invention, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity.
  • Step X1-1 the total amount of the rubber component (A-1), a part of the silica (B-1), and a compounding agent including a part of the coupling agent (D-1) are kneaded with a Banbury mixer or the like.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D-1) has the structure of the chemical formula (1), the thioester group is decomposed with kneading to gradually produce a highly active mercapto group. Can be dispersed to promote bonding with the polymer.
  • the conventional polysulfide silane releases sulfur even at this stage, so that the processability is reduced, the dispersion of the filler is inhibited, and the activity of the coupling agent itself is also reduced, but the cup represented by the chemical formula (1) is used. Since the ring agent (D-1) does not release sulfur, kneading can be continued while maintaining processability.
  • the addition amount of silica (B-1) in the step X1-1 is 50% by mass or more of the total addition amount of silica (B-1) from the viewpoint of improvement of the silica kneading effect, sufficient dispersion of silica, and wear resistance. 60 mass% or more is more preferable, 70 mass% or more is further more preferable, and 80 mass% or more is particularly preferable.
  • the amount of silica (B-1) added in step X1-1 is the same as that of silica (B-1) from the viewpoint of the effect of divided introduction of silica in step X2-1, which will be described later, fuel efficiency, and wear resistance.
  • the amount added is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the amount of the coupling agent (D-1) represented by the chemical formula (1) in the step X1-1 is sufficient to react with the filler, and the processability of the coupling agent (D-1) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-1) added in Step X1-1.
  • the addition amount of the coupling agent (D-1) represented by the chemical formula (1) in the step X1-1 is preferably 20 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the carbon black (C-1) is preferably added in the step X1-1 and / or the step X2-1.
  • the amount of carbon black (C-1) added in step X1-1 is 10% by mass or more of the total amount of carbon black (C-1) added from the viewpoint of improving the dispersibility of carbon black and improving the efficiency of the step. Preferably, 50% by mass or more is more preferable, 80% by mass or more is more preferable, and 100% by mass is most preferable. If the amount of carbon black (C-1) added in step X1-1 is less than 100% by mass, the remaining amount is preferably added in step X2-1.
  • the step of adding the plasticizer (F-1) is not particularly limited, but for the reason that the dispersion of the filler is good, in the step X1-1, 50% by mass of the total amount of the plasticizer (F-1) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the amount of plasticizer (F-1) added in step X1-1 is less than 100% by mass, the remaining amount is step X2- because the dispersibility of the silica added in step X2-1 is further improved. 1 is preferably added.
  • Step X2-1 the remaining amount of silica (B-1) and coupling agent (D-1) and other compounding agents are added to the kneaded product of Step X1-1 and kneaded. If the entire amount of silica (B-1) is added in step X1-1, silica (B-1) is unevenly distributed in the polymer part having a high affinity with silica such as a modified polymer and / or the interface part of the polymer. Although there is a tendency, in the production method of the first invention, since the silica (B-1) is dividedly charged in the step X1-1 and the step X2-1, it is easy to disperse in the entire rubber component.
  • the silica (B-1) itself added (added in step X2-1) has an effect of promoting the kneading effect by applying a share to the rubber component. Furthermore, in the production method of the first invention, since the coupling agent (D-1) represented by the chemical formula (1) is dividedly added, the early decrease in the activity of the coupling agent is prevented, and the workability in the entire kneading operation is prevented. Can keep.
  • the addition amount of the coupling agent (D-1) represented by the chemical formula (1) in the step X2-1 makes the reaction with the filler sufficiently, and the excellent processability of the coupling agent (D-1) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 6 parts by mass or more with respect to 100 parts by mass of the silica (B-1) added in Step X2.
  • the addition amount of the coupling agent (D-1) represented by the chemical formula (1) in the step X2-1 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the anti-aging agent (G-1) is not particularly limited, but it is preferable to add the whole amount in the step X2-1 from the viewpoint of work efficiency and prevention of the decrease in activity of the anti-aging agent during kneading.
  • the discharge temperature for kneading in Step X1-1 and Step X2-1 is not particularly limited, but is preferably 142 ° C. or higher, more preferably 146 ° C. or higher, and further preferably 148 ° C. or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower.
  • the kneading time in Step X1-1 and Step X2-1 is not particularly limited, but is preferably 3.0 minutes or longer for each step, more preferably 4.0 minutes or longer, and further preferably 4.5 minutes or longer.
  • the kneading time is preferably 7.0 minutes or less for each step, more preferably 6.0 minutes or less, and even more preferably 5.5 minutes or less.
  • Step F-1 after cooling the kneaded product obtained in Step X2-1, a vulcanizing agent (E-1) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • a vulcanizing agent (E-1) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the kneaded product obtained in step X2-1 is preferably cooled to 100 ° C. or less, preferably 20 to 80 ° C.
  • the discharge temperature of the kneading in the step F-1 is preferably 110 ° C. or less, and more preferably 100 ° C. or less. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in the step F is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in step F-1 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • Vulcanization Step A vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-1 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C or higher, and more preferably 140 ° C or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the first invention can be obtained satisfactorily.
  • Rubber composition for tire The rubber composition for tire according to the first invention can be used for each member of a tire, and among them, the rubber composition for tire having improved workability, low fuel consumption, and wear resistance in a well-balanced manner. Since it is a thing, it can be used suitably for a tread.
  • the tire of the first invention can be produced by a normal method using the tire rubber composition according to the first invention. That is, the tire rubber composition manufactured by the manufacturing method of the first invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire is formed on a tire molding machine.
  • the tire according to the first aspect of the invention is manufactured by bonding together with the members and forming an unvulcanized tire by molding by a normal method, and heating and pressurizing the unvulcanized tire in a vulcanizer. Can do.
  • the tire of the first invention can be suitably used as a passenger tire, bus tire, truck tire, and the like.
  • the second invention relates to a rubber component (A-2) containing at least one selected from the group consisting of natural rubber and diene synthetic rubber, and silica 1 (B1-2) having a nitrogen adsorption specific surface area of more than 140 m 2 / g.
  • Silica 2 (B2-2) having a nitrogen adsorption specific surface area of 140 m 2 / g or less, carbon black (C-2), a coupling agent (D-2) represented by the following chemical formula (1), and a vulcanizing agent and A method for producing a tire rubber composition containing a vulcanizing agent (E-2) containing a vulcanization accelerator, (Step X1-2) Step X1-2 of kneading a part of A-2, B1-2, D-2, and optionally a part of E-2, (Step X2-2) Step X2-2 in which the kneaded material in Step X1-2, the remaining amount of B2-2 and D-2, and optionally a part of E-2 are kneaded, and (Step F-2) Step F2-2, kneaded product, and step F-2 for kneading the remaining amount of E The manufacturing method of the rubber composition for tires containing this.
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the rubber component preferably contains styrene butadiene rubber and / or butadiene rubber having a functional group that reacts with silica.
  • the nitrogen adsorption specific surface area of the silica 1 is 160 m 2 / g or more.
  • the amount of the coupling agent added in each step of Step X1-2 and Step X2-2 is 4 to 10 parts by mass with respect to 100 parts by mass of silica added in each step.
  • the addition amount of silica 1 in the total addition amount of silica is preferably 10 to 95% by mass.
  • the maximum temperature in the step X1-2 and / or the step X2-2 is 140 ° C. to 200 ° C.
  • Step X1-2 and / or Step X2-2 It is preferable to knead a part or all of the vulcanization accelerator in Step X1-2 and / or Step X2-2.
  • step X1-2 it is a method for producing a rubber composition containing a surfactant, and it is preferable to knead the surfactant in step X1-2 and / or step X2-2.
  • the second invention relates to a tire having a tire member made of the rubber composition for tire manufactured by the above manufacturing method.
  • the second invention it is possible to produce a rubber composition for tires with improved fuel economy, wear resistance, and wet grip performance in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner.
  • the tire rubber composition according to the second invention comprises a predetermined rubber component (A-2), silica 1 (B1-2) and silica 2 (B2-2) having a predetermined nitrogen adsorption specific surface area, carbon black ( C-2), a predetermined coupling agent (D-2), and a vulcanizing agent (E-2) including a vulcanizing agent and a vulcanization accelerator.
  • the rubber component (A-2) contains at least one selected from the group consisting of natural rubber and diene synthetic rubber, and preferably contains two or more. By blending a plurality of diene rubbers, defects of a specific rubber can be compensated and physical properties can be improved in a balanced manner.
  • These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride. In addition, what is necessary is just to select suitably according to an application member etc. about a rubber component kind and compounding quantity.
  • NR natural rubber
  • modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), deproteinized natural rubber (DPNR), and high-purity natural rubber (HPNR). Etc. are also included.
  • NR is not particularly limited, and those generally used in the tire industry such as SIR20, RSS # 3, TSR20, and the like can be used.
  • the content in the rubber component (A-2) is preferably 5% by mass or more, more preferably 10% by mass or more, because the fracture resistance of the rubber composition is improved. Further, the content of NR is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 50% by mass or less, because it is excellent in fuel efficiency and wear resistance.
  • diene synthetic rubber examples include isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), and styrene isoprene butadiene rubber (SIBR).
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • the SBR is not particularly limited, but includes unmodified solution polymerization SBR (S-SBR), unmodified emulsion polymerization SBR (E-SBR), and these modified SBRs (modified S-SBR, modified E-SBR), etc. Is mentioned.
  • S-SBR unmodified solution polymerization SBR
  • E-SBR unmodified emulsion polymerization SBR
  • modified SBR modified SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like).
  • S-SBR and modified S-SBR are preferable because the grip performance and wear resistance can be improved in a well-balanced manner.
  • a silyl group, amino group, amide group Particularly preferred is a modified S-SBR having at least one selected from the group consisting of a hydroxyl group and an epoxy group.
  • SBRs may be used singly, but SBRs having different physical properties such as styrene content may be used in combination depending on applications. In addition, what is necessary is just to select suitably according to an application member.
  • the styrene content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more from the viewpoints of dry grip performance, wet grip performance and rubber strength. Further, the styrene content of SBR is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less from the viewpoint of low fuel consumption. In the present specification, the styrene content of SBR is a value calculated by 1 H-NMR measurement.
  • the vinyl bond amount of SBR is preferably 10 mol% or more, more preferably 15 mol% or more, and even more preferably 20 mol% or more from the viewpoints of dry grip performance, wet grip performance and rubber strength.
  • the vinyl bond amount of SBR is preferably 65 mol% or less, more preferably 60 mol% or less, and further preferably 30 mol% or less from the viewpoint of low fuel consumption.
  • the vinyl bond amount of SBR indicates the vinyl bond amount of the butadiene part, and is a value calculated by 1 H-NMR measurement.
  • the content in the rubber component (A-2) is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more from the viewpoint of dry grip performance and wet grip performance. preferable. Moreover, 90 mass% or less is preferable from a wear-resistant viewpoint, and, as for content of SBR, 80 mass% or less is more preferable.
  • BR for the reason of excellent wear resistance.
  • a rubber composition in which a white filler such as silica is blended with BR generally has a problem that the dispersibility of the filler is low and it is difficult to obtain desired performance.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent (D-2). Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content in the rubber component (A-2) is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance.
  • the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • the modified SBR and the modified BR usually have a strong functional group reaction, so that the rubber component itself aggregates and dispersion of the filler is often difficult.
  • the predetermined coupling agent is used. By dividing and kneading (D-2), the rubber component is prevented from agglomerating and the reaction with silica is promoted.
  • silica 1 B1-2 having a large nitrogen adsorption specific surface area (N 2 SA) and silica 2 (B2-2) having a small N 2 SA as silica. It is characterized by.
  • silica 1 and silica 2 in combination, the workability, fuel efficiency, and wear resistance can be improved in a more balanced manner.
  • Silica 1 having a large N 2 SA is known as fine-particle silica and is generally difficult to control dispersion.
  • the method for producing a rubber composition of the second invention it can be dispersed well. It is possible to express excellent rubber performance in a well-balanced manner.
  • N 2 SA of silica 1 is more than 140 m 2 / g, preferably 150 m 2 / g or more, and more preferably 160 m 2 / g or more.
  • N 2 SA of silica 1 is 140 m 2 / g or less, the effect of improving wear resistance tends to be insufficient.
  • N 2 SA of the silica 1 from the viewpoint of low heat resistance and workability, preferably 500 meters 2 / g or less, more preferably 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g The following are most preferred.
  • N 2 SA of silica is a value measured by the BET method according to ATSM D3037-81.
  • the content of silica 1 (B1-2) with respect to 100 parts by mass of the rubber component is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and further preferably 20 parts by mass or more from the viewpoint of wear resistance. Further, the content of silica 1 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 130 parts by mass or less from the viewpoint of improving dispersibility and not deteriorating fuel economy.
  • N 2 SA of the silica 2 (B2-2) is the reason that excellent effect of improving fuel economy, not more than 140 m 2 / g, preferably from 130m 2 / g or less, more preferably 120 m 2 / g, 110 m 2 / g or less is more preferable.
  • N 2 SA of silica 2 is preferably 40 m 2 / g or more, more preferably 50 m 2 / g or more, further preferably 60 m 2 / g or more, and 70 m 2 / g from the viewpoint of fracture strength after vulcanization. The above is particularly preferable, and 80 m 2 / g or more is most preferable.
  • the content of silica 2 (B2-2) with respect to 100 parts by mass of the rubber component is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 10 parts by mass or more from the viewpoint of wet grip performance. Further, the content of silica 2 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 130 parts by mass or less from the viewpoint of improving dispersibility and not deteriorating fuel economy.
  • the total content of silica is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, and more preferably 30 parts by weight or more with respect to 100 parts by weight of the rubber component (A-2) from the viewpoint of low fuel consumption and wet grip performance. Is more preferable, and 40 parts by mass or more is particularly preferable. Further, the total content of silica is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 130 parts by mass or less from the viewpoints of dispersibility of the filler in the rubber component and processability.
  • the content of silica 1 (B1-2) in the total silica is preferably 10% by mass or more, and more preferably 15% by mass or more from the viewpoint of wear resistance and the kneading effect in step X1-2 described later. 20% by mass or more is more preferable. Further, the content of silica 1 in the total silica is preferably 95% by weight or less, more preferably 90% by weight or less, and still more preferably 80% by weight or less, from the viewpoint of improving the fuel efficiency by silica 2.
  • Carbon black (C-2) The carbon black (C-2) is not particularly limited, and those commonly used in the tire industry such as GPF, FEF, HAF, ISAF, SAF, etc. can be used alone or in combination of two or more. Also good.
  • the content (total addition amount) of carbon black (C-2) is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component (A-2).
  • the content of carbon black (C-2) is less than 1 part by mass, the effect of containing carbon black may not be sufficiently obtained.
  • the content of carbon black (C-2) is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoints of low fuel consumption and processability.
  • the predetermined coupling agent (D-2) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • Examples of the coupling agent (D-2) represented by the chemical formula (1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3- Lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoyl Ruthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysi
  • the total content of the coupling agent (D-2) represented by the chemical formula (1) is 4 parts by mass or more with respect to the total content of silica of 100 parts by mass from the viewpoint of reaction with the filler and workability improvement effect. Is preferably 5 parts by mass or more, and more preferably 6 parts by mass or more. Further, the content of the coupling agent (D-2) is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. .
  • Vulcanizing chemical The vulcanizing agent (E-2) includes a vulcanizing agent (E1-2) and a vulcanization accelerator (E2-2). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-2) The vulcanizing agent (E1-2) is not particularly limited, and those commonly used in the tire industry can be used. From the viewpoint that the effect of the second invention can be obtained satisfactorily, sulfur is preferable, and powdered sulfur is more preferable. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-2) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-2). Further, the content of the vulcanizing agent (E1-2) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-2) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-2) The vulcanization accelerator (E2-2) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-2) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-2). Further, the content of the vulcanization accelerator (E2-2) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-2) is within the above range, a decrease in rubber elastic modulus and a decrease in fracture characteristics can be suppressed.
  • the rubber composition for tires according to the second invention includes compounding agents conventionally used in the rubber industry, such as plasticizers (F-2), silica and carbon black. Reinforcing fillers, anti-aging agents (G-2), antioxidants, stearic acid, waxes and the like can be appropriately blended.
  • the rubber composition for a tire according to the second invention preferably contains the plasticizer (F-2) for the reason that the processability is improved and the strength of the rubber can be increased.
  • the plasticizer (F-2) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, and liquid resin. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content with respect to 100 parts by mass of the rubber component (A-2) is preferably 2 parts by mass or more and more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-2) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like, and is usually used in rubber compositions.
  • a naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.
  • 2,2 Quinoline anti-aging agents such as a polymer of 1,4-trimethyl-1,2-
  • the content with respect to 100 parts by mass of the rubber component (A-2) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • Surfactant in one embodiment of the second invention, it is preferable to further contain a surfactant.
  • a surfactant By containing the surfactant, the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more from the viewpoint of the silica dispersibility improvement effect with respect to 100 parts by mass of the rubber component (A-2). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • the method for producing a tire rubber composition of the second invention is characterized in that the kneading step is step X1-2, step X2-2 and step F-2.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • a part of A-2, B1-2, D-2 and optionally a part of E-2 are kneaded in step X1-2, a kneaded product of step X1-2, B2-2, Step X2-2 for kneading the remaining amount of D-2 and optionally a part of E-2, and further, step F-2 for kneading the kneaded product of step X2-2 and the remaining amount of E-2
  • Is a method for producing a rubber composition for a tire including a step of obtaining a non-vulcanized rubber composition.
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the second invention.
  • the timing of adding and kneading other compounding agents such as carbon black (C-2), plasticizer (F-2), anti-aging agent (G-2), zinc oxide, stearic acid is not particularly limited, It may be added in any step of Step X1-2, Step X2-2, or Step F-2, or may be added in divided portions.
  • the production method of the second invention is characterized in that silica 1 and silica 2 are added in divided steps X1-2 and X2-2, respectively.
  • the dispersibility of the entire silica is improved by kneading the silica 1 which is fine and inferior in dispersibility in the step X1-2.
  • the production method of the second invention is characterized in that the coupling agent (D-2) represented by the chemical formula (1) is divided and kneaded.
  • the coupling agent (D-2) since a plurality of alkoxysilyl groups do not exist in the molecule, there is little aggregation between the coupling agents, and the mercapto group that reacts favorably with the polymer portion becomes a fatty acid thioester, which makes a sudden increase. Therefore, even in the kneading by divided charging as in the second invention, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity.
  • Step X1-2 a blend containing the total amount of rubber component (A-2), silica 1 (B1-2), coupling agent (D-2), and optionally a part of vulcanizing agent (E-2)
  • the agent is kneaded with a Banbury mixer.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D-2) takes the structure of the chemical formula (1), so that the thioester group is decomposed with kneading to gradually form a highly active mercapto group, so that the processability is maintained while filling. It is possible to disperse the agent and promote bonding with the polymer.
  • the addition amount of the coupling agent (D-2) represented by the chemical formula (1) in the step X1-2 makes the reaction with the filler sufficient, and the excellent processability of the coupling agent (D-2) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica 1 (B1-2) added in Step X1-2. Is more preferable.
  • the amount of the coupling agent (D-2) represented by the chemical formula (1) in the step X1-2 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the carbon black (C-2) is preferably added in the step X1-2 and / or the step X2-2.
  • the amount of carbon black (C-2) added in step X1-2 is 10% by mass or more of the total amount of carbon black (C-2) added from the viewpoint of improving the dispersibility of carbon black and increasing the efficiency of the process.
  • the amount of carbon black (C-2) added in step X1-2 is less than 100% by mass, the remaining amount is preferably added in step X2-2.
  • the step of adding the plasticizer (F-2) is not particularly limited, but for the reason that the dispersion of the filler is good, in the step X1-2, 50% by mass of the total amount of the plasticizer (F-2) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the amount of plasticizer (F-2) added in step X1-2 is less than 100% by mass, the remaining amount is step X2- because the dispersibility of the silica added in step X2-2 is further improved. 2 is preferably added.
  • the surfactant is preferably added in the step X1-2 and / or the step X2-2 from the viewpoint of promoting the silica dispersion effect, further promoting the silica dispersion effect and gelling the coupling agent. It is preferable to add in step X1-2 for the reason that it can be suppressed.
  • step X2-2 a compounding agent containing silica 2 (B2-2), the remaining amount of coupling agent (D-2) and optionally a part of the vulcanizing agent (E-2) is added to step X1-2. Kneaded in addition to the kneaded product. If the entire amount of silica is added in step X1-2, the silica tends to be unevenly distributed in the polymer part having a high affinity with silica such as a modified polymer and / or the interface part of the polymer. In the production method of the invention, silica 1 and 2 are separately introduced in step X1-2 and step X2-2, respectively, so that the silica is easily dispersed throughout the rubber component.
  • the silica 2 itself added (added in step X2-2) has an effect of promoting the kneading effect by applying a share to the rubber component. Furthermore, in the production method of the second invention, since the coupling agent (D-2) represented by the chemical formula (1) is dividedly introduced, the early decrease in the activity of the coupling agent is prevented, and the workability in the entire kneading operation is prevented. Can keep.
  • the addition amount of the coupling agent (D-2) represented by the chemical formula (1) in the step X2-2 makes the reaction with the filler sufficient, and the excellent processability of the coupling agent (D-2) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica 2 (B2-2) added in Step X2-2. Is more preferable.
  • the amount of the coupling agent (D-2) represented by the chemical formula (1) in the step X2-2 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the anti-aging agent (G-2) is not particularly limited, but it is preferable to add the whole amount in the step X2-2 from the viewpoint of work efficiency and prevention of activity reduction of the anti-aging agent during kneading.
  • the discharge temperature for kneading in Step X1-2 and Step X2-2 is not particularly limited, but is preferably 142 ° C. or higher, more preferably 146 ° C. or higher, and further preferably 148 ° C. or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower. If the discharge temperature of the kneading in step X1-2 and step X2-2 is within the above range, a kneaded product in which silica is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the step X1-2 and the step X2-2 is not particularly limited.
  • the coupling agent reacts sufficiently and a kneaded material in which the silica is well dispersed can be obtained efficiently, 140 ° C or higher, preferably 145 ° C or higher, more preferably 150 ° C or higher.
  • mixing has preferable 200 degrees C or less. If the temperature exceeds 150 ° C. in the normal kneading process, problems such as gelation may occur, but by adding the coupling agent (D-2) separately, the kneading temperature becomes high. Therefore, it is possible to promote the reaction of the coupling agent and promote the dispersion of silica.
  • the kneading time in step X1-2 and step X2-2 is not particularly limited, but is preferably 3.0 minutes or more from the viewpoint that a kneaded material in which silica is well dispersed can be obtained efficiently.
  • the above is more preferable, and 4.5 minutes or more is further preferable.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is kept at 150 ° C. to 190 ° C. for 10 to 120 seconds. It is preferable to hold it because the reaction between the coupling agent and silica is completely performed.
  • Step F-2 In Step F-2, after the kneaded product obtained in Step X2-2 is cooled, a vulcanizing agent (E-2) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • a vulcanizing agent (E-2) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the vulcanization accelerator (E2-2) may be added all at once in Step F-2, but a part or all of it is added in Step X1-2 and / or Step X2-2, and then in Step F. It is preferable to add the remaining amount.
  • dispersion of the silica and the rubber component can be further promoted.
  • the kneaded product obtained in step X2-2 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-2 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in the step F is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in step F-2 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • Vulcanization Step A vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-2 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the second invention can be obtained satisfactorily.
  • Rubber composition for tire The rubber composition for tire according to the second invention can be used for each member of a tire, and among them, the rubber composition for tire having improved workability, low fuel consumption, and wear resistance in a well-balanced manner. Since it is a thing, it can be used suitably for a tread or a sidewall.
  • the tire of the second invention can be produced by a normal method using the tire rubber composition according to the second invention. That is, the tire rubber composition produced by the production method of the second invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire is produced on a tire molding machine.
  • the tire according to the second aspect of the invention is manufactured by bonding together with the members and forming an unvulcanized tire by molding by a normal method, and heating and pressurizing the unvulcanized tire in a vulcanizer. Can do.
  • the tire of 2nd invention does not ask
  • a pneumatic tire it can use suitably as a tire for passenger cars, a tire for trucks and buses, a tire for two-wheeled vehicles, a high performance tire, etc.
  • the high-performance tire in this specification is a tire that is particularly excellent in grip performance, and is a concept that includes a competition tire used in a competition vehicle.
  • the third invention is a rubber component containing butadiene rubber (A1-3) and styrene butadiene rubber (A2-3), silica (B-3), carbon black (C-3), represented by the following chemical formula (1).
  • Rubber composition for tire containing coupling agent (D1-3), coupling agent having sulfide group (D2-3), and vulcanizing agent (E-3) containing vulcanizing agent and vulcanization accelerator A manufacturing method of (Step X1-3) Step X1-3 for kneading a part of A1-3, B-3, D1-3, and optionally a part of E-3, (Step X2-3) Step X2-3 for kneading the kneaded product of Step X1-3, the remaining amount of A2-3 and B-3, D2-3, and optionally a part of E-3, and (Step F-3) Step F-3 of kneading the kneaded material of Step X2-3 and the remaining amount of E-3 The manufacturing method of the rubber composition for tires containing this.
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the butadiene rubber (A1-3) contains a butadiene rubber having a functional group that reacts with silica, and / or the styrene butadiene rubber (A2-3) contains a styrene butadiene rubber having a functional group that reacts with silica. .
  • the nitrogen adsorption specific surface area of silica is 160 m 2 / g or more, and the total addition amount of silica is 40 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the addition amount of the coupling agent in each step of Step X1-3 and Step X2-3 is preferably 4 to 10 parts by mass with respect to 100 parts by mass of silica added in each step.
  • the amount of silica added is preferably 10 to 90% by mass of the total amount of silica added.
  • the maximum temperature in the step X1-3 is 140 ° C. to 200 ° C.
  • step X1-3 it is a method for producing a rubber composition containing a surfactant, and it is preferable to knead the surfactant in step X1-3 and / or step X2-3.
  • the third invention relates to a tire having a tire member made of a tire rubber composition manufactured by the above manufacturing method.
  • the third invention it is possible to produce a rubber composition for tires with improved fuel economy, wear resistance, and wet grip performance in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner.
  • a rubber composition for a tire according to a third invention comprises a rubber component containing butadiene rubber (A1-3) and styrene butadiene rubber (A2-3), silica (B-3), carbon black (C-3), cup It contains ring agents (D1-3) and (D2-3), and a vulcanizing agent (E-3) containing a vulcanizing agent and a vulcanization accelerator.
  • the rubber component (A-3) includes butadiene rubber (A1-3) and styrene butadiene rubber (A2-3). By blending a plurality of diene rubbers, defects of a specific rubber can be compensated and physical properties can be improved in a balanced manner. These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride. In addition, what is necessary is just to select suitably according to an application member etc. about a rubber component kind and compounding quantity.
  • the rubber component contains butadiene rubber (BR) because it has excellent wear resistance.
  • BR butadiene rubber
  • a rubber composition in which a white filler such as silica (B-3) is blended with BR generally has a problem that the dispersibility of the filler is low and it is difficult to obtain desired performance.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent (D-3). Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content of BR in the rubber component is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance. Further, the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • the styrene butadiene rubber is not particularly limited, but is not modified solution-polymerized SBR (S-SBR), unmodified emulsion-polymerized SBR (E-SBR), and modified SBR (modified S-SBR, modified). E-SBR).
  • modified SBR include modified SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like).
  • S-SBR and modified S-SBR are preferable because the grip performance and wear resistance can be improved in a well-balanced manner.
  • a silyl group, amino group, amide group Particularly preferred is a modified S-SBR having at least one selected from the group consisting of a hydroxyl group and an epoxy group.
  • SBRs may be used singly, but SBRs having different physical properties such as styrene content may be used in combination depending on applications. In addition, what is necessary is just to select suitably according to an application member.
  • the styrene content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more from the viewpoints of dry grip performance, wet grip performance and rubber strength. Further, the styrene content of SBR is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less from the viewpoint of low fuel consumption. In the present specification, the styrene content of SBR is a value calculated by 1 H-NMR measurement.
  • the vinyl bond amount of SBR is preferably 10 mol% or more, more preferably 15 mol% or more, and even more preferably 20 mol% or more from the viewpoints of dry grip performance, wet grip performance and rubber strength.
  • the vinyl bond amount of SBR is preferably 65 mol% or less, more preferably 60 mol% or less, and further preferably 30 mol% or less from the viewpoint of low fuel consumption.
  • the vinyl bond amount of SBR indicates the vinyl bond amount of the butadiene part, and is a value calculated by 1 H-NMR measurement.
  • the content of SBR in the rubber component is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more from the viewpoint of dry grip performance and wet grip performance. Moreover, 90 mass% or less is preferable from a wear-resistant viewpoint, and, as for content of SBR, 80 mass% or less is more preferable.
  • the modified SBR and the modified BR usually have a strong functional group reaction, and the rubber component itself is often agglomerated to make it difficult to disperse the filler.
  • the predetermined coupling agent is used. By kneading and kneading the rubber, aggregation of the rubber component is prevented and the reaction with silica is promoted.
  • the rubber component contains natural rubber (NR), epoxidized natural rubber (ENR), isoprene rubber (IR), styrene isoprene butadiene rubber (SIBR) and the like as necessary in addition to the BR and SBR. Also good.
  • NR natural rubber
  • EMR epoxidized natural rubber
  • IR isoprene rubber
  • SIBR styrene isoprene butadiene rubber
  • a rubber component other than SBR and BR is included, it is preferably added in Step X2-3 described later.
  • silica (B-3) is not particularly limited, and those commonly used in the tire industry can be used.
  • dry process silica anhydrous silicic acid
  • wet process silica hydrophilic silica
  • wet process silica is preferred because of the large number of silanol groups.
  • Silica (B-3) nitrogen adsorption specific surface area (N 2 SA) of the viewpoint 40 m 2 / g or more is preferred from the breaking strength, more preferably at least 50 m 2 / g, more preferably at least 100 m 2 / g, 130m 2 / g or more is particularly preferable, and 160 m 2 / g or more is most preferable.
  • N 2 SA of the silica (B-3) is in terms of fuel economy and workability 500 meters 2 / g or less, more preferably not more than 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g or less is particularly preferable.
  • N 2 SA of silica (B-3) is a value measured by the BET method according to ATSM D3037-81.
  • the content (total addition amount) of silica (B-3) is preferably 10 parts by mass or more, and 20 parts by mass with respect to 100 parts by mass of the rubber component (A-3) from the viewpoint of low fuel consumption and wet grip performance.
  • the above is more preferable, 30 parts by mass or more is further preferable, and 40 parts by mass or more is particularly preferable.
  • the total content of silica (B-3) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 120 parts by mass or less from the viewpoint of dispersibility of the filler in the rubber component and processability. preferable.
  • Carbon black (C-3) The carbon black (C-3) is not particularly limited, and those that are common in the tire industry such as GPF, FEF, HAF, ISAF, SAF, etc. can be used alone or in combination of two or more. Also good.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black (C-3) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and antistatic properties. Also, N 2 SA of the carbon black (C-3), it is preferably from 200 meters 2 / g from the viewpoint of workability, more preferably at most 150m 2 / g. In the present specification, N 2 SA of carbon black (C-3) is a value measured according to A method of JIS K6217.
  • the content (total addition amount) of carbon black (C-3) is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component (A-3). When the content of carbon black (C-3) is less than 1 part by mass, the effect of containing carbon black may not be sufficiently obtained. Further, the content of carbon black (C-3) is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoints of low fuel consumption and processability.
  • the coupling agent (D1-3) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • Examples of the coupling agent (D1-3) represented by the chemical formula (1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3- Lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoyl Ruthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane
  • the coupling agent (D2-3) is a coupling agent having a sulfide group.
  • Si75 bis (3-triethoxysilylpropyl) disulfide
  • Si69 bis (3-triethoxy) manufactured by Evonik, which are generally commercially available as a mixture having a certain distribution
  • Preferable examples include silylpropyl) tetrasulfide) and the like.
  • the total content of the coupling agents (D1-3) and (D2-3) is 4 parts by mass or more with respect to the total content of silica of 100 parts by mass from the viewpoint of reaction with the filler and workability improvement effect. Preferably, 5 parts by mass or more is more preferable, and 6 parts by mass or more is more preferable. Further, the total content of the coupling agent is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost.
  • the vulcanizing agent (E-3) includes a vulcanizing agent (E1-3) and a vulcanization accelerator (E2-3). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-3) The vulcanizing agent (E1-3) is not particularly limited, and those commonly used in the tire industry can be used. From the viewpoint that the effect of the third invention can be obtained satisfactorily, sulfur is preferable, and powdered sulfur is more preferable. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-3) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-3). Further, the content of the vulcanizing agent (E1-3) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-3) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-3) The vulcanization accelerator (E2-3) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-3) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-3). Further, the content of the vulcanization accelerator (E2-3) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-3) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the third invention includes other compounding agents conventionally used in the rubber industry, such as plasticizer (F-3), silica and carbon black.
  • F-3 plasticizer
  • silica silica
  • carbon black a reinforcing filler
  • G-3 anti-aging agent
  • antioxidant stearic acid, wax and the like
  • the rubber composition for a tire according to the third invention preferably contains the plasticizer (F-3) for the reason that the processability is improved and the strength of the rubber can be increased.
  • the plasticizer (F-3) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, and liquid resin. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content with respect to 100 parts by mass of the rubber component (A-3) is preferably 2 parts by mass or more and more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-3) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions.
  • a naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.
  • 2,2 Quinoline anti-aging agents such as a polymer of 1,4-trimethyl-1,2-d
  • the content relative to 100 parts by mass of the rubber component (A-3) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • Surfactant in one embodiment of the third invention, it is preferable to further contain a surfactant.
  • a surfactant By containing the surfactant, the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, from the viewpoint of the silica dispersibility improvement effect with respect to 100 parts by mass of the rubber component (A-3). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • a method for producing a tire rubber composition according to a third aspect of the invention is characterized in that the kneading step is step X1-3, step X2-3 and step F-3.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • Step X2-3 for kneading the remaining amount of B-3, D2-3, and optionally a part of E-3, and further kneading the kneaded product of step X2-3 and the remaining amount of E-3
  • a method for producing a tire rubber composition including a step of performing a kneading step including Step F-3 to obtain an unvulcanized rubber composition.
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the third invention.
  • the timing of adding and kneading other compounding agents such as carbon black (C-3), plasticizer (F-3), anti-aging agent (G-3), zinc oxide, stearic acid is not particularly limited, It may be added in any step of Step X1-3, Step X2-3 or Step F-3, or may be added in divided portions.
  • the production method of the third invention is characterized in that the coupling agent (D1-3) is kneaded in a step (step X1-3) preceding the coupling agent (D2-3) having a sulfide group.
  • step X1-3 the coupling agent
  • the coupling agent (D1-3) since a plurality of alkoxysilyl groups do not exist in the molecule, there is little aggregation between the coupling agents, and the mercapto group that reacts favorably with the polymer part becomes a fatty acid thioester, resulting in a rapid reaction. Unevenness associated with the reaction is also prevented. Therefore, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity even in the kneading by the first input as in the third invention.
  • Step X1-3 a compound containing butadiene rubber (A1-3), a part of silica (B-3), a coupling agent (D1-3), and optionally a part of a vulcanizing agent (E-3)
  • the agent is kneaded with a Banbury mixer.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D1-3) takes the structure of the chemical formula (1), so that the thioester group is decomposed with kneading to gradually produce a highly active mercapto group. It is possible to disperse the agent and promote bonding with the polymer.
  • step X1 If conventional polysulfide silane (coupling agent (D2-3)) is added in step X1, sulfur is released even at this stage, so that the workability is lowered and the dispersion of the filler is hindered. Although the activity of itself decreases, the coupling agent (D1-3) represented by the chemical formula (1) does not release sulfur, so that the processability is maintained according to the production method of the third invention. It is possible to continue kneading.
  • the addition amount of silica (B-3) in step X1-3 is 10% by mass or more of the total addition amount of silica (B-3) from the viewpoints of improving the silica kneading effect, sufficient dispersion of silica, and wear resistance. Is preferable, 30% by mass or more is more preferable, 40% by mass or more is more preferable, and 50% by mass or more is more preferable. Further, the amount of silica (B-3) added in step X1-3 is the same as that of silica (B-3) from the viewpoint of the effect of divided introduction of silica in step X2-3, which will be described later, fuel efficiency, and wear resistance. The amount added is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 85% by mass or less.
  • the amount of the coupling agent (D1-3) represented by the chemical formula (1) in the step X1-3 is sufficient to react with the filler, and the processability of the coupling agent (D1-3) is improved. For the reason that the effect can be brought out, it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-3) added in Step X1-3. Further preferred.
  • the amount of the coupling agent (D1-3) represented by the chemical formula (1) in the step X1-3 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the carbon black (C-3) is preferably added in the step X1-3 and / or the step X2-3.
  • the amount of carbon black (C-3) added in step X1-3 is 10% by mass or more of the total amount of carbon black (C-3) added from the viewpoint of improving the dispersibility of carbon black and increasing the efficiency of the process.
  • the step of adding the plasticizer (F-3) is not particularly limited, but for the reason that the dispersion of the filler is good, in the step X1-3, 50% by mass of the total amount of the plasticizer (F-3) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the amount of plasticizer (F-3) added in step X1-3 is less than 100% by mass, the remaining amount is step X2- because the dispersibility of the silica added in step X2-3 is further improved. 3 is preferably added.
  • the surfactant is preferably added in the step X1-3 and / or the step X2-3 from the viewpoint of promoting the dispersion effect of silica, further promoting the dispersion effect of silica and gelling the coupling agent. It is preferable to add in step X1-3 because it can be suppressed.
  • the discharge temperature of kneading in the step X1-3 is not particularly limited, but is preferably 142 ° C or higher, more preferably 146 ° C or higher, and further preferably 148 ° C or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower. If the discharge temperature of kneading in step X1-3 is within the above range, a kneaded product in which silica (B-3) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the step X1-3 is not particularly limited, but is preferably 140 ° C. or higher from the viewpoint that the coupling agent reacts sufficiently and a kneaded material in which silica is well dispersed can be obtained efficiently. 145 ° C or higher is more preferable, and 150 ° C or higher is more preferable. In order to prevent rubber burn, the maximum temperature during kneading is preferably 200 ° C. or lower. If the temperature exceeds 150 ° C. in the normal kneading step, problems such as gelation may occur.
  • step X1-3 polysulfide silane is not added as a vulcanization accelerator, so the kneading temperature Even if the temperature becomes high, no trouble occurs, the reaction of the coupling agent can be promoted, and the dispersion of silica can be promoted.
  • the kneading time in step X1-3 is not particularly limited, but is preferably 3.0 minutes or more, more preferably 4.0 minutes or more, from the viewpoint of efficiently obtaining a kneaded material in which silica is well dispersed. More preferably 5 minutes or more.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is held at 150 ° C. to 190 ° C. for 10 to 120 seconds.
  • the agent (D1-3) and silica are preferably reacted completely.
  • Step X2-3 includes styrene-butadiene rubber (A2-3), the remaining amount of silica (B-3), a coupling agent (D2-3), and optionally a part of the vulcanizing agent (E-3).
  • the compounding agent is added to the kneaded product of Step X1-3 and kneaded. If the entire amount of silica is added in step X1-3, the silica tends to be unevenly distributed in the polymer portion having high affinity with silica such as SBR and / or the interface portion of the polymer. In this production method, since silica is added in portions in Step X1-3 and Step X2-3, respectively, the silica is easily dispersed throughout the rubber component.
  • silica added later (introduced in Step X2-3) has an effect of promoting the kneading effect by applying a share to the rubber component.
  • the coupling agent (D1-3) represented by the chemical formula (1) is kneaded in the step X1-3, the early decrease in the activity of the coupling agent is prevented, and the kneading is performed. Workability in the entire operation can be maintained.
  • the coupling agent (D2-3) having a sulfide group in the step X2-3 it is possible to prevent an early decrease in activity due to the coupling agent and to maintain the workability in the entire kneading operation. it can. Further, since the coupling agent (D2-3) can release sulfur acting as a vulcanizing agent, uniform crosslinking is promoted, and rubber physical properties can be improved.
  • the amount of the coupling agent (D2-3) added in the process X2-3 is sufficient to react with the filler, and the excellent processability improvement effect of the coupling agent (D2-3) can be extracted.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-3) added in Step X2-3.
  • the amount of the coupling agent (D2-3) represented by the chemical formula (1) in the step X2-3 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the anti-aging agent (G-3) is not particularly limited, but it is preferable to add the whole amount in the step X2-3 from the viewpoint of work efficiency and prevention of the decrease in activity of the anti-aging agent during kneading.
  • the discharge temperature of kneading in the step X2-3 is not particularly limited, but is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 130 ° C. or higher.
  • the discharge temperature is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower. If the discharge temperature of kneading in step X2-3 is within the above range, a kneaded product in which silica (B-3) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the step X2-3 is not particularly limited, but the kneaded product in which the coupling agent (D2-3) having a sulfide group sufficiently reacts and silica is well dispersed can be obtained efficiently. From the point, 100 ° C. or higher is preferable, 120 ° C. or higher is more preferable, and 130 ° C. or higher is more preferable.
  • the maximum temperature during kneading is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower.
  • the kneading time in step X2-3 is not particularly limited, but is preferably 3.0 minutes or more from the viewpoint that a kneaded material in which silica is well dispersed can be obtained efficiently.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • step F-3 after cooling the kneaded product obtained in step X2-3, a vulcanizing agent (E-3) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the vulcanization accelerator may be added all at once in Step F-3, but after a part or all of it is added in Step X1-3 and / or Step X2-3, the remaining amount is added in Step F-3. It is preferable to add. By adding a part or the whole amount in the step X1-3 and / or the step X2-3, dispersion of the silica and the rubber component can be further promoted. In particular, it is more preferable to add part or all of the guanidine vulcanization accelerator in the step X1-3 and / or the step X2-3 because the dispersibility of silica can be further promoted.
  • the kneaded product obtained in step X2-3 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-3 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in the step F is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in Step F-3 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • the vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-3 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the third invention can be obtained satisfactorily.
  • Rubber composition for tire The rubber composition for tire according to the third invention can be used for each member of a tire, and in particular, the rubber composition for tire having improved workability, low fuel consumption, and wear resistance in a well-balanced manner. Since it is a thing, it can be used suitably for a tread or a sidewall.
  • the tire of the third invention can be produced by a normal method using the tire rubber composition according to the third invention. That is, the tire rubber composition produced by the production method of the third invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire is produced on a tire molding machine.
  • the tire according to the third aspect of the invention is manufactured by pasting together with the members and forming the unvulcanized tire by molding by a normal method, and heating and pressurizing the unvulcanized tire in a vulcanizer. Can do.
  • the tire of the third invention may be a pneumatic tire or a non-pneumatic tire.
  • a pneumatic tire it can use suitably as a tire for passenger cars, a tire for trucks and buses, a tire for two-wheeled vehicles, a high performance tire, etc.
  • the high-performance tire in this specification is a tire that is particularly excellent in grip performance, and is a concept that includes a competition tire used in a competition vehicle.
  • the fourth invention relates to a rubber component (A-4) containing at least one selected from the group consisting of natural rubber and diene synthetic rubber, and silica 1 (B1-4) having a nitrogen adsorption specific surface area of more than 140 m 2 / g.
  • Step X1-4 Step X1-4 for kneading a part of A-4, B1-4, D1-4, and optionally E-4
  • Step X2-4 Step X1-4 kneading the kneaded material of Step X1-4, B2-4, D2-4, and optionally part of E-4
  • Step F-4 Step X2- Step 4 of kneading the kneaded product of No.
  • the rubber component preferably contains styrene butadiene rubber and / or butadiene rubber having a functional group that reacts with silica.
  • the nitrogen adsorption specific surface area of the silica 1 is 160 m 2 / g or more.
  • the amount of coupling agent added in each step X1-4 and step X2-4 is preferably 4 to 10 parts by mass with respect to 100 parts by mass of silica added in each step.
  • the amount of silica added is preferably 50 to 95% by mass of the total amount of silica added.
  • the maximum temperature in the step X1-4 is 140 ° C. to 200 ° C.
  • Step X1-4 It is preferable to knead a part or all of the vulcanization accelerator in Step X1-4 and / or Step X2-4.
  • step X1-4 it is a method for producing a rubber composition containing a surfactant, and it is preferable to knead the surfactant in step X1-4 and / or step X2-4.
  • the fourth invention relates to a tire having a tire member made of the rubber composition for tire manufactured by the above manufacturing method.
  • the fourth invention it is possible to produce a rubber composition for tires with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner.
  • the rubber composition for a tire according to the fourth invention comprises a predetermined rubber component (A-4), silica 1 (B1-4) and silica 2 (B2-4) having a predetermined nitrogen adsorption specific surface area, carbon black ( C-4), coupling agents (D1-4) and (D2-4), and a vulcanizing agent (E-4) containing a vulcanizing agent and a vulcanization accelerator.
  • the rubber component (A-4) includes at least one selected from the group consisting of natural rubber and diene synthetic rubber, and preferably includes two or more. By blending a plurality of diene rubbers, defects of a specific rubber can be compensated and physical properties can be improved in a balanced manner. These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride. In addition, what is necessary is just to select suitably according to an application member etc. about a rubber component kind and compounding quantity.
  • NR natural rubber
  • modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), deproteinized natural rubber (DPNR), and high-purity natural rubber (HPNR). Etc. are also included.
  • NR is not particularly limited, and those generally used in the tire industry such as SIR20, RSS # 3, TSR20, and the like can be used.
  • the content in the rubber component (A-4) is preferably 5% by mass or more, more preferably 10% by mass or more, because the fracture resistance of the rubber composition is improved. Further, the content of NR is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 50% by mass or less, because it is excellent in fuel efficiency and wear resistance.
  • diene synthetic rubber examples include isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), and styrene isoprene butadiene rubber (SIBR).
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • the SBR is not particularly limited, but includes unmodified solution polymerization SBR (S-SBR), unmodified emulsion polymerization SBR (E-SBR), and these modified SBRs (modified S-SBR, modified E-SBR), etc. Is mentioned.
  • S-SBR unmodified solution polymerization SBR
  • E-SBR unmodified emulsion polymerization SBR
  • modified SBR modified SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like).
  • S-SBR and modified S-SBR are preferable because the grip performance and wear resistance can be improved in a well-balanced manner.
  • a silyl group, amino group, amide group Particularly preferred is a modified S-SBR having at least one selected from the group consisting of a hydroxyl group and an epoxy group.
  • SBRs may be used singly, but SBRs having different physical properties such as styrene content may be used in combination depending on applications. In addition, what is necessary is just to select suitably according to an application member.
  • the styrene content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more from the viewpoints of dry grip performance, wet grip performance and rubber strength. Further, the styrene content of SBR is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less from the viewpoint of low fuel consumption. In the present specification, the styrene content of SBR is a value calculated by 1 H-NMR measurement.
  • the vinyl bond amount of SBR is preferably 10 mol% or more, more preferably 15 mol% or more, and even more preferably 20 mol% or more from the viewpoints of dry grip performance, wet grip performance and rubber strength.
  • the vinyl bond amount of SBR is preferably 65 mol% or less, more preferably 60 mol% or less, and further preferably 30 mol% or less from the viewpoint of low fuel consumption.
  • the vinyl bond amount of SBR indicates the vinyl bond amount of the butadiene part, and is a value calculated by 1 H-NMR measurement.
  • the content in the rubber component (A-4) is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more from the viewpoint of dry grip performance and wet grip performance. preferable. Moreover, 90 mass% or less is preferable from a wear-resistant viewpoint, and, as for content of SBR, 80 mass% or less is more preferable.
  • BR for the reason of excellent wear resistance.
  • a rubber composition in which a white filler such as silica (B-4) is blended with BR generally has a problem that the dispersibility of the filler is low and it is difficult to obtain desired performance.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent. Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content in the rubber component (A-4) is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance.
  • the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • the modified SBR and the modified BR usually have a strong functional group reaction, so that the rubber component itself is often aggregated and dispersion of the filler becomes difficult.
  • the predetermined coupling agent is used. By kneading and kneading the rubber, aggregation of the rubber component is prevented and the reaction with silica is promoted.
  • silica 1 B1-4
  • silica 2 B2-4
  • the workability, fuel efficiency, and wear resistance can be improved in a more balanced manner.
  • Silica 1 having a large N 2 SA is known as fine-particle silica and is generally difficult to control dispersion.
  • the method for producing a rubber composition of the fourth invention it can be dispersed well. It is possible to express excellent rubber performance in a well-balanced manner.
  • N 2 SA of silica 1 is more than 140 m 2 / g, preferably 150 m 2 / g or more, and more preferably 160 m 2 / g or more.
  • N 2 SA of silica 1 is 140 m 2 / g or less, the effect of improving wear resistance tends to be insufficient.
  • N 2 SA of the silica 1 from the viewpoint of low heat resistance and workability, preferably 500 meters 2 / g or less, more preferably 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g The following are most preferred.
  • N 2 SA of silica is a value measured by the BET method according to ATSM D3037-81.
  • the content of silica 1 (B1-4) with respect to 100 parts by mass of the rubber component is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and further preferably 20 parts by mass or more from the viewpoint of wear resistance. Further, the content of silica 1 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 130 parts by mass or less from the viewpoint of improving dispersibility and not deteriorating fuel economy.
  • N 2 SA of the silica 2 (B2-4) is the reason that excellent effect of improving fuel economy, not more than 140 m 2 / g, preferably from 130m 2 / g or less, more preferably 120 m 2 / g, 110 m 2 / g or less is more preferable.
  • N 2 SA of silica 2 is preferably 40 m 2 / g or more, more preferably 50 m 2 / g or more, further preferably 60 m 2 / g or more, and 70 m 2 / g from the viewpoint of fracture strength after vulcanization. The above is particularly preferable, and 80 m 2 / g or more is most preferable.
  • the content of silica 2 (B2-4) with respect to 100 parts by mass of the rubber component is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 10 parts by mass or more from the viewpoint of wet grip performance. Further, the content of silica 2 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 130 parts by mass or less from the viewpoint of improving dispersibility and not deteriorating fuel economy.
  • the total content of silica is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component (A-4) from the viewpoint of low fuel consumption and wet grip performance. Is more preferable, and 40 parts by mass or more is particularly preferable. Further, the total content of silica is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 130 parts by mass or less from the viewpoints of dispersibility of the filler in the rubber component and processability.
  • the content of silica 1 (B1-4) in the total silica is preferably 10% by mass or more, more preferably 15% by mass or more from the viewpoint of wear resistance and the kneading effect in the step X1-4 described later. 20% by mass or more is more preferable. Further, the content of silica 1 in the total silica is preferably 95% by weight or less, more preferably 90% by weight or less, and still more preferably 80% by weight or less, from the viewpoint of improving the fuel efficiency by silica 2.
  • Carbon black (C-4) is not particularly limited, and those that are common in the tire industry such as GPF, FEF, HAF, ISAF, SAF, etc. can be used alone or in combination of two or more. Also good.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black (C-4) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and antistatic properties. Also, N 2 SA of the carbon black (C-4) is preferably not more than 200 meters 2 / g from the viewpoint of workability, more preferably at most 150m 2 / g. In the present specification, N 2 SA of carbon black (C-4) is a value measured according to method A of JIS K6217.
  • the content (total addition amount) of carbon black (C-4) is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component (A-4).
  • the content of carbon black (C-4) is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoint of fuel efficiency and processability.
  • the coupling agent (D1-4) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • Examples of the coupling agent (D1-4) represented by the chemical formula (1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3- Lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoyl Ruthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane
  • the coupling agent (D2-4) is a coupling agent having a sulfide group.
  • a coupling agent having a sulfide group for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3 -Trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-tri Ethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trieth
  • Si75 bis (3-triethoxysilylpropyl) disulfide
  • Si69 bis (3-triethoxy) manufactured by Evonik, which are generally commercially available as a mixture having a certain distribution
  • Preferable examples include silylpropyl) tetrasulfide) and the like.
  • the total content of the coupling agents (D1-4) and (D2-4) is 4 parts by mass or more with respect to 100 parts by mass of the total content of silica from the viewpoint of reaction with the filler and workability improvement effect. Preferably, 5 parts by mass or more is more preferable, and 6 parts by mass or more is more preferable. Further, the total content of the coupling agent is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost.
  • the vulcanizing agent (E-4) includes a vulcanizing agent (E1-4) and a vulcanization accelerator (E2-4). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-4) The vulcanizing agent (E1-4) is not particularly limited, and those commonly used in the tire industry can be used. From the point that the effect of the fourth invention can be obtained satisfactorily, sulfur is preferable, and powdered sulfur is more preferable. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-4) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-4). Further, the content of the vulcanizing agent (E1-4) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-4) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-4) The vulcanization accelerator (E2-4) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-4) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-4). Further, the content of the vulcanization accelerator (E2-4) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-4) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the fourth invention includes, in addition to the above components, compounding agents conventionally used in the rubber industry, such as plasticizers (F-4), silica and carbon black.
  • F-4 plasticizers
  • silica silica
  • carbon black a reinforcing filler
  • G-4 anti-aging agent
  • antioxidant stearic acid, wax and the like
  • the rubber composition for a tire according to the fourth invention preferably contains the plasticizer (F-4) for the reason that the processability is improved and the strength of the rubber can be increased.
  • the plasticizer (F-4) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, and liquid resin. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content with respect to 100 parts by mass of the rubber component (A-4) is preferably 2 parts by mass or more, more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-4) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like which are usually used in rubber compositions.
  • a heat-resistant anti-aging agent e.g., naphthylamine-based (phenyl- ⁇ -Naphthylamine, etc.), diphenylamine (octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.), p-phenylenediamine (N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.), 2,2 Quinoline anti-aging agents such as a polymer of 1,4-tri
  • the content with respect to 100 parts by mass of the rubber component (A-4) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • Surfactant in one embodiment of the fourth invention, it is preferable to further contain a surfactant.
  • a surfactant By containing the surfactant, the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more from the viewpoint of the silica dispersibility improvement effect with respect to 100 parts by mass of the rubber component (A-4). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • the method for producing a tire rubber composition according to the fourth aspect of the invention is characterized in that the kneading step is step X1-4, step X2-4 and step F-4.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • a method for producing a rubber composition for a tire including a step of obtaining an unvulcanized rubber composition.
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the fourth invention.
  • the timing of adding and kneading other compounding agents such as carbon black (C-4), plasticizer (F-4), anti-aging agent (G-4), zinc oxide, stearic acid is not particularly limited, It may be added at any step of Step X1-4, Step X2-4 or Step F-4, or may be added in divided portions.
  • the production method of the fourth invention is characterized in that silica 1 and silica 2 are added separately in steps X1-4 and X2-4, respectively.
  • the dispersibility of the entire silica is improved by kneading the silica 1 which is fine and inferior in dispersibility in the step X1-4.
  • the coupling agent (D1-4) is kneaded in a step (step X1-4) prior to the coupling agent (D2-4) having a sulfide group.
  • the coupling agent (D1-4) since a plurality of alkoxysilyl groups do not exist in the molecule, there is little aggregation between the coupling agents, and the mercapto group that reacts favorably with the polymer part becomes a fatty acid thioester, resulting in a rapid reaction. Unevenness associated with the reaction is also prevented. Therefore, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity even in the kneading with the first input as in the fourth invention.
  • step X1-4 a blend containing the total amount of rubber component (A-4), silica 1 (B1-4), coupling agent (D1-4), and optionally a part of vulcanizing agent (E-4)
  • the agent is kneaded with a Banbury mixer.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D1-4) has the structure represented by the chemical formula (1), so that the thioester group is decomposed during kneading to gradually produce a highly active mercapto group. It is possible to disperse the agent and promote bonding with the polymer.
  • step X1 If conventional polysulfide silane (coupling agent (D2-4)) is added in step X1, sulfur is released even at this stage, so that the processability is lowered and the dispersion of the filler is hindered. Although the activity of itself decreases, the coupling agent (D1-4) represented by the chemical formula (1) does not release sulfur, so that the processability is maintained according to the production method of the fourth invention. It is possible to continue kneading.
  • the amount of the coupling agent (D1-4) represented by the chemical formula (1) in the step X1-4 is sufficient to react with the filler, and the processability of the coupling agent (D1-4) is improved. For the reason that the effect can be brought out, it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-4) added in Step X1-4. Further preferred. Further, the addition amount of the coupling agent (D1-4) represented by the chemical formula (1) in the step X1-4 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the carbon black (C-4) is preferably added in the step X1-4 and / or the step X2-4.
  • the amount of carbon black (C-4) added in step X1-4 is 10% by mass or more of the total amount of carbon black (C-4) added from the viewpoint of improving the dispersibility of carbon black and improving the efficiency of the step.
  • the step of adding the plasticizer (F-4) is not particularly limited, but for the reason that the dispersion of the filler becomes good, in the step X1-4, 50% by mass of the total amount of the plasticizer (F-4) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the amount of plasticizer (F-4) added in step X1-4 is less than 100% by mass, the remaining amount is step X2- because the dispersibility of the silica added in step X2-4 is further improved. 4 is preferably added.
  • the surfactant is preferably added in the step X1-4 and / or the step X2-4 from the viewpoint of promoting the silica dispersion effect, further promoting the silica dispersion effect and gelling the coupling agent. It is preferable to add in step X1-4 because it can be suppressed.
  • the discharge temperature of the kneading in the step X1-4 is not particularly limited, but is preferably 142 ° C or higher, more preferably 146 ° C or higher, and further preferably 148 ° C or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower. If the discharge temperature of kneading in step X1-4 is within the above range, a kneaded product in which silica (B-4) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the step X1-4 is not particularly limited, but is preferably 140 ° C. or higher from the viewpoint that the coupling agent reacts sufficiently and a kneaded material in which silica is well dispersed can be obtained efficiently. 145 ° C or higher is more preferable, and 150 ° C or higher is more preferable. Moreover, in order to prevent rubber
  • the kneading time in step X1-4 is not particularly limited, but is preferably 3.0 minutes or more, more preferably 4.0 minutes or more, from the viewpoint of efficiently obtaining a kneaded material in which silica is well dispersed. More preferably 5 minutes or more.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is held at 150 ° C. to 190 ° C. for 10 to 120 seconds. This is preferable because the reaction between the agent (D1-4) and silica is completely carried out.
  • step X2-4 the compounding agent containing silica 2 (B2-4), coupling agent (D2-4), and optionally a part of vulcanizing agent (E-4) is mixed with the kneaded product of step X1-4.
  • the silica tends to be unevenly distributed in the polymer part having a high affinity with silica such as a modified polymer and / or the interface part of the polymer.
  • silica 1 and 2 are dividedly added in step X1-4 and step X2-4, respectively, so that the silica is easily dispersed throughout the rubber component.
  • the silica 2 itself added (added in step X2-4) has an effect of promoting the kneading effect by applying a share to the rubber component.
  • the coupling agent (D1-4) represented by the chemical formula (1) is kneaded in the step X1-4, so that an early decrease in the activity of the coupling agent is prevented and the kneading is performed. Workability in the entire operation can be maintained.
  • the coupling agent (D2-4) having a sulfide group in the step X2-4 it is possible to prevent an early decrease in activity due to the coupling agent and to maintain the workability in the entire kneading operation. it can. Further, since the coupling agent (D2-4) can release sulfur acting as a vulcanizing agent, uniform crosslinking is promoted, and rubber physical properties can be improved.
  • the amount of the coupling agent (D2-4) added in the process X2-4 is sufficient to react with the filler, and the excellent processability improvement effect of the coupling agent (D2-4) can be extracted. For the reason, it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-4) added in Step X2-4. Further, the addition amount of the coupling agent (D2-4) represented by the chemical formula (1) in the step X2-4 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the anti-aging agent (G-4) is not particularly limited, but it is preferable to add the whole amount in the step X2-4 from the viewpoint of work efficiency and prevention of the decrease in activity of the anti-aging agent during kneading.
  • the discharge temperature of the kneading in the step X2-4 is not particularly limited, but is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 130 ° C. or higher.
  • the discharge temperature is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower. If the discharge temperature of kneading in step X2-4 is within the above range, a kneaded product in which silica (B-4) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the step X2-4 is not particularly limited, but the kneaded product in which the coupling agent (D2-4) having a sulfide group sufficiently reacts and silica is well dispersed can be obtained efficiently. From the point, 100 ° C. or higher is preferable, 120 ° C. or higher is more preferable, and 130 ° C. or higher is more preferable.
  • the maximum temperature during kneading is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower.
  • the kneading time in step X2-4 is not particularly limited, but is preferably 3.0 minutes or longer from the viewpoint that a kneaded material in which silica is well dispersed can be obtained efficiently.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • step F-4 after the kneaded product obtained in step X2-4 is cooled, a vulcanizing agent (E-4) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • a vulcanizing agent (E-4) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the vulcanization accelerator may be added all at once in Step F-4. However, after a part or all of the vulcanization accelerator is added in Step X1-4 and / or Step X2-4, the remaining amount is added in Step F-4. It is preferable to add. By adding a part or the whole amount in the step X1-4 and / or the step X2-4, dispersion of the silica and the rubber component can be further promoted. In particular, it is more preferable to add part or all of the guanidine vulcanization accelerator in the step X1-4 and / or the step X2-4 because the dispersibility of silica can be further promoted.
  • the kneaded product obtained in step X2-4 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-4 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in the step F is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in step F-4 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • Vulcanization Step A vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-4 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the fourth invention can be obtained satisfactorily.
  • Rubber composition for tire The rubber composition for tire according to the fourth invention can be used for each member of a tire, and in particular, the rubber composition for tire having improved workability, fuel efficiency and wear resistance in a well-balanced manner. Since it is a thing, it can be used suitably for a tread or a sidewall.
  • the tire of the fourth invention can be produced by a normal method using the tire rubber composition according to the fourth invention. That is, the tire rubber composition produced by the production method of the fourth invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire is produced on a tire molding machine.
  • the tire according to the fourth aspect of the invention is manufactured by bonding together with the members and forming an unvulcanized tire by molding by a normal method, and heating and pressurizing the unvulcanized tire in a vulcanizer. Can do.
  • the tire according to the fourth invention may be a pneumatic tire or a non-pneumatic tire.
  • a pneumatic tire it can use suitably as a tire for passenger cars, a tire for trucks and buses, a tire for two-wheeled vehicles, a high performance tire, etc.
  • the high-performance tire in this specification is a tire that is particularly excellent in grip performance, and is a concept that includes a competition tire used in a competition vehicle.
  • the fifth invention is a rubber component containing butadiene rubber (A1-5) and isoprene-based rubber (A2-5), silica (B-5), carbon black (C-5), represented by the following chemical formula (1): Rubber composition for tire containing coupling agent (D1-5), coupling agent having sulfide group (D2-5), and vulcanizing agent (E-5) containing vulcanizing agent and vulcanization accelerator A manufacturing method of (Step X1-5) Step X1-5 for kneading a part of A1-5, B-5, D1-5, and optionally a part of E-5, (Step X2-5) Step X2-5 in which the kneaded material in Step X1-5, the remaining amount of A2-5 and B-5, D2-5, and optionally a part of E-5 are kneaded, and (Step F-5) Step F of kneading the kneaded product of step X2-5 and the
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the butadiene rubber (A1-5) is preferably a butadiene rubber having a functional group that reacts with silica.
  • the nitrogen adsorption specific surface area of silica is 160 m 2 / g or more, and the total addition amount of silica is 40 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the addition amount of the coupling agent in each step of Step X1-5 and Step X2-5 is preferably 4 to 10 parts by mass with respect to 100 parts by mass of silica added in each step.
  • the amount of silica added is preferably 10 to 90% by mass of the total amount of silica added.
  • the maximum temperature in the step X1-5 is 140 ° C. to 200 ° C.
  • Step X1-5 It is preferable to knead a part or all of the vulcanization accelerator in Step X1-5 and / or Step X2-5.
  • step X1-5 it is a method for producing a rubber composition containing a surfactant, and it is preferable to knead the surfactant in step X1-5 and / or step X2-5.
  • the fifth invention relates to a tire having a tire member made of a tire rubber composition manufactured by the above manufacturing method.
  • the fifth invention it is possible to manufacture a rubber composition for tires with improved fuel economy, wear resistance, and wet grip performance in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner.
  • the tire rubber composition according to the fifth invention comprises a rubber component containing butadiene rubber (A1-5) and isoprene-based rubber (A2-5), silica (B-5), carbon black (C-5), cup It contains ring agents (D1-5) and (D2-5), and a vulcanizing agent (E-5) including a vulcanizing agent and a vulcanization accelerator.
  • the rubber component includes butadiene rubber (A1-5) and isoprene-based rubber (A2-5). By blending a plurality of diene rubbers, defects of a specific rubber can be compensated and physical properties can be improved in a balanced manner.
  • These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride. In addition, what is necessary is just to select suitably according to an application member etc. about a rubber component kind and compounding quantity.
  • the rubber component contains butadiene rubber (BR) because it has excellent wear resistance.
  • BR butadiene rubber
  • a rubber composition in which a white filler such as silica (B-5) is blended with BR generally has a problem that it is difficult to obtain desired performance because the dispersibility of the filler is low.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent (D-5). Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content of BR in the rubber component is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance. Further, the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • isoprene-based rubber examples include chemically synthesized polyisoprene rubber (IR), natural rubber (NR), and epoxidized natural rubber (ENR). Of these, NR and ENR are preferable from the viewpoint of availability and rubber strength.
  • the isoprene-based rubber and the modified BR usually have a strong functional group reaction, and the rubber component itself is often agglomerated to make it difficult to disperse the filler.
  • the agent By dividing and kneading the agent, aggregation of the rubber component is prevented and the reaction with silica is promoted.
  • the rubber component may contain styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), or the like, if necessary, in addition to the BR and isoprene-based rubber.
  • SBR styrene butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • a rubber component other than BR and isoprene-based rubber is included, it is preferably added in Step X2-5 described later.
  • silica (B-5) is not particularly limited, and those commonly used in the tire industry can be used. For example, dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid) and the like can be mentioned, but wet process silica is preferred because of the large number of silanol groups.
  • Silica nitrogen adsorption specific surface area (N 2 SA) of (B-5) is in view 40 m 2 / g or more is preferred from the breaking strength, more preferably at least 50 m 2 / g, more preferably at least 100 m 2 / g, 130m 2 / g or more is particularly preferable, and 160 m 2 / g or more is most preferable.
  • N 2 SA of the silica (B-5) from the viewpoint of fuel economy and workability 500 meters 2 / g or less, more preferably not more than 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g or less is particularly preferable.
  • N 2 SA of silica (B-5) is a value measured by the BET method according to ATSM D3037-81.
  • the content (total addition amount) of silica (B-5) is preferably 10 parts by mass or more, and 20 parts by mass with respect to 100 parts by mass of the rubber component (A-5) from the viewpoint of low fuel consumption and wet grip performance.
  • the above is more preferable, 30 parts by mass or more is further preferable, and 40 parts by mass or more is particularly preferable.
  • the total content of silica (B-5) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 120 parts by mass or less from the viewpoint of dispersibility of the filler in the rubber component and processability. preferable.
  • Carbon black (C-5) The carbon black (C-5) is not particularly limited, and those generally used in the tire industry, such as GPF, FEF, HAF, ISAF, and SAF, can be used alone or in combination of two or more. Also good.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black (C-5) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and antistatic properties. Also, N 2 SA of the carbon black (C-5) is preferably not more than 200 meters 2 / g from the viewpoint of workability, more preferably at most 150m 2 / g. Incidentally, N 2 SA of the carbon black herein (C) is a value measured according to the method A of JIS K6217.
  • the content (total addition amount) of carbon black (C-5) is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component (A-5). When the content of carbon black (C-5) is less than 1 part by mass, the effect of containing carbon black may not be sufficiently obtained. Further, the content of carbon black (C-5) is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoints of low fuel consumption and processability.
  • the coupling agent (D1-5) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • Examples of the coupling agent (D1-5) represented by the chemical formula (1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3- Lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoyl Ruthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxys
  • the coupling agent (D2-5) is a coupling agent having a sulfide group.
  • a coupling agent having a sulfide group for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3 -Trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-tri Ethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trieth
  • Si75 bis (3-triethoxysilylpropyl) disulfide
  • Si69 bis (3-triethoxy) manufactured by Evonik, which are generally commercially available as a mixture having a certain distribution
  • Preferable examples include silylpropyl) tetrasulfide) and the like.
  • the total content of the coupling agents (D1-5) and (D2-5) is 4 parts by mass or more with respect to 100 parts by mass of the total content of silica from the viewpoint of reaction with the filler and workability improvement effect. Preferably, 5 parts by mass or more is more preferable, and 6 parts by mass or more is more preferable. Further, the total content of the coupling agent is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost.
  • Vulcanizing chemicals The vulcanizing agent (E-5) includes a vulcanizing agent (E1-5) and a vulcanization accelerator (E2-5). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-5) The vulcanizing agent (E1-5) is not particularly limited, and those commonly used in the tire industry can be used. From the point that the effect of the fifth invention can be obtained satisfactorily, sulfur is preferable, and powdered sulfur is more preferable. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-5) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-5). Further, the content of the vulcanizing agent (E1-5) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-5) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-5) The vulcanization accelerator (E2-5) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-5) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-5). Further, the content of the vulcanization accelerator (E2-5) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-5) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the fifth invention includes compounding agents conventionally used in the rubber industry, such as plasticizers (F-5), silica and carbon black. Reinforcing fillers, anti-aging agents (G-5), antioxidants, stearic acid, waxes and the like can be appropriately blended.
  • the rubber composition for tires according to the fifth invention preferably contains the plasticizer (F-5) because it improves processability and increases the strength of the rubber.
  • the plasticizer (F-5) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, and liquid resin. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content with respect to 100 parts by mass of the rubber component (A-5) is preferably 2 parts by mass or more, more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-5) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used for a rubber composition.
  • a naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.
  • 2,2 Quinoline anti-aging agents such as a polymer of 1,4-trimethyl-1,2-
  • the content relative to 100 parts by mass of the rubber component (A-5) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • Surfactant in one embodiment of the fifth invention, it is preferable to further contain a surfactant.
  • a surfactant By containing the surfactant, the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, from the viewpoint of improving the dispersibility of silica with respect to 100 parts by mass of the rubber component (A-5). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • the method for producing a tire rubber composition according to the fifth aspect of the invention is characterized in that the kneading step is step X1-5, step X2-5 and step F.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • A1-5, a part of B-5, D1-5, and optionally a part of E-5 are kneaded in Step X1-5, Step X1-5, A2-5, Step X2-5 for kneading the remaining amount of B-5, D2-5, and optionally a part of E-5, and further kneading the kneaded product of step X2-5 and the remaining amount of E-5
  • It is a manufacturing method of the rubber composition for tires including the process of performing the kneading
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the fifth invention.
  • the timing of adding and kneading other compounding agents such as carbon black (C-5), plasticizer (F-5), anti-aging agent (G-5), zinc oxide, stearic acid is not particularly limited, It may be added in any step of Step X1-5, Step X2-5 or Step F-5, or may be added in divided portions.
  • the production method of the fifth invention is characterized in that the coupling agent (D1-5) is kneaded in a step preceding the coupling agent (D2-5) having a sulfide group (step X1-5).
  • the coupling agent (D1-5) since a plurality of alkoxysilyl groups do not exist in the molecule, there is little aggregation between the coupling agents, and the mercapto group that reacts favorably with the polymer portion becomes a fatty acid thioester, resulting in a rapid reaction. Unevenness associated with the reaction is also prevented. Therefore, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity even in the kneading with the first input as in the fifth invention.
  • Step X1-5 a compound containing butadiene rubber (A1-5), a part of silica (B-5), a coupling agent (D1-5) and optionally a part of a vulcanizing agent (E-5)
  • the agent is kneaded with a Banbury mixer.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D1-5) has the structure of the chemical formula (1), the thioester group is decomposed by kneading to gradually generate a highly active mercapto group, so that the filling is performed while maintaining the workability.
  • step X1 it is possible to disperse the agent and promote bonding with the polymer. If conventional polysulfide silane (coupling agent (D2-5)) is introduced in step X1, sulfur is released even at this stage, so that the workability is lowered and the dispersion of the filler is hindered. Although the activity of itself decreases, the coupling agent (D1-5) represented by the chemical formula (1) does not release sulfur, so that the processability is maintained according to the production method of the fifth invention. It is possible to continue kneading.
  • silica tends to be ubiquitous in the isoprene-based rubber and / or the interface.
  • BR silica
  • silica By first kneading the coupling agent in step X1-5, it is possible to make silica present in BR well.
  • the addition amount of silica (B-5) in step X1-5 is 10% by mass or more of the total addition amount of silica (B-5) from the viewpoints of improving the silica kneading effect, sufficient dispersion of silica, and wear resistance. Is preferable, 30% by mass or more is more preferable, 40% by mass or more is more preferable, and 50% by mass or more is more preferable.
  • the amount of silica (B-5) added in step X1-5 is the same as that of silica (B-5) from the viewpoints of the effect of divided introduction of silica in step X2-5 described later, fuel efficiency and wear resistance.
  • the amount added is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 85% by mass or less.
  • the amount of the coupling agent (D1-5) represented by the chemical formula (1) in the step X1-5 is sufficient to react with the filler, and the processability of the coupling agent (D1-5) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-5) added in Step X1-5.
  • the addition amount of the coupling agent (D1-5) represented by the chemical formula (1) in the step X1-5 is preferably 20 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the carbon black (C-5) is preferably added in Step X1-5 and / or Step X2-5.
  • the amount of carbon black (C-5) added in step X1-5 is 10% by mass or more of the total amount of carbon black (C-5) added from the viewpoint of improving the dispersibility of carbon black and increasing the efficiency of the process.
  • the step of adding the plasticizer (F-5) is not particularly limited, but for the reason that the dispersion of the filler is good, in the step X1-5, 50% by mass of the total amount of the plasticizer (F-5) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the amount of the plasticizer (F-5) added in step X1-5 is less than 100% by mass, the remaining amount is step X2- because the dispersibility of the silica added in step X2-5 is further improved. 5 is preferably added.
  • the surfactant is preferably added in the step X1-5 and / or the step X2-5 from the viewpoint of promoting the dispersion effect of silica, further promoting the dispersion effect of silica and gelling the coupling agent. It is preferable to add in step X1-5 because it can be suppressed.
  • the discharge temperature of kneading in the step X1-5 is not particularly limited, but is preferably 142 ° C. or higher, more preferably 146 ° C. or higher, and further preferably 148 ° C. or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower. If the discharge temperature of kneading in step X1-5 is within the above range, a kneaded product in which silica (B-5) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during kneading in step X1-5 is not particularly limited, but is preferably 140 ° C. or higher from the viewpoint that the coupling agent reacts sufficiently and a kneaded material in which silica is well dispersed can be obtained efficiently. 145 ° C or higher is more preferable, and 150 ° C or higher is more preferable. In order to prevent rubber burn, the maximum temperature during kneading is preferably 200 ° C. or lower. If the temperature exceeds 150 ° C. in the normal kneading step, there is a possibility that problems such as gelation may occur.
  • step X1-5 polysulfide silane is not added as a vulcanization accelerator, so the kneading temperature Even if the temperature becomes high, no trouble occurs, the reaction of the coupling agent can be promoted, and the dispersion of silica can be promoted.
  • the kneading time in step X1-5 is not particularly limited, but is preferably 3.0 minutes or more, more preferably 4.0 minutes or more, from the viewpoint of efficiently obtaining a kneaded material in which silica is well dispersed. More preferably 5 minutes or more.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is held at 150 ° C. to 190 ° C. for 10 to 120 seconds. It is preferable because the reaction between the agent (D1-5) and silica is completely performed.
  • Step X2-5 includes the isoprene-based rubber (A2-5), the remaining amount of silica (B-5), the coupling agent (D2-5), and optionally a part of the vulcanizing agent (E-5).
  • the compounding agent is kneaded in addition to the kneaded product of Step X1-5. If the entire amount of silica is added in the step X1-5, the silica tends to be unevenly distributed in the polymer part having high affinity with silica such as isoprene-based rubber and / or the interface part of the polymer.
  • the silica is easily dispersed throughout the rubber component. Further, the silica added later (introduced in Step X2-5) has an effect of promoting the kneading effect by applying a share to the rubber component. Further, in the production method of the fifth invention, since the coupling agent (D1-5) represented by the chemical formula (1) is kneaded in the step X1-5, an early decrease in the activity of the coupling agent is prevented, and the kneading is performed. Workability in the entire operation can be maintained.
  • the coupling agent (D2-5) having a sulfide group in the step X2-5 it is possible to prevent an early decrease in activity due to the coupling agent and to maintain the workability in the entire kneading operation. it can. Further, since the coupling agent (D2-5) can release sulfur acting as a vulcanizing agent, uniform crosslinking is promoted, and rubber physical properties can be improved.
  • the amount of the coupling agent (D2-5) added in step X2-5 is sufficient to react with the filler, and the excellent processability improvement effect of the coupling agent (D2-5) can be extracted. For the reason, it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-5) added in Step X2-5. Further, the addition amount of the coupling agent (D2-5) represented by the chemical formula (1) in the step X2-5 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the anti-aging agent (G-5) is not particularly limited, but it is preferable to add the whole amount in the step X 2-5 from the viewpoint of work efficiency and prevention of decrease in activity of the anti-aging agent during kneading.
  • the discharge temperature for kneading in the step X2-5 is not particularly limited, but is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 130 ° C. or higher.
  • the discharge temperature is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower. If the discharge temperature of kneading in step X2-5 is within the above range, a kneaded product in which silica (B-5) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the step X2-5 is not particularly limited, but the kneaded product in which the coupling agent (D2-5) having a sulfide group sufficiently reacts and silica is well dispersed can be obtained efficiently. From the point, 100 ° C. or higher is preferable, 120 ° C. or higher is more preferable, and 130 ° C. or higher is more preferable.
  • the maximum temperature during kneading is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower.
  • the kneading time in step X2-5 is not particularly limited, but is preferably 3.0 minutes or longer from the viewpoint that a kneaded material in which silica is well dispersed can be obtained efficiently.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • Step F-5 after cooling the kneaded product obtained in Step X2-5, a vulcanizing agent (E-5) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • a vulcanizing agent (E-5) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the vulcanization accelerator may be added all at once in Step F-5, but after adding part or all of it in Step X1-5 and / or Step X2-5, the remaining amount is added in Step F. Is preferred.
  • Step F-5 By adding a part or all of the amount in Step X1-5 and / or Step X2-5, dispersion of silica and the rubber component can be further promoted.
  • the kneaded product obtained in step X2-5 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-5 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in the step F is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in Step F-5 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • Vulcanization Step A vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-5 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the fifth invention can be obtained satisfactorily.
  • Rubber composition for tire The rubber composition for tire according to the fifth invention can be used for each member of a tire, and in particular, the rubber composition for tire having improved workability, fuel efficiency, and wear resistance in a well-balanced manner. Since it is a thing, it can be used suitably for a tread or a sidewall.
  • the tire of the fifth invention can be produced by a usual method using the tire rubber composition according to the fifth invention. That is, the tire rubber composition produced by the production method of the fifth invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire is produced on a tire molding machine.
  • a tire according to the fifth aspect of the invention is manufactured by forming an unvulcanized tire by laminating together with members and molding by a normal method, and heating and pressurizing the unvulcanized tire in a vulcanizer. Can do.
  • the tire of 5th invention does not ask
  • a pneumatic tire it can use suitably as a tire for passenger cars, a tire for trucks and buses, a tire for two-wheeled vehicles, a high performance tire, etc.
  • the high-performance tire in this specification is a tire that is particularly excellent in grip performance, and is a concept that includes a competition tire used in a competition vehicle.
  • the sixth invention is a rubber component containing butadiene rubber (A1-6) and styrene butadiene rubber (A2-6), silica (B-6), carbon black (C-6), represented by the following chemical formula (1).
  • a method for producing a rubber composition for a tire containing a coupling agent (D-6) and a vulcanizing agent (E-6) containing a vulcanizing agent and a vulcanization accelerator (Step X1-6) Step X1-6 for kneading a part of A1-6, B-6, a part of D-6, and optionally a part of E-6, (Step X2-6) Step X2-6 for kneading the kneaded material of Step X1-6, the remaining amount of A2-6, B-6, the remaining amount of D-6, and optionally a part of E-6, And (Step F-6) Step F-6 for kneading the kneaded product of Step X2-6 and the remaining amount of E-6 The manufacturing method of the rubber composition for tires containing this.
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the butadiene rubber (A1-6) preferably contains a butadiene rubber having a functional group that reacts with silica, and / or the styrene butadiene rubber (A2-6) contains a styrene butadiene rubber having a functional group that reacts with silica. .
  • the nitrogen adsorption specific surface area of silica is 160 m 2 / g or more, and the total addition amount of silica is 40 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the addition amount of the coupling agent in each step of Step X1-6 and Step X2-6 is preferably 4 to 10 parts by mass with respect to 100 parts by mass of silica added in each step.
  • the amount of silica added in Step X1-6 is 10 to 90% by mass of the total amount of silica added.
  • the maximum temperature in the step X1-6 and / or the step X2-6 is preferably 140 ° C. to 200 ° C.
  • Step X1-6 It is preferable to knead a part or all of the vulcanization accelerator in Step X1-6 and / or Step X2-6.
  • a method for producing a rubber composition containing a surfactant is a method for producing a rubber composition containing a surfactant, and the surfactant is preferably kneaded in step X1-6 and / or step X2-6.
  • the sixth invention relates to a tire having a tire member made of the tire rubber composition manufactured by the above manufacturing method.
  • the sixth aspect of the invention it is possible to manufacture a rubber composition for tires with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner.
  • a rubber composition for a tire according to a sixth invention comprises a rubber component containing butadiene rubber (A1-6) and styrene butadiene rubber (A2-6), silica (B-6), carbon black (C-6), predetermined A coupling agent (D-6), and a vulcanizing agent (E) containing a vulcanizing agent and a vulcanization accelerator.
  • A1-6 butadiene rubber
  • A2-6 silica
  • C-6 carbon black
  • D-6 predetermined A coupling agent
  • E a vulcanizing agent containing a vulcanizing agent and a vulcanization accelerator.
  • the rubber component includes butadiene rubber (A1-6) and styrene butadiene rubber (A2-6).
  • A1-6 butadiene rubber
  • A2-6 styrene butadiene rubber
  • These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride.
  • a modifier such as tin tetrachloride or silicon tetrachloride.
  • the rubber component contains butadiene rubber (BR) because it has excellent wear resistance.
  • BR butadiene rubber
  • a rubber composition in which a white filler such as silica (B-6) is blended with BR generally has a problem that the dispersibility of the filler is low and it is difficult to obtain desired performance.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent (D-6). Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content of BR in the rubber component is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance. Further, the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • the styrene butadiene rubber is not particularly limited, but is not modified solution-polymerized SBR (S-SBR), unmodified emulsion-polymerized SBR (E-SBR), and modified SBR (modified S-SBR, modified). E-SBR).
  • modified SBR include modified SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like).
  • S-SBR and modified S-SBR are preferable because the grip performance and wear resistance can be improved in a well-balanced manner.
  • a silyl group, amino group, amide group Particularly preferred is a modified S-SBR having at least one selected from the group consisting of a hydroxyl group and an epoxy group.
  • SBRs may be used singly, but SBRs having different physical properties such as styrene content may be used in combination depending on applications. In addition, what is necessary is just to select suitably according to an application member.
  • the styrene content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more from the viewpoints of dry grip performance, wet grip performance and rubber strength. Further, the styrene content of SBR is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less from the viewpoint of low fuel consumption. In the present specification, the styrene content of SBR is a value calculated by 1 H-NMR measurement.
  • the vinyl bond amount of SBR is preferably 10 mol% or more, more preferably 15 mol% or more, and even more preferably 20 mol% or more from the viewpoints of dry grip performance, wet grip performance and rubber strength.
  • the vinyl bond amount of SBR is preferably 65 mol% or less, more preferably 60 mol% or less, and further preferably 30 mol% or less from the viewpoint of low fuel consumption.
  • the vinyl bond amount of SBR indicates the vinyl bond amount of the butadiene part, and is a value calculated by 1 H-NMR measurement.
  • the content of SBR in the rubber component is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more from the viewpoint of dry grip performance and wet grip performance. Moreover, 90 mass% or less is preferable from a wear-resistant viewpoint, and, as for content of SBR, 80 mass% or less is more preferable.
  • the modified SBR and the modified BR usually have a strong functional group reaction, and the rubber component itself is often agglomerated to make it difficult to disperse the filler.
  • the predetermined coupling agent is used. By dividing and kneading (D-6), aggregation of the rubber component is prevented and the reaction with silica is promoted.
  • the rubber component contains natural rubber (NR), epoxidized natural rubber (ENR), isoprene rubber (IR), styrene isoprene butadiene rubber (SIBR) and the like as necessary in addition to the BR and SBR. Also good.
  • NR natural rubber
  • EMR epoxidized natural rubber
  • IR isoprene rubber
  • SIBR styrene isoprene butadiene rubber
  • a rubber component other than SBR and BR is included, it is preferably added in Step X2-6 described later.
  • silica (B) The silica (B-6) is not particularly limited, and those commonly used in the tire industry can be used. For example, dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid) and the like can be mentioned, but wet process silica is preferred because of the large number of silanol groups.
  • Silica (B-6) has a nitrogen adsorption specific surface area (N 2 SA) of preferably 40 m 2 / g or more, more preferably 50 m 2 / g or more, still more preferably 100 m 2 / g or more, from the viewpoint of fracture strength. 2 / g or more is particularly preferable, and 160 m 2 / g or more is most preferable. Also, N 2 SA of the silica (B-6), from the viewpoint of fuel economy and workability 500 meters 2 / g or less, more preferably not more than 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g or less is particularly preferable. In this specification, N 2 SA of silica (B-6) is a value measured by the BET method according to ATSM D3037-81.
  • the content (total addition amount) of silica (B-6) is preferably 10 parts by mass or more, and 20 parts by mass with respect to 100 parts by mass of the rubber component (A-6) from the viewpoint of low fuel consumption and wet grip performance.
  • the above is more preferable, 30 parts by mass or more is further preferable, and 40 parts by mass or more is particularly preferable.
  • the total content of silica (B-6) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 120 parts by mass or less from the viewpoint of dispersibility of the filler in the rubber component and processability. preferable.
  • Carbon black (C-6) The carbon black (C-6) is not particularly limited, and those commonly used in the tire industry such as GPF, FEF, HAF, ISAF, SAF, etc. can be used alone or in combination of two or more. Also good.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black (C-6) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and antistatic properties. Also, N 2 SA of the carbon black (C-6) is preferably not more than 200 meters 2 / g from the viewpoint of workability, more preferably at most 150m 2 / g. In the present specification, N 2 SA of carbon black (C-6) is a value measured according to method A of JIS K6217.
  • the content (total addition amount) of carbon black (C-6) is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component (A-6). When the content of carbon black (C-6) is less than 1 part by mass, the effect of containing carbon black may not be sufficiently obtained. Further, the content of carbon black (C-6) is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoint of fuel efficiency and processability.
  • the predetermined coupling agent (D-6) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • Examples of the coupling agent (D) represented by the chemical formula (1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, and 3-lauroylthio.
  • Propyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoylthiopropyl Trimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane, 2-hexanoylthioethyltrimethoxysilane, 2-octa Ylthio ethyltrimethoxysilane, 2- deca Neu thio ethyltrimethoxysilane, and the like can be illustrated 2- lauroyl thio ethyl
  • the total content of the coupling agent (D-6) represented by the chemical formula (1) is 4 parts by mass or more with respect to the total content of silica of 100 parts by mass from the viewpoint of reaction with the filler and workability improvement effect. Is preferably 5 parts by mass or more, and more preferably 6 parts by mass or more. Further, the content of the coupling agent (D-6) is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost. .
  • the vulcanizing agent (E) includes a vulcanizing agent (E1-6) and a vulcanization accelerator (E2-6). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-6) The vulcanizing agent (E1-6) is not particularly limited, and those commonly used in the tire industry can be used. From the point that the effect of the sixth invention can be obtained satisfactorily, sulfur is preferable, and powdered sulfur is more preferable. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-6) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-6). Further, the content of the vulcanizing agent (E1-6) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-6) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-6) The vulcanization accelerator (E2-6) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-6) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-6). Further, the content of the vulcanization accelerator (E2-6) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-6) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the sixth invention includes other compounding agents conventionally used in the rubber industry, such as plasticizer (F-6), silica and carbon black.
  • F-6 plasticizer
  • silica silica
  • carbon black a reinforcing filler
  • G-6 anti-aging agent
  • antioxidant antioxidant
  • stearic acid wax, and the like
  • the rubber composition for tires according to the sixth invention preferably contains the plasticizer (F-6) for the reason that the processability is improved and the strength of the rubber can be increased.
  • the plasticizer (F-6) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, and liquid resin. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content with respect to 100 parts by mass of the rubber component (A-6) is preferably 2 parts by mass or more and more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-6) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions.
  • a naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.
  • 2,2 Quinoline anti-aging agents such as a polymer of 1,4-trimethyl-1,2-d
  • the content relative to 100 parts by mass of the rubber component (A-6) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • Surfactant in one embodiment of the sixth invention, it is preferable to further contain a surfactant.
  • a surfactant By containing the surfactant, the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, from the viewpoint of the silica dispersibility improvement effect with respect to 100 parts by mass of the rubber component (A-6). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • the method for producing a tire rubber composition according to the sixth aspect of the invention is characterized in that the kneading step is step X1-6, step X2-6 and step F-6.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • This is a method for producing a rubber composition for a tire including a step of obtaining a non-vulcanized rubber composition by performing a kneading step including step F-6 for kneading the remaining amount.
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the sixth invention.
  • the timing of adding and kneading other compounding agents such as carbon black (C-6), plasticizer (F-6), anti-aging agent (G-6), zinc oxide, stearic acid is not particularly limited, It may be added in any step of Step X1-6, Step X2-6 or Step F-6, or may be added in divided portions.
  • the manufacturing method of the sixth invention is characterized in that the coupling agent (D-6) represented by the chemical formula (1) is divided and kneaded.
  • the coupling agent (D-6) since a plurality of alkoxysilyl groups do not exist in the molecule, aggregation of the coupling agents is small, and a mercapto group that reacts favorably with the polymer part becomes a fatty acid thioester, thereby rapidly Therefore, even in the kneading with divided injection as in the sixth invention, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity.
  • Step X1-6 In step X1-6, one part of butadiene rubber (A1-6), part of silica (B-6), part of coupling agent (D-6), and optionally vulcanizing agent (E-6) Kneading the compounding agent containing the part with a Banbury mixer.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D-6) takes the structure of the chemical formula (1), so that the thioester group is decomposed as it is kneaded to gradually produce a highly active mercapto group. It is possible to disperse the agent and promote bonding with the polymer.
  • silica tends to be ubiquitous in SBR.
  • BR, silica, and a predetermined coupling agent are used in step X1- By kneading first in No. 6, it is possible to make silica exist well in BR.
  • the addition amount of silica (B-6) in step X1-6 is 10% by mass or more of the total addition amount of silica (B-6) from the viewpoints of improving the silica kneading effect, sufficient dispersion of silica, and wear resistance. Is preferable, 30% by mass or more is more preferable, 40% by mass or more is more preferable, and 50% by mass or more is more preferable. Further, the amount of silica (B-6) added in the step X1-6 is the same as that of the silica (B-6) from the viewpoints of the effect of divided introduction of silica in the step X2-6 described later, fuel efficiency and wear resistance. The amount added is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 85% by mass or less.
  • the addition amount of the coupling agent (D-6) represented by the chemical formula (1) in the step X1-6 makes the reaction with the filler sufficient, and the processability of the coupling agent (D-6) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-6) added in Step X1-6. Further preferred.
  • the addition amount of the coupling agent (D-6) represented by the chemical formula (1) in the step X1-6 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the carbon black (C) is preferably added in Step X1-6 and / or Step X2-6.
  • the amount of carbon black (C-6) added in step X1-6 is 10% by mass or more of the total amount of carbon black (C-6) added from the viewpoint of improving the dispersibility of carbon black and increasing the efficiency of the process.
  • the amount of carbon black (C-6) added in step X1-6 is less than 100% by mass, the remaining amount is preferably added in step X2-6.
  • the step of adding the plasticizer (F-6) is not particularly limited, but for the reason that the dispersion of the filler is good, in the step X1-6, 50% by mass of the total amount of the plasticizer (F-6) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more. When the amount of the plasticizer (F-6) added in step X1-6 is less than 100% by mass, the remaining amount is step X2 because the dispersibility of the silica added in step X2-6 is further improved. It is preferable to add at -6.
  • the surfactant is preferably added in the step X1-6 and / or the step X2-6 from the viewpoint of promoting the dispersion effect of silica, further promoting the dispersion effect of silica and gelling the coupling agent. It is preferable to add in step X1-6 because it can be suppressed.
  • Step X2-6 the remaining amount of styrene butadiene rubber (A2-6), silica (B-6), the remaining amount of coupling agent (D-6), and optionally vulcanizing agent (E-6)
  • the compounding agent containing a part is added to the kneaded product of Step X1-6 and kneaded. If the entire amount of silica is added in step X1-6, the silica tends to be unevenly distributed in the polymer portion having high affinity with silica such as SBR and / or the interface portion of the polymer. In the production method of the present invention, since silica is dividedly added in the steps X1-6 and X2-6, the silica is easily dispersed throughout the rubber component.
  • silica added later (introduced in Step X2-6) has an effect of promoting the kneading effect by applying a share to the rubber component.
  • the coupling agent (D-6) represented by the chemical formula (1) is dividedly introduced, so that the early decrease in activity of the coupling agent is prevented and the workability in the entire kneading operation is prevented. Can keep.
  • the addition amount of the coupling agent (D-6) represented by the chemical formula (1) in the step X2-6 makes the reaction with the filler sufficient, and the processability of the coupling agent (D-6) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-6) added in Step X2-6. Further preferred.
  • the addition amount of the coupling agent (D-6) represented by the chemical formula (1) in the step X2-6 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the anti-aging agent (G-6) is not particularly limited, but it is preferable to add the whole amount in the step X 2-5 from the viewpoint of work efficiency and prevention of decrease in activity of the anti-aging agent during kneading.
  • the discharge temperature for kneading in Step X1-6 and Step X2-6 is not particularly limited, but is preferably 142 ° C. or higher, more preferably 146 ° C. or higher, and further preferably 148 ° C. or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower.
  • the maximum temperature during the kneading in the steps X1-6 and X2-6 is not particularly limited, but it is 140 from the viewpoint that the kneaded product in which the coupling agent sufficiently reacts and silica is well dispersed can be obtained efficiently. ° C or higher, preferably 145 ° C or higher, more preferably 150 ° C or higher. Moreover, in order to prevent rubber
  • the kneading time in step X1-6 and step X2-6 is not particularly limited, but is preferably 3.0 minutes or more from the viewpoint that a kneaded material in which silica is well dispersed can be obtained efficiently.
  • the above is more preferable, and 4.5 minutes or more is further preferable.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is heated at 150 ° C. to 190 ° C. for 10 to 120 seconds. It is preferable to hold it because the reaction between the coupling agent and silica is completely performed.
  • Step F-6 after the kneaded product obtained in Step X2-6 is cooled, a vulcanizing agent (E-6) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • a vulcanizing agent (E-6) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the vulcanization accelerator may be added all at once in Step F-6, but after adding a part or all of it in Step X1-6 and / or Step X2-6, the remaining amount is added in Step F. Is preferred.
  • Step F-6 By adding a part or the whole amount in the step X1-6 and / or the step X-62, dispersion of the silica and the rubber component can be further promoted.
  • the kneaded product obtained in step X2-6 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-6 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in step F-6 is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in Step F-6 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • Vulcanization Step A vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-6 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the sixth invention can be obtained satisfactorily.
  • Rubber composition for tire The rubber composition for tire according to the sixth invention can be used for each member of a tire, and among them, the rubber composition for tire having improved workability, fuel efficiency and wear resistance in a well-balanced manner Since it is a thing, it can be used suitably for a tread or a sidewall.
  • the tire of the sixth invention can be produced by a usual method using the tire rubber composition according to the sixth invention. That is, the tire rubber composition produced by the production method of the sixth invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire is produced on a tire molding machine.
  • the tire according to the sixth aspect of the invention is manufactured by pasting together with the members and forming by an ordinary method to form an unvulcanized tire and heating and pressing the unvulcanized tire in a vulcanizer. Can do.
  • the tire of 6th invention does not ask
  • the pneumatic tire can be suitably used as a passenger tire, truck / bus tire, motorcycle tire, high-performance tire, and the like.
  • the high-performance tire in this specification is a tire that is particularly excellent in grip performance, and is a concept that includes a competition tire used in a competition vehicle.
  • the seventh invention provides a rubber component (A-7) containing at least one selected from the group consisting of natural rubber and diene synthetic rubber, silica (B-7), and a nitrogen adsorption specific surface area of 200 m 2 / g or less.
  • a method for producing a rubber composition for tires comprising a coupling agent (D2-7) having a vulcanizing agent and a vulcanizing agent (E-7) comprising a vulcanizing agent and a vulcanization accelerator, (Step X1-7) Step X1-7 for kneading part or all of A-7, B-7, C1-7, D1-7, and optionally a part of E, (Step X2-7) Step X2-7, kneading part of B-7, remaining amount of B-7, C2-7, D2-7, and optionally part of E-7, and (Step F-7) Step F-7 for kneading the kneaded product of Step X2-7 and the remaining
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the rubber component preferably contains styrene butadiene rubber and / or butadiene rubber having a functional group that reacts with silica.
  • Carbon DB 2 (C2-7) preferably has a DBP oil absorption of 300 ml / 100 g or more.
  • the rubber composition preferably has a volume resistivity of less than 1.0 ⁇ 10 7 ⁇ ⁇ cm.
  • the amount of silica added is preferably 50 to 95% by mass of the total amount of silica added.
  • the maximum temperature in the step X1-7 is 140 ° C. to 200 ° C.
  • Step X1-7 It is preferable to knead a part or all of the vulcanization accelerator in Step X1-7 and / or Step X2-7.
  • step X1-7 it is a method for producing a rubber composition containing a surfactant, and it is preferable to knead the surfactant in step X1-7 and / or step X2-7.
  • the seventh invention relates to a tire having a tire member made of the tire rubber composition manufactured by the above manufacturing method.
  • the seventh invention it is possible to manufacture a rubber composition for tires with improved fuel economy, wear resistance, wet grip performance and conductivity in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire in which fuel economy, wear resistance, wet grip performance and conductivity are improved in a well-balanced manner. it can.
  • the tire rubber composition according to the seventh invention comprises a predetermined rubber component (A-7), silica (B-7), carbon black (C1-7) and (C2-7) having a predetermined nitrogen adsorption specific surface area. ), Coupling agents (D1-7) and (D2-7), and a vulcanizing agent (E-7) containing a vulcanizing agent and a vulcanization accelerator.
  • the rubber component (A-7) includes at least one selected from the group consisting of natural rubber and diene synthetic rubber, and preferably includes two or more. By blending a plurality of diene rubbers, defects of a specific rubber can be compensated and physical properties can be improved in a balanced manner. These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride. In addition, what is necessary is just to select suitably according to an application member etc. about a rubber component kind and compounding quantity.
  • NR natural rubber
  • modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), deproteinized natural rubber (DPNR), and high-purity natural rubber (HPNR). Etc. are also included.
  • NR is not particularly limited, and those generally used in the tire industry such as SIR20, RSS # 3, TSR20, and the like can be used.
  • the content in the rubber component (A-7) is preferably 5% by mass or more, and more preferably 10% by mass or more, because the fracture resistance of the rubber composition is improved. Further, the content of NR is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 50% by mass or less, because it is excellent in fuel efficiency and wear resistance.
  • diene synthetic rubber examples include isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), and styrene isoprene butadiene rubber (SIBR).
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • the SBR is not particularly limited, but includes unmodified solution polymerization SBR (S-SBR), unmodified emulsion polymerization SBR (E-SBR), and these modified SBRs (modified S-SBR, modified E-SBR), etc. Is mentioned.
  • S-SBR unmodified solution polymerization SBR
  • E-SBR unmodified emulsion polymerization SBR
  • modified SBR modified SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like).
  • S-SBR and modified S-SBR are preferable because the grip performance and wear resistance can be improved in a well-balanced manner.
  • a silyl group, amino group, amide group Particularly preferred is a modified S-SBR having at least one selected from the group consisting of a hydroxyl group and an epoxy group.
  • SBRs may be used singly, but SBRs having different physical properties such as styrene content may be used in combination depending on applications. In addition, what is necessary is just to select suitably according to an application member.
  • the styrene content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more from the viewpoint of grip performance and rubber strength. Further, the styrene content of SBR is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less from the viewpoint of low fuel consumption. In the present specification, the styrene content of SBR is a value calculated by 1 H-NMR measurement.
  • the vinyl bond amount of SBR is preferably 10 mol% or more, more preferably 15 mol% or more, and further preferably 20 mol% or more from the viewpoints of dry grip performance, wet grip performance and rubber strength.
  • the vinyl bond amount of SBR is preferably 65 mol% or less, more preferably 60 mol% or less, and further preferably 30 mol% or less from the viewpoint of low fuel consumption.
  • the vinyl bond amount of SBR in this specification shows the vinyl bond amount of a butadiene part, and is a value calculated by dry grip performance and wet grip performance measurement.
  • the content in the rubber component (A-7) in the case of containing SBR is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more from the viewpoint of dry grip performance and wet grip performance. preferable. Moreover, 90 mass% or less is preferable from a wear-resistant viewpoint, and, as for content of SBR, 80 mass% or less is more preferable.
  • BR for the reason of excellent wear resistance.
  • a rubber composition in which a white filler such as silica (B-7) is blended with BR generally has a problem that the dispersibility of the filler is low and it is difficult to obtain desired performance.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent. Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content in the rubber component (A-7) is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance. Further, the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • the modified SBR and the modified BR usually have a strong functional group reaction, and the rubber component itself is often agglomerated to make it difficult to disperse the filler.
  • the predetermined coupling agent is used. By kneading and kneading the rubber, aggregation of the rubber component is prevented and the reaction with silica is promoted.
  • silica (B-7) is not particularly limited, and those commonly used in the tire industry can be used. For example, dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid) and the like can be mentioned, but wet process silica is preferred because of the large number of silanol groups.
  • Silica (B-7) a nitrogen adsorption specific surface area (N 2 SA) of the viewpoint 40 m 2 / g or more is preferred from the breaking strength, more preferably at least 50 m 2 / g, more preferably at least 100 m 2 / g, 130m 2 / g or more is particularly preferable, and 160 m 2 / g or more is most preferable.
  • N 2 SA of the silica (B-7) from the viewpoint of fuel economy and workability 500 meters 2 / g or less, more preferably not more than 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g or less is particularly preferable.
  • N 2 SA of silica (B-7) is a value measured by the BET method in accordance with ATSM D3037-81.
  • the content (total addition amount) of silica (B-7) is preferably 10 parts by mass or more, and 20 parts by mass with respect to 100 parts by mass of the rubber component (A-7) from the viewpoint of fuel efficiency and wet grip performance.
  • the above is more preferable, 30 parts by mass or more is further preferable, and 40 parts by mass or more is particularly preferable.
  • the total content of silica (B-7) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 120 parts by mass or less from the viewpoint of dispersibility of the filler in the rubber component and processability. preferable.
  • Carbon black rubber composition for a tire according to the invention of the seventh nitrogen adsorption specific surface area carbon black (N 2 SA) is 200 meters 2 / g or less of carbon black 1 (C1-7) and N 2 SA is 900 meters 2 / g It contains carbon black 2 (C2-7) as described above.
  • Carbon black 1 and carbon black 2 in combination, fuel economy, wear resistance, wet grip performance and conductivity can be improved in a well-balanced manner.
  • Carbon black other than carbon black 1 (C1-7) and carbon black 2 (C2-7) may be used in combination.
  • Carbon black 1 (C1-7) is not particularly limited as long as the nitrogen adsorption specific surface area is 200 m 2 / g or less, and GPF, FEF, HAF, ISAF, SAF, etc., which are common in the tire industry can be used. It may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black 1 (C1-7) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and conductivity. Further, N 2 SA of the carbon black 1 (C1-7) is 200 m 2 / g or less, and preferably 150 m 2 / g or less. When N 2 SA of carbon black 1 (C1-7) exceeds 200 m 2 / g, workability tends to deteriorate. In addition, N 2 SA of carbon black in this specification is a value measured according to A method of JIS K6217.
  • Carbon oil 1 (C1-7) has a dibutyl phthalate (DBP) oil absorption of preferably 60 ml / 100 g or more, more preferably 70 ml / 100 g or more, from the viewpoints of reinforcement and fracture characteristics. Further, the DBP oil absorption amount of carbon black 1 (C1-7) is preferably 130 ml / 100 g or less, and more preferably 120 ml / 100 g or less, from the viewpoints of elongation at break at break, fracture characteristics and durability. In addition, the DBP oil absorption amount of carbon black in this specification is a value determined by the measuring method of JIS K6217-4.
  • DBP dibutyl phthalate
  • the content of carbon black 1 (C1-7) is preferably 1 part by mass or more, preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-7), from the viewpoint of the effect of containing carbon black. More preferred is 8 parts by mass or more.
  • the content of carbon black 1 (C1-7) is preferably 30 parts by mass or less, and more preferably 20 parts by mass or less from the viewpoint of low fuel consumption.
  • Carbon black 2 (C2-7) is a so-called conductive carbon black. According to the method for producing the rubber composition of the seventh invention containing carbon black 2 (C2-7), the fuel efficiency and conductivity can be reduced easily. It is possible to improve the sex in a well-balanced manner.
  • Carbon black 2 (C2-7) has a nitrogen adsorption specific surface area (N 2 SA) of 900 m 2 / g or more, preferably 1000 m 2 / g or more, and more preferably 1050 m 2 / g or more.
  • N 2 SA nitrogen adsorption specific surface area
  • N 2 SA of the carbon black 2 (C2-7) is, fuel economy, dispersibility, in view of the fracture properties and durability, preferably 1200 m 2 / g or less, more preferably 1150m 2 / g, 1100m 2 / g or less is more preferable.
  • the DBP oil absorption amount of carbon black 2 (C2-7) is preferably ⁇ 7), more preferably 350 ml / 100 g or more from the viewpoint of conductivity.
  • the DBP oil absorption of carbon black 2 (C2-7) is preferably 600 ml / 100 g or less, more preferably 500 ml / 100 g or less, and even more preferably 450 ml / 100 g or less, from the viewpoint of fracture characteristics and durability.
  • Examples of suitable commercially available products of carbon black 2 include Lion Co., Ltd. Lionite (N 2 SA: 1052 m 2 / g, DBP: 378 ml / 100 g), Lion Co., Ltd. CHENBLACK EC300J (N 2 SA: 800 m 2 / g, DBP: 365 ml / 100 g), Evonik's PRINTEX XE2B (N 2 SA: 1000 m 2 / g, DBP: 420 ml / 100 g), and the like.
  • the content of carbon black 2 (C2-7) is preferably 0.5 parts by mass or more and more preferably 1.0 part by mass or more with respect to 100 parts by mass of the rubber component (A-7) from the viewpoint of conductivity. 2.0 parts by mass or more is more preferable. Further, the content of carbon black 2 (C2-7) is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less, from the viewpoint of low fuel consumption and cost.
  • the coupling agent (D1-7) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • Examples of the coupling agent (D1-7) represented by the chemical formula (1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3- Lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoyl Ruthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxys
  • the coupling agent (D2-7) is a coupling agent having a sulfide group.
  • a coupling agent having a sulfide group for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3 -Trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-tri Ethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trieth
  • Si75 bis (3-triethoxysilylpropyl) disulfide
  • Si69 bis (3-triethoxy) manufactured by Evonik, which are generally commercially available as a mixture having a certain distribution
  • Preferable examples include silylpropyl) tetrasulfide) and the like.
  • the total content of the coupling agents (D1-7) and (D2-7) is 4 parts by mass or more with respect to 100 parts by mass of the total content of silica from the viewpoint of reaction with the filler and workability improvement effect. Preferably, 5 parts by mass or more is more preferable, and 6 parts by mass or more is more preferable. Further, the total content of the coupling agent is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost.
  • the vulcanizing agent (E-7) includes a vulcanizing agent (E1-7) and a vulcanization accelerator (E2-7). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-7) The vulcanizing agent (E1-7) is not particularly limited, and those commonly used in the tire industry can be used. From the viewpoint that the effect of the seventh invention can be obtained satisfactorily, sulfur is preferred, and powdered sulfur is more preferred. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-7) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-7). Further, the content of the vulcanizing agent (E1-7) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-7) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-7) The vulcanization accelerator (E2-7) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-7) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-7). Further, the content of the vulcanization accelerator (E2-7) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-7) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the seventh invention includes other compounding agents conventionally used in the rubber industry, such as plasticizer (F-7), silica and carbon black. Reinforcing fillers, anti-aging agents (G-7), antioxidants, stearic acid, waxes and the like can be appropriately blended.
  • the rubber composition for a tire according to the seventh invention preferably contains the plasticizer (F-7) for the reason that the processability is improved and the strength of the rubber can be increased.
  • the plasticizer (F-7) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, and liquid resin. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content relative to 100 parts by mass of the rubber component (A-7) is preferably 2 parts by mass or more, more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-7) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions.
  • the anti-aging agent (G-7) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions.
  • naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-nap
  • the content relative to 100 parts by mass of the rubber component (A-7) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • Surfactant in one embodiment of the seventh invention, it is preferable to further contain a surfactant.
  • a surfactant By containing the surfactant, the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, from the viewpoint of the silica dispersibility improvement effect with respect to 100 parts by mass of the rubber component (A-7). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • the specific volume resistivity of the rubber composition according to the seventh invention is preferably less than 1.0 ⁇ 10 7 ⁇ ⁇ cm, because conductivity is obtained and noise and sparking due to static electricity can be prevented. 1.0 ⁇ 10 6 ⁇ ⁇ cm or less is more preferable.
  • the volume specific resistivity in this specification is a value calculated
  • the method for producing a tire rubber composition according to the seventh aspect of the invention is characterized in that the kneading step is step X1-7, step X2-7 and step F.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • step X1-7 and step X1-7 in which part or all of A-7 and B-7, C1-7, D1-7, and optionally part of E-7 are kneaded Product, remaining amount of B-7, C2-7, D2-7, and optionally kneading a part of E-7, further kneaded product of step X2-7, and E-7
  • This is a method for producing a rubber composition for a tire, including a step of performing a kneading step including step F-7 for kneading the remaining amount to obtain an unvulcanized rubber composition.
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the seventh invention.
  • the timing of adding and kneading other compounding agents such as plasticizer (F-7), anti-aging agent (G-7), zinc oxide, and stearic acid is not particularly limited, and Steps X1-7 and X2- 7 or step F-7, or may be added in divided portions.
  • the production method of the seventh invention is characterized in that the coupling agent (D1-7) is kneaded in a step prior to the coupling agent (D2-7) having a sulfide group (step X1-7).
  • the coupling agent (D1-7) since a plurality of alkoxysilyl groups do not exist in the molecule, there is little aggregation between the coupling agents, and the mercapto group that reacts favorably with the polymer portion becomes a fatty acid thioester, which is abrupt. Unevenness associated with the reaction is also prevented. Therefore, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity even in the kneading with the first input as in the seventh invention.
  • Step X1-7 the total amount of rubber component (A-7), part or all of silica (B-7), carbon black 1 (C1-7), coupling agent (D1-7) and optionally vulcanized A compounding agent containing a part of the system medicine (E-7) is kneaded with a Banbury mixer or the like.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D1-7) takes the structure of the chemical formula (1), so that the thioester group is decomposed during kneading to gradually produce a highly active mercapto group.
  • step X1 it is possible to disperse the agent and promote bonding with the polymer. If conventional polysulfide silane (coupling agent (D2-7)) is charged in step X1, sulfur is released even at this stage, so that the workability is lowered and the dispersion of the filler is hindered. Although the activity of itself decreases, the coupling agent (D1-7) represented by the chemical formula (1) does not release sulfur, so that the processability is maintained according to the production method of the seventh invention. It is possible to continue kneading.
  • the addition amount of silica (B-7) in step X1-7 is 50% by mass or more of the total addition amount of silica (B-7) from the viewpoints of improving the silica kneading effect, sufficient dispersion of silica, and wear resistance. 60 mass% or more is more preferable, 70 mass% or more is further more preferable, and 80 mass% or more is particularly preferable.
  • the amount of silica (B-7) added in step X1-7 is the same as the total amount of silica (B-7) from the viewpoint of the effect of divided introduction of silica in step X2-7, which will be described later, fuel efficiency and wear resistance.
  • the amount added is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the amount of the coupling agent (D1-7) represented by the chemical formula (1) in the step X1-7 is sufficient for the reaction with the filler, and the processability of the coupling agent (D1-7) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-7) added in Step X1-7.
  • the addition amount of the coupling agent (D1-7) represented by the chemical formula (1) in the step X1-7 is preferably 20 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the plasticizer (F-7) is not particularly limited, but for the reason that the dispersion of the filler becomes good, in the step X1-7, 50% by mass of the total amount of the plasticizer (F-7) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more. When the amount of plasticizer (F-7) added in step X1-7 is less than 100% by mass, the remaining amount is step X2- because the dispersibility of the silica added in step X2-7 is further improved. 7 is preferably added.
  • the surfactant is preferably added in the step X1-7 and / or the step X2-7 from the viewpoint of promoting the dispersion effect of silica, further promoting the dispersion effect of silica and gelling the coupling agent. It is preferable to add in step X1-7 because it can be suppressed.
  • the discharge temperature of the kneading in the step X1-7 is not particularly limited, but is preferably 142 ° C. or higher, more preferably 146 ° C. or higher, and further preferably 148 ° C. or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower. If the discharge temperature of kneading in step X1-7 is within the above range, a kneaded product in which silica (B-7) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during kneading in step X1-7 is not particularly limited, but is preferably 140 ° C. or higher from the viewpoint that the coupling agent reacts sufficiently and a kneaded material in which silica is well dispersed can be obtained efficiently. 145 ° C or higher is more preferable, and 150 ° C or higher is more preferable. In order to prevent rubber burn, the maximum temperature during kneading is preferably 200 ° C. or lower. If the temperature exceeds 150 ° C. in the normal kneading step, problems such as gelation may occur. However, in step X1-7 according to the seventh invention, no polysulfide silane is added as a vulcanization accelerator. Even if the temperature becomes high, no trouble occurs, the reaction of the coupling agent can be promoted, and the dispersion of silica can be promoted.
  • the kneading time in step X1-7 is not particularly limited, but is preferably 3.0 minutes or more, more preferably 4.0 minutes or more, from the viewpoint of efficiently obtaining a kneaded material in which silica is well dispersed. More preferably 5 minutes or more.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is held at 150 ° C. to 190 ° C. for 10 to 120 seconds. It is preferable because the reaction between the agent (D1-7) and silica is completely carried out.
  • Step X2-7 includes the remaining amount of silica (B-7), carbon black 2 (C2-7), coupling agent (D2-7), and optionally a part of vulcanizing agent (E-7).
  • the compounding agent is added to the kneaded product of Step X1-7 and kneaded. If carbon black 1 (C1-7) and carbon black 2 (C2-7) are kneaded at the same time, the kneading share is excessively applied to carbon black 2, and the conductive carbon black network breaks down. Although the wear resistance tends to be insufficient, carbon black 2 (C2-7) is added after adding carbon black 1 (C1-7), that is, in step X2-7.
  • the dispersion of 2 is not excessive, and an appropriate network can be formed. Furthermore, in the production method of the seventh invention, since the coupling agent (D1-7) represented by the chemical formula (1) is kneaded in the step X1-7, an early decrease in the activity of the coupling agent is prevented, and the kneading is performed. Workability in the entire operation can be maintained.
  • the coupling agent (D2-7) having a sulfide group in the step X2-7 it is possible to prevent an early decrease in activity due to the coupling agent and to maintain the workability in the entire kneading operation. it can. Further, since the coupling agent (D2-7) can release sulfur acting as a vulcanizing agent, uniform crosslinking is promoted, and rubber physical properties can be improved.
  • the amount of the coupling agent (D2-7) added in the step X2-7 is sufficient to react with the filler, and the excellent processability improvement effect of the coupling agent (D2-7) can be extracted. For the reason, it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-7) added in Step X2-7. Further, the addition amount of the coupling agent (D2-7) represented by the chemical formula (1) in the step X2-7 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the antiaging agent (G-7) is not particularly limited, but it is preferable to add the whole amount in the step X2-7 from the viewpoint of work efficiency and prevention of decrease in activity of the antiaging agent during kneading.
  • the discharge temperature of the kneading in the step X2-7 is not particularly limited, but is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 130 ° C. or higher.
  • the discharge temperature is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower. If the discharge temperature of kneading in step X2-7 is within the above range, a kneaded product in which silica (B-7) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the step X2-7 is not particularly limited, but a kneaded product in which the coupling agent (D2-7) having a sulfide group sufficiently reacts and silica is well dispersed can be obtained efficiently. From the point, 100 ° C. or higher is preferable, 120 ° C. or higher is more preferable, and 130 ° C. or higher is more preferable. In order to prevent rubber burning, the maximum temperature during kneading is preferably 2500 or less, more preferably 170 ° C. or less, and even more preferably 160 ° C. or less.
  • the kneading time in step X2-7 is not particularly limited, but is preferably 3.0 minutes or longer from the viewpoint that a kneaded material in which silica is well dispersed can be efficiently obtained.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • Step F-7 after cooling the kneaded product obtained in Step X2-7, a vulcanizing agent (E-7) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • a vulcanizing agent (E-7) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the vulcanization accelerator may be added all at once in Step F-7, but after a part or all of it is added in Step X1-7 and / or Step X2-7, the remaining amount is added in Step F-7. It is preferable to add. By adding a part or all of the amount in Step X1-7 and / or Step X2-7, dispersion of silica and the rubber component can be further promoted. In particular, it is more preferable to add part or all of the guanidine vulcanization accelerator in the step X1-7 and / or the step X2-7 because the dispersibility of silica can be further promoted.
  • the kneaded product obtained in step X2-7 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-7 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in step F-7 is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in Step F-7 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • Vulcanization Step A vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-7 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the seventh invention can be obtained satisfactorily.
  • the tire rubber composition according to the seventh invention can be used for each member of a tire, and in particular, the workability, fuel efficiency, wear resistance, wet grip performance and conductivity are improved in a well-balanced manner. Therefore, it can be suitably used for treads and sidewalls.
  • the tire of the seventh invention can be produced by a usual method using the tire rubber composition according to the seventh invention. That is, the tire rubber composition produced by the production method of the seventh invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire is produced on a tire molding machine.
  • the tire according to the seventh aspect of the invention is manufactured by pasting together with the members and forming by an ordinary method to form an unvulcanized tire and heating and pressurizing the unvulcanized tire in a vulcanizer. Can do.
  • the tire of the seventh invention may be a pneumatic tire or a non-pneumatic tire.
  • pneumatic tires include passenger car tires, truck / bus tires, motorcycle tires, and high-performance tires.
  • the high-performance tire in this specification is a tire that is particularly excellent in grip performance, and is a concept that includes a competition tire used in a competition vehicle.
  • non-pneumatic tires include solid tires, airless tires, and track belts.
  • a preferred embodiment of the tire of the seventh invention includes an airless tire having a tread composed of the rubber composition for a tire according to the seventh invention.
  • Airless tires tend to be inferior in electrical conductivity of the entire tire because there are no conductive members such as steel cords or the wheels are made of resin. Good electrical conductivity can be obtained by using the airless tire used in the above.
  • the eighth invention relates to a rubber component (A-8) containing at least one selected from the group consisting of natural rubber and diene synthetic rubber, silica (B-8), carbon black (C-8), the following chemical formula (
  • a method for producing a rubber composition for a tire comprising the coupling agent (D-8) shown in 1) and a vulcanizing agent (E-8) containing a vulcanizing agent and a vulcanization accelerator, (Step X1-8) Step X1-8 for kneading a part of A-8, B-8, a part of D-8, and optionally a part of E-8, (Step X2-8) Step X2-8 for kneading the kneaded product of Step X1-8, the remaining amount of B-8, the remaining amount of D-8, and optionally a part of E-8, and (Step F2) -8) including the kneaded product of step X2-8 and step F-8 of knea
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the rubber component preferably contains styrene butadiene rubber and / or butadiene rubber having a functional group that reacts with silica.
  • the nitrogen adsorption specific surface area of silica is 160 m 2 / g or more, and the total addition amount of silica is 40 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the addition amount of the coupling agent in each step of Step X1-8 and Step X2-8 is preferably 4 to 10 parts by mass with respect to 100 parts by mass of silica added in each step.
  • the amount of silica added is preferably 50 to 95% by mass of the total amount of silica added.
  • the maximum temperature in the step X1-8 and / or the step X2-8 is preferably 140 ° C. to 200 ° C.
  • Part of the vulcanization accelerator is preferably kneaded in step X1-8 or step X2-8.
  • step X1-8 it is a method for producing a rubber composition containing a surfactant, and it is preferable to knead the surfactant in step X1-8 and / or step X2-8.
  • the eighth invention relates to a tire having a tire member made of the tire rubber composition manufactured by the above manufacturing method.
  • the eighth aspect of the invention it is possible to produce a tire rubber composition having improved fuel economy, wear resistance, and wet grip performance in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner.
  • the tire rubber composition according to the eighth invention comprises a predetermined rubber component (A-8), silica (B-8), carbon black (C-8), a predetermined coupling agent (D-8), and A vulcanizing agent (E-8) containing a vulcanizing agent and a vulcanization accelerator is contained.
  • the rubber component (A-8) includes at least one selected from the group consisting of natural rubber and diene synthetic rubber, and preferably includes two. By blending a plurality of diene rubbers, defects of a specific rubber can be compensated and physical properties can be improved in a balanced manner. These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride. In addition, what is necessary is just to select suitably according to an application member etc. about a rubber component kind and compounding quantity.
  • NR natural rubber
  • modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), deproteinized natural rubber (DPNR), and high-purity natural rubber (HPNR). Etc. are also included.
  • NR is not particularly limited, and those generally used in the tire industry such as SIR20, RSS # 3, TSR20, and the like can be used.
  • the content in the rubber component (A-8) is preferably 5% by mass or more, and more preferably 10% by mass or more, because the fracture resistance of the rubber composition is improved. Further, the content of NR is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 50% by mass or less, because it is excellent in fuel efficiency and wear resistance.
  • diene synthetic rubber examples include isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), and styrene isoprene butadiene rubber (SIBR).
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • the SBR is not particularly limited, but includes unmodified solution polymerization SBR (S-SBR), unmodified emulsion polymerization SBR (E-SBR), and these modified SBRs (modified S-SBR, modified E-SBR), etc. Is mentioned.
  • S-SBR unmodified solution polymerization SBR
  • E-SBR unmodified emulsion polymerization SBR
  • modified SBR modified SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like).
  • S-SBR and modified S-SBR are preferable because the grip performance and wear resistance can be improved in a well-balanced manner.
  • a silyl group, amino group, amide group Particularly preferred is a modified S-SBR having at least one selected from the group consisting of a hydroxyl group and an epoxy group.
  • SBRs may be used singly, but SBRs having different physical properties such as styrene content may be used in combination depending on applications. In addition, what is necessary is just to select suitably according to an application member.
  • the styrene content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more from the viewpoints of dry grip performance, wet grip performance and rubber strength. Further, the styrene content of SBR is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less from the viewpoint of low fuel consumption. In the present specification, the styrene content of SBR is a value calculated by 1 H-NMR measurement.
  • the vinyl bond amount of SBR is preferably 10 mol% or more, more preferably 15 mol% or more, and even more preferably 20 mol% or more from the viewpoints of dry grip performance, wet grip performance and rubber strength.
  • the vinyl bond amount of SBR is preferably 65 mol% or less, more preferably 60 mol% or less, and further preferably 30 mol% or less from the viewpoint of low fuel consumption.
  • the vinyl bond amount of SBR indicates the vinyl bond amount of the butadiene part, and is a value calculated by 1 H-NMR measurement.
  • the content in the rubber component (A-8) containing SBR is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more from the viewpoint of dry grip performance and wet grip performance. preferable. Moreover, 90 mass% or less is preferable from a wear-resistant viewpoint, and, as for content of SBR, 80 mass% or less is more preferable.
  • BR for the reason of excellent wear resistance.
  • a rubber composition in which a white filler such as silica (B) is blended with BR generally has a problem that it is difficult to obtain desired performance because the dispersibility of the filler is low.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent (D-8). Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content in the rubber component (A-8) is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance. Further, the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • the modified SBR and the modified BR usually have a strong functional group reaction, so that the rubber component itself is often aggregated to make it difficult to disperse the filler.
  • the predetermined coupling agent is used. By dividing and kneading (D-8), the rubber component is prevented from agglomerating and the reaction with silica is promoted.
  • Silica (B-8) Silica (B-8) is not particularly limited, and those commonly used in the tire industry can be used. For example, dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid) and the like can be mentioned, but wet process silica is preferred because of the large number of silanol groups.
  • Silica nitrogen adsorption specific surface area (N 2 SA) of (B-8) is, in view 40 m 2 / g or more is preferred from the breaking strength, more preferably at least 50 m 2 / g, more preferably at least 100 m 2 / g, 130m 2 / g or more is particularly preferable, and 160 m 2 / g or more is most preferable.
  • N 2 SA of the silica (B-8) from the viewpoint of fuel economy and workability 500 meters 2 / g or less, more preferably not more than 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g or less is particularly preferable.
  • N 2 SA of silica (B-8) is a value measured by the BET method according to ATSM D3037-81.
  • the total content of silica (B-8) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, from the viewpoint of low fuel consumption and wet grip performance with respect to 100 parts by mass of the rubber component (A-8). 30 parts by mass or more is more preferable, and 40 parts by mass or more is particularly preferable.
  • the total content of silica (B-8) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 120 parts by mass or less from the viewpoint of dispersibility of the filler in the rubber component and processability. preferable.
  • Carbon black (C-8) The carbon black (C-8) is not particularly limited, and those commonly used in the tire industry such as GPF, FEF, HAF, ISAF, SAF, etc. can be used alone or in combination of two or more. Also good.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black (C-8) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and antistatic properties. Also, N 2 SA of the carbon black (C-8) is preferably not more than 200 meters 2 / g from the viewpoint of workability, more preferably at most 150m 2 / g. In the present specification, N 2 SA of carbon black (C-8) is a value measured according to method A of JIS K6217.
  • the content (total addition amount) of carbon black (C-8) is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component (A-8).
  • content of carbon black (C) is less than 1 mass part, there exists a possibility that the effect by containing carbon black may not fully be acquired.
  • the content of carbon black (C-8) is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoints of low fuel consumption and processability.
  • the predetermined coupling agent (D-8) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • the total content of the coupling agent (D-8) represented by the chemical formula (1) is 4 parts by mass or more with respect to 100 parts by mass of the total content of silica from the viewpoint of reaction with the filler and an effect of improving workability. Is preferably 5 parts by mass or more, and more preferably 6 parts by mass or more. Further, the content of the coupling agent (D-8) is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of silica dispersion effect commensurate with an increase in cost. .
  • Vulcanizing chemicals The vulcanizing agent (E-8) includes a vulcanizing agent (E1-8) and a vulcanization accelerator (E2-8). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-8) The vulcanizing agent (E1-8) is not particularly limited, and those commonly used in the tire industry can be used. From the viewpoint that the effect of the eighth invention can be obtained satisfactorily, sulfur is preferable, and powdered sulfur is more preferable. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-8) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-8). Further, the content of the vulcanizing agent (E1-8) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-8) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-8) The vulcanization accelerator (E2-8) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-8) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-8). Further, the content of the vulcanization accelerator (E2-8) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-8) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the eighth invention includes other compounding agents conventionally used in the rubber industry, such as plasticizer (F-8), silica and carbon black. Reinforcing fillers, anti-aging agents (G-8), antioxidants, stearic acid, waxes and the like can be appropriately blended.
  • the rubber composition for tires according to the eighth invention preferably contains the plasticizer (F-8) for the reason that the processability is improved and the strength of the rubber can be increased.
  • the plasticizer (F-8) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oils, liquid polymers, and liquid resins. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content with respect to 100 parts by mass of the rubber component (A-8) is preferably 2 parts by mass or more, more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-8) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions.
  • a naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.
  • 2,2 Quinoline anti-aging agents such as a polymer of 1,4-trimethyl-1,2-d
  • the content relative to 100 parts by mass of the rubber component (A-8) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • Surfactant in one embodiment of the eighth invention, it is preferable to further contain a surfactant.
  • a surfactant By containing the surfactant, the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more from the viewpoint of an effect of improving the dispersibility of silica with respect to 100 parts by mass of the rubber component (A-8). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • the method for producing a tire rubber composition according to the eighth invention is characterized in that the kneading step is step X1-8, step X2-8 and step F-8.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • Step X1-8, Step X1-8, Step X2-8 in which the remaining amount of -8, the remaining amount of D-8, and optionally a part of E-8 are kneaded, and the kneaded product of step X2-8 and the remaining amount of E-8 are mixed.
  • a kneading step including kneading step F-8 is performed, and a step of obtaining an unvulcanized rubber composition is included.
  • step X1-8 and / or step X2-8 a part or all of the vulcanization accelerator is kneaded. It is a manufacturing method of the rubber composition for tires.
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce a tire rubber composition according to the eighth invention.
  • the timing of adding and kneading other compounding agents such as carbon black (C-8), plasticizer (F-8), anti-aging agent (G-8), zinc oxide, stearic acid is not particularly limited, It may be added at any of step X1-8, step X2-8 or step F-8, or may be added in divided portions.
  • the production method of the eighth invention is characterized in that the coupling agent (D-8) represented by the chemical formula (1) is divided and kneaded.
  • the coupling agent (D-8) since a plurality of alkoxysilyl groups do not exist in the molecule, aggregation of the coupling agents is small, and a mercapto group that reacts favorably with the polymer part becomes a fatty acid thioester, thereby rapidly Therefore, even in the kneading with divided injection as in the eighth invention, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity.
  • Step X1-8 In step X1-8, the total amount of rubber component (A-8), a part of silica (B-8), a coupling agent (D-8) and optionally a part of vulcanizing agent (E-8) are added.
  • the containing compounding agent is kneaded with a Banbury mixer.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D-8) takes the structure of the chemical formula (1), so that the thioester group is decomposed as it is kneaded to gradually produce a highly active mercapto group. It is possible to disperse the agent and promote bonding with the polymer.
  • the addition amount of silica (B-8) in step X1-8 is 50% by mass or more of the total addition amount of silica (B-8) from the viewpoints of improving the silica kneading effect, sufficient dispersion of silica, and wear resistance. 60 mass% or more is more preferable, 70 mass% or more is further more preferable, and 80 mass% or more is particularly preferable. Further, the amount of silica (B-8) added in step X1-8 is the same as that of silica (B-8) from the viewpoints of the effect of divided introduction of silica in step X2-8, the fuel efficiency and the wear resistance described later. The amount added is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the amount of the coupling agent (D-8) represented by the chemical formula (1) in the step X1-8 is sufficient to react with the filler, and the processability of the coupling agent (D-8) is improved. For the reason that the effect can be brought out, it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-8) added in Step X1-8. Further preferred. Further, the addition amount of the coupling agent (D-8) represented by the chemical formula (1) in the step X1-8 is preferably 20 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the carbon black (C-8) is preferably added by -8 in Step X1-8 and / or Step X2.
  • the amount of carbon black (C-8) added in step X1-8 is 10% by mass or more of the total amount of carbon black (C-8) added from the viewpoint of improving the dispersibility of carbon black and increasing the efficiency of the process.
  • the dispersion of the silica and the rubber component can be further promoted by kneading a part or all of the vulcanization accelerator (E2-8) in Step X1-8 and / or Step X2-8.
  • a part or all of the guanidine vulcanization accelerator in Step X1-8 and / or Step X2-8 because the dispersibility of silica can be further promoted.
  • a part of the vulcanization accelerator (E2-8) is preferably kneaded in the step X1-8 or the step X2-8, and more preferably kneaded in the step X1-8.
  • the step of adding the plasticizer (F-8) is not particularly limited, but for the reason that the dispersion of the filler becomes good, in the step X1-8, 50% by mass of the total amount of the plasticizer (F-8) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the amount of the plasticizer (F-8) added in step X1-8 is less than 100% by mass, the remaining amount is step X2- because the dispersibility of the silica added in step X2-8 is further improved. 8 is preferably added.
  • the surfactant is preferably added in the step X1-8 and / or the step X2-8 from the viewpoint of promoting the dispersion effect of the silica, further promoting the dispersion effect of the silica and gelling the coupling agent. It is preferable to add in step X1-8 because it can be suppressed.
  • Step X2-8 the remaining amount of silica (B-8), the remaining amount of coupling agent (D-8), optionally a part of vulcanizing agent (E-8) and other compounding agents are added to step X2-8.
  • kneaded material X1-8 knead. If the entire amount of silica is added in step X1-8, the silica tends to be unevenly distributed in the polymer part having high affinity with silica such as a modified polymer and / or the interface part of the polymer.
  • silica is dividedly added in Step X1-8 and Step X2-8, respectively, so that the silica is easily dispersed throughout the rubber component.
  • the silica added later (introduced in Step X2-8) has an effect of promoting the kneading effect by applying a share to the rubber component.
  • the coupling agent (D-8) represented by the chemical formula (1) is dividedly introduced, so that the early decrease in the activity of the coupling agent is prevented, and the workability in the entire kneading operation is prevented. Can keep.
  • the addition amount of the coupling agent (D-8) represented by the chemical formula (1) in the step X2-8 makes the reaction with the filler sufficient, and the processability of the coupling agent (D-8) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-8) added in Step X2-8.
  • the addition amount of the coupling agent (D-8) represented by the chemical formula (1) in the step X2-8 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the antiaging agent (G-8) is not particularly limited, but it is preferable to add the whole amount in the step X2-8 from the viewpoint of work efficiency and prevention of decrease in activity of the antiaging agent during kneading.
  • the discharge temperature for kneading in Step X1-8 and Step X2-8 is not particularly limited, but is preferably 142 ° C. or higher, more preferably 146 ° C. or higher, and further preferably 148 ° C. or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower. If the discharge temperature of kneading in step X1-8 and step X2-8 is within the above range, a kneaded product in which silica (B-8) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the steps X1-8 and X2-8 is not particularly limited, but it is possible to efficiently obtain a kneaded product in which the coupling agent sufficiently reacts and silica is well dispersed. ° C or higher, preferably 145 ° C or higher, more preferably 150 ° C or higher.
  • mixing has preferable 200 degrees C or less. In a normal kneading process, if the temperature exceeds 150 ° C., problems such as gelation may occur. However, even if the kneading temperature becomes high by adding the coupling agent (D-8) separately, the problem occurs. Therefore, it is possible to promote the reaction of the coupling agent and promote the dispersion of silica.
  • the kneading time in Step X1-8 and Step X2-8 is not particularly limited, but is preferably 3.0 minutes or more from the viewpoint that a kneaded material in which silica is well dispersed can be obtained efficiently.
  • the above is more preferable, and 4.5 minutes or more is further preferable.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is heated at 150 ° C. to 190 ° C. for 10 to 120 seconds. It is preferable to hold it because the reaction between the coupling agent and silica is completely performed.
  • Step F-8 after the kneaded product obtained in Step X2-8 is cooled, the remaining amount of the vulcanizing agent (E-8) containing the vulcanizing agent and the vulcanization accelerator is added, and an open roll or the like is added. Kneading to obtain an unvulcanized rubber composition.
  • the kneaded product obtained in step X2-8 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-8 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in step F-8 is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in Step F-8 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • Vulcanization Step A vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-8 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the eighth invention can be obtained satisfactorily.
  • Rubber composition for tire The rubber composition for tire according to the eighth invention can be used for each member of a tire, and in particular, the rubber composition for tire having improved workability, low fuel consumption, and wear resistance in a well-balanced manner. Since it is a thing, it can be used suitably for a tread or a sidewall.
  • the tire of the eighth invention can be produced by a normal method using the tire rubber composition according to the eighth invention. That is, the tire rubber composition produced by the production method of the eighth invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire is produced on a tire molding machine.
  • the tire according to the eighth aspect of the invention is manufactured by pasting together with the members and forming the unvulcanized tire by molding in a normal method, and heating and pressurizing the unvulcanized tire in a vulcanizer. Can do.
  • the tire according to the eighth invention may be a pneumatic tire or a non-pneumatic tire.
  • a pneumatic tire it can use suitably as a tire for passenger cars, a tire for trucks and buses, a tire for two-wheeled vehicles, a high performance tire, etc.
  • the high-performance tire in this specification is a tire that is particularly excellent in grip performance, and is a concept that includes a competition tire used in a competition vehicle.
  • the ninth invention is a rubber component containing butadiene rubber (A1-9) and isoprene-based rubber (A2-9), silica (B-9), carbon black (C-9), represented by the following chemical formula (1)
  • a method for producing a rubber composition for a tire comprising a coupling agent (D-9) and a vulcanizing agent (E-9) containing a vulcanizing agent and a vulcanization accelerator, (Step X1-9) Step X1-9 for kneading a part of A1-9, B-9, a part of D-9, and optionally a part of E-9, (Step X2-9) Step X2-9 for kneading the kneaded material of Step X1-9, the remaining amount of A2-9, B-9, the remaining amount of D-9, and optionally a part of E-9, (Step F-9) Step F-9 for kneading the kneaded product of Step X2
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the butadiene rubber (A1-9) is preferably a butadiene rubber having a functional group that reacts with silica.
  • the nitrogen adsorption specific surface area of silica is 160 m 2 / g or more, and the total addition amount of silica is 40 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the amount of the coupling agent added in each step of Step X1-9 and Step X2-9 is 4 to 10 parts by mass with respect to 100 parts by mass of silica added in each step.
  • the amount of silica added is preferably 10 to 90% by mass of the total amount of silica added.
  • the maximum temperature in the step X1-9 and / or the step X2-9 is preferably 140 ° C. to 200 ° C.
  • Step X1-9 and / or Step X2-9 it is preferable to knead a part or all of the vulcanization accelerator.
  • the ninth invention relates to a tire having a tire member made of the rubber composition for tire manufactured by the above manufacturing method.
  • the ninth aspect of the invention it is possible to manufacture a rubber composition for tires with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner.
  • the rubber composition for a tire according to the ninth invention comprises a rubber component containing butadiene rubber (A1-9) and isoprene-based rubber (A2-9), silica (B-9), carbon black (C-9), predetermined A coupling agent (D-9), and a vulcanizing agent (E-9) containing a vulcanizing agent and a vulcanization accelerator.
  • the rubber component includes butadiene rubber (A1-9) and isoprene-based rubber (A2-9).
  • A1-9 butadiene rubber
  • A2-9 isoprene-based rubber
  • These rubber components may be those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride.
  • a modifier such as tin tetrachloride or silicon tetrachloride.
  • the rubber component contains butadiene rubber (BR) because it has excellent wear resistance.
  • BR butadiene rubber
  • a rubber composition in which a white filler such as silica (B-9) is blended with BR generally has a problem that the dispersibility of the filler is low and it is difficult to obtain desired performance.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent (D-9). Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content of BR in the rubber component is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance. Further, the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • isoprene-based rubber examples include chemically synthesized polyisoprene rubber (IR), natural rubber (NR), and epoxidized natural rubber (ENR). Of these, NR and ENR are preferable from the viewpoint of availability and rubber strength.
  • the isoprene-based rubber and the modified BR usually have a strong functional group reaction, and the rubber component itself is often agglomerated, making it difficult to disperse the filler.
  • the agent (D-9) By dividing and kneading the agent (D-9), aggregation of the rubber component is prevented and the reaction with silica is promoted.
  • the rubber component may contain styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), or the like, if necessary, in addition to the BR and isoprene-based rubber.
  • SBR styrene butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • a rubber component other than BR and isoprene-based rubber is included, it is preferably added in Step X2-9 described later.
  • Silica (B-9) is not particularly limited, and those commonly used in the tire industry can be used. For example, dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid) and the like can be mentioned, but wet process silica is preferred because of the large number of silanol groups.
  • N 2 SA of the viewpoint 40 m 2 / g or more is preferred from the breaking strength, more preferably at least 50 m 2 / g, more preferably at least 100 m 2 / g, 130m 2 / g or more is particularly preferable, and 160 m 2 / g or more is most preferable.
  • N 2 SA of the silica (B-9) from the viewpoint of fuel economy and workability 500 meters 2 / g or less, more preferably not more than 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g or less is particularly preferable.
  • N 2 SA of silica (B-9) is a value measured by the BET method in accordance with ATSM D3037-81.
  • the content (total addition amount) of silica (B-9) is preferably 10 parts by mass or more with respect to 100 parts by mass of the rubber component (A-9) from the viewpoints of low fuel consumption, wet grip performance and on-ice performance. 20 mass parts or more are more preferable, 30 mass parts or more are further more preferable, and 40 mass parts or more are especially preferable.
  • the total content of silica (B-9) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 120 parts by mass or less from the viewpoint of dispersibility of the filler in the rubber component and processability. preferable.
  • Carbon black (C-9) The carbon black (C-9) is not particularly limited, and those commonly used in the tire industry such as GPF, FEF, HAF, ISAF, SAF, etc. can be used alone or in combination of two or more. Also good.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black (C-9) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and antistatic properties. Also, N 2 SA of the carbon black (C-9) is preferably not more than 200 meters 2 / g from the viewpoint of workability, more preferably at most 150m 2 / g. In the present specification, N 2 SA of carbon black (C-9) is a value measured according to A method of JIS K6217.
  • the content (total addition amount) of carbon black (C-9) is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component (A-9).
  • the content of carbon black (C-9) is less than 1 part by mass, the effect of containing carbon black may not be sufficiently obtained.
  • the content of carbon black (C-9) is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoints of low fuel consumption and processability.
  • the predetermined coupling agent (D-9) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • Examples of the coupling agent (D-9) represented by the chemical formula (1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3- Lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoyl Ruthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane
  • 3-octanoylthiopropyltriethoxysilane (NXT silane manufactured by Momentive) is particularly preferable in terms of availability and cost.
  • a general coupling agent other than the coupling agent (D-9) represented by the chemical formula (1) may be used in combination.
  • the total content of the coupling agent (D-9) represented by the chemical formula (1) is 4 parts by mass or more with respect to the total content of silica of 100 parts by mass from the viewpoint of reaction with the filler and workability improvement effect. Is preferably 5 parts by mass or more, and more preferably 6 parts by mass or more. Further, the content of the coupling agent (D-9) is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost. .
  • the vulcanizing agent (E-9) includes a vulcanizing agent (E1-9) and a vulcanization accelerator (E2-9). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-9) The vulcanizing agent (E1-9) is not particularly limited, and those commonly used in the tire industry can be used. From the viewpoint that the effect of the ninth invention can be obtained satisfactorily, sulfur is preferable, and powdered sulfur is more preferable. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-9) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-9). Further, the content of the vulcanizing agent (E1-9) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-9) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-9) The vulcanization accelerator (E2-9) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-9) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-9). Further, the content of the vulcanization accelerator (E2-9) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-9) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the ninth invention includes compounding agents conventionally used in the rubber industry, such as plasticizers (F-9), silica and carbon black.
  • a reinforcing filler, an anti-aging agent (G-9), an antioxidant, stearic acid, wax and the like can be appropriately blended.
  • the tire rubber composition according to the ninth aspect of the invention preferably contains the plasticizer (F-9) because the processability is improved and the strength of the rubber can be increased.
  • the plasticizer (F-9) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, liquid resin and the like. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content relative to 100 parts by mass of the rubber component (A-9) is preferably 2 parts by mass or more, more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-9) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions.
  • a naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.
  • 2,2 Quinoline anti-aging agents such as a polymer of 1,4-trimethyl-1,2-d
  • the content relative to 100 parts by mass of the rubber component (A-9) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • Surfactant in one embodiment of the ninth invention, it is preferable to further contain a surfactant.
  • a surfactant By containing the surfactant, the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, from the viewpoint of improving the dispersibility of silica with respect to 100 parts by mass of the rubber component (A-9). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • the method for producing a tire rubber composition according to the ninth aspect of the invention is characterized in that the kneading step is step X1-9, step X2-9 and step F-9.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • Step X1-9 a kneaded product of Step X1-9, Step X1-9, A1-9, a part of B-9, a part of D, and optionally a part of E-9, A2-9 , B-9 remaining amount, D-9 remaining amount, and optionally step X2-9 of kneading a part of E-9, and further kneaded product of step X2-9, and remaining amount of E-9
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the ninth invention.
  • the timing of adding and kneading other compounding agents such as carbon black (C-9), plasticizer (F-9), anti-aging agent (G-9), zinc oxide, stearic acid is not particularly limited, It may be added at any of step X1-9, step X2-9 or step F-9, or may be added in divided portions.
  • the manufacturing method of the ninth invention is characterized in that the coupling agent (D-9) represented by the chemical formula (1) is divided and kneaded.
  • the coupling agent (D-9) since a plurality of alkoxysilyl groups do not exist in the molecule, aggregation of the coupling agents is small, and a mercapto group that reacts favorably with the polymer part becomes a fatty acid thioester, resulting in a rapid change. Therefore, even in the kneading with divided injection as in the ninth aspect, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity.
  • Step X1-9 In Step X1-9, a part of the butadiene rubber (A1-9), a part of the silica (B-9), a part of the coupling agent (D-9), and optionally a part of the vulcanizing agent (E-9). Kneading the compounding agent containing the part with a Banbury mixer. By this step, the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D-9) takes the structure of the chemical formula (1), so that the thioester group is decomposed with kneading to gradually form a highly active mercapto group.
  • silica tends to be ubiquitous in SBR.
  • BR, silica and a predetermined coupling agent are used in step X1- By kneading first in No. 9, it is possible to allow silica to be satisfactorily present in BR, and a rubber composition that is superior in wear resistance, wet grip performance and on-ice performance can be obtained.
  • the addition amount of silica (B-9) in the step X1-9 is 10% by mass or more of the total addition amount of silica (B-9) from the viewpoint of improvement of the silica kneading effect, sufficient dispersion of silica, and wear resistance. Is preferable, 30% by mass or more is more preferable, 40% by mass or more is more preferable, and 50% by mass or more is more preferable.
  • the amount of silica (B-9) added in step X1-9 is the same as that of silica (B-9) from the viewpoints of the effect of divided introduction of silica in step X2-9, which will be described later, fuel efficiency, and wear resistance.
  • the amount added is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 85% by mass or less.
  • the addition amount of the coupling agent (D-9) represented by the chemical formula (1) in the step X1-9 makes the reaction with the filler sufficient, and the processability of the coupling agent (D-9) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-9) added in Step X1-9. Further preferred.
  • the addition amount of the coupling agent (D-9) represented by the chemical formula (1) in the step X1-9 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the carbon black (C-9) is preferably added in Step X1-9 and / or Step X2-9.
  • the amount of carbon black (C-9) added in step X1-9 is 10% by mass or more of the total amount of carbon black (C-9) added from the viewpoint of improving the dispersibility of carbon black and increasing the efficiency of the process.
  • the step of adding the plasticizer (F-9) is not particularly limited, but for the reason that the dispersion of the filler is good, in the step X1-9, 50% by mass of the total amount of the plasticizer (F-9) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the amount of the plasticizer (F-9) added in step X1-9 is less than 100% by mass, the remaining amount is step X2 because the dispersibility of the silica added in step X2-9 is further improved. It is preferable to add at -9.
  • the surfactant is preferably added in the step X1-9 and / or the step X2-9 from the viewpoint of promoting the dispersion effect of the silica, further promoting the dispersion effect of the silica and making the coupling agent gelled. It is preferable to add in step X1-9 because it can be suppressed.
  • Step X2-9 the remaining amount of isoprene-based rubber (A2-9), silica (B-9), the remaining amount of coupling agent (D-9), and optionally the vulcanizing agent (E-9)
  • the compounding agent containing a part is added to the kneaded product of Step X1-9 and kneaded. If the entire amount of silica is added in the step X1-9, the silica tends to be unevenly distributed in the isoprene-based rubber and / or the interface portion of the isoprene-based rubber. Is dividedly added in the steps X1-9 and X2-9, so that the silica is easily dispersed in the entire rubber component.
  • the silica added later (introduced in Step X2-9) has an effect of promoting the kneading effect by applying a share to the rubber component. Furthermore, in the manufacturing method of the ninth invention, since the coupling agent (D-9) represented by the chemical formula (1) is added in portions, the early decrease in the activity of the coupling agent is prevented, and the workability in the entire kneading operation is prevented. Can keep.
  • the amount of the coupling agent (D-9) represented by the chemical formula (1) in the process X2-9 is sufficient for the reaction with the filler, and the processability of the coupling agent (D-9) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-9) added in Step X2-9. Further preferred.
  • the amount of the coupling agent (D-9) represented by the chemical formula (1) in the step X2-9 is preferably 20 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the antiaging agent (G-9) is not particularly limited, but it is preferable to add the whole amount in the step X2-9 from the viewpoint of work efficiency and prevention of the activity of the antiaging agent during kneading.
  • the discharge temperature of kneading in Step X1-9 and Step X2-9 is not particularly limited, but is preferably 142 ° C. or higher, more preferably 146 ° C. or higher, and further preferably 148 ° C. or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower. If the discharge temperature of kneading in step X1-9 and step X2-9 is within the above range, a kneaded product in which silica (B-9) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the steps X1-9 and X2-9 is not particularly limited, but it is 140 from the viewpoint that the kneaded material in which the coupling agent sufficiently reacts and silica is well dispersed can be obtained efficiently. ° C or higher, preferably 145 ° C or higher, more preferably 150 ° C or higher. Moreover, in order to prevent rubber
  • the kneading time in step X1-9 and step X2-9 is not particularly limited, but is preferably 3.0 minutes or more from the viewpoint that a kneaded material in which silica is well dispersed can be obtained efficiently.
  • the above is more preferable, and 4.5 minutes or more is further preferable.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is kept at 150 ° C. to 190 ° C. for 10 to 120 seconds. It is preferable to hold it because the reaction between the coupling agent and silica is completely performed.
  • Step F-9 the kneaded product obtained in Step X2-9 is cooled, and then a vulcanizing agent (E-9) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the vulcanization accelerator may be added all at once in Step F-9, but after a part or all of it is added in Step X1-9 and / or Step X2-9, the remaining amount is added in Step F-9. It is preferable to add. By adding a part or the whole amount in the step X1-9 and / or the step X2-9, dispersion of the silica and the rubber component can be further promoted. In particular, it is more preferable to add part or all of the guanidine vulcanization accelerator in the step X1-9 and / or the step X2-9 because the dispersibility of silica can be further promoted.
  • the kneaded product obtained in step X2-9 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-9 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in step F-9 is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in Step F-9 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • the vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-9 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the ninth invention can be obtained satisfactorily.
  • Rubber composition for tire The rubber composition for tire according to the ninth invention can be used for each member of a tire, and among them, the rubber composition for tire having improved workability, fuel efficiency and wear resistance in a well-balanced manner Since it is a thing, it can be used suitably for a tread or a sidewall.
  • the tire of the ninth invention can be produced by a normal method using the tire rubber composition according to the ninth invention. That is, the tire rubber composition manufactured by the manufacturing method of the ninth invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire on a tire molding machine.
  • the tire according to the ninth aspect of the invention is manufactured by bonding together with the members and forming an unvulcanized tire by molding by a normal method, and heating and pressurizing the unvulcanized tire in a vulcanizer. Can do.
  • the tire of 9th invention does not ask
  • the pneumatic tire can be suitably used as a passenger tire, truck / bus tire, motorcycle tire, high-performance tire, and the like.
  • the high-performance tire in this specification is a tire that is particularly excellent in grip performance, and is a concept that includes a competition tire used in a competition vehicle.
  • a tenth invention is a rubber component (A-10) containing at least one selected from the group consisting of natural rubber and diene synthetic rubber, silica (B-10), and a nitrogen adsorption specific surface area of 200 m 2 / g or less.
  • a method for producing a tire rubber composition containing a vulcanizing agent (E-10) containing a vulcanization accelerator (Step X1-10) Step X1-10 for kneading a part or all of A-10 and B-10, a part of C1-10, D-10, and optionally a part of E-10, (Step X2-10) Step X2-10 for kneading the kneaded material of Step X1-10, the remaining amount of B-10, the remaining amount of C2-10, D-10, and optionally a part of E-10, And (Step F-10) Step F-10 for kneading the kneaded product of Step X2-10 and the remaining amount of E-10
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the rubber component preferably contains styrene butadiene rubber and / or butadiene rubber having a functional group that reacts with silica.
  • Carbon DB 2 (C2-10) preferably has a DBP oil absorption of 300 ml / 100 g or more.
  • the rubber composition preferably has a volume resistivity of less than 1.0 ⁇ 10 7 ⁇ ⁇ cm.
  • the amount of silica added is preferably 50 to 95% by mass of the total amount of silica added.
  • the maximum temperature in the step X1-10 and / or the step X2-10 is 140 ° C. to 200 ° C.
  • step X1-10 It is preferable to include a step of holding the kneaded material at 150 to 190 ° C. for 10 to 120 seconds after completion of the kneading in step X1-10 and / or step X2-10.
  • Step X1-10 It is preferable to knead a part or all of the vulcanization accelerator in Step X1-10 and / or Step X2-10.
  • step X2-10 it is a method for producing a rubber composition containing an anti-aging agent, and it is preferable to knead the anti-aging agent in step X2-10.
  • step X1-10 it is a method for producing a rubber composition containing a surfactant, and it is preferable to knead the surfactant in step X1-10 and / or step X2-10.
  • the tenth invention relates to a tire having a tire member made of a tire rubber composition manufactured by the above manufacturing method.
  • the tenth invention it is possible to manufacture a rubber composition for tires with improved fuel economy, wear resistance, wet grip performance and conductivity in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire in which fuel economy, wear resistance, wet grip performance and conductivity are improved in a well-balanced manner. it can.
  • the rubber composition for tire according to the present invention comprises a predetermined rubber component (A-10), silica (B-10), carbon black 1 (C1-10) and carbon black 2 (C2) having a predetermined nitrogen adsorption specific surface area. -10), a predetermined coupling agent (D-10), and a vulcanizing agent (E-10) containing a vulcanizing agent and a vulcanization accelerator.
  • the rubber component (A-10) includes at least one selected from the group consisting of natural rubber and diene-based synthetic rubber, and preferably includes at least two. By blending a plurality of diene rubbers, defects of a specific rubber can be compensated and physical properties can be improved in a balanced manner.
  • These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride. In addition, what is necessary is just to select suitably according to an application member etc. about a rubber component kind and compounding quantity.
  • NR natural rubber
  • modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), deproteinized natural rubber (DPNR), and high-purity natural rubber (HPNR). Etc. are also included.
  • NR is not particularly limited, and those generally used in the tire industry such as SIR20, RSS # 3, TSR20, and the like can be used.
  • the content in the rubber component (A-10) is preferably 5% by mass or more, more preferably 10% by mass or more, because the fracture resistance of the rubber composition is improved. Further, the content of NR is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 50% by mass or less, because it is excellent in fuel efficiency and wear resistance.
  • diene synthetic rubber examples include isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), and styrene isoprene butadiene rubber (SIBR).
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • the SBR is not particularly limited, but includes unmodified solution polymerization SBR (S-SBR), unmodified emulsion polymerization SBR (E-SBR), and these modified SBRs (modified S-SBR, modified E-SBR), etc. Is mentioned.
  • S-SBR unmodified solution polymerization SBR
  • E-SBR unmodified emulsion polymerization SBR
  • modified SBR modified SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like).
  • S-SBR and modified S-SBR are preferable because the grip performance and wear resistance can be improved in a well-balanced manner.
  • a silyl group, amino group, amide group Particularly preferred is a modified S-SBR having at least one selected from the group consisting of a hydroxyl group and an epoxy group.
  • SBRs may be used singly, but SBRs having different physical properties such as styrene content may be used in combination depending on applications. In addition, what is necessary is just to select suitably according to an application member.
  • the styrene content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more from the viewpoints of dry grip performance, wet grip performance and rubber strength. Further, the styrene content of SBR is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less from the viewpoint of low fuel consumption. In the present specification, the styrene content of SBR is a value calculated by 1 H-NMR measurement.
  • the vinyl bond amount of SBR is preferably 10 mol% or more, more preferably 15 mol% or more, and even more preferably 20 mol% or more from the viewpoints of dry grip performance, wet grip performance and rubber strength.
  • the vinyl bond amount of SBR is preferably 65 mol% or less, more preferably 60 mol% or less, and further preferably 30 mol% or less from the viewpoint of low fuel consumption.
  • the vinyl bond amount of SBR indicates the vinyl bond amount of the butadiene part, and is a value calculated by 1 H-NMR measurement.
  • the content in the rubber component (A-10) is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more from the viewpoint of dry grip properties and wet grip properties. preferable. Moreover, 90 mass% or less is preferable from a wear-resistant viewpoint, and, as for content of SBR, 80 mass% or less is more preferable.
  • BR for the reason of excellent wear resistance.
  • a rubber composition in which a white filler such as silica (B-10) is blended with BR generally has a problem that the dispersibility of the filler is low and it is difficult to obtain desired performance.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent (D-10). Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content in the rubber component (A-10) is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance. Further, the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • the modified SBR and the modified BR usually have a strong functional group reaction, so that the rubber component itself is often aggregated and dispersion of the filler is often difficult.
  • a predetermined coupling agent is used. By dividing and kneading (D-10), aggregation of the rubber component is prevented and the reaction with silica is promoted.
  • Silica (B-10) Silica (B-10) is not particularly limited, and those commonly used in the tire industry can be used. For example, dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid) and the like can be mentioned, but wet process silica is preferred because of the large number of silanol groups.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica (B-10) is preferably 40 m 2 / g or more, more preferably 50 m 2 / g or more, still more preferably 100 m 2 / g or more, from the viewpoint of fracture strength. 2 / g or more is particularly preferable, and 160 m 2 / g or more is most preferable.
  • N 2 SA of the silica (B-10) from the viewpoint of fuel economy and workability 500 meters 2 / g or less, more preferably not more than 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g or less is particularly preferable.
  • N 2 SA of silica (B-10) is a value measured by the BET method according to ATSM D3037-81.
  • the content (total addition amount) of silica (B-10) is preferably 10 parts by mass or more, and 20 parts by mass with respect to 100 parts by mass of the rubber component (A-10) from the viewpoint of low fuel consumption and wet grip performance.
  • the above is more preferable, 30 parts by mass or more is further preferable, and 40 parts by mass or more is particularly preferable.
  • the total content of silica (B-10) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 120 parts by mass or less from the viewpoint of dispersibility of the filler in the rubber component and processability. preferable.
  • Carbon black rubber composition for a tire according to the invention of the tenth nitrogen adsorption specific surface area carbon black (N 2 SA) is 200 meters 2 / g or less of carbon black 1 (Cl-IO) and N 2 SA is 900 meters 2 / g It contains carbon black 2 (C2-10) as described above.
  • Carbon black 1 and carbon black 2 in combination, fuel economy, wear resistance, wet grip performance and conductivity can be improved in a well-balanced manner.
  • Carbon black other than carbon black 1 (C1-10) and carbon black 2 (C2-10) may be used in combination.
  • Carbon black 1 is not particularly limited as long as the nitrogen adsorption specific surface area is 200 m 2 / g or less, and GPF, FEF, HAF, ISAF, SAF, etc., which are common in the tire industry can be used. It may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black 1 (C1-10) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and conductivity.
  • N 2 SA of the carbon black 1 (Cl-IO) is not more than 200 meters 2 / g, preferably not more than 150m 2 / g.
  • N 2 SA of carbon black in this specification is a value measured according to A method of JIS K6217.
  • Carbon black 1 (C1-10) dibutyl phthalate (DBP) oil absorption is preferably 60 ml / 100 g or more, and more preferably 70 ml / 100 g or more, from the viewpoints of reinforcement and fracture characteristics.
  • the DBP oil absorption of carbon black 1 (C1-10) is preferably 130 ml / 100 g or less, more preferably 120 ml / 100 g or less, from the viewpoints of elongation at break at break, fracture characteristics, and durability.
  • the DBP oil absorption amount of carbon black in this specification is a value determined by the measuring method of JIS K6217-4.
  • the content of carbon black 1 (C1-10) is preferably 1 part by mass or more, preferably 5 parts by mass or more with respect to 100 parts by mass of rubber component (A-10), from the viewpoint of the effect of containing carbon black. More preferred is 8 parts by mass or more. Further, the content of carbon black 1 (C1-10) is preferably 30 parts by mass or less, and more preferably 20 parts by mass or less from the viewpoint of low fuel consumption.
  • Carbon black 2 (C2-10) is a so-called conductive carbon black. According to the method for producing the rubber composition of the tenth invention containing carbon black 2 (C2-10), the fuel efficiency and conductivity can be reduced easily. It is possible to improve the sex in a well-balanced manner.
  • Carbon black 2 (C2-10) has a nitrogen adsorption specific surface area (N 2 SA) of 900 m 2 / g or more, preferably 1000 m 2 / g or more, and more preferably 1050 m 2 / g or more.
  • N 2 SA nitrogen adsorption specific surface area
  • the fuel economy, dispersibility, in view of the fracture properties and durability preferably 1200 m 2 / g or less, more preferably 1150m 2 / g, 1100m 2 / g or less is more preferable.
  • the DBP oil absorption amount of carbon black 2 (C2-10) is preferably 300 ml / 100 g or more, more preferably 350 ml / 100 g or more from the viewpoint of conductivity. Further, the DBP oil absorption amount of carbon black 2 (C2-10) is preferably 600 ml / 100 g or less, more preferably 500 ml / 100 g or less, and further preferably 450 ml / 100 g or less from the viewpoints of fracture characteristics and durability.
  • Examples of suitable commercial products of carbon black 2 include Lion Co., Ltd. Lionite (N 2 SA: 1052 m 2 / g, DBP: 378 ml / 100 g), Lion Co., Ltd. CHENBLACK EC300J (N 2 SA: 800 m 2 / g, DBP: 365 ml / 100 g), Evonik's PRINTEX XE2B (N 2 SA: 1000 m 2 / g, DBP: 420 ml / 100 g), and the like.
  • the content of carbon black 2 (C2-10) is preferably 0.5 parts by mass or more and more preferably 1.0 part by mass or more with respect to 100 parts by mass of the rubber component (A-10) from the viewpoint of conductivity. 2.0 parts by mass or more is more preferable. Further, the content of carbon black 2 (C2-10) is preferably 20 parts by mass or less, and more preferably 15 parts by mass or less from the viewpoint of low heat build-up and cost.
  • the predetermined coupling agent (D-10) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • Examples of the coupling agent (D-10) represented by the chemical formula (1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3- Lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoyl Ruthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane
  • 3-octanoylthiopropyltriethoxysilane (NXT silane manufactured by Momentive) is particularly preferable in terms of availability and cost.
  • the total content of the coupling agent (D-10) represented by the chemical formula (1) is 4 parts by mass or more with respect to the total content of silica of 100 parts by mass from the viewpoint of reaction with the filler and workability improvement effect. Is preferably 5 parts by mass or more, and more preferably 6 parts by mass or more. Further, the total content of the coupling agent (D-10) is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost. preferable.
  • Vulcanizing chemicals The vulcanizing agent (E-10) includes a vulcanizing agent (E1-10) and a vulcanization accelerator (E2-10). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-10) The vulcanizing agent (E1-10) is not particularly limited, and those commonly used in the tire industry can be used. From the viewpoint that the effect of the tenth invention can be obtained satisfactorily, sulfur is preferred, and powdered sulfur is more preferred. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-10) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-10). Further, the content of the vulcanizing agent (E1-10) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-10) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-10) The vulcanization accelerator (E2-10) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-10) is preferably 0.1 parts by mass or more and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-10). Further, the content of the vulcanization accelerator (E2-10) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-10) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the tenth invention includes other compounding agents conventionally used in the rubber industry, such as plasticizer (F-10), silica and carbon black. Reinforcing fillers, anti-aging agents (G-10), antioxidants, stearic acid, waxes and the like can be appropriately blended.
  • the rubber composition for a tire according to the tenth invention preferably contains the plasticizer (F-10) because the processability is improved and the strength of the rubber can be increased.
  • the plasticizer (F-10) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, and liquid resin. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content relative to 100 parts by mass of the rubber component (A-10) is preferably 2 parts by mass or more, more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-10) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions.
  • a naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.
  • 2,2 Quinoline anti-aging agents such as a polymer of 2,4-trimethyl-1,2-d
  • the content with respect to 100 parts by mass of the rubber component (A-10) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance. More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • Surfactant in one embodiment of the tenth invention, it is preferable to further contain a surfactant.
  • a surfactant By containing the surfactant, the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, from the viewpoint of improving the dispersibility of silica with respect to 100 parts by mass of the rubber component (A-10). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • the volume specific resistivity of the rubber composition according to the tenth invention is preferably less than 1.0 ⁇ 10 7 ⁇ ⁇ cm, because conductivity is obtained and noise and sparking due to static electricity can be prevented. 1.0 ⁇ 10 6 ⁇ ⁇ cm or less is more preferable.
  • the volume specific resistivity in this specification is a value calculated
  • the method for producing a tire rubber composition according to the tenth aspect of the invention is characterized in that the kneading step is step X1-10, step X2-10 and step F-10.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the tenth invention.
  • Timing of adding and kneading other compounding agents such as plasticizer (F-10), anti-aging agent (G-10), zinc oxide, and stearic acid is not particularly limited, and Step X1-10 and Step X2- 10 or Step F-10, and may be added in portions.
  • the manufacturing method of the tenth invention is characterized in that the coupling agent (D-10) represented by the chemical formula (1) is divided and kneaded.
  • the coupling agent (D-10) since a plurality of alkoxysilyl groups do not exist in the molecule, aggregation of the coupling agents is small, and a mercapto group that reacts favorably with the polymer portion becomes a fatty acid thioester, thereby rapidly increasing the concentration. Therefore, even in the kneading by divided charging as in the tenth invention, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity.
  • Step X1-10 the total amount of rubber component (A-10), a part or all of silica (B-10), carbon black 1 (C1-10), a part of coupling agent (D-10), and optionally, a compounding agent containing a part of the vulcanizing agent (E-10) is kneaded with a Banbury mixer or the like.
  • a compounding agent containing a part of the vulcanizing agent (E-10) is kneaded with a Banbury mixer or the like.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D-10) takes the structure of the chemical formula (1), so that the thioester group is decomposed with kneading to gradually produce a highly active mercapto group.
  • the addition amount of silica (B-10) in step X1-10 is 50% by mass or more of the total addition amount of silica (B-10) from the viewpoints of improving the silica kneading effect, sufficient dispersion of silica, and wear resistance. 60 mass% or more is more preferable, 70 mass% or more is further more preferable, and 80 mass% or more is particularly preferable. Further, the amount of silica (B-10) added in step X1-10 may be the total amount, but from the viewpoints of the effect of split introduction of silica in step X2-10, which will be described later, fuel efficiency and wear resistance, The total addition amount of B-10) is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the amount of the coupling agent (D-10) represented by the chemical formula (1) in the step X1-10 is sufficient for the reaction with the filler, and the processability of the coupling agent (D-10) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-10) added in Step X1-10.
  • the addition amount of the coupling agent (D-10) represented by the chemical formula (1) in the step X1-10 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the plasticizer (F-10) is not particularly limited, but for the reason that the dispersion of the filler is good, in the step X1-10, 50% by mass of the total amount of the plasticizer (F-10) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the amount of plasticizer (F-10) added in Step X1-10 is less than 100% by mass, the remaining amount is Step X2- because the dispersibility of the silica added in Step X2-10 is further improved. 10 is preferably added.
  • the surfactant is preferably added in the step X1-10 and / or the step X2-10 from the viewpoint of promoting the dispersion effect of silica, further promoting the dispersion effect of silica and gelling the coupling agent. It is preferable to add in step X1-10 because it can be suppressed.
  • Step X2-10 the remaining amount of silica (B-10), the remaining amount of carbon black 2 (C2-10), the coupling agent (D-10), and optionally the vulcanizing agent (E-10)
  • the compounding agent containing a part is added to the kneaded product of Step X1-10 and kneaded. If carbon black 1 (C1-10) and carbon black 2 (C2-10) are kneaded at the same time, the kneading share is excessively applied to carbon black 2, and the conductive carbon black network breaks down. Although the wear resistance tends to be insufficient, carbon black 2 (C2-10) is added after carbon black 1 (C1-10) is added, that is, in step X2-10.
  • the dispersion of 2 is not excessive, and an appropriate network can be formed. Further, in the manufacturing method of the tenth invention, since the coupling agent (D-10) represented by the chemical formula (1) is dividedly charged, the early decrease in activity of the coupling agent is prevented, and the workability in the entire kneading operation is prevented. Can keep.
  • the amount of the coupling agent (D-10) represented by the chemical formula (1) in step X2-10 is sufficient for the reaction with the filler, and the processability of the coupling agent (D-10) is improved. For the reason that the effect can be brought out, it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-10) added in Step X2-10. Further preferred. Further, the addition amount of the coupling agent (D-10) represented by the chemical formula (1) in the step X2-10 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost.
  • step X1-10 When all the amount of silica (B-10) was added in step X1-10, only a part of the total amount of coupling agent (D-10) was added without adding in step X1-10. The amount may be added in step X2-10.
  • the step of adding the anti-aging agent (G-10) is not particularly limited, but it is preferable to add the whole amount in step X 2-10 from the viewpoint of work efficiency and prevention of decrease in activity of the anti-aging agent during kneading.
  • the discharge temperature for kneading in Step X1-10 and Step X2-10 is not particularly limited, but is preferably 142 ° C. or higher, more preferably 146 ° C. or higher, and further preferably 148 ° C. or higher. Further, the discharge temperature is preferably 170 ° C. or lower, and more preferably 160 ° C. or lower. If the discharge temperature of kneading in step X1-10 and step X2-10 is within the above range, a kneaded product in which silica (B-10) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the step X1-10 and the step X2-10 is not particularly limited, but from the viewpoint that a kneaded product in which the coupling agent sufficiently reacts and silica is well dispersed can be obtained efficiently. ° C or higher, preferably 145 ° C or higher, more preferably 150 ° C or higher. Moreover, in order to prevent rubber
  • the kneading time in step X1-10 and step X2-10 is not particularly limited, but is preferably 3.0 minutes or more from the viewpoint that a kneaded material in which silica is well dispersed can be obtained efficiently.
  • the above is more preferable, and 4.5 minutes or more is further preferable.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is heated to 150 ° C. to 190 ° C., more preferably 150 to Holding at 180 ° C. for 10 to 120 seconds is preferable because the reaction between the coupling agent and silica is completely performed.
  • Step F-10 after the kneaded product obtained in Step X2-10 is cooled, a vulcanizing agent (E-10) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • a vulcanizing agent (E-10) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the vulcanization accelerator may be added all at once in Step F-10, but after a part or all of it is added in Step X1-10 and / or Step X2-10, the remaining amount is added in Step F-10. It is preferable to add. By adding a part or all of the amount in Step X1-10 and / or Step X2-10, dispersion of silica and the rubber component can be further promoted. In particular, it is more preferable to add the whole or part of the guanidine vulcanization accelerator in the step X1-10 and / or the step X2-10 because the dispersibility of silica can be further promoted.
  • the kneaded product obtained in step X2-10 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-10 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in step F-10 is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in Step F-10 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • Vulcanization Step A vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-10 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the tenth invention can be obtained satisfactorily.
  • Rubber composition for tire The rubber composition for tire according to the tenth invention can be used for each member of a tire, and in particular, a tire improved in a good balance between low fuel consumption, wear resistance, wet grip performance and conductivity.
  • the rubber composition can be suitably used for treads, sidewalls, conductive structural members, and the like.
  • the tire of the tenth invention can be produced by a normal method using the tire rubber composition according to the tenth invention. That is, the tire rubber composition produced by the production method of the tenth invention is extruded in accordance with the shape of a tire member such as a tread of a tire at an unvulcanized stage, and another tire is produced on a tire molding machine.
  • the tire according to the tenth aspect of the present invention is manufactured by pasting together with the members and forming the unvulcanized tire by molding by a normal method, and heating and pressurizing the unvulcanized tire in a vulcanizer. Can do.
  • the tire of the tenth invention may be a pneumatic tire or a non-pneumatic tire.
  • pneumatic tires include passenger car tires, truck / bus tires, motorcycle tires, and high-performance tires.
  • the high-performance tire in this specification is a tire that is particularly excellent in grip performance, and is a concept that includes a competition tire used in a competition vehicle.
  • non-pneumatic tires include solid tires, airless tires, and track belts.
  • an airless tire having a tread composed of the tire rubber composition according to the tenth invention may be mentioned.
  • the airless tire has a tendency to be inferior in conductivity of the entire tire because there is no conductive member such as a steel cord or the wheel is made of resin, but the rubber composition according to the tenth invention is treaded. Good electrical conductivity can be obtained by using the airless tire used in the above.
  • the eleventh invention relates to a rubber component (A-11) containing at least one selected from the group consisting of natural rubber and diene synthetic rubber, silica (B-11), carbon black (C-11), the following chemical formula ( 1), a coupling agent (D2-11) having a sulfide group, and a vulcanizing agent (E-11) containing a vulcanizing agent and a vulcanization accelerator.
  • A-11 a rubber component containing at least one selected from the group consisting of natural rubber and diene synthetic rubber, silica (B-11), carbon black (C-11), the following chemical formula ( 1), a coupling agent (D2-11) having a sulfide group, and a vulcanizing agent (E-11) containing a vulcanizing agent and a vulcanization accelerator.
  • a method for producing a rubber composition for a tire comprising: (Step X1-11) Step X1-11 for kneading a part of A-11, B-11, D1-11, and optionally a part of E-11, (Step X2-11) Step X2-11 kneaded product, B-11 remaining amount, D2-11, and optionally Step X2-11 kneading a part of E-11, and (Step F-11) Step F-11 of kneading the kneaded material of Step X2-11 and the remaining amount of E-11
  • Step X1-11 Step X1-11 for kneading a part of A-11, B-11, D1-11, and optionally a part of E-11
  • Step X2-11 Step X2-11 kneaded product, B-11 remaining amount, D2-11, and optionally Step X2-11 kneading a part of E-11
  • Step F-11 Step F-11 of kneading
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • the rubber component preferably contains styrene butadiene rubber and / or butadiene rubber having a functional group that reacts with silica.
  • the nitrogen adsorption specific surface area of silica is 160 m 2 / g or more, and the total addition amount of silica is 40 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the amount of the coupling agent added in each step of Step X1-11 and Step X2-11 is preferably 4 to 10 parts by mass with respect to 100 parts by mass of silica added in each step.
  • the amount of silica added in step X1-11 is 50 to 95% by mass of the total amount of silica added.
  • the maximum temperature in the step X1-11 is 140 ° C. to 200 ° C.
  • step X1-11 and / or step X2-11 it is a method for producing a rubber composition containing a surfactant, and it is preferable to knead the surfactant in step X1-11 and / or step X2-11.
  • the eleventh invention relates to a tire having a tire member made of the tire rubber composition manufactured by the above manufacturing method.
  • the eleventh invention it is possible to manufacture a rubber composition for tires with improved fuel economy, wear resistance, and wet grip performance in a well-balanced manner. Furthermore, by using a tire having a tire member composed of the manufactured tire rubber composition, it is possible to manufacture a tire with improved fuel efficiency, wear resistance, and wet grip performance in a well-balanced manner.
  • the rubber composition for a tire according to the eleventh aspect of the invention comprises a predetermined rubber component (A-11), silica (B-11), carbon black (C-11), coupling agent (D1-11) and (D2- 11), and a vulcanizing agent (E-11) containing a vulcanizing agent and a vulcanization accelerator.
  • the rubber component (A-11) includes at least one selected from the group consisting of natural rubber and diene synthetic rubber, and preferably includes two. By blending a plurality of diene rubbers, defects of a specific rubber can be compensated and physical properties can be improved in a balanced manner. These rubber components are preferably those in which the main chain and terminals of the rubber are modified with a modifying agent. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride. In addition, what is necessary is just to select suitably according to an application member etc. about a rubber component kind and compounding quantity.
  • NR natural rubber
  • modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), deproteinized natural rubber (DPNR), and high-purity natural rubber (HPNR). Etc. are also included.
  • NR is not particularly limited, and those generally used in the tire industry such as SIR20, RSS # 3, TSR20, and the like can be used.
  • the content in the rubber component (A-11) is preferably 5% by mass or more, more preferably 10% by mass or more, because the fracture resistance of the rubber composition is improved. Further, the content of NR is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 50% by mass or less, because it is excellent in fuel efficiency and wear resistance.
  • diene synthetic rubber examples include isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), and styrene isoprene butadiene rubber (SIBR).
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • the SBR is not particularly limited, but includes unmodified solution polymerization SBR (S-SBR), unmodified emulsion polymerization SBR (E-SBR), and these modified SBRs (modified S-SBR, modified E-SBR), etc. Is mentioned.
  • S-SBR unmodified solution polymerization SBR
  • E-SBR unmodified emulsion polymerization SBR
  • modified SBR modified SBR having a terminal and / or main chain modified, modified SBR coupled with tin, a silicon compound, or the like (condensate, one having a branched structure, or the like).
  • S-SBR and modified S-SBR are preferable because the grip performance and wear resistance can be improved in a well-balanced manner.
  • a silyl group, amino group, amide group Particularly preferred is a modified S-SBR having at least one selected from the group consisting of a hydroxyl group and an epoxy group.
  • SBRs may be used singly, but SBRs having different physical properties such as styrene content may be used in combination depending on applications. In addition, what is necessary is just to select suitably according to an application member.
  • the styrene content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 20% by mass or more from the viewpoints of wet grip performance, dry grip performance, and rubber strength. Further, the styrene content of SBR is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less from the viewpoint of low fuel consumption. In the present specification, the styrene content of SBR is a value calculated by 1 H-NMR measurement.
  • the vinyl bond amount of SBR is preferably 10 mol% or more, more preferably 15 mol% or more, and further preferably 20 mol% or more from the viewpoints of wet grip performance, dry grip performance and rubber strength.
  • the vinyl bond amount of SBR is preferably 65 mol% or less, more preferably 60 mol% or less, and further preferably 30 mol% or less from the viewpoint of low fuel consumption.
  • the vinyl bond amount of SBR indicates the vinyl bond amount of the butadiene part, and is a value calculated by 1 H-NMR measurement.
  • the content in the rubber component (A-11) when SBR is contained is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more from the viewpoint of wet grip performance and dry grip performance. preferable. Moreover, 90 mass% or less is preferable from a wear-resistant viewpoint, and, as for content of SBR, 80 mass% or less is more preferable.
  • BR for the reason of excellent wear resistance.
  • a rubber composition in which a white filler such as silica (B-11) is blended with BR generally has a problem that it is difficult to obtain desired performance because the dispersibility of the filler is low.
  • the reaction between the filler and the rubber component is enhanced by dividing and kneading the predetermined coupling agent. Therefore, the dispersibility of the filler can be improved, fuel efficiency and wear resistance can be improved, and good processability can be obtained, and the balance of these performances can be improved synergistically.
  • the BR examples include a high cis BR having a cis content of 90% or more, a modified BR having a terminal and / or main chain modified, a modified BR coupled with tin, a silicon compound, or the like (condensate having a branched structure) Etc.).
  • high-cis BR is preferable from the viewpoint that excellent wear resistance can be obtained, and in terms of reaction with silica, modified BR having a modified terminal and / or main chain, particularly a silyl group, A modified BR having at least one selected from the group consisting of an amino group, an amide group, a hydroxyl group, and an epoxy group is preferable.
  • what is necessary is just to select suitably according to an application member.
  • the content in the rubber component (A-11) is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more from the viewpoint of wear resistance.
  • the BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less from the viewpoint of workability.
  • the modified SBR and the modified BR usually have a strong functional group reaction, and the rubber component itself is often agglomerated, making it difficult to disperse the filler.
  • the predetermined coupling agent is used. By kneading and kneading the rubber, aggregation of the rubber component is prevented and the reaction with silica is promoted.
  • silica (B-11) is not particularly limited, and those commonly used in the tire industry can be used. For example, dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid) and the like can be mentioned, but wet process silica is preferred because of the large number of silanol groups.
  • Silica (B-11) a nitrogen adsorption specific surface area (N 2 SA) of the viewpoint 40 m 2 / g or more is preferred from the breaking strength, more preferably at least 50 m 2 / g, more preferably at least 100 m 2 / g, 130m 2 / g or more is particularly preferable, and 160 m 2 / g or more is most preferable.
  • N 2 SA of the silica (B-11) from the viewpoint of fuel economy and workability 500 meters 2 / g or less, more preferably not more than 300 meters 2 / g, more preferably from 250 meters 2 / g or less, 200 meters 2 / g or less is particularly preferable.
  • N 2 SA of silica (B-11) is a value measured by the BET method according to ATSM D3037-81.
  • the content (total addition amount) of silica (B-11) is preferably 10 parts by mass or more, and 20 parts by mass with respect to 100 parts by mass of the rubber component (A-11) from the viewpoint of low fuel consumption and wet grip performance.
  • the above is more preferable, 30 parts by mass or more is further preferable, and 40 parts by mass or more is particularly preferable.
  • the total content of silica (B-11) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and further preferably 120 parts by mass or less from the viewpoint of dispersibility of the filler in the rubber component and processability. preferable.
  • Carbon black (C-11) The carbon black (C-11) is not particularly limited, and those commonly used in the tire industry such as GPF, FEF, HAF, ISAF, SAF, etc. can be used alone or in combination of two or more. Also good.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black (C-11) is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more from the viewpoint of weather resistance and antistatic properties. Also, N 2 SA of the carbon black (C-11) is preferably not more than 200 meters 2 / g from the viewpoint of workability, more preferably at most 150m 2 / g. In the present specification, N 2 SA of carbon black (C-11) is a value measured according to method A of JIS K6217.
  • the content (total addition amount) of carbon black (C-11) is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component (A-11). When the content of carbon black (C-11) is less than 1 part by mass, the effect of containing carbon black may not be sufficiently obtained. Further, the content of carbon black (C-11) is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoints of fuel efficiency and processability.
  • the coupling agent (D1-11) is a compound represented by the following chemical formula (1).
  • Chemical formula (1) (C p H 2p + 1 O) 3 —Si— (CH 2 ) q —S—CO—C k H 2k + 1 (In the chemical formula (1), p represents an integer of 1 to 3, q represents an integer of 1 to 5, and k represents an integer of 5 to 12.)
  • P of the compound represented by the chemical formula (1) is an integer of 1 to 3 and preferably 2 from the viewpoint of reactivity with silica.
  • Q in the compound represented by the chemical formula (1) is an integer of 1 to 5, preferably an integer of 2 to 5, because rubber molecules and silica are bonded with an appropriate length and low exothermic property is improved. 3 is more preferable.
  • K of the compound represented by the chemical formula (1) is an integer of 5 to 12, preferably an integer of 6 to 10, and more preferably 7, because both the reactivity with the rubber molecule and the processability are compatible.
  • Examples of the coupling agent (D1-11) represented by the chemical formula (1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3- Lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoyl Ruthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxys
  • the coupling agent (D2-11) is a coupling agent having a sulfide group.
  • a coupling agent having a sulfide group for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3 -Trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-tri Ethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trieth
  • Si75 bis (3-triethoxysilylpropyl) disulfide
  • Si69 bis (3-triethoxy) manufactured by Evonik, which are generally commercially available as a mixture having a certain distribution
  • Preferable examples include silylpropyl) tetrasulfide) and the like.
  • the total content of the coupling agents (D1-11) and (D2-11) is 4 parts by mass or more with respect to the total content of silica of 100 parts by mass from the viewpoint of reaction with the filler and workability improvement effect. Preferably, 5 parts by mass or more is more preferable, and 6 parts by mass or more is more preferable. Further, the total content of the coupling agent is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 9 parts by mass or less from the viewpoint of the silica dispersion effect commensurate with the increase in cost.
  • Vulcanizing chemicals (E-11)
  • the vulcanizing agent (E-11) includes a vulcanizing agent (E1-11) and a vulcanization accelerator (E2-11). Further, vulcanizing chemicals generally used in the rubber industry such as vulcanization accelerating aids can also be used.
  • Vulcanizing agent (E1-11) The vulcanizing agent (E1-11) is not particularly limited, and those commonly used in the tire industry can be used. From the viewpoint that the effects of the eleventh invention can be obtained satisfactorily, sulfur is preferred, and powdered sulfur is more preferred. Sulfur may be used in combination with other vulcanizing agents.
  • Other vulcanizing agents include, for example, Tacrol V200 manufactured by Taoka Chemical Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate dihydrate) manufactured by Flexis, and KA9188 manufactured by LANXESS.
  • Examples thereof include vulcanizing agents containing sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • sulfur atoms such as (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) and organic peroxides such as dicumyl peroxide.
  • the content of the vulcanizing agent (E1-11) is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A-11). Further, the content of the vulcanizing agent (E1-11) is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the vulcanizing agent (E1-11) is within the above range, good tensile strength, wear resistance and heat resistance can be obtained.
  • Vulcanization accelerator (E2-11) The vulcanization accelerator (E2-11) is not particularly limited, and those commonly used in the tire industry can be used.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; thiuram additions such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide Sulfur accelerator; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N-oxyethylene-2- Sulfenamide vulcanization accelerators such as benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; guan
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of achieving both rubber elastic modulus and processability, and the reason is particularly excellent in balance between low fuel consumption and other rubber properties.
  • guanidine vulcanization accelerators are particularly preferred.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3- Examples thereof include di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are more preferable because of high reactivity.
  • the content of the vulcanization accelerator (E2-11) is preferably 0.1 parts by mass or more, and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the rubber component (A-11). Further, the content of the vulcanization accelerator (E2-11) is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. When the content of the vulcanization accelerator (E2-11) is within the above range, it is possible to suppress a decrease in rubber elastic modulus and a decrease in fracture characteristics.
  • the rubber composition for tires according to the eleventh invention includes other compounding agents conventionally used in the rubber industry, such as plasticizers (F-11), silica and carbon black. Reinforcing fillers, anti-aging agents (G-11), antioxidants, stearic acid, waxes and the like can be appropriately blended.
  • the rubber composition for a tire according to the eleventh invention preferably contains the plasticizer (F-11) because it improves processability and increases the strength of the rubber.
  • the plasticizer (F-11) is not particularly limited, and those generally used in the tire industry can be used, and examples thereof include oil, liquid polymer, and liquid resin. Among these, oil is preferable because it can improve cost and workability in a balanced manner.
  • Oil includes process oil, vegetable oil, animal oil and the like.
  • process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, sesame oil, olive oil, sunflower Oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and the like.
  • animal fats include oleyl alcohol, fish oil, and beef tallow.
  • process oil is preferable because it is advantageous for workability, and process oil (low PCA content) with a low content of polycyclic aromatic compound (PCA) is preferable because it reduces environmental burden.
  • Process oil is preferred.
  • Low PCA content process oils include Treated Distilate Aromatic Extract (TDAE), which is a re-extracted aromatic aromatic process oil, aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, mild extraction solvates (MES). ) And heavy naphthenic oils.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content relative to 100 parts by mass of the rubber component (A-11) is preferably 2 parts by mass or more, more preferably 5 parts by mass or more from the viewpoint of workability improvement effect.
  • the oil content is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 40 parts by mass or less from the viewpoint of the load in the process.
  • the oil content in this specification does not include the oil-extended oil amount when the rubber component is an oil-extended product.
  • the anti-aging agent (G-11) is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions.
  • a naphthylamine-based phenyl- ⁇ -Naphthylamine, etc.
  • diphenylamine octylated diphenylamine, 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, etc.
  • p-phenylenediamine N-isopropyl-N'-phenyl-p-phenylenediamine) N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.
  • 2,2 Quinoline anti-aging agents such as a polymer of 2,4-trimethyl-1,2-d
  • the content with respect to 100 parts by mass of the rubber component (A-11) in the case of containing the anti-aging agent (G-11) is preferably 0.5 parts by mass or more from the viewpoint of ozone resistance and crack resistance, More than mass part is more preferable. Moreover, 10 mass parts or less are preferable from a viewpoint of discoloration prevention, and, as for content of anti-aging agent, 5 mass parts or less are more preferable.
  • a surfactant is further contained.
  • the dispersibility of the filler containing silica and carbon black can be improved, and discoloration due to aged deterioration of the obtained tire rubber composition can be prevented.
  • surfactant examples include metal soaps such as metal salts of organic acids and nonionic surfactants such as polyoxyalkylene derivatives, but are not particularly limited. These may be used alone or in combination.
  • metal salt of organic acid include metal salts of carboxylic acids.
  • polyoxyalkylene derivatives include ether types such as polyoxyalkylene alkyl ethers, ester types such as polyoxyalkylene fatty acid esters, ether ester types such as polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene fatty acid amides, and polyoxyalkylene alkyls. Examples thereof include nitrogen-containing types such as amines.
  • polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are particularly preferred in terms of the balance between low fuel consumption and other rubber properties.
  • the content of the surfactant is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more from the viewpoint of the silica dispersibility improvement effect, with respect to 100 parts by mass of the rubber component (A-11). 0.6 parts by mass or more is more preferable, and 1.0 part by mass or more is most preferable. Further, the content of the surfactant is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, from the viewpoints of handling stability, crack resistance, ozone resistance, and discoloration resistance, More preferred is less than or equal to parts by weight.
  • a method for producing a tire rubber composition according to an eleventh aspect of the invention is characterized in that the kneading step is step X1-11, step X2-11 and step F-11.
  • a known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • Step X1-11 a part of A-11, a part of B-11, D1-11, and optionally a part of E-11 are kneaded in Step X1-11, Step X1-11, B-11 Step X2-11 for kneading the remaining amount, D2-11, and optionally a part of E-11, and further, Step F-11 for kneading the kneaded product of Step X2-11 and the remaining amount of E-11
  • the obtained unvulcanized rubber composition can be further vulcanized (vulcanization step) to produce the tire rubber composition according to the eleventh invention.
  • Timing of adding and kneading other compounding agents such as carbon black (C-11), plasticizer (F-11), anti-aging agent (G-11), zinc oxide and stearic acid is not particularly limited. It may be added at any step of Step X1-11, Step X2-11 or Step F-11, or may be added separately.
  • the production method of the eleventh invention is characterized in that the coupling agent (D1-11) is kneaded in a step prior to the coupling agent (D2-11) having a sulfide group (step X1-11).
  • the coupling agent (D1-11) since a plurality of alkoxysilyl groups do not exist in the molecule, there is little aggregation between the coupling agents, and the mercapto group that reacts favorably with the polymer part becomes a fatty acid thioester, resulting in a rapid reaction. Unevenness associated with the reaction is also prevented. Therefore, it is possible to form a uniform chemical bond between the filler and the polymer without losing the activity even in the kneading with the first input as in the eleventh invention.
  • Step X1-11 In Step X1-11, the total amount of the rubber component (A-11), a part of silica (B-11), a coupling agent (D1-11) and optionally a part of the vulcanizing agent (E-11) are added.
  • the containing compounding agent is kneaded with a Banbury mixer.
  • the filler is dispersed while forming a strong bond with the rubber component, particularly with the rubber component having a high affinity with the filler.
  • the coupling agent (D1-11) has the structure of the chemical formula (1), the thioester group is decomposed with kneading to gradually produce a highly active mercapto group.
  • step X1 it is possible to disperse the agent and promote bonding with the polymer. If conventional polysulfide silane (coupling agent (D2-11)) is added in step X1, sulfur is released even at this stage, so that the workability is lowered and the dispersion of the filler is hindered. Although the activity of itself decreases, the coupling agent (D1-11) represented by the chemical formula (1) does not release sulfur, so that the processability is maintained according to the production method of the eleventh invention. It is possible to continue kneading.
  • conventional polysulfide silane (coupling agent (D2-11))
  • the coupling agent (D1-11) represented by the chemical formula (1) does not release sulfur, so that the processability is maintained according to the production method of the eleventh invention. It is possible to continue kneading.
  • the addition amount of silica (B-11) in step X1-11 is 50% by mass or more of the total addition amount of silica (B-11) from the viewpoints of improving the silica kneading effect, sufficient dispersion of silica, and wear resistance. 60 mass% or more is more preferable, 70 mass% or more is further more preferable, and 80 mass% or more is particularly preferable. Further, the amount of silica (B-11) added in the step X1-11 is the same as that of the silica (B-11) from the viewpoint of the effect of split introduction of silica in the step X2-11 to be described later, fuel efficiency and wear resistance. The amount added is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the amount of the coupling agent (D1-11) represented by the chemical formula (1) in the step X1-11 is sufficient for the reaction with the filler, and the processability of the coupling agent (D1-11) is improved.
  • it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, more preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-11) added in Step X1-11.
  • the addition amount of the coupling agent (D1-11) represented by the chemical formula (1) in the step X1-11 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the carbon black (C-11) is preferably added in Step X1-11 and / or Step X2-11.
  • the amount of carbon black (C-11) added in step X1-11 is 10% by mass or more of the total amount of carbon black (C-11) added from the viewpoint of improving the dispersibility of carbon black and increasing the efficiency of the process.
  • the step of adding the plasticizer (F-11) is not particularly limited, but for the reason that the dispersion of the filler is good, in the step X1-11, 50% by mass of the total amount of the plasticizer (F-11) added It is preferable to add the above, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the amount of plasticizer (F-11) added in step X1-11 is less than 100% by mass, the remaining amount is step X2- because the dispersibility of the silica added in step X2-11 is further improved. 11 is preferably added.
  • the surfactant is preferably added in the step X1-11 and / or the step X2-11 from the viewpoint of promoting the dispersion effect of silica, further promoting the dispersion effect of silica and gelling the coupling agent. It is preferable to add in step X1-11 because it can be suppressed.
  • the discharge temperature for kneading in the step X1-11 is not particularly limited, but is preferably 142 ° C. or higher, more preferably 146 ° C. or higher, and further preferably 148 ° C. or higher.
  • the discharge temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower. If the discharge temperature of kneading in the step X1-11 is within the above range, a kneaded product in which silica (B-11) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during kneading in the step X1-11 is not particularly limited, but is preferably 140 ° C. or higher from the viewpoint that the coupling agent reacts sufficiently and a kneaded material in which silica is well dispersed can be obtained efficiently. 145 ° C or higher is more preferable, and 150 ° C or higher is more preferable. In order to prevent rubber burn, the maximum temperature during kneading is preferably 200 ° C. or lower. If the temperature exceeds 150 ° C. in the normal kneading step, problems such as gelation may occur. However, in step X1-11 according to the eleventh invention, no polysulfide silane is added as a vulcanization accelerator. Even if the temperature becomes high, no trouble occurs, the reaction of the coupling agent can be promoted, and the dispersion of silica can be promoted.
  • the kneading time in the step X1-11 is not particularly limited, but is preferably 3.0 minutes or more, more preferably 4.0 minutes or more, from the viewpoint of efficiently obtaining a kneaded material in which silica is well dispersed. More preferably 5 minutes or more. Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • the kneaded product is held at 150 ° C. to 190 ° C. for 10 to 120 seconds. It is preferable because the reaction between the agent (D1-11) and silica is completely carried out.
  • Step X2-11 a compounding agent containing the remaining amount of silica (B-11), a coupling agent (D2-11), and optionally a part of the vulcanizing agent (E-11) is added in Step X1-11.
  • kneaded material kneaded material
  • the silica tends to be unevenly distributed in the polymer part having a high affinity with silica such as a modified polymer and / or the interface part of the polymer.
  • silica is dividedly added in Step X1-11 and Step X2-11, respectively, so that the silica is easily dispersed throughout the rubber component.
  • silica added later (introduced in Step X2-11) has an effect of promoting the kneading effect by applying a share to the rubber component.
  • the coupling agent (D1-11) represented by the chemical formula (1) is kneaded in the step X1-11, the activity of the coupling agent is prevented from being lowered early, and the kneading is performed. Workability in the entire operation can be maintained.
  • the coupling agent (D2-11) having a sulfide group in the step X2-11 it is possible to prevent an early decrease in activity due to the coupling agent and to maintain the workability in the entire kneading operation. it can. Furthermore, since the coupling agent (D2-11) can release sulfur that acts as a vulcanizing agent, uniform crosslinking is promoted, and rubber physical properties can be improved.
  • the amount of the coupling agent (D2-11) added in the step X2-11 is sufficient to react with the filler, and the excellent processability improvement effect of the coupling agent (D2-11) can be extracted. For the reason, it is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 6 parts by mass or more with respect to 100 parts by mass of silica (B-11) added in Step X2-11.
  • the amount of the coupling agent (D2-11) represented by the chemical formula (1) in the step X2-11 is preferably 20 parts by mass or less from the viewpoint of a silica dispersion effect commensurate with an increase in cost. The following is more preferable, and 9 parts by mass or less is more preferable.
  • the step of adding the anti-aging agent (G-11) is not particularly limited, but it is preferable to add the whole amount in the step X2-11 from the viewpoint of work efficiency and prevention of decrease in activity of the anti-aging agent during kneading.
  • the discharge temperature of the kneading in the step X2-11 is not particularly limited, but is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 130 ° C. or higher.
  • the discharge temperature is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower. If the discharge temperature of kneading in step X2-11 is within the above range, a kneaded product in which silica (B-11) is well dispersed tends to be obtained efficiently.
  • the maximum temperature during the kneading in the step X2-11 is not particularly limited, but a kneaded product in which the coupling agent (D2-11) having a sulfide group sufficiently reacts and silica is well dispersed can be obtained efficiently. From the point, 100 ° C. or higher is preferable, 120 ° C. or higher is more preferable, and 130 ° C. or higher is more preferable.
  • the maximum temperature during kneading is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower.
  • the kneading time in step X2-11 is not particularly limited, but is preferably 3.0 minutes or more from the viewpoint that a kneaded material in which silica is well dispersed can be obtained efficiently.
  • Each kneading time is preferably 9 minutes or less, more preferably 8 minutes or less, and even more preferably 7 minutes or less.
  • Step F-11 In Step F-11, after the kneaded product obtained in Step X2-11 is cooled, a vulcanizing agent (E-11) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • a vulcanizing agent (E-11) containing a vulcanizing agent and a vulcanization accelerator is added and kneaded with an open roll or the like. And a step of obtaining an unvulcanized rubber composition.
  • the vulcanization accelerator may be added all at once in Step F-11. However, after a part or all of the vulcanization accelerator is added in Step X1-11 and / or Step X2-11, the remaining amount is added in Step F-11. It is preferable to add. By adding a part or the whole amount in the step X1-11 and / or the step X2-11, dispersion of the silica and the rubber component can be further promoted. In particular, it is more preferable to add a part or all of the guanidine vulcanization accelerator in Step X1-11 and / or Step X2-11 because the dispersibility of silica can be further promoted.
  • the kneaded product obtained in step X2-11 is usually cooled to 100 ° C. or lower, preferably 20 to 80 ° C.
  • the kneading temperature in Step F-11 is preferably 110 ° C. or lower, and more preferably 100 ° C. or lower. When the discharge temperature exceeds 110 ° C., rubber burn (scorch) tends to occur easily.
  • the lower limit of the kneading discharge temperature in step F-11 is not particularly limited, but is preferably 80 ° C. or higher.
  • the kneading time in Step F-11 is not particularly limited, but is usually 30 seconds or longer, preferably 1 to 30 minutes.
  • the vulcanized rubber composition can be obtained by vulcanizing the unvulcanized rubber composition obtained in Step F-11 by a known method.
  • the vulcanization temperature of the unvulcanized rubber composition is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the vulcanization temperature is preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. When the vulcanization temperature is within the above range, the effect of the eleventh aspect of the invention can be obtained satisfactorily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A)、充填剤、下記化学式(1)で示されるカップリング剤(D)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E)を含有するタイヤ用ゴム組成物の製造方法であって、(工程X1)Aの全量、充填剤の一部およびDの一部を混練りする工程X1、(工程X2)工程X1の混練物、ならびに充填剤およびDの残量を混練りする工程X2、ならびに(工程F)工程X2の混練物、およびEを混練りする工程Fを含む本発明のタイヤ用ゴム組成物の製造方法によれば、低燃費性および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。 化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1 (化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)

Description

タイヤ用ゴム組成物の製造方法およびタイヤ
 本発明は、タイヤ用ゴム組成物の製造方法、および該製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 現在、タイヤの低燃費化の要求から、トレッドだけでなく様々なタイヤ部材でシリカ配合ゴム組成物が使用されている。しかし、シリカは表面に親水性シラノール基を有するため、カーボンブラックに比べ、ゴム成分(特に、タイヤ部材によく使われる天然ゴム、ブタジエンゴム、スチレンブタジエンゴムなど)との親和性が低く、耐摩耗性や力学強度(引張強度や破断伸び)が劣るという問題がある。
 このような問題を改善する方法として、カップリング剤を用いてゴム成分とシリカとの反応を強める方法が知られている。しかし、通常のカップリング剤は、シリカと反応する前に自身の官能基同士が反応して凝集してしまうという問題があり、シリカの分散効果には限界があった。また、ゴム成分にシリカと反応する変性基を導入し、ゴム成分とシリカの反応性を高める方法が知られている。しかし、これらの方法には、加工性と低燃費性の両立にまだ改善の余地がある。
 さらに近年は、資源保護の観点から、低燃費性だけでなく耐摩耗性の要求も強くなっている。耐摩耗性を向上させる方法としては、補強性の高い微粒子シリカを用いる方法などが知られている。しかし、微粒子シリカは一般にゴム組成物中で分散させることが非常に困難で、十分に分散できずに凝集塊が残り、耐摩耗性や力学強度を十分に改善できない、また場合によってはこれらの特性をさらに悪化させてしまうという問題がある。
 特許文献1には、所定のシランカップリング剤1およびシランカップリング剤2を併用することで、ゴム組成物の低燃費性、ウェットグリップ性能、および加工性をバランスよく改善する技術が開示されている。しかし、ウェットグリップ性能と低燃費性の両立にはまだ改善の余地がある。また、耐摩耗性の改善については考慮されていない。
 さらに、低燃費性向上のためにシリカが多量に配合された場合、タイヤの電気抵抗が高くなるため、例えば車両の燃料補給時に静電気によるスパークが発生して燃料に引火する恐れがあり、使用時の安全性に問題がある。
 特許文献2には、トレッド部およびサイドウォール部に導電性薄膜を敷設することで、タイヤの導電性を低下させることなく転がり抵抗を低減したタイヤが記載されている。しかし、該技術ではタイヤ製造の工程が複雑になり、コストに問題があるため、簡便に低燃費性および導電性をバランスよく改善できるゴム組成物が求められている。
特開2012-82325号公報 特開平8-230407号公報
 本発明は、低燃費性および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物の製造方法、ならびに該製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤを提供することを目的とする。
 本発明者らは、鋭意検討の結果、加硫系薬剤以外の成分を一度に混練りするベース練り工程X、および工程Xで得られた混練物に加硫系薬剤を添加して混練りする仕上げ練り工程Fを行う従来の混練方法ではなく、充填剤およびカップリング剤をそれぞれ分割して添加し、混練りする工程X1および工程X2、ならびに工程Fを行う混練方法とすることにより、カップリング剤の凝集が防止され、充填剤との反応が促進されることで、前記課題を解決できることを見出し、さらに検討を重ねて本発明を完成することに成功した。
 すなわち、本発明は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A)、充填剤、下記化学式(1)で示されるカップリング剤(D)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1)Aの全量、前記充填剤の一部およびDの一部を混練りする工程X1、
(工程X2)工程X1の混練物、ならびに前記充填剤およびDの残量を混練りする工程X2、ならびに
(工程F)工程X2の混練物、およびEを混練りする工程F
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 前記ゴム成分が、シリカと反応する官能基を有するスチレンブタジエンゴムおよび/またはブタジエンゴムを含むことが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2において老化防止剤を混練りすることが好ましい。
 また、本発明は、前記のタイヤ用ゴム組成物の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 所定のゴム成分(A)、充填剤、所定のカップリング剤(D)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E)を含有するタイヤ用ゴム組成物の製造方法であり、所定の工程X1、工程X2および工程Fを含む本発明のタイヤ用ゴム組成物の製造方法によれば、低燃費性および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物の製造方法、ならびに該製造方法で製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤを提供することができる。
 本発明は、第1の発明から第11の発明を含む。以下に第1の発明から第11の発明について説明する。
<第1の発明>
 第1の発明は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも2種を含むゴム成分(A-1)、シリカ(B-1)、カーボンブラック(C-1)、下記化学式(1)で示されるカップリング剤(D-1)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-1)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-1)A-1の全量、B-1の一部およびD-1の一部を混練りする工程X1-1、
(工程X2-1)工程X1-1の混練物、ならびにB-1およびD-1の残量を混練りする工程X2-1、ならびに
(工程F-1)工程X2-1の混練物、およびEを混練りする工程F-1
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ゴム成分が、シリカと反応する官能基を有するスチレンブタジエンゴムおよび/またはブタジエンゴムを含むことが好ましい。
 シリカのチッ素吸着比表面積が160m2/g以上であり、シリカの全添加量が、ゴム成分100質量部に対して40質量部以上であることが好ましい。
 工程X1-1および工程X2-1の各工程におけるカップリング剤の添加量が、各工程で添加するシリカ100質量部に対して4~10質量部であることが好ましい。
 工程X1-1におけるシリカの添加量が、シリカの全添加量の50~95質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、
工程X1-1において可塑剤の全添加量の50質量%以上を混練することが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-1において老化防止剤を混練りすることが好ましい。
 また、第1の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第1の発明によれば、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、および耐摩耗性がバランス良く改善されたタイヤを製造することができる。
 第1の発明に係るタイヤ用ゴム組成物は、所定のゴム成分(A-1)、シリカ(B-1)、カーボンブラック(C-1)、所定のカップリング剤(D-1)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-1)を含有することを特徴とする。
ゴム成分(A-1)
 前記ゴム成分(A-1)は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも2種を含むことを特徴とする。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記天然ゴムとしては、天然ゴム(NR)や、エポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)などの改質天然ゴムなども含まれる。
 前記NRとしては特に限定されず、SIR20、RSS#3、TSR20など、タイヤ工業において一般的なものを使用することができる。
 NRを含有する場合のゴム成分(A-1)中の含有量は、ゴム組成物の耐破壊性が向上するという理由から、5質量%以上が好ましく、10質量%以上がより好ましい。また、NRの含有量は、低燃費性と耐摩耗性に優れるという理由から、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
 前記ジエン系合成ゴムとしては、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、スチレンイソプレンブタジエンゴム(SIBR)などが挙げられる。
 ジエン系合成ゴムのなかでも、加工性およびグリップ性に優れるという理由からSBRを含むことが好ましい。前記SBRとしては特に限定されないが、未変性の溶液重合SBR(S-SBR)、未変性の乳化重合SBR(E-SBR)、およびこれらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性された変性SBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのSBRのなかでも、グリップ性能と耐摩耗性能をバランスよく向上できるという理由から、S-SBR、変性S-SBRが好ましく、シリカとの相互作用の点で、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性S-SBRが特に好ましい。これらのSBRは、単独で用いても構わないが、用途に応じてスチレン含有量などの物性が異なるSBRを併用することが、物性のバランスの点からより好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 SBRのスチレン含有量は、グリップ性能やゴム強度の観点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、SBRのスチレン含有量は、低燃費性の観点から60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書におけるSBRのスチレン含有量は、1H-NMR測定により算出される値である。
 SBRのビニル結合量は、グリップ性能やゴム強度の観点から10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。また、SBRのビニル結合量は、低燃費性の観点から65モル%以下が好ましく、60モル%以下がより好ましく、30モル%以下がさらに好ましい。なお、本明細書におけるSBRのビニル結合量とは、ブタジエン部のビニル結合量のことを示し、1H-NMR測定により算出される値である。
 SBRを含有する場合のゴム成分(A-1)中の含有量は、グリップ性能の観点から10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、SBRの含有量は、耐摩耗性の観点から90質量%以下が好ましく、80質量%以下がより好ましい。
 また、耐摩耗性に優れるという理由からBRを含むことが好ましい。BRにシリカ(B-1)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第1の発明では、所定のカップリング剤(D-1)を分割して混練りすることにより、充填剤とゴム成分との相互作用が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性を得られるという点からはハイシスBRが好ましく、シリカとの相互作用の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRを含有する場合のゴム成分(A-1)中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、70質量%以下がより好ましい。
 特に前記変性SBRや変性BRは通常、官能基の強い相互作用のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第1の発明では、所定のカップリング剤(D-1)を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの相互作用が促進される。
シリカ(B-1)
 前記シリカ(B-1)は特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカ(B-1)の窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、100m2/g以上がより好ましく、130m2/g以上がさらに好ましく、160m2/g以上が特に好ましい。また、シリカ(B-1)のN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、200m2/g以下がさらに好ましい。なお、本明細書におけるシリカ(B-1)のN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ(B-1)の含有量(全添加量)は、ゴム成分(A-1)100質量部に対して、低燃費性の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカ(B-1)の含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、100質量部以下がさらに好ましい。
カーボンブラック(C-1)
 前記カーボンブラック(C-1)としては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック(C-1)の窒素吸着比表面積(N2SA)は、耐候性や帯電防止性能の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック(C-1)のN2SAは、加工性の観点から200m2/g以下が好ましく、150m2/g以下がより好ましい。なお、本明細書におけるカーボンブラック(C-1)のN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック(C-1)の含有量(全添加量)は、ゴム成分(A-1)100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。カーボンブラック(C-1)の含有量が1質量部未満の場合は、カーボンブラックを含有することによる効果が十分に得られない恐れがある。また、カーボンブラック(C-1)の含有量は、低燃費性や加工性の観点から30質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤(D-1)
 前記所定のカップリング剤(D-1)とは、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7の整数がより好ましい。
 化学式(1)で示されるカップリング剤(D-1)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。
 化学式(1)で示されるカップリング剤(D-1)の含有量は、シリカ(C-1)の含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤(D-1)の含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-1)
 加硫系薬剤(E-1)は、加硫剤(E1-1)および加硫促進剤(E2-1)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-1)
 前記加硫剤(E1-1)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第1の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-1)の含有量は、ゴム成分(A-1)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-1)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-1)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-1)
 前記加硫促進剤(E2-1)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、グアニジン系加硫促進剤が特に好ましい。
 加硫促進剤(E2-1)の含有量は、ゴム成分(A-1)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-1)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-1)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第1の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-1)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-1)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-1)
 第1の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-1)を含有することが好ましい。可塑剤(F-1)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-1)としてオイルを含有する場合のゴム成分(A-1)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-1)
 前記老化防止剤(G-1)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-1)を含有する場合のゴム成分(A-1)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
タイヤ用ゴム組成物の製造方法
 第1の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-1、工程X2-1および工程Fとすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、ゴム成分(A-1)の全量、シリカ(B-1)の一部、シランカップリング剤(D-1)の一部を混練りする(工程X1-1)、さらにB-1およびD-1の残量を混練りする(工程X2-1)、さらに、加硫剤および加硫促進剤を含む加硫系薬剤(E-1)の全量を混練りする(工程F-1)を含む混練を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第1の発明に係るタイヤ用ゴム組成物を製造することができる。なお、カーボンブラック(C-1)、可塑剤(F-1)、老化防止剤(G-1)、酸化亜鉛、ステアリン酸などその他の配合剤を添加し、混練りするタイミングは特に限定されず、工程X1-1、工程X2-1または工程F-1のいずれの工程で添加してもよく、分割して添加してもよい。
 第1の発明の製造方法では特に、化学式(1)で示されるカップリング剤(D-1)を分割して混練りすることを特徴とする。該カップリング剤(D-1)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止され、第1の発明のような分割投入での混練においても、活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-1
 工程X1-1では、ゴム成分(A-1)の全量、シリカ(B-1)の一部、カップリング剤(D-1)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この操作により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D-1)が化学式(1)の構造をとることにより、混練に伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシランであると、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下したが、化学式(1)で示されるカップリング剤(D-1)は、硫黄を放出しないため、加工性を維持したまま混練を継続することが可能である。
 工程X1-1におけるシリカ(B-1)の添加量は、シリカ混練効果の向上、シリカの十分な分散、および耐摩耗性の観点からシリカ(B-1)の全添加量の50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましい。また、工程X1-1におけるシリカ(B-1)の添加量は、後述する工程X2-1におけるシリカの分割投入の効果、低燃費性および耐摩耗性の観点からシリカ(B-1)の全添加量の95質量%以下が好ましく、90質量%以下がより好ましい。
 工程X1-1における化学式(1)で示されるカップリング剤(D-1)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-1)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-1におけるシリカ(B-1)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-1における化学式(1)で示されるカップリング剤(D-1)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記カーボンブラック(C-1)は工程X1-1および/または工程X2-1で添加することが好ましい。工程X1-1におけるカーボンブラック(C-1)の添加量は、カーボンブラックの分散性の向上と工程の効率化という観点から、カーボンブラック(C-1)の全添加量の10質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%であることが最も好ましい。なお、工程X1-1におけるカーボンブラック(C-1)添加量が100質量%未満の場合は、残量は工程X2-1で添加することが好ましい。
 前記可塑剤(F-1)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-1において、可塑剤(F-1)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-1における可塑剤(F-1)添加量が100質量%未満の場合は、残量は、工程X2-1で添加するシリカの分散性がより向上するという理由から工程X2-1で添加することが好ましい。
工程X2-1
 工程X2-1では、シリカ(B-1)およびカップリング剤(D-1)の残量ならびに他の配合剤を、工程X1-1の混練物に加えて混練りする。もし、工程X1-1でシリカ(B-1)全量投入した場合は、シリカ(B-1)が、変性ポリマーのようなシリカと親和性の高いポリマー部分および/またはポリマーの界面部分に偏在する傾向があるが、第1の発明の製造方法では、シリカ(B-1)を工程X1-1および工程X2-1において分割投入するため、ゴム成分全体に分散しやすくなる。また、後入れした(工程X2-1で投入した)シリカ(B-1)自体が、ゴム成分にシェアをかけることにより混練効果を促進する効果がある。さらに、第1の発明の製造方法では、化学式(1)で示されるカップリング剤(D-1)を分割投入するため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 工程X2-1における化学式(1)で示されるカップリング剤(D-1)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-1)の優れた加工性向上効果を引き出すことができるという理由から、工程X2におけるシリカ(B-1)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-1における化学式(1)で示されるカップリング剤(D-1)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-1)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-1において全量添加することが好ましい。
 工程X1-1および工程X2-1における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-1および工程X2-1における混練の排出温度が前記範囲内であると、シリカ(B-1)が良好に分散した混練物を効率良く得られる傾向がある。
 工程X1-1および工程X2-1における混練時間は特に限定されないが、各工程3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、混練時間は、各工程7.0分以下が好ましく、6.0分以下がより好ましく、5.5分以下がさらに好ましい。工程X1-1および工程X2-1における各混練時間が前記範囲内であると、シリカ(B-1)が良好に分散した混練物を効率良く得られる傾向がある。
工程F-1
 工程F-1は、工程X2-1で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-1)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 工程X2-1で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-1における混練の排出温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程Fにおける混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-1における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-1で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がさらに好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第1の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第1の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドに好適に用いることができる。
タイヤ
 また、第1の発明のタイヤは、第1の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第1の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第1の発明のタイヤを製造することができる。なお、第1の発明のタイヤは、乗用車用タイヤ、バス用タイヤ、トラック用タイヤなどとして好適に用いることができる。
<第2の発明>
 第2の発明は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A-2)、窒素吸着比表面積が140m2/g超のシリカ1(B1-2)、窒素吸着比表面積が140m2/g以下のシリカ2(B2-2)、カーボンブラック(C-2)、下記化学式(1)で示されるカップリング剤(D-2)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-2)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-2)A-2、B1-2、D-2の一部、および任意でE-2の一部を混練りする工程X1-2、
(工程X2-2)工程X1-2の混練物、B2-2、D-2の残量、および任意でE-2の一部を混練りする工程X2-2、ならびに
(工程F-2)工程X2-2の混練物、およびEの残量を混練りする工程F-2
を含むタイヤ用ゴム組成物の製造方法。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ゴム成分が、シリカと反応する官能基を有するスチレンブタジエンゴムおよび/またはブタジエンゴムを含むことが好ましい。
 シリカ1の窒素吸着比表面積が160m2/g以上であることが好ましい。
 工程X1-2および工程X2-2の各工程におけるカップリング剤の添加量が、各工程で添加するシリカ100質量部に対して4~10質量部であることが好ましい。
 シリカの全添加量中のシリカ1の添加量が10~95質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-2において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-2および/または工程X2-2における最高温度が、140℃~200℃であることが好ましい。
 工程X1-2および/または工程X2-2における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-2および/または工程X2-2において加硫促進剤の一部または全量を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-2において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-2および/または工程X2-2において界面活性剤を混練りすることが好ましい。
 また、第2の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第2の発明によれば、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤを製造することができる。
 第2の発明に係るタイヤ用ゴム組成物は、所定のゴム成分(A-2)、所定の窒素吸着比表面積を有するシリカ1(B1-2)およびシリカ2(B2-2)、カーボンブラック(C-2)、所定のカップリング剤(D-2)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-2)を含有することを特徴とする。
ゴム成分(A-2)
 前記ゴム成分(A-2)は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むことを特徴とし、2種以上を含むことが好ましい。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記天然ゴムとしては、天然ゴム(NR)や、エポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)などの改質天然ゴムなども含まれる。
 前記NRとしては特に限定されず、SIR20、RSS#3、TSR20など、タイヤ工業において一般的なものを使用することができる。
 NRを含有する場合のゴム成分(A-2)中の含有量は、ゴム組成物の耐破壊性が向上するという理由から、5質量%以上が好ましく、10質量%以上がより好ましい。また、NRの含有量は、低燃費性と耐摩耗性に優れるという理由から、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
 前記ジエン系合成ゴムとしては、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、スチレンイソプレンブタジエンゴム(SIBR)などが挙げられる。
 ジエン系合成ゴムのなかでも、加工性およびグリップ性に優れるという理由からSBRを含むことが好ましい。前記SBRとしては特に限定されないが、未変性の溶液重合SBR(S-SBR)、未変性の乳化重合SBR(E-SBR)、およびこれらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性された変性SBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのSBRのなかでも、グリップ性能と耐摩耗性能をバランスよく向上できるという理由から、S-SBR、変性S-SBRが好ましく、シリカとの反応の点で、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性S-SBRが特に好ましい。これらのSBRは、単独で用いても構わないが、用途に応じてスチレン含有量などの物性が異なるSBRを併用しても良い。なお、適用部材などに応じて適宜選択すれば良い。
 SBRのスチレン含有量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、SBRのスチレン含有量は、低燃費性の観点から60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書におけるSBRのスチレン含有量は、1H-NMR測定により算出される値である。
 SBRのビニル結合量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。また、SBRのビニル結合量は、低燃費性の観点から65モル%以下が好ましく、60モル%以下がより好ましく、30モル%以下がさらに好ましい。なお、本明細書におけるSBRのビニル結合量とは、ブタジエン部のビニル結合量のことを示し、1H-NMR測定により算出される値である。
 SBRを含有する場合のゴム成分(A-2)中の含有量は、ドライグリップ性能およびウェットグリップ性能の観点から10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、SBRの含有量は、耐摩耗性の観点から90質量%以下が好ましく、80質量%以下がより好ましい。
 また、耐摩耗性に優れるという理由からBRを含むことが好ましい。BRにシリカのような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第2の発明では、所定のカップリング剤(D-2)を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRを含有する場合のゴム成分(A-2)中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がさらに好ましく、70質量%以下がさらに好ましい。
 特に前記変性SBRや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第2の発明では、所定のカップリング剤(D-2)を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
シリカ
 第2の発明に係るタイヤ用ゴム組成物はシリカとして窒素吸着比表面積(N2SA)が大きいシリカ1(B1-2)およびN2SAが小さいシリカ2(B2-2)を含有することを特徴とする。シリカ1およびシリカ2を併用することにより、加工性、低燃費性、および耐摩耗性をよりバランスよく向上させることができる。
 N2SAの大きいシリカ1は、微粒子シリカとして知られており、一般的に分散のコントロールが困難であるが、第2の発明のゴム組成物の製造方法によれば、良好に分散させることができ、優れたゴム性能をバランスよく発現させることが可能である。
 シリカ1(B1-2)のN2SAは、140m2/g超であり、150m2/g以上が好ましく、160m2/g以上がより好ましい。シリカ1のN2SAが140m2/g以下の場合は耐摩耗性の向上効果が不十分となる傾向がある。また、シリカ1のN2SAは、低発熱性や加工性の観点から、500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が最も好ましい。なお、本明細書におけるシリカのN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ1(B1-2)のゴム成分100質量部に対する含有量は、耐摩耗性の観点から、10質量部以上が好ましく、15質量部以上がより好ましく、20質量部以上がさらに好ましい。また、シリカ1の含有量は、分散性を向上し、低燃費性を悪化させないという観点から、200質量部以下が好ましく、150質量部以下がより好ましく、130質量部以下がさらに好ましい。
 シリカ2(B2-2)のN2SAは、低燃費性の向上効果に優れるという理由から、140m2/g以下であり、130m2/g以下が好ましく、120m2/g以下がより好ましく、110m2/g以下がさらに好ましい。また、シリカ2のN2SAは、加硫後の破壊強度の観点から、40m2/g以上が好ましく、50m2/g以上がより好ましく、60m2/g以上がさらに好ましく、70m2/g以上が特に好ましく、80m2/g以上が最も好ましい。
 シリカ2(B2-2)のゴム成分100質量部に対する含有量は、ウェットグリップ性能の観点から、3質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上がさらに好ましい。また、シリカ2の含有量は、分散性を向上し、低燃費性を悪化させないという観点から、200質量部以下が好ましく、150質量部以下がより好ましく、130質量部以下がさらに好ましい。
 シリカの合計含有量は、ゴム成分(A-2)100質量部に対して、低燃費性およびウェットグリップ性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカの合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、130質量部以下がさらに好ましい。
 全シリカ中のシリカ1(B1-2)の含有量は、耐摩耗性の観点および後述する工程X1-2での混練効果の観点から、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。また、全シリカ中のシリカ1の含有量は、シリカ2による低燃費性向上効果の観点から、95重量%以下が好ましく、90重量%以下がより好ましく、80質量%以下がさらに好ましい。
カーボンブラック(C-2)
 前記カーボンブラック(C-2)としては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック(C-2)の窒素吸着比表面積(N2SA)は、耐候性や帯電防止性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック(C-2)のN2SAは、加工性の観点から200m2/g以下が好ましく、150m2/g以下がより好ましい。なお、本明細書におけるカーボンブラック(C-2)のN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック(C-2)の含有量(全添加量)は、ゴム成分(A-2)100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。カーボンブラック(C-2)の含有量が1質量部未満の場合は、カーボンブラックを含有することによる効果が十分に得られない恐れがある。また、カーボンブラック(C-2)の含有量は、低燃費性や加工性の観点から30質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤(D-2)
 前記所定のカップリング剤(D-2)とは、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D-2)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。また、化学式(1)で示されるカップリング剤(D)以外の一般的なカップリング剤と併用しても良い。
 化学式(1)で示されるカップリング剤(D-2)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤(D-2)の含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-2)
 加硫系薬剤(E-2)は、加硫剤(E1-2)および加硫促進剤(E2-2)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-2)
 前記加硫剤(E1-2)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第2の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-2)の含有量は、ゴム成分(A-2)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-2)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-2)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-2)
 前記加硫促進剤(E2-2)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-2)の含有量は、ゴム成分(A-2)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-2)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-2)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第2の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-2)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-2)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-2)
 第2の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-2)を含有することが好ましい。可塑剤(F-2)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-2)としてオイルを含有する場合のゴム成分(A-2)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-2)
 前記老化防止剤(G-2)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-2)を含有する場合のゴム成分(A-2)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第2の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-2)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
タイヤ用ゴム組成物の製造方法
 第2の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-2、工程X2-2および工程F-2とすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A-2、B1-2、D-2の一部、および任意でE-2の一部を混練りする工程X1-2、工程X1-2の混練物、B2-2、D-2の残量、および任意でE-2の一部を混練りする工程X2-2、さらに、工程X2-2の混練物、およびE-2の残量を混練りする工程F-2を含む混練工程を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第2の発明に係るタイヤ用ゴム組成物を製造することができる。なお、カーボンブラック(C-2)、可塑剤(F-2)、老化防止剤(G-2)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-2、工程X2-2または工程F-2のいずれの工程で添加してもよく、分割して添加してもよい。
 第2の発明の製造方法はシリカ1およびシリカ2を、それぞれ工程X1-2および工程X2-2に分割して添加することを特徴とする。微粒子であり分散性に劣るシリカ1を工程X1-2で混練りすることにより、シリカ全体の分散性が向上する。
 また、第2の発明の製造方法は、化学式(1)で示されるカップリング剤(D-2)を分割して混練りすることを特徴とする。該カップリング剤(D-2)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止され、第2の発明のような分割投入での混練においても、活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-2
 工程X1-2では、ゴム成分(A-2)の全量、シリカ1(B1-2)、カップリング剤(D-2)および任意で加硫系薬剤(E-2)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D-2)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシランでは、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D-2)は、硫黄を放出しないため、第2の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 工程X1-2における化学式(1)で示されるカップリング剤(D-2)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-2)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-2におけるシリカ1(B1-2)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-2における化学式(1)で示されるカップリング剤(D-2)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記カーボンブラック(C-2)は工程X1-2および/または工程X2-2で添加することが好ましい。工程X1-2におけるカーボンブラック(C-2)の添加量は、カーボンブラックの分散性の向上と工程の効率化という観点から、カーボンブラック(C-2)の全添加量の10質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%であることが最も好ましい。なお、工程X1-2におけるカーボンブラック(C-2)添加量が100質量%未満の場合は、残量は工程X2-2で添加することが好ましい。
 前記可塑剤(F-2)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-2において、可塑剤(F-2)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-2における可塑剤(F-2)添加量が100質量%未満の場合は、残量は、工程X2-2で添加するシリカの分散性がより向上するという理由から工程X2-2で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-2および/または工程X2-2において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-2において添加することが好ましい。
工程X2-2
 工程X2-2では、シリカ2(B2-2)、カップリング剤(D-2)の残量および任意で加硫系薬剤(E-2)の一部を含む配合剤を、工程X1-2の混練物に加えて混練りする。もし、工程X1-2でシリカを全量投入した場合は、シリカが変性ポリマーのようなシリカと親和性の高いポリマー部分および/またはポリマーの界面部分に偏在してしまう傾向があるが、第2の発明の製造方法では、シリカ1および2を、それぞれ工程X1-2および工程X2-2において分割投入するため、ゴム成分全体にシリカが分散しやすくなる。また、後入れした(工程X2-2で投入した)シリカ2自体が、ゴム成分にシェアをかけることにより混練効果を促進する効果がある。さらに、第2の発明の製造方法では、化学式(1)で示されるカップリング剤(D-2)を分割投入するため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 工程X2-2における化学式(1)で示されるカップリング剤(D-2)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-2)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-2におけるシリカ2(B2-2)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-2における化学式(1)で示されるカップリング剤(D-2)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-2)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-2において全量添加することが好ましい。
 工程X1-2および工程X2-2における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-2および工程X2-2における混練の排出温度が前記範囲内であると、シリカが良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-2および工程X2-2における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は、200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、前記カップリング剤(D-2)を分割して添加することにより、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-2および工程X2-2における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、それぞれ、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第2の発明の一実施形態では、工程X1-2および/または工程X2-2において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃で、10~120秒間保持することが、カップリング剤とシリカとの反応が完全に行われることから好ましい。
工程F-2
 工程F-2は、工程X2-2で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-2)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 前記加硫促進剤(E2-2)は、工程F-2で一度に加えても構わないが、一部または全量を工程X1-2および/または工程X2-2で加えたのち、工程Fで残量を加えることが好ましい。工程X1-2および/または工程X2-2で一部または全量を加えることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の一部または全量を工程X1-2および/または工程X2-2で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。
 工程X2-2で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-2における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程Fにおける混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-2における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-2で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第2の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第2の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドやサイドウォールに好適に用いることができる。
タイヤ
 また、第2の発明のタイヤは、第2の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第2の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第2の発明のタイヤを製造することができる。なお、第2の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。また、空気入りタイヤとしては、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどとして好適に用いることができる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。
<第3の発明>
 第3の発明は、ブタジエンゴム(A1-3)およびスチレンブタジエンゴム(A2-3)を含むゴム成分、シリカ(B-3)、カーボンブラック(C-3)、下記化学式(1)で示されるカップリング剤(D1-3)、スルフィド基を有するカップリング剤(D2-3)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-3)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-3)A1-3、B-3の一部、D1-3、および任意でE-3の一部を混練りする工程X1-3、
(工程X2-3)工程X1-3の混練物、A2-3、B-3の残量、D2-3、および任意でE-3の一部を混練りする工程X2-3、ならびに
(工程F-3)工程X2-3の混練物、およびE-3の残量を混練りする工程F-3
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ブタジエンゴム(A1-3)がシリカと反応する官能基を有するブタジエンゴムを含む、および/または、スチレンブタジエンゴム(A2-3)がシリカと反応する官能基を有するスチレンブタジエンゴムを含むことが好ましい。
 シリカの窒素吸着比表面積が160m2/g以上であり、シリカの全添加量が、ゴム成分100質量部に対して40質量部以上であることが好ましい。
 工程X1-3および工程X2-3の各工程におけるカップリング剤の添加量が、各工程で添加するシリカ100質量部に対して4~10質量部であることが好ましい。
 工程X1-3におけるシリカの添加量が、シリカの全添加量の10~90質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-3において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-3における最高温度が、140℃~200℃であることが好ましい。
 工程X1-3における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-3および/または工程X2-3において加硫促進剤の一部または全量を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-3において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-3および/または工程X2-3において界面活性剤を混練りすることが好ましい。
 また、第3の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第3の発明によれば、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤを製造することができる。
 第3の発明に係るタイヤ用ゴム組成物は、ブタジエンゴム(A1-3)およびスチレンブタジエンゴム(A2-3)を含むゴム成分、シリカ(B-3)、カーボンブラック(C-3)、カップリング剤(D1-3)および(D2-3)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-3)を含有することを特徴とする。
ゴム成分(A-3)
 前記ゴム成分(A-3)は、ブタジエンゴム(A1-3)およびスチレンブタジエンゴム(A2-3)を含むことを特徴とする。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記ゴム成分は耐摩耗性に優れるという理由からブタジエンゴム(BR)を含む。BRにシリカ(B-3)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第3の発明では、所定のカップリング剤(D-3)を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRのゴム成分中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 前記スチレンブタジエンゴム(SBR)としては特に限定されないが、未変性の溶液重合SBR(S-SBR)、未変性の乳化重合SBR(E-SBR)、およびこれらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性された変性SBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのSBRのなかでも、グリップ性能と耐摩耗性能をバランスよく向上できるという理由から、S-SBR、変性S-SBRが好ましく、シリカとの反応の点で、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性S-SBRが特に好ましい。これらのSBRは、単独で用いても構わないが、用途に応じてスチレン含有量などの物性が異なるSBRを併用しても良い。なお、適用部材などに応じて適宜選択すれば良い。
 SBRのスチレン含有量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、SBRのスチレン含有量は、低燃費性の観点から60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書におけるSBRのスチレン含有量は、1H-NMR測定により算出される値である。
 SBRのビニル結合量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。また、SBRのビニル結合量は、低燃費性の観点から65モル%以下が好ましく、60モル%以下がより好ましく、30モル%以下がさらに好ましい。なお、本明細書におけるSBRのビニル結合量とは、ブタジエン部のビニル結合量のことを示し、1H-NMR測定により算出される値である。
 SBRのゴム成分中の含有量は、ドライグリップ性能およびウェットグリップ性能の観点から10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、SBRの含有量は、耐摩耗性の観点から90質量%以下が好ましく、80質量%以下がより好ましい。
 特に前記変性SBRや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第3の発明では、所定のカップリング剤を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
 前記ゴム成分は、前記のBRおよびSBR以外にも、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、イソプレンゴム(IR)、スチレンイソプレンブタジエンゴム(SIBR)などを必要に応じて含有してもよい。SBRおよびBR以外のゴム成分を含むときは、後述の工程X2-3で添加することが好ましい。
シリカ(B-3)
 前記シリカ(B-3)は特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカ(B-3)の窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、50m2/g以上がより好ましく、100m2/g以上がさらに好ましく、130m2/g以上が特に好ましく、160m2/g以上が最も好ましい。また、シリカ(B-3)のN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が特に好ましい。なお、本明細書におけるシリカ(B-3)のN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ(B-3)の含有量(全添加量)は、ゴム成分(A-3)100質量部に対して、低燃費性およびウェットグリップ性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカ(B-3)の合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。
カーボンブラック(C-3)
 前記カーボンブラック(C-3)としては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック(C-3)の窒素吸着比表面積(N2SA)は、耐候性や帯電防止性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック(C-3)のN2SAは、加工性の観点から200m2/g以下が好ましく、150m2/g以下がより好ましい。なお、本明細書におけるカーボンブラック(C-3)のN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック(C-3)の含有量(全添加量)は、ゴム成分(A-3)100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。カーボンブラック(C-3)の含有量が1質量部未満の場合は、カーボンブラックを含有することによる効果が十分に得られない恐れがある。また、カーボンブラック(C-3)の含有量は、低燃費性や加工性の観点から30質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤
 前記カップリング剤(D1-3)は、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D1-3)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。
 前記カップリング剤(D2-3)は、スルフィド基を有するカップリング剤であり、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィドなどが挙げられる。これらのカップリング剤としては、一般的に一定の分布を持った混合物として市販されている、エボニック社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)、Si69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)等が好適に挙げられる。
 カップリング剤(D1-3)および(D2-3)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤の合計含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-3)
 加硫系薬剤(E-3)は、加硫剤(E1-3)および加硫促進剤(E2-3)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-3)
 前記加硫剤(E1-3)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第3の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-3)の含有量は、ゴム成分(A-3)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-3)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-3)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-3)
 前記加硫促進剤(E2-3)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-3)の含有量は、ゴム成分(A-3)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-3)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-3)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第3の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-3)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-3)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F)
 第3の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-3)を含有することが好ましい。可塑剤(F-3)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-3)としてオイルを含有する場合のゴム成分(A-3)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-3)
 前記老化防止剤(G-3)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-3)を含有する場合のゴム成分(A-3)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第3の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-3)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
タイヤ用ゴム組成物の製造方法
 第3の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-3、工程X2-3および工程F-3とすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A1-3、B-3の一部、D1-3、および任意でE-3の一部を混練りする工程X1-3、工程X1-3の混練物、A2-3、B-3の残量、D2-3、および任意でE-3の一部を混練りする工程X2-3、さらに、工程X2-3の混練物、およびE-3の残量を混練りする工程F-3を含む混練工程を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第3の発明に係るタイヤ用ゴム組成物を製造することができる。なお、カーボンブラック(C-3)、可塑剤(F-3)、老化防止剤(G-3)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-3、工程X2-3または工程F-3のいずれの工程で添加してもよく、分割して添加してもよい。
 特に第3の発明の製造方法は、カップリング剤(D1-3)をスルフィド基を有するカップリング剤(D2-3)よりも先の工程(工程X1-3)で混練りすることを特徴とする。カップリング剤(D1-3)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止される。よって、第3の発明のような先投入での混練においても活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-3
 工程X1-3では、ブタジエンゴム(A1-3)、シリカ(B-3)の一部、カップリング剤(D1-3)および任意で加硫系薬剤(E-3)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D1-3)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシラン(カップリング剤(D2-3))を工程X1で投入してしまうと、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D1-3)は、硫黄を放出しないため、第3の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 工程X1-3におけるシリカ(B-3)の添加量は、シリカ混練効果の向上、シリカの十分な分散、および耐摩耗性の観点からシリカ(B-3)の全添加量の10質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましく、50質量%以上がさらに好ましい。また、工程X1-3におけるシリカ(B-3)の添加量は、後述する工程X2-3におけるシリカの分割投入の効果、低燃費性および耐摩耗性の観点からシリカ(B-3)の全添加量の95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましい。
 工程X1-3における化学式(1)で示されるカップリング剤(D1-3)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D1-3)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-3におけるシリカ(B-3)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-3における化学式(1)で示されるカップリング剤(D1-3)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記カーボンブラック(C-3)は工程X1-3および/または工程X2-3で添加することが好ましい。工程X1-3におけるカーボンブラック(C-3)の添加量は、カーボンブラックの分散性の向上と工程の効率化という観点から、カーボンブラック(C-3)の全添加量の10質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%であることが最も好ましい。なお、工程X1-3におけるカーボンブラック(C-3)添加量が100質量%未満の場合は、残量は工程X2-3で添加することが好ましい。
 前記可塑剤(F-3)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-3において、可塑剤(F-3)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-3における可塑剤(F-3)添加量が100質量%未満の場合は、残量は、工程X2-3で添加するシリカの分散性がより向上するという理由から工程X2-3で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-3および/または工程X2-3において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-3において添加することが好ましい。
 工程X1-3における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-3における混練の排出温度が前記範囲内であると、シリカ(B-3)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-3における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、第3の発明に係る工程X1-3では加硫促進剤としてポリスルフィドシランが添加されていないため、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-3における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第3の発明の一実施形態では、工程X1-3において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃で、10~120秒間保持することが、カップリング剤(D1-3)とシリカとの反応が完全に行われることから好ましい。
工程X2-3
 工程X2-3では、スチレンブタジエンゴム(A2-3)、シリカ(B-3)の残量、カップリング剤(D2-3)および任意で加硫系薬剤(E-3)の一部を含む配合剤を、工程X1-3の混練物に加えて混練りする。もし、工程X1-3でシリカを全量投入した場合は、シリカがSBRのようなシリカと親和性の高いポリマー部分および/またはポリマーの界面部分に偏在してしまう傾向があるが、第3の発明の製造方法では、シリカを、それぞれ工程X1-3および工程X2-3において分割投入するため、ゴム成分全体にシリカが分散しやすくなる。また、後入れした(工程X2-3で投入した)シリカ自体が、ゴム成分にシェアをかけることにより混練効果を促進する効果がある。さらに、第3の発明の製造方法では、化学式(1)で示されるカップリング剤(D1-3)を工程X1-3で混練りするため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 また、スルフィド基を有するカップリング剤(D2-3)を工程X2-3において混練りすることにより、該カップリング剤による活性の早期の低下を防止し、混練操作全体における加工性を保つことができる。さらに、カップリング剤(D2-3)は加硫剤として作用する硫黄を放出可能なことから、均一架橋が促進され、ゴム物性の向上をはかることができる。
 工程X2-3におけるカップリング剤(D2-3)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D2-3)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-3におけるシリカ(B-3)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-3における化学式(1)で示されるカップリング剤(D2-3)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-3)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-3において全量添加することが好ましい。
 工程X2-3における混練の排出温度は特に限定されないが、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、該排出温度は、200℃以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。工程X2-3における混練の排出温度が前記範囲内であると、シリカ(B-3)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X2-3における混練中の最高温度は特に限定されないが、スルフィド基を有するカップリング剤(D2-3)が十分に反応し、シリカが良好に分散した混練物が効率良く得られるという点から、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は200℃以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。
 工程X2-3における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
工程F-3
 工程F-3は、工程X2-3で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-3)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 前記加硫促進剤は、工程F-3で一度に加えても構わないが、一部または全量を工程X1-3および/または工程X2-3で加えたのち、工程F-3で残量を加えることが好ましい。工程X1-3および/または工程X2-3で一部または全量を加えることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の一部または全量を工程X1-3および/または工程X2-3で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。
 工程X2-3で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-3における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程Fにおける混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-3における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-3で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第3の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第3の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドやサイドウォールに好適に用いることができる。
タイヤ
 また、第3の発明のタイヤは、第3の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第3の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第3の発明のタイヤを製造することができる。なお、第3の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。また、空気入りタイヤとしては、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどとして好適に用いることができる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。
<第4の発明>
 第4の発明は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A-4)、窒素吸着比表面積が140m2/g超のシリカ1(B1-4)、窒素吸着比表面積が140m2/g以下のシリカ2(B2-4)、カーボンブラック(C-4)、下記化学式(1)で示されるカップリング剤(D1-4)、スルフィド基を有するカップリング剤(D2-4)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-4)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-4)A-4、B1-4、D1-4、および任意でE-4の一部を混練りする工程X1-4、
(工程X2-4)工程X1-4の混練物、B2-4、D2-4、および任意でE-4の一部を混練りする工程X2-4、ならびに
(工程F-4)工程X2-4の混練物、およびEの残量を混練りする工程F-4
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ゴム成分が、シリカと反応する官能基を有するスチレンブタジエンゴムおよび/またはブタジエンゴムを含むことが好ましい。
 シリカ1の窒素吸着比表面積が160m2/g以上であることが好ましい。
 工程X1-4および工程X2-4の各工程におけるカップリング剤の添加量が、各工程で添加するシリカ100質量部に対して4~10質量部であることが好ましい。
 工程X1-4におけるシリカの添加量が、シリカの全添加量の50~95質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-4において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-4における最高温度が、140℃~200℃であることが好ましい。
 工程X1-4における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-4および/または工程X2-4において加硫促進剤の一部または全量を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-4において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-4および/または工程X2-4において界面活性剤を混練りすることが好ましい。
 また、第4の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第4の発明によれば、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤを製造することができる。
 第4の発明に係るタイヤ用ゴム組成物は、所定のゴム成分(A-4)、所定の窒素吸着比表面積を有するシリカ1(B1-4)およびシリカ2(B2-4)、カーボンブラック(C-4)、カップリング剤(D1-4)および(D2-4)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-4)を含有することを特徴とする。
ゴム成分(A-4)
 前記ゴム成分(A-4)は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むことを特徴とし、2種以上を含むことが好ましい。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記天然ゴムとしては、天然ゴム(NR)や、エポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)などの改質天然ゴムなども含まれる。
 前記NRとしては特に限定されず、SIR20、RSS#3、TSR20など、タイヤ工業において一般的なものを使用することができる。
 NRを含有する場合のゴム成分(A-4)中の含有量は、ゴム組成物の耐破壊性が向上するという理由から、5質量%以上が好ましく、10質量%以上がより好ましい。また、NRの含有量は、低燃費性と耐摩耗性に優れるという理由から、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
 前記ジエン系合成ゴムとしては、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、スチレンイソプレンブタジエンゴム(SIBR)などが挙げられる。
 ジエン系合成ゴムのなかでも、加工性、ドライグリップ性能およびウェットグリップ性能に優れるという理由からSBRを含むことが好ましい。前記SBRとしては特に限定されないが、未変性の溶液重合SBR(S-SBR)、未変性の乳化重合SBR(E-SBR)、およびこれらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性された変性SBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのSBRのなかでも、グリップ性能と耐摩耗性能をバランスよく向上できるという理由から、S-SBR、変性S-SBRが好ましく、シリカとの反応の点で、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性S-SBRが特に好ましい。これらのSBRは、単独で用いても構わないが、用途に応じてスチレン含有量などの物性が異なるSBRを併用しても良い。なお、適用部材などに応じて適宜選択すれば良い。
 SBRのスチレン含有量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、SBRのスチレン含有量は、低燃費性の観点から60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書におけるSBRのスチレン含有量は、1H-NMR測定により算出される値である。
 SBRのビニル結合量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。また、SBRのビニル結合量は、低燃費性の観点から65モル%以下が好ましく、60モル%以下がより好ましく、30モル%以下がさらに好ましい。なお、本明細書におけるSBRのビニル結合量とは、ブタジエン部のビニル結合量のことを示し、1H-NMR測定により算出される値である。
 SBRを含有する場合のゴム成分(A-4)中の含有量は、ドライグリップ性能およびウェットグリップ性能の観点から10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、SBRの含有量は、耐摩耗性の観点から90質量%以下が好ましく、80質量%以下がより好ましい。
 また、耐摩耗性に優れるという理由からBRを含むことが好ましい。BRにシリカ(B-4)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第4の発明では、所定のカップリング剤を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRを含有する場合のゴム成分(A-4)中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 特に前記変性SBRや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第4の発明では、所定のカップリング剤を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
シリカ
 第4の発明に係るタイヤ用ゴム組成物はシリカとして窒素吸着比表面積(N2SA)が大きいシリカ1(B1-4)およびN2SAが小さいシリカ2(B2-4)を含有することを特徴とする。シリカ1およびシリカ2を併用することにより、加工性、低燃費性、および耐摩耗性をよりバランスよく向上させることができる。
 N2SAの大きいシリカ1は、微粒子シリカとして知られており、一般的に分散のコントロールが困難であるが、第4の発明のゴム組成物の製造方法によれば、良好に分散させることができ、優れたゴム性能をバランスよく発現させることが可能である。
 シリカ1(B1-4)のN2SAは、140m2/g超であり、150m2/g以上が好ましく、160m2/g以上がより好ましい。シリカ1のN2SAが140m2/g以下の場合は耐摩耗性の向上効果が不十分となる傾向がある。また、シリカ1のN2SAは、低発熱性や加工性の観点から、500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が最も好ましい。なお、本明細書におけるシリカのN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ1(B1-4)のゴム成分100質量部に対する含有量は、耐摩耗性の観点から、10質量部以上が好ましく、15質量部以上がより好ましく、20質量部以上がさらに好ましい。また、シリカ1の含有量は、分散性を向上し、低燃費性を悪化させないという観点から、200質量部以下が好ましく、150質量部以下がより好ましく、130質量部以下がさらに好ましい。
 シリカ2(B2-4)のN2SAは、低燃費性の向上効果に優れるという理由から、140m2/g以下であり、130m2/g以下が好ましく、120m2/g以下がより好ましく、110m2/g以下がさらに好ましい。また、シリカ2のN2SAは、加硫後の破壊強度の観点から、40m2/g以上が好ましく、50m2/g以上がより好ましく、60m2/g以上がさらに好ましく、70m2/g以上が特に好ましく、80m2/g以上が最も好ましい。
 シリカ2(B2-4)のゴム成分100質量部に対する含有量は、ウェットグリップ性能の観点から、3質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上がさらに好ましい。また、シリカ2の含有量は、分散性を向上し、低燃費性を悪化させないという観点から、200質量部以下が好ましく、150質量部以下がより好ましく、130質量部以下がさらに好ましい。
 シリカの合計含有量は、ゴム成分(A-4)100質量部に対して、低燃費性およびウェットグリップ性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカの合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、130質量部以下がさらに好ましい。
 全シリカ中のシリカ1(B1-4)の含有量は、耐摩耗性の観点および後述する工程X1-4での混練効果の観点から、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。また、全シリカ中のシリカ1の含有量は、シリカ2による低燃費性向上効果の観点から、95重量%以下が好ましく、90重量%以下がより好ましく、80質量%以下がさらに好ましい。
カーボンブラック(C-4)
 前記カーボンブラック(C-4)としては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック(C-4)の窒素吸着比表面積(N2SA)は、耐候性や帯電防止性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック(C-4)のN2SAは、加工性の観点から200m2/g以下が好ましく、150m2/g以下がより好ましい。なお、本明細書におけるカーボンブラック(C-4)のN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック(C-4)の含有量(全添加量)は、ゴム成分(A-4)100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。カーボンブラック(C-4)の含有量が1質量部未満の場合は、カーボンブラックを含有することによる効果が十分に得られない恐れがある。また、カーボンブラック(C-4)の含有量は、低燃費性や加工性の観点から30質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤
 前記カップリング剤(D1-4)は、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D1-4)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。
 前記カップリング剤(D2-4)は、スルフィド基を有するカップリング剤であり、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィドなどが挙げられる。これらのカップリング剤としては、一般的に一定の分布を持った混合物として市販されている、エボニック社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)、Si69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)等が好適に挙げられる。
 カップリング剤(D1-4)および(D2-4)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤の合計含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-4)
 加硫系薬剤(E-4)は、加硫剤(E1-4)および加硫促進剤(E2-4)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-4)
 前記加硫剤(E1-4)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第4の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-4)の含有量は、ゴム成分(A-4)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-4)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-4)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-4)
 前記加硫促進剤(E2-4)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-4)の含有量は、ゴム成分(A-4)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-4)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-4)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第4の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-4)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-4)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-4)
 第4の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-4)を含有することが好ましい。可塑剤(F-4)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-4)としてオイルを含有する場合のゴム成分(A-4)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-4)
 前記老化防止剤(G-4)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-4)を含有する場合のゴム成分(A-4)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第4の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-4)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
タイヤ用ゴム組成物の製造方法
 第4の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-4、工程X2-4および工程F-4とすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A-4、B1-4、D1-4、および任意でE-4の一部を混練りする工程X1-4、工程X1-4の混練物、B2-4、D2-4、および任意でE-4の一部を混練りする工程X2-4、さらに、工程X2-4の混練物、およびE-4の残量を混練りする工程F-4を含む混練工程を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第4の発明に係るタイヤ用ゴム組成物を製造することができる。なお、カーボンブラック(C-4)、可塑剤(F-4)、老化防止剤(G-4)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-4、工程X2-4または工程F-4のいずれの工程で添加してもよく、分割して添加してもよい。
 特に第4の発明の製造方法は、シリカ1およびシリカ2を、それぞれ工程X1-4および工程X2-4に分割して添加することを特徴とする。微粒子であり分散性に劣るシリカ1を工程X1-4で混練りすることにより、シリカ全体の分散性が向上する。さらに、カップリング剤(D1-4)をスルフィド基を有するカップリング剤(D2-4)よりも先の工程(工程X1-4)で混練りすることを特徴とする。カップリング剤(D1-4)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止される。よって、第4の発明のような先投入での混練においても活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-4
 工程X1-4では、ゴム成分(A-4)の全量、シリカ1(B1-4)、カップリング剤(D1-4)および任意で加硫系薬剤(E-4)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D1-4)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシラン(カップリング剤(D2-4))を工程X1で投入してしまうと、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D1-4)は、硫黄を放出しないため、第4の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 工程X1-4における化学式(1)で示されるカップリング剤(D1-4)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D1-4)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-4におけるシリカ(B-4)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-4における化学式(1)で示されるカップリング剤(D1-4)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記カーボンブラック(C-4)は工程X1-4および/または工程X2-4で添加することが好ましい。工程X1-4におけるカーボンブラック(C-4)の添加量は、カーボンブラックの分散性の向上と工程の効率化という観点から、カーボンブラック(C-4)の全添加量の10質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%であることが最も好ましい。なお、工程X1-4におけるカーボンブラック(C-4)添加量が100質量%未満の場合は、残量は工程X2-4で添加することが好ましい。
 前記可塑剤(F-4)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-4において、可塑剤(F-4)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-4における可塑剤(F-4)添加量が100質量%未満の場合は、残量は、工程X2-4で添加するシリカの分散性がより向上するという理由から工程X2-4で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-4および/または工程X2-4において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-4において添加することが好ましい。
 工程X1-4における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-4における混練の排出温度が前記範囲内であると、シリカ(B-4)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-4における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、第4の発明に係る工程X1-4では加硫促進剤としてポリスルフィドシランが添加されていないため、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-4における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第4の発明の一実施形態では、工程X1-4において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃で、10~120秒間保持することが、カップリング剤(D1-4)とシリカとの反応が完全に行われることから好ましい。
工程X2-4
 工程X2-4では、シリカ2(B2-4)、カップリング剤(D2-4)および任意で加硫系薬剤(E-4)の一部を含む配合剤を、工程X1-4の混練物に加えて混練りする。もし、工程X1-4でシリカを全量投入した場合は、シリカが変性ポリマーのようなシリカと親和性の高いポリマー部分および/またはポリマーの界面部分に偏在してしまう傾向があるが、第4の発明の製造方法では、シリカ1および2を、それぞれ工程X1-4および工程X2-4において分割投入するため、ゴム成分全体にシリカが分散しやすくなる。また、後入れした(工程X2-4で投入した)シリカ2自体が、ゴム成分にシェアをかけることにより混練効果を促進する効果がある。さらに、第4の発明の製造方法では、化学式(1)で示されるカップリング剤(D1-4)を工程X1-4で混練りするため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 また、スルフィド基を有するカップリング剤(D2-4)を工程X2-4において混練りすることにより、該カップリング剤による活性の早期の低下を防止し、混練操作全体における加工性を保つことができる。さらに、カップリング剤(D2-4)は加硫剤として作用する硫黄を放出可能なことから、均一架橋が促進され、ゴム物性の向上をはかることができる。
 工程X2-4におけるカップリング剤(D2-4)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D2-4)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-4におけるシリカ(B-4)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-4における化学式(1)で示されるカップリング剤(D2-4)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-4)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-4において全量添加することが好ましい。
 工程X2-4における混練の排出温度は特に限定されないが、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、該排出温度は、200℃以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。工程X2-4における混練の排出温度が前記範囲内であると、シリカ(B-4)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X2-4における混練中の最高温度は特に限定されないが、スルフィド基を有するカップリング剤(D2-4)が十分に反応し、シリカが良好に分散した混練物が効率良く得られるという点から、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は200℃以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。
 工程X2-4における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
工程F-4
 工程F-4は、工程X2-4で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-4)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 前記加硫促進剤は、工程F-4で一度に加えても構わないが、一部または全量を工程X1-4および/または工程X2-4で加えたのち、工程F-4で残量を加えることが好ましい。工程X1-4および/または工程X2-4で一部または全量を加えることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の一部または全量を工程X1-4および/または工程X2-4で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。
 工程X2-4で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-4における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程Fにおける混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-4における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-4で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第4の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第4の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドやサイドウォールに好適に用いることができる。
タイヤ
 また、第4の発明のタイヤは、第4の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第4の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第4の発明のタイヤを製造することができる。なお、第4の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。また、空気入りタイヤとしては、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどとして好適に用いることができる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。
<第5の発明>
 第5の発明は、ブタジエンゴム(A1-5)およびイソプレン系ゴム(A2-5)を含むゴム成分、シリカ(B-5)、カーボンブラック(C-5)、下記化学式(1)で示されるカップリング剤(D1-5)、スルフィド基を有するカップリング剤(D2-5)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-5)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-5)A1-5、B-5の一部、D1-5、および任意でE-5の一部を混練りする工程X1-5、
(工程X2-5)工程X1-5の混練物、A2-5、B-5の残量、D2-5、および任意でE-5の一部を混練りする工程X2-5、ならびに
(工程F-5)工程X2-5の混練物、およびE-5の残量を混練りする工程F
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ブタジエンゴム(A1-5)がシリカと反応する官能基を有するブタジエンゴムであることが好ましい。
 シリカの窒素吸着比表面積が160m2/g以上であり、シリカの全添加量が、ゴム成分100質量部に対して40質量部以上であることが好ましい。
 工程X1-5および工程X2-5の各工程におけるカップリング剤の添加量が、各工程で添加するシリカ100質量部に対して4~10質量部であることが好ましい。
 工程X1-5におけるシリカの添加量が、シリカの全添加量の10~90質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-5において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-5における最高温度が、140℃~200℃であることが好ましい。
 工程X1-5における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-5および/または工程X2-5において加硫促進剤の一部または全量を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-5において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-5および/または工程X2-5において界面活性剤を混練りすることが好ましい。
 また、第5の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第5の発明によれば、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤを製造することができる。
 第5の発明に係るタイヤ用ゴム組成物は、ブタジエンゴム(A1-5)およびイソプレン系ゴム(A2-5)を含むゴム成分、シリカ(B-5)、カーボンブラック(C-5)、カップリング剤(D1-5)および(D2-5)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-5)を含有することを特徴とする。
ゴム成分
 前記ゴム成分は、ブタジエンゴム(A1-5)およびイソプレン系ゴム(A2-5)を含むことを特徴とする。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記ゴム成分は耐摩耗性に優れるという理由からブタジエンゴム(BR)を含む。BRにシリカ(B-5)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第5の発明では、所定のカップリング剤(D-5)を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRのゴム成分中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 前記イソプレン系ゴムとしては、化学合成ポリイソプレンゴム(IR)、天然ゴム(NR)、エポキシ化天然ゴム(ENR)などが挙げられる。なかでも、入手容易性およびゴム強度の観点からNRやENRが好ましい。
 特に前記イソプレン系ゴムや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第5の発明では、所定のカップリング剤を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
 前記ゴム成分は、前記のBRおよびイソプレン系ゴム以外にも、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)などを必要に応じて含有してもよい。BRおよびイソプレン系ゴム以外のゴム成分を含むときは、後述の工程X2-5で添加することが好ましい。
シリカ(B-5)
 前記シリカ(B-5)は特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカ(B-5)の窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、50m2/g以上がより好ましく、100m2/g以上がさらに好ましく、130m2/g以上が特に好ましく、160m2/g以上が最も好ましい。また、シリカ(B-5)のN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が特に好ましい。なお、本明細書におけるシリカ(B-5)のN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ(B-5)の含有量(全添加量)は、ゴム成分(A-5)100質量部に対して、低燃費性およびウェットグリップ性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカ(B-5)の合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。
カーボンブラック(C-5)
 前記カーボンブラック(C-5)としては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック(C-5)の窒素吸着比表面積(N2SA)は、耐候性や帯電防止性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック(C-5)のN2SAは、加工性の観点から200m2/g以下が好ましく、150m2/g以下がより好ましい。なお、本明細書におけるカーボンブラック(C)のN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック(C-5)の含有量(全添加量)は、ゴム成分(A-5)100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。カーボンブラック(C-5)の含有量が1質量部未満の場合は、カーボンブラックを含有することによる効果が十分に得られない恐れがある。また、カーボンブラック(C-5)の含有量は、低燃費性や加工性の観点から30質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤
 前記カップリング剤(D1-5)は、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D1-5)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。
 前記カップリング剤(D2-5)は、スルフィド基を有するカップリング剤であり、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィドなどが挙げられる。これらのカップリング剤としては、一般的に一定の分布を持った混合物として市販されている、エボニック社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)、Si69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)等が好適に挙げられる。
 カップリング剤(D1-5)および(D2-5)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤の合計含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-5)
 加硫系薬剤(E-5)は、加硫剤(E1-5)および加硫促進剤(E2-5)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-5)
 前記加硫剤(E1-5)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第5の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-5)の含有量は、ゴム成分(A-5)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-5)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-5)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-5)
 前記加硫促進剤(E2-5)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-5)の含有量は、ゴム成分(A-5)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-5)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-5)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第5の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-5)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-5)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-5)
 第5の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-5)を含有することが好ましい。可塑剤(F-5)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-5)としてオイルを含有する場合のゴム成分(A-5)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-5)
 前記老化防止剤(G-5)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-5)を含有する場合のゴム成分(A-5)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第5の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-5)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
タイヤ用ゴム組成物の製造方法
 第5の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-5、工程X2-5および工程Fとすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A1-5、Bの一部-5、D1-5、および任意でE-5の一部を混練りする工程X1-5、工程X1-5の混練物、A2-5、B-5の残量、D2-5、および任意でE-5の一部を混練りする工程X2-5、さらに、工程X2-5の混練物、およびE-5の残量を混練りする工程Fを含む混練工程を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第5の発明に係るタイヤ用ゴム組成物を製造することができる。なお、カーボンブラック(C-5)、可塑剤(F-5)、老化防止剤(G-5)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-5、工程X2-5または工程F-5のいずれの工程で添加してもよく、分割して添加してもよい。
 特に第5の発明の製造方法は、カップリング剤(D1-5)をスルフィド基を有するカップリング剤(D2-5)よりも先の工程(工程X1-5)で混練りすることを特徴とする。カップリング剤(D1-5)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止される。よって、第5の発明のような先投入での混練においても活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-5
 工程X1-5では、ブタジエンゴム(A1-5)、シリカ(B-5)の一部、カップリング剤(D1-5)および任意で加硫系薬剤(E-5)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D1-5)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシラン(カップリング剤(D2-5))を工程X1で投入してしまうと、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D1-5)は、硫黄を放出しないため、第5の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 また、ゴム成分としてBRおよびイソプレン系ゴムを含有するゴム組成物では、イソプレン系ゴムおよび/または界面にシリカが遍在する傾向にあるが、第5の発明の製造方法では、BR、シリカおよび所定のカップリング剤を工程X1-5で先に混練りすることにより、BRにも良好にシリカを存在させることが可能である。
 工程X1-5におけるシリカ(B-5)の添加量は、シリカ混練効果の向上、シリカの十分な分散、および耐摩耗性の観点からシリカ(B-5)の全添加量の10質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましく、50質量%以上がさらに好ましい。また、工程X1-5におけるシリカ(B-5)の添加量は、後述する工程X2-5におけるシリカの分割投入の効果、低燃費性および耐摩耗性の観点からシリカ(B-5)の全添加量の95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましい。
 工程X1-5における化学式(1)で示されるカップリング剤(D1-5)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D1-5)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-5におけるシリカ(B-5)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-5における化学式(1)で示されるカップリング剤(D1-5)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記カーボンブラック(C-5)は工程X1-5および/または工程X2-5で添加することが好ましい。工程X1-5におけるカーボンブラック(C-5)の添加量は、カーボンブラックの分散性の向上と工程の効率化という観点から、カーボンブラック(C-5)の全添加量の10質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%であることが最も好ましい。なお、工程X1-5におけるカーボンブラック(C-5)添加量が100質量%未満の場合は、残量は工程X2-5で添加することが好ましい。
 前記可塑剤(F-5)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-5において、可塑剤(F-5)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-5における可塑剤(F-5)添加量が100質量%未満の場合は、残量は、工程X2-5で添加するシリカの分散性がより向上するという理由から工程X2-5で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-5および/または工程X2-5において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-5において添加することが好ましい。
 工程X1-5における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-5における混練の排出温度が前記範囲内であると、シリカ(B-5)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-5における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、第5の発明に係る工程X1-5では加硫促進剤としてポリスルフィドシランが添加されていないため、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-5における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第5の発明の一実施形態では、工程X1-5において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃で、10~120秒間保持することが、カップリング剤(D1-5)とシリカとの反応が完全に行われることから好ましい。
工程X2-5
 工程X2-5では、イソプレン系ゴム(A2-5)、シリカ(B-5)の残量、カップリング剤(D2-5)および任意で加硫系薬剤(E-5)の一部を含む配合剤を、工程X1-5の混練物に加えて混練りする。もし、工程X1-5でシリカを全量投入した場合は、シリカがイソプレン系ゴムのようなシリカと親和性の高いポリマー部分および/またはポリマーの界面部分に偏在してしまう傾向があるが、第5の発明の製造方法では、シリカを、それぞれ工程X1-5および工程X2-5において分割投入するため、ゴム成分全体にシリカが分散しやすくなる。また、後入れした(工程X2-5で投入した)シリカ自体が、ゴム成分にシェアをかけることにより混練効果を促進する効果がある。さらに、第5の発明の製造方法では、化学式(1)で示されるカップリング剤(D1-5)を工程X1-5で混練りするため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 また、スルフィド基を有するカップリング剤(D2-5)を工程X2-5において混練りすることにより、該カップリング剤による活性の早期の低下を防止し、混練操作全体における加工性を保つことができる。さらに、カップリング剤(D2-5)は加硫剤として作用する硫黄を放出可能なことから、均一架橋が促進され、ゴム物性の向上をはかることができる。
 工程X2-5におけるカップリング剤(D2-5)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D2-5)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-5におけるシリカ(B-5)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-5における化学式(1)で示されるカップリング剤(D2-5)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-5)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-5において全量添加することが好ましい。
 工程X2-5における混練の排出温度は特に限定されないが、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、該排出温度は、200℃以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。工程X2-5における混練の排出温度が前記範囲内であると、シリカ(B-5)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X2-5における混練中の最高温度は特に限定されないが、スルフィド基を有するカップリング剤(D2-5)が十分に反応し、シリカが良好に分散した混練物が効率良く得られるという点から、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は200℃以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。
 工程X2-5における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
工程F
 工程F-5は、工程X2-5で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-5)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 前記加硫促進剤は、工程F-5で一度に加えても構わないが、一部または全量を工程X1-5および/または工程X2-5で加えたのち、工程Fで残量を加えることが好ましい。工程X1-5および/または工程X2-5で一部または全量を加えることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の一部または全量を工程X1-5および/または工程X2-5で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。
 工程X2-5で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-5における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程Fにおける混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-5における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-5で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第5の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第5の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドやサイドウォールに好適に用いることができる。
タイヤ
 また、第5の発明のタイヤは、第5の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第5の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第5の発明のタイヤを製造することができる。なお、第5の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。また、空気入りタイヤとしては、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどとして好適に用いることができる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。
<第6の発明>
 第6の発明は、ブタジエンゴム(A1-6)およびスチレンブタジエンゴム(A2-6)を含むゴム成分、シリカ(B-6)、カーボンブラック(C-6)、下記化学式(1)で示されるカップリング剤(D-6)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-6)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-6)A1-6、B-6の一部、D-6の一部、および任意でE-6の一部を混練りする工程X1-6、
(工程X2-6)工程X1-6の混練物、A2-6、B-6の残量、D-6の残量、および任意でE-6の一部を混練りする工程X2-6、ならびに
(工程F-6)工程X2-6の混練物、およびE-6の残量を混練りする工程F-6
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ブタジエンゴム(A1-6)がシリカと反応する官能基を有するブタジエンゴムを含む、および/または、スチレンブタジエンゴム(A2-6)がシリカと反応する官能基を有するスチレンブタジエンゴムを含むことが好ましい。
 シリカの窒素吸着比表面積が160m2/g以上であり、シリカの全添加量が、ゴム成分100質量部に対して40質量部以上であることが好ましい。
 工程X1-6および工程X2-6の各工程におけるカップリング剤の添加量が、各工程で添加するシリカ100質量部に対して4~10質量部であることが好ましい。
 工程X1-6におけるシリカの添加量が、シリカの全添加量の10~90質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-6において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-6および/または工程X2-6における最高温度が、140℃~200℃であることが好ましい。
 工程X1-6および/または工程X2-6における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-6および/または工程X2-6において加硫促進剤の一部または全量を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-6において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-6および/または工程X2-6において界面活性剤を混練りすることが好ましい。
 また、第6の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第6の発明によれば、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤを製造することができる。
 第6の発明に係るタイヤ用ゴム組成物は、ブタジエンゴム(A1-6)およびスチレンブタジエンゴム(A2-6)を含むゴム成分、シリカ(B-6)、カーボンブラック(C-6)、所定のカップリング剤(D-6)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E)を含有することを特徴とする。
ゴム成分
 前記ゴム成分は、ブタジエンゴム(A1-6)およびスチレンブタジエンゴム(A2-6)を含むことを特徴とする。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記ゴム成分は耐摩耗性に優れるという理由からブタジエンゴム(BR)を含む。BRにシリカ(B-6)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第6の発明では、所定のカップリング剤(D-6)を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRのゴム成分中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がさらに好ましく、70質量%以下がさらに好ましい。
 前記スチレンブタジエンゴム(SBR)としては特に限定されないが、未変性の溶液重合SBR(S-SBR)、未変性の乳化重合SBR(E-SBR)、およびこれらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性された変性SBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのSBRのなかでも、グリップ性能と耐摩耗性能をバランスよく向上できるという理由から、S-SBR、変性S-SBRが好ましく、シリカとの反応の点で、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性S-SBRが特に好ましい。これらのSBRは、単独で用いても構わないが、用途に応じてスチレン含有量などの物性が異なるSBRを併用しても良い。なお、適用部材などに応じて適宜選択すれば良い。
 SBRのスチレン含有量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、SBRのスチレン含有量は、低燃費性の観点から60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書におけるSBRのスチレン含有量は、1H-NMR測定により算出される値である。
 SBRのビニル結合量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。また、SBRのビニル結合量は、低燃費性の観点から65モル%以下が好ましく、60モル%以下がより好ましく、30モル%以下がさらに好ましい。なお、本明細書におけるSBRのビニル結合量とは、ブタジエン部のビニル結合量のことを示し、1H-NMR測定により算出される値である。
 SBRのゴム成分中の含有量は、ドライグリップ性能およびウェットグリップ性能の観点から10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、SBRの含有量は、耐摩耗性の観点から90質量%以下が好ましく、80質量%以下がより好ましい。
 特に前記変性SBRや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第6の発明では、所定のカップリング剤(D-6)を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
 前記ゴム成分は、前記のBRおよびSBR以外にも、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、イソプレンゴム(IR)、スチレンイソプレンブタジエンゴム(SIBR)などを必要に応じて含有してもよい。SBRおよびBR以外のゴム成分を含むときは、後述の工程X2-6で添加することが好ましい。
シリカ(B)
 前記シリカ(B-6)は特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカ(B-6)の窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、50m2/g以上がより好ましく、100m2/g以上がさらに好ましく、130m2/g以上が特に好ましく、160m2/g以上が最も好ましい。また、シリカ(B-6)のN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が特に好ましい。なお、本明細書におけるシリカ(B-6)のN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ(B-6)の含有量(全添加量)は、ゴム成分(A-6)100質量部に対して、低燃費性およびウェットグリップ性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカ(B-6)の合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。
カーボンブラック(C-6)
 前記カーボンブラック(C-6)としては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック(C-6)の窒素吸着比表面積(N2SA)は、耐候性や帯電防止性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック(C-6)のN2SAは、加工性の観点から200m2/g以下が好ましく、150m2/g以下がより好ましい。なお、本明細書におけるカーボンブラック(C-6)のN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック(C-6)の含有量(全添加量)は、ゴム成分(A-6)100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。カーボンブラック(C-6)の含有量が1質量部未満の場合は、カーボンブラックを含有することによる効果が十分に得られない恐れがある。また、カーボンブラック(C-6)の含有量は、低燃費性や加工性の観点から30質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤(D-6)
 前記所定のカップリング剤(D-6)とは、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。また、化学式(1)で示されるカップリング剤(D)以外の一般的なカップリング剤と併用しても良い。
 化学式(1)で示されるカップリング剤(D-6)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤(D-6)の含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-6)
 加硫系薬剤(E)は、加硫剤(E1-6)および加硫促進剤(E2-6)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-6)
 前記加硫剤(E1-6)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第6の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-6)の含有量は、ゴム成分(A-6)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-6)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-6)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-6)
 前記加硫促進剤(E2-6)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-6)の含有量は、ゴム成分(A-6)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-6)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-6)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第6の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-6)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-6)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-6)
 第6の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-6)を含有することが好ましい。可塑剤(F-6)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-6)としてオイルを含有する場合のゴム成分(A-6)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-6)
 前記老化防止剤(G-6)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-6)を含有する場合のゴム成分(A-6)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第6の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-6)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
タイヤ用ゴム組成物の製造方法
 第6の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-6、工程X2-6および工程F-6とすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A1-6、B-6の一部、D-6の一部、および任意でE-6の一部を混練りする工程X1-6、工程X1-6の混練物、A2-6、B-6の残量、D-6の残量、および任意でE-6の一部を混練りする工程X2-6、さらに、工程X2-6の混練物、およびE-6の残量を混練りする工程F-6を含む混練工程を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第6の発明に係るタイヤ用ゴム組成物を製造することができる。なお、カーボンブラック(C-6)、可塑剤(F-6)、老化防止剤(G-6)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-6、工程X2-6または工程F-6のいずれの工程で添加してもよく、分割して添加してもよい。
 また、第6の発明の製造方法は、化学式(1)で示されるカップリング剤(D-6)を分割して混練りすることを特徴とする。該カップリング剤(D-6)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止され、第6の発明のような分割投入での混練においても、活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-6
 工程X1-6では、ブタジエンゴム(A1-6)、シリカ(B-6)の一部、カップリング剤(D-6)の一部、および任意で加硫系薬剤(E-6)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D-6)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシランでは、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D-6)は、硫黄を放出しないため、第6の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 また、ゴム成分としてBRおよびSBRを含有するゴム組成物では、SBRにシリカが遍在する傾向にあるが、第6の発明の製造方法では、BR、シリカおよび所定のカップリング剤を工程X1-6で先に混練りすることにより、BRにも良好にシリカを存在させることが可能である。
 工程X1-6におけるシリカ(B-6)の添加量は、シリカ混練効果の向上、シリカの十分な分散、および耐摩耗性の観点からシリカ(B-6)の全添加量の10質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましく、50質量%以上がさらに好ましい。また、工程X1-6におけるシリカ(B-6)の添加量は、後述する工程X2-6におけるシリカの分割投入の効果、低燃費性および耐摩耗性の観点からシリカ(B-6)の全添加量の95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましい。
 工程X1-6における化学式(1)で示されるカップリング剤(D-6)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-6)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-6におけるシリカ(B-6)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-6における化学式(1)で示されるカップリング剤(D-6)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記カーボンブラック(C)は工程X1-6および/または工程X2-6で添加することが好ましい。工程X1-6におけるカーボンブラック(C-6)の添加量は、カーボンブラックの分散性の向上と工程の効率化という観点から、カーボンブラック(C-6)の全添加量の10質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%であることが最も好ましい。なお、工程X1-6におけるカーボンブラック(C-6)添加量が100質量%未満の場合は、残量は工程X2-6で添加することが好ましい。
 前記可塑剤(F-6)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-6において、可塑剤(F-6)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-6における可塑剤(F-6)の添加量が100質量%未満の場合は、残量は、工程X2-6で添加するシリカの分散性がより向上するという理由から工程X2-6で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-6および/または工程X2-6において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-6において添加することが好ましい。
工程X2-6
 工程X2-6では、スチレンブタジエンゴム(A2-6)、シリカ(B-6)の残量、カップリング剤(D-6)の残量、および任意で加硫系薬剤(E-6)の一部を含む配合剤を、工程X1-6の混練物に加えて混練りする。もし、工程X1-6でシリカを全量投入した場合は、シリカがSBRのようなシリカと親和性の高いポリマー部分および/または該ポリマーの界面部分に偏在してしまう傾向があるが、第6の発明の製造方法では、シリカを工程X1-6および工程X2-6において分割投入するため、ゴム成分全体にシリカが分散しやすくなる。また、後入れした(工程X2-6で投入した)シリカ自体が、ゴム成分にシェアをかけることにより混練効果を促進する効果がある。さらに、第6の発明の製造方法では、化学式(1)で示されるカップリング剤(D-6)を分割投入するため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 工程X2-6における化学式(1)で示されるカップリング剤(D-6)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-6)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-6におけるシリカ(B-6)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-6における化学式(1)で示されるカップリング剤(D-6)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-6)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-5において全量添加することが好ましい。
 工程X1-6および工程X2-6における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-6および工程X2-6における混練の排出温度が前記範囲内であると、シリカ(B)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-6および工程X2-6における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は、200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、前記カップリング剤(D-6)を分割して添加することにより、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-6および工程X2-6における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、それぞれ、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第6の発明の一実施形態では、工程X1-6および/または工程X2-6において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃で、10~120秒間保持することが、カップリング剤とシリカとの反応が完全に行われることから好ましい。
工程F-6
 工程F-6は、工程X2-6で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-6)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 前記加硫促進剤は、工程F-6で一度に加えても構わないが、一部または全量を工程X1-6および/または工程X2-6で加えたのち、工程Fで残量を加えることが好ましい。工程X1-6および/または工程X-62で一部または全量を加えることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の一部または全量を工程X1-6および/または工程X2-6で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。
 工程X2-6で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-6における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程F-6における混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-6における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-6で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第6の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第6の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドやサイドウォールに好適に用いることができる。
タイヤ
 また、第6の発明のタイヤは、第6の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第6の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第6の発明のタイヤを製造することができる。なお、第6の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。空気入りタイヤとしては、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどとして好適に用いることができる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。
<第7の発明>
 第7の発明は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A-7)、シリカ(B-7)、窒素吸着比表面積が200m2/g以下のカーボンブラック1(C1-7)、窒素吸着比表面積が900m2/g以上のカーボンブラック2(C2-7)、下記化学式(1-7)で示されるカップリング剤(D1-7)、スルフィド基を有するカップリング剤(D2-7)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-7)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-7)A-7、B-7の一部または全量、C1-7、D1-7、および任意でEの一部を混練りする工程X1-7、
(工程X2-7)工程X1-7の混練物、B-7の残量、C2-7、D2-7、および任意でE-7の一部を混練りする工程X2-7、ならびに
(工程F-7)工程X2-7の混練物、およびE-7の残量を混練りする工程F-7
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ゴム成分が、シリカと反応する官能基を有するスチレンブタジエンゴムおよび/またはブタジエンゴムを含むことが好ましい。
 カーボンブラック2(C2-7)のDBP吸油量が300ml/100g以上であることが好ましい。
 前記ゴム組成物の体積固有抵抗率が1.0×107Ω・cm未満であることが好ましい。
 工程X1-7におけるシリカの添加量が、シリカの全添加量の50~95質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-7において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-7における最高温度が、140℃~200℃であることが好ましい。
 工程X1-7における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-7および/または工程X2-7において加硫促進剤の一部または全量を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-7において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-7および/または工程X2-7において界面活性剤を混練りすることが好ましい。
 また、第7の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第7の発明によれば、低燃費性、耐摩耗性、ウェットグリップ性能および導電性がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、ウェットグリップ性能および導電性がバランス良く改善されたタイヤを製造することができる。
 第7の発明に係るタイヤ用ゴム組成物は、所定のゴム成分(A-7)、シリカ(B-7)、所定の窒素吸着比表面積を有するカーボンブラック(C1-7)および(C2-7)、カップリング剤(D1-7)および(D2-7)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-7)を含有することを特徴とする。
ゴム成分(A-7)
 前記ゴム成分(A-7)は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むことを特徴とし、2種以上を含むことが好ましい。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記天然ゴムとしては、天然ゴム(NR)や、エポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)などの改質天然ゴムなども含まれる。
 前記NRとしては特に限定されず、SIR20、RSS#3、TSR20など、タイヤ工業において一般的なものを使用することができる。
 NRを含有する場合のゴム成分(A-7)中の含有量は、ゴム組成物の耐破壊性が向上するという理由から、5質量%以上が好ましく、10質量%以上がより好ましい。また、NRの含有量は、低燃費性と耐摩耗性に優れるという理由から、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
 前記ジエン系合成ゴムとしては、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、スチレンイソプレンブタジエンゴム(SIBR)などが挙げられる。
 ジエン系合成ゴムのなかでも、加工性およびドライグリップ性およびウェットグリップ性に優れるという理由からSBRを含むことが好ましい。前記SBRとしては特に限定されないが、未変性の溶液重合SBR(S-SBR)、未変性の乳化重合SBR(E-SBR)、およびこれらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性された変性SBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのSBRのなかでも、グリップ性能と耐摩耗性能をバランスよく向上できるという理由から、S-SBR、変性S-SBRが好ましく、シリカとの反応の点で、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性S-SBRが特に好ましい。これらのSBRは、単独で用いても構わないが、用途に応じてスチレン含有量などの物性が異なるSBRを併用しても良い。なお、適用部材などに応じて適宜選択すれば良い。
 SBRのスチレン含有量は、グリップ性能やゴム強度の観点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、SBRのスチレン含有量は、低燃費性の観点から60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書におけるSBRのスチレン含有量は、1H-NMR測定により算出される値である。
 SBRのビニル結合量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。また、SBRのビニル結合量は、低燃費性の観点から65モル%以下が好ましく、60モル%以下がより好ましく、30モル%以下がさらに好ましい。なお、本明細書におけるSBRのビニル結合量とは、ブタジエン部のビニル結合量のことを示し、ドライグリップ性能およびウェットグリップ性能測定により算出される値である。
 SBRを含有する場合のゴム成分(A-7)中の含有量は、ドライグリップ性能およびウェットグリップ性能の観点から10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、SBRの含有量は、耐摩耗性の観点から90質量%以下が好ましく、80質量%以下がより好ましい。
 また、耐摩耗性に優れるという理由からBRを含むことが好ましい。BRにシリカ(B-7)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第7の発明では、所定のカップリング剤を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRを含有する場合のゴム成分(A-7)中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 特に前記変性SBRや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第7の発明では、所定のカップリング剤を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
シリカ(B-7)
 前記シリカ(B-7)は特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカ(B-7)の窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、50m2/g以上がより好ましく、100m2/g以上がさらに好ましく、130m2/g以上が特に好ましく、160m2/g以上が最も好ましい。また、シリカ(B-7)のN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が特に好ましい。なお、本明細書におけるシリカ(B-7)のN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ(B-7)の含有量(全添加量)は、ゴム成分(A-7)100質量部に対して、低燃費性やウェットグリップ性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカ(B-7)の合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。
カーボンブラック
 第7の発明に係るタイヤ用ゴム組成物はカーボンブラックとして窒素吸着比表面積(N2SA)が200m2/g以下のカーボンブラック1(C1-7)およびN2SAが900m2/g以上のカーボンブラック2(C2-7)を含有することを特徴とする。カーボンブラック1およびカーボンブラック2を併用することにより、低燃費性、耐摩耗性、ウェットグリップ性能および導電性をバランスよく改善することができる。なお、カーボンブラック1(C1-7)およびカーボンブラック2(C2-7)以外のカーボンブラックと併用しても良い。
 カーボンブラック1(C1-7)は、窒素吸着比表面積が200m2/g以下であれば特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック1(C1-7)の窒素吸着比表面積(N2SA)は、耐候性および導電性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック1(C1-7)のN2SAは、200m2/g以下であり、150m2/g以下が好ましい。カーボンブラック1(C1-7)のN2SAが200m2/gを超える場合は、加工性が悪化する傾向がある。なお、本明細書におけるカーボンブラックのN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック1(C1-7)のジブチルフタレート(DBP)吸油量は、補強性および破壊特性の観点から、60ml/100g以上が好ましく、70ml/100g以上がより好ましい。また、カーボンブラック1(C1-7)のDBP吸油量は、引張破断時の伸び、破壊特性および耐久性の観点から、130ml/100g以下が好ましく、120ml/100g以下がより好ましい。なお、本明細書におけるカーボンブラックのDBP吸油量は、JIS K6217-4の測定方法によって求められる値である。
 カーボンブラック1(C1-7)の含有量は、カーボンブラックを含有することによる効果の観点から、ゴム成分(A-7)100質量部に対して1質量部以上が好ましく、5質量部以上がより好ましく、8質量部以上がさらに好ましい。また、カーボンブラック1(C1-7)の含有量は、低燃費性の観点から、30質量部以下が好ましく、20質量部以下がより好ましい。
 カーボンブラック2(C2-7)は所謂導電性カーボンブラックであり、カーボンブラック2(C2-7)を含有する第7の発明のゴム組成物の製造方法によれば、簡便に低燃費性および導電性をバランスよく改善させることが可能である。
 カーボンブラック2(C2-7)の窒素吸着比表面積(N2SA)は、900m2/g以上であり、1000m2/g以上が好ましく、1050m2/g以上がより好ましい。N2SAが900m2/g未満の場合は、十分な導電性が得られない傾向がある。また、カーボンブラック2(C2-7)のN2SAは、低燃費性、分散性、破壊特性および耐久性の観点から、1200m2/g以下が好ましく、1150m2/g以下がより好ましく、1100m2/g以下がさらに好ましい。
 カーボンブラック2(C2-7)のDBP吸油量は、導電性の観点から、300ml/100g以上が-7)ましく、350ml/100g以上がより好ましい。また、カーボンブラック2(C2-7)のDBP吸油量は、破壊特性、耐久性の観点から、600ml/100g以下が好ましく、500ml/100g以下がより好ましく、450ml/100g以下がさらに好ましい。
 カーボンブラック2(C2-7)の好適な市販品の例としては、ライオン(株)製のライオナイト(N2SA:1052m2/g、DBP:378ml/100g)、ライオン(株)製のケッチェンブラックEC300J(N2SA:800m2/g、DBP:365ml/100g)、エボニック社製のPRINTEX XE2B(N2SA:1000m2/g、DBP:420ml/100g)などが挙げられる。
 カーボンブラック2(C2-7)の含有量は、導電性の観点から、ゴム成分(A-7)100質量部に対して0.5質量部以上が好ましく、1.0質量部以上がより好ましく、2.0質量部以上がさらに好ましい。また、カーボンブラック2(C2-7)の含有量は、低燃費性とコストの観点から、20質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤
 前記カップリング剤(D1-7)は、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D1-7)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。
 前記カップリング剤(D2-7)は、スルフィド基を有するカップリング剤であり、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィドなどが挙げられる。これらのカップリング剤としては、一般的に一定の分布を持った混合物として市販されている、エボニック社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)、Si69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)等が好適に挙げられる。
 カップリング剤(D1-7)および(D2-7)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤の合計含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-7)
 加硫系薬剤(E-7)は、加硫剤(E1-7)および加硫促進剤(E2-7)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-7)
 前記加硫剤(E1-7)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第7の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-7)の含有量は、ゴム成分(A-7)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-7)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-7)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-7)
 前記加硫促進剤(E2-7)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-7)の含有量は、ゴム成分(A-7)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-7)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-7)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第7の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-7)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-7)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-7)
 第7の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-7)を含有することが好ましい。可塑剤(F-7)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-7)としてオイルを含有する場合のゴム成分(A-7)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-7)
 前記老化防止剤(G-7)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-7)を含有する場合のゴム成分(A-7)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第7の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-7)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
 第7の発明に係るゴム組成物の体積固有抵抗率は、導電性が得られ静電気によるノイズやスパークを防ぐことができるという理由から、1.0×107Ω・cm未満であることが好ましく、1.0×106Ω・cm以下がより好ましい。なお、本明細書における体積固有抵抗率はJIS K6271の測定方法によって求められる値である。
タイヤ用ゴム組成物の製造方法
 第7の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-7、工程X2-7および工程Fとすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A-7、B-7の一部または全量、C1-7、D1-7、および任意でE-7の一部を混練りする工程X1-7、工程X1-7の混練物、B-7の残量、C2-7、D2-7、および任意でE-7の一部を混練りする工程X2-7、さらに、工程X2-7の混練物、およびE-7の残量を混練りする工程F-7を含む混練工程を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第7の発明に係るタイヤ用ゴム組成物を製造することができる。なお、可塑剤(F-7)、老化防止剤(G-7)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-7、工程X2-7または工程F-7のいずれの工程で添加してもよく、分割して添加してもよい。
 特に第7の発明の製造方法は、カップリング剤(D1-7)をスルフィド基を有するカップリング剤(D2-7)よりも先の工程(工程X1-7)で混練りすることを特徴とする。カップリング剤(D1-7)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止される。よって、第7の発明のような先投入での混練においても活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-7
 工程X1-7では、ゴム成分(A-7)の全量、シリカ(B-7)の一部または全量、カーボンブラック1(C1-7)、カップリング剤(D1-7)および任意で加硫系薬剤(E-7)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D1-7)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシラン(カップリング剤(D2-7))を工程X1で投入してしまうと、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D1-7)は、硫黄を放出しないため、第7の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 工程X1-7におけるシリカ(B-7)の添加量は、シリカ混練効果の向上、シリカの十分な分散、および耐摩耗性の観点からシリカ(B-7)の全添加量の50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましい。また、工程X1-7におけるシリカ(B-7)の添加量は、後述する工程X2-7におけるシリカの分割投入の効果、低燃費性および耐摩耗性の観点からシリカ(B-7)の全添加量の95質量%以下が好ましく、90質量%以下がより好ましい。
 工程X1-7における化学式(1)で示されるカップリング剤(D1-7)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D1-7)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-7におけるシリカ(B-7)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-7における化学式(1)で示されるカップリング剤(D1-7)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記可塑剤(F-7)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-7において、可塑剤(F-7)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-7における可塑剤(F-7)添加量が100質量%未満の場合は、残量は、工程X2-7で添加するシリカの分散性がより向上するという理由から工程X2-7で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-7および/または工程X2-7において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-7において添加することが好ましい。
 工程X1-7における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-7における混練の排出温度が前記範囲内であると、シリカ(B-7)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-7における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、第7の発明に係る工程X1-7では加硫促進剤としてポリスルフィドシランが添加されていないため、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-7における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第7の発明の一実施形態では、工程X1-7において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃で、10~120秒間保持することが、カップリング剤(D1-7)とシリカとの反応が完全に行われることから好ましい。
工程X2-7
 工程X2-7では、シリカ(B-7)の残量、カーボンブラック2(C2-7)、カップリング剤(D2-7)および任意で加硫系薬剤(E-7)の一部を含む配合剤を、工程X1-7の混練物に加えて混練りする。もし、カーボンブラック1(C1-7)とカーボンブラック2(C2-7)とを同時に混練りした場合は、混練シェアがカーボンブラック2に過剰にかかり、導電性カーボンブラックのネットワークがくずれ、導電性、耐摩耗性が不十分となる傾向があるが、カーボンブラック2(C2-7)を、カーボンブラック1(C1-7)を添加した後、つまり工程X2-7で添加することにより、カーボンブラック2の分散が過剰にならず適度なネットワークを形成することができる。さらに、第7の発明の製造方法では、化学式(1)で示されるカップリング剤(D1-7)を工程X1-7で混練りするため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 また、スルフィド基を有するカップリング剤(D2-7)を工程X2-7において混練りすることにより、該カップリング剤による活性の早期の低下を防止し、混練操作全体における加工性を保つことができる。さらに、カップリング剤(D2-7)は加硫剤として作用する硫黄を放出可能なことから、均一架橋が促進され、ゴム物性の向上をはかることができる。
 工程X2-7におけるカップリング剤(D2-7)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D2-7)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-7におけるシリカ(B-7)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-7における化学式(1)で示されるカップリング剤(D2-7)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-7)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-7において全量添加することが好ましい。
 工程X2-7における混練の排出温度は特に限定されないが、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、該排出温度は、200℃以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。工程X2-7における混練の排出温度が前記範囲内であると、シリカ(B-7)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X2-7における混練中の最高温度は特に限定されないが、スルフィド基を有するカップリング剤(D2-7)が十分に反応し、シリカが良好に分散した混練物が効率良く得られるという点から、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は2500以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。
 工程X2-7における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
工程F-7
 工程F-7は、工程X2-7で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-7)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 前記加硫促進剤は、工程F-7で一度に加えても構わないが、一部または全量を工程X1-7および/または工程X2-7で加えたのち、工程F-7で残量を加えることが好ましい。工程X1-7および/または工程X2-7で一部または全量を加えることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の一部または全量を工程X1-7および/または工程X2-7で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。
 工程X2-7で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-7における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程F-7における混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-7における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-7で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第7の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第7の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、耐摩耗性、ウェットグリップ性能および導電性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドやサイドウォールに好適に用いることができる。
タイヤ
 また、第7の発明のタイヤは、第7の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第7の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第7の発明のタイヤを製造することができる。
 第7の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。空気入りタイヤとしては例えば、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどが挙げられる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。また、非空気入りタイヤとしては例えば、ソリッドタイヤ、エアレスタイヤ、トラックベルトなどが挙げられる。
 第7の発明のタイヤの好適な1形態としては、第7の発明に係るタイヤ用ゴム組成物で構成されたトレッドを有するエアレスタイヤが挙げられる。エアレスタイヤは、スチールコードのような導電部材が存在しなかったり、ホイールが樹脂製であったりすることからタイヤ全体の導電性に劣る傾向があるが、第7の発明に係るゴム組成物をトレッドに用いたエアレスタイヤとすることにより、良好な導電性を得ることができる。
<第8の発明>
 第8の発明は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A-8)、シリカ(B-8)、カーボンブラック(C-8)、下記化学式(1)で示されるカップリング剤(D-8)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-8)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-8)A-8、B-8の一部、D-8の一部、および任意でE-8の一部を混練りする工程X1-8、
(工程X2-8)工程X1-8の混練物、B-8の残量、D-8の残量、および任意でE-8の一部を混練りする工程X2-8、ならびに
(工程F-8)工程X2-8の混練物、およびE-8の残量を混練りする工程F-8を含み、
工程X1-8および/または工程X2-8において加硫促進剤の一部または全量を混練りするタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ゴム成分が、シリカと反応する官能基を有するスチレンブタジエンゴムおよび/またはブタジエンゴムを含むことが好ましい。
 シリカの窒素吸着比表面積が160m2/g以上であり、シリカの全添加量が、ゴム成分100質量部に対して40質量部以上であることが好ましい。
 工程X1-8および工程X2-8の各工程におけるカップリング剤の添加量が、各工程で添加するシリカ100質量部に対して4~10質量部であることが好ましい。
 工程X1-8におけるシリカの添加量が、シリカの全添加量の50~95質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-8において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-8および/または工程X2-8における最高温度が、140℃~200℃であることが好ましい。
 工程X1-8および/または工程X2-8における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-8または工程X2-8において加硫促進剤の一部を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-8において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-8および/または工程X2-8において界面活性剤を混練りすることが好ましい。
 また、第8の発明は、前記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第8の発明によれば、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤを製造することができる。
 第8の発明に係るタイヤ用ゴム組成物は、所定のゴム成分(A-8)、シリカ(B-8)、カーボンブラック(C-8)、所定のカップリング剤(D-8)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-8)を含有することを特徴とする。
ゴム成分(A-8)
 前記ゴム成分(A-8)は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むことを特徴とし、2種含むことが好ましい。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記天然ゴムとしては、天然ゴム(NR)や、エポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)などの改質天然ゴムなども含まれる。
 前記NRとしては特に限定されず、SIR20、RSS#3、TSR20など、タイヤ工業において一般的なものを使用することができる。
 NRを含有する場合のゴム成分(A-8)中の含有量は、ゴム組成物の耐破壊性が向上するという理由から、5質量%以上が好ましく、10質量%以上がより好ましい。また、NRの含有量は、低燃費性と耐摩耗性に優れるという理由から、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
 前記ジエン系合成ゴムとしては、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、スチレンイソプレンブタジエンゴム(SIBR)などが挙げられる。
 ジエン系合成ゴムのなかでも、加工性およびグリップ性に優れるという理由からSBRを含むことが好ましい。前記SBRとしては特に限定されないが、未変性の溶液重合SBR(S-SBR)、未変性の乳化重合SBR(E-SBR)、およびこれらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性された変性SBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのSBRのなかでも、グリップ性能と耐摩耗性能をバランスよく向上できるという理由から、S-SBR、変性S-SBRが好ましく、シリカとの反応の点で、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性S-SBRが特に好ましい。これらのSBRは、単独で用いても構わないが、用途に応じてスチレン含有量などの物性が異なるSBRを併用してもよい。なお、適用部材などに応じて適宜選択すれば良い。
 SBRのスチレン含有量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、SBRのスチレン含有量は、低燃費性の観点から60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書におけるSBRのスチレン含有量は、1H-NMR測定により算出される値である。
 SBRのビニル結合量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。また、SBRのビニル結合量は、低燃費性の観点から65モル%以下が好ましく、60モル%以下がより好ましく、30モル%以下がさらに好ましい。なお、本明細書におけるSBRのビニル結合量とは、ブタジエン部のビニル結合量のことを示し、1H-NMR測定により算出される値である。
 SBRを含有する場合のゴム成分(A-8)中の含有量は、ドライグリップ性能およびウェットグリップ性能の観点から10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、SBRの含有量は、耐摩耗性の観点から90質量%以下が好ましく、80質量%以下がより好ましい。
 また、耐摩耗性に優れるという理由からBRを含むことが好ましい。BRにシリカ(B)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第8の発明では、所定のカップリング剤(D-8)を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRを含有する場合のゴム成分(A-8)中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がさらに好ましく、70質量%以下がさらに好ましい。
 特に前記変性SBRや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第8の発明では、所定のカップリング剤(D-8)を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
シリカ(B-8)
 前記シリカ(B-8)は特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカ(B-8)の窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、50m2/g以上がより好ましく、100m2/g以上がさらに好ましく、130m2/g以上が特に好ましく、160m2/g以上が最も好ましい。また、シリカ(B-8)のN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が特に好ましい。なお、本明細書におけるシリカ(B-8)のN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ(B-8)の合計含有量は、ゴム成分(A-8)100質量部に対して、低燃費性およびウェットグリップ性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカ(B-8)の合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。
カーボンブラック(C-8)
 前記カーボンブラック(C-8)としては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック(C-8)の窒素吸着比表面積(N2SA)は、耐候性や帯電防止性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック(C-8)のN2SAは、加工性の観点から200m2/g以下が好ましく、150m2/g以下がより好ましい。なお、本明細書におけるカーボンブラック(C-8)のN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック(C-8)の含有量(全添加量)は、ゴム成分(A-8)100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。カーボンブラック(C)の含有量が1質量部未満の場合は、カーボンブラックを含有することによる効果が十分に得られない恐れがある。また、カーボンブラック(C-8)の含有量は、低燃費性や加工性の観点から30質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤(D-8)
 前記所定のカップリング剤(D-8)とは、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D-8)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。また、化学式(1)で示されるカップリング剤(D)以外の一般的なカップリング剤と併用しても良い。
 化学式(1)で示されるカップリング剤(D-8)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤(D-8)の含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-8)
 加硫系薬剤(E-8)は、加硫剤(E1-8)および加硫促進剤(E2-8)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-8)
 前記加硫剤(E1-8)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第8の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-8)の含有量は、ゴム成分(A-8)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-8)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-8)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-8)
 前記加硫促進剤(E2-8)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-8)の含有量は、ゴム成分(A-8)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-8)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-8)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第8の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-8)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-8)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-8)
 第8の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-8)を含有することが好ましい。可塑剤(F-8)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-8)としてオイルを含有する場合のゴム成分(A-8)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-8)
 前記老化防止剤(G-8)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-8)を含有する場合のゴム成分(A-8)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第8の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-8)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
タイヤ用ゴム組成物の製造方法
 第8の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-8、工程X2-8および工程F-8とすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A-8、B-8の一部、D-8の一部、および任意でE-8の一部を混練りする工程X1-8、工程X1-8の混練物、B-8の残量、D-8の残量、および任意でE-8の一部を混練りする工程X2-8、さらに、工程X2-8の混練物、およびE-8の残量を混練りする工程F-8を含む混練工程を行い、未加硫ゴム組成物を得る工程を含み、工程X1-8および/または工程X2-8において加硫促進剤の一部または全量を混練りするタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第8の発明に係るタイヤ用ゴム組成物を製造することができる。なお、カーボンブラック(C-8)、可塑剤(F-8)、老化防止剤(G-8)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-8、工程X2-8または工程F-8のいずれの工程で添加してもよく、分割して添加してもよい。
 また、第8の発明の製造方法は、化学式(1)で示されるカップリング剤(D-8)を分割して混練りすることを特徴とする。該カップリング剤(D-8)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止され、第8の発明のような分割投入での混練においても、活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-8
 工程X1-8では、ゴム成分(A-8)の全量、シリカ(B-8)の一部、カップリング剤(D-8)および任意で加硫系薬剤(E-8)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D-8)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシランでは、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D-8)は、硫黄を放出しないため、第8の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 工程X1-8におけるシリカ(B-8)の添加量は、シリカ混練効果の向上、シリカの十分な分散、および耐摩耗性の観点からシリカ(B-8)の全添加量の50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましい。また、工程X1-8におけるシリカ(B-8)の添加量は、後述する工程X2-8におけるシリカの分割投入の効果、低燃費性および耐摩耗性の観点からシリカ(B-8)の全添加量の95質量%以下が好ましく、90質量%以下がより好ましい。
 工程X1-8における化学式(1)で示されるカップリング剤(D-8)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-8)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-8におけるシリカ(B-8)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-8における化学式(1)で示されるカップリング剤(D-8)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記カーボンブラック(C-8)は工程X1-8および/または工程X2で-8添加することが好ましい。工程X1-8におけるカーボンブラック(C-8)の添加量は、カーボンブラックの分散性の向上と工程の効率化という観点から、カーボンブラック(C-8)の全添加量の10質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%であることが最も好ましい。なお、工程X1-8におけるカーボンブラック(C-8)添加量が100質量%未満の場合は、残量は工程X2-8で添加することが好ましい。
 前記加硫促進剤(E2-8)の一部または全量を工程X1-8および/または工程X2-8で混練りすることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の一部または全量を工程X1-8および/または工程X2-8で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。また、加硫促進剤(E2-8)の一部を工程X1-8または工程X2-8で混練りすることが好ましく、工程X1-8で混練りすることがより好ましい。
 前記可塑剤(F-8)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-8において、可塑剤(F-8)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-8における可塑剤(F-8)添加量が100質量%未満の場合は、残量は、工程X2-8で添加するシリカの分散性がより向上するという理由から工程X2-8で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-8および/または工程X2-8において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-8において添加することが好ましい。
工程X2-8
 工程X2-8では、シリカ(B-8)の残量、カップリング剤(D-8)の残量、任意で加硫系薬剤(E-8)の一部および他の配合剤を、工程X1-8の混練物に加えて混練りする。もし、工程X1-8でシリカを全量投入した場合は、シリカが変性ポリマーのようなシリカと親和性の高いポリマー部分および/またはポリマーの界面部分に偏在してしまう傾向があるが、第8の発明の製造方法では、シリカを、それぞれ工程X1-8および工程X2-8において分割投入するため、ゴム成分全体にシリカが分散しやすくなる。また、後入れした(工程X2-8で投入した)シリカ自体が、ゴム成分にシェアをかけることにより混練効果を促進する効果がある。さらに、第8の発明の製造方法では、化学式(1)で示されるカップリング剤(D-8)を分割投入するため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 工程X2-8における化学式(1)で示されるカップリング剤(D-8)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-8)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-8におけるシリカ(B-8)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-8における化学式(1)で示されるカップリング剤(D-8)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-8)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-8において全量添加することが好ましい。
 工程X1-8および工程X2-8における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-8および工程X2-8における混練の排出温度が前記範囲内であると、シリカ(B-8)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-8および工程X2-8における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は、200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、前記カップリング剤(D-8)を分割して添加することにより、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-8および工程X2-8における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、それぞれ、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第8の発明の一実施形態では、工程X1-8および/または工程X2-8において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃で、10~120秒間保持することが、カップリング剤とシリカとの反応が完全に行われることから好ましい。
工程F-8
 工程F-8は、工程X2-8で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-8)の残量を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 工程X2-8で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-8における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程F-8における混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-8における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-8で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第8の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第8の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドやサイドウォールに好適に用いることができる。
タイヤ
 また、第8の発明のタイヤは、第8の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第8の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第8の発明のタイヤを製造することができる。なお、第8の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。また、空気入りタイヤとしては、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどとして好適に用いることができる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。
<第9の発明>
 第9の発明は、ブタジエンゴム(A1-9)およびイソプレン系ゴム(A2-9)を含むゴム成分、シリカ(B-9)、カーボンブラック(C-9)、下記化学式(1)で示されるカップリング剤(D-9)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-9)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-9)A1-9、B-9の一部、D-9の一部、および任意でE-9の一部を混練りする工程X1-9、
(工程X2-9)工程X1-9の混練物、A2-9、B-9の残量、D-9の残量、および任意でE-9の一部を混練りする工程X2-9、ならびに
(工程F-9)工程X2-9の混練物、およびE-9の残量を混練りする工程F-9
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ブタジエンゴム(A1-9)がシリカと反応する官能基を有するブタジエンゴムであることが好ましい。
 シリカの窒素吸着比表面積が160m2/g以上であり、シリカの全添加量が、ゴム成分100質量部に対して40質量部以上であることが好ましい。
 工程X1-9および工程X2-9の各工程におけるカップリング剤の添加量が、各工程で添加するシリカ100質量部に対して4~10質量部であることが好ましい。
 工程X1-9におけるシリカの添加量が、シリカの全添加量の10~90質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-9において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-9および/または工程X2-9における最高温度が、140℃~200℃であることが好ましい。
 工程X1-9および/または工程X2-9における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-9および/または工程X2-9において加硫促進剤の一部または全量を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-9において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-9および/または工程X2-9において界面活性剤を混練りすることが好ましい。
 また、第9の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第9の発明によれば、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤを製造することができる。
 第9の発明に係るタイヤ用ゴム組成物は、ブタジエンゴム(A1-9)およびイソプレン系ゴム(A2-9)を含むゴム成分、シリカ(B-9)、カーボンブラック(C-9)、所定のカップリング剤(D-9)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-9)を含有することを特徴とする。
ゴム成分
 前記ゴム成分は、ブタジエンゴム(A1-9)およびイソプレン系ゴム(A2-9)を含むことを特徴とする。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであってもよい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記ゴム成分は耐摩耗性に優れるという理由からブタジエンゴム(BR)を含む。BRにシリカ(B-9)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第9の発明では、所定のカップリング剤(D-9)を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRのゴム成分中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がさらに好ましく、70質量%以下がさらに好ましい。
 前記イソプレン系ゴムとしては、化学合成ポリイソプレンゴム(IR)、天然ゴム(NR)、エポキシ化天然ゴム(ENR)などが挙げられる。なかでも、入手容易性およびゴム強度の観点からNRやENRが好ましい。
 特に前記イソプレン系ゴムや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第9の発明では、所定のカップリング剤(D-9)を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
 前記ゴム成分は、前記のBRおよびイソプレン系ゴム以外にも、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)などを必要に応じて含有してもよい。BRおよびイソプレン系ゴム以外のゴム成分を含むときは、後述の工程X2-9で添加することが好ましい。
シリカ(B-9)
 前記シリカ(B-9)は特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカ(B-9)の窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、50m2/g以上がより好ましく、100m2/g以上がさらに好ましく、130m2/g以上が特に好ましく、160m2/g以上が最も好ましい。また、シリカ(B-9)のN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が特に好ましい。なお、本明細書におけるシリカ(B-9)のN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ(B-9)の含有量(全添加量)は、ゴム成分(A-9)100質量部に対して、低燃費性、ウェットグリップ性能および氷上性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカ(B-9)の合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。
カーボンブラック(C-9)
 前記カーボンブラック(C-9)としては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック(C-9)の窒素吸着比表面積(N2SA)は、耐候性や帯電防止性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック(C-9)のN2SAは、加工性の観点から200m2/g以下が好ましく、150m2/g以下がより好ましい。なお、本明細書におけるカーボンブラック(C-9)のN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック(C-9)の含有量(全添加量)は、ゴム成分(A-9)100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。カーボンブラック(C-9)の含有量が1質量部未満の場合は、カーボンブラックを含有することによる効果が十分に得られない恐れがある。また、カーボンブラック(C-9)の含有量は、低燃費性や加工性の観点から30質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤(D-9)
 前記所定のカップリング剤(D-9)とは、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D-9)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。また、化学式(1)で示されるカップリング剤(D-9)以外の一般的なカップリング剤と併用しても良い。
 化学式(1)で示されるカップリング剤(D-9)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤(D-9)の含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-9)
 加硫系薬剤(E-9)は、加硫剤(E1-9)および加硫促進剤(E2-9)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-9)
 前記加硫剤(E1-9)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第9の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-9)の含有量は、ゴム成分(A-9)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-9)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-9)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-9)
 前記加硫促進剤(E2-9)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-9)の含有量は、ゴム成分(A-9)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-9)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-9)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第9の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-9)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-9)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-9)
 第9の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-9)を含有することが好ましい。可塑剤(F-9)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-9)としてオイルを含有する場合のゴム成分(A-9)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-9)
 前記老化防止剤(G-9)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-9)を含有する場合のゴム成分(A-9)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第9の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-9)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
タイヤ用ゴム組成物の製造方法
 第9の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-9、工程X2-9および工程F-9とすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A1-9、B-9の一部、Dの一部、および任意でE-9の一部を混練りする工程X1-9、工程X1-9の混練物、A2-9、B-9の残量、D-9の残量、および任意でE-9の一部を混練りする工程X2-9、さらに、工程X2-9の混練物、およびE-9の残量を混練りする工程F-9を含む混練工程を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第9の発明に係るタイヤ用ゴム組成物を製造することができる。なお、カーボンブラック(C-9)、可塑剤(F-9)、老化防止剤(G-9)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-9、工程X2-9または工程F-9のいずれの工程で添加してもよく、分割して添加してもよい。
 また、第9の発明の製造方法は、化学式(1)で示されるカップリング剤(D-9)を分割して混練りすることを特徴とする。該カップリング剤(D-9)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止され、第9の発明のような分割投入での混練においても、活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-9
 工程X1-9では、ブタジエンゴム(A1-9)、シリカ(B-9)の一部、カップリング剤(D-9)の一部、および任意で加硫系薬剤(E-9)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D-9)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシランでは、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D-9)は、硫黄を放出しないため、第9の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 また、ゴム成分としてBRおよびSBRを含有するゴム組成物では、SBRにシリカが遍在する傾向にあるが、第9の発明の製造方法では、BR、シリカおよび所定のカップリング剤を工程X1-9で先に混練りすることにより、BRにも良好にシリカを存在させることが可能となり、耐摩耗性、ウェットグリップ性能および氷上性能により優れたゴム組成物とすることができる。
 工程X1-9におけるシリカ(B-9)の添加量は、シリカ混練効果の向上、シリカの十分な分散、および耐摩耗性の観点からシリカ(B-9)の全添加量の10質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましく、50質量%以上がさらに好ましい。また、工程X1-9におけるシリカ(B-9)の添加量は、後述する工程X2-9におけるシリカの分割投入の効果、低燃費性および耐摩耗性の観点からシリカ(B-9)の全添加量の95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましい。
 工程X1-9における化学式(1)で示されるカップリング剤(D-9)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-9)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-9におけるシリカ(B-9)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-9における化学式(1)で示されるカップリング剤(D-9)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記カーボンブラック(C-9)は工程X1-9および/または工程X2-9で添加することが好ましい。工程X1-9におけるカーボンブラック(C-9)の添加量は、カーボンブラックの分散性の向上と工程の効率化という観点から、カーボンブラック(C-9)の全添加量の10質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%であることが最も好ましい。なお、工程X1-9におけるカーボンブラック(C-9)添加量が100質量%未満の場合は、残量は工程X2-9で添加することが好ましい。
 前記可塑剤(F-9)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-9において、可塑剤(F-9)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-9における可塑剤(F-9)の添加量が100質量%未満の場合は、残量は、工程X2-9で添加するシリカの分散性がより向上するという理由から工程X2-9で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-9および/または工程X2-9において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-9において添加することが好ましい。
工程X2-9
 工程X2-9では、イソプレン系ゴム(A2-9)、シリカ(B-9)の残量、カップリング剤(D-9)の残量、および任意で加硫系薬剤(E-9)の一部を含む配合剤を、工程X1-9の混練物に加えて混練りする。もし、工程X1-9でシリカを全量投入した場合は、シリカがイソプレン系ゴム内および/またはイソプレン系ゴムの界面部分に偏在してしまう傾向があるが、第9の発明の製造方法では、シリカを工程X1-9および工程X2-9において分割投入するため、ゴム成分全体にシリカが分散しやすくなる。また、後入れした(工程X2-9で投入した)シリカ自体が、ゴム成分にシェアをかけることにより混練効果を促進する効果がある。さらに、第9の発明の製造方法では、化学式(1)で示されるカップリング剤(D-9)を分割投入するため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 工程X2-9における化学式(1)で示されるカップリング剤(D-9)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-9)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-9におけるシリカ(B-9)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-9における化学式(1)で示されるカップリング剤(D-9)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-9)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-9において全量添加することが好ましい。
 工程X1-9および工程X2-9における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-9および工程X2-9における混練の排出温度が前記範囲内であると、シリカ(B-9)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-9および工程X2-9における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は、200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、前記カップリング剤(D-9)を分割して添加することにより、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-9および工程X2-9における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、それぞれ、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第9の発明の一実施形態では、工程X1-9および/または工程X2-9において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃で、10~120秒間保持することが、カップリング剤とシリカとの反応が完全に行われることから好ましい。
工程F-9
 工程F-9は、工程X2-9で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-9)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 前記加硫促進剤は、工程F-9で一度に加えても構わないが、一部または全量を工程X1-9および/または工程X2-9で加えたのち、工程F-9で残量を加えることが好ましい。工程X1-9および/または工程X2-9で一部または全量を加えることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の一部または全量を工程X1-9および/または工程X2-9で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。
 工程X2-9で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-9における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程F-9における混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-9における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-9で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第9の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第9の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドやサイドウォールに好適に用いることができる。
タイヤ
 また、第9の発明のタイヤは、第9の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第9の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第9の発明のタイヤを製造することができる。なお、第9の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。空気入りタイヤとしては、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどとして好適に用いることができる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。
<第10の発明>
 第10の発明は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A-10)、シリカ(B-10)、窒素吸着比表面積が200m2/g以下のカーボンブラック1(C1-10)、窒素吸着比表面積が900m2/g以上のカーボンブラック2(C2-10)、下記化学式(1)で示されるカップリング剤(D-10)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-10)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-10)A-10、B-10の一部または全量、C1-10、D-10の一部、および任意でE-10の一部を混練りする工程X1-10、
(工程X2-10)工程X1-10の混練物、B-10の残量、C2-10、D-10の残量、および任意でE-10の一部を混練りする工程X2-10、ならびに
(工程F-10)工程X2-10の混練物、およびE-10の残量を混練りする工程F-10
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ゴム成分が、シリカと反応する官能基を有するスチレンブタジエンゴムおよび/またはブタジエンゴムを含むことが好ましい。
 カーボンブラック2(C2-10)のDBP吸油量が300ml/100g以上であることが好ましい。
 前記ゴム組成物の体積固有抵抗率が1.0×107Ω・cm未満であることが好ましい。
 工程X1-10におけるシリカの添加量が、シリカの全添加量の50~95質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-10において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-10および/または工程X2-10における最高温度が、140℃~200℃であることが好ましい。
 工程X1-10および/または工程X2-10における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-10および/または工程X2-10において加硫促進剤の一部または全量を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-10において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-10および/または工程X2-10において界面活性剤を混練りすることが好ましい。
 また、第10の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第10の発明によれば、低燃費性、耐摩耗性、ウェットグリップ性能および導電性がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、ウェットグリップ性能および導電性がバランス良く改善されたタイヤを製造することができる。
 本発明に係るタイヤ用ゴム組成物は、所定のゴム成分(A-10)、シリカ(B-10)、所定の窒素吸着比表面積を有するカーボンブラック1(C1-10)およびカーボンブラック2(C2-10)、所定のカップリング剤(D-10)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-10)を含有することを特徴とする。
ゴム成分(A-10)
 前記ゴム成分(A-10)は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むことを特徴とし、少なくとも2種を含むことが好ましい。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記天然ゴムとしては、天然ゴム(NR)や、エポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)などの改質天然ゴムなども含まれる。
 前記NRとしては特に限定されず、SIR20、RSS#3、TSR20など、タイヤ工業において一般的なものを使用することができる。
 NRを含有する場合のゴム成分(A-10)中の含有量は、ゴム組成物の耐破壊性が向上するという理由から、5質量%以上が好ましく、10質量%以上がより好ましい。また、NRの含有量は、低燃費性と耐摩耗性に優れるという理由から、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
 前記ジエン系合成ゴムとしては、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、スチレンイソプレンブタジエンゴム(SIBR)などが挙げられる。
 ジエン系合成ゴムのなかでも、加工性およびグリップ性に優れるという理由からSBRを含むことが好ましい。前記SBRとしては特に限定されないが、未変性の溶液重合SBR(S-SBR)、未変性の乳化重合SBR(E-SBR)、およびこれらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性された変性SBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのSBRのなかでも、グリップ性能と耐摩耗性能をバランスよく向上できるという理由から、S-SBR、変性S-SBRが好ましく、シリカとの反応の点で、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性S-SBRが特に好ましい。これらのSBRは、単独で用いても構わないが、用途に応じてスチレン含有量などの物性が異なるSBRを併用しても良い。なお、適用部材などに応じて適宜選択すれば良い。
 SBRのスチレン含有量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、SBRのスチレン含有量は、低燃費性の観点から60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書におけるSBRのスチレン含有量は、1H-NMR測定により算出される値である。
 SBRのビニル結合量は、ドライグリップ性能およびウェットグリップ性能やゴム強度の観点から10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。また、SBRのビニル結合量は、低燃費性の観点から65モル%以下が好ましく、60モル%以下がより好ましく、30モル%以下がさらに好ましい。なお、本明細書におけるSBRのビニル結合量とは、ブタジエン部のビニル結合量のことを示し、1H-NMR測定により算出される値である。
 SBRを含有する場合のゴム成分(A-10)中の含有量は、ドライグリップ性およびウェットグリップ性の観点から10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、SBRの含有量は、耐摩耗性の観点から90質量%以下が好ましく、80質量%以下がより好ましい。
 また、耐摩耗性に優れるという理由からBRを含むことが好ましい。BRにシリカ(B-10)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第10の発明では、所定のカップリング剤(D-10)を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRを含有する場合のゴム成分(A-10)中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 特に前記変性SBRや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第10の発明では、所定のカップリング剤(D-10)を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
シリカ(B-10)
 前記シリカ(B-10)は特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカ(B-10)の窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、50m2/g以上がより好ましく、100m2/g以上がさらに好ましく、130m2/g以上が特に好ましく、160m2/g以上が最も好ましい。また、シリカ(B-10)のN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が特に好ましい。なお、本明細書におけるシリカ(B-10)のN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ(B-10)の含有量(全添加量)は、ゴム成分(A-10)100質量部に対して、低燃費性やウェットグリップ性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカ(B-10)の合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。
カーボンブラック
 第10の発明に係るタイヤ用ゴム組成物はカーボンブラックとして窒素吸着比表面積(N2SA)が200m2/g以下のカーボンブラック1(C1-10)およびN2SAが900m2/g以上のカーボンブラック2(C2-10)を含有することを特徴とする。カーボンブラック1およびカーボンブラック2を併用することにより、低燃費性、耐摩耗性、ウェットグリップ性能および導電性をバランスよく改善することができる。なお、カーボンブラック1(C1-10)およびカーボンブラック2(C2-10)以外のカーボンブラックと併用しても良い。
 カーボンブラック1(C1-10)は、窒素吸着比表面積が200m2/g以下であれば特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック1(C1-10)の窒素吸着比表面積(N2SA)は、耐候性および導電性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック1(C1-10)のN2SAは、200m2/g以下であり、150m2/g以下が好ましい。カーボンブラック1(C1-10)のN2SAが200m2/gを超える場合は、加工性が悪化する傾向がある。なお、本明細書におけるカーボンブラックのN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック1(C1-10)のジブチルフタレート(DBP)吸油量は、補強性および破壊特性の観点から、60ml/100g以上が好ましく、70ml/100g以上がより好ましい。また、カーボンブラック1(C1-10)のDBP吸油量は、引張破断時の伸び、破壊特性および耐久性の観点から、130ml/100g以下が好ましく、120ml/100g以下がより好ましい。なお、本明細書におけるカーボンブラックのDBP吸油量は、JIS K6217-4の測定方法によって求められる値である。
 カーボンブラック1(C1-10)の含有量は、カーボンブラックを含有することによる効果の観点から、ゴム成分(A-10)100質量部に対して1質量部以上が好ましく、5質量部以上がより好ましく、8質量部以上がさらに好ましい。また、カーボンブラック1(C1-10)の含有量は、低燃費性の観点から、30質量部以下が好ましく、20質量部以下がより好ましい。
 カーボンブラック2(C2-10)は所謂導電性カーボンブラックであり、カーボンブラック2(C2-10)を含有する第10の発明のゴム組成物の製造方法によれば、簡便に低燃費性および導電性をバランスよく改善させることが可能である。
 カーボンブラック2(C2-10)の窒素吸着比表面積(N2SA)は、900m2/g以上であり、1000m2/g以上が好ましく、1050m2/g以上がより好ましい。N2SAが900m2/g未満の場合は、十分な導電性が得られない傾向がある。また、カーボンブラック2(C2-10)のN2SAは、低燃費性、分散性、破壊特性および耐久性の観点から、1200m2/g以下が好ましく、1150m2/g以下がより好ましく、1100m2/g以下がさらに好ましい。
 カーボンブラック2(C2-10)のDBP吸油量は、導電性の観点から、300ml/100g以上が好ましく、350ml/100g以上がより好ましい。また、カーボンブラック2(C2-10)のDBP吸油量は、破壊特性、耐久性の観点から、600ml/100g以下が好ましく、500ml/100g以下がより好ましく、450ml/100g以下がさらに好ましい。
 カーボンブラック2(C2-10)の好適な市販品の例としては、ライオン(株)製のライオナイト(N2SA:1052m2/g、DBP:378ml/100g)、ライオン(株)製のケッチェンブラックEC300J(N2SA:800m2/g、DBP:365ml/100g)、エボニック社製のPRINTEX XE2B(N2SA:1000m2/g、DBP:420ml/100g)などが挙げられる。
 カーボンブラック2(C2-10)の含有量は、導電性の観点から、ゴム成分(A-10)100質量部に対して0.5質量部以上が好ましく、1.0質量部以上がより好ましく、2.0質量部以上がさらに好ましい。また、カーボンブラック2(C2-10)の含有量は、低発熱性とコストの観点から、20質量部以下が好ましく、15質量部以下がより好ましい。
カップリング剤(D-10)
 前記所定のカップリング剤(D-10)とは、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D-10)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。また、化学式(1)で示されるカップリング剤(D-10)以外の一般的なカップリング剤と併用しても良い。
 化学式(1)で示されるカップリング剤(D-10)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果の観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤(D-10)の合計含有量は、コストの増加に見合ったシリカの分散効果の観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-10)
 加硫系薬剤(E-10)は、加硫剤(E1-10)および加硫促進剤(E2-10)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-10)
 前記加硫剤(E1-10)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第10の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-10)の含有量は、ゴム成分(A-10)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-10)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-10)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-10)
 前記加硫促進剤(E2-10)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-10)の含有量は、ゴム成分(A-10)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-10)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-10)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第10の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-10)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-10)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-10)
 第10の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-10)を含有することが好ましい。可塑剤(F-10)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-10)としてオイルを含有する場合のゴム成分(A-10)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-10)
 前記老化防止剤(G-10)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-10)を含有する場合のゴム成分(A-10)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第10の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-10)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
 第10の発明に係るゴム組成物の体積固有抵抗率は、導電性が得られ静電気によるノイズやスパークを防ぐことができるという理由から、1.0×107Ω・cm未満であることが好ましく、1.0×106Ω・cm以下がより好ましい。なお、本明細書における体積固有抵抗率はJIS K6271の測定方法によって求められる値である。
タイヤ用ゴム組成物の製造方法
 第10の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-10、工程X2-10および工程F-10とすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A-10、B-10の一部または全量、C1-10、D-10の一部、および任意でE-10の一部を混練りする工程X1-10、工程X1-10の混練物、B-10の残量、C2-10、D-10の残量、および任意でE-10の一部を混練りする工程X2-10、さらに、工程X2-10の混練物、およびE-10の残量を混練りする工程F-10を含む混練工程を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第10の発明に係るタイヤ用ゴム組成物を製造することができる。なお、可塑剤(F-10)、老化防止剤(G-10)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-10、工程X2-10または工程F-10のいずれの工程で添加してもよく、分割して添加してもよい。
 また、第10の発明の製造方法は、化学式(1)で示されるカップリング剤(D-10)を分割して混練りすることを特徴とする。該カップリング剤(D-10)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止され、第10の発明のような分割投入での混練においても、活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-10
 工程X1-10では、ゴム成分(A-10)の全量、シリカ(B-10)の一部または全量、カーボンブラック1(C1-10)、カップリング剤(D-10)の一部、および任意で加硫系薬剤(E-10)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D-10)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシランでは、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D-10)は、硫黄を放出しないため、第10の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 工程X1-10におけるシリカ(B-10)の添加量は、シリカ混練効果の向上、シリカの十分な分散、および耐摩耗性の観点からシリカ(B-10)の全添加量の50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましい。また、工程X1-10におけるシリカ(B-10)の添加量は、全量としても良いが、後述する工程X2-10におけるシリカの分割投入の効果、低燃費性および耐摩耗性の観点からシリカ(B-10)の全添加量の95質量%以下が好ましく、90質量%以下がより好ましい。
 工程X1-10における化学式(1)で示されるカップリング剤(D-10)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-10)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-10におけるシリカ(B-10)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-10における化学式(1)で示されるカップリング剤(D-10)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記可塑剤(F-10)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-10において、可塑剤(F-10)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-10における可塑剤(F-10)添加量が100質量%未満の場合は、残量は、工程X2-10で添加するシリカの分散性がより向上するという理由から工程X2-10で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-10および/または工程X2-10において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-10において添加することが好ましい。
工程X2-10
 工程X2-10では、シリカ(B-10)の残量、カーボンブラック2(C2-10)、カップリング剤(D-10)の残量、および任意で加硫系薬剤(E-10)の一部を含む配合剤を、工程X1-10の混練物に加えて混練りする。もし、カーボンブラック1(C1-10)とカーボンブラック2(C2-10)とを同時に混練りした場合は、混練シェアがカーボンブラック2に過剰にかかり、導電性カーボンブラックのネットワークがくずれ、導電性、耐摩耗性が不十分となる傾向があるが、カーボンブラック2(C2-10)を、カーボンブラック1(C1-10)を添加した後、つまり工程X2-10で添加することにより、カーボンブラック2の分散が過剰にならず適度なネットワークを形成することができる。さらに、第10の発明の製造方法では、化学式(1)で示されるカップリング剤(D-10)を分割投入するため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 工程X2-10における化学式(1)で示されるカップリング剤(D-10)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D-10)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-10におけるシリカ(B-10)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-10における化学式(1)で示されるカップリング剤(D-10)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。なお、工程X1-10でシリカ(B-10)を全量添加した場合は、カップリング剤(D-10)の全添加量を工程X1-10で添加せずに一部のみを添加し、残量を工程X2-10で添加すれば良い。
 前記老化防止剤(G-10)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-10において全量添加することが好ましい。
 工程X1-10および工程X2-10における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましい。工程X1-10および工程X2-10における混練の排出温度が前記範囲内であると、シリカ(B-10)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-10および工程X2-10における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は、200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、前記カップリング剤(D-10)を分割して添加することにより、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-10および工程X2-10における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、それぞれ、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第10の発明の一実施形態では、工程X1-10および/または工程X2-10において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃、より好ましくは150~180℃で、10~120秒間保持することが、カップリング剤とシリカとの反応が完全に行われることから好ましい。
工程F-10
 工程F-10は、工程X2-10で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-10)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 前記加硫促進剤は、工程F-10で一度に加えても構わないが、一部または全量を工程X1-10および/または工程X2-10で加えたのち、工程F-10で残量を加えることが好ましい。工程X1-10および/または工程X2-10で一部または全量を加えることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の全量または一部を工程X1-10および/または工程X2-10で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。
 工程X2-10で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-10における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程F-10における混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-10における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-10で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第10の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第10の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、低燃費性、耐摩耗性、ウェットグリップ性能および導電性にバランス良く改善されたタイヤ用ゴム組成物であることからトレッド、サイドウォールや、導電構造部材などに好適に用いることができる。
タイヤ
 また、第10の発明のタイヤは、第10の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第10の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第10の発明のタイヤを製造することができる。
 第10の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。空気入りタイヤとしては例えば、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどが挙げられる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。また、非空気入りタイヤとしては例えば、ソリッドタイヤ、エアレスタイヤ、トラックベルトなどが挙げられる。
 第10の発明のタイヤの好適な1形態としては、第10の発明に係るタイヤ用ゴム組成物で構成されたトレッドを有するエアレスタイヤが挙げられる。エアレスタイヤは、スチールコードのような導電部材が存在しなかったり、ホイールが樹脂製であったりすることからタイヤ全体の導電性に劣る傾向があるが、第10の発明に係るゴム組成物をトレッドに用いたエアレスタイヤとすることにより、良好な導電性を得ることができる。
<第11の発明>
 第11の発明は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A-11)、シリカ(B-11)、カーボンブラック(C-11)、下記化学式(1)で示されるカップリング剤(D1-11)、スルフィド基を有するカップリング剤(D2-11)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-11)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1-11)A-11、B-11の一部、D1-11、および任意でE-11の一部を混練りする工程X1-11、
(工程X2-11)工程X1-11の混練物、B-11の残量、D2-11、および任意でE-11の一部を混練りする工程X2-11、ならびに
(工程F-11)工程X2-11の混練物、およびE-11の残量を混練りする工程F-11
を含むタイヤ用ゴム組成物の製造方法に関する。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 ゴム成分が、シリカと反応する官能基を有するスチレンブタジエンゴムおよび/またはブタジエンゴムを含むことが好ましい。
 シリカの窒素吸着比表面積が160m2/g以上であり、シリカの全添加量が、ゴム成分100質量部に対して40質量部以上であることが好ましい。
 工程X1-11および工程X2-11の各工程におけるカップリング剤の添加量が、各工程で添加するシリカ100質量部に対して4~10質量部であることが好ましい。
 工程X1-11におけるシリカの添加量が、シリカの全添加量の50~95質量%であることが好ましい。
 さらに、可塑剤を含有するゴム組成物の製造方法であり、工程X1-11において可塑剤の全添加量の50質量%以上を混練りすることが好ましい。
 工程X1-11における最高温度が、140℃~200℃であることが好ましい。
 工程X1-11における混練が終了した後、混練物を150~190℃で10~120秒間保持する工程を含むことが好ましい。
 工程X1-11および/または工程X2-11において加硫促進剤の一部または全量を混練りすることが好ましい。
 さらに、老化防止剤を含有するゴム組成物の製造方法であり、工程X2-11において老化防止剤を混練りすることが好ましい。
 さらに、界面活性剤を含有するゴム組成物の製造方法であり、工程X1-11および/または工程X2-11において界面活性剤を混練りすることが好ましい。
 また、第11の発明は、上記の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
 第11の発明によれば、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤ用ゴム組成物を製造することができる。さらに、製造されたタイヤ用ゴム組成物により構成されたタイヤ部材を有するタイヤとすることで、低燃費性、耐摩耗性、およびウェットグリップ性能がバランス良く改善されたタイヤを製造することができる。
 第11の発明に係るタイヤ用ゴム組成物は、所定のゴム成分(A-11)、シリカ(B-11)、カーボンブラック(C-11)、カップリング剤(D1-11)および(D2-11)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E-11)を含有することを特徴とする。
ゴム成分(A-11)
 前記ゴム成分(A-11)は、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むことを特徴とし、2種を含むことが好ましい。複数のジエン系ゴムをブレンドすることにより、特定のゴムの欠点を補い、物性をバランスよく向上することができる。これらのゴム成分は、ゴムの主鎖および末端が変性剤により変性されたものであることが好ましい。また一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。なお、ゴム成分種や配合量については、適用部材などに応じて適宜選択すれば良い。
 前記天然ゴムとしては、天然ゴム(NR)や、エポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)などの改質天然ゴムなども含まれる。
 前記NRとしては特に限定されず、SIR20、RSS#3、TSR20など、タイヤ工業において一般的なものを使用することができる。
 NRを含有する場合のゴム成分(A-11)中の含有量は、ゴム組成物の耐破壊性が向上するという理由から、5質量%以上が好ましく、10質量%以上がより好ましい。また、NRの含有量は、低燃費性と耐摩耗性に優れるという理由から、80質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
 前記ジエン系合成ゴムとしては、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、スチレンイソプレンブタジエンゴム(SIBR)などが挙げられる。
 ジエン系合成ゴムのなかでも、加工性ウェットグリップ性能およびドライグリップ性能に優れるという理由からSBRを含むことが好ましい。前記SBRとしては特に限定されないが、未変性の溶液重合SBR(S-SBR)、未変性の乳化重合SBR(E-SBR)、およびこれらの変性SBR(変性S-SBR、変性E-SBR)などが挙げられる。変性SBRとしては、末端および/または主鎖が変性された変性SBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのSBRのなかでも、グリップ性能と耐摩耗性能をバランスよく向上できるという理由から、S-SBR、変性S-SBRが好ましく、シリカとの反応の点で、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性S-SBRが特に好ましい。これらのSBRは、単独で用いても構わないが、用途に応じてスチレン含有量などの物性が異なるSBRを併用しても良い。なお、適用部材などに応じて適宜選択すれば良い。
 SBRのスチレン含有量は、ウェットグリップ性能およびドライグリップ性能やゴム強度の観点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、SBRのスチレン含有量は、低燃費性の観点から60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書におけるSBRのスチレン含有量は、1H-NMR測定により算出される値である。
 SBRのビニル結合量は、ウェットグリップ性能およびドライグリップ性能やゴム強度の観点から10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。また、SBRのビニル結合量は、低燃費性の観点から65モル%以下が好ましく、60モル%以下がより好ましく、30モル%以下がさらに好ましい。なお、本明細書におけるSBRのビニル結合量とは、ブタジエン部のビニル結合量のことを示し、1H-NMR測定により算出される値である。
 SBRを含有する場合のゴム成分(A-11)中の含有量は、ウェットグリップ性能およびドライグリップ性能の観点から10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、SBRの含有量は、耐摩耗性の観点から90質量%以下が好ましく、80質量%以下がより好ましい。
 また、耐摩耗性に優れるという理由からBRを含むことが好ましい。BRにシリカ(B-11)のような白色充填剤を配合したゴム組成物は、一般的に充填剤の分散性が低く、所望の性能を得ることが難しいという問題がある。しかし第11の発明では、所定のカップリング剤を分割して混練りすることにより、充填剤とゴム成分との反応が高められる。従って、充填剤の分散性が向上し、低燃費性、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。
 前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、優れた耐摩耗性が得られるという点からはハイシスBRが好ましく、シリカとの反応の点では、末端および/または主鎖が変性された変性BR、特に、シリル基、アミノ基、アミド基、水酸基、およびエポキシ基からなる群から選ばれる少なくとも1種を有する変性BRが好ましい。なお、適用部材などに応じて適宜選択すれば良い。
 BRを含有する場合のゴム成分(A-11)中の含有量は、耐摩耗性の観点から5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 特に前記変性SBRや変性BRは通常、官能基の強い反応のため、ゴム成分自体が凝集して充填剤の分散がかえって困難になる場合が多いが、第11の発明では、所定のカップリング剤を分割して混練りすることにより、ゴム成分の凝集が防止され、シリカとの反応が促進される。
シリカ(B-11)
 前記シリカ(B-11)は特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカ(B-11)の窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、50m2/g以上がより好ましく、100m2/g以上がさらに好ましく、130m2/g以上が特に好ましく、160m2/g以上が最も好ましい。また、シリカ(B-11)のN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が特に好ましい。なお、本明細書におけるシリカ(B-11)のN2SAは、ATSM D3037-81に準じてBET法で測定される値である。
 シリカ(B-11)の含有量(全添加量)は、ゴム成分(A-11)100質量部に対して、低燃費性およびウェットグリップ性能の観点から10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましく、40質量部以上が特に好ましい。また、シリカ(B-11)の合計含有量は、充填剤のゴム成分への分散性や加工性の観点から200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。
カーボンブラック(C-11)
 前記カーボンブラック(C-11)としては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
 カーボンブラック(C-11)の窒素吸着比表面積(N2SA)は、耐候性や帯電防止性の観点から80m2/g以上が好ましく、100m2/g以上がより好ましい。また、カーボンブラック(C-11)のN2SAは、加工性の観点から200m2/g以下が好ましく、150m2/g以下がより好ましい。なお、本明細書におけるカーボンブラック(C-11)のN2SAは、JIS K6217のA法に準じて測定される値である。
 カーボンブラック(C-11)の含有量(全添加量)は、ゴム成分(A-11)100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。カーボンブラック(C-11)の含有量が1質量部未満の場合は、カーボンブラックを含有することによる効果が十分に得られない恐れがある。また、カーボンブラック(C-11)の含有量は、低燃費性や加工性の観点から30質量部以下が好ましく、10質量部以下がより好ましい。
カップリング剤
 前記カップリング剤(D1-11)は、下記化学式(1)で示される化合物である。
化学式(1) (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
(化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
 化学式(1)で示される化合物のpは、シリカとの反応性の観点から、1~3の整数であり、2が好ましい。
 化学式(1)で示される化合物のqは、ゴム分子とシリカとを適度な長さで結合し、低発熱性が向上することから、1~5の整数であり、2~5の整数が好ましく、3がより好ましい。
 化学式(1)で示される化合物のkは、ゴム分子との反応性および加工性が両立するという理由から、5~12の整数であり、6~10の整数が好ましく、7がより好ましい。
 化学式(1)で示されるカップリング剤(D1-11)としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシランなどを挙げることができ、単独で用いても、2種以上を併用してもよい。なかでも、入手の容易さとコストの点で、3-オクタノイルチオプロピルトリエトキシシラン(モメンティブ社製のNXTシラン)が特に好ましい。
 前記カップリング剤(D2-11)は、スルフィド基を有するカップリング剤であり、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィドなどが挙げられる。これらのカップリング剤としては、一般的に一定の分布を持った混合物として市販されている、エボニック社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)、Si69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)等が好適に挙げられる。
 カップリング剤(D1-11)および(D2-11)の合計含有量は、シリカの合計含有量100質量部に対して、充填剤との反応や加工性向上効果という観点から4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、カップリング剤の合計含有量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
加硫系薬剤(E-11)
 加硫系薬剤(E-11)は、加硫剤(E1-11)および加硫促進剤(E2-11)を含む。さらに、加硫促進補助剤などのゴム工業で一般的に使用される加硫系薬剤を用いることもできる。
加硫剤(E1-11)
 前記加硫剤(E1-11)としては特に限定されず、タイヤ工業において一般的なものを使用できる。第11の発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
 加硫剤(E1-11)の含有量は、ゴム成分(A-11)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤(E1-11)の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。加硫剤(E1-11)の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
加硫促進剤(E2-11)
 前記加硫促進剤(E2-11)としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドがより好ましい。
 加硫促進剤(E2-11)の含有量は、ゴム成分(A-11)100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤(E2-11)の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。加硫促進剤(E2-11)の含有量が前記範囲内であると、ゴム弾性率の低下や破壊特性の低下を抑制することができる。
その他の配合剤
 第11の発明に係るタイヤ用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、可塑剤(F-11)、シリカおよびカーボンブラック以外の補強用充填剤、老化防止剤(G-11)、酸化防止剤、ステアリン酸、ワックスなどを適宜配合することができる。
可塑剤(F-11)
 第11の発明に係るタイヤ用ゴム組成物には、加工性を改善するとともに、ゴムの強度を高めることができるという理由から、前記可塑剤(F-11)を含有することが好ましい。可塑剤(F-11)としては特に限定されず、タイヤ工業において一般的なものを使用でき、例えば、オイル、液状ポリマー、液状樹脂などが挙げられる。なかでも、コストと加工性をバランスよく改善できるという理由から、オイルが好ましい。
 オイルとしては、プロセスオイル、植物油脂、動物油脂などが挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。また、動物油脂としては、オレイルアルコール、魚油、牛脂などが挙げられる。なかでも、加工性に有利であるという理由からプロセスオイルが好ましく、環境への負荷低減という理由からは、多環式芳香族化合物(polycyclic aromatic compound:PCA)の含量の低いプロセスオイル(低PCA含量プロセスオイル)が好ましい。
 低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、重ナフテン系オイルなどが挙げられる。
 可塑剤(F-11)としてオイルを含有する場合のゴム成分(A-11)100質量部に対する含有量は、加工性改善効果の観点から2質量部以上が好ましく、5質量部以上がより好ましい。また、オイルの含有量は、工程面での負荷の観点から60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書におけるオイルの含有量は、ゴム成分が油展物である場合の該油展オイル量は含まない。
老化防止剤(G-11)
 前記老化防止剤(G-11)としては、耐熱性老化防止剤、耐候性老化防止剤などでゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル-α-ナフチルアミンなど)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミンなど)、p-フェニレンジアミン系(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなど)などのアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのキノリン系老化防止剤;モノフェノール系(2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなど)、ビス、トリス、ポリフェノール系(テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなど)などのフェノール系老化防止剤が挙げられる。なかでも、耐オゾン性に優れるという理由から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤が特に好ましい。
 老化防止剤(G-11)を含有する場合のゴム成分(A-11)100質量部に対する含有量は、耐オゾン性および耐亀裂性の観点から0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、老化防止剤の含有量は、変色防止の観点から10質量部以下が好ましく、5質量部以下がより好ましい。
界面活性剤
 第11の発明の一実施形態では、さらに界面活性剤を含有することが好ましい。界面活性剤を含有することにより、前記のシリカおよびカーボンブラックを含む充填剤の分散性が向上し、かつ得られたタイヤ用ゴム組成物の経年劣化による変色を防ぐことができる。
 前記界面活性剤としては、有機酸の金属塩のような金属石鹸やポリオキシアルキレン誘導体のような非イオン系界面活性剤が挙げられるが、特に限定されない。これらは、単独でも複数を組み合わせて使用しても構わない。
 前記有機酸の金属塩としては、カルボン酸の金属塩が好適に挙げられる。ポリオキシアルキレン誘導体としては、例えばポリオキシアルキレンアルキルエーテルなどのエーテル型、ポリオキシアルキレン脂肪酸エステルなどのエステル型、ポリオキシアルキレングリセリン脂肪酸エステルなどのエーテルエステル型、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレンアルキルアミンなどの含窒素型などが挙げられる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステルが低燃費性と他のゴム物性のバランスの面で特に好ましい。
 界面活性剤の含有量は、ゴム成分(A-11)100質量部に対して、シリカの分散性向上効果の観点から0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.6質量部以上がさらに好ましく、1.0質量部以上が最も好ましい。また、界面活性剤の含有量は、操縦安定性、耐クラック性、耐オゾン性、耐変色性の観点から5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。
タイヤ用ゴム組成物の製造方法
 第11の発明のタイヤ用ゴム組成物の製造方法は、混練り工程を工程X1-11、工程X2-11および工程F-11とすることを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
 具体的には、A-11、B-11の一部、D1-11、および任意でE-11の一部を混練りする工程X1-11、工程X1-11の混練物、B-11の残量、D2-11、および任意でE-11の一部を混練りする工程X2-11、さらに、工程X2-11の混練物、およびE-11の残量を混練りする工程F-11を含む混練工程を行い、未加硫ゴム組成物を得る工程を含むタイヤ用ゴム組成物の製造方法である。得られた未加硫ゴム組成物は、さらに加硫(加硫工程)などを行い、第11の発明に係るタイヤ用ゴム組成物を製造することができる。なお、カーボンブラック(C-11)、可塑剤(F-11)、老化防止剤(G-11)、酸化亜鉛、ステアリン酸などその他の配合剤の添加および混練りするタイミングは特に限定されず、工程X1-11、工程X2-11または工程F-11のいずれの工程で添加してもよく、分割して添加してもよい。
 特に第11の発明の製造方法は、カップリング剤(D1-11)をスルフィド基を有するカップリング剤(D2-11)よりも先の工程(工程X1-11)で混練りすることを特徴とする。カップリング剤(D1-11)は、アルコキシシリル基が分子中に複数存在しないため、カップリング剤同士の凝集が少なく、ポリマー部と好適に反応するメルカプト基が脂肪酸チオエステルとなることにより、急激な反応に伴う不均一化も防止される。よって、第11の発明のような先投入での混練においても活性を失わずに均一な充填剤とポリマーの化学結合を形成することが可能である。
工程X1-11
 工程X1-11では、ゴム成分(A-11)の全量、シリカ(B-11)の一部、カップリング剤(D1-11)および任意で加硫系薬剤(E-11)の一部を含む配合剤をバンバリーミキサーなどで混練りする。この工程により、充填剤がゴム成分、特に充填剤と親和性の高いゴム成分と強固な結合を形成しながら分散する。また、カップリング剤(D1-11)が化学式(1)の構造をとることにより、混練りに伴いチオエステル基が分解されて徐々に活性の高いメルカプト基を生成するため、加工性を保ちながら充填剤を分散させ、ポリマーとの結合を促進することが可能である。従来のポリスルフィドシラン(カップリング剤(D2-11))を工程X1で投入してしまうと、この段階でも硫黄を放出するため、加工性が低下し、充填剤の分散が阻害され、カップリング剤自体の活性も低下してしまうが、前記化学式(1)で示されるカップリング剤(D1-11)は、硫黄を放出しないため、第11の発明の製造方法によれば加工性を維持したまま混練りを継続することが可能である。
 工程X1-11におけるシリカ(B-11)の添加量は、シリカ混練効果の向上、シリカの十分な分散、および耐摩耗性の観点からシリカ(B-11)の全添加量の50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましい。また、工程X1-11におけるシリカ(B-11)の添加量は、後述する工程X2-11におけるシリカの分割投入の効果、低燃費性および耐摩耗性の観点からシリカ(B-11)の全添加量の95質量%以下が好ましく、90質量%以下がより好ましい。
 工程X1-11における化学式(1)で示されるカップリング剤(D1-11)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D1-11)の優れた加工性向上効果を引き出すことができるという理由から、工程X1-11におけるシリカ(B-11)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X1-11における化学式(1)で示されるカップリング剤(D1-11)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記カーボンブラック(C-11)は工程X1-11および/または工程X2-11で添加することが好ましい。工程X1-11におけるカーボンブラック(C-11)の添加量は、カーボンブラックの分散性の向上と工程の効率化という観点から、カーボンブラック(C-11)の全添加量の10質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%であることが最も好ましい。なお、工程X1-11におけるカーボンブラック(C-11)添加量が100質量%未満の場合は、残量は工程X2-11で添加することが好ましい。
 前記可塑剤(F-11)を添加する工程は特に限定されないが、充填剤の分散が良好になるという理由から、工程X1-11において、可塑剤(F-11)全添加量の50質量%以上を添加することが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。なお、工程X1-11における可塑剤(F-11)添加量が100質量%未満の場合は、残量は、工程X2-11で添加するシリカの分散性がより向上するという理由から工程X2-11で添加することが好ましい。
 前記界面活性剤は、シリカの分散効果を促進する観点から、工程X1-11および/または工程X2-11において添加することが好ましく、シリカの分散効果をより促進し、カップリング剤のゲル化を抑制することができるという理由から工程X1-11において添加することが好ましい。
 工程X1-11における混練の排出温度は特に限定されないが、142℃以上が好ましく、146℃以上がより好ましく、148℃以上がさらに好ましい。また、該排出温度は、170℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。工程X1-11における混練の排出温度が前記範囲内であると、シリカ(B-11)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X1-11における混練中の最高温度は特に限定されないが、カップリング剤が十分に反応し、シリカが良好に分散した混練物を効率良く得られるという点から、140℃以上が好ましく、145℃以上がより好ましく、150℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は200℃以下が好ましい。通常の混練工程では150℃を超えると、ゲル化等の不具合が起こる恐れがあるが、第11の発明に係る工程X1-11では加硫促進剤としてポリスルフィドシランが添加されていないため、混練温度が高温となっても不具合が起こらず、カップリング剤の反応を促進し、シリカの分散を促進することが可能である。
 工程X1-11における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましく、4.0分以上がより好ましく、4.5分以上がさらに好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
 第11の発明の一実施形態では、工程X1-11において前記の最高温度に到達し、混練が終了した後、混練物を150℃~190℃で、10~120秒間保持することが、カップリング剤(D1-11)とシリカとの反応が完全に行われることから好ましい。
工程X2-11
 工程X2-11では、シリカ(B-11)の残量、カップリング剤(D2-11)および任意で加硫系薬剤(E-11)の一部を含む配合剤を、工程X1-11の混練物に加えて混練りする。もし、工程X1-11でシリカを全量投入した場合は、シリカが変性ポリマーのようなシリカと親和性の高いポリマー部分および/またはポリマーの界面部分に偏在してしまう傾向があるが、第11の発明の製造方法では、シリカを、それぞれ工程X1-11および工程X2-11において分割投入するため、ゴム成分全体にシリカが分散しやすくなる。また、後入れした(工程X2-11で投入した)シリカ自体が、ゴム成分にシェアをかけることにより混練効果を促進する効果がある。さらに、第11の発明の製造方法では、化学式(1)で示されるカップリング剤(D1-11)を工程X1-11で混練りするため、カップリング剤の活性の早期低下を防止し、混練操作全体における加工性を保つことができる。
 また、スルフィド基を有するカップリング剤(D2-11)を工程X2-11において混練りすることにより、該カップリング剤による活性の早期の低下を防止し、混練操作全体における加工性を保つことができる。さらに、カップリング剤(D2-11)は加硫剤として作用する硫黄を放出可能なことから、均一架橋が促進され、ゴム物性の向上をはかることができる。
 工程X2-11におけるカップリング剤(D2-11)の添加量は、充填剤との反応を十分なものとし、カップリング剤(D2-11)の優れた加工性向上効果を引き出すことができるという理由から、工程X2-11におけるシリカ(B-11)の添加量100質量部に対して4質量部以上が好ましく、5質量部以上がより好ましく、6質量部以上がさらに好ましい。また、工程X2-11における化学式(1)で示されるカップリング剤(D2-11)の添加量は、コストの増加に見合ったシリカの分散効果という観点から20質量部以下が好ましく、10質量部以下がより好ましく、9質量部以下がさらに好ましい。
 前記老化防止剤(G-11)を添加する工程は特に限定されないが、作業効率と混練中の老化防止剤の活性低下防止の観点から、工程X2-11において全量添加することが好ましい。
 工程X2-11における混練の排出温度は特に限定されないが、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、該排出温度は、200℃以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。工程X2-11における混練の排出温度が前記範囲内であると、シリカ(B-11)が良好に分散した混練物を効率良く得られる傾向がある。
 また、工程X2-11における混練中の最高温度は特に限定されないが、スルフィド基を有するカップリング剤(D2-11)が十分に反応し、シリカが良好に分散した混練物が効率良く得られるという点から、100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。また、ゴム焼けを防ぐため、混練中の最高温度は200℃以下が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。
 工程X2-11における混練り時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという点から、3.0分以上が好ましい。また、各混練時間は9分以下が好ましく、8分以下がより好ましく、7分以下がさらに好ましい。
工程F-11
 工程F-11は、工程X2-11で得られた混練物を冷却した後、加硫剤および加硫促進剤を含む加硫系薬剤(E-11)を添加してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。
 前記加硫促進剤は、工程F-11で一度に加えても構わないが、一部または全量を工程X1-11および/または工程X2-11で加えたのち、工程F-11で残量を加えることが好ましい。工程X1-11および/または工程X2-11で一部または全量を加えることにより、シリカとゴム成分との分散をより促進することができる。特に前記グアニジン類加硫促進剤の一部または全量を工程X1-11および/または工程X2-11で加えることが、シリカの分散性をより促進することができるという理由からより好ましい。
 工程X2-11で得られた混練物は、通常100℃以下、好ましくは20~80℃となるまで冷却することが好ましい。
 工程F-11における混練温度は、110℃以下が好ましく、100℃以下がより好ましい。該排出温度が110℃を超える場合は、ゴム焼け(スコーチ)が生じやすくなる傾向がある。また、工程F-11における混練の排出温度の下限は特に限定されないが、好ましくは80℃以上である。
 工程F-11における混練時間は特に限定されないが、通常30秒以上であり、好ましくは1~30分間である。
加硫工程
 工程F-11で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、第11の発明の効果が良好に得られる。
タイヤ用ゴム組成物
 第11の発明に係るタイヤ用ゴム組成物は、タイヤの各部材に使用でき、なかでも、加工性、低燃費性、および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物であることからトレッドやサイドウォールに好適に用いることができる。
タイヤ
 また、第11の発明のタイヤは、第11の発明に係るタイヤ用ゴム組成物を用いて、通常の方法により製造できる。すなわち、第11の発明の製造方法にて製造したタイヤ用ゴム組成物を、未加硫の段階でタイヤのトレッドなどのタイヤ部材の形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、第11の発明のタイヤを製造することができる。なお、第11の発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。また、空気入りタイヤとしては、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどとして好適に用いることができる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。
 本発明を実施例に基づいて説明するが、本発明は、実施例にのみ限定されるものではない。
 以下、実施例および比較例において用いた各種薬品をまとめて示す。
NR:TSR20
SBR1:ランクセス社製のBuna SL4525-0(スチレン含有量:25質量%、非油展、非変性S-SBR)
SBR2:下記変性SBR2製造例で作製したSBR(スチレン含有量:37.5質量%、ビニル結合量:55.8モル%、非油展、アミノ基およびアルコキシシリル基を有する末端変性S-SBR)
SBR3:下記変性SBR3製造例で作製したSBR(スチレン含有量:25質量%、ビニル結合量:55モル%、非油展、アミノ基およびアルコキシシリル基を有する末端変性S-SBR)
BR1:宇部興産(株)製のBR150B(ハイシスBR、シス含有量:97質量%)
BR2:下記変性BR2製造例で作製したBR(シス含有量:29質量%、アミノ基およびアルコキシシリル基を有する末端変性BR)
BR3:下記変性BR3製造例で作製したBR(シス含有量:97質量%、アミノ基およびアルコキシシリル基を有する末端変性BR)
カーボンブラック1:三菱化学(株)製のダイヤブラックN220(N2SA:114m2/g、DBP吸油量:115ml/100g)
カーボンブラック2:ライオン(株)製のライオナイト(導電性カーボンブラック)(N2SA:1052m2/g、DBP吸油量:378ml/100g、鉄含有量:1330ppm)
シリカ1:エボニック社製のウルトラシルVN3(N2SA:175m2/g)
シリカ2:ローディア社製のZeosil 115MP(N2SA:100m2/g)
カップリング剤1:モメンティブ社製のNXT(3-オクタノイルチオ-1-プロピルトリエトキシシラン、化学式(1)中のp:2、q:3、k:7)
カップリング剤2:デグッサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
カップリング剤3:エボニック社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
オイル1:出光興産(株)製のダイアナプロセスオイルAH-24
オイル2:H&R社製のVIVATEC500
ワックス:日本精蝋(株)製のオゾエース0355
界面活性剤:花王(株)製のエマルゲン123P(非イオン系界面活性剤、ポリオキシエチレンラウリルエーテル)
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:ハクスイテック(株)製の酸化亜鉛3種
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤1:大内新興化学工業(株)製ノクセラーNS(N-t-ブチル-2-ベンゾチアジルスルフェンアミド)
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(N,N’-ジフェニルグアニジン)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
 変性SBRおよび変性BRの製造例、ならびに分析方法を示す。
末端変性剤の作製
 窒素雰囲気下、100mlメスフラスコに、3-(N,N-ジメチルアミノ)プロピルトリメトキシシラン(アヅマックス(株)製)を23.6g入れ、さらに、無水ヘキサン(関東化学(株)製)を加え、全量を100mlにして末端変性剤を作製した。
変性SBR2製造例
 十分に窒素置換した30L耐圧容器に、n-ヘキサン(関東化学(株)製)18L、スチレン(関東化学(株)製)740g、ブタジエン(高千穂商事(株)製)1260g、およびテトラメチルエチレンジアミン(関東化学(株)製)17mmolを加え、40℃に昇温した。次に、ブチルリチウム(関東化学(株)製)10.5mLを加えた後、50℃に昇温させ3時間撹拌した。次に0.4mol/Lの四塩化ケイ素/ヘキサン溶液3.5mlを加え、30分撹拌を行った。次に、前記末端変性剤30mLを追加し30分間撹拌を行った。反応溶液に2,6-tert-ブチル-p-クレゾール(大内新興化学工業(株)製)0.2gを溶かしたメタノール(関東化学(株)製)2mLを添加後、反応溶液をメタノール18Lが入ったステンレス容器に入れて凝集体を回収した。得られた凝集体を24時間減圧乾燥させ、末端変性S-SBR(SBR2)を得た。分析の結果、Mwは925000、スチレン含有量は37.5質量%、ビニル結合量は55.8モル%であった。
変性SBR3製造例
 十分に窒素置換した5Lのオートクレーブ反応器に、シクロヘキサン2750g、テトラヒドロフラン50g、スチレン125gおよびブタジエン375gを仕込み、反応器内の温度を10℃に調整した後、n-ブチルリチウム5.8mmolを含むシクロヘキサン溶液を添加し、50℃~80℃で重合反応を3時間行った。その後、得られたポリマー溶液に、N-〔3-(トリメトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン4.96mmolを含むシクロヘキサン溶液を加えて15分間反応を行った。その後、得られたポリマー溶液に2,6-ジ-tert-ブチル-p-クレゾール2gを添加し、さらに水酸化ナトリウムでpHを9に調整した熱水を用いてスチームストリッピングを行うことによって脱溶媒処理した後、110℃に調温された熱ロールによって乾燥処理することにより、SBR2を得た。分析の結果、Mwは56万、スチレン含有量は25質量%、ビニル結合量は55モル%であった。
変性BR2製造例
 十分に窒素置換した30L耐圧容器にn-ヘキサン(関東化学(株)製)18L、ブタジエン(高千穂商事(株)製)2000g、およびテトラメチルエチレンジアミン(TMEDA、関東化学(株)製)2mmolを加え、60℃に昇温した。次に、ブチルリチウム(関東化学(株)製)10.3mLを加えた後、50℃に昇温させ3時間撹拌した。次に、上記で作成した末端変性剤11.5mLを追加し30分間撹拌を行った。反応溶液にメタノール(関東化学(株)製)15mLおよび2,6-tert-ブチル-p-クレゾール(大内新興化学工業(株)製)0.1gを添加後、反応溶液を18Lのメタノールが入ったステンレス容器に入れて凝集体を回収した。得られた凝集体を24時間減圧乾燥させ、末端変性BR(BR2)を得た。分析の結果、Mwは670000、Mw/Mnは1.34、シス含有量は29質量%、ビニル結合量は26モル%であった。
変性BR3製造例
 十分に窒素置換した5Lのオートクレーブ反応器に、シクロヘキサン2400g、1,3-ブタジエン300gを仕込み、バーサチック酸ネオジム(0.09mmol)のシクロヘキサン溶液、メチルアルモキサン(1.0mmol)のトルエン溶液、水素化ジイソブチルアルミニウム(3.5mmol)およびジエチルアルミニウムクロリド(0.18mmol)のトルエン溶液と、1,3-ブタジエン(4.5mmol)とを50℃で30分間反応熟成させて予め調製しておいた触媒を仕込み、80℃で重合反応を45分間行った。次に、反応温度60℃に保ち、3-グリシドキシプロピルトリメトキシシラン(4.5mmol)のトルエン溶液を添加し、30分間反応を行い、第一の共役ジエン系重合体の活性末端と第二の共役ジエン系重合体の活性末端を変性させた。その後、2,4-ジ-tert-ブチル-p-クレゾール1.5gを含むメタノール溶液を添加し、さらに水酸化ナトリウムによりpH10に調整した水溶液20Lに、上記変性重合体溶液を添加し、110℃で2時間、脱溶媒後、110℃のロールで乾燥させて、BR2を得た。分析の結果、Mwは35万、シス含有量は97%、ビニル結合量は1.1モル%であった。
重量平均分子量Mwおよび数平均分子量Mnの測定
 重量平均分子量Mwおよび数平均分子量Mnは、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M)による測定値を基に、標準ポリスチレン換算により求めた。
スチレン含有量およびビニル結合量の測定
 日本電子(株)製のJNM-ECAシリーズのNMR装置を用いて、構造同定を行い、スチレン含有量およびビニル結合量を算出した。
シス含有量の測定
 赤外吸収スペクトル分析法(日本分光(株)製のFT/IR-5300(フーリエ変換赤外分光光度計))によってシス含有量を算出した。
 第1の発明に関する比較例および実施例を示す。
比較例1および2
 表1に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて排出温度80℃で5分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表1に示す。
実施例1~8ならびに比較例3および4
 表1に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X2)。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて排出温度80℃で5分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表1に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例1を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例1を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例1のタイヤ溝が1mm減るときの走行距離)×100
<操縦安定性試験>
 試験タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、蛇行運転を行った。その際における操舵時のコントロールの安定性をテストドライバーが官能評価し、比較例1を100として指数表示した。指数が大きいほど操縦安定性に優れることを示す。
<加工性試験>
 未加硫ゴム組成物の加工のしやすさ、および加工物の形状を目視にて確認し、下記の基準で評価した。
4:容易に加工でき、シート形状がなめらかで非常に良好
3:問題なく加工でき、シート形状が良好
2:加工は可能であるが、シートの生地に凹凸があり劣る
1:生地の状態が悪く、シート加工ができない
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、所定のゴム成分(A-1)、シリカ1(B1-1)、シリカ2(B2-1)、カーボンブラック(C-1)、所定のカップリング剤(D-1)、加硫剤(E1-1)、および加硫促進剤(E2-1)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性、およびウェットグリップ性能をバランス良く改善できることが分かる。
 第2の発明に関する比較例および実施例を示す。
比較例5~7
 表2に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表2に示す。
実施例9~14および比較例8
 表2に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。その後、混練物をミキサー内で排出温度が160℃となるように1分間保持した。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度150℃で3分間混練りした(工程X2)。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表2に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例5を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例5を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例5のタイヤ溝が1mm減るときの走行距離)×100
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例5を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例5の制動距離)/(各実施例の制動距離)×100
<操縦安定性試験>
 試験タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、蛇行運転を行った。その際における操舵時のコントロールの安定性をテストドライバーが官能評価し、比較例5を100として指数表示した。指数が大きいほど操縦安定性に優れることを示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、所定のゴム成分(A-2)、シリカ1(B1-2)、シリカ2(B2-2)、カーボンブラック(C-2)、所定のカップリング剤(D-2)、加硫剤(E1-2)、および加硫促進剤(E2-2)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性、およびウェットグリップ性能をバランス良く改善できることが分かる。
 第3の発明に関する比較例および実施例を示す。
比較例9~11
 表3に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表3に示す。
実施例15~20および比較例12
 表3に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。その後、混練物をミキサー内で排出温度が160℃となるように1分間保持した。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度145℃で3分間混練りした(工程X2)。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表3に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例9を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例9を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例9のタイヤ溝が1mm減るときの走行距離)×100
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例9を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例9の制動距離)/(各実施例の制動距離)×100
<操縦安定性試験>
 試験タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、蛇行運転を行った。その際における操舵時のコントロールの安定性をテストドライバーが官能評価し、比較例9を100として指数表示した。指数が大きいほど操縦安定性に優れることを示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果より、ブタジエンゴム(A1-3)、スチレンブタジエンゴム(A2-3)、シリカ(B-3)、カーボンブラック(C-3)、所定のカップリング剤(D1-3)、スルフィド基を有するカップリング剤(D2-3)、加硫剤(E1-3)、および加硫促進剤(E2-3)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性、およびウェットグリップ性能をバランス良く改善できることが分かる。
 第4の発明に関する比較例および実施例を示す。
比較例13~15
 表4に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表4に示す。
実施例21~26および比較例16
 表4に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。その後、混練物をミキサー内で排出温度が160℃となるように1分間保持した。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度145℃で3分間混練りした(工程X2)。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表4に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例13を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例13を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例13のタイヤ溝が1mm減るときの走行距離)×100
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例13を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例13の制動距離)/(各実施例の制動距離)×100
<操縦安定性試験>
 試験タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、蛇行運転を行った。その際における操舵時のコントロールの安定性をテストドライバーが官能評価し、比較例13を100として指数表示した。指数が大きいほど操縦安定性に優れることを示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果より、所定のゴム成分(A-4)、シリカ1(B1-4)、シリカ2(B2-4)、カーボンブラック(C-4)、所定のカップリング剤(D1-4)、スルフィド基を有するカップリング剤(D2-4)、加硫剤(E1-4)、および加硫促進剤(E2-4)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性、およびウェットグリップ性能をバランス良く改善できることが分かる。
 第5の発明に関する比較例および実施例を示す。
比較例17~19
 表5に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表5に示す。
実施例27~32および比較例20
 表5に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。その後、混練物をミキサー内で排出温度が160℃となるように1分間保持した。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度145℃で3分間混練りした(工程X2)。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表5に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例17を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例17を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例17のタイヤ溝が1mm減るときの走行距離)×100
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例17を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例17の制動距離)/(各実施例の制動距離)×100
<操縦安定性試験>
 試験タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、蛇行運転を行った。その際における操舵時のコントロールの安定性をテストドライバーが官能評価し、比較例17を100として指数表示した。指数が大きいほど操縦安定性に優れることを示す。
Figure JPOXMLDOC01-appb-T000005
 表5の結果より、ブタジエンゴム(A1-5)、イソプレン系ゴム(A2-5)、シリカ(B-5)、カーボンブラック(C-5)、所定のカップリング剤(D1-5)、スルフィド基を有するカップリング剤(D2-5)、加硫剤(E1-5)、および加硫促進剤(E2-5)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性、およびウェットグリップ性能をバランス良く改善できることが分かる。
 第6の発明に関する比較例および実施例を示す。
比較例21~23
 表6に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表6に示す。
実施例33~38および比較例24
 表6に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度150℃で3分間混練りした(工程X2)。その後、混練物をミキサー内で排出温度が155℃となるように1分間保持した。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表6に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例21を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例21を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例21のタイヤ溝が1mm減るときの走行距離)×100
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例21を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例21の制動距離)/(各実施例の制動距離)×100
<操縦安定性試験>
 試験タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、蛇行運転を行った。その際における操舵時のコントロールの安定性をテストドライバーが官能評価し、比較例21を100として指数表示した。指数が大きいほど操縦安定性に優れることを示す。
Figure JPOXMLDOC01-appb-T000006
 表6の結果より、ブタジエンゴム(A1-6)、スチレンブタジエンゴム(A2-6)、シリカ(B-6)、シリカ(B-6)、カーボンブラック(C-6)、所定のカップリング剤(D)、加硫剤(E1-6)、および加硫促進剤(E2-6)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性およびウェットグリップ性能をバランス良く改善できることが分かる。
 第7の発明に関する比較例および実施例を示す。
比較例25~27
 表7に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表7に示す。
実施例39~44および比較例28
 表7に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。その後、混練物をミキサー内で排出温度が160℃となるように1分間保持した。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度145℃で3分間混練りした(工程X2)。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表7に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例25を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例25を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例25のタイヤ溝が1mm減るときの走行距離)×100
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例25を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例25の制動距離)/(各実施例の制動距離)×100
<導電性能試験>
 各試験用タイヤより、厚さ2mm、15cm×15cmの試験片を切り出し、ADVANTEST社製の電気抵抗測定R8340Aを用いて電圧500V、温度25℃、相対湿度50%の条件で体積固有抵抗率を測定した。評価結果は下記の基準に従い記号で示す。
○:体積固有抵抗率が1.0×107Ω・cm未満
×:体積固有抵抗率が1.0×107Ω・cm以上
Figure JPOXMLDOC01-appb-T000007
 表7の結果より、所定のゴム成分(A-7)、シリカ(B-7)、カーボンブラック1(C1-7)、カーボンブラック2(C2-7)、所定のカップリング剤(D1-7)、スルフィド基を有するカップリング剤(D2-7)、加硫剤(E1-7)、および加硫促進剤(E2-7)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性、ウェットグリップ性能および導電性をバランス良く改善できることが分かる。
 第8の発明に関する比較例および実施例を示す。
比較例29~31
 表8に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表8に示す。
実施例45~51および比較例32
 表8に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。その後、混練物をミキサー内で排出温度が160℃となるように1分間保持した。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度150℃で3分間混練りした(工程X2)。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表8に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例29を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例29を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例29のタイヤ溝が1mm減るときの走行距離)×100
<操縦安定性試験>
 試験タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、蛇行運転を行った。その際における操舵時のコントロールの安定性をテストドライバーが官能評価し、比較例29を100として指数表示した。指数が大きいほど操縦安定性に優れることを示す。
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例29を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例29の制動距離)/(各実施例の制動距離)×100
Figure JPOXMLDOC01-appb-T000008
 表8の結果より、所定のゴム成分(A-8)、シリカ(B-8)、カーボンブラック(C-8)、所定のカップリング剤(D-8)、加硫剤(E1-8)、および加硫促進剤(E2-8)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性、およびウェットグリップ性能をバランス良く改善できることが分かる。
 第9の発明に関する比較例および実施例を示す。
比較例33~35
 表9に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表9に示す。
実施例52~57および比較例36
 表9に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度150℃で3分間混練りした(工程X2)。その後、混練物をミキサー内で排出温度が155℃となるように1分間保持した。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表9に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例33を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例33を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例33のタイヤ溝が1mm減るときの走行距離)×100
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例33を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例33の制動距離)/(各実施例の制動距離)×100
<氷上性能試験>
 試験タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、氷上を時速30km/hで走行中にロックブレーキをかけ、停止するまでに要した距離(停止距離)を測定した。下記の式により比較例33を100として指数表示した。指数が大きいほど、氷上性能に優れることを示す。なお、試験は住友ゴム工業株式会社の北海道名寄テストコースで行い、氷上気温は-2~-6℃であった。
(氷上性能指数)=(比較例33の停止距離)/(各実施例の停止距離)×100
Figure JPOXMLDOC01-appb-T000009
 表9の結果より、ブタジエンゴム(A1-9)、イソプレン系ゴム(A2-9)、シリカ(B-9)、シリカ(B-9)、カーボンブラック(C-9)、所定のカップリング剤(D-9)、加硫剤(E1-9)、および加硫促進剤(E2-9)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性およびウェットグリップ性能をバランス良く改善できることが分かる。
 第10の発明に関する比較例および実施例を示す。
比較例37~39
 表10および表11に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表10および表11に示す。
実施例58~63および比較例40
 表10および表11に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。その後、混練物をミキサー内で排出温度が160℃となるように1分間保持した。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度150℃で3分間混練りした(工程X2)。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表10および表11に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例37を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例37を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例37のタイヤ溝が1mm減るときの走行距離)×100
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例37を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例37の制動距離)/(各実施例の制動距離)×100
<導電性能試験>
 各試験用タイヤより、厚さ2mm、15cm×15cmの試験片を切り出し、ADVANTEST社製の電気抵抗測定R8340Aを用いて電圧500V、温度25℃、相対湿度50%の条件で体積固有抵抗率を測定した。評価結果は下記の基準に従い記号で示す。
○:体積固有抵抗率が1.0×107Ω・cm未満
×:体積固有抵抗率が1.0×107Ω・cm以上
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表10および表11の結果より、所定のゴム成分(A-10)、シリカ(B-10)、カーボンブラック1(C1-10)、カーボンブラック2(C2-10)、所定のカップリング剤(D-10)、加硫剤(E1-10)、および加硫促進剤(E2-10)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性、ウェットグリップ性能および導電性をバランス良く改善できることが分かる。
 第11の発明に関する比較例および実施例を示す。
比較例41~43
 表12に示す配合内容に従い、加硫剤(E1)および加硫促進剤(E2)以外の各種薬品を1.7Lバンバリーミキサーにて、排出温度150℃で5分間混練りした(工程X)。その後、工程Xの混練物、加硫剤(E1)および加硫促進剤(E2)をオープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。その後、実施例と同様に試験用タイヤを製造し、下記評価を行った。結果を表12に示す。
実施例64~69および比較例44
 表12に示す配合内容に従い、工程X1に示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度150℃で5.0分間混練りした(工程X1)。その後、混練物をミキサー内で排出温度が160℃となるように1分間保持した。次に、工程X1の混練物および工程X2に示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度145℃で3分間混練りした(工程X2)。そして、工程X2の混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、150℃、25kgfの条件で35分間加硫し、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記評価を行った。結果を表12に示す。
<低燃費性試験>
 転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例41を100として指数表示した。指数が大きいほど低燃費性に優れていることを示す。
<耐摩耗性試験>
 各試験用タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、ドライアスファルト路面上を8000km走行させ、タイヤトレッド部の溝深さを測定し、タイヤトレッド部の溝深さが1mm減少するときの走行距離を算出した。下記の式により比較例41を100として指数表示した。指数が大きいほど耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各試験用タイヤのタイヤ溝が1mm減るときの走行距離)/(比較例41のタイヤ溝が1mm減るときの走行距離)×100
<ウェットグリップ性能試験>
 湿潤路面において初速度100km/hからの制動距離を測定した。下記の式により比較例41を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(比較例41の制動距離)/(各実施例の制動距離)×100
<操縦安定性試験>
 試験タイヤを試験用実車(国産FF車、排気量:2000cc)の全輪に装着し、蛇行運転を行った。その際における操舵時のコントロールの安定性をテストドライバーが官能評価し、比較例41を100として指数表示した。指数が大きいほど操縦安定性に優れることを示す。
Figure JPOXMLDOC01-appb-T000012
 表12の結果より、所定のゴム成分(A-11)、シリカ(B-11)、カーボンブラック(C-11)、所定のカップリング剤(D1-11)、スルフィド基を有するカップリング剤(D2-11)、加硫剤(E1-11)、および加硫促進剤(E2-11)を含有するタイヤ用ゴム組成物を、所定の製造方法で製造することにより、低燃費性、耐摩耗性、およびウェットグリップ性能をバランス良く改善できることが分かる。
 表1~表12の結果より、天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A)、充填剤、下記化学式(1)で示されるカップリング剤(D)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E)を含有するタイヤ用ゴム組成物の製造方法であって、
(工程X1)Aの全量、充填剤の一部およびDの一部を混練りする工程X1、
(工程X2)工程X1の混練物、ならびに充填剤およびDの残量を混練りする工程X2、ならびに
(工程F)工程X2の混練物、およびEを混練りする工程F
を含む本発明のタイヤ用ゴム組成物の製造方法によれば、低燃費性および耐摩耗性がバランス良く改善されたタイヤ用ゴム組成物を製造することができることがわかる。

Claims (5)

  1. 天然ゴムおよびジエン系合成ゴムからなる群から選ばれる少なくとも1種を含むゴム成分(A)、充填剤、下記化学式(1)で示されるカップリング剤(D)、ならびに加硫剤および加硫促進剤を含む加硫系薬剤(E)を含有するタイヤ用ゴム組成物の製造方法であって、
    (工程X1)Aの全量、前記充填剤の一部およびDの一部を混練りする工程X1、
    (工程X2)工程X1の混練物、ならびに前記充填剤およびDの残量を混練りする工程X2、ならびに
    (工程F)工程X2の混練物、およびEを混練りする工程F
    を含むタイヤ用ゴム組成物の製造方法。
    化学式(1)
     (Cp2p+1O)3-Si-(CH2q-S-CO-Ck2k+1
    (化学式(1)中、pは1~3の整数、qは1~5の整数、kは5~12の整数を表す。)
  2. ゴム成分が、シリカと反応する官能基を有するスチレンブタジエンゴムおよび/またはブタジエンゴムを含む請求項1記載の製造方法。
  3. さらに、可塑剤を含有するゴム組成物の製造方法であり、
    工程X1において可塑剤の全添加量の50質量%以上を混練りする請求項1または2記載の製造方法。
  4. さらに、老化防止剤を含有するゴム組成物の製造方法であり、
    工程X2において老化防止剤を混練りする請求項1~3のいずれか1項に記載の製造方法。
  5. 請求項1~4のいずれか1項に記載の製造方法で製造されたタイヤ用ゴム組成物で構成されたタイヤ部材を有するタイヤ。
PCT/JP2015/081343 2014-11-07 2015-11-06 タイヤ用ゴム組成物の製造方法およびタイヤ WO2016072499A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15856571.3A EP3196233B8 (en) 2014-11-07 2015-11-06 Method for producing rubber composition for tire, and tire
CN201580057806.7A CN107108908B (zh) 2014-11-07 2015-11-06 轮胎用橡胶组合物的制备方法及轮胎
US15/519,061 US10369843B2 (en) 2014-11-07 2015-11-06 Production method of rubber composition for tire and tire

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
JP2014227018A JP6030104B2 (ja) 2014-11-07 2014-11-07 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2014-227018 2014-11-07
JP2015-001132 2015-01-06
JP2015001136A JP6362546B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015-001128 2015-01-06
JP2015001130A JP6358965B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015001128A JP6525593B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015001133A JP6358967B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015-001130 2015-01-06
JP2015-001135 2015-01-06
JP2015001135A JP6395615B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015-001133 2015-01-06
JP2015001132A JP6395614B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015-001129 2015-01-06
JP2015001129A JP6358964B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015001137A JP6358968B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015-001134 2015-01-06
JP2015-001136 2015-01-06
JP2015-001131 2015-01-06
JP2015001131A JP6358966B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015001134A JP6482875B2 (ja) 2015-01-06 2015-01-06 タイヤ用ゴム組成物の製造方法およびタイヤ
JP2015-001137 2015-01-06

Publications (1)

Publication Number Publication Date
WO2016072499A1 true WO2016072499A1 (ja) 2016-05-12

Family

ID=55909222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081343 WO2016072499A1 (ja) 2014-11-07 2015-11-06 タイヤ用ゴム組成物の製造方法およびタイヤ

Country Status (4)

Country Link
US (1) US10369843B2 (ja)
EP (1) EP3196233B8 (ja)
CN (1) CN107108908B (ja)
WO (1) WO2016072499A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107189120A (zh) * 2017-05-19 2017-09-22 浙江帝恒实业有限公司 一种抗裂纹生长的橡胶复合材料
JP2017222763A (ja) * 2016-06-14 2017-12-21 住友ゴム工業株式会社 タイヤ用ゴム組成物の製造方法及びタイヤ用ゴム組成物
JP2020002206A (ja) * 2018-06-26 2020-01-09 住友ゴム工業株式会社 ゴム組成物の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050548A1 (en) * 2017-09-11 2019-03-14 Compagnie Generale Des Etablissements Michelin TIRE RADIUS WITHOUT AIR
WO2019050547A1 (en) * 2017-09-11 2019-03-14 Compagnie Generale Des Etablissements Michelin RADIUS FOR NON-PNEUMATIC TIRES
JP7053089B2 (ja) * 2017-12-15 2022-04-12 株式会社ブリヂストン ゴム組成物、加硫ゴム及びタイヤ
WO2019116701A1 (ja) * 2017-12-15 2019-06-20 株式会社ブリヂストン ゴム組成物、加硫ゴム及びタイヤ
JP7398387B2 (ja) * 2018-11-16 2023-12-14 株式会社ブリヂストン ゴム組成物、加硫ゴム及びタイヤ
FR3090669A3 (fr) * 2018-12-21 2020-06-26 Michelin & Cie Pneumatique pourvu d'un flanc externe dont la composition comprend un dérivé de polyoxyde d’éthylène
US20220041013A1 (en) * 2018-12-21 2022-02-10 Compagnie Generale Des Etablissements Michelin Tire provided with an outer sidewall, the composition of which comprises a derivative of polyethylene oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263999A (ja) * 2004-03-18 2005-09-29 Toyo Tire & Rubber Co Ltd ゴム組成物の製造方法
JP2012140508A (ja) * 2010-12-28 2012-07-26 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物、その製造方法及び空気入りタイヤ
JP2012144619A (ja) * 2011-01-11 2012-08-02 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物の製造方法及び空気入りタイヤ
JP2012214617A (ja) * 2011-03-31 2012-11-08 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物の製造方法、タイヤ用ゴム組成物及び空気入りタイヤ
JP2015013974A (ja) * 2013-07-08 2015-01-22 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3514539B2 (ja) 1995-02-27 2004-03-31 住友ゴム工業株式会社 空気入りタイヤ
JP3865900B2 (ja) 1997-10-29 2007-01-10 住友ゴム工業株式会社 ゴム組成物
JP4977939B2 (ja) 2000-10-26 2012-07-18 Jsr株式会社 ゴム組成物及びその製造方法
US6740700B2 (en) 2000-10-26 2004-05-25 Jsr Corporation Rubber compositions and methods for producing the same
JP2007238803A (ja) 2006-03-09 2007-09-20 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物及びその製造方法
JP5507033B2 (ja) 2007-01-17 2014-05-28 株式会社ブリヂストン 空気入りタイヤ
RU2009135631A (ru) 2007-03-27 2011-03-27 Бриджстоун Корпорейшн (Jp) Способ получения резиновой смеси для беговой дорожки протектора
US20100190885A1 (en) * 2009-01-29 2010-07-29 Kuo-Chih Hua Tire with rubber component containing silica and use of combination of blocked and unblocked alkoxyorganomercaptosilane coupling agents
JP5587694B2 (ja) 2010-07-20 2014-09-10 住友ゴム工業株式会社 タイヤ用ゴム組成物、その製造方法及び空気入りタイヤ
WO2012043854A1 (ja) * 2010-10-01 2012-04-05 株式会社ブリヂストン ゴム組成物の製造方法
US9464174B2 (en) * 2010-10-01 2016-10-11 Bridgestone Corporation Method for manufacturing rubber composition
JP5563419B2 (ja) 2010-10-12 2014-07-30 住友ゴム工業株式会社 タイヤ用ゴム組成物、その製造方法及び空気入りタイヤ
IT1403425B1 (it) 2010-12-23 2013-10-17 Bridgestone Corp Metodo per la preparazione di una mescola per battistrada
TWI446138B (zh) * 2011-07-29 2014-07-21 Univ Nat Sun Yat Sen 風力發電之激磁式同步發電機系統的控制方法
US9099212B2 (en) * 2011-08-07 2015-08-04 Widetronix, Inc. Low volumetric density betavoltaic power device
JP5905112B2 (ja) * 2011-10-24 2016-04-20 ブリヂストン アメリカズ タイヤ オペレイションズ エルエルシー シリカ充填ゴム組成物およびその製造方法
JP5650690B2 (ja) * 2012-06-12 2015-01-07 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
DE102012213193B4 (de) * 2012-07-26 2023-09-14 Coretronic Corporation Anordnung von optischen halbleiterelementen
JP6018207B2 (ja) * 2012-08-03 2016-11-02 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP6023579B2 (ja) 2012-12-19 2016-11-09 株式会社ブリヂストン ゴム組成物の製造方法、ゴム組成物及びタイヤ
JP6118156B2 (ja) 2013-03-28 2017-04-19 住友ゴム工業株式会社 ベーストレッド用ゴム組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263999A (ja) * 2004-03-18 2005-09-29 Toyo Tire & Rubber Co Ltd ゴム組成物の製造方法
JP2012140508A (ja) * 2010-12-28 2012-07-26 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物、その製造方法及び空気入りタイヤ
JP2012144619A (ja) * 2011-01-11 2012-08-02 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物の製造方法及び空気入りタイヤ
JP2012214617A (ja) * 2011-03-31 2012-11-08 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物の製造方法、タイヤ用ゴム組成物及び空気入りタイヤ
JP2015013974A (ja) * 2013-07-08 2015-01-22 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196233A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222763A (ja) * 2016-06-14 2017-12-21 住友ゴム工業株式会社 タイヤ用ゴム組成物の製造方法及びタイヤ用ゴム組成物
CN107189120A (zh) * 2017-05-19 2017-09-22 浙江帝恒实业有限公司 一种抗裂纹生长的橡胶复合材料
JP2020002206A (ja) * 2018-06-26 2020-01-09 住友ゴム工業株式会社 ゴム組成物の製造方法
JP7099081B2 (ja) 2018-06-26 2022-07-12 住友ゴム工業株式会社 ゴム組成物の製造方法

Also Published As

Publication number Publication date
EP3196233B1 (en) 2019-07-24
CN107108908B (zh) 2020-05-15
EP3196233A4 (en) 2018-06-20
US20170225512A1 (en) 2017-08-10
EP3196233A1 (en) 2017-07-26
EP3196233B8 (en) 2019-09-11
CN107108908A (zh) 2017-08-29
US10369843B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
JP6352748B2 (ja) タイヤ
CN107108908B (zh) 轮胎用橡胶组合物的制备方法及轮胎
JP6434585B1 (ja) 空気入りタイヤ
CN108699298B (zh) 橡胶组合物和充气轮胎
JP7031599B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6362546B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP6482875B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP6539947B2 (ja) タイヤトレッド用ゴム組成物
JP6358965B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP6152397B2 (ja) ゴム組成物およびタイヤ
WO2018105230A1 (ja) ゴム組成物、及び空気入りタイヤ
JP6358968B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP5213369B2 (ja) スタッドレスタイヤのキャップトレッド用ゴム組成物およびスタッドレスタイヤ
JP6358964B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP6030104B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP6395615B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP5038040B2 (ja) タイヤのトレッド用ゴム組成物およびタイヤ
JP6358967B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP2016183218A (ja) ゴム組成物およびタイヤ
JP6525593B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP2018193478A (ja) タイヤ用ゴム組成物及びタイヤ
JP6395614B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP6358966B2 (ja) タイヤ用ゴム組成物の製造方法およびタイヤ
JP6170270B1 (ja) ゴム組成物、及び空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856571

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015856571

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE