WO2016070841A1 - 导向系统及导向方法 - Google Patents

导向系统及导向方法 Download PDF

Info

Publication number
WO2016070841A1
WO2016070841A1 PCT/CN2015/093983 CN2015093983W WO2016070841A1 WO 2016070841 A1 WO2016070841 A1 WO 2016070841A1 CN 2015093983 W CN2015093983 W CN 2015093983W WO 2016070841 A1 WO2016070841 A1 WO 2016070841A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill rod
guide
drill
drilling
drive mechanism
Prior art date
Application number
PCT/CN2015/093983
Other languages
English (en)
French (fr)
Inventor
任治国
付旭
Original Assignee
通用电气公司
任治国
付旭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通用电气公司, 任治国, 付旭 filed Critical 通用电气公司
Priority to US15/524,790 priority Critical patent/US10550643B2/en
Priority to RU2017116030A priority patent/RU2691034C2/ru
Priority to DE112015005063.9T priority patent/DE112015005063T5/de
Priority to CA2966942A priority patent/CA2966942A1/en
Publication of WO2016070841A1 publication Critical patent/WO2016070841A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/062Deflecting the direction of boreholes the tool shaft rotating inside a non-rotating guide travelling with the shaft
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling

Definitions

  • Embodiments of the present invention relate to a guide system and a corresponding guide method, and more particularly to a rotary guide system and a guide method for a drill apparatus including a drill pipe.
  • Rotary guiding technology is required for conventional directional wells, horizontal wells, branch wells, multi-bottom wells, and three-dimensional obstacle obstacle wells.
  • the push-by-guide system has a higher slope, but the wellbore trajectory is not smooth and the borehole wall is rough.
  • the directional guiding system is capable of forming a smoother wellbore trajectory and a relatively flat wellbore, but with a lower buildup slope.
  • the existing rotary guiding system has a small range of movement of the drill pipe and low guiding control precision.
  • the guiding effect of the existing rotary guiding system is greatly affected by the condition of the borehole wall, and the uneven wall of the well wall will increase the vibration, thereby making the wellbore trajectory more unsmooth.
  • the existing rotary guiding system has relatively low reliability, short life, and is easily invaded by impurities such as sand and gravel, thereby failing to operate normally and greatly increasing maintenance costs.
  • an aspect of the present invention provides a guiding system suitable for a drilling apparatus including a drill pipe, the guiding system comprising: a guiding ring and a guiding drive mechanism.
  • the guiding ring is sleeved on the drill rod of the drilling device, and an outer diameter thereof is substantially equal to an inner diameter of the drilled hole.
  • the guide drive mechanism is disposed between the guide ring and the drill rod for controlling radial displacement of the drill rod relative to a central axis of the bore during drilling.
  • the guiding drive mechanism comprises one or more sub-drive mechanisms for connecting the guide ring and the drill rod and driving the drill rod to move within the bore.
  • Each of the sub-drive mechanisms includes a length adjustable drive and a connector, the first end of the connector being rotatably coupled to the driver.
  • Another aspect of the present invention provides a drilling method including: first, drilling with a drilling device including a drill pipe, wherein a drill collar is mounted on a drill pipe of the drilling device, the guide ring The outer diameter is approximately equal to the inner diameter of the bore. Secondly, during the drilling process, the radial displacement of the drill rod relative to the central axis of the hole is controlled by a guiding drive mechanism disposed between the guide ring and the drill rod, thereby controlling the The direction of advancement of the drilling device.
  • the guide drive mechanism includes one or more sub-drive mechanisms, each sub-drive mechanism including a length adjustable drive and a connector rotatably coupled to the driver.
  • FIG. 1 is a schematic structural view of a guiding system according to an embodiment of the present invention.
  • Figure 2 is a schematic view of the guiding system shown in Figure 1 in a guided state
  • Figure 3 is a partial cross-sectional view of the guiding system shown in Figure 1;
  • Figure 4 is a cross-sectional view of the guiding system shown in Figure 1;
  • Figure 5 is a cross-sectional view of a guide system in accordance with another embodiment of the present invention.
  • Figure 6 is an exploded perspective view of the drive and connector of the guide system shown in Figure 1.
  • circuit or “circuitry” and “controller” and the like may include a single component or a collection of directly or indirectly connected by a plurality of active or passive components, such as one or more integrated circuit chips, to provide a corresponding description. The function.
  • the words “may”, “may” and “may” as used in the present invention indicate the possibility of occurrence of an event in certain circumstances; possess a particular attribute, feature or function; and/or by combining with a qualified verb Represents one or more capabilities, capabilities, or possibilities. Accordingly, the use of “may” indicates that the modified term is clearly appropriate, matchable, or suitable for the capabilities, functions, or uses shown; and that the modified term may or may not sometimes be considered in certain instances. Appropriate, not matching or inappropriate. For example, in some cases, a certain result or performance may be expected; in other cases, the result or performance may not occur. This distinction is reflected in the words that represent "may”.
  • the guide system provided by the present invention can be applied to a general drilling apparatus.
  • the drilling device usually comprises a drill pipe 2 and a drill bit 5 fixedly disposed at the end of the drill pipe 2.
  • the drill bit 5 rotates together with the drill pipe 2, and the target is subjected to rotational cutting to form a cylindrical hole in the target.
  • the rotary guide system 6 of the present invention includes a guide ring 1 and a guide drive mechanism 3.
  • the guide ring 1 is sleeved on the drill pipe 2 of the drilling device, and its outer diameter is substantially equal to the inner diameter of the drilled hole.
  • the guide drive mechanism 3 is disposed between the guide ring 1 and the drill rod 2 for controlling radial displacement of the drill rod 2 relative to a central axis of the bore during drilling.
  • the direction of advancement of the drill bit 5 can be controlled by the control of the radial displacement direction.
  • the degree of offset of the drill bit 5 can be controlled to obtain a desired build slope. The above two points are combined to finally get the desired well trajectory.
  • the outer diameter of the guide ring 1 is substantially equal to the inner diameter of the hole, and the central axis of the guide ring 1 substantially coincides with the central axis of the hole. This limits the direction of movement of the guide ring 1 which is substantially slidable only in the axial direction of the bore and does not move radially relative to the bore, thus the guide drive mechanism 3
  • the drill rod 2 is driven to move radially relative to the guide ring 1, the drill rod 2 is also moved radially relative to the bore.
  • FIG. 2 is a schematic view of the rotary guide system in a guided state, as seen from FIG. 2, the central axis 21 of the drill pipe 2 is offset from the central axis 8 of the hole, that is, the drill pipe 2 is opposite to the central axis of the hole 8 has a radial displacement S.
  • the drill bit 5 fixed to the end of the drill pipe 2 is also offset from the central axis 8 of the hole, biased toward the side 7 of the hole wall, and then the direction in which the drill bit 5 is biased will be biased toward it.
  • One side 7 is offset.
  • the larger the radial displacement S the larger the build slope.
  • the rotary guide system 6 is a closed loop control system, and the guide drive mechanism 3 can adjust the radial displacement S to the given based on a current radial displacement and a given value. value.
  • the guide drive mechanism 3 adjusts the radial displacement S based on a difference between the current radial displacement and the given value. Wherein the given value is determined by the required build slope.
  • the guide drive mechanism 3 includes one or more sub-drive mechanisms 30 disposed between the guide ring 1 and the drill rod 2 for connecting the guide ring 1 and the drill rod 2.
  • the guide ring 1 can rotate with the drill rod 2 about the central axis of the bore, but cannot slide axially relative to the drill rod 2.
  • each sub-drive mechanism 30 also drives the drill rod 2 to move within the guide ring 1.
  • each sub-drive mechanism 30 includes a driver 31 and a connector 32.
  • the length of the driver 31 can be adjusted.
  • the first end 321 of the connecting member 32 is rotatably coupled to the first end 311 of the driver 31.
  • the second end 322 of the connector 32 is coupled to the inner wall of the guide ring 1 and the second end 312 of the driver 31 is coupled to the drill rod 2. Further, as shown in FIG. 4, the second end 322 of the connecting member 32 is rotatably connected to the inner wall of the guiding ring 1 by a hinge 9, and a part of the driver 31 is fixedly connected with the drill rod 2. .
  • the positional relationship between the driver 31 and the connecting member 32 is not limited to the manner shown in FIG. 4.
  • the second end 322 of the connecting member 32 may be connected to the drill pipe 2.
  • the second end 312 of the driver 31 is connected to the inner wall of the guide ring 1.
  • the connecting member 32 is added to jointly control the drill rod 2, and both ends of the connecting member 32 are rotatably connected, for example, through the hinge. 9 is pivoted, which increases the radial movable range of the drill pipe 2 in the guide ring 1, thereby greatly improving the control accuracy of the guide drive mechanism 3 for the drill pipe 2.
  • the drill pipe 2 is not limited to a cylindrical shape, and in some embodiments, the outer surface of the drill pipe wall of the drill pipe 2 has a triangular cross section as shown in FIG.
  • Each of the drives 31 is mounted on a plane such that the driver 31 is easy to design and install, improving system stability.
  • the driver 31 can be a hydraulic actuator including a hydraulic cylinder 313 mounted to the drill pipe 2, and a piston rod 315.
  • One end of the piston rod 315 is disposed in the hydraulic cylinder 313, and the piston rod 315 is movable back and forth with respect to the hydraulic cylinder 313.
  • the hydraulic cylinder 313 is embedded in the drill pipe wall of the drill pipe 2, and the hydraulic cylinder 313 is installed along the tangential direction of the drill pipe 2. This can save a lot of space, and the hydraulic cylinder 313 is not easily invaded by impurities, which greatly improves the stability of the rotary guiding system.
  • the outer surface of the drill rod 2 has two drill rod slots 21.
  • the driver 31 further includes a connection support 33, two sliders 34 and at least two holders 35.
  • the connecting support 33 is fixed to an end of the piston rod 315 and disposed perpendicular to the piston rod 315.
  • the two sliders are respectively fixed to the two ends of the connecting support 33, and the two sliders are respectively disposed in the two drill rod slots 21, and are slidable in the drill rod groove 21.
  • At least one seat 35 is fixed to each of the sliders 34, and the first end 321 of the connecting member 32 is rotatably coupled to the holder 35.
  • each of the supports 35 has a through hole 351.
  • the first end 321 of the connecting member 32 also has a connecting member through hole 3211.
  • the first end 321 is disposed on the two supports. 35, and the support through hole 351 is in line with the center line of the connecting member through hole 3211, a pin passes through the support through hole 351 and the connecting member through hole 3211, so that The first end 321 is rotatably coupled to the support 35.
  • the piston rod 315 drives the movement of the first end 321 of the connecting member 32 in the direction of the drill rod groove 21 by the back and forth movement with respect to the hydraulic cylinder 313, while the connecting member 32 also surrounds the The holder 35 rotates to further change the relative position between the drill rod 2 and the guide ring 1.
  • the guide drive mechanism 3 may include two or more sub-drive mechanisms 30.
  • the guide drive mechanism 3 includes three sub-drive mechanisms 30.
  • the sub-drive mechanism 30 is evenly spaced around the drill pipe 2, so that the movable range of the drill pipe 2 can be evenly distributed, and the stability and reliability of the rotary guide system 6 can be improved.
  • the rotary guide system 6 further Includes two end caps 4.
  • the end caps 4 respectively cover the two axial end faces of the guide ring 1 , so that the service life of the guide drive mechanism 3 can be extended and the stability of the drill guide system 6 can be improved.
  • each end cap 4 is annular, and its outer diameter gradually decreases along its axial direction from one end adjacent to the guide ring 1 to one end away from the guide ring 1, the largest outer The diameter is smaller than the outer diameter of the guide ring 1.
  • the end cap 4 is integrally formed with the drill pipe wall of the drill pipe 2, which further improves design and manufacture and enhances system stability.
  • the outer surface of the guiding ring 1 has at least one guiding ring groove 11 for the mud to pass.
  • the guide ring groove 11 can be further designed in a spiral shape to further reduce the resistance of the mud flow so that the mud can pass through the guide ring 1 more quickly.
  • the drilling method includes drilling with a drilling device including a drill pipe 2, wherein the drill pipe 2 is sleeved with a guide ring 1 having an outer diameter and the hole The inner diameters are approximately equal.
  • the radial displacement S of the drill pipe 2 relative to the central axis of the hole is controlled by a guiding drive mechanism 3 disposed between the guide ring 1 and the drill rod 2, thereby The direction of advancement of the drilling device is controlled.
  • the guide ring 1 is cylindrical and has an axial length L, and the outer diameter of the guide ring 1 is substantially equal to the inner diameter of the hole, so that the drill During the hole, the outer surface of the guide ring 1 is in contact with the inner surface of the hole.
  • the guiding drive mechanism 3 in the embodiment of the present invention does not directly contact the hole wall, but acts on the hole wall indirectly through the guide ring 1. This can improve the problem of jamming, vibration, etc. caused by the uneven wall of the hole, and greatly improve the problem. Guiding effect.
  • the drill rod 2 is controlled relative to the bore
  • the step of radial displacement S of the mandrel includes adjusting the length of each of the drives 31 to drive the drill rod 2 to move within the bore in a different direction than the direction of the bore.
  • the three actuators 31 may be hydraulic actuators, and the length of each hydraulic actuator is adjusted by adjusting the position of the piston rod 315 in the hydraulic actuator relative to the hydraulic cylinder 313, and then the respective hydraulic actuators cooperate with the drill rod 2, Push the drill rod along the preset trajectory to the desired position.
  • each sub-drive mechanism 30 rotates with the drill rod 2 while the length of each sub-drive mechanism 30 is constantly changing, so that the drill rod 2 is in the guide ring 1 along a predetermined trajectory. Movement or maintaining the relative position of the drill pipe 2 in the guide ring 1.
  • the step of controlling the radial displacement S includes the following steps. First, a current radial displacement and a given value are accepted; secondly, a difference between the current radial displacement and the given value is calculated; and then, according to the difference, the guiding drive mechanism 3 adjusts the position The radial displacement S is described until the radial displacement S is equal to the given value.

Abstract

一种导向系统和钻孔方法,适用于包括钻杆(2)的钻孔装置,该导向系统包括:一导向环(1),套设于所述钻孔装置的所述钻杆(2)上,其外径与所钻的孔的内径大致相等;及一导向驱动机构(3),设置于所述导向环(1)和所述钻杆(2)之间,用于在钻孔过程中控制所述钻杆(2)相对于所述孔的中心轴的径向位移,该导向驱动机构(3)包括一个或多个子驱动机构(30),用于连接所述导向环(1)与所述钻杆(2),且驱动所述钻杆(2)在所述孔内移动,其中,每个子驱动机构(30)包括一个长度可调节的驱动器(31)及一个连接件(32),其第一端可旋转地连接于所述驱动器(31),另一端可旋转地连接于所述导向环(1)。

Description

导向系统及导向方法 技术领域
本发明公开的实施方式涉及一种导向系统及相对应的导向方法,尤其是适用于包含钻杆的钻孔装置的旋转导向系统及导向方法。
背景技术
在油气井钻探中,由于受到地面客观条件限制、地下油层分布等诸多因素的影响,需要对钻井方向进行改变和控制,使之沿一预设的轨迹前进,顺利钻达油气层,实现产油产气的目的。如常规定向井、水平井、分支井、多底井、三维绕障碍井等都需要用到旋转导向技术。
近年来,随着石油、天然气行业的发展,油气勘探和开采方面的需求日益增加,因而对旋转导向系统提出了更高的要求。
传统的旋转导向系统可分为两种类型:推靠式导向系统和指向式导向系统。推靠式导向系统造斜率较高,但井眼轨迹不平滑,井壁也较为粗糙。指向式导向系统能够形成较为平滑的井眼轨迹和较为平整的井壁,但是造斜率较低。
现有的旋转导向系统钻杆活动范围小,导向控制精度低。
现有的旋转导向系统的导向效果受井壁条件影响较大,不平整的井壁会使震动增大,进而使井眼轨迹变得更不平滑。
另外,现有的旋转导向系统可靠性比较低,寿命比较短,容易受到砂石等杂质的侵扰,从而无法正常运行,也大大增加了维护成本。
因此,有必要提供一种适用于钻孔装置的新的旋转导向系统及导向方法来解决上述技术问题。
发明内容
鉴于上面提及的技术问题,本发明一方面提供一种导向系统,适用于包括钻杆的钻孔装置,该导向系统包括:一导向环及一导向驱动机构。该导向环套设于所述钻孔装置的所述钻杆上,其外径与所钻的孔的内径大致相等。 该导向驱动机构设置于所述导向环和所述钻杆之间,用于在钻孔过程中控制所述钻杆相对于所述孔的中心轴的径向位移。其中,所述导向驱动机构包括一个或多个子驱动机构,用于连接所述导向环与所述钻杆,且驱动所述钻杆在所述孔内移动。每个子驱动机构包括一个长度可调节的驱动器及一个连接件,该连接件的第一端可旋转连接于所述驱动器。
本发明的另一个方面在于提供一种钻孔方法,包括:首先,用一包括钻杆的钻孔装置钻孔,其中,所述钻孔装置的钻杆上安装有一导向环,该导向环的外径与所述孔的内径大致相等。其次,在钻孔过程中,通过设置于所述导向环和所述钻杆之间的一导向驱动机构来控制所述钻杆相对于所述孔的中心轴的径向位移,进而控制所述钻孔装置的前进方向。所述导向驱动机构包括一个或多个子驱动机构,每个子驱动机构包括一个长度可调节的驱动器及一个连接件,所述连接件可旋转连接于所述驱动器。
附图说明
通过结合附图对于本发明的实施方式进行描述,可以更好地理解本发明,在附图中:
图1为根据本发明的一具体实施例的导向系统的结构示意图;
图2为图1所示的所述导向系统在导向状态下的示意图;
图3为图1所示的所述导向系统的局部剖视图;
图4为图1所示的所述导向系统的截面图;及
图5为根据本发明的另一具体实施例的导向系统的截面图。
图6为图1所示的所述导向系统的驱动器和连接件的分解示意图。
具体实施方式
以下将描述本发明的一个或者多个具体实施方式。首先要指出的是,在这些实施方式的具体描述过程中,为了进行简明扼要的描述,本说明书不可能对实际的实施方式的所有特征均作详尽的描述。应当可以理解的是,在任意一种实施方式的实际实施过程中,正如在任意一个工程项目或者设计项目的过程中,为了实现开发者的具体目标,或者为了满足系统相关的或者商业相关的限制,常常会做出各种各样的具体决策,而这也会从一种实施方式到另一种实施方式之间发生改变。此外,还可以理解的是,虽然这种开发过程 中所作出的努力可能是复杂并且冗长的,然而对于与本发明公开的内容相关的本领域的普通技术人员而言,在本公开揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本发明公开的内容不充分。
除非另作定义,在本说明书和权利要求书中使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本说明书以及权利要求书中使用的“第一”或者“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“或者”包括所列举的项目中的任意一者或者全部。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。此外,“电路”或者“电路系统”以及“控制器”等可以包括单一组件或者由多个主动元件或者被动元件直接或者间接相连的集合,例如一个或者多个集成电路芯片,以提供所对应描述的功能。
本发明中使用的“可”、“可以”与“可能”等词语表明在某些环境中事件发生的可能性;拥有一种特定属性、特征或功能;和/或通过与某一合格动词结合表示一个或多个能力、性能或可能性。相应地,“可能”的使用表明:被修饰的术语对于所示的能力、功能或用途是明显适当、可匹配或合适的;同时考虑到在某些情况的存在,被修饰的术语有时可能不适当,不匹配或不合适。例如,在某些情况下,可能预期出现某一结果或性能;而在其他情况下,该结果或性能可能不出现。这一区别由表示“可能”的词语体现。
参见图1,本发明提供的导向系统可适用于一般的钻孔装置。钻孔装置通常包括一钻杆2及一钻头5,该钻头5固定设置于钻杆2的端部。在钻孔过程中,所述钻头5随钻杆2一起旋转,对目标物进行旋转切削,从而在目标物上形成圆柱形的孔洞。
参见图1和图4,本发明提供的旋转导向系统6包括一导向环1及一导向驱动机构3。所述导向环1套设于钻孔装置的钻杆2上,其外径与所钻的孔的内径大致相等。所述导向驱动机构3,设置于所述导向环1和所述钻杆2之间,用于在钻孔过程中控制所述钻杆2相对于所述孔的中心轴的径向位移。 通过对于所述径向位移方向的控制,可以控制所述钻头5的前进方向。通过对于所述径向位移大小的控制,可以控制所述钻头5的偏移程度,从而获得想要的造斜率。以上两点综合起来,可最终得到想要的井眼轨迹。
参见图1,所述导向环1的外径与所述孔的内径大致相等,所述导向环1的中心轴与所述孔的中心轴大致重合。这样限制了所述导向环1的运动方向,所述导向环1基本上只能沿所述孔的轴向滑动,而无法在径向上与所述孔产生相对运动,因而当所述导向驱动机构3驱动所述钻杆2相对于所述导向环1做径向运动时,钻杆2也相对于所述孔做径向运动。
图2为所述旋转导向系统在导向状态下的示意图,由图2可见,所述钻杆2的中心轴21偏离于孔中心轴8,即:所述钻杆2相对于所述孔中心轴8有一径向位移S。此时,固定于所述钻杆2端部的所述钻头5也偏离于所述孔中心轴8,偏向孔壁的一侧7,然后,所述钻头5的前进方向将向其偏向的这一侧7偏移。所述径向位移S越大,造斜率也就越大。
在一些实施例中,所述旋转导向系统6为一闭环控制系统,所述导向驱动机构3可基于一当前径向位移及一给定值,将所述径向位移S调节至所述给定值。优选地,所述导向驱动机构3基于所述当前径向位移与所述给定值的差值来调节所述径向位移S。其中,所述给定值由所需要的造斜率决定。
参见图4,所述导向驱动机构3包括一个或多个子驱动机构30,设置于所述导向环1与所述钻杆2之间,用于连接所述导向环1与所述钻杆2。在一些实施例中,所述导向环1可随所述钻杆2一起绕所述孔的中心轴旋转,但不能相对所述钻杆2沿轴向滑动。
所述子驱动机构30还驱动所述钻杆2在所述导向环1内移动。参见图4,每个子驱动机构30包括一个驱动器31及一个连接件32。所述驱动器31的长度可调节。所述连接件32的第一端321可旋转连接于所述驱动器31的第一端311。
在一些实施例中,所述连接件32的第二端322与所述导向环1的内壁连接,所述驱动器31的第二端312与所述钻杆2连接。进一步的,如图4所示,所述连接件32的第二端322通过铰链9可旋转地连接于所述导向环1的内壁上,所述驱动器31有一部分与所述钻杆2固定连接。
另外,所述驱动器31与所述连接件32的位置关系不限于图4中表现的方式,在另一些实施例中,可将所述连接件32的第二端322与所述钻杆2连 接,将所述驱动器31的第二端312与所述导向环1的内壁连接。
本实施例在所述驱动器31的基础上,增加了所述连接件32对所述钻杆2进行联合控制,且所述连接件32的两端均为可旋转连接,例如,通过所述铰链9进行枢接,这样增大了所述钻杆2在所述导向环1中的径向可移动范围,从而大大提高了所述导向驱动机构3对于所述钻杆2的控制精度。
所述钻杆2不限于圆柱形,在一些实施例中,所述钻杆2的钻杆壁的外表面具有一三角形的横截面,如图4所示。每个所述驱动器31安装于一平面上,这样所述驱动器31易于设计安装,提高了系统稳定性。
参见图5,在一些实施例中,所述驱动器31可以为一液压驱动器,包括一安装于所述钻杆2上的液压缸313,及一活塞杆315。所述活塞杆315的一端设置于所述液压缸313内,且活塞杆315可相对于所述液压缸313来回移动。
进一步地,如图5所示,所述液压缸313嵌于所述钻杆2的钻杆壁中,且所述液压缸313沿所述钻杆2的切向安装。这样能够大大节省空间,且液压缸313不易受到杂质侵扰,大大提高了旋转导向系统的稳定性。
参见图3和图6,在一些实施例中,所述钻杆2的外表面具有两条钻杆槽21。所述驱动器31进一步包括一连接支撑件33,两个滑块34及至少两个支座35。所述连接支撑件33固定于所述活塞杆315的端部,与所述活塞杆315垂直设置。所述两个滑块分别固定于所述连接支撑件33的两端,且所述两个滑块分别设置于所述两条钻杆槽21中,能够在所述钻杆槽21中滑动。每个滑块34上至少固定有一支座35,所述连接件32的第一端321可旋转连接于所述支座35。
在一些实施例中,如图3和图6所示,每个滑块34上固定有两个支座35,以增强连接的稳定性。每个所述支座35上具有一支座通孔351,所述连接件32的第一端321上也具有一连接件通孔3211,所述第一端321设置于所述两个支座35之间,且所述支座通孔351与所述连接件通孔3211的中心线位于一直线上,一销钉穿过所述支座通孔351和所述连接件通孔3211,这样,所述第一端321与所述支座35可旋转连接。所述活塞杆315通过相对于所述液压缸313的来回运动,驱动所述连接件32的第一端321沿所述钻杆槽21方向的运动,同时,所述连接件32也绕所述支座35转动,从而进一步改变所述钻杆2与所述导向环1之间的相对位置。
所述导向驱动机构3可包括两个或两个以上的子驱动机构30。比如,在如图4和图5所示的实施例中,所述导向驱动机构3包括三个子驱动机构30。所述子驱动机构30绕所述钻杆2间隔均匀地排布,这样能够使所述钻杆2的可移动范围均衡分布,提高旋转导向系统6稳定性及可靠性。
参见图1和图4,为了防止钻孔过程中产生砂石等杂质进入导向环1,进而影响导向环1中导向驱动机构3的正常工作,在一些实施例中,所述旋转导向系统6进一步包括两个端盖4。所述端盖4分别覆盖所述导向环1的两个轴向端面,这样能够延长所述导向驱动机构3的使用寿命,提高所述钻孔导向系统6的稳定性。
进一步地,如图1所示,每个端盖4均为环形,其外径沿其轴向从靠近所述导向环1的一端至远离所述导向环1的一端逐渐减小,其最大外径小于所述导向环1的外径。这样的设计能够大大减小导向环1在所述孔中的滑动阻力,使其能够更流畅地在所述孔中滑动。
在一些实施例中,如图3所示,所述端盖4与所述钻杆2的钻杆壁设置成一体,这样能够进一步改善设计与制造,增强系统的稳定性。
为了使钻孔过程中的泥浆顺利通过所述旋转导向系统6,在一些实施例中,如图1所示,所述导向环1的外表面上至少具有一条导向环槽11,以使泥浆通过。所述导向环槽11可进一步设计成螺旋线型,以进一步减小泥浆流动的阻力,使得泥浆可以更快速的通过所述导向环1。
本发明的另一方面还涉及一种使用了旋转导向系统的钻孔方法。在一些实施例中,所述钻孔方法包括用一包括钻杆2的钻孔装置钻孔,其中,该钻杆2上套设有一导向环1,该导向环1的外径与所述孔的内径大致相等。在钻孔过程中,通过设置于所述导向环1和所述钻杆2之间的一导向驱动机构3来控制所述钻杆2相对于所述孔的中心轴的径向位移S,进而控制所述钻孔装置的前进方向。
参见图1、图3和图4,所述导向环1成圆筒状,具有一轴向长度L,且所述导向环1的外径与所述孔的内径大致相等,所以在所述钻孔过程中,所述导向环1的外表面与所述孔的内表面接触。本发明实施例中的导向驱动机构3不直接与孔壁接触,而是通过导向环1间接地作用于孔壁,这样能够改善由于孔壁不平滑而造成的卡顿、震动等问题,大大提高导向效果。
参见图2和图5,在一些实施例中,控制所述钻杆2相对于所述孔的中 心轴的径向位移S的步骤包括调节每个驱动器31的长度,从而驱动所述钻杆2沿一与钻孔方向不同的方向在所述孔内移动。所述三个驱动器31可以为液压驱动器,通过调节液压驱动器中活塞杆315相对于液压缸313的位置来调节每个液压驱动器的长度,继而所述各个液压驱动器共同作用于所述钻杆2,推动钻杆沿预设的轨迹运动至想要的位置。
在钻孔过程中,各个子驱动机构30随所述钻杆2一起旋转,同时各子驱动机构30的长度不断变化,以使所述钻杆2沿预设的轨迹在所述导向环1中运动,或者保持所述钻杆2在所述导向环1中的相对位置。
控制所述径向位移S的步骤包括如下步骤。首先,接受一当前径向位移及一给定值;其次,计算所述当前径向位移与所述给定值的差值;然后,根据所述差值,通过所述导向驱动机构3调节所述径向位移S,直至所述径向位移S等于所述给定值。
虽然结合特定的实施方式对本发明进行了说明,但本领域的技术人员可以理解,对本发明可以作出许多修改和变型。因此,要认识到,权利要求书的意图在于涵盖在本发明真正构思和范围内的所有这些修改和变型。

Claims (10)

  1. 一种导向系统,适用于包括钻杆的钻孔装置,该导向系统包括:
    一导向环,套设于所述钻孔装置的所述钻杆上,其外径与所钻的孔的内径大致相等;及
    一导向驱动机构,设置于所述导向环和所述钻杆之间,用于在钻孔过程中控制所述钻杆相对于所述孔的中心轴的径向位移,该导向驱动机构包括一个或多个子驱动机构,用于连接所述导向环与所述钻杆,且驱动所述钻杆在所述孔内移动,其中,每个子驱动机构包括一个长度可调节的驱动器及一个连接件,其第一端可旋转地连接于所述驱动器。
  2. 如权利要求1所述的导向系统,其中,所述驱动器的一部分与所述钻杆固定连接,所述连接件的第二端可旋转地连接于所述导向环。
  3. 如权利要求1所述的导向系统,其中,所述驱动器包括一液压缸及一活塞杆,所述液压缸安装于所述钻杆上,所述活塞杆一端设置于所述液压缸内,该活塞杆可相对于液压缸移动。
  4. 如权利要求3所述的导向系统,其中,所述钻杆的外表面具有两条钻杆槽;所述驱动器进一步包括一连接支撑件,固定于所述活塞杆的端部,与所述活塞杆垂直设置;两个滑块,分别固定于所述连接支撑件的两端,且所述两个滑块分别设置于所述两条钻杆槽中,能够在所述钻杆槽中滑动;及至少两个支座,每个滑块上至少固定有一支座,所述连接件的第一端可旋转连接于所述支座。
  5. 如权利要求1所述的导向系统,其中,所述导向环的外表面上至少具有一条导向环槽,用于使泥浆通过。
  6. 如权利要求1所述的导向系统,其中,所述导向驱动机构可基于一当前径向位移及一给定值,将所述径向位移调节至所述给定值。
  7. 如权利要求1所述的导向系统,进一步包括两个端盖,用于分别覆盖所述导向环的两个轴向端面。
  8. 如权利要求1所述的转向系统,其中,所述转向驱动器包括三个子驱动器,所述子驱动器绕所述钻杆间隔均匀地排布。
  9. 一种钻孔方法,包括:
    用一包括钻杆的钻孔装置钻孔,其中,所述钻孔装置的钻杆上安装有一导向环,该导向环的外径与所述孔的内径大致相等;及
    在钻孔过程中,通过设置于所述导向环和所述钻杆之间的一导向驱动机构来控制所述钻杆相对于所述孔的中心轴的径向位移,进而控制所述钻孔装置的前进方向,其中,所述导向驱动机构包括一个或多个子驱动机构,每个子驱动机构包括一个长度可调节的驱动器及一个连接件,所述连接件可旋转连接于所述驱动器。
  10. 如权利要求9所述的钻孔方法,其中,控制所述钻孔装置的前进方向的步骤包括调节每个驱动器的长度,从而驱动所述钻杆在所述孔内沿一个与钻孔方向不同的方向移动。
PCT/CN2015/093983 2014-11-06 2015-11-06 导向系统及导向方法 WO2016070841A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/524,790 US10550643B2 (en) 2014-11-06 2015-11-06 Steering system and method
RU2017116030A RU2691034C2 (ru) 2014-11-06 2015-11-06 Система и способ управления направлением бурения
DE112015005063.9T DE112015005063T5 (de) 2014-11-06 2015-11-06 Steuersystem und Steuerverfahren
CA2966942A CA2966942A1 (en) 2014-11-06 2015-11-06 Steering system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410620893.X 2014-11-06
CN201410620893.XA CN105625968B (zh) 2014-11-06 2014-11-06 导向系统及导向方法

Publications (1)

Publication Number Publication Date
WO2016070841A1 true WO2016070841A1 (zh) 2016-05-12

Family

ID=55908616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093983 WO2016070841A1 (zh) 2014-11-06 2015-11-06 导向系统及导向方法

Country Status (6)

Country Link
US (1) US10550643B2 (zh)
CN (1) CN105625968B (zh)
CA (1) CA2966942A1 (zh)
DE (1) DE112015005063T5 (zh)
RU (1) RU2691034C2 (zh)
WO (1) WO2016070841A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963084B (zh) * 2020-10-26 2021-03-16 胡森 一种用于石油开采的钻管导向装置
CN112681993B (zh) * 2020-12-30 2023-11-14 山东兖能泰德重工有限公司 导向头
CN113294138B (zh) * 2021-06-03 2022-08-16 中铁第五勘察设计院集团有限公司 全套管全回转钻机装置
CN114135229B (zh) * 2021-12-02 2023-06-09 山东科技大学 一种无开挖电缆保护管道自动放置支护装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070144730A1 (en) * 2002-07-29 2007-06-28 David Shahin Flush mounted spider
US20100270033A1 (en) * 2007-08-28 2010-10-28 Frank's Casing Crew And Rental Tools, Inc. Tubular guiding and gripping apparatus and method
CA2834863A1 (en) * 2011-05-01 2012-11-08 Frank's Casing Crew And Rental Tools, Inc. Floating spider
CN203452689U (zh) * 2013-08-31 2014-02-26 四川宏华石油设备有限公司 钻井管具对中装置
CN104060954A (zh) * 2014-05-28 2014-09-24 中国石油集团渤海石油装备制造有限公司 一种液压管具对中机构

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129776A (en) * 1960-03-16 1964-04-21 William L Mann Full bore deflection drilling apparatus
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
SU1016469A1 (ru) * 1981-03-18 1983-05-07 Центральная Экспедиция Всесоюзного Геологоразведочного Объединения Министерства Геологии Ссср Отклонитель дл направленного бурени скважин
GB9503829D0 (en) 1995-02-25 1995-04-19 Camco Drilling Group Ltd "Improvememnts in or relating to steerable rotary drilling systems"
GB9503830D0 (en) 1995-02-25 1995-04-19 Camco Drilling Group Ltd "Improvements in or relating to steerable rotary drilling systems"
GB9503827D0 (en) 1995-02-25 1995-04-19 Camco Drilling Group Ltd "Improvements in or relating to steerable rotary drilling systems
IN188195B (zh) * 1995-05-19 2002-08-31 Validus Internat Company L L C
US6296066B1 (en) * 1997-10-27 2001-10-02 Halliburton Energy Services, Inc. Well system
US6269892B1 (en) 1998-12-21 2001-08-07 Dresser Industries, Inc. Steerable drilling system and method
US7136795B2 (en) 1999-11-10 2006-11-14 Schlumberger Technology Corporation Control method for use with a steerable drilling system
US6808027B2 (en) * 2001-06-11 2004-10-26 Rst (Bvi), Inc. Wellbore directional steering tool
GB2422388B (en) 2005-01-20 2010-05-12 Schlumberger Holdings Bi-directional rotary steerable system actuator assembly and method
GB2424232B (en) 2005-03-18 2010-03-31 Schlumberger Holdings Steerable drilling system
US8827006B2 (en) 2005-05-12 2014-09-09 Schlumberger Technology Corporation Apparatus and method for measuring while drilling
US7631707B2 (en) 2006-03-29 2009-12-15 Cyrus Solutions Corporation Shape memory alloy actuated steerable drilling tool
US8590636B2 (en) 2006-04-28 2013-11-26 Schlumberger Technology Corporation Rotary steerable drilling system
GB0610814D0 (en) * 2006-06-01 2006-07-12 Geolink Uk Ltd Rotary steerable drilling tool
RU2360094C2 (ru) * 2007-03-05 2009-06-27 Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" Самоориентирующийся забойный отклонитель
NO334262B1 (no) 2007-06-20 2014-01-20 2TD Drilling AS Anordning ved apparat for retningsstyring av boreverktøy
GB2450498A (en) * 2007-06-26 2008-12-31 Schlumberger Holdings Battery powered rotary steerable drilling system
US20090133931A1 (en) * 2007-11-27 2009-05-28 Schlumberger Technology Corporation Method and apparatus for hydraulic steering of downhole rotary drilling systems
US8905159B2 (en) * 2009-12-15 2014-12-09 Schlumberger Technology Corporation Eccentric steering device and methods of directional drilling
US9145736B2 (en) 2010-07-21 2015-09-29 Baker Hughes Incorporated Tilted bit rotary steerable drilling system
CN201943580U (zh) * 2011-01-25 2011-08-24 陈林 机械式导向钻具
CN202451054U (zh) * 2011-10-08 2012-09-26 扬州市驰城石油机械有限公司 旋转钻井导向器
US9057223B2 (en) 2012-06-21 2015-06-16 Schlumberger Technology Corporation Directional drilling system
CN103334697B (zh) * 2013-07-24 2014-07-23 西南石油大学 钻具的旋转导向装置和钻具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070144730A1 (en) * 2002-07-29 2007-06-28 David Shahin Flush mounted spider
US20100270033A1 (en) * 2007-08-28 2010-10-28 Frank's Casing Crew And Rental Tools, Inc. Tubular guiding and gripping apparatus and method
CA2834863A1 (en) * 2011-05-01 2012-11-08 Frank's Casing Crew And Rental Tools, Inc. Floating spider
CN203452689U (zh) * 2013-08-31 2014-02-26 四川宏华石油设备有限公司 钻井管具对中装置
CN104060954A (zh) * 2014-05-28 2014-09-24 中国石油集团渤海石油装备制造有限公司 一种液压管具对中机构

Also Published As

Publication number Publication date
US10550643B2 (en) 2020-02-04
US20170350191A1 (en) 2017-12-07
RU2017116030A (ru) 2018-12-06
DE112015005063T5 (de) 2017-07-27
CN105625968A (zh) 2016-06-01
CA2966942A1 (en) 2016-05-12
RU2691034C2 (ru) 2019-06-07
RU2017116030A3 (zh) 2019-03-25
CN105625968B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2016070841A1 (zh) 导向系统及导向方法
US10837235B2 (en) Hybrid rotary guiding device
US10745996B2 (en) Circulation valve
EP3060740B1 (en) Multi-angle rotary steerable drilling
US8919458B2 (en) System and method for drilling a deviated wellbore
WO2019095527A1 (zh) 一种旋转导向装置
CN108278082B (zh) 具有主动型稳定器的旋转导向钻井系统
US9328563B2 (en) Adjustable diameter underreamer and methods of use
US6290002B1 (en) Pneumatic hammer drilling assembly for use in directional drilling
CN110637143A (zh) 转向系统和方法
CN110671044A (zh) 定向钻井系统和方法
EP2321488B1 (en) Tilted drive sub
EP3568563B1 (en) Auto-adjusttable directional drilling apparatus and method
US10954725B2 (en) Multiple position drilling stabilizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2966942

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15524790

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005063

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2017116030

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15857229

Country of ref document: EP

Kind code of ref document: A1