WO2016070754A1 - 生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法 - Google Patents

生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法 Download PDF

Info

Publication number
WO2016070754A1
WO2016070754A1 PCT/CN2015/093318 CN2015093318W WO2016070754A1 WO 2016070754 A1 WO2016070754 A1 WO 2016070754A1 CN 2015093318 W CN2015093318 W CN 2015093318W WO 2016070754 A1 WO2016070754 A1 WO 2016070754A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
mixed solution
solution
quartz sand
injected
Prior art date
Application number
PCT/CN2015/093318
Other languages
English (en)
French (fr)
Inventor
钱春香
於孝牛
薛彬
王欣
Original Assignee
钱春香
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钱春香 filed Critical 钱春香
Publication of WO2016070754A1 publication Critical patent/WO2016070754A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders

Definitions

  • the invention relates to a method for consolidating loose sand particles by a biophosphate and carbonate composite cementing material, and belongs to the technical field of foundation reinforcement.
  • Portland cement is the most commonly used cementitious material in the construction field and an important part of the building materials industry.
  • the main component of the cement is limestone containing a large amount of calcium carbonate.
  • the fossil fuel is consumed in the production process to heat the limestone. During the heating process, the limestone will decompose and release the greenhouse gas carbon dioxide (CO 2 ). Therefore, both fuel combustion and carbonate decomposition release CO 2 .
  • CO 2 greenhouse gas carbon dioxide
  • the comprehensive energy consumption is about 113.5kgce and about 0.8 tons of CO 2 gas is consumed. If the concentration of CO 2 in the atmosphere is doubled, the ambient temperature may increase by 1.5-4.5 °C. , resulting in a serious greenhouse effect that will increase global warming.
  • the gas emissions from cement production further comprises SO 2 and NO x and other harmful gases, have a serious impact on the ecological system.
  • Microbial-induced calcite deposition (MICP) cemented loose particles have been extensively studied. This method releases harmful gas ammonia during the cementation process and has a negative impact on the environment. Microbial-induced calcite In the cementation process, urease in the bacterial solution hydrolyzes urea to produce ammonia and carbonate, and in the presence of different calcium sources, the bacteria are used as nucleation sites for calcite deposition. Microbial-induced calcite formation between the sand particles and the pore throat significantly improves the mechanical properties between the loose particles. Based on the above properties, microbial induced deposition of calcite, microbial cement, has been studied for soil reinforcement, liquefaction resistance, and loosely cemented sand.
  • MICP Because MICP releases a large amount of ammonia gas and forms an ammonium ion solution during the cementation process, which causes damage to the environment, it needs to be processed in actual engineering, so it requires a lot of capital investment, which is not conducive to large-scale application. Therefore, scientists are working hard to develop green gelling materials, which are energy-saving, environmentally polluting or non-polluting, and have excellent durability. Some cementing materials not only have no carbon emissions, but also some carbon negative. The gelling material absorbs carbon from the air.
  • the object of the present invention is to provide a method for consolidating loose sand particles with a biophosphate and carbonate composite cementing material, which is different from a method for microbial-induced calcite deposition of a cemented quartz sand column, which is capable of effectively removing a large amount of ammonia gas. It is transformed into an environmentally friendly material, struvite, easy to operate and avoids waste of resources.
  • the method for consolidating loose sand particles by the biophosphate and carbonate composite gelling material of the present invention is:
  • Two-stage quartz sand with a particle size of 150 ⁇ m or less and 150-300 ⁇ m is prepared according to the Fuller packing method of Fuller, and then loaded into a mold with a cushion and filter sand;
  • the phosphate liquid prepared in the first step and the mixed solution prepared in the second step are respectively injected into the prepared quartz sand mold by a peristaltic pump at a ratio of 1:1 by volume, and the flow rate of the phosphate liquid is controlled to be 8 ⁇ . 16ml / min, mixed solution flow rate of 6 ⁇ 10ml / min, continuous injection, until the phosphate bacteria solution and mixed solution can not be injected;
  • the sample tape mold can be placed in an oven for 10 to 15 days until the sample can not be injected with the phosphate liquid solution and the mixed solution, and the corresponding quartz sand column is obtained by demoulding.
  • the medium is obtained by adding 4 to 6 g of soy peptone per liter of the medium and 14 to 16 g of casein, and the pH of the medium solution is 6.8 to 7.2.
  • the injection method includes: the phosphate liquid is injected into the quartz sand mold from bottom to top, and immediately after filling, the mixed solution is injected from bottom to top, and after being filled, it is allowed to stand at 28 to 32 ° C for 1 to 2 hours, and then injected.
  • the phosphate bacteria solution is alternately cycled until the phosphate bacteria solution and the mixed solution cannot be injected.
  • Fig.1 is an energy spectrum analysis diagram of a quartz sand column consolidated with a biophosphate and carbonate composite cementitious material
  • Figure 3 is an SEM image of a quartz sand column consolidated with a biophosphate and carbonate composite cementitious material
  • Figure 4 is a rendering of a cemented quartz sand column of biophosphate and carbonate composite cementitious materials.
  • the invention relates to a method for consolidating loose sand particles by a biophosphate and carbonate composite cementing material, and injecting two to three generations of Bacillus licheniformis strain into soy peptone and casein mash medium to obtain three to four generations of bar Bacillus licheniformis solution; then a certain amount of K 2 HPO 4 solid is completely dissolved in the B.
  • baumannii solution to form a phosphate bacterial solution
  • two grades of quartz sand with a particle size of 150 ⁇ m or less and 150-300 ⁇ m are prepared according to the Fuller packing method of Fuller, and then loaded into a mold with a cushion and filter sand; the phosphate liquid and the mixed solution are mixed
  • the peristaltic pump is injected into the prepared quartz sand mold to control the flow rate of the phosphate solution to 8-16 ml/min, and the flow rate of the mixed solution is 6-10 ml/min, which is continuously injected until it can not be injected.
  • Phosphate solution and mixed solution until the sample can not be injected into the phosphate solution and the mixed solution is placed in an oven at 45 ° C for 10 to 15 days, and the corresponding quartz sand column is obtained by demoulding.
  • urease produced by Bacillus pasteurii is capable of hydrolyzing the substrate urea, obtaining carbonate ions and releasing ammonia gas, and using the bacteria as a nucleation site for mineral deposition in the presence of excess magnesium source.
  • Microbial induced carbonate and struvite are formed between the sand particles and the pore throat, which can significantly improve the mechanical properties between the loose particles.
  • microbial induced deposition of calcite, microbial cement has been studied for soil reinforcement, liquefaction resistance, and loosely cemented sand. Therefore, the following reaction formula can be used to express the formation process of the composite cementitious material:
  • the energy spectrum analysis of the sand column after cementation was carried out, and the results are shown in Fig. 1.
  • the results show that the energy spectrum of the sand column after cementation shows that the compound contains elements such as C, N, O, P, Mg, Cl and K.
  • Further analysis of the sand column after cementation by XRD diffraction revealed that the diffraction peak of the sand column showed that the main components of the crystalline compound were quartz sand, magnesium carbonate trihydrate and struvite (Fig. 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法,步骤为:将二至三代的巴氏芽胞杆菌菌株接种到大豆蛋白胨、酪蛋白胨培养基中,得到三至四代的巴氏芽胞杆菌菌液;然后将K 2HPO 4固体完全溶解在巴氏芽胞杆菌菌液中,形成磷酸盐菌液;配置1mol/L尿素和2 mol/L无水MgCl 2的混合溶液;按富勒最紧密堆积方法配制两级配为150μm以下和150~300μm粒径的石英砂,然后装入带有缓冲垫和过滤砂的模具中;将磷酸盐菌液和混合溶液按体积比1:1的比例通过蠕动泵分别注入配制好的石英砂模具中,直至不能注入磷酸盐菌液和混合溶液的试样带模放置于烘箱中养护10~15天,拆模得到相应的石英砂柱。

Description

生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法 技术领域
本发明涉及生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法,属于地基加固技术范畴。
背景技术
硅酸盐水泥是建筑领域最为常用的胶凝材料,也是建材产业的重要组成部分。水泥主要成分是含有大量碳酸钙的石灰石,生产过程中会消耗化石燃料以加热石灰石,在加热过程中,石灰石会分解并释放温室气体二氧化碳(CO2)。因此,燃料燃烧和碳酸盐分解都会释放CO2。据庞翠娟报道,每生产1吨水泥熟料,需要消耗综合能耗约为113.5kgce并排放大约0.8吨CO2气体,如果大气中的CO2浓度提高一倍,环境温度可能升高1.5-4.5℃,由此产生严重的温室效应,会加剧全球变暖。此外,水泥生产中排放的气体还包括SO2和NOx等有害气体,对生态环境系统产生严重的影响。
微生物诱导方解石沉积(MICP)胶结松散颗粒已被广泛研究。此方法在胶结过程中会释放有害气体氨气,对环境产生了负面影响。微生物诱导方解石在胶结过程中,菌液中的脲酶水解尿素产生氨气和碳酸根,在不同钙源存在下以菌体作为方解石沉积的成核位点。微生物诱导方解石在砂颗粒和孔喉之间形成,可以明显提高松散颗粒之间的力学性能。基于以上性质,微生物诱导沉积方解石即微生物水泥已经被研究应用于土壤加固、抗液化和胶结松散的砂子等方面。因为MICP在胶结过程会释放大量氨气和形成铵根离子溶液对环境产生破坏,在实际工程中需要进行处理,所以需要花费大量资金投入,不利于大规模应用。因此,科学家们正竭力研究开发绿色胶凝材料,具有节能、环境污染少或无污染且具有优良耐久性的新型胶凝材料,有的胶凝材料不仅没有碳排放,而且,有的还是碳负性胶凝材料即可以吸收空气中的碳。
发明内容
技术问题:本发明的目的是提供生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法,它不同于微生物诱导方解石沉积胶结石英砂柱的方法,该方法能够有效将大量氨气转化为环境友好物质鸟粪石、操作简便和避免资源浪费等优点。
技术方案:本发明的生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法为:
a.将二至三代的巴氏芽胞杆菌菌株接种到大豆蛋白胨、酪蛋白胨培养基中,得到三至四代的巴氏芽胞杆菌菌液,然后将一定量的K2HPO4固体完全溶解在氏芽胞杆菌菌液中,形成磷酸盐菌液,磷酸盐菌液的OD值为1.6~1.9;
b.配置(1mol/l)尿素和(2mol/l)无水MgCl2的混合溶液;
c.按富勒最紧密堆积方法配制两级配为150μm以下和150~300μm粒径的石英砂,然后装入带有缓冲垫和过滤砂的模具中;
d.将第一步制备的磷酸盐菌液和第二步配制的混合溶液按体积比1:1的比例通过蠕动泵分别注入配制好的石英砂模具中,控制磷酸盐菌液流速为8~16ml/min,混合溶液流速为6~10ml/min,连续注入,直至不能注入磷酸盐菌液和混合溶液;
e.直至不能注入磷酸盐菌液和混合溶液的试样带模放置于烘箱中养护10~15天,拆模得到相应的石英砂柱。
所述的培养基获取的方式为:将有机每升培养基含有大豆蛋白胨4~6g、酪蛋白胨14~16g,该培养基溶液的pH=6.8~7.2。
所述注入方式包括:磷酸盐菌液由下往上注入石英砂模具中,注满后立刻再由下往上注入混合溶液,注满后在28~32℃下静置1~2h,再注入磷酸盐菌液,循环交替,直至不能注入磷酸盐菌液和混合溶液。
有益效果:本发明与现有胶结技术相比,具有以下优点:
1.投资小、污染少和工艺简单,因其能够将尿素酶解过程中释放的氨气大量利用,避免环境污染和资源浪费;
2.清洁和无毒,产生的鸟粪石对环境友好和无二次污染。
附图说明
图1生物磷酸盐和碳酸盐复合胶凝材料固结而成石英砂柱的能谱分析图,
图2生物磷酸盐和碳酸盐复合胶凝材料固结而成石英砂柱的的X射线衍射图谱,
图3生物磷酸盐和碳酸盐复合胶凝材料固结而成石英砂柱的SEM图,
图4生物磷酸盐和碳酸盐复合胶凝材料胶结石英砂柱的效果图。
具体实施方式
本发明涉及生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法,将二至三 代的巴氏芽胞杆菌菌株接种到大豆蛋白胨、酪蛋白胨培养基中,得到三至四代的巴氏芽胞杆菌菌液;然后将一定量的K2HPO4固体完全溶解在巴氏芽胞杆菌菌液中,形成磷酸盐菌液;配置(1mol/l)尿素和(2mol/l)无水MgCl2的混合溶液;按富勒最紧密堆积方法配制两级配为150μm以下和150~300μm粒径的石英砂,然后装入带有缓冲垫和过滤砂的模具中;将磷酸盐菌液和混合溶液按体积比1:1的比例通过蠕动泵分别注入配制好的石英砂模具中,控制磷酸盐菌液流速为8~16ml/min,混合溶液流速为6~10ml/min,连续注入,直至不能注入磷酸盐菌液和混合溶液;直至不能注入磷酸盐菌液和混合溶液的试样带模放置于45℃烘箱中养护10~15天,拆模得到相应的石英砂柱。
生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的机理
在胶结过程中,巴氏芽胞杆菌(Bacillus pasteurii)产生的脲酶能够水解底物尿素,得到碳酸根离子并释放氨气,在过量镁源存在下以菌体作为矿物沉积的成核位点。微生物诱导碳酸盐和鸟粪石在砂颗粒和孔喉之间形成,可以明显提高松散颗粒之间的力学性能。基于以上性质,微生物诱导沉积方解石即微生物水泥已经被研究应用于土壤加固、抗液化和胶结松散的砂子等方面。因此,可用如下反应式来表达复合胶凝材料的形成过程:
Figure PCTCN2015093318-appb-000001
Figure PCTCN2015093318-appb-000002
Figure PCTCN2015093318-appb-000003
实施例1
首先将1mol K2HPO4固体完全溶于巴氏芽胞杆菌菌液(1L)中,得到磷酸盐菌液。在配置1L(1mol/l)尿素和(2mol/l)氯化镁混合溶液。泵送胶结高6cm直径3cm石英砂柱(中砂:0.15-3.0,90%细砂:<0.15,10%)。先8ml/min泵送注入25ml磷酸盐菌液至砂柱中,完毕后再6min/ml泵送注入25ml尿素和氯化镁混合溶液至砂柱中, 再注入25ml磷酸盐菌液至砂柱中,在30℃下静置1.5h后,再注入25ml尿素和氯化镁混合溶液至砂柱中;再注入25ml磷酸盐菌液至砂柱中,在30℃下静置1.5h后,依次类推,直至不能注入砂柱为止。带模放置于45℃烘箱中养护14天,拆模之后,测定抗压强度。石英砂柱初始孔隙率为40.1%。生物磷酸盐和碳酸盐复合胶凝材料固结而成石英砂柱的无侧限抗压强度和胶结后孔隙率如表1。
实施例2
首先将1mol K2HPO4固体完全溶于巴氏芽胞杆菌菌液(1L)中,得到磷酸盐菌液。在配置1L(1mol/l)尿素和(2mol/l)氯化镁混合溶液。泵送胶结高6cm直径3cm石英砂柱(中砂:0.15-3.0,90%细砂:<0.15,10%)。先10ml/min泵送注入25ml磷酸盐菌液至砂柱中,完毕后再8min/ml泵送注入25ml尿素和氯化镁混合溶液至砂柱中,再注入25ml磷酸盐菌液至砂柱中,在30℃下静置2h后,再注入25ml尿素和氯化镁混合溶液至砂柱中;再注入25ml磷酸盐菌液至砂柱中,在30℃下静置2h后,依次类推,直至不能注入砂柱为止。带模放置于45℃烘箱中养护14天,拆模之后,测定抗压强度。生物磷酸盐和碳酸盐复合胶凝材料固结而成石英砂柱的无侧限抗压强度和胶结后孔隙率如表1。
实施例3
配置1首先将1mol K2HPO4固体完全溶于巴氏芽胞杆菌菌液(1L)中,得到磷酸盐菌液。在配置1L(1mol/l)尿素和(2mol/l)氯化镁混合溶液。泵送胶结高6cm直径3cm石英砂柱(中砂:0.15-3.0,90%细砂:<0.15,10%)。先16ml/min泵送注入25ml磷酸盐菌液至砂柱中,完毕后再10min/ml泵送注入25ml尿素和氯化镁混合溶液至砂柱中,再注入25ml磷酸盐菌液至砂柱中,在30℃下静置2h后,再注入25ml尿素和氯化镁混合溶液至砂柱中;再注入25ml磷酸盐菌液至砂柱中,在30℃下静置2h后,依次类推,直至不能注入砂柱为止。带模放置于45℃烘箱中养护10天,拆模之后,测定抗压强度。生物磷酸盐和碳酸盐复合胶凝材料固结而成石英砂柱的无侧限抗压强度和胶结后孔隙率如表1。
实施例4
首先将1mol K2HPO4固体完全溶于巴氏芽胞杆菌菌液(1L)中,得到磷酸盐菌液。在配置1L(1mol/l)尿素和(2mol/l)氯化镁混合溶液。泵送胶结高6cm直径3cm石英砂柱(中砂:0.15-3.0,90%细砂:<0.15,10%)。先8ml/min泵送注入25ml磷酸盐菌液至砂柱中,完毕后再6min/ml泵送注入25ml尿素和氯化镁混合溶液至砂柱中, 再注入25ml磷酸盐菌液至砂柱中,在30℃下静置2h后,再注入25ml尿素和氯化镁混合溶液至砂柱中;再注入25ml磷酸盐菌液至砂柱中,在30℃下静置2h后,依次类推,直至不能注入砂柱为止。带模放置于45℃烘箱中养护15天,拆模之后,测定抗压强度。石英砂柱初始孔隙率为40.2%。生物磷酸盐和碳酸盐复合胶凝材料固结而成石英砂柱的无侧限抗压强度如和胶结后孔隙率如表1。生物磷酸盐和碳酸盐复合胶凝材料固结而成石英砂柱的无侧限抗压强度和胶结后孔隙率如表1。
表1生物磷酸盐和碳酸盐复合胶凝材料固结而成石英砂柱的无侧限抗压强度和固结后砂柱的孔隙率
Figure PCTCN2015093318-appb-000004
为了定性分析沉淀物质,随即对胶结后砂柱进行了能谱分析,结果如图1所示。结果显示,胶结后砂柱的能谱图显示化合物中含有C、N、O、P、Mg、Cl和K等元素。XRD衍射进一步分析胶结后砂柱的结果显示,砂柱衍射峰显示结晶化合物主要成分是石英砂、三水碳酸镁和鸟粪石(图2)。由表1可知,不同条件下胶结后砂柱的孔隙率都显著降低,并且实施例1-4得到的砂柱无侧限抗压强度分别是2.01、1.53、0.97和1.71MPa,说明泵送时间和速度对石英砂柱的抗压强度有一定的影响。SEM图像显示(图3),有片状和椭球状的化合物填充在石英砂孔喉之间。图4显示该方法能够将松散的砂颗粒固结成一个整体。

Claims (3)

  1. 生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法,其特征在于,该方法包括以下步骤:
    第一步,制备磷酸盐菌液:将二至三代的巴氏芽胞杆菌菌株接种到大豆蛋白胨、酪蛋白胨培养基中,得到三至四代的巴氏芽胞杆菌菌液,然后将K2HPO4固体完全溶解在巴氏芽胞杆菌菌液中,形成磷酸盐菌液,磷酸盐菌液的OD值为1.6~1.9;
    第二步,配制混合溶液:配置1mol/l尿素和2mol/l无水MgCl2的混合溶液;
    第三步,石英砂模具的制备:按富勒最紧密堆积方法配制两级配为150μm以下和150~300μm粒径的石英砂,然后装入带有缓冲垫和过滤砂的模具中;
    第四步,将第一步制备的磷酸盐菌液和第二步配制的混合溶液按体积比1:1的比例通过蠕动泵分别注入配制好的石英砂模具中,控制磷酸盐菌液流速为8~16ml/min,混合溶液流速为6~10ml/min,连续注入,直至不能注入磷酸盐菌液和混合溶液;
    第五步,脱模:直至不能注入磷酸盐菌液和混合溶液的试样带模放置于烘箱中养护10~15天,拆模得到相应的石英砂柱。
  2. 如权利要求1所述的生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法,其特征在于:第一步中每升培养基含有大豆蛋白胨4~6g、酪蛋白胨14~16g,该培养基溶液的pH=6.8~7.2。
  3. 如权利要求1所述的生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法,其特征在于:第四步中磷酸盐菌液由下往上注入石英砂模具中,注满后立刻由下往上注入混合溶液,注满后在28~32℃下静置1~2h,再注入磷酸盐菌液,循环交替,直至不能注入磷酸盐菌液和混合溶液。
PCT/CN2015/093318 2014-11-04 2015-10-30 生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法 WO2016070754A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410612163.5 2014-11-04
CN201410612163.5A CN104446324B (zh) 2014-11-04 2014-11-04 生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法

Publications (1)

Publication Number Publication Date
WO2016070754A1 true WO2016070754A1 (zh) 2016-05-12

Family

ID=52893174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093318 WO2016070754A1 (zh) 2014-11-04 2015-10-30 生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法

Country Status (2)

Country Link
CN (1) CN104446324B (zh)
WO (1) WO2016070754A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446324B (zh) * 2014-11-04 2016-06-08 东南大学 生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法
CN105837075B (zh) * 2015-07-07 2018-04-20 东南大学 一种利用微生物沉积碳酸钙强化再生混凝土细骨料的方法
CN105891085A (zh) * 2016-04-13 2016-08-24 天津大学 微生物诱导碳酸钙沉积胶结试验装置
CN107724375A (zh) * 2017-11-07 2018-02-23 温州大学 真空排水袋装砂井联合砂井生物固结的吹填土地基处理方法
CN109959773B (zh) * 2019-04-01 2021-07-13 合肥工业大学 一种可脱模微生物注浆加固粉土的试验装置及方法
CN110423030A (zh) * 2019-08-14 2019-11-08 温州大学 生物羟基磷酸盐和碳酸盐复合水泥固结沙漠砂或钙质砂土的工艺
CN112125574B (zh) * 2020-09-30 2021-08-20 华中科技大学 运用蛋白胶凝材料提高微生物胶结砂土机械性能的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376531A (zh) * 2007-08-27 2009-03-04 江苏金环环保设备有限公司 Map(鸟粪石)结晶沉淀填料及制备方法
CN102531432A (zh) * 2012-01-16 2012-07-04 东南大学 微生物胶凝材料及利用其胶结砂粒形成菱镁矿的方法
CN103266592A (zh) * 2013-05-27 2013-08-28 东南大学 一种利用磷酸盐矿化菌固结松散砂颗粒的方法
CN104446324A (zh) * 2014-11-04 2015-03-25 东南大学 生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113306A (ja) * 1987-10-26 1989-05-02 Takeo Tabata ジャンボタニシ類の防除薬剤と防除方法
KR20070093128A (ko) * 2004-12-20 2007-09-17 무어도치 유니버시티 미생물의 바이오시멘트화
CN102718445A (zh) * 2012-06-25 2012-10-10 东南大学 一种尾砂生物预制品及其制备方法
CN103979876B (zh) * 2014-05-22 2015-08-26 东南大学 生物胶凝材料磷酸盐预沉淀法拌合成型石英砂柱的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376531A (zh) * 2007-08-27 2009-03-04 江苏金环环保设备有限公司 Map(鸟粪石)结晶沉淀填料及制备方法
CN102531432A (zh) * 2012-01-16 2012-07-04 东南大学 微生物胶凝材料及利用其胶结砂粒形成菱镁矿的方法
CN103266592A (zh) * 2013-05-27 2013-08-28 东南大学 一种利用磷酸盐矿化菌固结松散砂颗粒的方法
CN104446324A (zh) * 2014-11-04 2015-03-25 东南大学 生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法

Also Published As

Publication number Publication date
CN104446324A (zh) 2015-03-25
CN104446324B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2016070754A1 (zh) 生物磷酸盐和碳酸盐复合胶凝材料固结松散砂颗粒的方法
CN111875332B (zh) 一种湿磨电石渣制备碳化砖的方法
Yu et al. The optimal formulation of bio-carbonate and bio-magnesium phosphate cement to reduce ammonia emission
CN109721296A (zh) 再生混凝土及其制备方法
Yu et al. Loose sand particles cemented by different bio-phosphate and carbonate composite cement
CN104909460B (zh) 用于人工湿地的孔隙性脱氮除磷填料及其制备方法
US20100196104A1 (en) Co2 sequestering soil stabilization composition
Hoang et al. Use of microbial carbonation process to enable self‑carbonation of reactive MgO cement mixes
CN110438974B (zh) 一种微生物固化试剂盒及原位固化钙质砂的方法
CN101270369A (zh) 一种微生物成因水泥或混凝土及其生产方法和应用
CN102765923B (zh) 一种利用电石渣生产加气空心砖方法
CN104310923B (zh) 一种无水泥建筑垃圾制品及其制备方法
Gawwad et al. Impact of magnesium chloride on the mechanical properties of innovative bio-mortar
Zhan et al. Stabilization of sand particles by bio-cement based on CO2 capture and utilization: Process, mechanical properties and microstructure
Yu et al. Mineralization and cementing properties of bio-carbonate cement, bio-phosphate cement, and bio-carbonate/phosphate cement: a review
WO2023065437A1 (zh) 一种多层核壳结构自修复微球及其制备方法和应用
CN108192623A (zh) 拜耳法赤泥路基微生物固化方法及应用方法
CN110015824A (zh) 一种软黏土微生物固化剂、在软黏土固化中的应用及应用方法
CN110330251A (zh) 产碱杆菌在矿化加固钙质砂工艺中作为加固剂的用途
CN115321890A (zh) 一种封存二氧化碳用固废基粘结剂、制备方法及其封存二氧化碳方法
CN103979876B (zh) 生物胶凝材料磷酸盐预沉淀法拌合成型石英砂柱的方法
Yu et al. Bio-cement-modified construction materials and their performances
Peng et al. Study of microbially-induced carbonate precipitation for improving coarse-grained salty soil
Dung et al. New frontiers in sustainable cements: Improving the performance of carbonated reactive MgO concrete via microbial carbonation process
CN108911605B (zh) 一种负压环境下微生物诱导碳酸钙沉淀生产预制排水管道的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857250

Country of ref document: EP

Kind code of ref document: A1