WO2023065437A1 - 一种多层核壳结构自修复微球及其制备方法和应用 - Google Patents

一种多层核壳结构自修复微球及其制备方法和应用 Download PDF

Info

Publication number
WO2023065437A1
WO2023065437A1 PCT/CN2021/130677 CN2021130677W WO2023065437A1 WO 2023065437 A1 WO2023065437 A1 WO 2023065437A1 CN 2021130677 W CN2021130677 W CN 2021130677W WO 2023065437 A1 WO2023065437 A1 WO 2023065437A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
core
healing
microbial
cement
Prior art date
Application number
PCT/CN2021/130677
Other languages
English (en)
French (fr)
Inventor
詹其伟
董婉莹
傅昌皓
潘志宏
周娟兰
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2023065437A1 publication Critical patent/WO2023065437A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients

Definitions

  • the invention belongs to the interdisciplinary science and technology of microbiology, material science and civil engineering, and specifically relates to a self-repairing microsphere with a multi-layer core-shell structure and its preparation method and application.
  • cement-based materials have become the main building materials widely used in civil engineering due to their outstanding advantages such as superior durability than ordinary steel and wood, convenient construction of different structural sizes and shapes, easy availability of raw materials, and low cost.
  • material characteristics of increasingly complex composition, increased fluidity, and accelerated early strength development lead to increased shrinkage; modern structures with long spans, large volumes, and strong constraints, as well as harsh construction environments such as high temperature and dryness, lead to prominent shrinkage cracking problems , seriously affecting the durability of structures. Therefore, considering that cement-based materials are materials with high brittleness and low tensile strength, how to suppress the occurrence of cracks is a key problem for the large-scale application of cement-based materials.
  • a self-healing microsphere with a multilayer core-shell structure comprising an inner core, an outer core coated on the surface of the inner core, and an outer shell coated on the surface of the outer core, and the inner core is composed of a composite microbial agent and aluminum sulfate, the outer core component is a magnetic functional component, and the outer shell component is cement.
  • the magnetic functional component is attapulgite and/or ferric oxide.
  • the composite microbial agent is prepared from yeast and carbon-fixing microbial strains at a ratio of 1:10-15, and the mass ratio of the composite microbial agent to aluminum sulfate is 1:1-5.
  • the particle diameter of the inner core is 2.0-2.5 mm
  • the thickness of the outer core is 0.1-0.5 mm
  • the thickness of the outer shell is 1.0-1.5 mm.
  • the preparation method of the above-mentioned multilayer core-shell structure self-healing microspheres comprises the following steps:
  • S1 Inoculate the carbon-fixing microbial strains into the corresponding culture medium A, shake and culture at a constant temperature for 24-48 hours to obtain the culture medium A, add a high-efficiency spore transformation agent to the culture medium A, and obtain the microbial spore culture medium A, which is prepared by spray drying Powdered microbial agent A; yeast strains were inoculated into corresponding medium B, cultured at constant temperature and shaken for 24-48 hours to obtain culture medium B, and spore high-efficiency transformation agent was added to culture medium B to obtain microbial spore culture medium B, prepare powdery microbial agent B through spray drying, and mix the two to obtain composite microbial bacteria;
  • the carbon-fixing microbial strain described in step S1 is one or more of Bacillus colloidus, Bacillus lysinus, Arthrobacter, and photosynthetic bacteria;
  • the mass ratio of the inoculation amount of the carbon-fixing microbial strain to the medium is 1-2:100, and the medium is 1000mL deionized water, 8-12g sucrose, Na 2 HPO 4 ⁇ 12H 2 O 2-3g , MgSO 4 0.4-0.6g, CaCO 3 0.5-1.5g, KCl 0.1-0.2g, (NH 4 ) 2 SO 4 0.4-0.6g;
  • the mass ratio of the inoculation amount of the yeast described in step S1 to the medium is 1-2:100, and the described medium is 1000mL deionized water, 30-40g of potato flour, 5-10g of glucose, and 5-10g of agar .
  • the high-efficiency spore transformation agent described in step S1 is manganese chloride, and the addition amount is 1-5g/L;
  • step S1 the spray drying temperature in step S1 is 105-110°C
  • the speed is 5-20mL/min
  • the speed of the sugar coating machine in step S2 is 10-50r/min
  • the spray volume is 10-20ml/min. min.
  • the standard conditions for curing in step S4 are humidity 90%-95%, temperature 20-23°C, and time 3-14 days.
  • the application method is as follows: use multi-layer core-shell structure self-repairing microspheres to replace part of the sand, add an appropriate amount of calcium source, keep the water-cement ratio unchanged, and carry out product preparation.
  • the replacement rate of the self-healing microspheres with multi-layer core-shell structure replacing part of the sand is 1%-10%;
  • the calcium source is one or more of calcium nitrate, calcium chloride, and calcium lactate;
  • the added amount of the calcium source is 1%-5% of the cementitious material cement
  • the cracks are penetrating cracks with a width of 200-500 ⁇ m.
  • test piece first cure the test piece at room temperature for 24-26 hours, then keep the test piece in a room temperature water environment for 7 days, and then artificially create cracks through a press, and place the cracked test piece in the In the water environment, monitor the crack repair effect of the cracked specimen.
  • the self-healing microspheres with multilayer core-shell structure of the present invention are used for repairing cracks in cement-based materials. Compared with traditional passive repairing methods, they have the following beneficial effects: (1) Groundbreakingly induce mineralization by coupling microorganisms Formation of ettringite and ettringite to fill and seal the cracks of cement-based materials, aluminum sulfate reacts with calcium hydroxide in the matrix to form ettringite, the volume of ettringite expands during the formation process, and the particles are larger, which plays a role of skeleton in crack filling Carbon-fixing microorganisms capture carbon dioxide in the environment to induce mineralization to form calcite, which acts as a cementitious material in the fracture area, thereby greatly improving the width and depth of fracture repair, and solving the problem of insufficient repair depth of single microorganism-induced mineralization; ( 2) Yeast decomposes the ethanol added in the preparation process of microspheres to provide
  • Figure 4 shows the crack repair rate of the self-healing microspheres of the present invention.
  • a preparation method and application of a self-healing microsphere with a multilayer core-shell structure the method steps are as follows:
  • the replacement rate is 1%, and add an appropriate amount of calcium nitrate, which is 1% of the cementitious material cement, and keep the water-cement ratio unchanged.
  • the specimen was first cured at room temperature for 24 hours, and then the specimen was cured in a normal temperature water environment for 7 days, and then a penetrating crack with a crack width of 200 ⁇ m was artificially manufactured by a press, and the cracked specimen was placed in the In the water environment, monitor the crack repair effect of the cracked specimen.
  • a preparation method and application of a self-healing microsphere with a multilayer core-shell structure the method steps are as follows:
  • Culture solution B is obtained by oscillating at a constant temperature for 24 hours. Add manganese chloride, a high-efficiency spore transformation agent, to the culture solution B in an amount of 5g/L to obtain Microbial spore culture solution B is spray-dried to prepare powdery microbial inoculum B, and microbial inoculum A and microbial inoculum B are mixed to obtain composite microbial bacteria; the spray drying temperature is 110°C and the speed is 20mL/min, and yeast The bacterial powder and the colloidal bacillus bacterial powder prepare the composite microbial bacterial agent according to the ratio of 1:15;
  • a preparation method and application of a self-healing microsphere with a multilayer core-shell structure the method steps are as follows:
  • Figure 1 shows the morphology of the self-healing microspheres of the present invention. During use, the self-healing microspheres rupture with cracks and release the repairing components inside the microspheres.
  • Figure 2 is the XRD spectrum of the products in the fracture zone
  • Figure 3 is the SEM image of the products in the fracture zone, which shows that during the process of fracture repair, mineralization products are formed in the fracture zone to fill the fractures, and the mineralization products include calcite and ettringite.
  • Fig. 4 is the repairing rate of the self-repairing microsphere crack of the present invention, and the repairing effect of the crack in the test piece prepared by embodiment 3 is detected and compared and shows that, with the extension of the repairing time, the repairing effect is gradually enhanced, and the area repairing rate is repaired in 28 days And the anti-seepage repair rate is close to 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glanulating (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

一种多层核壳结构自修复微球,包括内核、包覆在内核表面的外核、以及包覆在外核表面的外壳,所述内核成分为复合微生物菌剂和硫酸铝的混合物,所述外核成分为磁性功能组份,所述外壳成分为水泥。所述的多层核壳结构自修复微球用于水泥基材料裂缝修复,通过耦合微生物诱导矿化和钙矾石形成填充、封堵水泥基材料裂缝,硫酸铝与基体中氢氧化钙反应形成钙矾石,钙矾石形成过程中体积膨胀、颗粒较大,在裂缝填充中起到骨架的作用,固碳微生物捕获环境中二氧化碳诱导矿化形成方解石,在裂缝区起到胶凝材料的作用,从而大幅改善裂缝修复的宽度和深度,解决了单一微生物诱导矿化修复深度不足的难题。

Description

一种多层核壳结构自修复微球及其制备方法和应用 技术领域
本发明属于微生物学、材料学和土木工程多领域交叉的科学技术,具体涉及一种多层核壳结构自修复微球及其制备方法和应用。
背景技术
近年来,随着我国经济的高速发展,城市化进程的不断加快,大规模城市基础设施处于在建或规划建设中,亟需巨量的建筑材料。水泥基材料由于具有优于普通钢材与木材的耐久性能、不同结构尺寸与形状的施工便捷性、原材料易于获得且成本低廉等突出优点,已成为土木工程大量使用的主体建筑材料。然而,组成日趋复杂、流动度加大、早期强度发展加快的材料特性,导致收缩加大;长跨径、大体积、强约束的现代结构,以及高温、干燥等严酷施工环境导致收缩开裂问题突出,严重影响构筑物的耐久性。因此,考虑到水泥基材料作为一种脆性大、抗拉强度较低的材料,如何抑制裂缝产生是水泥基材料实现大规模应用的关键难题。
针对水泥基材料裂缝修复,国内外科研工作者开展了富有成效的研究。传统的修复方式主要是人工修补,耗时耗力,若微裂缝肉眼不可见或处于难以触及的位置,人工修补难以实现。随着建筑材料和结构智能化进程的推进,水泥基材料裂缝的自修复成为了学术界和工程界关注的焦点。水泥基材料开裂后,裂缝区未水化水泥颗粒继续水化、产物膨胀、CaCO 3和Ca(OH) 2晶体沉积会起到一定的修复作用,这种自修复仅限微小裂缝,而且修复速度缓慢,无法满足工程需要。因此,亟需研发具有自修复功能的水泥基材料,将有助于大幅降低修复和维护成本,显著提升工程耐久性和服役寿命,具有显著的经济价值和广泛的应用前景。
发明内容
发明目的:本发明的目的是提供一种多层核壳结构自修复微球,修复裂缝的成本低、速度快、效果好,且相容性好;本发明的另一个目的是提供上述多层核壳结构自修复微球的制备方法及其应用。
技术方案:本发明所述的一种多层核壳结构自修复微球,包括内核、包覆在内核表面的外核、以及包覆在外核表面的外壳,所述内核成分为复合微生物菌剂和硫酸铝的混合物,所述外核成分为磁性功能组份,所述外壳成分为水泥。
进一步的,所述的磁性功能组份为凹凸棒土和/或四氧化三铁。
进一步的,所述的复合微生物菌剂由酵母菌和固碳微生物菌株按照1∶10-15的比例制备,所述的复合微生物菌剂和硫酸铝的质量比为1∶1-5。
进一步的,内核的粒径为2.0-2.5mm,所述的外核厚度为0.1-0.5mm,外壳厚度为1.0-1.5mm。
上述多层核壳结构自修复微球的制备方法,包括以下步骤:
S1:将固碳微生物菌株接种至对应的培养基A中,恒温振荡培养24-48小时得到培养液A,向培养液A中加入芽孢高效转化剂,获得微生物芽孢培养液A,经喷雾干燥制备粉状的微生物菌剂A;将酵母菌菌株分别接种至对应的培养基B中,恒温振荡培养24-48小时得到培养液B,向培养液B中加入芽孢高效转化剂,获得微生物芽孢培养液B,经喷雾干燥制备粉状的微生物菌剂B,将两者混合得到复合微生物菌;
S2:将复合微生物菌剂、硫酸铝按照比列加入糖衣机中,在旋转过程中均匀喷洒乙醇溶液制备球形颗粒,以此作为自修复微球的内核;
S3:向糖衣机中加入磁性功能组份,在旋转过程中均匀喷洒乙醇溶液,在自修复微球内核表层包覆一层磁性组份,以此作为自修复微球的外核;
S4:向糖衣机中加入水泥,在旋转过程中均匀喷洒去离子水,在自修复微球外核表层包覆一层水泥,以此作为自修复微球的外壳,置于标准条件下养护。
进一步的,步骤S1中所述的固碳微生物菌株为胶质芽孢杆菌、赖氨酸芽孢杆菌、节杆菌、光合细菌的一种或多种;
所述的固碳微生物菌株的接种量与培养基的质量比为1-2∶100,所述的培养基为1000mL去离子水、蔗糖8-12g、Na 2HPO 4·12H 2O 2-3g、MgSO 4 0.4-0.6g、CaCO 3 0.5-1.5g、KCl 0.1-0.2g、(NH 4) 2SO 4 0.4-0.6g;
步骤S1中所述的酵母菌的接种量与培养基的质量比为1-2∶100,所述的培养基为1000mL去离子水、马铃薯粉30-40g、葡萄糖5-10g、琼脂5-10g。
进一步的,步骤S1中所述的芽孢高效转化剂为氯化锰,添加量为1-5g/L;
进一步的,步骤S1中所述的喷雾干燥温度为105-110℃、速度为5-20mL/min,步骤S2中所述的糖衣机转速为10-50r/min、喷液量为10-20ml/min。
进一步的,步骤S4中所述养护的标准条件为湿度90%-95%、温度20-23℃、时间3-14天。
上述多层核壳结构自修复微球在修复水泥基材料裂缝领域的应用。
应用方法为:采用多层核壳结构自修复微球代替部分砂,并添加适量的钙源,保持水灰比不变,进行产品制备。
进一步的,所述的多层核壳结构自修复微球代替部分砂的替代率为1%-10%;
进一步的,所述的钙源为硝酸钙、氯化钙、乳酸钙的一种或多种;
进一步的,所述的钙源添加量为胶凝材料水泥的1%-5%;
进一步的,所述的裂缝为贯穿裂缝、宽度为200-500μm。
进一步的,制备300mm×300mm×30mm试件,先将试件在常温养护24-26小时,再将试件在常温水环境养护7天,之后通过压力机人工制造裂缝,将开裂试件置于水环境中,监测开裂试件裂缝修复效果。
有益效果:本发明所述的多层核壳结构自修复微球用于水泥基材料裂缝修复,与传统被动修复的方法相比,具有以下有益效果:(1)开创性地通过耦合微生物诱导矿化和钙矾石形成填充、封堵水泥基材料裂缝,硫酸铝与基体中氢氧化钙反应形成钙矾石,钙矾石形成过程中体积膨胀、颗粒较大,在裂缝填充中起到骨架的作用,固碳微生物捕获环境中二氧化碳诱导矿化形成方解石,在裂缝区起到胶凝材料的作用,从而大幅改善裂缝修复的宽度和深度,解决了单一微生物诱导矿化修复深度不足的难题;(2)酵母菌分解微球制备过程添加的乙醇,为方解石沉积提供碳源;(3)多层核壳结构自修复微球中的外核磁性组份,可以有效的富集裂缝区的钙离子,避免流失到裂缝区以外,提高方解石和钙矾石的沉积量;(4)多层核壳结构自修复微球中的外壳保护层采用水泥制备,与水泥基材料基体具有优越的相容性,无负面的影响。
附图说明
图1本发明自修复微球的形貌;
图2裂缝区产物的XRD谱图;
图3裂缝区产物的SEM图像;
图4本发明的自修复微球裂缝修复率。
具体实施方式
为进一步了解本发明的内容,结合附图及实施例对本发明作详细描述。
实施例1
一种多层核壳结构自修复微球的制备方法及其应用,方法步骤如下:
(1)将胶质芽孢杆菌接种至培养基A中,接种量与培养基A的质量比为1∶100,培养基A为1000mL去离子水、蔗糖8g、Na 2HPO 4·12H 2O 2g、MgSO 4 0.4g、CaCO 3 0.5g、KCl 0.1g、(NH 4) 2SO 4 0.4g,恒温振荡培养24小时获得培养液A,向培养液A中加入芽孢高效转化剂氯化锰,添加量为1g/L,获得微生物芽孢培养液A,经喷雾干燥制备粉状的微生物菌剂A;将酵母菌菌株接种至培养基B中,接种量与培养基B的质量比为1∶100,培养基B为1000mL去离子水、马铃薯粉30g、葡萄糖5g、琼脂5g,恒温振荡培养24小时获得培养液B;向培养液B中加入芽孢高效转化剂氯化锰,添加量为1g/L,获得微生物芽孢培养液B,经喷雾干燥制备粉状的微生物菌剂B,将微生物菌剂A和微生物菌剂B混合得到复合微生物菌;上述喷雾干燥温度为105℃、速度为5mL/min,酵母菌菌粉和胶质芽孢杆菌菌粉按照1∶10的比例制备复合微生物菌剂;
(2)将复合微生物菌剂、硫酸铝按照等质量比加入糖衣机中,在旋转过程中均匀喷洒乙醇溶液制备球形颗粒,糖衣机转速为10r/min、喷液量为10ml/min,筛分后取粒径2.0-2.5mm颗粒作为自修复微球的内核1;
(3)向糖衣机中加入磁性功能组份四氧化三铁,在旋转过程中均匀喷洒乙醇溶液,糖衣机转速为10r/min、喷液量为10ml/min,在自修复微球内核表层包覆一层磁性组份,包覆 厚度为0.1-0.5mm,以此作为自修复微球的外核2;
(4)向糖衣机中加入水泥,在旋转过程中均匀喷洒去离子水,在自修复微球外核表层包覆一层水泥,厚度为1.0-1.5mm,以此作为自修复微球的外壳3,置于湿度90%-95%、温度20-23℃条件下养护3天。
(5)采用多层核壳结构自修复微球代替部分砂,替代率为1%,并添加适量的钙源硝酸钙,添加量为胶凝材料水泥的1%,保持水灰比不变,制备300mm×300mm×30mm试件,先将试件在常温养护24小时,再将试件在常温水环境养护7天,之后通过压力机人工制造裂缝宽度为200μm的贯穿裂缝,将开裂试件置于水环境中,监测开裂试件裂缝修复效果。
实施例2
一种多层核壳结构自修复微球的制备方法及其应用,方法步骤如下:
(1)将胶质芽孢杆菌接种至培养基A中,接种量与培养基的质量比为2∶100,培养基A为1000mL去离子水、蔗糖12g、Na 2HPO 4·12H 2O 3g、MgSO 4 0.6g、CaCO 3 1.5g、KCl 0.2g、(NH 4) 2SO 4 0.6g,恒温振荡培养24小时获得培养液A,向培养液A中加入芽孢高效转化剂氯化锰,添加量为1g/L,获得微生物芽孢培养液A,经喷雾干燥制备粉状的微生物菌剂A;将酵母菌菌株接种至培养基B中,接种量与培养基B的质量比为2∶100,培养基B为1000mL去离子水、马铃薯粉40g、葡萄糖10g、琼脂10g,恒温振荡培养24小时获得培养液B,向培养液B中加入芽孢高效转化剂氯化锰,添加量为5g/L,获得微生物芽孢培养液B,经喷雾干燥制备粉状的微生物菌剂B,将微生物菌剂A和微生物菌剂B混合得到复合微生物菌;上述喷雾干燥温度为110℃、速度为20mL/min,酵母菌菌粉和胶质芽孢杆菌菌粉按照1∶15的比例制备复合微生物菌剂;
(2)将复合微生物菌剂、硫酸铝按照质量比1∶5加入糖衣机中,在旋转过程中均匀喷洒乙醇溶液制备球形颗粒,糖衣机转速为50r/min、喷液量为20ml/min,筛分后取粒径2.0-2.5mm颗粒作为自修复微球的内核1;
(3)向糖衣机中加入磁性功能组份四氧化三铁,在旋转过程中均匀喷洒乙醇溶液,糖衣机转速为50r/min、喷液量为20ml/min,在自修复微球内核表层包覆一层磁性组份,包覆厚度为0.1-0.5mm,以此作为自修复微球的外核2;
(4)向糖衣机中加入水泥,在旋转过程中均匀喷洒去离子水,在自修复微球外核表层包覆一层水泥,厚度为1.0-1.5mm,以此作为自修复微球的外壳3,置于湿度90%-95%、温度20-23℃条件下养护14天。
(5)采用多层核壳结构自修复微球代替部分砂,替代率为10%,并添加适量的钙源硝酸钙,添加量为胶凝材料水泥的5%,保持水灰比不变,制备300mm×300mm×30mm试件,先将试件在常温养护24小时,再将试件在常温水环境养护7天,之后通过压力机人工制造裂缝宽度为500μm的贯穿裂缝,将开裂试件置于水环境中,监测开裂试件裂缝修复效 果。
实施例3
一种多层核壳结构自修复微球的制备方法及其应用,方法步骤如下:
(1)将胶质芽孢杆菌接种至培养基A中,接种量与培养基A的质量比为2∶100,培养基A为1000mL去离子水、蔗糖10g、Na 2HPO 4·12H 2O 3g、MgSO 4 0.5g、CaCO 3 1.0g、KCl 0.2g、(NH 4) 2SO 4 0.5g,恒温振荡培养24小时获得培养液A,向培养液A中加入芽孢高效转化剂氯化锰,添加量为1g/L,获得微生物芽孢培养液A,经喷雾干燥制备粉状的微生物菌剂A;将酵母菌菌株接种至培养基B中,接种量与培养基B的质量比为2∶100,培养基B为1000mL去离子水、马铃薯粉40g、葡萄糖10g、琼脂10g,恒温振荡培养24小时获得培养液B;向培养液B中加入芽孢高效转化剂氯化锰,添加量为2g/L,获得微生物芽孢培养液B,经喷雾干燥制备粉状的微生物菌剂B;将微生物菌剂A和微生物菌剂B混合得到复合微生物菌;上述喷雾干燥温度为110℃、速度为10mL/min,酵母菌菌粉和胶质芽孢杆菌菌粉按照1∶12的比例制备复合微生物菌剂;
(2)将复合微生物菌剂、硫酸铝按照质量比1∶2加入糖衣机中,在旋转过程中均匀喷洒乙醇溶液制备球形颗粒,糖衣机转速为30r/min、喷液量为15ml/min,筛分后取粒径2.0-2.5mm颗粒作为自修复微球的内核1;
(3)向糖衣机中加入磁性功能组份四氧化三铁,在旋转过程中均匀喷洒乙醇溶液,糖衣机转速为30r/min、喷液量为15ml/min,在自修复微球内核表层包覆一层磁性组份,包覆厚度为0.1-0.5mm,以此作为自修复微球的外核2;
(4)向糖衣机中加入水泥,在旋转过程中均匀喷洒去离子水,在自修复微球外核表层包覆一层水泥,厚度为1.0-1.5mm,以此作为自修复微球的外壳3,置于湿度90%-95%、温度20-23℃条件下养护14天。
(5)采用多层核壳结构自修复微球代替部分砂,替代率为5%,并添加适量的钙源硝酸钙,添加量为胶凝材料水泥的3%,保持水灰比不变,制备300mm×300mm×30mm试件,先将试件在常温养护24小时,再将试件在常温水环境养护7天,之后通过压力机人工制造裂缝宽度为300μm的贯穿裂缝,将开裂试件置于水环境中,监测开裂试件裂缝修复效果。
图1为本发明自修复微球的形貌,在使用过程中,自修复微球伴随着裂缝开裂而破裂,并释放微球内部的修复组分。
图2为裂缝区产物的XRD谱图;图3为裂缝区产物的SEM图像,表明在裂缝修复过程中,裂缝区形成了矿化产物填充裂缝,矿化产物包括方解石和钙矾石。
图4为本发明的自修复微球裂缝修复率,将实施例3制备的试件中裂缝的修复效果进行检测对比表明,随着修复时间的延长,修复效果逐渐增强,修复28天时面积修复率和抗渗水修复率均接近100%。

Claims (10)

  1. 一种多层核壳结构自修复微球,其特征在于,包括内核、包覆在内核表面的外核、以及包覆在外核表面的外壳,所述内核成分为复合微生物菌剂和硫酸铝的混合物,所述外核成分为磁性功能组份,所述外壳成分为水泥。
  2. 根据权利要求1所述的多层核壳结构自修复微球,其特征在于,所述的磁性功能组份为凹凸棒土和/或四氧化三铁。
  3. 根据权利要求1所述的多层核壳结构自修复微球,其特征在于,所述的复合微生物菌剂由酵母菌和固碳微生物菌株按照1∶10-15的比例制备,所述的复合微生物菌剂和硫酸铝的质量比为1∶1-5。
  4. 根据权利要求1所述的多层核壳结构自修复微球,其特征在于,所述内核的粒径为2.0-2.5mm,所述的外核厚度为0.1-0.5mm,外壳厚度为1.0-1.5mm。
  5. 权利要求1-4所述多层核壳结构自修复微球的制备方法,其特征在于,包括以下步骤:
    S1:将固碳微生物菌株接种至对应的培养基A中,恒温振荡培养24-48小时得到培养液A,向培养液A中加入芽孢高效转化剂,获得微生物芽孢培养液A,经喷雾干燥制备粉状的微生物菌剂A;将酵母菌菌株分别接种至对应的培养基B中,恒温振荡培养24-48小时得到培养液B,向培养液B中加入芽孢高效转化剂,获得微生物芽孢培养液B,经喷雾干燥制备粉状的微生物菌剂B,将两者混合得到复合微生物菌;
    S2:将复合微生物菌剂、硫酸铝按照比例加入糖衣机中,在旋转过程中均匀喷洒乙醇溶液制备球形颗粒,以此作为自修复微球的内核;
    S3:向糖衣机中加入磁性功能组份,在旋转过程中均匀喷洒乙醇溶液,在自修复微球内核表层包覆一层磁性组份,以此作为自修复微球的外核;
    S4:向糖衣机中加入水泥,在旋转过程中均匀喷洒去离子水,在自修复微球外核表层包覆一层水泥,以此作为自修复微球的外壳,最后进行养护。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤S1中所述的固碳微生物菌株为胶质芽孢杆菌、赖氨酸芽孢杆菌、节杆菌、光合细菌的一种或多种;所述的固碳微生物菌株的接种量与培养基的质量比为1-2∶100,所述的培养基为1000mL去离子水、蔗糖8-12g、Na 2HPO 4·12H 2O 2-3g、MgSO 40.4-0.6g、CaCO 30.5-1.5g、KCl 0.1-0.2g、(NH 4) 2SO 40.4-0.6g;步骤S1中所述的酵母菌的接种量与培养基的质量比为1-2∶100,所述的培养基为1000mL去离子水、马铃薯粉30-40g、葡萄糖5-10g、琼脂5-10g。
  7. 根据权利要求5所述的制备方法,其特征在于,步骤S1中所述的芽孢高效转化剂为氯化锰,添加量为1-5g/L。
  8. 根据权利要求5所述的制备方法,其特征在于,步骤S1中所述的喷雾干燥温度为105-110℃、速度为5-20mL/min,步骤S2中所述的糖衣机转速为10-50r/min、喷液量为10-20ml/min。
  9. 根据权利要求5所述的制备方法,其特征在于,步骤S4中所述养护的标准条件为湿度90%-95%、温度20-23℃、时间3-14天。
  10. 权利要求1-4所述的多层核壳结构自修复微球在修复水泥基材料裂缝领域的应用。
PCT/CN2021/130677 2021-10-21 2021-11-15 一种多层核壳结构自修复微球及其制备方法和应用 WO2023065437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111225185.2A CN113880483B (zh) 2021-10-21 2021-10-21 一种多层核壳结构自修复微球及其制备方法和应用
CN202111225185.2 2021-10-21

Publications (1)

Publication Number Publication Date
WO2023065437A1 true WO2023065437A1 (zh) 2023-04-27

Family

ID=79003984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130677 WO2023065437A1 (zh) 2021-10-21 2021-11-15 一种多层核壳结构自修复微球及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113880483B (zh)
WO (1) WO2023065437A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116730677A (zh) * 2023-06-03 2023-09-12 广州市兴耀混凝土有限公司 一种抗渗抗裂混凝土及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349388B (zh) * 2022-01-19 2022-11-29 郑州大学 一种遇水唤醒型自愈合微生物胶囊及其制成的防水材料
CN115432964A (zh) * 2022-09-02 2022-12-06 中建安装集团有限公司 一种裂缝区微环境调控的自修复水泥基材料的制备方法
CN116656215B (zh) * 2023-07-25 2023-10-13 北京科技大学 基于微生物矿化的自修复涂料及其制备方法、使用方法和使用其进行模拟海水修复的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261736A (zh) * 2014-09-15 2015-01-07 东南大学 一种具有深层自修复功能的水泥基材料的制备方法
CN110282903A (zh) * 2019-07-26 2019-09-27 深圳大学 修复混凝土裂缝的微胶囊及其制备方法
WO2019189968A1 (ko) * 2018-03-29 2019-10-03 경기대학교 산학협력단 콘크리트 구조체 균열 보수를 위한 미생물 보수액 주입 방법
CN110386771A (zh) * 2019-06-11 2019-10-29 东南大学 一种混凝土裂缝自修复用内置微生物球形颗粒及其制备方法
CN111056799A (zh) * 2019-12-27 2020-04-24 北京东方雨虹防水技术股份有限公司 具有pH响应性的水凝胶包封细菌芽孢自修复材料及水泥基混凝土自修复方法
CN111718144A (zh) * 2020-06-05 2020-09-29 江苏科技大学 一种水泥基材料添加剂的制备方法及其应用
CN111763498A (zh) * 2020-07-17 2020-10-13 江苏科技大学 一种磁性微球负载微生物强化松散介质抑尘的方法
CN113149496A (zh) * 2020-06-05 2021-07-23 江苏科技大学 一种混凝土自修复材料及其制备方法和具有其的混凝土

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11193054B2 (en) * 2016-09-30 2021-12-07 Baker Hughes, A Ge Company, Llc Biologically mediated precipitation of carbonates for use in oilfield applications
CN206143071U (zh) * 2016-11-06 2017-05-03 济南大学 一种用于持续修复地下工程混凝土裂缝的微生物胶囊

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261736A (zh) * 2014-09-15 2015-01-07 东南大学 一种具有深层自修复功能的水泥基材料的制备方法
WO2019189968A1 (ko) * 2018-03-29 2019-10-03 경기대학교 산학협력단 콘크리트 구조체 균열 보수를 위한 미생물 보수액 주입 방법
CN110386771A (zh) * 2019-06-11 2019-10-29 东南大学 一种混凝土裂缝自修复用内置微生物球形颗粒及其制备方法
CN110282903A (zh) * 2019-07-26 2019-09-27 深圳大学 修复混凝土裂缝的微胶囊及其制备方法
CN111056799A (zh) * 2019-12-27 2020-04-24 北京东方雨虹防水技术股份有限公司 具有pH响应性的水凝胶包封细菌芽孢自修复材料及水泥基混凝土自修复方法
CN111718144A (zh) * 2020-06-05 2020-09-29 江苏科技大学 一种水泥基材料添加剂的制备方法及其应用
CN113149496A (zh) * 2020-06-05 2021-07-23 江苏科技大学 一种混凝土自修复材料及其制备方法和具有其的混凝土
CN111763498A (zh) * 2020-07-17 2020-10-13 江苏科技大学 一种磁性微球负载微生物强化松散介质抑尘的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116730677A (zh) * 2023-06-03 2023-09-12 广州市兴耀混凝土有限公司 一种抗渗抗裂混凝土及其制备方法
CN116730677B (zh) * 2023-06-03 2023-12-22 广州市兴耀混凝土有限公司 一种抗渗抗裂混凝土及其制备方法

Also Published As

Publication number Publication date
CN113880483B (zh) 2022-06-14
CN113880483A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2023065437A1 (zh) 一种多层核壳结构自修复微球及其制备方法和应用
CN106045400B (zh) 使用好氧嗜碱微生物的裂缝自修复混凝土及其制备方法
CN109291549B (zh) 一种轻质高强高韧的发泡陶瓷装饰一体板及其制备方法
US11485685B2 (en) Inorganic fiber toughened inorganic composite artificial stone panel and preparation method thereof
KR102425094B1 (ko) 시멘트계 재료의 제조방법
CN110256023A (zh) 一种抗冻抗渗抗裂型混凝土及其制备方法
CN107628791B (zh) 一种瓷砖填缝剂的制备方法
CN107337400B (zh) 磨细煤气化粗渣水泥基仿古材料及其制备方法和应用
CN110078462A (zh) 建筑用微生物自修复保温砂浆及其制备方法
CN110451877B (zh) 一种建筑垃圾砼-砖混合自修复混凝土及其制备方法
CN112279534A (zh) 一种基于高活性氧化镁粉的镁基复合水泥及其制备方法
CN108203251A (zh) 一种碱激发高炉矿渣胶凝材料及其制备方法
KR102610286B1 (ko) 탄산화 및 염해 저항성이 향상된 균열 자기치유 보수 모르타르의 제조 방법
CN109987912A (zh) 沸石制备铁尾矿干粉砂浆
CN111718144A (zh) 一种水泥基材料添加剂的制备方法及其应用
CN109809753A (zh) 抗裂耐腐蚀无机人造石及其制备方法和应用
CN115477503B (zh) 一种再生环保型混凝土及其制备工艺
CN111732395B (zh) 一种废旧混凝土基再生干粉砌筑砂浆及其制备方法
US20210017770A1 (en) Organic fiber toughened inorganic composite artificial stone panel and preparation method thereof
CN110395884A (zh) 一种仿生自修复混凝土及其制备方法
CN105060817A (zh) 一种用于alc墙板的粘接砂浆
CN202671438U (zh) 一种紧密堆积高性能水泥基纤维复合制品
CN110451876A (zh) 一种建筑垃圾废弃砖为载体的自修复混凝土及其制备方法
CN110002790A (zh) 微生物固体废弃物隔墙板及制造方法
CN112679120B (zh) 一种添加废砖的环保低成本氟铝酸盐水泥制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE