WO2016070671A1 - 一种定位增强的方法及设备 - Google Patents

一种定位增强的方法及设备 Download PDF

Info

Publication number
WO2016070671A1
WO2016070671A1 PCT/CN2015/087683 CN2015087683W WO2016070671A1 WO 2016070671 A1 WO2016070671 A1 WO 2016070671A1 CN 2015087683 W CN2015087683 W CN 2015087683W WO 2016070671 A1 WO2016070671 A1 WO 2016070671A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
information
communication node
reference signal
positioning reference
Prior art date
Application number
PCT/CN2015/087683
Other languages
English (en)
French (fr)
Inventor
鲁照华
戴博
陈诗军
李永
刘锟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/522,289 priority Critical patent/US20170332342A1/en
Priority to EP15858065.4A priority patent/EP3203791A4/en
Publication of WO2016070671A1 publication Critical patent/WO2016070671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0242Determining the position of transmitters to be subsequently used in positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • H04L1/0081Formats specially adapted to avoid errors in the feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • H04L1/0082Formats for control data fields explicitly indicating existence of error in data being transmitted, e.g. so that downstream stations can avoid decoding erroneous packet; relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0604Management of faults, events, alarms or notifications using filtering, e.g. reduction of information by using priority, element types, position or time
    • H04L41/0618Management of faults, events, alarms or notifications using filtering, e.g. reduction of information by using priority, element types, position or time based on the physical or logical position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0872Generation of secret information including derivation or calculation of cryptographic keys or passwords using geo-location information, e.g. location data, time, relative position or proximity to other entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This document relates to, but is not limited to, the field of positioning, and in particular, to a method and apparatus for positioning enhancement.
  • the GPS positioning technology weakens the indoor signal, so that the positioning terminal cannot search for enough stars. Because of the large positioning error, the cellular network system cannot achieve sufficient accuracy both outdoors and indoors. Increased positioning accuracy requirements.
  • the usual way is to establish a wireless positioning system on the ground, and each positioning signal station is arranged in the near ground, and there are various positioning methods, such as a terrestrial pseudo-satellite system using a satellite system, a wireless local area network system, etc., among which
  • the ground pseudo-satellite system requires the mobile phone to handle the coexistence of terrestrial satellites and space satellite signals, and imposes great requirements on its dynamic range.
  • the wireless local area network mainly adopts the signal strength-based ranging method, and the positioning accuracy is heavily dependent on the network density of the layout.
  • Embodiments of the present invention provide a positioning enhancement scheme, which can help a positioning system according to an actual ring.
  • the environment factor changes adaptively adjusts the positioning scheme to improve the positioning accuracy.
  • An embodiment of the present invention provides a method for positioning enhancement, including:
  • the first communication node acquires the adjusted positioning solution information, where the adjusted positioning solution information includes at least one of the following: a positioning error information indicating a positioning error of the second communication node, and a positioning mode adjustment indication information;
  • the first communication node adjusts a positioning scheme.
  • the adjusting, by the first communications node, the positioning scheme includes:
  • the first communication node adjusts the positioning scheme according to the adjusted positioning scheme information.
  • the adjusted positioning scheme information is generated by the second communications node, or generated by an upper layer network element of the first communications node, or generated by the first communications node.
  • the second communication node that generates the positioning solution information, or the upper layer network element, or the first communication node knows the actual geographic location of the second communication node
  • the obtaining, by the first communications node, the adjusted positioning scheme information includes:
  • the second communication node or the upper layer network element generates the adjustment by comparing an actual geographic location of the second communication node with a calculated location of the second communication node, when an error between the two is greater than a predetermined range Locating scheme information and transmitting to the first communication node;
  • the first communication node generates the adjusted positioning scheme information by comparing an actual geographic location of the second communication node with a calculated location of the second communication node, when an error of the two is greater than a predetermined range.
  • the method before the acquiring, by the first communications node, the adjusted positioning solution information, the method further includes:
  • the first communication node sends a first positioning reference signal.
  • the method before the acquiring, by the first communications node, the adjusted positioning solution information, the method further includes:
  • the first communication node or an upper node of the first communication node obtains a calculation location of the second communication node according to the information used to locate the location of the second communication node.
  • the adjusting, by the first communications node, the positioning scheme includes:
  • the first communication node increases the transmission density of the first positioning reference signal according to the adjusted positioning scheme information.
  • the adjusting, by the first communications node, the positioning scheme includes:
  • the first communication node increases the first positioning reference signal transmission power according to the adjusted positioning scheme information.
  • the adjusting, by the first communications node, the positioning scheme includes:
  • the first communication node sends a second positioning reference signal according to the adjusted positioning scheme information.
  • the second positioning reference signal is generated in a different manner than the first positioning reference signal.
  • the set of subframes that are allowed to be sent by the second positioning reference signal is different from the set of subframes that allow the first positioning reference signal to be sent.
  • the sub-carrier used for transmitting the second positioning reference signal is different from the sub-carrier used for transmitting the first positioning reference signal.
  • the used physical resource blocks are different.
  • the first positioning reference signal is a positioning reference signal in an existing standard of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the adjusting, by the first communications node, the positioning scheme includes:
  • the first communication node sends the correction information according to the adjusted positioning scheme information.
  • the correction information is generated based on the positioning error information in the adjusted positioning solution information.
  • the adjusting, by the first communications node, the positioning scheme includes:
  • the first communication node sends, according to the adjusted positioning scheme information, positioning manner indication information used to indicate that the second communications node uses the specified positioning manner.
  • the embodiment of the invention further provides a method for positioning enhancement, comprising:
  • the third communication node receives the positioning information sent by the first communication node, where the positioning information is obtained by the first communication node according to the obtained adjusted positioning solution information, and the positioning location is adjusted.
  • the case information includes at least one of the following: positioning error information, positioning mode adjustment indication information;
  • the third communication node acquires information indicating a location of the third communication node.
  • the acquiring, by the third communications node, the information indicating the location of the third communications node includes:
  • the third communication node acquires information indicating a location of the third communication node according to the positioning information.
  • the adjusted positioning scheme information is generated by the second communication node, or generated by an upper layer network element of the first communication node, or generated by the first communication node.
  • the second communication node that generates the positioning solution information, or the upper layer network element, or the first communication node knows the actual geographic location of the second communication node; When the error between the actual geographic location of the second communication node and the calculated location of the second communication node is greater than a predetermined range, the adjusted positioning scheme information is generated.
  • the positioning information is the first positioning reference signal with a higher density.
  • the positioning information is the first positioning reference signal sending power with higher power.
  • the positioning information is a second positioning reference signal.
  • the second positioning reference signal is generated in a different manner than the first positioning reference signal.
  • the set of subframes in the long-term evolution frame that allows the second positioning reference signal to be transmitted is different from the subframe set that allows the first positioning reference signal to be transmitted.
  • the sub-carrier carrying the second positioning reference signal is different from the sub-carrier carrying the first positioning reference signal.
  • the used physical resource blocks are different.
  • the first positioning reference signal is a positioning reference signal in an existing standard of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the positioning information is correction information; and the correction information is generated based on the positioning error information in the adjusted positioning solution information.
  • the positioning information is used to indicate that the third communications node uses the specified positioning mode.
  • the location method indication information is used to indicate that the third communications node uses the specified positioning mode.
  • the information indicating the location of the third communication node includes at least one of the following:
  • the positioning reference signal strength indication information measured by the third communication node is the positioning reference signal strength indication information measured by the third communication node
  • the positioning location information calculated by the third communication node is calculated by the third communication node
  • the third communication node and the second communication node are the same communication node.
  • the embodiment of the present invention further provides a device for positioning enhancement, which is disposed in the first communication node, and includes:
  • the obtaining module is configured to obtain the adjusted positioning solution information, where the adjusted positioning solution information includes at least one of the following: a positioning error information indicating a positioning error of the second communication node, and a positioning mode adjustment indication information;
  • the adjusting module adjusts the positioning scheme to:
  • the adjustment module adjusts the positioning scheme according to the adjusted positioning scheme information.
  • the adjusted positioning scheme information is generated by the second communications node, or generated by an upper layer network element of the first communications node, or generated by the acquiring module.
  • the second communication node that generates the positioning solution information, or the upper layer network element, or the acquisition module knows the actual geographic location of the second communication node
  • the obtaining module obtaining the adjusted positioning solution information refers to:
  • the obtaining module receives the adjusted positioning scheme information from the second communications node or the upper layer network element; the second communications node or the upper layer network element compares actual geographic locations of the second communications node And calculating a location of the second communication node, when the error of the two is greater than a predetermined range, generating the adjusted positioning solution information;
  • the obtaining module generates the adjusted positioning scheme information by comparing an actual geographic location of the second communication node with a calculated location of the second communication node, when an error of the two is greater than a predetermined range.
  • the acquiring module is further configured to send the first positioning reference signal.
  • the method before the acquiring, by the first communications node, the adjusted positioning solution information, the method further includes:
  • the acquiring module is further configured to: before the acquiring the positioning information about the adjustment, receive, by the second communication node, the second communication node, by using the first positioning reference signal, to locate the second communication Information of the node location; obtaining a calculated location of the second communication node according to the information for locating the location of the second communication node.
  • the adjusting module adjusts the positioning scheme to:
  • the adjusting module increases the transmission density of the first positioning reference signal according to the adjusted positioning scheme information.
  • the adjusting module adjusts the positioning scheme to:
  • the adjusting module increases the first positioning reference signal sending power according to the adjusted positioning scheme information.
  • the adjusting module adjusts the positioning scheme to:
  • the adjusting module sends a second positioning reference signal according to the adjusted positioning scheme information.
  • the second positioning reference signal is generated in a different manner than the first positioning reference signal.
  • the set of subframes that are allowed to be sent by the second positioning reference signal is different from the set of subframes that allow the first positioning reference signal to be sent.
  • the sub-carrier used for transmitting the second positioning reference signal is different from the sub-carrier used for transmitting the first positioning reference signal.
  • the used physical resource blocks are different.
  • the first positioning reference signal is a positioning reference signal in an existing standard of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the adjusting module adjusts the positioning scheme to:
  • the adjustment module sends the correction information according to the adjusted positioning scheme information.
  • the adjustment module generates the correction information based on the positioning error information in the adjusted positioning solution information.
  • the adjusting module adjusts the positioning scheme to:
  • the adjusting module sends, according to the adjusted positioning scheme information, positioning manner indication information used to indicate that the second communications node uses the specified positioning manner.
  • the embodiment of the invention further provides a device for positioning enhancement, which is disposed in the third communication node, and includes:
  • the receiving module is configured to receive the positioning information sent by the first communications node, where the positioning information is obtained by the first communications node according to the obtained adjusted positioning scheme information, where the adjusted positioning scheme information includes at least one of the following: Positioning error information, positioning mode adjustment indication information;
  • the information acquisition module is configured to acquire information indicating a location of the third communication node.
  • the obtaining, by the information acquiring module, the information indicating the location of the third communications node is:
  • the information acquiring module acquires information indicating a location of the third communication node according to the positioning information.
  • the adjusted positioning scheme information is generated by the second communication node, or generated by an upper layer network element of the first communication node, or generated by the first communication node.
  • the second communication node that generates the positioning solution information, or the upper layer network element, or the first communication node knows the actual geographic location of the second communication node; When the error between the actual geographic location of the second communication node and the calculated location of the second communication node is greater than a predetermined range, the adjusted positioning scheme information is generated.
  • the positioning information is the first positioning reference signal with a higher density.
  • the positioning information is the first positioning reference signal sending power with higher power.
  • the positioning information is a second positioning reference signal.
  • the second positioning reference signal is generated in a different manner than the first positioning reference signal.
  • the set of subframes in the long-term evolution frame that allows the second positioning reference signal to be transmitted is different from the subframe set that allows the first positioning reference signal to be transmitted.
  • the sub-carrier carrying the second positioning reference signal is different from the sub-carrier carrying the first positioning reference signal.
  • the used physical resource blocks are different.
  • the first positioning reference signal is a positioning reference signal in an existing standard of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the positioning information is correction information; and the correction information is generated based on the positioning error information in the adjusted positioning solution information.
  • the positioning information is positioning manner indication information used to indicate that the third communications node uses a specified positioning manner.
  • the information indicating the location of the third communication node includes at least one of the following:
  • the positioning reference signal strength indication information measured by the third communication node is the positioning reference signal strength indication information measured by the third communication node
  • the positioning location information calculated by the third communication node is calculated by the third communication node
  • the third communication node and the second communication node are the same communication node.
  • the embodiment of the invention provides a positioning enhancement scheme, which can help the positioning system adaptively adjust the positioning scheme according to actual environmental factors and improve the positioning precision, so that a better location-based service can be provided on this basis.
  • FIG. 1 is a schematic flow chart of a method for positioning enhancement according to Embodiment 1;
  • Embodiment 2 is a schematic flow chart of Embodiment 1;
  • Embodiment 3 is a schematic flow chart of Embodiment 2;
  • Embodiment 4 is a schematic flow chart of Embodiment 3.
  • Figure 5 is a schematic flow chart of Embodiment 6
  • Embodiment 8 is a schematic flow chart of Embodiment 8.
  • Figure 7 is a schematic flow chart of Embodiment 13;
  • Embodiment 16 is a schematic flow chart of Embodiment 16.
  • FIG. 9 is a structural diagram of a device for positioning enhancement in Embodiment 3.
  • Fig. 10 is a structural diagram of an apparatus for positioning enhancement in the fourth embodiment.
  • Embodiment 1 a method for positioning enhancement, as shown in FIG. 1, includes:
  • Step 101 The first communication node acquires the adjusted positioning scheme information, where the adjusted positioning scheme information includes at least one of the following: a positioning error information indicating a positioning error of the second communication node, and a positioning mode adjustment indication information;
  • Step 102 The first communication node adjusts a positioning scheme.
  • the first communication node may be, but not limited to, a base station
  • the second communication node may be, but is not limited to, a terminal; this embodiment is a workflow on the base station side.
  • the adjusting, by the first communications node, the positioning scheme may include:
  • the first communication node adjusts the positioning scheme according to the adjusted positioning scheme information.
  • the adjusted positioning scheme information is generated by the second communications node, or generated by an upper layer network element of the first communications node, or generated by the first communications node.
  • generating the second communication node that adjusts the positioning solution information, or the upper layer The network element, or the first communication node, knows the actual geographic location of the second communication node;
  • the obtaining, by the first communications node, the adjusted positioning scheme information includes:
  • the second communication node or the upper layer network element generates the adjustment by comparing an actual geographic location of the second communication node with a calculated location of the second communication node, when an error between the two is greater than a predetermined range Locating scheme information and transmitting to the first communication node;
  • the first communication node generates the adjusted positioning scheme information by comparing an actual geographic location of the second communication node with a calculated location of the second communication node, when an error of the two is greater than a predetermined range.
  • the first communications node before the acquiring, by the first communications node, the positioning information, the first communications node sends the first positioning reference signal.
  • the first communications node before the acquiring, by the first communications node, the positioning information, receives, by the second communications node, the second communications node, by using the first positioning reference signal. Generating information for locating the location of the second communication node;
  • the first communication node or an upper node of the first communication node obtains a calculation location of the second communication node according to the information used to locate the location of the second communication node.
  • the computing location of the second communications node may be calculated by the second communications node according to the first positioning indication information.
  • the first communication node adjusting the positioning scheme includes: the first communications node increases a transmission density of the first positioning reference signal according to the adjusted positioning scheme information.
  • the first communication node adjusting the positioning scheme includes: the first communications node increases the first positioning reference signal sending power according to the adjusted positioning scheme information.
  • the first communication node adjusts the positioning scheme, where the first communications node sends the second positioning reference signal according to the adjusted positioning scheme information.
  • the second positioning reference signal is generated in a different manner from the first positioning reference signal.
  • the subframe set that allows the second positioning reference signal to be transmitted is different from the subframe set that allows the first positioning reference signal to be sent in a long-term evolution frame.
  • the subcarrier used is different from the subcarrier used to transmit the first positioning reference signal.
  • the second positioning reference signal and the first positioning reference signal are sent in the same subframe of the Long Term Evolution frame, they use different physical resource blocks.
  • the first positioning reference signal is a positioning reference signal in an existing standard of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the first communication node adjusts the positioning scheme, where the first communications node sends the correction information according to the adjusted positioning scheme information.
  • the correction information is generated based on the positioning error information in the adjusted positioning solution information.
  • the communication node that receives the correction information acquires information about the location of the communication node according to the correction information.
  • the first communication node adjusts the positioning scheme, and the first communications node sends, according to the adjusted positioning scheme information, positioning manner indication information used to indicate that the second communications node uses the specified positioning manner.
  • the communication node that receives the positioning mode indication information performs positioning according to the manner indicated by the positioning mode indication information.
  • Embodiment 2 a method for positioning enhancement, comprising:
  • the third communication node receives the positioning information sent by the first communication node, where the positioning information is obtained by the first communication node according to the obtained adjusted positioning solution information, and the adjusted positioning solution information includes at least one of the following: Error information, positioning mode adjustment indication information;
  • the third communication node acquires information indicating a location of the third communication node.
  • the third communication node may be, but not limited to, a terminal, and the present embodiment is a workflow on the terminal side.
  • the acquiring, by the third communications node, the information indicating the location of the third communications node may include:
  • the third communication node acquires information indicating a location of the third communication node according to the positioning information.
  • the adjusted positioning scheme information is generated by the second communication node, or generated by an upper layer network element of the first communication node, or generated by the first communication node.
  • the second communication node that generates the positioning solution information, or the upper layer network element, or the first communication node knows the actual geographic location of the second communication node; When the error between the actual geographic location of the second communication node and the calculated location of the second communication node is greater than a predetermined range, the adjusted positioning scheme information is generated.
  • the first communications node sends the first positioning reference signal before the first communications node acquires the adjusted positioning scheme information.
  • the second communication node acquires information for locating its own location by using the first positioning reference signal, and feeds back the information to the first communication node.
  • the positioning information is the first positioning reference signal with a higher density.
  • the positioning information is the first positioning reference signal sending power with higher power.
  • the positioning information is a second positioning reference signal.
  • the second positioning reference signal is generated in a different manner from the first positioning reference signal.
  • the subframe set that allows the second positioning reference signal to be transmitted in a long-term evolution frame is different from the subframe set that allows the first positioning reference signal to be transmitted.
  • the subcarrier carrying the second positioning reference signal is different from the subcarrier carrying the first positioning reference signal in a physical resource block in a long term evolution frame.
  • the second positioning reference signal and the first positioning reference signal are carried in the same subframe of the Long Term Evolution frame, they use different physical resource blocks.
  • the first positioning reference signal is a positioning reference signal in an existing standard of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the positioning information is correction information; and the correction information is generated based on the positioning error information in the adjusted positioning solution information.
  • the positioning information is positioning manner indication information used to indicate that the third communications node uses a specified positioning manner.
  • the information indicating the location of the third communication node is information related to the location of the third communication node, and includes at least one of the following:
  • the positioning reference signal strength indication information measured by the third communication node is the positioning reference signal strength indication information measured by the third communication node
  • the positioning location information calculated by the third communication node is calculated by the third communication node
  • the third communication node and the second communication node may be the same communication node.
  • Embodiment 3 a positioning enhanced device, is disposed in the first communication node, and includes:
  • the obtaining module 30 is configured to obtain the adjusted positioning solution information, where the adjusted positioning solution information includes at least one of the following: a positioning error information indicating a positioning error of the second communication node, and a positioning mode adjustment indication information;
  • the adjustment module 31 is arranged to adjust the positioning scheme.
  • the first communication node may be, but is not limited to, a base station, and the second communication node may be, but not limited to, a terminal.
  • the adjusting module 31 adjusts the positioning scheme to:
  • the adjusting module 31 adjusts the positioning scheme according to the adjusted positioning scheme information.
  • the adjusted positioning scheme information is generated by the second communications node, or generated by an upper layer network element of the first communications node, or generated by the acquiring module 30.
  • the second communication node that generates the positioning solution information, or the upper layer network element, or the first communication node knows the actual geographic location of the second communication node
  • the obtaining the adjustment positioning solution information by the obtaining module 30 refers to:
  • the obtaining module 30 receives the adjusted positioning scheme information from the second communications node or the upper layer network element; the second communications node or the upper layer network element compares actual geographical locations of the second communications node a location and a calculated location of the second communication node, when the error of the two is greater than a predetermined range, generating the adjusted positioning scheme information;
  • the obtaining module 30 generates the adjustment by comparing the actual geographic location of the second communication node with the calculated location of the second communication node, when the error of the two is greater than a predetermined range. Bit scheme information.
  • the obtaining module 30 is further configured to send the first positioning reference signal.
  • the method before the acquiring, by the first communications node, the adjusted positioning solution information, the method further includes:
  • the acquiring module 30 is further configured to: before the acquiring the positioning information about the positioning, receive, by the second communications node, the second communications node, by using the first positioning reference signal, to locate the second Information of the location of the communication node; obtaining a calculated location of the second communication node based on the information for locating the location of the second communication node.
  • the adjusting module 31 adjusts the positioning scheme to:
  • the adjusting module 31 increases the transmission density of the first positioning reference signal according to the adjusted positioning scheme information.
  • the adjusting module 31 adjusts the positioning scheme to:
  • the adjusting module 31 increases the first positioning reference signal sending power according to the adjusted positioning scheme information.
  • the adjusting module 31 adjusts the positioning scheme to:
  • the adjusting module 31 sends a second positioning reference signal according to the adjusted positioning scheme information.
  • the second positioning reference signal is generated in a different manner than the first positioning reference signal.
  • the set of subframes that are allowed to be sent by the second positioning reference signal is different from the set of subframes that allow the first positioning reference signal to be sent.
  • the sub-carrier used for transmitting the second positioning reference signal is different from the sub-carrier used for transmitting the first positioning reference signal.
  • the used physical resource blocks are different.
  • the first positioning reference signal is a positioning reference signal in an existing standard of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the adjusting module 31 adjusts the positioning scheme to:
  • the adjustment module 31 sends the correction information according to the adjusted positioning scheme information.
  • the adjusting module 31 is configured to adjust the positioning error in the positioning solution information.
  • the information generates the correction information.
  • the adjusting module 31 adjusts the positioning scheme to:
  • the adjusting module 31 sends, according to the adjusted positioning scheme information, positioning manner indication information used to indicate that the second communications node uses the specified positioning mode.
  • Embodiment 4 A device for positioning enhancement is disposed in a third communication node, including:
  • the receiving module 40 is configured to receive the positioning information sent by the first communications node, where the positioning information is obtained by the first communications node according to the obtained adjusted positioning scheme information, where the adjusted positioning scheme information includes at least one of the following : positioning error information, positioning mode adjustment indication information;
  • the information acquisition module 41 is configured to acquire information indicating a location of the third communication node.
  • the information acquiring, by the information acquiring module 41, the location of the third communications node is:
  • the information acquiring module 41 acquires information indicating a location of the third communication node according to the positioning information.
  • the adjusted positioning scheme information is generated by the second communication node, or generated by an upper layer network element of the first communication node, or generated by the first communication node.
  • the second communication node that generates the positioning solution information, or the upper layer network element, or the first communication node knows the actual geographic location of the second communication node; When the error between the actual geographic location of the second communication node and the calculated location of the second communication node is greater than a predetermined range, the adjusted positioning scheme information is generated.
  • the positioning information is the first positioning reference signal with a higher density.
  • the positioning information is the first positioning reference signal sending power with higher power.
  • the positioning information is a second positioning reference signal.
  • the second positioning reference signal is generated in a different manner than the first positioning reference signal.
  • the set of subframes in the long-term evolution frame that allows the second positioning reference signal to be transmitted is different from the subframe set that allows the first positioning reference signal to be transmitted.
  • the second positioning reference signal is carried in a physical resource block in a long-term evolution frame.
  • the subcarrier of the number is different from the subcarrier carrying the first positioning reference signal.
  • the used physical resource blocks are different.
  • the first positioning reference signal is a positioning reference signal in an existing standard of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the positioning information is correction information; and the correction information is generated based on the positioning error information in the adjusted positioning solution information.
  • the positioning information is positioning manner indication information used to indicate that the third communications node uses a specified positioning manner.
  • the information indicating the location of the third communication node includes at least one of the following:
  • the positioning reference signal strength indication information measured by the third communication node is the positioning reference signal strength indication information measured by the third communication node
  • the positioning location information calculated by the third communication node is calculated by the third communication node
  • the third communication node and the second communication node are the same communication node.
  • Embodiment 1 is as follows: wherein the base station is the first communication node, and the terminal is the second communication node:
  • the base station sends a first positioning reference signal.
  • the first positioning reference signal is a positioning reference signal of an existing LTE standard (TS 36.211 v920).
  • a terminal that knows its own precise position ie, actual geographic location calculates a position (referred to as a calculated position) based on the first positioning reference signal.
  • the terminal sends the adjusted positioning solution information to the base station, wherein the adjusted positioning solution information includes at least One of the following: positioning error information indicating the positioning error of the terminal, and positioning mode adjustment indication information.
  • the base station adjusts the positioning scheme according to the adjusted positioning scheme information.
  • the base station sends a first positioning reference signal.
  • the first positioning reference signal is a positioning reference signal of an existing standard of LTE.
  • the terminal calculates a position (referred to as a calculation position) according to the first positioning reference signal.
  • the terminal transmits the calculated location to the base station.
  • the base station knows the precise location of the terminal, compares the precise location with the calculated location, and obtains positioning error information. If the error (positioning error) of the two is relatively large, for example, the horizontal or vertical distance does not meet the system requirements. The positioning accuracy is adjusted by the base station according to the positioning error information.
  • the base station sends a first positioning reference signal.
  • the first positioning reference signal is a positioning reference signal of an existing standard of LTE.
  • the terminal calculates a position (referred to as a calculation position) according to the first positioning reference signal.
  • the terminal transmits the calculated location to the base station.
  • the upper layer network element of the base station knows the precise location information of the terminal, compares the precise location with the calculated location, and obtains positioning error information. If the errors of the two are relatively large, for example, the horizontal or vertical distance does not meet the system requirements. For the accuracy, the upper layer network element sends the adjusted positioning scheme information to the base station, where the adjusted positioning scheme information includes at least one of the following: the positioning error information indicating the positioning error of the terminal, and the positioning mode adjustment indication information.
  • the base station adjusts the positioning scheme according to the adjusted positioning scheme information.
  • the base station sends a first positioning reference signal.
  • the first positioning reference signal is a positioning reference signal of an existing standard of LTE.
  • the terminal calculates, according to the first positioning reference signal, information for locating its own position, for example, a time difference of arrival or an arrival time of the first positioning reference signal sent by different base stations.
  • the terminal sends the information for locating its own location to the base station, and the base station calculates the location of the terminal (becomes a computing location) based on the information.
  • the base station knows the precise location of the terminal, compares the precise location of the terminal with the calculated location, and obtains positioning error information. If the error of the two is relatively large, for example, the horizontal or vertical distance does not meet the positioning accuracy required by the system, then The base station adjusts the positioning scheme according to the positioning error information.
  • the base station sends a first positioning reference signal.
  • the first positioning reference signal is a positioning reference signal of an existing standard of LTE.
  • the terminal calculates, according to the first positioning reference signal, information for locating its own position, for example, a time difference of arrival or an arrival time of the first positioning reference signal sent by different base stations.
  • the terminal sends the information for locating its own location to the base station, and the upper-layer network element of the base station calculates the location of the terminal (becomes a computing location) according to the information, and the upper-layer network element knows the precise location of the terminal, and the The precise position and the calculated position of the terminal are compared to obtain the positioning error information. If the error between the two is relatively large, for example, the horizontal or vertical distance does not meet the positioning accuracy required by the system, the upper network element sends the adjusted positioning scheme information to the base station, preferably
  • the adjustment positioning solution information includes at least one of the following: a positioning error information indicating a positioning error of the terminal, and a positioning mode adjustment indication information.
  • the base station adjusts the positioning scheme according to the adjusted positioning scheme information.
  • the base station can compare the precise position and the calculated position by itself, and generate the adjusted positioning mode information when the positioning error is greater than the predetermined range, and can also be compared by the upper layer network element of the terminal or the base station.
  • the adjusted positioning mode information is generated and sent to the base station.
  • the calculating location may be calculated by the terminal according to the first positioning indication information sent by the base station. Then, the terminal may calculate information for locating its own location according to the first positioning reference signal, and then send the information to the base station, where the calculated location is obtained by the base station or its upper network element.
  • the base station sends a first positioning reference signal (referred to as a positioning reference signal A).
  • a positioning reference signal A is a positioning reference signal of an existing standard of LTE.
  • the base station obtains the information about the positioning scheme, and the information about the positioning scheme may be sent by the terminal to the base station, or may be sent by the upper layer network element to the base station, or obtained by the base station according to the existing information.
  • the base station sends the first positioning reference signal (referred to as the positioning reference signal B) again, and the transmission density of the positioning reference signal B in the time domain and/or the frequency domain is greater than the positioning reference signal A.
  • the base station sends a first positioning reference signal (referred to as a positioning reference signal A).
  • a positioning reference signal A is a positioning reference signal of an existing standard of LTE.
  • the base station obtains the information about the positioning scheme, and the information about the positioning scheme may be sent by the terminal to the base station, or may be sent by the upper layer network element to the base station, or obtained by the base station according to the existing information.
  • the base station sends the first positioning reference signal (referred to as the positioning reference signal B) again, and the transmission power of the positioning reference signal B is greater than the positioning reference signal A.
  • the base station obtains the information about the positioning scheme, and the information about the positioning scheme may be sent by the terminal to the base station, or may be sent by the upper layer network element to the base station, or obtained by the base station according to the existing information.
  • the base station sends a second positioning reference signal, and the sequence of the second positioning reference signal is generated differently from the first positioning reference signal.
  • the first positioning reference signal is a positioning reference signal of an existing standard of LTE.
  • the second positioning reference signal is a new positioning reference signal proposed by the embodiment of the present invention.
  • the base station obtains the information about the positioning scheme, and the information about the positioning scheme may be sent by the terminal to the base station, or may be sent by the upper layer network element to the base station, or obtained by the base station according to the existing information.
  • the base station sends a second positioning reference signal, where the set of subframes in the long-term evolution frame that allows the second positioning reference signal to be transmitted is the same as the subframe set that allows the first positioning reference signal to be sent.
  • the first positioning reference signal is LTE existing standard positioning reference signal.
  • the base station obtains the information about the positioning scheme, and the information about the positioning scheme may be sent by the terminal to the base station, or may be sent by the upper layer network element to the base station, or obtained by the base station according to the existing information.
  • the base station sends a second positioning reference signal, where the set of subframes that allow the second positioning reference signal to be transmitted in a long-term evolution frame is different from the subframe set that allows the first positioning reference signal to be sent.
  • the first positioning reference signal is LTE existing standard positioning reference signal.
  • the base station obtains the information about the positioning scheme, and the information about the positioning scheme may be sent by the terminal to the base station, or may be sent by the upper layer network element to the base station, or obtained by the base station according to the existing information.
  • the base station sends a second positioning reference signal, where the subcarrier used for transmitting the second positioning reference signal is different from the subcarrier used for transmitting the first positioning reference signal, in the physical resource block in a long term evolution frame, optionally, the A positioning reference signal is a positioning reference signal of an existing standard of LTE.
  • the base station obtains the information about the positioning scheme, and the information about the positioning scheme may be sent by the terminal to the base station, or may be sent by the upper layer network element to the base station, or obtained by the base station according to the existing information.
  • the base station sends a second positioning reference signal, when the second positioning reference signal and the first positioning reference signal are sent in the same subframe of the long term evolution frame, the physical resource blocks they use are different, and optionally, the first positioning reference
  • the signal is a positioning reference signal of the existing standard of LTE.
  • the base station obtains the information about the positioning scheme, and the information about the positioning scheme may be sent by the terminal to the base station, or may be sent by the upper layer network element to the base station, or obtained by the base station according to the existing information.
  • the base station transmits the correction information.
  • the terminal to be located After receiving the correction information, the terminal to be located needs to consider the above when calculating its own location. Correction information.
  • the base station obtains the information about the positioning scheme, and the information about the positioning scheme may be sent by the terminal to the base station, or may be sent by the upper layer network element to the base station, or obtained by the base station according to the existing information.
  • the base station sends the location mode indication information, for example, indicating that the terminal to be located changes from the measurement time difference of the positioning reference signal to the measurement signal reception strength, or changes the positioning reference signal sent by the measurement base station to another positioning system (for example, a satellite positioning system, a professional ground)
  • the positioning reference signal transmitted by the positioning system or the like, or the terminal is required to feed back more content related to the position information, such as position information acquired from other positioning methods, or content related to the position information with less quantization error.
  • the base station when the terminal accesses the network, the base station can learn the positioning mode (for example, the positioning mode A and the positioning mode B) that the terminal can support according to the parameter information (for example, the capability level information) of the terminal.
  • the base station can provide a positioning service for the terminal according to the positioning mode and the positioning accuracy that the terminal can support, and send the positioning mode indication information to enable the terminal to use the selected positioning mode for positioning.
  • the solution for adjusting the positioning mode by the base station includes: adjusting the transmission power/density of the first positioning reference information; or transmitting the second positioning reference information; or sending the correction information; or sending the positioning. Mode indication information.
  • the terminal to be located acquires the adjusted positioning scheme information, and sends the adjusted positioning scheme information to the base station.
  • Embodiment 2 is as follows: wherein the base station is the first communication node, the terminal B is the second communication node, and the terminal A is the third communication node:
  • the terminal A receives the positioning information sent by the base station, and the positioning information is obtained by the base station according to the obtained adjusted positioning scheme information, and the adjusted positioning scheme information includes at least one of the following: The positioning error information of the positioning error of the terminal B (the reference terminal whose precise position is known by the system) and the positioning mode adjustment indication information.
  • the adjusted positioning solution information is generated by comparing the calculated position obtained by the terminal B by using the first positioning reference information provided by the base station with its own precise position, and finding that the positioning error does not meet the positioning accuracy requirement (the positioning error is greater than a predetermined range) .
  • the terminal A acquires information indicating its own location according to the positioning information.
  • the terminal A and the terminal B may also be the same terminal.
  • the terminal A receives the positioning information sent by the base station, and the positioning information is obtained by the base station according to the obtained adjusted positioning scheme information, and the adjusted positioning scheme information includes at least one of the following: indicating that the terminal B (the reference terminal whose exact position is known by the system) is located. Position error information of the error, positioning mode adjustment indication information.
  • the adjusted positioning scheme information is generated by the upper layer network element of the base station comparing the precise location of the terminal B with the calculated location of the terminal B, and finding that the positioning error does not meet the positioning accuracy requirement.
  • the terminal A acquires information indicating its own location according to the positioning information.
  • the terminal A and the terminal B may also be the same terminal.
  • the terminal A receives the positioning information sent by the base station, and the positioning information is obtained by the base station according to the obtained adjusted positioning scheme information, and the adjusted positioning scheme information includes at least one of the following: indicating that the terminal B (the reference terminal whose exact position is known by the system) is located. Position error information of the error, positioning mode adjustment indication information.
  • the adjusted positioning scheme information is generated by the base station comparing the precise location of the terminal B with the calculated location of the terminal B, and finding that the positioning error does not meet the positioning accuracy requirement.
  • the terminal A acquires information indicating its own location according to the positioning information.
  • the terminal A and the terminal B may also be the same terminal.
  • the terminal A receives the positioning information sent by the base station, and the positioning information is a first positioning reference signal that is larger than the transmission density of the first positioning reference signal (the positioning reference signal A) transmitted by the base station in the time domain and/or the frequency domain.
  • Positioning the reference signal B optionally, the first positioning reference signal is a positioning reference signal of an existing standard of LTE.
  • the terminal A acquires information indicating its own position based on the density reference positioning signal B.
  • the terminal A receives the positioning information sent by the base station, where the positioning information is a first positioning reference signal (the positioning reference signal B) that is higher than the power of the first positioning reference signal (the positioning reference signal A) sent by the base station.
  • the positioning reference signal B is a positioning reference signal of an existing standard of LTE.
  • the terminal A acquires information indicating its own position based on the higher-position positioning reference signal B.
  • the terminal A receives the positioning information sent by the base station, and the positioning information is a second positioning reference signal.
  • the sequence of the second positioning reference signal is different from the first positioning reference signal.
  • the first positioning reference signal is an existing LTE positioning signal. Standard positioning reference signal.
  • the terminal A acquires information indicating its own location based on the second positioning reference signal.
  • the terminal A receives the positioning information sent by the base station, and the positioning information is a second positioning reference signal.
  • the subframe set that allows the second positioning reference signal to be transmitted in a long-term evolution frame is different from the subframe set that allows the first positioning reference signal to be sent.
  • the first positioning reference signal is a positioning reference signal of an existing standard of LTE.
  • the terminal A acquires information indicating its own location based on the second positioning reference signal.
  • the terminal A receives the positioning information sent by the base station, and the positioning information is the second positioning reference signal.
  • the sub-carrier used for transmitting the second positioning reference signal is different from the sub-carrier used for transmitting the first positioning reference signal.
  • the carrier, optionally, the first positioning reference signal is a positioning reference signal of an existing standard of LTE.
  • the terminal A acquires information indicating its own location based on the second positioning reference signal.
  • the terminal A receives the positioning information sent by the base station, and the positioning information is a second positioning reference signal.
  • the second positioning reference signal and the first positioning reference signal are sent in the same subframe of the long-term evolution frame, the physical resource blocks used by the second positioning reference signal are different.
  • the first positioning reference signal is an existing LTE standard Quasi-positioning reference signal.
  • the terminal A acquires information indicating its own location based on the second positioning reference signal.
  • the terminal A receives the positioning information sent by the base station, where the positioning information is the second positioning reference signal, and the second positioning reference signal is different from the time-frequency resource used by the first positioning reference signal.
  • the first positioning reference signal is LTE.
  • the terminal A acquires information indicating its own location based on the second positioning reference signal.
  • the terminal A receives the positioning information sent by the base station, and the positioning information is the correction information sent by the base station.
  • the terminal A acquires information indicating the location of the terminal based on the correction information, for example, the calculated position (x, y, z) of the terminal A is calculated based on the positioning reference signal sent by the base station, and then adds the correction information (dx) based on the calculated position. , dy, dz), the final position is obtained as (x, y, z) + alpha * (dx, dy, dz), where alpha can be determined by terminal A or notified to terminal A by the base station.
  • the terminal A receives the positioning information sent by the base station, and the positioning information is the positioning mode indication information, for example, indicating that the terminal A to be located changes from the measurement time difference of the positioning reference signal to the measurement signal receiving strength, or changes the positioning reference signal sent from the measurement base station to another measurement.
  • a positioning reference signal transmitted by a positioning system such as a satellite positioning system, a professional ground positioning system, etc.
  • a positioning system such as a satellite positioning system, a professional ground positioning system, etc.
  • requiring the terminal to feed back more content related to the location information such as location information obtained from other positioning methods, or quantization error Small content related to location information.
  • the terminal A acquires information indicating its own location based on the positioning manner indication information, that is, information related to its own location.
  • the information includes the manner in which the terminal positioning location is used, for example, based on the arrival time, or based on the measurement signal reception strength. Or based on which positioning system, etc.
  • Embodiments in which Embodiments 1 and 2 are combined are as follows:
  • the base station acquires the adjusted positioning scheme information, where the adjusted positioning scheme information includes at least The next one: the positioning error information indicating the positioning error of the terminal B, and the positioning mode adjustment indication information; and the manner in which the base station obtains the information for adjusting the positioning scheme can refer to the foregoing embodiment;
  • the base station adjusts the positioning scheme and sends the positioning information; and the manner in which the base station adjusts the positioning scheme can refer to the foregoing embodiment;
  • the terminal A receives the positioning information sent by the base station
  • the terminal A acquires information indicating the location of the terminal according to the positioning information; for specific details, refer to the foregoing embodiment.
  • the embodiment of the present invention further provides a computer readable storage medium, which stores program instructions, and when the program instructions are executed, implements a positioning enhancement method provided by Embodiment 1 of the present invention.
  • the embodiment of the present invention further provides a computer readable storage medium, which stores program instructions, and when the program instructions are executed, implements a positioning enhancement method provided by Embodiment 2 of the present invention.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • Each device/function module/function unit in the above embodiment is implemented in the form of a software function module. And when sold or used as a stand-alone product, it can be stored on a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the invention implements an adaptive adjustment of the positioning scheme according to changes in actual environmental factors, and improves the target of positioning accuracy.

Abstract

本发明实施例提供了一种定位增强的方法及设备;方法包括:第一通信节点获取调整定位方案信息,其中,所述调整定位方案信息至少包含以下之一:指示第二通信节点定位误差的定位误差信息,定位方式调整指示信息;所述第一通信节点调整定位方案。

Description

一种定位增强的方法及设备 技术领域
本文涉及但不限于定位领域,具体地说,涉及一种定位增强的方法及设备。
背景技术
随着时代的不断发展,定位技术受到越来越多的重视,对定位精度也提出了更高的技术要求。
GPS定位技术由于信号损耗等原因,在室内信号变弱,使得定位终端无法搜索到足够的星;蜂窝网系统由于定位误差很大,无论在室外还是在室内都无法达到足够的精度,无法满足不断提高的定位精度需求。
为了解决高精度定位问题,通常方式是在地面建立无线定位系统,其各个定位信号站在近地布设,定位实现方式有多种,例如采用卫星制式的地面伪卫星系统、无线局域网系统等,其中,地面伪卫星系统需要手机能够处理地面卫星和太空卫星信号的共存,对其动态范围提出很大的要求;无线局域网主要采用基于信号强度的测距方法,定位精度严重依赖布设的网路密度。
可以看出,为了满足高精度定位需求,不同的定位系统采用了不同的定位方案,但定位方案的性能容易受到环境因素变化的影响,例如到达时间、到达时间差等通过时间计算传播距离的方法的定位精度容易受到多径信道传播的影响,基于信号强度、信号统计信息等指纹类定位算法的定位精度容易受到环境中物体移动、变化等影响,基于重力场、磁场等自然界特征类定位算法的定位精度容易受到地质变迁、宇宙变化等影响。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种定位增强的方案,可帮助定位系统根据实际的环 境因素变化自适应调整定位方案,提高定位精度。
本发明实施例提供了一种定位增强的方法,包括:
第一通信节点获取调整定位方案信息,其中,所述调整定位方案信息至少包含以下之一:指示第二通信节点定位误差的定位误差信息,定位方式调整指示信息;
所述第一通信节点调整定位方案。
可选地,所述第一通信节点调整定位方案包括:
所述第一通信节点根据所述调整定位方案信息调整定位方案。
可选地,所述调整定位方案信息由所述第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述第一通信节点生成。
可选地,生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;
所述第一通信节点获取调整定位方案信息包括:
所述第二通信节点、或所述上层网元通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息,并发送给所述第一通信节点;
或所述第一通信节点通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息。
可选地,所述第一通信节点获取所述调整定位方案信息前还包括:
所述第一通信节点发送第一定位参考信号。
可选地,所述第一通信节点获取所述调整定位方案信息前还包括:
所述第一通信节点从所述第二通信节点接收所述第二通信节点利用所述第一定位参考信号所生成的用于定位所述第二通信节点位置的信息;
所述第一通信节点或所述第一通信节点的上层节点根据所述用于定位所述第二通信节点位置的信息得到所述第二通信节点的计算位置。
可选地,所述第一通信节点调整定位方案包括:
所述第一通信节点根据所述调整定位方案信息增加所述第一定位参考信号的发送密度。
可选地,所述第一通信节点调整定位方案包括:
所述第一通信节点根据所述调整定位方案信息增大所述第一定位参考信号发送功率。
可选地,所述第一通信节点调整定位方案包括:
所述第一通信节点根据所述调整定位方案信息发送第二定位参考信号。
可选地,所述第二定位参考信号的生成方式不同于第一定位参考信号。
可选地,一个长期演进帧中,允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
可选地,一个长期演进帧中的物理资源块内,发送所述第二定位参考信号使用的子载波不同于发送第一定位参考信号使用的子载波。
可选地,当所述第二定位参考信号与第一定位参考信号在长期演进帧的同一个子帧上发送时,所使用的物理资源块不同。
可选地,所述第一定位参考信号为长期演进LTE现有标准中的定位参考信号。
可选地,所述第一通信节点调整定位方案包括:
所述第一通信节点根据所述调整定位方案信息发送纠偏信息。
可选地,所述纠偏信息是基于所述调整定位方案信息中的所述定位误差信息生成的。
可选地,所述第一通信节点调整定位方案包括:
所述第一通信节点根据所述调整定位方案信息发送用于指示所述第二通信节点使用指定定位方式的定位方式指示信息。
本发明实施例还提供了一种定位增强的方法,包括:
第三通信节点接收第一通信节点发送的定位信息,其中,所述定位信息是所述第一通信节点根据获得的调整定位方案信息得到的,所述调整定位方 案信息至少包含以下之一:定位误差信息,定位方式调整指示信息;
所述第三通信节点获取指示所述第三通信节点的位置的信息。
可选地,所述第三通信节点获取指示所述第三通信节点的位置的信息包括:
所述第三通信节点根据所述定位信息获取指示所述第三通信节点的位置的信息。
可选地,所述调整定位方案信息由第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述第一通信节点生成。
可选地,生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;当所述第二通信节点的实际地理位置和所述第二通信节点的计算位置的误差大于预定范围时,生成所述调整定位方案信息。
可选地,所述定位信息为密度更大的所述第一定位参考信号。
可选地,所述定位信息为功率更高的所述第一定位参考信号发送功率。
可选地,所述定位信息为第二定位参考信号。
可选地,所述第二定位参考信号的生成方式不同于第一定位参考信号。
可选地,一个长期演进帧中允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
可选地,一个长期演进帧中的物理资源块内,承载所述第二定位参考信号的子载波不同于承载第一定位参考信号的子载波。
可选地,当所述第二定位参考信号与第一定位参考信号承载在长期演进帧的同一个子帧上时,使用的物理资源块不同。
可选地,所述第一定位参考信号为长期演进LTE现有标准中的定位参考信号。
可选地,所述定位信息为纠偏信息;所述纠偏信息是基于所述调整定位方案信息中的所述定位误差信息生成的。
可选地,所述定位信息为用于指示所述第三通信节点使用指定定位方式 的定位方式指示信息。
可选地,所述指示第三通信节点的位置的信息至少包括以下之一:
所述第三通信节点测量得到的到达时间差信息;
所述第三通信节点测量得到的定位参考信号强度指示信息;
所述第三通信节点附近的通信节点信息;
所述第三通信节点计算得到的定位位置信息;
所述第三通信节点的定位方式信息。
可选地,所述第三通信节点和所述第二通信节点是同一通信节点。
本发明实施例还提供了一种定位增强的设备,设置于第一通信节点中,包括:
获取模块,设置为获取调整定位方案信息,其中,所述调整定位方案信息至少包含以下之一:指示第二通信节点定位误差的定位误差信息,定位方式调整指示信息;
调整模块,设置为调整定位方案。
可选地,所述调整模块调整定位方案是指:
所述调整模块根据所述调整定位方案信息调整定位方案。
可选地,所述调整定位方案信息由所述第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述获取模块生成。
可选地,生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述获取模块已知所述第二通信节点的实际地理位置;
所述获取模块获取调整定位方案信息是指:
所述获取模块从所述第二通信节点、或所述上层网元接收所述调整定位方案信息;所述第二通信节点或所述上层网元通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息;
或所述获取模块通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息。
可选地,所述获取模块还设置为发送第一定位参考信号。
可选地,所述第一通信节点获取所述调整定位方案信息前还包括:
所述获取模块还设置为在获取所述调整定位方案信息前,从所述第二通信节点接收所述第二通信节点利用所述第一定位参考信号所生成的用于定位所述第二通信节点位置的信息;根据所述用于定位所述第二通信节点位置的信息得到所述第二通信节点的计算位置。
可选地,所述调整模块调整定位方案是指:
所述调整模块根据所述调整定位方案信息增加所述第一定位参考信号的发送密度。
可选地,所述调整模块调整定位方案是指:
所述调整模块根据所述调整定位方案信息增大所述第一定位参考信号发送功率。
可选地,所述调整模块调整定位方案是指:
所述调整模块根据所述调整定位方案信息发送第二定位参考信号。
可选地,所述第二定位参考信号的生成方式不同于第一定位参考信号。
可选地,一个长期演进帧中,允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
可选地,一个长期演进帧中的物理资源块内,发送所述第二定位参考信号使用的子载波不同于发送第一定位参考信号使用的子载波。
可选地,当所述第二定位参考信号与第一定位参考信号在长期演进帧的同一个子帧上发送时,所使用的物理资源块不同。
可选地,所述第一定位参考信号为长期演进LTE现有标准中的定位参考信号。
可选地,所述调整模块调整定位方案是指:
所述调整模块根据所述调整定位方案信息发送纠偏信息。
可选地,所述调整模块基于所述调整定位方案信息中的所述定位误差信息生成所述纠偏信息。
可选地,所述调整模块调整定位方案是指:
所述调整模块根据所述调整定位方案信息发送用于指示所述第二通信节点使用指定定位方式的定位方式指示信息。
本发明实施例还提供了一种定位增强的设备,设置于第三通信节点中,包括:
接收模块,设置为接收第一通信节点发送的定位信息,其中,所述定位信息是所述第一通信节点根据获得的调整定位方案信息得到的,所述调整定位方案信息至少包含以下之一:定位误差信息,定位方式调整指示信息;
信息获取模块,设置为获取指示所述第三通信节点的位置的信息。
可选地,所述信息获取模块获取指示所述第三通信节点的位置的信息是指:
所述信息获取模块根据所述定位信息获取指示所述第三通信节点的位置的信息。
可选地,所述调整定位方案信息由第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述第一通信节点生成。
可选地,生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;当所述第二通信节点的实际地理位置和所述第二通信节点的计算位置的误差大于预定范围时,生成所述调整定位方案信息。
可选地,所述定位信息为密度更大的所述第一定位参考信号。
可选地,所述定位信息为功率更高的所述第一定位参考信号发送功率。
可选地,所述定位信息为第二定位参考信号。
可选地,所述第二定位参考信号的生成方式不同于第一定位参考信号。
可选地,一个长期演进帧中允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
可选地,一个长期演进帧中的物理资源块内,承载所述第二定位参考信号的子载波不同于承载第一定位参考信号的子载波。
可选地,当所述第二定位参考信号与第一定位参考信号承载在长期演进帧的同一个子帧上时,使用的物理资源块不同。
可选地,所述第一定位参考信号为长期演进LTE现有标准中的定位参考信号。
可选地,所述定位信息为纠偏信息;所述纠偏信息是基于所述调整定位方案信息中的所述定位误差信息生成的。
可选地,所述定位信息为用于指示所述第三通信节点使用指定定位方式的定位方式指示信息。
可选地,所述指示第三通信节点的位置的信息至少包括以下之一:
所述第三通信节点测量得到的到达时间差信息;
所述第三通信节点测量得到的定位参考信号强度指示信息;
所述第三通信节点附近的通信节点信息;
所述第三通信节点计算得到的定位位置信息;
所述第三通信节点的定位方式信息。
可选地,所述第三通信节点和所述第二通信节点是同一通信节点。
本发明实施例提出一种定位增强的方案,可帮助定位系统根据实际的环境因素变化自适应调整定位方案,提高定位精度,从而可以在此基础上提供更好的基于位置的业务。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是实施方式1的一种定位增强的方法的流程示意图;
图2是实施例1的流程示意图;
图3是实施例2的流程示意图;
图4是实施例3的流程示意图;
图5是实施例6的流程示意图;
图6是实施例8的流程示意图;
图7是实施例13的流程示意图;
图8是实施例16的流程示意图;
图9是实施方式3中一种定位增强的设备的结构图;
图10是实施方式4中一种定位增强的设备的结构图。
本发明的较佳实施方式
下面将结合附图对本发明实施例的技术方案进行更详细的说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施方式1、一种定位增强的方法,如图1所示,包括:
步骤101:第一通信节点获取调整定位方案信息,其中,所述调整定位方案信息至少包含以下之一:指示第二通信节点定位误差的定位误差信息,定位方式调整指示信息;
步骤102:所述第一通信节点调整定位方案。
本实施方式中,所述第一通信节点可以但不限于为基站,所述第二通信节点可以但不限于为终端;本实施方式为基站侧的工作流程。
可选地,所述第一通信节点调整定位方案具体可以包括:
所述第一通信节点根据所述调整定位方案信息调整定位方案。
可选地,所述调整定位方案信息由所述第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述第一通信节点生成。
可选地,生成所述调整定位方案信息的所述第二通信节点、或所述上层 网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;
所述第一通信节点获取调整定位方案信息包括:
所述第二通信节点、或所述上层网元通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息,并发送给所述第一通信节点;
或所述第一通信节点通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息。
可选地,所述第一通信节点获取所述调整定位方案信息前还包括:所述第一通信节点发送第一定位参考信号。
可选地,所述第一通信节点获取所述调整定位方案信息前还包括:所述第一通信节点从所述第二通信节点接收所述第二通信节点利用所述第一定位参考信号所生成的用于定位所述第二通信节点位置的信息;
所述第一通信节点或所述第一通信节点的上层节点根据所述用于定位所述第二通信节点位置的信息得到所述第二通信节点的计算位置。
其中,所述第二通信节点的计算位置可以由第二通信节点根据所述第一定位指示信息自行计算得到。
可选地,所述第一通信节点调整定位方案包括:所述第一通信节点根据所述调整定位方案信息增加所述第一定位参考信号的发送密度。
可选地,所述第一通信节点调整定位方案包括:所述第一通信节点根据所述调整定位方案信息增大所述第一定位参考信号发送功率。
可选地,所述第一通信节点调整定位方案包括:所述第一通信节点根据所述调整定位方案信息发送第二定位参考信号。
其中,所述第二定位参考信号的生成方式不同于第一定位参考信号。
其中,一个长期演进帧中,允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
其中,一个长期演进帧中的物理资源块内,发送所述第二定位参考信号 使用的子载波不同于发送第一定位参考信号使用的子载波。
其中,当所述第二定位参考信号与第一定位参考信号在长期演进帧的同一个子帧上发送时,它们使用的物理资源块不同。
上述第一定位参考信号为长期演进LTE现有标准中的定位参考信号。
可选地,所述第一通信节点调整定位方案包括:所述第一通信节点根据所述调整定位方案信息发送纠偏信息。
可选地,所述纠偏信息是基于所述调整定位方案信息中的所述定位误差信息生成的。
可选地,接收到所述纠偏信息的通信节点,根据所述纠偏信息获取与本通信节点的位置有关的信息。
可选地,所述第一通信节点调整定位方案包括:所述第一通信节点根据所述调整定位方案信息发送用于指示所述第二通信节点使用指定定位方式的定位方式指示信息。
可选地,接收到所述定位方式指示信息的通信节点,根据所述定位方式指示信息指示的方式进行定位。
实施方式2,一种定位增强的方法,包括:
第三通信节点接收第一通信节点发送的定位信息,其中,所述定位信息是所述第一通信节点根据获得的调整定位方案信息得到的,所述调整定位方案信息至少包含以下之一:定位误差信息,定位方式调整指示信息;
所述第三通信节点获取指示所述第三通信节点的位置的信息。
本实施方式中,所述第三通信节点可以但不限于为终端,本实施方式为终端侧的工作流程。
可选地,所述第三通信节点获取指示所述第三通信节点的位置的信息具体可以包括:
所述第三通信节点根据所述定位信息获取指示所述第三通信节点的位置的信息。
可选地,所述调整定位方案信息由第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述第一通信节点生成。
可选地,生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;当所述第二通信节点的实际地理位置和所述第二通信节点的计算位置的误差大于预定范围时,生成所述调整定位方案信息。
可选地,所述第一通信节点获取所述调整定位方案信息前所述第一通信节点发送第一定位参考信号。
可选地,所述第二通信节点利用所述第一定位参考信号获取用于定位自己位置的信息,并将所述信息反馈给所述第一通信节点。
可选地,所述定位信息为密度更大的所述第一定位参考信号。
可选地,所述定位信息为功率更高的所述第一定位参考信号发送功率。
可选地,所述定位信息为第二定位参考信号。
其中,所述第二定位参考信号的生成方式不同于第一定位参考信号。
其中,一个长期演进帧中允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
其中,一个长期演进帧中的物理资源块内,承载所述第二定位参考信号的子载波不同于承载第一定位参考信号的子载波。
其中,当所述第二定位参考信号与第一定位参考信号承载在长期演进帧的同一个子帧上时,它们使用的物理资源块不同。
上述第一定位参考信号为长期演进LTE现有标准中的定位参考信号。
可选地,所述定位信息为纠偏信息;所述纠偏信息是基于所述调整定位方案信息中的所述定位误差信息生成的。
可选地,所述定位信息为用于指示所述第三通信节点使用指定定位方式的定位方式指示信息。
可选地,所述指示第三通信节点的位置的信息是与第三通信节点的位置有关的信息,至少包括以下之一:
所述第三通信节点测量得到的到达时间差信息;
所述第三通信节点测量得到的定位参考信号强度指示信息;
所述第三通信节点附近的通信节点信息;
所述第三通信节点计算得到的定位位置信息;
所述第三通信节点的定位方式信息。
可选地,所述第三通信节点和所述第二通信节点可以是同一通信节点。
实施方式3,一种定位增强的设备,设置于第一通信节点中,包括:
获取模块30,设置为获取调整定位方案信息,其中,所述调整定位方案信息至少包含以下之一:指示第二通信节点定位误差的定位误差信息,定位方式调整指示信息;
调整模块31,设置为调整定位方案。
本实施方式中,所述第一通信节点可以但不限于为基站,所述第二通信节点可以但不限于为终端。
可选地,所述调整模块31调整定位方案是指:
所述调整模块31根据所述调整定位方案信息调整定位方案。
可选地,所述调整定位方案信息由所述第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述获取模块30生成。
可选地,生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;
所述获取模块30获取调整定位方案信息是指:
所述获取模块30从所述第二通信节点、或所述上层网元接收所述调整定位方案信息;所述第二通信节点或所述上层网元通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息;
或所述获取模块30通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定 位方案信息。
可选地,所述获取模块30还设置为发送第一定位参考信号。
可选地,所述第一通信节点获取所述调整定位方案信息前还包括:
所述获取模块30还设置为在获取所述调整定位方案信息前,从所述第二通信节点接收所述第二通信节点利用所述第一定位参考信号所生成的用于定位所述第二通信节点位置的信息;根据所述用于定位所述第二通信节点位置的信息得到所述第二通信节点的计算位置。
可选地,所述调整模块31调整定位方案是指:
所述调整模块31根据所述调整定位方案信息增加所述第一定位参考信号的发送密度。
可选地,所述调整模块31调整定位方案是指:
所述调整模块31根据所述调整定位方案信息增大所述第一定位参考信号发送功率。
可选地,所述调整模块31调整定位方案是指:
所述调整模块31根据所述调整定位方案信息发送第二定位参考信号。
可选地,所述第二定位参考信号的生成方式不同于第一定位参考信号。
可选地,一个长期演进帧中,允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
可选地,一个长期演进帧中的物理资源块内,发送所述第二定位参考信号使用的子载波不同于发送第一定位参考信号使用的子载波。
可选地,当所述第二定位参考信号与第一定位参考信号在长期演进帧的同一个子帧上发送时,所使用的物理资源块不同。
可选地,所述第一定位参考信号为长期演进LTE现有标准中的定位参考信号。
可选地,所述调整模块31调整定位方案是指:
所述调整模块31根据所述调整定位方案信息发送纠偏信息。
可选地,所述调整模块31基于所述调整定位方案信息中的所述定位误差 信息生成所述纠偏信息。
可选地,所述调整模块31调整定位方案是指:
所述调整模块31根据所述调整定位方案信息发送用于指示所述第二通信节点使用指定定位方式的定位方式指示信息。
实施方式4、一种定位增强的设备,设置于第三通信节点中,包括:
接收模块40,设置为接收第一通信节点发送的定位信息,其中,所述定位信息是所述第一通信节点根据获得的调整定位方案信息得到的,所述调整定位方案信息至少包含以下之一:定位误差信息,定位方式调整指示信息;
信息获取模块41,设置为获取指示所述第三通信节点的位置的信息。
可选地,所述信息获取模块41获取指示所述第三通信节点的位置的信息是指:
所述信息获取模块41根据所述定位信息获取指示所述第三通信节点的位置的信息。
可选地,所述调整定位方案信息由第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述第一通信节点生成。
可选地,生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;当所述第二通信节点的实际地理位置和所述第二通信节点的计算位置的误差大于预定范围时,生成所述调整定位方案信息。
可选地,所述定位信息为密度更大的所述第一定位参考信号。
可选地,所述定位信息为功率更高的所述第一定位参考信号发送功率。
可选地,所述定位信息为第二定位参考信号。
可选地,所述第二定位参考信号的生成方式不同于第一定位参考信号。
可选地,一个长期演进帧中允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
可选地,一个长期演进帧中的物理资源块内,承载所述第二定位参考信 号的子载波不同于承载第一定位参考信号的子载波。
可选地,当所述第二定位参考信号与第一定位参考信号承载在长期演进帧的同一个子帧上时,使用的物理资源块不同。
其中,所述第一定位参考信号为长期演进LTE现有标准中的定位参考信号。
可选地,所述定位信息为纠偏信息;所述纠偏信息是基于所述调整定位方案信息中的所述定位误差信息生成的。
可选地,所述定位信息为用于指示所述第三通信节点使用指定定位方式的定位方式指示信息。
可选地,所述指示第三通信节点的位置的信息至少包括以下之一:
所述第三通信节点测量得到的到达时间差信息;
所述第三通信节点测量得到的定位参考信号强度指示信息;
所述第三通信节点附近的通信节点信息;
所述第三通信节点计算得到的定位位置信息;
所述第三通信节点的定位方式信息。
可选地,所述第三通信节点和所述第二通信节点是同一通信节点。
为了更好地理解上述实施方式,下面结合附图和具体实施例对本发明实施例作进一步地描述。
实施方式1的实施例如下,其中基站为所述第一通信节点,终端为所述第二通信节点:
实施例1
如图2所示,基站发送第一定位参考信号,可选地,所述第一定位参考信号为LTE现有标准(TS 36.211 v920)的定位参考信号。
已知自己精确位置(即:实际地理位置)的终端根据所述第一定位参考信号计算得到一个自己的位置(称为计算位置)。
如果终端已知自己的精确位置,且计算位置与精确位置相差比较大,例如水平或垂直距离没有满足系统要求的定位精度,则终端发送调整定位方案信息给基站,其中,调整定位方案信息至少包含以下之一:指示所述终端定位误差的定位误差信息,定位方式调整指示信息。
基站根据所述调整定位方案信息调整定位方案。
实施例2
如图3所示,基站发送第一定位参考信号,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端根据所述第一定位参考信号计算得到一个自己的位置(称为计算位置)。
终端将所述计算位置发送给基站。
基站已知所述终端的精确位置,将所述精确位置和所述计算位置进行比较,获取定位误差信息,如果两者的误差(定位误差)比较大,例如水平或垂直距离没有满足系统要求的定位精度,则基站根据定位误差信息调整定位方案。
实施例3
如图4所示,基站发送第一定位参考信号,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端根据所述第一定位参考信号计算得到一个自己的位置(称为计算位置)。
终端将所述计算位置发送给基站。
基站的上层网元已知终端的精确位置信息,将所述精确位置和所述计算位置进行比较,获取定位误差信息,如果两者的误差比较大,例如水平或垂直距离没有满足系统要求的定位精度,则上层网元发送调整定位方案信息给基站,其中,调整定位方案信息至少包含以下之一:指示所述终端定位误差的定位误差信息,定位方式调整指示信息。
基站根据所述调整定位方案信息调整定位方案。
实施例4
基站发送第一定位参考信号,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端根据所述第一定位参考信号计算得到用于定位自己位置的信息,例如不同基站发送的第一定位参考信号的到达时间差或到达时间。
终端将所述用于定位自己位置的信息发送给基站,基站根据这些信息计算得到所述终端的位置(成为计算位置)。
基站已知所述终端的精确位置,将所述终端的精确位置和计算位置进行比较,获取定位误差信息,如果两者的误差比较大,例如水平或垂直距离没有满足系统要求的定位精度,则基站根据定位误差信息调整定位方案。
实施例5
基站发送第一定位参考信号,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端根据所述第一定位参考信号计算得到用于定位自己位置的信息,例如不同基站发送的第一定位参考信号的到达时间差或到达时间。
终端将所述用于定位自己位置的信息发送给基站,基站的上层网元根据这些信息计算得到所述终端的位置(成为计算位置),上层网元已知所述终端的精确位置,将所述终端的精确位置和计算位置进行比较,获取定位误差信息,如果两者的误差比较大,例如水平或垂直距离没有满足系统要求的定位精度,则上层网元发送调整定位方案信息给基站,优选地,调整定位方案信息至少包含以下之一:指示所述终端定位误差有关的定位误差信息,定位方式调整指示信息。
基站根据所述调整定位方案信息调整定位方案。
从上述实施例1~5可以看出,基站可以自行比较精确位置与计算位置,当定位误差大于预定范围时生成所述调整定位方式信息,也可以由终端或基站的上层网元进行比较并当定位误差大于预定范围时生成所述调整定位方式信息发送给所述基站。
所述计算位置可以由终端根据基站发送的第一定位指示信息自行计算得 到,也可以由终端据所述第一定位参考信号计算得到用于定位自己位置的信息,然后发送给基站,由基站或其上层网元得到所述计算位置。
实施例6
如图5所示,基站发送第一定位参考信号(称为定位参考信号A),可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
基站获取调整定位方案信息,调整定位方案信息可以是终端发送给基站的,也可以是上层网元发送给基站的,或是基站自己根据已有信息得到的。
基站再次发送第一定位参考信号(称为定位参考信号B),定位参考信号B在时域、和/或频域上的发送密度大于定位参考信号A。
实施例7
基站发送第一定位参考信号(称为定位参考信号A),可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
基站获取调整定位方案信息,调整定位方案信息可以是终端发送给基站的,也可以是上层网元发送给基站的,或是基站自己根据已有信息得到的。
基站再次发送第一定位参考信号(称为定位参考信号B),定位参考信号B的发送功率大于定位参考信号A。
实施例8
如图6所示,基站获取调整定位方案信息,调整定位方案信息可以是终端发送给基站的,也可以是上层网元发送给基站的,或是基站自己根据已有信息得到的。
基站发送第二定位参考信号,第二定位参考信号的序列生成方式不同于第一定位参考信号,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。所述第二定位参考信号是本发明实施例提出的新增的定位参考信号。
实施例9
基站获取调整定位方案信息,调整定位方案信息可以是终端发送给基站的,也可以是上层网元发送给基站的,或是基站自己根据已有信息得到的。
基站发送第二定位参考信号,一个长期演进帧中允许第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合相同,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
实施例10
基站获取调整定位方案信息,调整定位方案信息可以是终端发送给基站的,也可以是上层网元发送给基站的,或是基站自己根据已有信息得到的。
基站发送第二定位参考信号,一个长期演进帧中允许第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
实施例11
基站获取调整定位方案信息,调整定位方案信息可以是终端发送给基站的,也可以是上层网元发送给基站的,或是基站自己根据已有信息得到的。
基站发送第二定位参考信号,在一个长期演进帧中的物理资源块内,发送第二定位参考信号使用的子载波不同于发送第一定位参考信号使用的子载波,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
实施例12
基站获取调整定位方案信息,调整定位方案信息可以是终端发送给基站的,也可以是上层网元发送给基站的,或是基站自己根据已有信息得到的。
基站发送第二定位参考信号,当第二定位参考信号与第一定位参考信号在长期演进帧的同一个子帧上发送时,它们使用的物理资源块不同,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
实施例13
如图7所示,基站获取调整定位方案信息,调整定位方案信息可以是终端发送给基站的,也可以是上层网元发送给基站的,或是基站自己根据已有信息得到的。
基站发送纠偏信息。
待定位的终端收到所述纠偏信息后,在计算自己的位置时需要考虑所述 纠偏信息。
实施例14
基站获取调整定位方案信息,调整定位方案信息可以是终端发送给基站的,也可以是上层网元发送给基站的,或是基站自己根据已有信息得到的。
基站发送定位方式指示信息,例如指示待定位终端从定位参考信号测量到达时间差改为测量信号接收强度,或从测量基站发送的定位参考信号改为测量其他定位系统(例如卫星定位系统,专业的地面定位系统等)发送的定位参考信号,或要求终端反馈更多的与位置信息有关的内容,例如从基于其他定位方式获取的位置信息,或量化误差更小的与位置信息有关的内容。
本实施例中,当终端接入网络时,基站可以根据终端的参数信息(例如能力等级信息)获知终端能够支持的定位方式(例如定位方式A、定位方式B)。基站可以根据终端能够支持的定位方式及定位精度选择合适的定位方式为终端提供定位服务,通过发送定位方式指示信息让终端改用所选择的定位方式进行定位。
从上述实施例6~14可以看出,基站调整定位方式的方案包括:调整第一定位参考信息的发送功率/密度;或者,发送第二定位参考信息;或者,发送纠偏信息;或者,发送定位方式指示信息。
实施例15
待定位的终端获取调整定位方案信息,并将所述调整定位方案信息发送给基站。
实施方式2的实施例如下,其中基站为所述第一通信节点,终端B为所述第二通信节点,终端A为所述第三通信节点:
实施例16
如图8所示,终端A接收基站发送的定位信息,定位信息是基站根据获得的调整定位方案信息得到的,调整定位方案信息至少包含以下之一:指示 终端B(参考终端,其精确位置是系统已知的)定位误差的定位误差信息,定位方式调整指示信息。可选地,该调整定位方案信息是由终端B通过基站提供的第一定位参考信息获得的计算位置与自己的精确位置比较后发现定位误差不满足定位精度需求(定位误差大于预定范围)生成的。
终端A根据所述定位信息获取指示自己位置的信息。
可选地,所述终端A和终端B也可以是同一个终端。
实施例17
终端A接收基站发送的定位信息,定位信息是基站根据获得的调整定位方案信息得到的,调整定位方案信息至少包含以下之一:指示终端B(参考终端,其精确位置是系统已知的)定位误差的定位误差信息,定位方式调整指示信息。可选地,该调整定位方案信息是由基站的上层网元将终端B的精确位置与终端B的计算位置比较后发现定位误差不满足定位精度需求生成的。
终端A根据所述定位信息获取指示自己位置的信息。
可选地,所述终端A和终端B也可以是同一个终端。
实施例18
终端A接收基站发送的定位信息,定位信息是基站根据获得的调整定位方案信息得到的,调整定位方案信息至少包含以下之一:指示终端B(参考终端,其精确位置是系统已知的)定位误差的定位误差信息,定位方式调整指示信息。可选地,该调整定位方案信息是由基站将终端B的精确位置与终端B的计算位置比较后发现定位误差不满足定位精度需求生成的。
终端A根据所述定位信息获取指示自己位置的信息。
可选地,所述终端A和终端B也可以是同一个终端。
实施例19
终端A接收基站发送的定位信息,定位信息是比基站之前发送的第一定位参考信号(定位参考信号A)在时域、和/或频域上的发送密度更大的第一定位参考信号(定位参考信号B),可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端A基于密度更大的定位参考信号B获取指示自己位置的信息。
实施例20
终端A接收基站发送的定位信息,定位信息是比基站之前发送的第一定位参考信号(定位参考信号A)功率更高的第一定位参考信号(定位参考信号B),可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端A基于功率更高的定位参考信号B获取指示自己位置的信息。
实施例21
终端A接收基站发送的定位信息,定位信息为第二定位参考信号,第二定位参考信号的序列生成方式不同于第一定位参考信号,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端A基于第二定位参考信号获取指示自己位置的信息。
实施例22
终端A接收基站发送的定位信息,定位信息为第二定位参考信号,一个长期演进帧中允许第二定位参考信号发送的子帧集合与允许所述第一定位参考信号发送的子帧集合不同,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端A基于第二定位参考信号获取指示自己位置的信息。
实施例23
终端A接收基站发送的定位信息,定位信息为第二定位参考信号,一个长期演进帧中的物理资源块内,发送第二定位参考信号使用的子载波不同于发送第一定位参考信号使用的子载波,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端A基于第二定位参考信号获取指示自己位置的信息。
实施例24
终端A接收基站发送的定位信息,定位信息为第二定位参考信号,当第二定位参考信号与第一定位参考信号在长期演进帧的同一个子帧上发送时,它们使用的物理资源块不同,可选地,所述第一定位参考信号为LTE现有标 准的定位参考信号。
终端A基于第二定位参考信号获取指示自己位置的信息。
实施例25
终端A接收基站发送的定位信息,定位信息为第二定位参考信号,第二定位参考信号与第一定位参考信号使用的时频资源不同,可选地,所述第一定位参考信号为LTE现有标准的定位参考信号。
终端A基于第二定位参考信号获取指示自己位置的信息。
实施例26
终端A接收基站发送的定位信息,定位信息为基站发送的纠偏信息。
终端A基于纠偏信息获取指示自己位置的信息,例如终端A的计算位置(x,y,z),是基于基站发送的定位参考信号计算得到的,然后在计算位置的基础上增加纠偏信息(dx,dy,dz),获取最终的位置为(x,y,z)+alpha*(dx,dy,dz),其中alpha可由终端A自行决定或由基站通知终端A。
实施例27
终端A接收基站发送的定位信息,定位信息为定位方式指示信息,例如指示待定位终端A从定位参考信号测量到达时间差改为测量信号接收强度,或从测量基站发送的定位参考信号改为测量其他定位系统(例如卫星定位系统,专业的地面定位系统等)发送的定位参考信号,或要求终端反馈更多的与位置信息有关的内容,例如从基于其他定位方式获取的位置信息,或量化误差更小的与位置信息有关的内容。
终端A基于定位方式指示信息获取指示自己位置的信息,也就是与自己的位置有关的信息,优选地,上述信息中包含终端定位位置使用的方式,例如基于到达时间,或基于测量信号接收强度,或基于哪种定位系统等。
实施方式1和2组合在一起的实施例如下:
实施例28
基站获取调整定位方案信息,其中,所述调整定位方案信息至少包含以 下之一:指示终端B定位误差的定位误差信息,定位方式调整指示信息;基站获取调整定位方案信息的方式可参考上述实施例;
所述基站调整定位方案,发送定位信息;基站调整定位方案的方式可参考上述实施例;
终端A接收所述基站发送的定位信息;
所述终端A基于所述定位信息获取指示本终端位置的信息;具体细节可参考上述实施例。
实施例29
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现本发明实施方式1所提供的一种定位增强的方法。
实施例30
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现本发明实施方式2所提供的一种定位增强的方法。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现 并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例实现根据实际环境因素的变化自适应调整定位方案,提高定位精度的目标。

Claims (66)

  1. 一种定位增强的方法,包括:
    第一通信节点获取调整定位方案信息,其中,所述调整定位方案信息至少包含以下之一:指示第二通信节点定位误差的定位误差信息,定位方式调整指示信息;
    所述第一通信节点调整定位方案。
  2. 如权利要求1所述的方法,其中,所述第一通信节点调整定位方案包括:
    所述第一通信节点根据所述调整定位方案信息调整定位方案。
  3. 如权利要求1所述的方法,其中,
    所述调整定位方案信息由所述第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述第一通信节点生成。
  4. 如权利要求3所述的方法,其中,
    生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;
    所述第一通信节点获取调整定位方案信息包括:
    所述第二通信节点、或所述上层网元通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息,并发送给所述第一通信节点;
    或所述第一通信节点通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息。
  5. 如权利要求1所述的方法,,在所述第一通信节点获取所述调整定位方案信息前,还包括:
    所述第一通信节点发送第一定位参考信号。
  6. 如权利要求5所述的方法,在所述第一通信节点获取所述调整定位方案信息前,还包括:
    所述第一通信节点从所述第二通信节点接收所述第二通信节点利用所述第一定位参考信号所生成的用于定位所述第二通信节点位置的信息;
    所述第一通信节点或所述第一通信节点的上层节点根据所述用于定位所述第二通信节点位置的信息得到所述第二通信节点的计算位置。
  7. 如权利要求5所述的方法,其中,所述第一通信节点调整定位方案包括:
    所述第一通信节点根据所述调整定位方案信息增加所述第一定位参考信号的发送密度。
  8. 如权利要求5所述的方法,其中,所述第一通信节点调整定位方案包括:
    所述第一通信节点根据所述调整定位方案信息增大所述第一定位参考信号发送功率。
  9. 如权利要求1所述的方法,其中,所述第一通信节点调整定位方案包括:
    所述第一通信节点根据所述调整定位方案信息发送第二定位参考信号。
  10. 如权利要求9所述的方法,其中,
    所述第二定位参考信号的生成方式不同于第一定位参考信号。
  11. 如权利要求9所述的方法,其中,
    在一个长期演进帧中,允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
  12. 如权利要求9所述的方法,其中,
    在一个长期演进帧中的物理资源块内,发送所述第二定位参考信号使用的子载波不同于发送第一定位参考信号使用的子载波。
  13. 如权利要求9所述的方法,其中,
    当所述第二定位参考信号与第一定位参考信号在长期演进帧的同一个子帧上发送时,所使用的物理资源块不同。
  14. 如权利要求10~13任一项所述的方法,其中,
    所述第一定位参考信号为长期演进LTE标准TS 36.211v920中的定位参考信号。
  15. 如权利要求1所述的方法,其中,所述第一通信节点调整定位方案包括:
    所述第一通信节点根据所述调整定位方案信息发送纠偏信息。
  16. 如权利要求15所述的方法,其中
    所述纠偏信息是基于所述调整定位方案信息中的所述定位误差信息生成的。
  17. 如权利要求1所述的方法,其中,所述第一通信节点调整定位方案包括:
    所述第一通信节点根据所述调整定位方案信息发送用于指示所述第二通信节点使用指定定位方式的定位方式指示信息。
  18. 一种定位增强的方法,包括:
    第三通信节点接收第一通信节点发送的定位信息,其中,所述定位信息是所述第一通信节点根据获得的调整定位方案信息得到的,所述调整定位方案信息至少包含以下之一:定位误差信息,定位方式调整指示信息;
    所述第三通信节点获取指示所述第三通信节点的位置的信息。
  19. 如权利要求18所述的方法,其中,所述第三通信节点获取指示所述第三通信节点的位置的信息包括:
    所述第三通信节点根据所述定位信息获取指示所述第三通信节点的位置的信息。
  20. 如权利要求18所述的方法,其中,
    所述调整定位方案信息由第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述第一通信节点生成。
  21. 如权利要求20所述的方法,其中,
    生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;当所述第二通信节点的实际地理位置和所述第二通信节点的计算位置的误差大于预定范围时,生成所述调整定位方案信息。
  22. 如权利要求18所述的方法,其中,
    所述定位信息为密度更大的所述第一定位参考信号。
  23. 如权利要求18所述的方法,其中,
    所述定位信息为功率更高的所述第一定位参考信号发送功率。
  24. 如权利要求18所述的方法,其中,
    所述定位信息为第二定位参考信号。
  25. 如权利要求24所述的方法,其中,
    所述第二定位参考信号的生成方式不同于第一定位参考信号。
  26. 如权利要求24所述的方法,其中,
    在一个长期演进帧中,允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
  27. 如权利要求24所述的方法,其中,
    在一个长期演进帧中的物理资源块内,承载所述第二定位参考信号的子载波不同于承载第一定位参考信号的子载波。
  28. 如权利要求24所述的方法,其中,
    当所述第二定位参考信号与第一定位参考信号承载在长期演进帧的同一 个子帧上时,使用的物理资源块不同。
  29. 如权利要求22、23、25~28任一项所述的方法,其中,
    所述第一定位参考信号为长期演进LTE标准TS 36.211v920中的定位参考信号。
  30. 如权利要求18所述的方法,其中,
    所述定位信息为纠偏信息;所述纠偏信息是基于所述调整定位方案信息中的所述定位误差信息生成的。
  31. 如权利要求18所述的方法,其中,
    所述定位信息为用于指示所述第三通信节点使用指定定位方式的定位方式指示信息。
  32. 如权利要求18所述的方法,其中,所述指示第三通信节点的位置的信息至少包括以下之一:
    所述第三通信节点测量得到的到达时间差信息;
    所述第三通信节点测量得到的定位参考信号强度指示信息;
    所述第三通信节点附近的通信节点信息;
    所述第三通信节点计算得到的定位位置信息;
    和所述第三通信节点的定位方式信息。
  33. 如权利要求20所述的方法,其中,
    所述第三通信节点和所述第二通信节点是同一通信节点。
  34. 一种定位增强的设备,设置于第一通信节点中,包括:
    获取模块,设置为获取调整定位方案信息,其中,所述调整定位方案信息至少包含以下之一:指示第二通信节点定位误差的定位误差信息,定位方式调整指示信息;
    调整模块,设置为调整定位方案。
  35. 如权利要求34所述的设备,其中,所述调整模块调整定位方案是指:
    所述调整模块根据所述调整定位方案信息调整定位方案。
  36. 如权利要求34所述的设备,其中,
    所述调整定位方案信息由所述第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述获取模块生成。
  37. 如权利要求36所述的设备,其中,
    生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述获取模块已知所述第二通信节点的实际地理位置;
    所述获取模块获取调整定位方案信息是指:
    所述获取模块从所述第二通信节点、或所述上层网元接收所述调整定位方案信息;所述第二通信节点或所述上层网元通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息;
    或所述获取模块通过比较所述第二通信节点的实际地理位置和所述第二通信节点的计算位置,当两者的误差大于预定范围时,生成所述调整定位方案信息。
  38. 如权利要求34所述的设备,其中,
    所述获取模块还设置为发送第一定位参考信号。
  39. 如权利要求38所述的设备,在所述第一通信节点获取所述调整定位方案信息前,还包括:
    所述获取模块还设置为在获取所述调整定位方案信息前,从所述第二通信节点接收所述第二通信节点利用所述第一定位参考信号所生成的用于定位所述第二通信节点位置的信息;根据所述用于定位所述第二通信节点位置的信息得到所述第二通信节点的计算位置。
  40. 如权利要求38所述的设备,其中,所述调整模块调整定位方案是指:
    所述调整模块根据所述调整定位方案信息增加所述第一定位参考信号的发送密度。
  41. 如权利要求38所述的设备,其中,所述调整模块调整定位方案是指:
    所述调整模块根据所述调整定位方案信息增大所述第一定位参考信号发送功率。
  42. 如权利要求34所述的设备,其中,所述调整模块调整定位方案是指:
    所述调整模块根据所述调整定位方案信息发送第二定位参考信号。
  43. 如权利要求42所述的设备,其中,
    所述第二定位参考信号的生成方式不同于第一定位参考信号。
  44. 如权利要求42所述的设备,其中,
    在一个长期演进帧中,允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
  45. 如权利要求42所述的设备,其中,
    在一个长期演进帧中的物理资源块内,发送所述第二定位参考信号使用的子载波不同于发送第一定位参考信号使用的子载波。
  46. 如权利要求42所述的设备,其中,
    当所述第二定位参考信号与第一定位参考信号在长期演进帧的同一个子帧上发送时,所使用的物理资源块不同。
  47. 如权利要求43~46任一项所述的设备,其中,
    所述第一定位参考信号为长期演进LTE标准TS 36.211v920中的定位参考信号。
  48. 如权利要求34所述的设备,其中,所述调整模块调整定位方案是指:
    所述调整模块根据所述调整定位方案信息发送纠偏信息。
  49. 如权利要求48所述的设备,其中,
    所述调整模块基于所述调整定位方案信息中的所述定位误差信息生成所述纠偏信息。
  50. 如权利要求34所述的设备,其中,所述调整模块调整定位方案是指:
    所述调整模块根据所述调整定位方案信息发送用于指示所述第二通信节点使用指定定位方式的定位方式指示信息。
  51. 一种定位增强的设备,设置于第三通信节点中,包括:
    接收模块,设置为接收第一通信节点发送的定位信息,其中,所述定位信息是所述第一通信节点根据获得的调整定位方案信息得到的,所述调整定位方案信息至少包含以下之一:定位误差信息,定位方式调整指示信息;
    信息获取模块,设置为获取指示所述第三通信节点的位置的信息。
  52. 如权利要求51所述的设备,其中,所述信息获取模块获取指示所述第三通信节点的位置的信息是指:
    所述信息获取模块根据所述定位信息获取指示所述第三通信节点的位置的信息。
  53. 如权利要求51所述的设备,其中,
    所述调整定位方案信息由第二通信节点生成,或由所述第一通信节点的上层网元生成,或由所述第一通信节点生成。
  54. 如权利要求53所述的设备,其中,
    生成所述调整定位方案信息的所述第二通信节点、或所述上层网元、或所述第一通信节点已知所述第二通信节点的实际地理位置;当所述第二通信节点的实际地理位置和所述第二通信节点的计算位置的误差大于预定范围时,生成所述调整定位方案信息。
  55. 如权利要求51所述的设备,其中,
    所述定位信息为密度更大的所述第一定位参考信号。
  56. 如权利要求51所述的设备,其中,
    所述定位信息为功率更高的所述第一定位参考信号发送功率。
  57. 如权利要求51所述的设备,其中,
    所述定位信息为第二定位参考信号。
  58. 如权利要求57所述的设备,其中,
    所述第二定位参考信号的生成方式不同于第一定位参考信号。
  59. 如权利要求57所述的设备,其中,
    在一个长期演进帧中,允许所述第二定位参考信号发送的子帧集合与允许第一定位参考信号发送的子帧集合不同。
  60. 如权利要求57所述的设备,其中,
    在一个长期演进帧中的物理资源块内,承载所述第二定位参考信号的子载波不同于承载第一定位参考信号的子载波。
  61. 如权利要求57所述的设备,其中,
    当所述第二定位参考信号与第一定位参考信号承载在长期演进帧的同一个子帧上时,使用的物理资源块不同。
  62. 如权利要求55、56、58~61任一项所述的设备,其中,
    所述第一定位参考信号为长期演进LTE标准TS 36.211v920中的定位参考信号。
  63. 如权利要求51所述的设备,其中,
    所述定位信息为纠偏信息;所述纠偏信息是基于所述调整定位方案信息中的所述定位误差信息生成的。
  64. 如权利要求51所述的设备,其中,
    所述定位信息为用于指示所述第三通信节点使用指定定位方式的定位方式指示信息。
  65. 如权利要求51所述的设备,其中,所述指示第三通信节点的位置的 信息至少包括以下之一:
    所述第三通信节点测量得到的到达时间差信息;
    所述第三通信节点测量得到的定位参考信号强度指示信息;
    所述第三通信节点附近的通信节点信息;
    所述第三通信节点计算得到的定位位置信息;
    和所述第三通信节点的定位方式信息。
  66. 如权利要求53所述的设备,其中,
    所述第三通信节点和所述第二通信节点是同一通信节点。
PCT/CN2015/087683 2014-11-05 2015-08-20 一种定位增强的方法及设备 WO2016070671A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/522,289 US20170332342A1 (en) 2014-11-05 2015-08-20 Method and Device for Enhancing Positioning
EP15858065.4A EP3203791A4 (en) 2014-11-05 2015-08-20 Method and device for enhancing positioning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410619252.2 2014-11-05
CN201410619252.2A CN104469930A (zh) 2014-11-05 2014-11-05 一种定位增强的方法及设备

Publications (1)

Publication Number Publication Date
WO2016070671A1 true WO2016070671A1 (zh) 2016-05-12

Family

ID=52915108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087683 WO2016070671A1 (zh) 2014-11-05 2015-08-20 一种定位增强的方法及设备

Country Status (4)

Country Link
US (1) US20170332342A1 (zh)
EP (1) EP3203791A4 (zh)
CN (1) CN104469930A (zh)
WO (1) WO2016070671A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104469930A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备
CN106550446B (zh) * 2015-09-18 2020-07-28 北京奇宝科技有限公司 定位方法及地理位置监测设备
US20170265041A1 (en) * 2016-03-09 2017-09-14 Honeywell International Inc. Systems, methods, and devices for indoor location
CN106443733B (zh) * 2016-08-26 2019-05-31 广州极飞科技有限公司 一种无人机的定位系统和方法
EP3857253A4 (en) * 2018-09-26 2022-06-08 Telefonaktiebolaget Lm Ericsson (Publ) WIRELESS DEVICE POSITIONING
CN112187423B (zh) * 2019-07-04 2021-12-10 大唐移动通信设备有限公司 信号传输方法及装置
US20230034681A1 (en) * 2020-01-20 2023-02-02 Beijing Xiaomi Mobile Software Co., Ltd. Positioning processing method and apparatus, base station, terminal device, and storage medium
WO2021154376A1 (en) * 2020-01-31 2021-08-05 Qualcomm Incorporated User equipment signaling to support bias detection
CN114513740B (zh) * 2020-10-27 2024-01-12 大唐移动通信设备有限公司 一种定位方法、装置、终端及设备
CN115119256A (zh) * 2021-03-18 2022-09-27 维沃移动通信有限公司 时间误差组指示方法、装置、终端及网络侧设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075606A1 (en) * 2002-10-22 2004-04-22 Jaawa Laiho Method and system for location estimation analysis within a communication network
CN102647790A (zh) * 2011-02-18 2012-08-22 华为技术有限公司 参考信号的发送、接收方法及装置
CN102695269A (zh) * 2011-03-21 2012-09-26 华为技术有限公司 一种定位修正方法、相关装置以及系统
CN103209475A (zh) * 2012-01-16 2013-07-17 华为技术有限公司 定位方法、定位服务器、终端和基站
CN104469930A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8032156B2 (en) * 2004-09-07 2011-10-04 Qualcomm Incorporated Procedure to increase position location availabilty
US8838481B2 (en) * 2011-07-26 2014-09-16 Golba Llc Method and system for location based hands-free payment
CN101360322B (zh) * 2007-07-30 2011-12-14 展讯通信(上海)有限公司 一种基于测量网络的无线定位系统与方法
US8730925B2 (en) * 2009-04-09 2014-05-20 Motorola Mobility Llc Method and apparatus for generating reference signals for accurate time-difference of arrival estimation
US20130308567A1 (en) * 2012-05-15 2013-11-21 Qualcomm Incorporated Methods and apparatus for positioning reference signals in a new carrier type
US9651653B2 (en) * 2012-12-24 2017-05-16 Qualcomm Incorporated Positioning reference signal (PRS) generation for multiple transmit antenna systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075606A1 (en) * 2002-10-22 2004-04-22 Jaawa Laiho Method and system for location estimation analysis within a communication network
CN102647790A (zh) * 2011-02-18 2012-08-22 华为技术有限公司 参考信号的发送、接收方法及装置
CN102695269A (zh) * 2011-03-21 2012-09-26 华为技术有限公司 一种定位修正方法、相关装置以及系统
CN103209475A (zh) * 2012-01-16 2013-07-17 华为技术有限公司 定位方法、定位服务器、终端和基站
CN104469930A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203791A4 *

Also Published As

Publication number Publication date
CN104469930A (zh) 2015-03-25
EP3203791A1 (en) 2017-08-09
EP3203791A4 (en) 2017-11-22
US20170332342A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2016070671A1 (zh) 一种定位增强的方法及设备
WO2016070674A1 (zh) 一种定位增强的方法及设备
US20190230618A1 (en) Using sidelink information in radio-based positioning
US9405010B2 (en) Geospatial positioning using correction information provided over cellular control channels
US8787184B2 (en) Collaborative sharing of location information among devices in a network
KR101676309B1 (ko) 포지셔닝 정보를 획득하는 방법
US8918117B2 (en) Apparatus, system and method of estimating a location of a mobile device
US9215604B2 (en) Method and device for updating a database for wireless LAN based positioning
CN104396298A (zh) 确定装置之间的距离以用于装置到装置的通信及接近服务的方法和设备
US11140653B2 (en) Terminal device, infrastructure equipment and methods
US20110201348A1 (en) Method and system for optimizing uploading of location data for location based services
JP2023546830A (ja) ワイヤレスネットワークにおけるオンデマンド測位基準信号のサポートのためのシステムおよび方法
CN102550051A (zh) 用于其它蜂窝系统的lte指纹识别定位参考
CN117461364A (zh) 使用接收信号功率和定时测量值的基于移动的定位
EP3061290B1 (en) Apparatus, system and method of estimating a location of a mobile device
KR102052519B1 (ko) 저전력 블루투스 기반의 실내 측위 방법 및 장치
US20240015693A1 (en) User equipment (ue) positioning
CN104535961B (zh) 一种实现无线定位的方法、系统及定位位置计算装置
US20210333352A1 (en) Mobile-based positioning using assistance data provided by onboard micro-bsa
JP6368161B2 (ja) 情報処理システム及び情報処理方法
WO2023012753A1 (en) Geographical divisions for ta and cgi
WO2024027939A1 (en) Training machine learning positioning models in a wireless communications network
KR20230163404A (ko) 포지셔닝을 위한 기준 신호들에서의 타이밍 그룹 정보 임베딩
JP2024518714A (ja) 受信信号電力およびタイミングの測定値を使用したモバイルベースの測位
KR20240008313A (ko) 온-디맨드 포지셔닝 참조 신호 스케줄링

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15522289

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015858065

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE