WO2016068078A1 - 焼結機の操業方法 - Google Patents

焼結機の操業方法 Download PDF

Info

Publication number
WO2016068078A1
WO2016068078A1 PCT/JP2015/080120 JP2015080120W WO2016068078A1 WO 2016068078 A1 WO2016068078 A1 WO 2016068078A1 JP 2015080120 W JP2015080120 W JP 2015080120W WO 2016068078 A1 WO2016068078 A1 WO 2016068078A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
sintered
fine powder
chute
sintering
Prior art date
Application number
PCT/JP2015/080120
Other languages
English (en)
French (fr)
Inventor
友司 岩見
一洋 岩瀬
大山 伸幸
山本 哲也
隆英 樋口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015139467A external-priority patent/JP6314924B2/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112017008572-0A priority Critical patent/BR112017008572B1/pt
Priority to CN201580060005.6A priority patent/CN107002165A/zh
Priority to KR1020177011349A priority patent/KR101925365B1/ko
Publication of WO2016068078A1 publication Critical patent/WO2016068078A1/ja
Priority to PH12017500701A priority patent/PH12017500701A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates

Definitions

  • the present invention relates to a method for operating a sintering machine, which is characterized by a method for charging a sintering compound raw material.
  • a sintered blending raw material containing magnetite fine iron ore, which is easier to magnetize than ordinary sintering raw materials, and a magnetic fine powder raw material, such as sintered ore is mounted on a pallet of a sintering machine.
  • the sintered ore that is the main raw material of the blast furnace ironmaking method is iron ore powder, recovered powder in the steelworks such as mill scale and iron making dust, sinter ore sieving powder (sintered ore)
  • Sintered blended raw materials such as CaO-containing raw materials such as limestone and dolomite, granulating aids such as quick lime, powdered coke, and charcoal (solid fuel) such as anthracite are placed on the pallet of the DL sintering machine.
  • sinter ore sieving powder sintered blended raw materials such as CaO-containing raw materials such as limestone and dolomite
  • granulating aids such as quick lime, powdered coke
  • charcoal (solid fuel) such as anthracite
  • the sintered blending raw material As the sintered blending raw material, a mixture of a plurality of kinds of sintered raw material powders using a drum mixer or the like and subsequent granulation are used to obtain pseudo particles having an arithmetic average diameter of 6.0 mm or less.
  • the raw material for sinter production obtained in this way that is, the sintered blending raw material is charged on the pallet of the sintering machine to form a sintered raw material charging layer, also called a charging layer. It becomes the raw material of.
  • the thickness (height) of the sintered raw material charging layer is about 400 to 800 mm.
  • the sintered raw material charging layer is then ignited by the carbonaceous material contained in the sintered raw material charging layer in an ignition furnace installed above the pallet, and disposed below the pallet.
  • the carbonaceous material in the sintering raw material charging layer is sequentially burned, and the combustion is matched to the movement of the pallet. It gradually advances downward and forward, and the sintering blended raw material is melted and converted into a sintered cake by the combustion heat generated at this time. Thereafter, the obtained sintered cake is cooled by a cooler after crushing, and sized, and becomes a product sintered ore made of agglomerates having a predetermined particle size (for example, 5.0 mm or more).
  • the production amount of sintered ore is generally determined by the sintering production rate (t / hr ⁇ m 2 ) ⁇ sintering machine area (m 2 ).
  • the production amount of sintered ore is the width and length of the sintering machine, the thickness of the raw material deposition layer (thickness of the sintering raw material layer), the bulk density of the sintering compound raw material, the sintering (combustion) time, It changes depending on the yield.
  • the air permeability (pressure loss) of the sintering raw material charging layer is improved to shorten the sintering time, or the coldness of the sintered cake before crushing is reduced. It is effective to improve the yield by increasing the strength.
  • Table 1 shows the chemical composition and average particle diameter of general iron ores A and B and magnetized fine powder raw materials such as magnetite fine iron ore, sintered ore, mill scale, and iron dust (blast furnace dust, steel dust, etc.).
  • magnetized fine powder raw materials such as magnetite fine iron ore, sintered ore, mill scale, and iron dust (blast furnace dust, steel dust, etc.).
  • the feature of these magnetized fine powder materials is that they usually contain more iron (FeO) than fine iron ore.
  • the particle size of the magnetized fine powder raw material such as magnetite-based fine iron ore and iron dust is not as large as that of the pellet feed, but is finer than that of ordinary powdered iron ore for sintering, The air permeability in the sintering process is likely to deteriorate, which may reduce the productivity of the sintered ore.
  • Patent Document 1 When using fine powder raw materials as sintering raw materials, efforts have been made to effectively use general fine iron ores. For example, in Patent Document 1, by adjusting the ratio of the fine iron ore and the core fine iron ore as described above at the blending stage, it is possible to obtain pseudo particles in which the fine ore is efficiently attached around the core. Have proposed a method of improving the granulation properties of the raw materials and suppressing the deterioration of air permeability.
  • Patent Document 2 proposes a technique for producing a sintered blending raw material in which when fine ore is used, it is pulverized and stirred in a separate line, and a granulated property is improved by mixing a binder. Has been.
  • an object of the present invention is to improve the sinterability by improving the air permeability of the sintered raw material charging layer when sintering the sintered blend raw material containing the magnetic fine powder raw material. It is to propose a method of operating the machine.
  • the present invention has been developed in order to solve the above-mentioned problems when using a sintered blending raw material containing a large amount of magnetic fine powder raw materials that cause deterioration of the air permeability of the sintered raw material charging layer. That is, the present invention relates to a sintering machine operating method in which a sintering compound raw material is charged and sintered on a pallet of a sintering machine through a chute having a magnet disposed on the back surface.
  • the blended raw material has 5 to 30 mass% of the raw material, the FeO content is 4.5 mass% or more, and the particle size is 0.2 to 2.5 mm in terms of arithmetic average diameter.
  • the (F M 0) the sintered blended rate of the raw material [nu 1 in the chute the lower end of the absence, velocity [nu m of the deposition magnetic fine material in the chute lower end, 1 / 5 ⁇ 1 ⁇ 4 / 5 ⁇ and so that the speed of 1, adjust the magnetic force F M of the magnet
  • Rukoto Rukoto.
  • the amount of fine powder of 250 ⁇ m or less is 5 mass% or more by weight
  • the velocity ⁇ m of the magnetized fine powder raw material at the lower end of the chute is 2 / 5 ⁇ 1 to 3 / 5 ⁇ 1
  • the magnetic force F M of the magnet it is a numerical value determined by the following equation
  • At least 5 to 15 mass% of the raw material for magnetized fine powder is sintered ore, and the remainder is at least one of magnetite fine iron ore, mill scale and iron dust. Consist of, Is a more preferable configuration.
  • the sintering is performed. Since the magnetic fine powder raw material of the blended raw material can be selectively deposited (segregation charged) on the upper portion of the sintering raw material charging layer, the air permeability of the sintering raw material charging layer It becomes possible to suppress the deterioration of. As a result, it is possible to improve quality such as production rate, yield, and cold strength in the production of sintered ore.
  • F M 0.01N
  • the pressure loss in the sintered raw material charging layer deposited on the pallet is burned in the region where the loaded wet raw material is deposited (wet zone) and carbonaceous materials such as powdered coke. It occurs in the region where the sintering reaction of the sintering compound raw material is proceeding (reaction / melting zone), and in the region where the sintered ore exists after the sintering reaction is completed (sintering zone) It is known that there is not much loss. In order to improve the sinterability, it is important to reduce the pressure loss as a whole and improve the air permeability in the entire raw material charging layer.
  • the sintered blending raw material includes a magnetic fine powder raw material such as magnetite-based fine iron ore that deteriorates air permeability due to a large amount of fine powder component
  • the magnetic fine powder raw material is intentionally
  • the sintering reaction can be completed early by depositing it on the upper part of the sintering raw material charging layer (segregation charging), and the deterioration of air permeability when a large amount of magnetic fine powder raw material is blended is minimized.
  • FIG. 4 (a) shows the sintering process of the sintered blending raw material in the sintering raw material charging layer (hereinafter also simply referred to as “charging layer”) on the sintering machine pallet.
  • b) shows the temperature distribution (heat pattern) in the sintering process in the charging layer
  • FIG. 4 (c) shows the yield distribution of the sintered cake.
  • the temperature of the upper layer portion of the charge layer of the sintered blending raw material is less likely to rise than the lower layer portion, and the high temperature region holding time tends to be relatively short. Therefore, in the upper layer portion of this charging layer, the combustion and melting reaction (sintering reaction) becomes insufficient, and the strength of the sintered cake is lowered. Therefore, as shown in FIG. This is a factor causing a decrease in productivity.
  • a raw material magnetized fine powder raw material containing a larger amount of easily magnetized components such as FeO and fine powder in the sintered mixed raw material is blended. It has been found that this can be solved by performing so-called segregation charging, in which this raw material is selectively deposited on the upper layer of the charging layer when charging it onto the pallet.
  • segregation charging in which this raw material is selectively deposited on the upper layer of the charging layer when charging it onto the pallet.
  • the melting point liquidus temperature
  • the upper part of the sintered raw material charging layer is segregated and charged with a magnetic fine powder material such as magnetite fine iron ore containing a large amount of FeO, the upper layer part is in a situation where the temperature is difficult to rise. Sintering reaction is promoted, and yield and strength can be improved.
  • the charging layer which is a deposited layer of the sintered compounding material formed by charging the sintered compounding material on the pallet, is generally accompanied by particle size segregation due to percolation when sliding down on the chute.
  • the upper layer and middle layer of the sintering raw material charging layer a large amount of fine sintered compounding material having a small particle size is distributed, while a coarse sintering compound material having a large particle size is deposited in the lower layer.
  • segregation of the charging layer occurs.
  • the segregation state becomes insufficient when more fine (more -260 ⁇ m) fine powder is contained, and in the present invention, a sintered blending raw material containing more of such a magnetic fine powder raw material is charged. Solve the problem when you do.
  • the magnetite fine iron ore as shown in FIG. 2 that is, the content of FeO is high (4.5 to 60 mass%), and the particle size is 0.2 to 2.2.
  • the premise is that a magnetically fine powder raw material having a size of 5 mm and a size of 250 ⁇ m or less is 60 mass% or less in cumulative weight ratio is used as a part of the sintered blending raw material. Then, this is a method for solving the above-mentioned problems when a sintered blending raw material containing 5 to 30 mass% of the magnetic fine powder raw material is charged onto a pallet using a chute as shown in FIG.
  • the above-mentioned deposition structure is because when the sintered compounding raw material containing a large amount of magnetic fine powder raw material is charged onto the pallet by the chute, these raw materials are arranged on the back side of the chute. This is due to receiving the action of magnetic force by the permanent magnet or electromagnet. That is, for magnetic fine powder materials that are susceptible to magnetic force due to their high iron content and small particle size, the speed when sliding down on the chute is reduced, and as a result, non-magnetization that has low iron content and large particle size.
  • the raw material (usually the sintering raw material) forms the lower layer first, while the magnetized fine powder raw material is delayed by the amount that the speed is reduced by the action of magnetic force. It is deposited on the upper layer of the charging layer.
  • the content of FeO is less than 4.5 mass%, the magnetized fine powder material is hardly affected by the magnetic force of the magnet disposed on the back surface of the sloping chute, and the speed adjustment (reduction) effect is difficult to obtain.
  • the upper limit of the FeO content can be changed by adjusting the magnetic force and is not particularly required, but the FeO content of the magnetically fine powder material is about 60 mass% at the maximum.
  • the arithmetic average particle size of the magnetic fine powder material when the arithmetic average particle size of the magnetic fine powder material is 2.5 mm or more, the particle size difference from the non-magnetic material becomes small, and the magnetic fine powder material is placed on the upper layer of the charging layer. It is difficult to segregate well in the part.
  • the arithmetic average diameter of the magnetized fine powder material is less than 0.2 mm, or when the ratio of particles having a particle size of 250 ⁇ m or less includes an integrated weight ratio of more than 60 mass%, the air permeability in the sintered bed is improved. Even if the magnetic fine powder raw material is deposited on the upper layer portion of the sintered raw material charging layer, the productivity of the sintering machine may be lowered.
  • the amount of fine powder having a particle size of 250 ⁇ m or less is less than 5 mass%, the effect of the present invention is weakened.
  • a preferable lower limit of the fine powder having a particle size of 250 ⁇ m or less is about 15 mass%.
  • FIG. 6 is a diagram for explaining the movement of particles when a sintered blending raw material containing a large amount of magnetic fine powder raw material is charged through a chute having a magnet on the back surface.
  • the force acting on the raw material particles has the particle motion direction component of gravity as (1)
  • the frictional resistance due to magnetic force is (2) and the air resistance accompanying the motion of particles is (3)
  • the equation of motion in the particle motion direction (chute horizontal plane direction) can be expressed as follows.
  • the deposition magnetic fine material sliding down on the chute wherein the magnetic force F M by the magnet of the formula (1) and (2) can be organized more in the following manner. That is, in charging the sintered blended raw material containing the magnetic fine powder raw material, the content and particle size of the magnetic fine powder raw material, the blending ratio of the magnetic fine powder raw material are given, and the magnet and chute surface Distance ( ⁇ ), chute angle ( ⁇ ), chute length (L) are given, and as constants, gravitational acceleration (g), coefficient of friction between material and chute ( ⁇ ), resistance coefficient (Cp), air When the density ( ⁇ ) and the relative velocity (v) of the particles to the air are given, the equations of motion of the above formulas (1) and (2) can be arranged like the energy conservation formula of the following formula (3). .
  • adjusting the resistance when the magnetized fine powder material that is easily magnetized slides down on the chute that is, suppressing the speed of the magnetized fine powder material in the sintered blended material
  • adjustment of the magnetic force F M is performed based on the following criteria.
  • preferable range of the magnetic force F M based on the speed difference between the magnetizable fine material and a non-magnetizable coarse-fine material in the chute bottom (speed ratio), magnetizable fine material on sintering pallet sintering It is preferable to adjust so as to segregate and deposit on the upper part of the raw material charging layer.
  • equation (4) which is the energy conservation equation
  • the velocity (initial velocity) at the position of dropping onto the chute is ⁇ 0
  • the velocity when no magnetic force is applied at the lower end of the chute when was the (same as the non-magnetizable material velocity) [nu 1
  • the speed [nu m of the deposition magnetic fine material in the chute lower end so as to be in the range of below to adjust the magnetic force F M.
  • the FeO content of the magnetic fine powder material when charging the sintered blending raw material containing the predetermined amount (5 to 30 mass%) of the magnetic fine powder material described above onto the sintering pallet, the FeO content of the magnetic fine powder material, When the mass m and the magnetic susceptibility X change in consideration of the particle size and blending amount, the magnetic flux density (H) of the magnet to be used, the distance ⁇ between the chute surface and the magnet, and the chute angle are adjusted in advance, and then the chute (when shoots lower rate of non-magnetizable material is ⁇ 1, 1 / 5 ⁇ 1 ⁇ 4 / 5 ⁇ 1) within ⁇ magnetic fine material of slide off speed [nu m is constant in the lower portion so as to, wherein by adjusting the magnetic force F M by the magnet, it is possible to selectively deposit only the magnetizable fine raw material for sintering blended in the raw material at the top of the sintering raw material sintering bed on the pallet.
  • FIG. 7 shows that the magnetic fine powder raw material in the sintered blending raw material contains FeO: 7.0 mass% sintered remineralization: 15 mass%, FeO: 4.7 mass% magnetite fine iron ore: 5 mass% , Shows a simulation result of charging with setting the magnetic force F M in formula (4) to 0.01 N, the speed of the magnetically fine powder material on the chute decreases, and most of it is burned. It is clear that it is deposited on the upper layer of the binder layer.
  • FIG. 8 shows the magnetic fine powder raw material in the sintered blending raw material containing FeO: 7.0 mass% sintered reversion: 15 mass%, FeO: 4.7 mass% magnetite fine iron ore: 5 mass% those that, was simulated by setting the magnetic force F M in 0.01N than like, can not charging a sintering mixed material at a constant speed, an obstacle to operation of sintering machines.
  • FIG. 9 shows the magnetic fine powder raw material in the sintered blending raw material containing FeO: 7.0 mass% sintered reversion: 15 mass%, FeO: 4.7 mass% magnetite fine iron ore: 5 mass% those that, it was simulated by setting the same way the magnetic force F M to 0.004 N, it is understood to be a desired polarization ⁇ input.
  • FIG. 10 shows the magnetic fine powder raw material in the sintered blending raw material containing FeO: 7.0 mass% sintered reversion: 15 mass%, FeO: 4.7 mass% magnetite fine iron ore: 5 mass% those that illustrates an example of normal loading, the magnetic force F M: 0 was simulated by setting the it can be seen that polarization ⁇ input of magnetizability fines material can not be expected at all.
  • the sintered blending material after charging was transferred to a sintering pot test apparatus, and a sintering experiment was conducted to investigate the influence on productivity and the like.
  • the magnetic force (F M ) and the velocity ( ⁇ m ) in the lower layer of the chute in this example are 6.0 ⁇ 10 ⁇ 3 N under the conditions (T1 to T6) suitable for the present invention.
  • the speed ⁇ m at this time was 3 / 5 ⁇ 1 .
  • the magnetite fine iron ore is 10 mass%, the sintered return 20 mass%, and the remainder is powdered by a chute having a magnet arranged on the back surface.
  • Magnetization of a sintered blending raw material blended with iron ore and limestone in a charging example (T6) suitable for the present invention and a comparative example (T8) that is a charging example using a chute in which no magnet is arranged When the segregation status of the component (FeO) was compared, in the invention example (T6) charged using a chute provided with a magnet, the sintered blending material containing the magnetized component was segregated in the upper layer of the charged layer. I was able to confirm.
  • FIG. 13 shows the change in the production rate according to the blending ratio of the magnetite fine iron ore for the inventive example and the comparative example in this experiment.
  • the condition (T2) in which the magnetic fine powder raw material is blended by 5 mass% has less magnetization components and the charging speed. Is not sufficiently obtained, and productivity in the sintering machine does not change much.
  • the examples (T3 to T6) suitable for the present invention the effect of reducing the charging speed by the magnetic fine powder material is sufficiently obtained, and the productivity is improved as compared with the case (T1) not containing the magnetic fine powder material. To do.
  • the technology according to the present invention has a larger particle size than that specified in the present invention, and there is a difference in effect even when charging a sintered blend raw material with a small amount or a large amount of magnetic fine powder raw material, Application is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】着磁性微粉原料を含有する焼結配合原料を焼結するとき、焼結原料装入層の通気性を良好にして焼結性の向上を図ることができる、焼結機の操業方法を提案すること。 【解決手段】焼結配合原料を、背面に磁石を配設してなるシュートを介して焼結機のパレット上に装入して焼結する焼結機の操業方法において、上記焼結配合原料中の着磁性微粉原料をパレット上に装入するとき、該シュート上に磁力を与えないときの前記焼結配合原料の速度が零のときの速度をνとするとき、前記シュート下端部での前記着磁性微粉原料の速度νが、1/5ν~4/5νの速さとなるように、前記磁石の磁力Fを調整する操業方法。

Description

焼結機の操業方法
 本発明は、焼結配合原料の装入方法に特徴を有する焼結機の操業方法に関する。特に、本発明は、通常の焼結原料に比べて磁化の容易なマグネタイト系微粉鉄鉱石や焼結返鉱等の着磁性微粉原料を含有する焼結配合原料を焼結機のパレット上に装入して焼結する焼結機の操業方法を提案する。
 高炉製銑法の主原料である焼結鉱は、図1に示すように、鉄鉱石粉、ミルスケールや製鉄ダスト等の製鉄所内回収粉、焼結鉱篩下粉(焼結返鉱)の他、石灰石やドロマイトのような含CaO原料、生石灰のような造粒助剤、粉コークス、無煙炭のような炭材(固体燃料)などからなる焼結配合原料を、DL焼結機のパレット上に装入して焼結することにて製造される。かかる焼結配合原料は、複数種の焼結原料粉をドラムミキサー等により混合し、引き続き造粒することによって、算術平均径が6.0mm以下の擬似粒子としたものが用いられる。このようして得られた焼結鉱製造用の原料、即ち、焼結配合原料は、焼結機のパレット上に装入され、単に装入層とも呼ばれる焼結原料装入層を形成するための原料となる。
 一般に、前記焼結原料装入層の厚さ(高さ)は400~800mm前後である。該焼結原料装入層は、その後、パレットの上方に設置された点火炉において、この焼結原料装入層中に含まれる炭材に点火され、そして、前記パレット下に配設されているウインドボックスを介して該焼結原料装入層中の空気を下方に吸引することにより、該焼結原料装入層中の炭材を順次に燃焼させると共に、その燃焼をパレットの移動に合わせて次第に下方かつ前方に進行させ、このときに発生する燃焼熱によって、当該焼結配合原料を溶融し、焼結ケーキに変化させる。その後、得られた焼結ケーキは、破砕後クーラーで冷却し、整粒して、所定粒度(例えば、5.0mm以上)の塊成物からなる成品焼結鉱となる。
 焼結鉱の生産量は、一般に、焼結生産率(t/hr・m)×焼結機面積(m)により決定される。ただし、焼結鉱の生産量は、焼結機の機幅や機長、原料堆積層の厚さ(焼結原料層の厚さ)、焼結配合原料の嵩密度、焼結(燃焼)時間、歩留などにより変化する。そして、この焼結鉱の生産量を増加させるためには、焼結原料装入層の通気性(圧損)を改善して焼結時間を短縮するか、あるいは破砕前の焼結ケーキの冷間強度を高めて歩留を向上させることなどが有効である。
 近年、前記焼結配合原料中に配合される鉄鉱石粉については、A1、SiO等の脈石成分が増加する一方、Fe分は低下する傾向にある。そのため、高炉や転炉におけるスラグの発生量が増加し、このスラグの処理が大きな負担となっている。これに対し、従来、これまでは焼結用原料としては使用されてこなかった鉄分(FeO)が多くかつ微粉(-250μm)の多いマグネタイト系微粉鉄鉱石、ミルスケール、製鉄ダスト等の、いわゆる着磁性微粉原料と云われるものの活用が注目を浴びている。
 表1は、一般的な鉄鉱石A、Bおよびマグネタイト系微粉鉄鉱石や焼結返鉱、ミルスケール、製鉄ダスト(高炉ダスト、製鋼ダスト等)等の着磁性微粉原料の化学成分及び平均粒径の一例を示す。これらの着磁性微粉原料の特徴は、通常、粉鉄鉱石に比べて多くの鉄分(FeO)を含有していることにある。しかし、図2に示すように、マグネタイト系微粉鉄鉱石や製鉄ダスト等の着磁性微粉原料の粒径は、ペレットフィードほどではないものの、通常の焼結用粉鉄鉱石と比較すると微細であり、焼結処理工程での通気性悪化を招きやすく、そのために焼結鉱の生産性を低下させるおそれがある。

Figure JPOXMLDOC01-appb-T000002
 微粉原料を焼結原料として使用するとき、従来、一般的な微粉鉄鉱石を有効に使用するための努力が払われている。例えば、特許文献1では、配合の段階で上記のような微粉鉄鉱石と核となる粉鉄鉱石との比率を調整し、核の周りに微粉鉱石を効率よく付着させた擬似粒子とすることで、原料の造粒性を向上させて通気性の悪化を抑制する方法を提案している。
 さらに、特許文献2には、微粉鉱石を使用する場合、これを別ラインで粉砕-攪拌し、バインダーを混ぜることで造粒性を向上させてなる焼結配合原料を製造するための技術が提案されている。
特開2008-101263号公報 特開2007-77512号公報
 上述したように、従来技術では、焼結配合原料の構成成分として微粉鉄鉱石などを使用する場合、まず、造粒性の向上を図ることが検討されてきた。例えば、特許文献1の方法では、粉鉱石の脈石成分の含有量や微粉鉱石等の使用量が今後さらに増加すると、擬似粒子を形成するための核粒子と微粉との比率を合わせられなくなり、核となる粉鉱石の比率が生産性の律速になってしまうおそれがある。また、特許文献2では、マグネタイト系微粉鉄鉱石がペレットフィードほど小さくないため、新らたにこれを粉砕工程する必要になること、及びバインダー等の使用が必要となってコスト高になるという課題が残されている。
 そこで、本発明の目的は、着磁性微粉原料を含有する焼結配合原料を焼結するとき、焼結原料装入層の通気性を良好にして焼結性の向上を図ることができる、焼結機の操業方法を提案することにある。
 本発明は、焼結原料装入層の通気性悪化の原因となる着磁性微粉原料を多く含む焼結配合原料を使用するときの前述した課題を解決するために開発したものである。即ち、本発明は、焼結配合原料を、背面に磁石を配設してなるシュートを介して焼結機のパレット上に装入して焼結する焼結機の操業方法において、上記焼結配合原料は、この原料のうちの5~30mass%が、FeOの含有量が4.5mass%以上で、粒径が算術平均径で0.2~2.5mmの大きさを有し、かつそのうちには250μm以下の微粉の量が重量割合で60mass%以下である着磁性微粉原料であり、この着磁性微粉原料をパレット上に装入するとき、該シュートに対して磁力(F)を与えないとき(F=0)のシュート下端部での前記焼結配合原料の速度をνとするとき、該シュート下端部での前記着磁性微粉原料の速度νが、1/5ν~4/5νの速さとなるように、前記磁石の磁力Fを調整することを特徴とする焼結機の操業方法である。
 本発明に係る上記の焼結機の操業方法では、
(1)前記250μm以下の微粉の量が重量割合で5mass%以上であること、
(2)前記シュート下端部での前記着磁性微粉原料の速度νは、2/5ν~3/5νの速さであること、
(3)前記シュート下端部での前記着磁性微粉原料の速度νは、前記磁石の磁力Fを0.0004~0.01Nの範囲内にして調整すること、
(4)前記磁石の磁力Fは、下記式によって求められる数値であること、
Figure JPOXMLDOC01-appb-I000003
(5)前記着磁性微粉原料は、この原料のうちの少なくとも5~15mass%は焼結返鉱であって、残りがマグネタイト系微粉鉄鉱石、ミルスケールおよび製鉄ダストのうちのいずれか1種以上からなるものであること、
が、より好ましい構成である。
 本発明に係る焼結機の操業方法によれば、背面に磁石を配置したシュートを用いて着磁性微粉原料を含む焼結配合原料を焼結機のパレット上に装入する際、該焼結配合原料のうちの該着磁性微粉原料を確実に焼結原料装入層の上層部に選択的に堆積(偏析装入)させることができるようになるので、焼結原料装入層の通気性の悪化を抑制することができるようになる。その結果、焼結鉱の製造における生産率、歩留り、冷間強度等の品質の向上を図ることができる。
DL焼結プロセスを説明する模式図である。 着磁性微粉原料等の粒度分布を示す図である。 焼結原料装入層内における温度と圧力の分布を示す図である。 焼結機内における焼結原料装入層内の温度分布と歩留分布の図である。 着磁性微粉原料が焼結原料装入層の上層部に偏折装入される状態を示す模式図である。 シュート上での粒子の動きを説明する模式図である。 磁力(F:0.01N)を変えて着磁性微粉原料を装入した時の堆積状況を示す図である。 磁力(F:0.01N超)を変えて着磁性微粉原料を装入した時の堆積状況を示す図である。 磁力(F:0.004N)を変えて着磁性微粉原料を装入した時の堆積状況を示す図である。 磁力(F:0N)を変えて着磁性微粉原料を装入した時の堆積状況を示す図である。 試験装置で用いた装入機の略線図である。 試験装置を使って装入したときの着磁性微粉原料の堆積結果を示す図である。 着磁性微粉原料の配合率と生産率との関係を示す図である。
 パレット上に堆積している焼結原料装入層における圧力損失は、図3に示すように、装入した湿原料が堆積している領域(湿潤帯)、および粉コークス等の炭材が燃焼して焼結配合原料の焼結反応が進行している領域(反応・溶融帯)で生じており、焼結反応が完了した後の焼結鉱が存在する領域(焼結鉱帯)では圧力損失はあまり生じないことが知られている。そして、焼結性を向上させるには、圧力損失を全体的に低減させて原料装入層全体での通気性の向上を図ることが重要である。
 そこで、本発明では、前記焼結配合原料の中に、微粉成分が多いために通気性を悪化させるマグネタイト系微粉鉄鉱石等の着磁性微粉原料を含む場合、その着磁性微粉原料を、意図的に焼結原料装入層の上層部に堆積させる(偏析装入)ことによって焼結反応を早期に終了させると共に、着磁性微粉原料を多く配合したときの通気性の悪化を最小限に止めることで、上記の問題点を解決するようにしたのである。
 本発明のこのような考え方については、図4から理解することができる。即ち、図4(a)は、焼結機パレット上の焼結原料装入層(以下、単に「装入層」ともいう)における焼結配合原料の焼結過程を示しており、図4(b)は、該装入層内の焼結過程における温度分布(ヒートパターン)を示し、そして図4(c)は、焼結ケーキの歩留分布を示したものである。図4(b)から分かるように、焼結配合原料の装入層の上層部は下層部に比べて温度が上昇し難く、高温域保持時間も相対的に短かくなる傾向にある。そのため、この装入層の上層部では、燃焼溶融反応(焼結化反応)が不十分となって、焼結ケーキの強度が低くなるため、図4(c)に示すように、歩留が低く、生産性の低下を招く要因となっている。
 発明者らの研究によると、この問題に対しは、焼結配合原料中にFeO等の磁化の容易な着磁成分をより多く含みかつ微粉状である原料(着磁性微粉原料)を配合したものを、パレット上に装入する際に、この原料を装入層の上層部に選択的に堆積させる、いわゆる偏析装入を行なうことで、解決できることが分った。一般に(Trans.AIME218(1960)、116)、焼結反応における成分の影響を示す状態図では、FeO含有量の増加に伴い、焼結反応に必要な融液を発生させる融点(液相線温度)が低下することが知られている。従って、焼結原料装入層の上層部に、例えば、FeOを多く含むマグネタイト系微粉鉄鉱石などの着磁性微粉原料が偏析装入されていれば、その上層部は温度が上がり難い状況の中でも焼結反応が促進され、歩留や強度の改善を図ることができる。
 また、焼結配合原料をパレット上に装入して形成される焼結配合原料の堆積層である装入層は、一般的には、シュートの上を滑り落ちるときのパーコレーションによる粒度偏析作用を伴い、該焼結原料装入層の上層部、中層部には粒度の小さい細粒の焼結配合原料が多く分布し、一方、下層部には粒度の大きい粗粒の焼結配合原料が堆積して、装入層の偏析が生じる。しかしながら、細かい(-260μmが多い)微粉がより多く含まれる場合には偏析状態が不十分となり、本発明では正に、こうした着磁性微粉原料がより多く含まれている焼結配合原料を装入するときの問題を解決する。
 即ち、本発明は、図2に示すようなマグネタイト系微粉鉄鉱石、即ち、FeOの含有率が高く(4.5~60mass%)、かつ粒径については算術平均径で0.2~2.5mmの大きさを有し、しかも250μm以下の大きさものが、積算重量割合で60mass%以下である着磁性微粉原料を焼結配合原料の一部に用いることを前提とする。そして、該着磁性微粉原料を5~30mass%含む焼結配合原料を、図5に示すようなシュートを使ってパレット上に装入するときの、前述した問題点を解決する方法である。
 このような装入方法の実施に当たっては、該シュートの背面に永久磁石または電磁石を配設して、該シュート上焼結配合原料の流れに磁力を作用させることが有効である。このことにより、焼結配合原料中に含まれる強磁性のマグネタイト系微粉鉄鉱石や焼結返鉱、ミルスケール、製鉄ダスト(高炉ダスト、製鋼ダスト等)のような着磁性微粉原料については、前記磁力の作用を受けての速度が低下(抑制)するために、該シュートの表面上を(滑り落ちる)ときに、焼結原料装入層(B)の上層部側に導かれて堆積する。この場合、粒径の大きい通常の焼結配合原料は下層に堆積する。
 前記のような堆積構造になるのは、着磁性微粉原料を多く含有する前記焼結配合原料が、前記シュートによってパレット上に装入される際に、これらの原料がシュートの背面側に配設された永久磁石または電磁石による磁力の作用を受けることによるものである。即ち、鉄分が多くかつ粒径が小さいために磁力の影響を受けやすい着磁性微粉原料については、シュート上を滑り落ちるときにの速度が弱められ、その結果、鉄分が少なく粒径の大きい非着磁性原料(通常焼結原料)の方が先にして下層部を形成する一方、該着磁性微粉原料の方は、磁力の作用によって速度が低下する分だけ遅れてすることになるので、焼結原料装入層の上層部に堆積するのである。
 前記着磁性微粉原料は、FeOの含有量が4.5mass%よりも少ないと、スローピングシュートの背面に配置した磁石の磁力の影響を受けにくく、速度の調整(低減)効果が得られにくい。一方、FeO含有量の上限は磁力調整により速度変更は可能で特に規定は不要であるが、着磁性微粉原料のFeO含有量は最大約60mass%である。
 また、原料粒径に関しては、前記着磁性微粉原料の算術平均粒径が2.5mm以上の場合は、非着磁性原料との粒径差が小さくなり、着磁性微粉原料を装入層の上層部にうまく偏析させることが難しくなる。一方、該着磁性微粉原料の算術平均径が0.2mm未満の場合、または、250μm以下の粒径をもつものの割合が積算重量割合で60mass%超含む場合、焼結ベッドでの通気性への影響が大きくなり、該着磁性微粉原料を焼結原料装入層の上層部に堆積させても、焼結機の生産性を低下させてしまう可能性がある。また、250μm以下の粒径をもつ微粉が5mass%よりも少ないと本発明の効果が弱められる。250μm以下の粒径をもつ微粉の好ましい下限としては、15mass%程度である。
 図6は、着磁性微粉原料を多く含有する焼結配合原料について、これを背面に磁石を備えるシュートを介して装入するときの粒子の動きを説明する図である。この図に示すように、着磁性微粉原料を含有する焼結配合原料が該シュート上を滑り落ちるときに、この原料粒子に作用する力は、重力の粒子運動方向成分を(1)とし、重力と磁力による摩擦抵抗を(2)とし、粒子の運動に伴う空気抵抗を(3)とするとき、粒子運動方向(シュート水平面方向)における運動方程式は下記のように表わすことができる。
Figure JPOXMLDOC01-appb-I000004
 なお、上述した(1)式における磁力Fの一般式は下記(2)式のとおりである。
Figure JPOXMLDOC01-appb-I000005
 そこで、前記着磁性微粉原料がシュート上を滑り落ちる際の、前記式(1)および(2)の磁石による磁力Fの式は、さらに次のように整理することができる。
 即ち、着磁性微粉原料を含む焼結配合原料の装入に当たって、該着磁性微粉原料のFeO含有量や粒径、この着磁性微粉原料の配合割合が与えられ、そして、磁石とシュート表面との距離(χ)およびシュート角度(θ)、シュート長さ(L)が与えられ、そして定数として、重力加速度(g)、原料とシュートとの摩擦係数(μ)、抵抗係数(Cp)、空気の密度(ρ)、粒子の空気に対する相対速度(v)が与えられるとき、上記式(1)、(2)の運動方程式は、下記(3)式のエネルギー保存式のように整理することができる。
Figure JPOXMLDOC01-appb-I000006
 さらに、本発明では、該シュート表面上での前記着磁性微粉原料に作用する上記(3)式の磁力Fは、シュート下端での速度νを零(0)よりも大きくすること、即ち、シュートに磁力Fを与えないときの非着磁性原料の速度よりも遅くなるようにすることが必要であり、それ故に、(3)式はさらに(4)式のように整理することができる。
Figure JPOXMLDOC01-appb-I000007
 要するに、本発明では、磁化の容易な着磁性微粉原料がシュート上を滑り落ちるときの抵抗を調整(大きく)すること、即ち、焼結配合原料中の該着磁性微粉原料の速度を抑制して、このことによって焼結原料装入層の上層部に偏析装入されるように運転する方法である。
 なお、前記磁力Fを際限なく大きくすること、即ち、磁化の容易な着磁性微粉原料をシュート上に付着させないようにすることは好ましくない。表2は、Fを0~10.5×10-3Nとした場合の離散要素法によるシュート下端での磁力Fと着磁性微粉原料のシュート下端部での速度νとの関係を調べたシミュレーション結果である。この表に示すように、磁力(F)が大きすぎて摩擦抵抗が非常に大きくなりすぎた例(S1:0/5ν)では、シュート上に着磁性微粉原料が付着している。これにより、幅方向での装入が不均一になってしまう可能性や、最悪の場合、付着物によりシュートF上が閉塞し、装入自体が不可能になってしまうおそれがある。一方、磁力を全く与えない例(S6:5/5ν)では、偏析装入が全くできていない。一方、S2は、磁力(F=10.0×10-3N)によるブレーキ効果が大きいため、原料装入層の密度が過剰に低下(空隙率が増加)し、通気性が良く生産率が向上するものの、歩留まりが低下する。また、S5は磁力(F=0.4×10-3N)が弱く、装入速度νが大きく、偏析装入の効果が弱いという結果を示した。従って、磁力Fは、着磁性微粉原料のシュート下端部での速度νとの関連において調整することが有効であることが分かる。また、S3、S4は偏析状況がいずれも良好なケースであり、しかも原料装入層の密度が過剰に低下(空隙率が増加)することがないので通気性も良く、歩留りや生産率も良好である。
Figure JPOXMLDOC01-appb-T000008
 以上のことから、前記磁力Fの調整は、以下の基準に基づいて行なう。即ち、磁力Fの好適範囲は、シュート下端での着磁性微粉原料と非着磁性粗・細粒原料との速度差(速度比)に基づき、焼結パレット上で着磁性微粉原料が焼結原料装入層の上部に偏析して堆積するように調整することが好ましい。
 そのために、本発明では、上記エネルギー保存式である前記式(4)において、シュート上への落下位置での速度(初速度)をν、シュート下端での磁力が与えられていないときの速度をν(非着磁性原料の速度と同じ)としたとき、シュート下端部での前記着磁性微粉原料の速度νが下記の範囲内となるように、磁力Fを調整する。
 磁力Fとシュート下端部での速度νとの関係は、着磁性微粉原料のシュート下端部での速度を0、1/5ν、2/5ν、3/5ν、4/5ν、νに設定した試験(S1~S6)での、表2に示す結果から明らかである。即ち、表2に示したように、該着磁性微粉原料のシュート下端部での速度νが、1/5ν~4/5νの範囲にあるとき前記偏析装入の状況が良好となり、特に、2/5ν~3/5νの範囲でさらに歩留りが良好となる。
 そこで、本発明では、前述した所定量(5~30mass%)の着磁性微粉原料を含む焼結配合原料を焼結記パレット上に装入するに当たっては、該着磁性微粉原料のFeO含有量、粒径や配合量を考慮し、質量mや磁化率Xが変化した場合、使用する磁石の磁束密度(H)とシュート表面と磁石との距離χおよびシュート角度を予め調整した上で、前記シュート下端部での該着磁性微粉原料の滑り落ちる速度νが一定の範囲内(非着磁性原料のシュート下端速度がνであるとき、1/5ν~4/5ν)になるように、前記磁石による磁力Fを調整することで、焼結配合原料中の着磁性微粉原料のみをパレット上の焼結原料装入層の上層部に選択的に堆積させることができるようになる。
 結局、与えられた一定の条件(着磁性微粉原料のFeOの含有量、平均粒径、この原料の配合割合等)の下で、前記磁力Fの望ましい範囲、即ち、着磁性微粉原料を常に焼結原料装入層の上層部にのみ堆積させて、安定して焼結機の操業ができる条件とは、シュート下端部での着磁性微粉原料の速度が、前述した1/5ν~4/5νなるように、磁石による磁力Fを0.0004~0.01の範囲内、望ましくは0.004~0.009の範囲内に調整して焼結配合原料の装入を行なうことが、焼結機の安定操業につながるのである。
 図7は、焼結配合原料中の着磁性微粉原料として、FeO:7.0mass%の焼結返鉱:15mass%、FeO:4.7mass%のマグネタイト系微粉鉄鉱石:5mass%含有するものを、前記式(4)中の磁力F:0.01Nに設定して装入するシミュレーション結果を示すものであるが、該着磁性微粉原料のシュート上での速度が低下し、その大半が焼結原料層の上層部に堆積することが明らかである。
 次に、図8は、焼結配合原料中の着磁性微粉原料として、FeO:7.0mass%の焼結返鉱:15mass%、FeO:4.7mass%のマグネタイト系微粉鉄鉱石:5mass%含有するものを、同じように磁力Fを0.01N超に設定してシュミレーションしたところ、一定速度での焼結配合原料の装入ができなくなり、焼結機の操業の障害となる。
 次に、図9は、焼結配合原料中の着磁性微粉原料として、FeO:7.0mass%の焼結返鉱:15mass%、FeO:4.7mass%のマグネタイト系微粉鉄鉱石:5mass%含有するものを、同じように磁力Fを0.004Nに設定してシミュレーションしたところ、望ましい偏析装入になることが分かる。
 次に、図10は、焼結配合原料中の着磁性微粉原料として、FeO:7.0mass%の焼結返鉱:15mass%、FeO:4.7mass%のマグネタイト系微粉鉄鉱石:5mass%含有するものを、通常装入する例であり、磁力F:0に設定してシミュレーションしたところ、着磁性微粉原料の偏析装入は全く期待できないことが分かる。
 以下で述べる実施例は、図11に示す実機装入装置を模擬した実験装置を用い、焼結配合原料の装入実験を行なった。この実験では、表3に示す配合で、マグネタイト系微粉鉱石や焼結返鉱等の着磁性微粉原料を含む焼結配合原料を用いた。そして、上記シミュレータ上方に設置したホッパー内に上記焼結配合原料を充填し、表4に示す条件にてシュートを使って模擬パレット上に装入した。模擬パレット上に装入して得られた装入層の上層部、中層部、下層部からそれぞれ焼結配合原料を採取し、化学分析によるマグネタイト成分(FeO)の偏析状況を調査した。さらにその後、装入後の焼結配合原料を焼結鍋試験装置に移して焼結実験を行ない、生産性への影響等を調査した。
 この実施例における磁力(F)とシュート下層部での速度(ν)は、表3に示すとおり、本発明に適合する条件(T1~T6)では、6.0×10-3N、およびこのときの速度νは3/5νの条件であった。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 前記焼結鍋試験装置による装入実験の結果によると、図12に示すように、背面に磁石を配置したシュートによって、マグネタイト系微粉鉄鉱石を10mass%、焼結返鉱20mass%、残部として粉状鉄鉱石と石灰石を配合した焼結配合原料を、本発明に適合する装入例(T6)と、磁石を配置していないシュートによる装入例である比較例(T8)とにおける、着磁成分(FeO)の偏析状況を比較したところ、磁石を設置したシュートを使って装入した発明例(T6)では、着磁成分を含有する焼結配合原料は、装入層の上層部に偏析していることが確認できた。
 さらに、この実験における発明例および比較例について、マグネタイト系微粉鉄鉱石の配合比率による生産率の変化を図13に示す。この図に示す結果から明らかなように、着磁性微粉原料を含まない場合(T1)に比べて、着磁性微粉原料を5mass%配合した条件(T2)では、着磁成分が少なく、装入速度の低減効果が十分に得られず、焼結機での生産性もあまり変化しない。一方、本発明に適合する例(T3~T6)では、着磁性微粉原料による装入速度の低減効果が十分に得られ、着磁性微粉原料を含まない場合(T1)に比べて生産性が改善する。一方、着磁性微粉原料を40mass%配合した条件(T7)では、微粉の比率が増加し、上層部のみでなく、中層部以下にも微粉が混入してくるため、生産性を高く維持することができなくなった。従って、本発明においては、焼結配合原料中の着磁性微粉原料の配合量は、5mass%~30mass%以下、好ましくは20mass%以上~30mass%以下ときに効果が顕著に現れることがわかった。
 本発明に係る技術は、本発明で指定したものよりも粒径が大きく、また、着磁性微粉原料の量が少ないか多い焼結配合原料を装入する場合においても、効果の差はあるものの適用は可能である。

Claims (6)

  1. 焼結配合原料を、背面に磁石を配設してなるシュートを介して焼結機のパレット上に装入して焼結する焼結機の操業方法において、
    上記焼結配合原料は、この原料のうちの5~30mass%が、FeOの含有量が4.5mass%以上で、粒径が算術平均径で0.2~2.5mmの大きさを有し、かつそのうちには250μm以下の微粉の量が重量割合で60mass%以下である着磁性微粉原料であり、
     この着磁性微粉原料をパレット上に装入するとき、該シュートに対して磁力(F)を与えないとき(F=0)のシュート下端部での前記焼結配合原料の速度をνとするとき、該シュート下端部での前記着磁性微粉原料の速度νが、1/5ν~4/5νの速さとなるように、前記磁石の磁力Fを調整することを特徴とする焼結機の操業方法。
  2.  前記250μm以下の微粉の量が重量割合で5mass%以上であることを特徴とする請求項1に記載の焼結機の操業方法。
  3.  前記シュート下端部での前記着磁性微粉原料の速度νは、2/5ν~3/5νの速さであることを特徴とする請求項1または2に記載の焼結機の操業方法。
  4.  前記シュート下端部での前記着磁性微粉原料の速度νは、前記磁石の磁力Fを0.0004~0.01Nの範囲内にして調整することを特徴とする請求項1~3のいずれか1に記載の焼結機の操業方法。
  5. 前記磁石の磁力Fは、下記式によって求められる数値であることを特徴とする請求項1~4のいずれか1に記載の焼結機の操業方法。
    Figure JPOXMLDOC01-appb-I000001
  6. 前記着磁性微粉原料は、この原料のうちの少なくとも5~15mass%は焼結返鉱であって、残りがマグネタイト系微粉鉄鉱石、ミルスケールおよび製鉄ダストのうちのいずれか1種以上からなるものであることを特徴とする請求項1~5のいずれか1に記載の焼結機の操業方法。
PCT/JP2015/080120 2014-10-31 2015-10-26 焼結機の操業方法 WO2016068078A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112017008572-0A BR112017008572B1 (pt) 2014-10-31 2015-10-26 Método para operar máquina de sinterização
CN201580060005.6A CN107002165A (zh) 2014-10-31 2015-10-26 烧结机的操作方法
KR1020177011349A KR101925365B1 (ko) 2014-10-31 2015-10-26 소결기의 조업 방법
PH12017500701A PH12017500701A1 (en) 2014-10-31 2017-04-12 Method for operating sintering machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-222163 2014-10-31
JP2014222163 2014-10-31
JP2015-139467 2015-07-13
JP2015139467A JP6314924B2 (ja) 2014-10-31 2015-07-13 焼結機の操業方法

Publications (1)

Publication Number Publication Date
WO2016068078A1 true WO2016068078A1 (ja) 2016-05-06

Family

ID=55857417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080120 WO2016068078A1 (ja) 2014-10-31 2015-10-26 焼結機の操業方法

Country Status (1)

Country Link
WO (1) WO2016068078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193898A (ja) * 2014-03-26 2015-11-05 Jfeスチール株式会社 着磁成分原料を含有する焼結配合原料の装入方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302422A (ja) * 1995-12-22 1997-11-25 Kawasaki Steel Corp 磁力を用いた焼結原料の装入方法
JP2003105449A (ja) * 2001-09-26 2003-04-09 Kawasaki Steel Corp 焼結原料の装入方法および装入装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302422A (ja) * 1995-12-22 1997-11-25 Kawasaki Steel Corp 磁力を用いた焼結原料の装入方法
JP2003105449A (ja) * 2001-09-26 2003-04-09 Kawasaki Steel Corp 焼結原料の装入方法および装入装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193898A (ja) * 2014-03-26 2015-11-05 Jfeスチール株式会社 着磁成分原料を含有する焼結配合原料の装入方法

Similar Documents

Publication Publication Date Title
Lu Important iron ore characteristics and their impacts on sinter quality—A review
KR100254281B1 (ko) 자력을 이용한 소결원료의 장입방법
JP5168802B2 (ja) 焼結鉱の製造方法
WO2016068078A1 (ja) 焼結機の操業方法
JP2015193898A (ja) 着磁成分原料を含有する焼結配合原料の装入方法
JP3201726B2 (ja) 磁力を用いた焼結原料の装入方法
JP6314924B2 (ja) 焼結機の操業方法
JP2013127112A (ja) 還元鉄とスラグの混合物の製造方法
WO1994005817A1 (en) Method for producing sintered ore
JP2012046828A (ja) 焼結鉱の製造方法
JP6874780B2 (ja) 焼結鉱の製造方法
JP2000018837A (ja) 焼結原料の装入方法および装置
JP2001234257A (ja) 磁力を用いた焼結原料の装入方法
JP6183612B2 (ja) 焼結機の操業方法
JPH11211356A (ja) 磁力を用いた焼結原料の装入方法
JP3952871B2 (ja) 高強度焼結鉱の製造方法
JP2003105449A (ja) 焼結原料の装入方法および装入装置
JPH0853719A (ja) 焼結原料の装入方法及びその装置
JPH11132669A (ja) 焼結原料の装入方法
JP3531409B2 (ja) 高品位焼結鉱製造用の粒状原料
JPS6314823A (ja) 焼結操業法
JP5292845B2 (ja) 焼結機への原料装入方法
JP2001271122A (ja) 焼結原料の装入方法
JP2000002488A (ja) 焼結原料の装入方法
JPH11237187A (ja) 焼結原料の装入方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177011349

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017/06323

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017008572

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 15854684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017008572

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170426