WO2016067614A1 - 電力変換装置、およびそれを用いたパワーコンディショナ - Google Patents

電力変換装置、およびそれを用いたパワーコンディショナ Download PDF

Info

Publication number
WO2016067614A1
WO2016067614A1 PCT/JP2015/005429 JP2015005429W WO2016067614A1 WO 2016067614 A1 WO2016067614 A1 WO 2016067614A1 JP 2015005429 W JP2015005429 W JP 2015005429W WO 2016067614 A1 WO2016067614 A1 WO 2016067614A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
switching element
voltage
point
output
Prior art date
Application number
PCT/JP2015/005429
Other languages
English (en)
French (fr)
Inventor
真理子 木藤
和憲 木寺
充 田邊
伊藤 和雄
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016067614A1 publication Critical patent/WO2016067614A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing

Definitions

  • the present invention relates to a power conversion device and a power conditioner using the same.
  • Reference 1 Japanese Patent Application Publication No. 2014-64431 (paragraphs [0002] to [0006], FIGS. 16 and 17, hereinafter referred to as Reference 1) and Japanese Patent No. 4369425 (hereinafter referred to as Reference 2) include: A power conversion device that generates AC output converted from a DC voltage source into a plurality of voltage levels (“multilevel power conversion device” in Literature 1, and “converter circuit” in Literature 2) is disclosed.
  • the power conversion device is a 5-level inverter that outputs a 5-level voltage, and includes two DC capacitors, two flying capacitors, and ten switching elements. Yes.
  • the voltage of each DC capacitor becomes E / 2 and the voltage of each flying capacitor becomes E / 4.
  • the switching element By controlling the switching element, a five-level voltage is output.
  • the conventional power conversion device in order to maintain the voltage of the capacitor (flying capacitor) at a specified voltage, it is necessary to perform control for switching between charging and discharging of the capacitor.
  • the conventional power conversion device since the conventional power conversion device is configured to charge or discharge a pair (two) of capacitors (flying capacitors) at the same time, once the voltage of the pair of capacitors becomes unbalanced, It is difficult to balance the voltage. Therefore, in the conventional power conversion device, the voltage of one pair of capacitors may be unbalanced, and the voltage of one capacitor may exceed the specified voltage. It is necessary to use a withstand voltage capacitor.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide a power converter that can reduce the withstand voltage required for a capacitor, and a power conditioner using the power converter.
  • the power conversion device of one embodiment of the present invention is electrically connected in parallel between a first input point on the high potential side of the DC power supply and a second input point on the low potential side of the DC power supply.
  • a first conversion circuit and a second conversion circuit the first conversion circuit between the first input point and the second input point, from the first input point side to the first switching element, First to fourth switching elements electrically connected in series in the order of two switching elements, a third switching element, and a fourth switching element, the second switching element, and the third switching element
  • a first capacitor electrically connected in parallel to each other, and a connection point between the second switching element and the third switching element is a first output point, and the second capacitor
  • the conversion circuit connects the first input point and the previous Between the second input point, the fifth switching element, the sixth switching element, the seventh switching element, and the eighth switching element are electrically connected in series in this order from the first input point side.
  • connection point between the element and the seventh switching element is a second output point, and the first connection point, which is the connection point between the first switching element and the second switching element, and the seventh switching element, A first bidirectional switch electrically connected to a second connection point that is a connection point of the eighth switching element; the third switching element; A second bidirectional connection electrically connected between a third connection point, which is a connection point of the switching elements, and a fourth connection point, which is a connection point of the fifth switching element and the sixth switching element.
  • a control unit that switches a connection state with two capacitors and changes the magnitude of an output voltage generated between the first output point and the second output point in a plurality of stages, and the control unit includes: When the difference between the voltage of the first capacitor and the voltage of the second capacitor exceeds a predetermined threshold, only the capacitor having the higher voltage of the first capacitor and the second capacitor is discharged. As described above, the first to eighth switching elements and the first and second bidirectional switches are controlled.
  • the power conditioner of 1 aspect of this invention is equipped with said power converter device and the disconnector electrically connected between the said 1st output point and the said 2nd output point, and a system power supply.
  • FIG. 2A is an explanatory diagram of a first mode of the power conversion device according to the embodiment
  • FIG. 2B is an explanatory diagram of a second mode of the power conversion device according to the embodiment
  • FIG. 3A is an explanatory diagram of a third mode of the power conversion device according to the embodiment
  • FIG. 3B is an explanatory diagram of a fourth mode of the power conversion device according to the embodiment
  • 4A is an explanatory diagram of a fifth mode of the power conversion device according to the embodiment
  • FIG. 4B is an explanatory diagram of a sixth mode of the power conversion device according to the embodiment.
  • FIG. 5A is an explanatory diagram of a seventh mode of the power conversion device according to the embodiment
  • FIG. 5B is an explanatory diagram of an eighth mode of the power conversion device according to the embodiment.
  • It is a wave form diagram of the final output voltage of the power converter concerning an embodiment.
  • It is the schematic which shows the structure of the power conditioner which concerns on embodiment.
  • 8A is an explanatory diagram of a single-side discharge mode in which only the first capacitor of the power conversion device according to the embodiment is discharged
  • FIG. 8B is an explanatory diagram of a single-side discharge mode in which only the second capacitor of the power conversion device according to the embodiment is discharged.
  • FIG. 9A is an explanatory diagram of a single-side discharge mode in which only the first capacitor of the power conversion device according to the embodiment is discharged
  • FIG. 9B is an explanatory diagram of a single-side discharge mode in which only the second capacitor of the power conversion device according to the embodiment is discharged. It is a flowchart which shows operation
  • the following embodiments generally relate to a power converter and a power conditioner using the same, and more particularly to a power converter that converts power from a DC power source and a power conditioner using the same.
  • the power conversion apparatus 1 includes a first conversion circuit 11 and a second conversion circuit 12, and further includes a first bidirectional switch 13 and a second bidirectional switch 14. And a control unit 6.
  • the first conversion circuit 11 and the second conversion circuit 12 are electrically connected between a first input point 101 on the high potential side of the DC power supply 100 and a second input point 102 on the low potential side of the DC power supply 100. Connected in parallel.
  • the first conversion circuit 11 includes first to fourth switching elements Q1 to Q4 and a first capacitor C1.
  • the connection point between the second switching element Q 2 and the third switching element Q 3 is the first output point 103.
  • the first to fourth switching elements Q1 to Q4 are electrically connected in series between the first input point 101 and the second input point 102.
  • the first to fourth switching elements Q1 to Q4 are arranged in the order of the first switching element Q1, the second switching element Q2, the third switching element Q3, and the fourth switching element Q4 from the first input point 101 side. Connected in series.
  • the first capacitor C1 is electrically connected in parallel with the series circuit of the second switching element Q2 and the third switching element Q3.
  • the second conversion circuit 12 has fifth to eighth switching elements Q5 to Q8 and a second capacitor C2.
  • the connection point between the sixth switching element Q 6 and the seventh switching element Q 7 is the second output point 104.
  • the fifth to eighth switching elements Q5 to Q8 are electrically connected in series between the first input point 101 and the second input point 102.
  • the fifth to eighth switching elements Q5 to Q8 are arranged in the order of the fifth switching element Q5, the sixth switching element Q6, the seventh switching element Q7, and the eighth switching element Q8 from the first input point 101 side. Connected in series.
  • the second capacitor C2 is electrically connected in parallel with the series circuit of the sixth switching element Q6 and the seventh switching element Q7.
  • the first bidirectional switch 13 is a connection point between the first connection point 201, which is a connection point between the first switching element Q1 and the second switching element Q2, and a connection point between the seventh switching element Q7 and the eighth switching element Q8. It is electrically connected to a certain second connection point 202.
  • the second bidirectional switch 14 is a connection point between the third connection element 203, which is a connection point between the third switching element Q3 and the fourth switching element Q4, and a connection point between the fifth switching element Q5 and the sixth switching element Q6. It is electrically connected to a certain fourth connection point 204.
  • the control unit 6 controls the first to eighth switching elements Q1 to Q8 and the first and second bidirectional switches 13 and 14 to control the DC power supply 100 and the first output point 103 for the first output point 103 and the second output point 104.
  • the connection state between the first capacitor C1 and the second capacitor C2 is switched. Thereby, the control part 6 changes the magnitude
  • control unit 6 switches the first to eighth switching elements so as to enter the one-side discharge mode when the difference between the voltage V1 of the first capacitor C1 and the voltage V2 of the second capacitor C2 exceeds a predetermined threshold value.
  • Q1 to Q8 and the first and second bidirectional switches 13 and 14 are controlled.
  • the one-side discharge mode here is a mode in which only the capacitor having the higher voltage of the first capacitor C1 and the second capacitor C2 is discharged.
  • the power conversion device 1 when the difference between the voltage V1 of the first capacitor C1 and the voltage V2 of the second capacitor C2 exceeds a predetermined threshold, the power conversion device 1 has the first capacitor C1 and the second capacitor C2. In this mode, only the capacitor having the higher voltage is discharged. In other words, the power conversion device 1 discharges only the capacitor with the higher voltage even when the voltage imbalance (imbalance) of the pair of capacitors (the first capacitor C1 and the second capacitor C2) occurs. It is possible to balance the voltage of the capacitors. Therefore, the power conversion device 1 has an advantage that the withstand voltage required for the capacitor can be lowered by balancing the voltages of the pair of capacitors. That is, it is possible to employ a capacitor with a lower breakdown voltage.
  • the power conversion device 1 balances the voltages of the pair of capacitors by discharging one of the capacitors when an unbalance of the voltages of the pair of capacitors occurs. That is, since the power conversion device 1 is configured to discharge instead of charging only one capacitor, when the voltage imbalance occurs, the first capacitor C1 and the second capacitor C2 are supplied from the DC power supply 100. Operates in an electrically disconnected state. Therefore, the power conversion device 1 can prevent the occurrence of leakage current due to the voltage imbalance of the pair of capacitors.
  • the power converter 1 according to the present embodiment and the power conditioner 20 (see FIG. 7) using the power converter 1 will be described in detail.
  • the configuration described below is merely an example of the present invention, and the present invention is not limited to the present embodiment, and the technical idea according to the present invention is not deviated from this embodiment.
  • Various changes can be made in accordance with the design or the like as long as they are not.
  • the power conditioner 20 is a residential power conditioner that is used by being electrically connected to a photovoltaic power generation device serving as the DC power source 100 is exemplified.
  • the use of the power conditioner 20 is illustrated. It is not intended to limit.
  • the power conditioner 20 may be used by being electrically connected to a DC power source 100 other than a solar power generation device, such as a household fuel cell or a power storage device, or a non-residential such as a store, factory, office, etc. May be used.
  • the power converter 1 is not intended to limit the application to the power conditioner 20, and the power converter 1 may be used other than the power conditioner 20.
  • the power converter 1 of this embodiment is electrically connected to the DC power supply 100 as shown in FIG.
  • the DC power source 100 is composed of a solar power generation device
  • the power conversion device 1 is connected to the DC power source 100 via a connection box.
  • the power conversion device 1 of this embodiment further includes a filter circuit 5, a first detection unit 21, and a second detection unit 22 in addition to the conversion circuit 10 and the control unit 6.
  • the conversion circuit 10 includes a first conversion circuit 11 and a second conversion circuit 12, and a first bidirectional switch 13 and a second bidirectional switch 14.
  • the first input point 101 and the second input point 102 serve as a pair of input terminals in the power converter 1, and the DC power source 100 is electrically connected between the pair of input terminals (the first input point 101 and the second input point 102). Connected.
  • the first output point 103 of the first conversion circuit 11 and the second output point 104 of the second conversion circuit 12 are electrically connected to the third output point 105 and the fourth output point 106 through the filter circuit 5, respectively.
  • the third output point 105 and the fourth output point 106 serve as a pair of output terminals in the power conversion device 1.
  • the output voltage of the power conversion device 1 is an AC voltage
  • the third output point 105 and the fourth output point 106 are electrically connected to the system power supply (commercial power system) 7. Further, the third output point 105 and the fourth output point 106 are electrically connected to a load 8 that operates by receiving supply of AC power.
  • the pair of output terminals of the power conversion device 1 are connected to the load 8 and the system power supply 7 by being electrically connected to an interconnection breaker provided in the distribution board. That is, the power conversion device 1 converts the DC power input from the DC power source 100 into AC power, and the AC power is transferred from the pair of output terminals (the third output point 105 and the fourth output point 106) to the load 8 and the system. Output to power supply 7.
  • the system power supply 7 is a single-phase three-wire system having a U-phase and a W-phase.
  • the system power supply 7 is not limited to this example, and may be a single-phase two-wire system.
  • the power conversion apparatus 1 uses the input terminal on the high potential (positive electrode) side of the DC power supply 100 among the pair of input terminals connected to the DC power supply 100 as the first input point 101, and the low potential (negative electrode) of the DC power supply 100.
  • the input terminal on the side is the second input point 102. Therefore, a DC voltage output from the DC power supply 100 is applied as an input voltage between the first input point 101 and the second input point 102.
  • the input terminal (second input point 102) on the low potential side of the DC power supply 100 is the circuit ground of the power converter 1, and the potential thereof is 0 [V]. Then, the potential of the first input point 101 is expressed by E [V] using the DC voltage E [V] output from the DC power supply 100.
  • the first conversion circuit 11 includes the first to fourth switching elements Q1 to Q4 connected in series between the first input point 101 and the second input point 102, and the first capacitor C1. is doing.
  • a depletion type n-channel MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • each of the first to fourth switching elements Q1-Q4 is used here as each of the first to fourth switching elements Q1-Q4.
  • the drain of the first switching element Q1 is electrically connected to the first input point 101.
  • the drain of the second switching element Q2 is electrically connected to the source of the first switching element Q1.
  • the drain of the third switching element Q3 is electrically connected to the source of the second switching element Q2.
  • the drain of the fourth switching element Q4 is electrically connected to the source of the third switching element Q3. Further, the source of the fourth switching element Q 4 is electrically connected to the second input point 102.
  • connection point between the source of the second switching element Q 2 and the drain of the third switching element Q 3 is the first output point 103. Furthermore, the connection point between the source of the first switching element Q1 and the drain of the second switching element Q2 is a first connection point 201. A connection point between the source of the third switching element Q 3 and the drain of the fourth switching element Q 4 is a third connection point 203.
  • first capacitor C1 One end of the first capacitor C1 is electrically connected to the drain (first connection point 201) of the second switching element Q2, and the other end is electrically connected to the source (third connection point 203) of the third switching element Q3. Connected.
  • the first capacitor C1 has one end electrically connected to the first input point 101 via the first switching element Q1 and the other end connected to the second input point 102 via the fourth switching element Q4. Electrically connected.
  • the second conversion circuit 12 includes the fifth to eighth switching elements Q5 to Q8 connected in series between the first input point 101 and the second input point 102, and the second capacitor C2. is doing.
  • the second conversion circuit 12 has basically the same configuration as the first conversion circuit 11, and the fifth to eighth switching elements Q5 to Q8 correspond to the first to fourth switching elements Q1 to Q4.
  • the second capacitor C2 corresponds to the first capacitor C1.
  • a depletion type n-channel MOSFET is used in the same manner as each of the first to fourth switching elements Q1 to Q4.
  • the drain of the fifth switching element Q5 is electrically connected to the first input point 101.
  • the drain of the sixth switching element Q6 is electrically connected to the source of the fifth switching element Q5.
  • the drain of the seventh switching element Q7 is electrically connected to the source of the sixth switching element Q6.
  • the drain of the eighth switching element Q8 is electrically connected to the source of the seventh switching element Q7. Further, the source of the eighth switching element Q8 is electrically connected to the second input point 102.
  • connection point between the source of the sixth switching element Q6 and the drain of the seventh switching element Q7 is the second output point 104. Furthermore, the connection point between the source of the fifth switching element Q5 and the drain of the sixth switching element Q6 is a fourth connection point 204. A connection point between the source of the seventh switching element Q 7 and the drain of the eighth switching element Q 8 is a second connection point 202.
  • the second capacitor C2 has one end electrically connected to the drain (fourth connection point 204) of the sixth switching element Q6 and the other end electrically connected to the source (second connection point 202) of the seventh switching element Q7. Connected. In other words, the second capacitor C2 has one end electrically connected to the first input point 101 via the fifth switching element Q5 and the other end connected to the second input point 102 via the eighth switching element Q8. Electrically connected.
  • the circuit constant (capacitance) of the second capacitor C2 and the circuit constant (capacitance) of the first capacitor C1 are the same value.
  • the first to eighth switching elements Q1 to Q8 are connected to the first to eighth diodes D1 to D8 in a one-to-one manner and in antiparallel.
  • These first to eighth diodes D1 to D8 are parasitic diodes of the first to eighth switching elements Q1 to Q8, respectively. That is, the parasitic diode of the first switching element Q1 constitutes the first diode D1, and similarly, the parasitic diodes of the second, third,... Switching elements Q2, Q3,. D3...
  • the first diode D1 is connected in a direction in which the drain side of the first switching element Q1 is a cathode and the source side is an anode.
  • the first conversion circuit 11 and the second conversion circuit 12 configured as described above are electrically connected in parallel between the first input point 101 and the second input point 102. That is, the first conversion circuit 11 and the second conversion circuit 12 are connected in parallel between both ends of the DC power supply 100.
  • the first bidirectional switch 13 is electrically connected between the first connection point 201 and the second connection point 202. That is, the first connection point 201 of the first conversion circuit 11 is electrically connected to the second connection point 202 of the second conversion circuit 12 via the first bidirectional switch 13.
  • the first bidirectional switch 13 includes a ninth switching element Q9 and a tenth switching element Q10 electrically connected in series between the first connection point 201 and the second connection point 202. have.
  • the first bidirectional switch 13 is connected in the order of the ninth switching element Q9 and the tenth switching element Q10 from the first connection point 201 side.
  • each of the ninth and tenth switching elements Q9 and Q10 is a depletion type n-channel MOSFET, like each of the first to eighth switching elements Q1 to Q8.
  • the source of the ninth switching element Q9 is connected to the first connection point 201, and the drain of the ninth switching element Q9 is connected to the drain of the tenth switching element Q10.
  • the source of the tenth switching element Q ⁇ b> 10 is connected to the second connection point 202.
  • the ninth switching element Q9 and the tenth switching element Q10 are connected in anti-series between the first connection point 201 and the second connection point 202 so that the drains are connected to each other. .
  • the second bidirectional switch 14 is electrically connected between the third connection point 203 and the fourth connection point 204. That is, the third connection point 203 of the first conversion circuit 11 is electrically connected to the fourth connection point 204 of the second conversion circuit 12 via the second bidirectional switch 14.
  • the second bidirectional switch 14 includes the twelfth switching element Q12 and the eleventh switching element Q11 electrically connected in series between the third connection point 203 and the fourth connection point 204. have.
  • the second bidirectional switch 14 is connected in the order of the twelfth switching element Q12 and the eleventh switching element Q11 from the third connection point 203 side.
  • each of the eleventh and twelfth switching elements Q11 and Q12 is a depletion type n-channel MOSFET, similar to each of the first to eighth switching elements Q1 to Q8.
  • the source of the eleventh switching element Q11 is connected to the fourth connection point 204, and the drain of the eleventh switching element Q11 is connected to the drain of the twelfth switching element Q12.
  • the source of the twelfth switching element Q12 is connected to the third connection point 203.
  • the eleventh switching element Q11 and the twelfth switching element Q12 are connected in anti-series between the third connection point 203 and the fourth connection point 204 so that the drains are connected to each other. .
  • the ninth to twelfth switching elements Q9 to Q12 are connected to the ninth to twelfth diodes D9 to D12 in a one-to-one antiparallel manner.
  • the ninth to twelfth diodes D9 to D12 are parasitic diodes of the ninth to twelfth switching elements Q9 to Q12, respectively. That is, the parasitic diode of the ninth switching element Q9 forms a ninth diode D9, and similarly, the parasitic diodes of the tenth, eleventh and twelfth switching elements Q10, Q11 and Q12 are the tenth, eleventh and twelfth parasitic diodes, respectively.
  • Diodes D10, D11, and D12 are configured.
  • the ninth diode D9 is connected in such a direction that the drain side of the ninth switching element Q9 is a cathode and the source side is an anode.
  • the first bidirectional switch 13 is configured to be able to switch between an operation state including an all-off state and an all-on state.
  • the all-off state of the first bidirectional switch 13 is a state in which a bidirectional current is interrupted between the first connection point 201 and the second connection point 202.
  • the all-on state of the first bidirectional switch 13 is a state in which bidirectional current passes between the first connection point 201 and the second connection point 202.
  • the second bidirectional switch 14 is configured to be able to switch the operation state including the all-off state and the all-on state.
  • the all-off state of the second bidirectional switch 14 is a state in which bidirectional current is interrupted between the third connection point 203 and the fourth connection point 204.
  • the all-on state of the second bidirectional switch 14 is a state in which bidirectional current passes between the third connection point 203 and the fourth connection point 204.
  • the operation state of the first bidirectional switch 13 is such that the current flowing from the second connection point 202 to the first connection point 201 is cut off, and the first connection point 201 to the second connection point 202. It further includes a half-on state for passing a flowing current. Further, the operating state of the second bidirectional switch 14 blocks the current flowing from the third connection point 203 to the fourth connection point 204 and allows the current flowing from the fourth connection point 204 to the third connection point 203 to pass. It further includes a semi-on state.
  • bidirectional current can pass between the first connection point 201 and the second connection point 202 by setting the first bidirectional switch 13 to the all-on state. Can create a unique state.
  • the power converter device 1 of this embodiment can pass a bidirectional
  • the first bidirectional switch 13 is turned off when the ninth and tenth switching elements Q9 and Q10 are both off, and the ninth and tenth switching elements Q9 and Q10 are both on. All are turned on. Further, in the first bidirectional switch 13, when the tenth switching element Q10 is on and the ninth switching element Q9 is off, the direction of current is restricted to one direction by the ninth diode D9. Semi-on state.
  • the second bidirectional switch 14 is fully turned off when the eleventh and twelfth switching elements Q11 and Q12 are both off, and the eleventh and twelfth switching elements Q11 and Q12 are both on. All are turned on. Further, in the second bidirectional switch 14, when the twelfth switching element Q12 is on and the eleventh switching element Q11 is off, the direction of the current is limited to one direction by the eleventh diode D11. Semi-on state.
  • the bidirectional switch (each of the first bidirectional switch 13 and the second bidirectional switch 14) in the present embodiment has three operation states consisting of a full-off state, a full-on state, and a half-on state. Can be switched.
  • the first bidirectional switch 13 is electrically connected between the positive terminal of the first capacitor C1 and the negative terminal of the second capacitor C2.
  • the second bidirectional switch 14 is electrically connected between the negative terminal of the first capacitor C1 and the positive terminal of the second capacitor C2. That is, the first capacitor C1 of the first conversion circuit 11 and the second capacitor C2 of the second conversion circuit 12 are connected in a crossed manner via the first bidirectional switch 13 and the second bidirectional switch 14. Has been.
  • the gates of the first to eighth switching elements Q1 to Q8 and the ninth to twelfth switching elements Q9 to Q12 are electrically connected to the control unit 6, respectively.
  • the control unit 6 can individually switch on / off the first to fourth switching elements Q1 to Q4, and thereby controls the first conversion circuit 11.
  • the control unit 6 can individually switch on / off the fifth to eighth switching elements Q5 to Q8, thereby controlling the second conversion circuit 12.
  • the controller 6 can individually switch on / off the ninth and tenth switching elements Q9 and Q10, and thereby controls the first bidirectional switch 13.
  • the controller 6 can individually switch on / off the eleventh and twelfth switching elements Q11 and Q12, and thereby controls the second bidirectional switch 14.
  • the control unit 6 may be provided individually for each of the first conversion circuit 11, the second conversion circuit 12, the first bidirectional switch 13, and the second bidirectional switch 14.
  • control unit 6 includes a drive circuit 61 that supplies a drive signal to the first to twelfth switching elements Q1 to Q12, and a microcomputer (microcomputer) 62 that supplies a signal to the drive circuit 61.
  • the drive circuit 61 is configured to drive (control) each element individually by giving a drive signal to each control terminal (gate) of the first to twelfth switching elements Q1 to Q12.
  • the microcomputer 62 is configured to control the drive circuit 61 by giving a PWM (Pulse Width Modulation) signal to the drive circuit 61. That is, the control unit 6 individually controls the first to twelfth switching elements Q1 to Q12 by a drive signal generated by the drive circuit 61 in response to an instruction from the microcomputer 62.
  • the drive circuit 61 also has a function as a short-circuit prevention circuit that prevents two or more switching elements from being simultaneously turned on to prevent a short-circuit current from flowing. That is, when switching elements of a specific combination are simultaneously turned on, for example, the first input point 101 and the second input point 102 are short-circuited, and the current from the DC power supply 100 may flow as a short-circuit current to the switching element. There is. Therefore, it is preferable that the drive circuit 61 is configured such that such specific combination of switching elements does not turn on at the same time. For example, when the drive signals input to the gates of the specific combination of switching elements simultaneously become H (High) level, the drive circuit 61 forcibly lowers the drive signal to L (Low) level, thereby The switching elements are not turned on at the same time.
  • the filter circuit 5 has a pair of inductors L1 and L2 and a third capacitor C3.
  • One inductor L ⁇ b> 1 is electrically connected between the first output point 103 and the third output point 105.
  • the other inductor L 2 is electrically connected between the second output point 104 and the fourth output point 106.
  • the inductors L1 and L2 are electrically connected between at least one of the first output point 103 and the second output point 104 and the output terminal (the third output point 105 and the fourth output point 106). Any one of the inductors L1 and L2 may be omitted. That is, the inductor L1 is only electrically connected between the first output point 103 and the third output point 105, or the inductor L2 is electrically connected between the second output point 104 and the fourth output point 106. It may be only connected to.
  • the third capacitor C3 is electrically connected between the third output point 105 and the fourth output point 106.
  • the filter circuit 5 is a series circuit of an inductor L1, a third capacitor C3, and an inductor L2 that are electrically connected between the first output point 103 and the second output point 104.
  • the first detector 21 is configured to detect the voltage of the first capacitor C1.
  • the 1st detection part 21 detects the magnitude
  • the first detection unit 21 includes a pair of voltage dividing resistors connected in series between the first connection point 201 and the third connection point 203, for example.
  • the structure of the 1st detection part 21 is not restricted to this, What is necessary is just a structure which can detect the value (magnitude
  • the first detection unit 21 outputs the value of the voltage V ⁇ b> 1 as a detection result to the microcomputer 62 of the control unit 6.
  • the second detector 22 is configured to detect the voltage of the second capacitor C2.
  • the 2nd detection part 22 detects the magnitude
  • the second detection unit 22 includes, for example, a pair of voltage dividing resistors connected in series between the fourth connection point 204 and the second connection point 202.
  • the configuration of the second detection unit 22 is not limited to this, and may be any configuration that can detect the value (magnitude) of the voltage (voltage across both ends) V2 generated at both ends of the second capacitor C2.
  • the second detection unit 22 outputs the value of the voltage V ⁇ b> 2 that is the detection result to the microcomputer 62 of the control unit 6.
  • control unit 6 uses the detection results of the first detection unit 21 and the second detection unit 22 to be described later.
  • the basic operation of the power conversion device 1 here is a period from when the supply of power from the DC power supply 100 is started until the first capacitor C1 and the second capacitor C2 are charged to the reference voltage (hereinafter referred to as “starting period”).
  • starting period The operation of the power conversion apparatus 1 after elapse of “)”. That is, the operation of the power conversion device 1 from the state where the first capacitor C1 and the second capacitor C2 are charged to the reference voltage is defined as the basic operation of the power conversion device 1.
  • the reference voltage for the first capacitor C1 is a voltage that is 1/4 of the applied voltage applied from the DC power supply 100 between the first input point 101 and the second input point 102.
  • the reference voltage for the second capacitor C ⁇ b> 2 is a voltage that is 1 ⁇ 4 of the applied voltage applied between the first input point 101 and the second input point 102 from the DC power supply 100.
  • the output voltage of the DC power supply 100 is E [V]
  • the potential of the first input point 101 is E [V]
  • the potential of the second input point 102 is 0 [V].
  • the voltage across each of the first capacitor C1 and the second capacitor C2 charged to the reference voltage is E / 4 [V].
  • the potential difference between the first output point 103 and the second output point 104 that is, the voltage generated between the first output point 103 and the second output point 104 will be described as the output voltage of the power conversion device 1.
  • the potential difference between the third output point 105 and the fourth output point 106 that is, the third output point 105-the second output point.
  • the voltage generated between the four output points 106 is equal to the output voltage of the system power supply 7.
  • the potential difference between the first output point 103 and the third output point 105 and the potential difference between the second output point 104 and the fourth output point 106 are absorbed by the filter circuit 5.
  • the power conversion device 1 switches the first conversion circuit 11, the second conversion circuit 12, the first bidirectional switch 13, and the second bidirectional switch 14 to a total of eight modes of 1 to 8.
  • the power conversion device 1 converts the DC voltage (E [V]) applied between the first input point 101 and the second input point 102 into an AC voltage, and the first output point 103 and the first input point 103 An output voltage is generated between the two output points 104.
  • the first to twelfth switching elements Q1 to Q12 are assumed to be in the “off” state when the on / off state is not mentioned. Further, it is assumed that the voltage drop in the first to twelfth switching elements Q1 to Q12 and the voltage drop in the first to twelfth diodes D1 to D12 are negligible.
  • control unit 6 controls the first to twelfth switching elements Q1 to Q12 according to the following two conditions. However, these conditions are conditions applied to the first to eighth modes, and are not applied to the one-side discharge mode described later.
  • the first condition is that the first to fourth switching elements Q1 to Q4 of the first conversion circuit 11 and the fifth to eighth switching elements Q5 to Q8 of the second conversion circuit 12 are set in a one-to-one pair. On / off is switched for each pair.
  • the first and eighth switching elements Q1, Q8 are paired
  • the second, seventh switching elements Q2, Q7 are paired
  • the third, sixth switching elements Q3, Q6 are paired
  • the fourth, fifth Switching elements Q4 and Q5 form a pair.
  • the second condition is that the second switching element Q2 and the third switching element Q3 are not simultaneously turned on or off. Further, in the first to fourth modes, the first switching element Q1 and the eleventh switching element Q11 are used. In the fifth to eighth modes, the fourth switching element Q4 and the ninth switching element Q9 are set. Are not simultaneously turned on or off.
  • the first and second switching elements Q1 and Q2 of the first conversion circuit 11, the seventh and eighth switching elements Q7 and Q8 of the second conversion circuit 12, and the second Each of the twelfth switching elements Q12 of the bidirectional switch 14 is in an ON state. That is, the second bidirectional switch 14 is in a half-on state.
  • the first input point 101 is electrically connected to the first output point 103 via the first switching element Q1 and the second switching element Q2.
  • the second input point 102 is electrically connected to the second output point 104 via the eighth switching element Q8 and the seventh switching element Q7.
  • switching elements diodes
  • there are four elements i.e., first, second, seventh, and eighth switching elements Q1, Q2, Q7, and Q8, and the twelfth switching element Q12. There is no current flowing through.
  • the first output point 103 is at the same potential (E [V]) as the first input point 101
  • the potential of the third output point 105 becomes a potential obtained by subtracting the voltage across the inductor L1 from the potential of the first output point 103, and the potential of the fourth output point 106 becomes the potential of the second output point 104 to the inductor.
  • the potential is the sum of the voltages at both ends of L2.
  • Each of the two bidirectional switches 14 and the twelfth switching element Q12 is in an ON state. That is, the second bidirectional switch 14 is in a half-on state.
  • the first input point 101 is electrically connected to the first output point 103 via the first switching element Q1, the first capacitor C1, and the third switching element Q3.
  • the second input point 102 is electrically connected to the second output point 104 via the eighth switching element Q8, the second capacitor C2, and the sixth switching element Q6.
  • switching elements diodes
  • the semiconductor elements switching elements, diodes
  • the potential of the third output point 105 becomes a potential obtained by subtracting the voltage across the inductor L1 from the potential of the first output point 103, and the potential of the fourth output point 106 becomes the potential of the second output point 104 to the inductor.
  • the potential is the sum of the voltages at both ends of L2.
  • the second switching element Q2 of the first conversion circuit 11, the seventh switching element Q7 of the second conversion circuit 12, and the second bidirectional switch 14 11 and 12 switching elements Q11 and Q12 are in an ON state, respectively. That is, the second bidirectional switch 14 is in an all-on state.
  • the second output point 104 passes through the seventh switching element Q7, the second capacitor C2, the eleventh switching element Q11, the twelfth switching element Q12, the first capacitor C1, and the second switching element Q2. And electrically connected to the first output point 103.
  • the semiconductor elements switching elements, diodes
  • the third switching element Q3 of the first conversion circuit 11, the sixth switching element Q6 of the second conversion circuit 12, and the second bidirectional switch 14 are switched.
  • 11 and 12 switching elements Q11 and Q12 are in an ON state, respectively. That is, the second bidirectional switch 14 is in an all-on state.
  • the second output point 104 is electrically connected to the first output point 103 via the sixth switching element Q6, the eleventh switching element Q11, the twelfth switching element Q12, and the third switching element Q3.
  • the semiconductor elements switching elements, diodes
  • the potential at the first output point 103 is the same as that at the second output point 104. Therefore, the output voltage of the power conversion device 1 generated between the first output point 103 and the second output point 104 is 0 [V]. Further, at this time, the potential of the third output point 105 becomes a potential obtained by subtracting the voltage across the inductor L1 from the potential of the first output point 103, and the potential of the fourth output point 106 becomes the potential of the second output point 104 to the inductor. The potential is the sum of the voltages at both ends of L2. In this state, since the second bidirectional switch 14 is fully on, the conversion circuit 10 can cause a bidirectional current to flow between the first output point 103 and the second output point 104. it can.
  • the power conversion device 1 switches the operation between the first conversion circuit 11 and the second conversion circuit 12 on the basis of the first to fourth modes, and
  • the bi-directional switch 13 and the second bi-directional switch 14 perform operations that are interchanged. That is, in the fifth to eighth modes and the first to fourth modes, the operation of the conversion circuit 10 is performed by both the first conversion circuit 11 and the first bidirectional switch 13 and the second conversion circuit 12 and the second mode.
  • the direction switch 14 is replaced with a symmetrical operation.
  • the operation of the conversion circuit 10 is symmetrical to the fourth mode. Therefore, in the fifth mode, the second switching element Q2 of the first conversion circuit 11, the seventh switching element Q7 of the second conversion circuit 12, and the ninth and tenth switching of the first bidirectional switch 13 are switched. Elements Q9 and Q10 are each in an on state. That is, the first bidirectional switch 13 is fully turned on. In this state, as shown in FIG. 4A, the first output point 103 is connected to the second switching element Q2, the ninth switching element Q9, the tenth switching element Q10, and the seventh switching element Q7 through the second switching element Q2. It is electrically connected to the output point 104. At this time, among the semiconductor elements (switching elements, diodes), there are a total of four elements, ie, the second, seventh, ninth, and tenth switching elements Q2, Q7, Q9, and Q10.
  • the potential at the first output point 103 is the same as that at the second output point 104. Therefore, the output voltage of the power conversion device 1 generated between the first output point 103 and the second output point 104 is 0 [V]. Further, at this time, the potential at the third output point 105 is a potential obtained by adding the voltage across the inductor L1 to the potential at the first output point 103, and the potential at the fourth output point 106 is changed from the potential at the second output point 104 to the inductor. The potential is obtained by subtracting the voltage across L2. In this state, since the first bidirectional switch 13 is fully on, the conversion circuit 10 can cause a bidirectional current to flow between the first output point 103 and the second output point 104. it can.
  • the operation of the conversion circuit 10 is symmetric to the third mode. Therefore, in the sixth mode, the third switching element Q3 of the first conversion circuit 11, the sixth switching element Q6 of the second conversion circuit 12, and the ninth and tenth switching of the first bidirectional switch 13 are switched. Elements Q9 and Q10 are each in an on state. That is, the first bidirectional switch 13 is fully turned on. In this state, the first output point 103 passes through the third switching element Q3, the first capacitor C1, the ninth switching element Q9, the tenth switching element Q10, the second capacitor C2, and the sixth switching element Q6. And electrically connected to the second output point 104. At this time, among the semiconductor elements (switching elements, diodes), there are a total of four elements, that is, third, sixth, ninth, and tenth switching elements Q3, Q6, Q9, and Q10.
  • the operation of the conversion circuit 10 is symmetric to the second mode. Therefore, in the seventh mode, the second and fourth switching elements Q2 and Q4 of the first conversion circuit 11, the fifth and seventh switching elements Q5 and Q7 of the second conversion circuit 12, and the first bidirectional switch
  • the thirteenth switching elements Q10 are in the on state. That is, the first bidirectional switch 13 is in a half-on state.
  • the first input point 101 is electrically connected to the second output point 104 via the fifth switching element Q5, the second capacitor C2, and the seventh switching element Q7.
  • the second input point 102 is electrically connected to the first output point 103 via the fourth switching element Q4, the first capacitor C1, and the second switching element Q2.
  • switching elements diodes
  • the potential at the third output point 105 is a potential obtained by adding the voltage across the inductor L1 to the potential at the first output point 103, and the potential at the fourth output point 106 is changed from the potential at the second output point 104 to the inductor.
  • the potential is obtained by subtracting the voltage across L2.
  • the operation of the conversion circuit 10 is symmetrical to the first mode. Therefore, in the eighth mode, the third and fourth switching elements Q3 and Q4 of the first conversion circuit 11, the fifth and sixth switching elements Q5 and Q6 of the second conversion circuit 12, and the first bidirectional switch.
  • the thirteenth switching elements Q10 are in the on state. That is, the first bidirectional switch 13 is in a half-on state. In this state, as shown in FIG. 5B, the first input point 101 is electrically connected to the second output point 104 via the fifth switching element Q5 and the sixth switching element Q6.
  • the second input point 102 is electrically connected to the first output point 103 via the fourth switching element Q4 and the third switching element Q3.
  • switching elements diodes
  • the first output point 103 has the same potential (0 [V]) as the second input point 102
  • the potential at the third output point 105 is a potential obtained by adding the voltage across the inductor L1 to the potential at the first output point 103, and the potential at the fourth output point 106 is changed from the potential at the second output point 104 to the inductor. The potential is obtained by subtracting the voltage across L2.
  • the power conversion device 1 changes the magnitude of the output voltage generated between the first output point 103 and the second output point 104 in a plurality of stages by switching the first to eighth modes.
  • the first conversion circuit 11 uses the first capacitor C1 as a flying capacitor, and switches the first to fourth, ninth to twelfth switching elements Q1 to Q4 and Q9 to Q12 on / off, thereby The potential at one output point 103 is switched.
  • the first capacitor C1 is charged in the second and seventh modes and discharged in the third and sixth modes. If the first to eighth modes are switched at a relatively high frequency, the first capacitor C1 is basically operated.
  • the voltage across the first capacitor C1 can be regarded as substantially constant (E / 4 [V]).
  • the second conversion circuit 12 uses the second capacitor C2 as a flying capacitor, and switches the potential of the second output point 104 by switching on / off the fifth to twelfth switching elements Q5 to Q12.
  • the second capacitor C2 is charged in the second and seventh modes and discharged in the third and sixth modes. If the first to eighth modes are switched at a relatively high frequency, the second capacitor C2 is basically operated.
  • the voltage across the second capacitor C2 can be regarded as substantially constant (E / 4 [V]).
  • control unit 6 charges the capacitor by switching between a pair of modes in which the magnitude of the output voltage is the same and the directions of the currents flowing through the capacitors (the first capacitor C1 and the second capacitor C2) are reversed. And switching between discharge.
  • the control unit 6 switches the second mode and the third mode as a pair of modes, thereby changing the capacitor (first capacitor C1). And switching between charging and discharging of the second capacitor C2).
  • the control unit 6 switches the seventh mode and the sixth mode as a pair of modes, so that the capacitors (the first capacitor C1 and the first capacitor C1) are switched. Switching between charging and discharging of the two capacitors C2).
  • the control unit 6 outputs a “charge command” when selecting the charge mode, and outputs a “discharge command” when selecting the discharge mode.
  • the control unit 6 when the output voltage is set to E / 2 [V], the control unit 6 outputs a charge command when charging the capacitors (the first capacitor C1 and the second capacitor C2), and is in the second charging mode. Select the mode.
  • the controller 6 When the output voltage is set to E / 2 [V], the controller 6 outputs a discharge command when discharging the capacitors (the first capacitor C1 and the second capacitor C2), and the third mode which is the discharge mode. Select.
  • the control unit 6 when charging the capacitors (first capacitor C1 and second capacitor C2) when the output voltage is set to ⁇ E / 2 [V], the control unit 6 outputs a charging command and is in the charging mode. Select the seventh mode. When the output voltage is set to ⁇ E / 2 [V], the control unit 6 outputs a discharge command when discharging the capacitors (the first capacitor C1 and the second capacitor C2). Select a mode.
  • the control unit 6 switches the charging mode and the discharging mode in which the magnitude of the output voltage is the same and the direction of the current flowing through the capacitor is reversed as a pair of modes, thereby charging the capacitor. Switch between discharging and switching. However, the capacitor is charged in the charge mode and the capacitor is discharged in the discharge mode only when a forward current described later flows in the conversion circuit 10. In a state where a reverse current, which will be described later, flows in conversion circuit 10, the capacitor is discharged in the charge mode, and the capacitor is charged in the discharge mode. This point will be described later. Hereinafter, the description will be made assuming that the current flowing through the conversion circuit 10 is a forward current unless otherwise specified.
  • the power conversion apparatus 1 outputs, as an output voltage, a voltage having the first output point 103 as the high potential side and the second output point 104 as the low potential side. It will be.
  • the power conversion device 1 converts the output voltage generated between the first output point 103 and the second output point 104 to E [V] (first mode), E / 2 Switching is performed in three stages, [V] (second and third modes) and 0 [V] (fourth mode).
  • the power conversion apparatus 1 sets the output voltage generated between the first output point 103 and the second output point 104 to 0 [V] (fifth mode), ⁇ E / 2. Switching is performed in three stages: [V] (sixth and seventh modes) and -E [V] (eighth mode).
  • the power conversion device 1 switches the total of the eight modes from 1 to 8 to change the output voltage to E [V], E / 2 [V], 0 [V], -E / 2 [V]. , -E [V].
  • the power conversion apparatus 1 generates an AC voltage (hereinafter referred to as “final output voltage”) between the third output point 105 and the fourth output point 106 by appropriately switching these five-stage output voltages.
  • the final output voltage is equal to the output voltage of the system power supply 7, and has a sinusoidal waveform as shown in FIG.
  • the horizontal axis represents the time axis and the vertical axis represents the voltage value.
  • the power converter 1 In a period in which the final output voltage varies in a range of 0 [V] to E [V] (that is, a period corresponding to a positive half wave in a sine wave) T1 to T3, the power converter 1 It operates by switching the first to fourth modes. In the period in which the final output voltage fluctuates in the range of 0 [V] to -E [V] (that is, the period corresponding to the negative half-wave in the sine wave) T4 to T6, the power converter 1 It operates by switching the mode of ⁇ 8.
  • Table 1 summarizes the first to eighth modes described above.
  • control unit 6 switches on / off of the first to twelfth switching elements Q1 to Q12 by the PWM signal to realize the first to eighth modes.
  • the controller 6 balances the discharge and charge of the first capacitor C1 and the second capacitor C2 by adjusting the time length in the second mode and the third mode.
  • the control unit 6 operates to switch the first to third modes as shown in Table 1. repeat.
  • the controller 6 balances the discharge and charge of the first capacitor C1 and the second capacitor C2 by adjusting the time length in the second mode and the third mode.
  • control unit 6 performs the fifth to seventh modes as shown in Table 1. Repeat the operation of switching.
  • the control unit 6 balances the discharge and charge of the first capacitor C1 and the second capacitor C2 by adjusting the time length in the sixth mode and the seventh mode.
  • control unit 6 performs the sixth to eighth modes as shown in Table 1. Repeat the switching action.
  • the control unit 6 balances the discharge and charge of the first capacitor C1 and the second capacitor C2 by adjusting the time length in the sixth mode and the seventh mode.
  • the control unit 6 switches the first to eighth modes described above while changing the duty ratio of the PWM signal, so that the waveform of the final output voltage approximates a sine wave.
  • the output voltage generated between the output point 103 and the second output point 104 is controlled.
  • the power conversion device 1 changes the magnitude of the output voltage generated between the first output point 103 and the second output point 104 in five stages by the control unit 6, thereby changing the sinusoidal AC voltage to the first voltage. Occurs between the third output point 105 and the fourth output point 106.
  • the fourth mode and the fifth mode are both modes in which the output voltage is 0 [V] and do not contribute to the discharging and charging of the first capacitor C1 and the second capacitor C2. For this reason, it may be possible to omit either the fourth mode or the fifth mode. However, considering the positive / negative balance of the final output voltage, the power conversion device 1 is configured as the fourth mode. By dividing the fifth mode, the switching loss can be reduced and the efficiency is improved.
  • the number of elements through which a current flows (hereinafter referred to as “the number of passing elements”) among the semiconductor elements (switching elements, diodes) is any one of the first to eighth elements as described above. In this mode, it is “4” or less.
  • the number of passing elements is “ 4 ".
  • the number of passing elements in the third to sixth modes is “3”.
  • the control unit 6 determines whether to charge or discharge the first capacitor C1 and the second capacitor C2 according to the detection results of the first detection unit 21 and the second detection unit 22.
  • the detection result of the first detection unit 21 (the voltage V1 of the first capacitor C1) and the detection result of the second detection unit 22 (the voltage V2 of the second capacitor C2) are output to the microcomputer 62.
  • the microcomputer 62 obtains the average value Vc of the voltage V1 of the first capacitor C1 and the voltage V2 of the second capacitor C2 obtained individually as described above.
  • the microcomputer 62 is configured to select whether to charge or discharge the capacitor according to the average value Vc.
  • the control unit 6 switches the first to fourth modes as shown in Table 1. The operation is repeated.
  • the microcomputer 62 detects whether the second mode (charge mode) or the third mode (discharge mode) is selected by the first detection unit 21 and the second detection. This is determined according to the detection result of the unit 22. That is, the microcomputer 62 compares the average value Vc obtained from the detection results of the first detection unit 21 and the second detection unit 22 with the target voltage, and the second mode (charging mode) and the third mode are compared based on the comparison result. (Discharge mode) is selected.
  • the microcomputer 62 selects the third mode that is the discharge mode if the average value Vc is larger than the target voltage, and selects the second mode that is the charge mode if the average value Vc is smaller than the target voltage.
  • the target voltage is a reference voltage (E / 4 [V]).
  • the control unit 6 performs the operation of switching the fifth to eighth modes as shown in Table 1. repeat.
  • the microcomputer 62 detects whether the sixth mode (discharge mode) or the seventh mode (charge mode) is selected by the first detection unit 21 and the second detection. This is determined according to the detection result of the unit 22. That is, the microcomputer 62 compares the average value Vc obtained from the detection results of the first detection unit 21 and the second detection unit 22 with the target voltage (E / 4 [V]), and the seventh mode ( Either a charging mode) or a sixth mode (discharging mode) is selected. If the average value Vc is larger than the target voltage, the microcomputer 62 selects the sixth mode that is the discharge mode, and if the average value Vc is smaller than the target voltage, the microcomputer 62 selects the seventh mode that is the charge mode.
  • the both-ends voltage of the first capacitor C1 and the both-ends voltage of the second capacitor C2 during the basic operation are maintained at the reference voltage (E / 4 [V]) which is the target voltage.
  • the operation of the control unit 6 described above is an operation in the case where the voltage V1 of the first capacitor C1 and the voltage V2 of the second capacitor C2 are balanced, and the voltage V1 and V2 are unbalanced (unbalanced). ) Will be described in the “One-sided discharge mode” column.
  • control unit 6 switches between charging and discharging of the capacitors (the first capacitor C1 and the second capacitor C2) at a predetermined switching cycle.
  • the switching period here is set in accordance with, for example, the period of the PWM signal.
  • the second bidirectional switch 14 is fully turned on in the third and fourth modes, and the first bidirectional switch in the fifth and sixth modes.
  • Reference numeral 13 denotes an all-on state. That is, in any of the first to eighth modes, the element through which a current flows among the semiconductor elements (switching elements, diodes) is any one of the first to twelfth switching elements Q1 to Q12, and the diode (first to eighth modes). No current flows through the twelve diodes D1 to D12). Therefore, the power conversion device 1 can pass a bidirectional current between the first output point 103 and the second output point 104 in any of the first to eighth modes.
  • the current flowing through the circuit 10 is referred to as “reverse current”. That is, in the first to fourth modes in which the final output voltage varies in the range of 0 [V] to E [V], the current from the first output point 103 to the third output point 105 is the forward current. In the fifth to eighth modes in which the final output voltage varies in the range of 0 [V] to -E [V], the current from the second output point 104 to the fourth output point 106 is the forward current.
  • the power conversion device 1 adapts the conversion circuit 10 to the bidirectional current, so that the output current flowing between the first output point 103 and the second output point 104, the first output point 103, and the first output point 103 A phase difference can be set between the output voltage generated between the two output points 104. In short, if there is a phase difference between the output current and the output voltage, a period in which the output current is different from the output voltage (for example, the output voltage is positive and the output current is negative) occurs.
  • the conversion circuit 10 needs to be adapted to the bidirectional current.
  • the conversion circuit 10 since the conversion circuit 10 is adapted to a bidirectional current, it is possible to set a phase difference between the output current and the output voltage.
  • the power conversion device 1 when the power conversion device 1 is used for the power conditioner 20 (see FIG. 7) for the solar power generation device, the power conversion device is used for the purpose of detecting the isolated operation and suppressing the voltage rise of the system power supply 7. 1 may set a phase difference between the output current and the output voltage. Moreover, when the power converter device 1 is used for the power conditioner for the power storage device, the power converter device 1 is configured to supply power by setting a phase difference between the output current and the output voltage. To switch between charging and discharging of the power storage device. The power conversion device 1 of the present embodiment can cope with such a use by creating a state in which bidirectional current can pass through the conversion circuit 10.
  • the power conditioner 20 includes the power conversion device 1 and the disconnector 9.
  • the disconnector 9 is electrically connected between the first output point 103 (see FIG. 1) and the second output point 104 (see FIG. 1) and the system power supply 7.
  • the disconnector 9 is electrically connected between the third output point 105 and the fourth output point 106 and the system power supply 7.
  • the resolver 9 is connected to the first output point 103 and the second output point 104 via the filter circuit 5 (see FIG. 1).
  • the circuit breaker 9 has only to be between the first output point 103 and the second output point 104 and the system power supply 7 and is directly connected to the first output point 103 and the second output point 104. Is not essential, and may be connected to the subsequent stage of the filter circuit 5 as in this embodiment.
  • the circuit breaker 9 is electrically connected between the first contact point 91 electrically connected between the third output point 105 and the system power supply 7, and between the fourth output point 106 and the system power supply 7. And a second contact portion 92 connected to the.
  • the circuit breaker 9 only needs to be electrically connected between at least one of the third output point 105 and the fourth output point 106 and the system power supply 7, and the first contact part 91 and the second contact part 9 Any of 92 may be omitted.
  • the power conditioner 20 performs grid connection operation in a steady state, converts DC power input from the DC power supply 100 into AC power by the power converter 1, and outputs the AC power to the system power supply 7 and the load 8. Although detailed description is omitted, the power conditioner 20 performs a self-sustained operation in which the disconnector 9 is opened and AC power is output in a state disconnected from the system power supply 7 in the event of an abnormality such as a power failure of the system power supply 7. It is configured as follows.
  • the first converter circuit 11 and the second converter circuit 12 can be electrically disconnected from the system power supply 7 by opening the disconnector 9 (disconnecting). Therefore, the power conditioner 20 opens the disconnector 9 during the start-up period after the power is turned on and before the power converter 1 starts the basic operation described above, so that the first output point 103 and the second output point are opened.
  • a current path including the filter circuit 5 can be formed between the terminal 104 and the terminal 104.
  • the current path is a current path including the inductor L1, the third capacitor C3, and the inductor L2 constituting the filter circuit 5.
  • the power conversion device 1 uses the first capacitor C1 and the second capacitor even if the third output point 105 and the fourth output point 106 are electrically insulated. C2 can be charged.
  • the power conversion device 1 can charge the first capacitor C1 and the second capacitor C2 even if the third output point 105 and the fourth output point 106 are not connected to the system power supply 7. In other words, the power conversion device 1 operates in a steady state even when no load is connected between the pair of output terminals (the third output point 105 and the fourth output point 106) (no load state). Necessary capacitors (first capacitor C1 and second capacitor C2) can be charged.
  • the steady operation here refers to the operation of the power conversion apparatus 1 after the start-up period has elapsed, that is, after the first capacitor C1 and the second capacitor C2 are charged to the reference voltage (E / 4 [V]). Therefore, it is synonymous with the basic operation described above.
  • control unit 6 controls the first to eighth modes so as to enter the one-side discharge mode when the difference between the voltage V1 of the first capacitor C1 and the voltage V2 of the second capacitor C2 exceeds a predetermined threshold.
  • the switching elements Q1 to Q8 and the first and second bidirectional switches 13 and 14 are controlled.
  • the voltage V1 of the first capacitor C1 is detected by the first detector 21, and the voltage V2 of the second capacitor C2 is detected by the second detector 22.
  • the microcomputer 62 normally has the second mode (charging mode) and the third mode. (Discharge mode) is switched to maintain the voltages V1 and V2 at the specified voltage. In this state, if the difference between the voltage V1 of the first capacitor C1 and the voltage V2 of the second capacitor C2 exceeds the threshold value V0, the microcomputer 62 replaces the third mode which is the normal discharge mode with the one-side discharge mode. Select.
  • the microcomputer 62 When the voltage V1 of the first capacitor C1 is higher than the voltage V2 of the second capacitor C2 and the difference (V1 ⁇ V2) between the two voltages V1 and V2 is larger than the threshold value V0, the microcomputer 62
  • the one-side discharge mode of FIG. 8A is selected so that only C1 is discharged.
  • the second switching element Q2 of the first conversion circuit 11, the sixth switching element Q6 of the second conversion circuit 12, and the eleventh of the second bidirectional switch 14 are used. , 12 are in the on state, respectively.
  • the second output point 104 is connected to the first output point via the sixth switching element Q6, the eleventh switching element Q11, the twelfth switching element Q12, the first capacitor C1, and the second switching element Q2. 103 is electrically connected. Therefore, in the state of FIG. 8A, only the first capacitor C1 having a higher voltage among the first capacitor C1 and the second capacitor C2 is discharged, and the voltage V1 of the first capacitor C1 decreases. In this state, the potential at the first output point 103 is higher than the potential at the second output point 104 by the voltage across the first capacitor C1 (E / 4 [V]). And the output voltage of the power converter 1 generated between the first output point 104 and the second output point 104 is E / 4 [V].
  • the microcomputer 62 When the voltage V2 of the second capacitor C2 is higher than the voltage V1 of the first capacitor C1 and the difference (V2 ⁇ V1) between the two voltages V1 and V2 is larger than the threshold value V0, the microcomputer 62 The one-side discharge mode of FIG. 8B is selected so that only the capacitor C2 is discharged. In this one-side discharge mode, as shown in FIG. 8B, the third switching element Q3 of the first conversion circuit 11, the seventh switching element Q7 of the second conversion circuit 12, and the eleventh of the second bidirectional switch 14 , 12 are in the on state, respectively.
  • the second output point 104 is connected to the first output point via the seventh switching element Q7, the second capacitor C2, the eleventh switching element Q11, the twelfth switching element Q12, and the third switching element Q3. 103 is electrically connected. Therefore, in the state of FIG. 8B, only the second capacitor C2 having a higher voltage among the first capacitor C1 and the second capacitor C2 is discharged, and the voltage V2 of the second capacitor C2 decreases. In this state, the potential at the first output point 103 is higher than the potential at the second output point 104 by the voltage across the second capacitor C2 (E / 4 [V]). And the output voltage of the power converter 1 generated between the first output point 104 and the second output point 104 is E / 4 [V].
  • the microcomputer 62 normally has the seventh mode (charge mode) and the sixth mode (discharge mode). ) To maintain the voltages V1 and V2 at the specified voltage. In this state, when the difference between the voltage V1 of the first capacitor C1 and the voltage V2 of the second capacitor C2 exceeds the threshold value V0, the microcomputer 62 replaces the sixth mode which is the normal discharge mode with the one-side discharge mode. Select.
  • the microcomputer 62 When the voltage V1 of the first capacitor C1 is higher than the voltage V2 of the second capacitor C2 and the difference (V1 ⁇ V2) between the two voltages V1 and V2 is larger than the threshold value V0, the microcomputer 62 The one-side discharge mode of FIG. 9A is selected so that only C1 is discharged.
  • the third switching element Q3 of the first conversion circuit 11, the seventh switching element Q7 of the second conversion circuit 12, and the ninth switching element Q7 of the first bidirectional switch 13 are arranged.
  • 10 switching elements Q9, Q10 are in the ON state.
  • the first output point 103 is connected to the second output point via the third switching element Q3, the first capacitor C1, the ninth switching element Q9, the tenth switching element Q10, and the seventh switching element Q7. 104 is electrically connected. Therefore, in the state of FIG. 9A, only the first capacitor C1 having a higher voltage among the first capacitor C1 and the second capacitor C2 is discharged, and the voltage V1 of the first capacitor C1 decreases. In this state, the potential at the first output point 103 is lower than the potential at the second output point 104 by the voltage across the first capacitor C1 (E / 4 [V]). And the output voltage of the power converter 1 generated between the first output point 104 and the second output point 104 is ⁇ E / 4 [V].
  • the microcomputer 62 When the voltage V2 of the second capacitor C2 is higher than the voltage V1 of the first capacitor C1 and the difference (V2 ⁇ V1) between the two voltages V1 and V2 is larger than the threshold value V0, the microcomputer 62 The one-side discharge mode of FIG. 9B is selected so that only the capacitor C2 is discharged. In this one-side discharge mode, as shown in FIG. 9B, the second switching element Q2 of the first conversion circuit 11, the sixth switching element Q6 of the second conversion circuit 12, and the ninth switching element Q1 of the first bidirectional switch 13 are used. , 10 switching elements Q9, Q10 are in the ON state.
  • the first output point 103 is connected to the second output point via the second switching element Q2, the ninth switching element Q9, the tenth switching element Q10, the second capacitor C2, and the sixth switching element Q6. 104 is electrically connected. Therefore, in the state of FIG. 9B, only the second capacitor C2 having a higher voltage among the first capacitor C1 and the second capacitor C2 is discharged, and the voltage V2 of the second capacitor C2 decreases. In this state, the potential at the first output point 103 is lower than the potential at the second output point 104 by the voltage across the second capacitor C2 (E / 4 [V]). And the output voltage of the power converter 1 generated between the first output point 104 and the second output point 104 is ⁇ E / 4 [V].
  • the conversion circuit 10 operates in the one-side discharge mode as described above, whereby only the capacitor having the higher voltage of the first capacitor C1 and the second capacitor C2 is discharged. Therefore, the conversion circuit 10 repeats the above-described one-side discharge mode one or more times to reduce the difference (V2 ⁇ V1) between the voltage V2 of the second capacitor C2 and the voltage V1 of the first capacitor C1, and the threshold value V0. It will fit below. As a result, the power conversion device 1 can balance the voltages of the pair of capacitors even when the voltage imbalance (unbalance) of the pair of capacitors (the first capacitor C1 and the second capacitor C2) occurs. is there.
  • control unit 6 of the present embodiment described above operates according to the flowchart shown in FIG. 10, for example.
  • the control unit 6 compares the average value Vc between the voltage V1 of the first capacitor C1 and the voltage V2 of the second capacitor C2 with the reference voltage (E / 4 [V]) (S1). At this time, if the average value Vc is equal to or higher than the reference voltage (S1: Yes), the control unit 6 obtains a difference value (V2 ⁇ V1) obtained by subtracting the voltage V1 of the first capacitor C1 from the voltage V2 of the second capacitor C2. The threshold value V0 is compared (S2). If the difference value (V2 ⁇ V1) is equal to or less than the threshold value V0 (S2: Yes), the control unit 6 subtracts the voltage V2 of the second capacitor C2 from the voltage V1 of the first capacitor C1 (V1 ⁇ V2).
  • the threshold value V0 are compared (S3). If the difference value (V1 ⁇ V2) is equal to or less than the threshold value V0 (S3: Yes), the control unit 6 outputs a discharge command and discharges both the first capacitor C1 and the second capacitor C2. A mode (third mode or sixth mode) is selected (S4). That is, if the voltages V1 and V2 are in a balanced state, the control unit 6 selects a normal discharge mode.
  • the control unit 6 selects the one-side discharge mode in which only the first capacitor C1 having a high voltage is discharged ( S5). If the difference value (V2 ⁇ V1) exceeds the threshold value V0 in process S2 (S2: No), the control unit 6 selects a one-side discharge mode in which only the second capacitor C2 having a high voltage is discharged ( S6).
  • the control unit 6 outputs a charge command and charges the first capacitor C1 and the second capacitor C2 in a normal charging mode (S7).
  • the control unit 6 repeats the processes of S1 to S7 to maintain the voltages of the first capacitor C1 and the second capacitor C2 at the reference voltage and balance the voltages V1 and V2.
  • the power conversion device 1 of the present embodiment described above has the first capacitor C1 and the second capacitor C2 when the difference between the voltage V1 of the first capacitor C1 and the voltage V2 of the second capacitor C2 exceeds a predetermined threshold. In this mode, only the capacitor having the higher voltage is discharged. In other words, the power conversion device 1 discharges only the capacitor with the higher voltage even when the voltage imbalance (imbalance) of the pair of capacitors (the first capacitor C1 and the second capacitor C2) occurs. It is possible to balance the voltage of the capacitors. Therefore, the power conversion device 1 of this embodiment has an advantage that the withstand voltage required for the capacitor can be lowered by balancing the voltages of the pair of capacitors. That is, it is possible to employ a capacitor with a lower breakdown voltage.
  • the power conversion device 1 of the present embodiment can suppress the voltage of one capacitor from greatly exceeding the specified voltage by balancing the voltages of the pair of capacitors, and as a result, A relatively low withstand voltage capacitor can be used as the capacitor. Therefore, the power conversion device 1 of the present embodiment can reduce the size of the pair of capacitors.
  • the power conversion device 1 balances the voltages of the pair of capacitors by discharging one of the capacitors when an unbalance of the voltages of the pair of capacitors occurs. That is, since the power conversion device 1 is configured to discharge instead of charging only one capacitor, when the voltage imbalance occurs, the first capacitor C1 and the second capacitor C2 are supplied from the DC power supply 100. Operates in an electrically disconnected state. Therefore, the power conversion device 1 can prevent the occurrence of leakage current due to the voltage imbalance of the pair of capacitors.
  • the conversion circuit 10 includes a first conversion circuit 11 and a second conversion circuit 12, a first bidirectional switch 13 and a second bidirectional switch 14. It is preferable to provide.
  • the power conversion device 1 includes a first conversion circuit 11 and a second conversion circuit 12 that are connected in parallel between both ends of a DC power supply 100, and the first conversion circuit 11 is connected between the first conversion circuit 11 and the second conversion circuit 12.
  • the bidirectional switch 13 and the second bidirectional switch 14 are connected.
  • the first conversion circuit 11 includes four switching elements (first to fourth switching elements Q1 to Q4) and one capacitor (first capacitor C1).
  • the second conversion circuit 12 has four switching elements (fifth to eighth switching elements Q5 to Q8) and one capacitor (second capacitor C2).
  • the current input from the DC power supply 100 to the power conversion device 1 is out of ten switching elements (first to eighth switching elements Q1 to Q8 and first and second bidirectional switches 13 and 14). It passes through at most four elements. Therefore, this power conversion device 1 has the advantage that the sum of the conduction loss (loss) of the switching elements is relatively small, and the power conversion efficiency can be further improved.
  • the power conversion device 1 generally requires a large heat dissipation device (an air cooling device such as a heat sink or a fan) because the heat generation amount increases as the conduction loss increases.
  • the power conversion device 1 of the present embodiment can be expected to reduce the size of the heat dissipation device by suppressing conduction loss.
  • the power conversion device 1 of the present embodiment has an advantage that the entire device can be reduced in size by the amount that does not require a voltage dividing capacitor.
  • the power conversion device described in Document 1 applies the DC voltage E to the series circuit of two DC capacitors to divide the DC voltage E by E / 2. Is an essential configuration.
  • the entire device can be reduced in size accordingly.
  • control unit 6 includes the first to eighth switching elements Q1 to Q8 and the first capacitor C1 and the second capacitor C2 so that the first capacitor C1 and the second capacitor C2 repeat charging and discharging around the reference voltage, respectively. It is preferable to control the first and second bidirectional switches 13 and 14.
  • the reference voltage is a voltage that is 1 ⁇ 4 of the voltage applied from the DC power source 100 between the first input point 101 and the second input point 102.
  • the power conversion apparatus 1 uses the output voltage generated between the first output point 103 and the second output point 104 as E [V], E / V in the first to fourth modes as described above. It can be switched in three stages of 2 [V] and 0 [V].
  • the power conversion device 1 sets the output voltage generated between the first output point 103 and the second output point 104 to 0 [V], ⁇ E / 2 [V], ⁇ E. Switching is performed in three stages [V].
  • the power conversion apparatus 1 switches the first to eighth modes to change the output voltage to E [V], E / 2 [V], 0 [V], ⁇ E / 2 [V], ⁇ It can be switched in 5 stages of E [V].
  • the power conversion device 1 is a 5-level inverter that switches the output voltage in 5 stages, but the operation is the same as that of the 3-level inverter, so the number of passing elements is the same as that of the 3-level inverter. “4” or less. Therefore, this power conversion device 1 can suppress the number of passing elements to be smaller than the number of passing elements “6” of a general five-level inverter, and as a result, can further improve the power conversion efficiency. .
  • the power conversion apparatus 1 further includes a first detection unit 21 that detects the voltage V1 of the first capacitor C1 and a second detection unit 22 that detects the voltage V2 of the second capacitor C2. It is preferable to provide.
  • the control unit 6 performs charging of the first capacitor C1 and the second capacitor C2 such that the average value Vc of the detection result of the first detection unit 21 and the detection result of the second detection unit 22 becomes the reference voltage. It is preferable to switch between discharge. Further, in this case, the control unit 6 sets the first to eighth modes so that when the difference between the detection result of the first detection unit 21 and the detection result of the second detection unit 22 exceeds the threshold value V0, the one-side discharge mode is set.
  • the switching elements Q1 to Q8 and the first and second bidirectional switches 13 and 14 are preferably controlled.
  • the one-side discharge mode is a mode in which only the capacitor having the higher voltage out of the first capacitor C1 and the second capacitor C2 is discharged.
  • the control unit 6 uses both the voltages V1 and V2 as reference voltages based on the detection result (voltage V1) of the first detection unit 21 and the detection result (voltage V2) of the second detection unit 22. While maintaining, the difference between the two voltages V1 and V2 can be suppressed to the threshold value V0 or less. Therefore, the power conversion device 1 has a control for maintaining both the voltages V1 and V2 at the reference voltage and a control for suppressing the difference between the voltages V1 and V2 to be equal to or less than the threshold value V0 as compared to the case of using separate detection units. Thus, the required number of detection units can be suppressed.
  • the controller 6 discharges only the first capacitor C1 out of the first capacitor C1 and the second capacitor C2, and the second and sixth switching elements Q2, Q6 and the second capacitor It is preferable to turn on the combination of the two bidirectional switches 14.
  • the control unit 6 selects a combination of the third and seventh switching elements Q3 and Q7 and the first bidirectional switch 13. You may turn it on.
  • the controller 6 controls the third and seventh switching elements Q3, Q7 and the second bidirectional switch 14.
  • the combination is turned on.
  • the control unit 6 discharges only the second capacitor C2 out of the first capacitor C1 and the second capacitor C2
  • the control unit 6 selects a combination of the second and sixth switching elements Q2 and Q6 and the first bidirectional switch 13. You may turn it on.
  • this power conversion device 1 has the advantage that the sum of the conduction loss (loss) of the switching elements is relatively small, and the power conversion efficiency can be further improved.
  • the control unit 6 performs one-sided periods T1 to T3 in which the output voltage of the power conversion device 1 is positive and periods T4 to T6 in which the output voltage of the power conversion device 1 is negative.
  • the operation in the discharge mode may be different.
  • the controller 6 discharges only the first capacitor C1 out of the first capacitor C1 and the second capacitor C2, and the second and sixth switching elements Q2 are discharged. , Q6 and the combination of the second bidirectional switch 14 are turned on.
  • the control unit 6 changes the combination of the third and seventh switching elements Q3 and Q7 and the second bidirectional switch 14 to each other.
  • the controller 6 switches the third and seventh switching when discharging only the first capacitor C1 out of the first capacitor C1 and the second capacitor C2.
  • the combination of the elements Q3 and Q7 and the first bidirectional switch 13 is turned on.
  • the controller 6 turns on the combination of the second and sixth switching elements Q2 and Q6 and the first bidirectional switch 13 To do.
  • this power conversion device 1 has the advantage that the sum of the conduction loss (loss) of the switching elements is relatively small, and the power conversion efficiency can be further improved.
  • the disconnector 9 is opened (disconnected), thereby electrically connecting the first conversion circuit 11 and the second conversion circuit 12 to the system power supply 7. Can be separated. Therefore, the power conditioner 20 performs grid connection operation in a steady state, and when the system power supply 7 is abnormal, such as a power failure, opens the disconnector 9 and outputs AC power in a state disconnected from the system power supply 7. You can perform autonomous operation.
  • the operating state of the first bidirectional switch 13 is such that the current flowing from the second connection point 202 to the first connection point 201 is cut off, and the first connection point 201 to the second connection point. It is preferable to further include a half-on state in which the current flowing to 202 is passed. In this case, the operating state of the second bidirectional switch 14 blocks the current flowing from the third connection point 203 to the fourth connection point 204 and passes the current flowing from the fourth connection point 204 to the third connection point 203. It is preferable to further include a half-on state.
  • the first bidirectional switch 13 is half-on in a mode in which the current flowing from the first connection point 201 to the second connection point 202 does not need to be interrupted as in the seventh and eighth modes.
  • the state is fine. Therefore, the control unit 6 can continue to turn on the tenth switching element Q10 in the period (period T4 to T6) in which the operation for switching the fifth to seventh modes or the sixth to eighth modes is repeated.
  • the first bidirectional switch 13 is all on, so that the tenth switching element Q10 is turned off whenever the tenth switching element Q10 is turned off each time the mode is switched to the seventh and eighth modes. Switching loss may occur.
  • the power conversion device 1 of the present embodiment allows the first bidirectional switch 13 to keep the tenth switching element Q10 on when the fifth to seventh modes or the sixth to eighth modes are switched. The generated switching loss can be reduced.
  • the second bidirectional switch 14 may be in a half-on state. . Therefore, the power conversion device 1 of the present embodiment is configured so that the twelfth switching element Q12 is continuously turned on when the first to third modes or the second to fourth modes are switched, so that the second bidirectional switch 14 can reduce the switching loss.
  • the control unit 6 shifts the first bidirectional switch 13 from the half-on state to the fully-on state in a state where the current flows through the first bidirectional switch 13, the first bidirectional switch 13.
  • Switching loss caused by the switch 13 can be further reduced. That is, for example, when switching from the seventh mode to the sixth mode, the control unit 6 turns on the ninth switching element Q9 while the ninth diode D9 is turned on, so that the ninth switching is performed. Zero volt switching of the element Q9 can be realized.
  • the control unit 6 shifts the second bidirectional switch 14 from the half-on state to the fully-on state in a state where the current is flowing through the second bidirectional switch 14, Switching loss caused by the directional switch 14 can be further reduced.
  • the conversion circuit 10 includes the first conversion circuit 11 and the second conversion circuit 12, the first bidirectional switch 13 and the second bidirectional switch 14 as described above. It is not limited and can be changed as appropriate.
  • the number of switching elements is not limited to twelve of the first to twelfth switching elements Q1 to Q12, and can be changed as appropriate.
  • the first to eighth switching elements Q1 to Q8 and the ninth to twelfth switching elements Q9 to Q12 are not limited to depletion type n-channel MOSFETs, and other semiconductor switches may be used.
  • a power semiconductor device using a wide band gap semiconductor material such as IGBT (Insulated Gate Bipolar Transistor) or GaN (gallium nitride) is used.
  • the bidirectional switch may be a double gate (dual gate) structure bidirectional switch using a wide band gap semiconductor material such as GaN (gallium nitride).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 キャパシタに要求される耐圧を下げることができる電力変換装置、およびそれを用いたパワーコンディショナを提供する。制御部(6)は、第1~8のスイッチング素子(Q1~Q8)および第1,2の双方向スイッチ(13,14)を制御することにより、第1出力点(103)および第2出力点(104)に対する直流電源(100)と第1キャパシタ(C1)と第2キャパシタ(C2)との接続状態を切り替える。制御部(6)は、第1キャパシタ(C1)の電圧(V1)と第2キャパシタ(C2)の電圧(V2)との差が所定の閾値を超えたときに、片側放電モードとなるように、第1~8のスイッチング素子(Q1~Q8)および第1,2の双方向スイッチ(13,14)を制御する。ここでいう片側放電モードは、第1キャパシタ(C1)と第2キャパシタ(C2)とのうち電圧が高い方のキャパシタのみが放電されるモードである。

Description

電力変換装置、およびそれを用いたパワーコンディショナ
 本発明は、電力変換装置、およびそれを用いたパワーコンディショナに関する。
 近年、住宅用の太陽光発電装置や燃料電池、蓄電装置などの普及に伴い、これらの直流電源の出力を交流に変換する電力変換装置として、多様な回路が提案され、提供されている。たとえば日本国特許出願公開番号2014-64431(段落〔0002〕~〔0006〕、図16,17、以下、文献1と称する)および日本国特許番号第4369425(以下、文献2と称する)には、直流電圧源から複数の電圧レベルに変換した交流出力を生成する電力変換装置(文献1では「マルチレベル電力変換装置」、文献2では「コンバータ回路」)が開示されている。
 文献1の記載によれば、電力変換装置は、5レベルの電圧を出力する5レベルインバータであって、2個の直流キャパシタと、2個のフライングキャパシタと、10個のスイッチング素子とを備えている。この電力変換装置は、2個の直流キャパシタの直列回路に直流電圧Eが印加された状態で、各直流キャパシタの電圧がE/2となり、各フライングキャパシタの電圧がE/4となるように各スイッチング素子を制御することで、5レベルの電圧を出力する。
 ところで、上述したような従来の電力変換装置では、キャパシタ(フライングキャパシタ)の電圧を規定電圧に維持するために、キャパシタの充電と放電とを切り替える制御が必要である。しかし、従来の電力変換装置は、一対(2個)のキャパシタ(フライングキャパシタ)を同時に充電または放電するように構成されているので、一対のキャパシタの電圧が一旦アンバランスになると、一対のキャパシタの電圧のバランスをとることが難しい。そのため、従来の電力変換装置においては、一対のキャパシタの電圧のアンバランスが生じ、一方のキャパシタの電圧が規定電圧を超過する可能性があるので、一対のキャパシタには規定電圧に比較して高耐圧のキャパシタを用いる必要がある。
 本発明は上記事由に鑑みて為されており、キャパシタに要求される耐圧を下げることができる電力変換装置、およびそれを用いたパワーコンディショナを提供することを目的とする。
 本発明の一態様の電力変換装置は、直流電源の高電位側にある第1入力点と前記直流電源の低電位側にある第2入力点との間に、電気的に並列に接続された第1変換回路と第2変換回路とを備え、前記第1変換回路は、前記第1入力点と前記第2入力点との間において、前記第1入力点側から第1のスイッチング素子、第2のスイッチング素子、第3のスイッチング素子、第4のスイッチング素子の順で、電気的に直列に接続された第1~4のスイッチング素子と、前記第2のスイッチング素子および前記第3のスイッチング素子の直列回路と電気的に並列に接続された第1キャパシタとを有しており、前記第2のスイッチング素子と前記第3のスイッチング素子との接続点は第1出力点であり、前記第2変換回路は、前記第1入力点と前記第2入力点との間において、前記第1入力点側から第5のスイッチング素子、第6のスイッチング素子、第7のスイッチング素子、第8のスイッチング素子の順で、電気的に直列に接続された第5~8のスイッチング素子と、前記第6のスイッチング素子および前記第7のスイッチング素子の直列回路と電気的に並列に接続された第2キャパシタとを有しており、前記第6のスイッチング素子と前記第7のスイッチング素子との接続点は第2出力点であり、前記第1のスイッチング素子および前記第2のスイッチング素子の接続点である第1接続点と前記第7のスイッチング素子および前記第8のスイッチング素子の接続点である第2接続点との間に電気的に接続された第1の双方向スイッチと、前記第3のスイッチング素子および前記第4のスイッチング素子の接続点である第3接続点と前記第5のスイッチング素子および前記第6のスイッチング素子の接続点である第4接続点との間に電気的に接続された第2の双方向スイッチと、前記第1~8のスイッチング素子および前記第1,2の双方向スイッチを制御することにより、前記第1出力点および前記第2出力点に対する前記直流電源と前記第1キャパシタと前記第2キャパシタとの接続状態を切り替えて、前記第1出力点と前記第2出力点との間に生じる出力電圧の大きさを複数段階に変化させる制御部とをさらに備え、前記制御部は、前記第1キャパシタの電圧と前記第2キャパシタの電圧との差が所定の閾値を超えたときに、前記第1キャパシタと前記第2キャパシタとのうち電圧が高い方のキャパシタのみが放電されるように、前記第1~8のスイッチング素子および前記第1,2の双方向スイッチを制御することを特徴とする。
 本発明の一態様のパワーコンディショナは、上記の電力変換装置と、前記第1出力点および前記第2出力点と系統電源との間に電気的に接続される解列器とを備えることを特徴とする。
 図面は本教示に従って一または複数の実施例を示すが、限定するものではなく例に過ぎない。図面において、同様の符号は同じか類似の要素を指す。
実施形態に係る電力変換装置の構成を示す回路図である。 図2Aは実施形態に係る電力変換装置の第1のモードの説明図、図2Bは実施形態に係る電力変換装置の第2のモードの説明図である。 図3Aは実施形態に係る電力変換装置の第3のモードの説明図、図3Bは実施形態に係る電力変換装置の第4のモードの説明図である。 図4Aは実施形態に係る電力変換装置の第5のモードの説明図、図4Bは実施形態に係る電力変換装置の第6のモードの説明図である。 図5Aは実施形態に係る電力変換装置の第7のモードの説明図、図5Bは実施形態に係る電力変換装置の第8のモードの説明図である。 実施形態に係る電力変換装置の最終出力電圧の波形図である。 実施形態に係るパワーコンディショナの構成を示す概略図である。 図8Aは実施形態に係る電力変換装置の第1キャパシタのみ放電する片側放電モードの説明図、図8Bは実施形態に係る電力変換装置の第2キャパシタのみ放電する片側放電モードの説明図である。 図9Aは実施形態に係る電力変換装置の第1キャパシタのみ放電する片側放電モードの説明図、図9Bは実施形態に係る電力変換装置の第2キャパシタのみ放電する片側放電モードの説明図である。 実施形態に係る電力変換装置の動作を示すフローチャートである。
 以下の実施形態は、一般に電力変換装置、およびそれを用いたパワーコンディショナに関し、より詳細には直流電源からの電力を変換する電力変換装置、およびそれを用いたパワーコンディショナに関する。
 本実施形態に係る電力変換装置1は、図1に示すように、第1変換回路11と第2変換回路12とを備え、さらに第1の双方向スイッチ13と第2の双方向スイッチ14と制御部6とを備えている。
 第1変換回路11と第2変換回路12とは、直流電源100の高電位側にある第1入力点101と直流電源100の低電位側にある第2入力点102との間に、電気的に並列に接続されている。
 第1変換回路11は、第1~4のスイッチング素子Q1~Q4と、第1キャパシタC1とを有している。ここで、第2のスイッチング素子Q2と第3のスイッチング素子Q3との接続点は第1出力点103である。
 第1~4のスイッチング素子Q1~Q4は、第1入力点101と第2入力点102との間において、電気的に直列に接続されている。第1~4のスイッチング素子Q1~Q4は、第1入力点101側から第1のスイッチング素子Q1、第2のスイッチング素子Q2、第3のスイッチング素子Q3、第4のスイッチング素子Q4の順で、直列に接続されている。第1キャパシタC1は、第2のスイッチング素子Q2および第3のスイッチング素子Q3の直列回路と、電気的に並列に接続されている。
 第2変換回路12は、第5~8のスイッチング素子Q5~Q8と、第2キャパシタC2とを有している。ここで、第6のスイッチング素子Q6と第7のスイッチング素子Q7との接続点は第2出力点104である。
 第5~8のスイッチング素子Q5~Q8は、第1入力点101と第2入力点102との間において、電気的に直列に接続されている。第5~8のスイッチング素子Q5~Q8は、第1入力点101側から第5のスイッチング素子Q5、第6のスイッチング素子Q6、第7のスイッチング素子Q7、第8のスイッチング素子Q8の順で、直列に接続されている。第2キャパシタC2は、第6のスイッチング素子Q6および第7のスイッチング素子Q7の直列回路と、電気的に並列に接続されている。
 第1の双方向スイッチ13は、第1のスイッチング素子Q1および第2のスイッチング素子Q2の接続点である第1接続点201と第7のスイッチング素子Q7および第8のスイッチング素子Q8の接続点である第2接続点202との間に電気的に接続されている。
 第2の双方向スイッチ14は、第3のスイッチング素子Q3および第4のスイッチング素子Q4の接続点である第3接続点203と第5のスイッチング素子Q5および第6のスイッチング素子Q6の接続点である第4接続点204との間に電気的に接続されている。
 制御部6は、第1~8のスイッチング素子Q1~Q8および第1,2の双方向スイッチ13,14を制御することにより、第1出力点103および第2出力点104に対する直流電源100と第1キャパシタC1と第2キャパシタC2との接続状態を切り替える。これにより、制御部6は、第1出力点103と第2出力点104との間に生じる出力電圧の大きさを複数段階に変化させる。
 さらに、制御部6は、第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2との差が所定の閾値を超えたときに、片側放電モードとなるように、第1~8のスイッチング素子Q1~Q8および第1,2の双方向スイッチ13,14を制御する。詳しくは後述するが、ここでいう片側放電モードは、第1キャパシタC1と第2キャパシタC2とのうち電圧が高い方のキャパシタのみが放電されるモードである。
 この構成によれば、電力変換装置1は、第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2との差が所定の閾値を超えたときに、第1キャパシタC1と第2キャパシタC2とのうち電圧が高い方のキャパシタのみが放電されるモードで動作する。すなわち、電力変換装置1は、一対のキャパシタ(第1キャパシタC1および第2キャパシタC2)の電圧のアンバランス(不均衡)が生じても、電圧が高い方のキャパシタのみ放電を行うことで、一対のキャパシタの電圧のバランスをとることが可能である。したがって、電力変換装置1は、一対のキャパシタの電圧のバランスをとることで、キャパシタに要求される耐圧を下げることができる、という利点がある。つまり、より低耐圧のキャパシタを採用することが可能になる。
 しかも、この電力変換装置1は、一対のキャパシタの電圧のアンバランスが生じた際に、片方のキャパシタを放電することにより、一対のキャパシタの電圧のバランスをとる。つまり、電力変換装置1は、片方のキャパシタのみを充電するのではなく放電するように構成されているので、電圧のアンバランスが生じた際、直流電源100から第1キャパシタC1および第2キャパシタC2が電気的に切り離された状態で動作する。したがって、電力変換装置1は、一対のキャパシタの電圧のアンバランスに起因した漏洩電流の発生を防止することができる。
 以下、本実施形態に係る電力変換装置1、およびそれを用いたパワーコンディショナ20(図7参照)について詳しく説明する。ただし、以下に説明する構成は、本発明の一例に過ぎず、本発明は、本実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
 本実施形態では、パワーコンディショナ20が、直流電源100としての太陽光発電装置に電気的に接続して使用される住宅用のパワーコンディショナである場合を例示するが、パワーコンディショナ20の用途を限定する趣旨ではない。パワーコンディショナ20は、たとえば家庭用燃料電池、蓄電装置など、太陽光発電装置以外の直流電源100に電気的に接続して使用されてもよく、また、たとえば店舗、工場、事務所など非住宅に用いられてもよい。さらに、電力変換装置1についても、その用途をパワーコンディショナ20に限定する趣旨ではなく、電力変換装置1は、パワーコンディショナ20以外に用いられてもよい。
 <電力変換装置の構成>
 本実施形態の電力変換装置1は、図1に示すように、直流電源100に電気的に接続される。ここでは直流電源100は太陽光発電装置からなるので、電力変換装置1は接続箱を介して直流電源100に接続されることになる。
 本実施形態の電力変換装置1は、変換回路10および制御部6に加えて、フィルタ回路5と第1検出部21と第2検出部22とをさらに備えている。なお、変換回路10は、第1変換回路11および第2変換回路12と、第1の双方向スイッチ13および第2の双方向スイッチ14とで構成されている。
 第1入力点101および第2入力点102は電力変換装置1における一対の入力端子となり、一対の入力端子(第1入力点101および第2入力点102)間には直流電源100が電気的に接続される。
 また、第1変換回路11の第1出力点103および第2変換回路12の第2出力点104は、それぞれフィルタ回路5を介して第3出力点105および第4出力点106に電気的に接続されている。本実施形態では、これら第3出力点105および第4出力点106が電力変換装置1における一対の出力端子となる。
 本実施形態において、電力変換装置1の出力電圧は交流電圧であり、第3出力点105および第4出力点106は、系統電源(商用電力系統)7に電気的に接続される。さらに、第3出力点105および第4出力点106には、交流電力の供給を受けて動作する負荷8が電気的に接続される。
 具体的には、電力変換装置1の一対の出力端子は、分電盤に設けられた連系ブレーカに電気的に接続されることにより、負荷8および系統電源7に接続される。すなわち、電力変換装置1は、直流電源100から入力される直流電力を交流電力に変換し、該交流電力を一対の出力端子(第3出力点105および第4出力点106)から負荷8および系統電源7へ出力する。なお、図1において、系統電源7はU相、W相を持つ単相3線式であるが、この例に限らず系統電源7は単相2線式であってもよい。
 次に、電力変換装置1の各部の構成について詳しく説明する。
 電力変換装置1は、直流電源100に接続された一対の入力端子のうち、直流電源100の高電位(正極)側の入力端子を第1入力点101とし、直流電源100の低電位(負極)側の入力端子を第2入力点102とする。そのため、第1入力点101と第2入力点102との間には、直流電源100から出力される直流電圧が、入力電圧として印加されることになる。
 ここで、直流電源100の低電位側の入力端子(第2入力点102)は、電力変換装置1の回路グランドであって、その電位は0〔V〕であると仮定する。そうすると、直流電源100の出力する直流電圧E〔V〕を用いて、第1入力点101の電位はE〔V〕で表されることになる。
 第1変換回路11は、上述したように第1入力点101と第2入力点102との間に直列に接続された第1~4のスイッチング素子Q1~Q4と、第1キャパシタC1とを有している。第1~4のスイッチング素子Q1~Q4の各々は、ここでは一例としてデプレッション型のnチャネルMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)が用いられている。
 第1のスイッチング素子Q1のドレインは第1入力点101に電気的に接続されている。第2のスイッチング素子Q2のドレインは第1のスイッチング素子Q1のソースに電気的に接続されている。第3のスイッチング素子Q3のドレインは第2のスイッチング素子Q2のソースに電気的に接続されている。第4のスイッチング素子Q4のドレインは第3のスイッチング素子Q3のソースに電気的に接続されている。さらに第4のスイッチング素子Q4のソースは、第2入力点102に電気的に接続されている。
 ここで、第2のスイッチング素子Q2のソースと第3のスイッチング素子Q3のドレインとの接続点は第1出力点103となる。さらに、第1のスイッチング素子Q1のソースと第2のスイッチング素子Q2のドレインとの接続点は第1接続点201となる。第3のスイッチング素子Q3のソースと第4のスイッチング素子Q4のドレインとの接続点は第3接続点203となる。
 第1キャパシタC1は、一端が第2のスイッチング素子Q2のドレイン(第1接続点201)に電気的に接続され、他端が第3のスイッチング素子Q3のソース(第3接続点203)に電気的に接続されている。言い換えれば、第1キャパシタC1は、一端が第1のスイッチング素子Q1を介して第1入力点101に電気的に接続され、他端が第4のスイッチング素子Q4を介して第2入力点102に電気的に接続されている。
 第2変換回路12は、上述したように第1入力点101と第2入力点102との間に直列に接続された第5~8のスイッチング素子Q5~Q8と、第2キャパシタC2とを有している。ここで、第2変換回路12は、基本的には第1変換回路11と同様の構成であって、第5~8のスイッチング素子Q5~Q8が第1~4のスイッチング素子Q1~Q4に相当し、第2キャパシタC2が第1キャパシタC1に相当する。ここで、第5~8のスイッチング素子Q5~Q8の各々は、第1~4のスイッチング素子Q1~Q4の各々と同様にデプレッション型のnチャネルMOSFETが用いられている。
 すなわち、第5のスイッチング素子Q5のドレインは第1入力点101に電気的に接続されている。第6のスイッチング素子Q6のドレインは第5のスイッチング素子Q5のソースに電気的に接続されている。第7のスイッチング素子Q7のドレインは第6のスイッチング素子Q6のソースに電気的に接続されている。第8のスイッチング素子Q8のドレインは第7のスイッチング素子Q7のソースに電気的に接続されている。さらに第8のスイッチング素子Q8のソースは、第2入力点102に電気的に接続されている。
 ここで、第6のスイッチング素子Q6のソースと第7のスイッチング素子Q7のドレインとの接続点は第2出力点104となる。さらに、第5のスイッチング素子Q5のソースと第6のスイッチング素子Q6のドレインとの接続点は第4接続点204となる。第7のスイッチング素子Q7のソースと第8のスイッチング素子Q8のドレインとの接続点は第2接続点202となる。
 第2キャパシタC2は、一端が第6のスイッチング素子Q6のドレイン(第4接続点204)に電気的に接続され、他端が第7のスイッチング素子Q7のソース(第2接続点202)に電気的に接続されている。言い換えれば、第2キャパシタC2は、一端が第5のスイッチング素子Q5を介して第1入力点101に電気的に接続され、他端が第8のスイッチング素子Q8を介して第2入力点102に電気的に接続されている。
 第2キャパシタC2の回路定数(キャパシタンス)と第1キャパシタC1の回路定数(キャパシタンス)とは同値である。
 また、図1において、第1~8のスイッチング素子Q1~Q8には第1~8のダイオードD1~D8がそれぞれ一対一で逆並列に接続されている。これら第1~8のダイオードD1~D8は、それぞれ第1~8のスイッチング素子Q1~Q8の寄生ダイオードである。つまり、第1のスイッチング素子Q1の寄生ダイオードは第1のダイオードD1を構成し、同様に、第2,3…のスイッチング素子Q2,Q3…の寄生ダイオードはそれぞれ第2,3…のダイオードD2,D3…を構成する。たとえば第1のダイオードD1は、第1のスイッチング素子Q1のドレイン側をカソード、ソース側をアノードとする向きに接続されている。
 このように構成される第1変換回路11と第2変換回路12とは、第1入力点101と第2入力点102との間において、電気的に並列に接続されている。つまり、第1変換回路11と第2変換回路12とは、直流電源100の両端間に並列に接続されている。
 第1の双方向スイッチ13は、第1接続点201と第2接続点202との間に電気的に接続されている。つまり、第1変換回路11の第1接続点201は、第1の双方向スイッチ13を介して第2変換回路12の第2接続点202に電気的に接続されている。ここでは、第1の双方向スイッチ13は、第1接続点201と第2接続点202との間において、電気的に直列に接続された第9のスイッチング素子Q9と第10のスイッチング素子Q10とを有している。第1の双方向スイッチ13は、第1接続点201側から第9のスイッチング素子Q9、第10のスイッチング素子Q10の順に接続されている。
 具体的に説明すると、第9,10のスイッチング素子Q9,Q10の各々は、第1~8のスイッチング素子Q1~Q8の各々と同様にデプレッション型のnチャネルMOSFETが用いられている。第9のスイッチング素子Q9のソースは第1接続点201に接続され、第9のスイッチング素子Q9のドレインは第10のスイッチング素子Q10のドレインに接続されている。第10のスイッチング素子Q10のソースは第2接続点202に接続されている。要するに、第9のスイッチング素子Q9と第10のスイッチング素子Q10とは、ドレイン同士が互いに接続されるように、第1接続点201と第2接続点202との間において逆直列に接続されている。
 第2の双方向スイッチ14は、第3接続点203と第4接続点204との間に電気的に接続されている。つまり、第1変換回路11の第3接続点203は、第2の双方向スイッチ14を介して第2変換回路12の第4接続点204に電気的に接続されている。ここでは、第2の双方向スイッチ14は、第3接続点203と第4接続点204との間において、電気的に直列に接続された第12のスイッチング素子Q12と第11のスイッチング素子Q11とを有している。第2の双方向スイッチ14は、第3接続点203側から第12のスイッチング素子Q12、第11のスイッチング素子Q11の順に接続されている。
 具体的に説明すると、第11,12のスイッチング素子Q11,Q12の各々は、第1~8のスイッチング素子Q1~Q8の各々と同様にデプレッション型のnチャネルMOSFETが用いられている。第11のスイッチング素子Q11のソースは第4接続点204に接続され、第11のスイッチング素子Q11のドレインは第12のスイッチング素子Q12のドレインに接続されている。第12のスイッチング素子Q12のソースは第3接続点203に接続されている。要するに、第11のスイッチング素子Q11と第12のスイッチング素子Q12とは、ドレイン同士が互いに接続されるように、第3接続点203と第4接続点204との間において逆直列に接続されている。
 また、第9~12のスイッチング素子Q9~Q12には第9~12のダイオードD9~D12がそれぞれ一対一で逆並列に接続されている。これら第9~12のダイオードD9~D12は、それぞれ第9~12のスイッチング素子Q9~Q12の寄生ダイオードである。つまり、第9のスイッチング素子Q9の寄生ダイオードは第9のダイオードD9を構成し、同様に、第10,11,12のスイッチング素子Q10,Q11,Q12の寄生ダイオードはそれぞれ第10,11,12のダイオードD10,D11,D12を構成する。たとえば第9のダイオードD9は、第9のスイッチング素子Q9のドレイン側をカソード、ソース側をアノードとする向きに接続されている。
 本実施形態においては、第1の双方向スイッチ13は、全オフ状態と全オン状態とを含む動作状態を切替可能に構成されている。第1の双方向スイッチ13の全オフ状態は、第1接続点201と第2接続点202との間で双方向の電流を遮断する状態である。第1の双方向スイッチ13の全オン状態は、第1接続点201と第2接続点202との間で双方向の電流を通過させる状態である。第2の双方向スイッチ14も同様に、全オフ状態と全オン状態とを含む動作状態を切替可能に構成されている。第2の双方向スイッチ14の全オフ状態は、第3接続点203と第4接続点204との間で双方向の電流を遮断する状態である。第2の双方向スイッチ14の全オン状態は、第3接続点203と第4接続点204との間で双方向の電流を通過させる状態である。
 さらに、本実施形態では、第1の双方向スイッチ13の動作状態は、第2接続点202から第1接続点201へ流れる電流を遮断し、且つ第1接続点201から第2接続点202へ流れる電流を通過させる半オン状態をさらに含んでいる。また、第2の双方向スイッチ14の動作状態は、第3接続点203から第4接続点204へ流れる電流を遮断し、且つ第4接続点204から第3接続点203へ流れる電流を通過させる半オン状態をさらに含んでいる。
 そのため、本実施形態の電力変換装置1は、第1の双方向スイッチ13を全オン状態とすることにより、第1接続点201と第2接続点202との間を双方向の電流が通過可能な状態を作り出すことができる。また、本実施形態の電力変換装置1は、第2の双方向スイッチ14を全オン状態とすることにより、第3接続点203と第4接続点204との間を双方向の電流が通過可能な状態を作り出すことができる。
 すなわち、第1の双方向スイッチ13は、第9,10のスイッチング素子Q9,Q10がいずれもオフの状態で全オフ状態となり、第9,10のスイッチング素子Q9,Q10がいずれもオンの状態で全オン状態となる。さらに、第1の双方向スイッチ13は、第10のスイッチング素子Q10がオンで且つ第9のスイッチング素子Q9がオフの状態には、第9のダイオードD9によって電流の向きが一方向に制限される半オン状態となる。
 また、第2の双方向スイッチ14は、第11,12のスイッチング素子Q11,Q12がいずれもオフの状態で全オフ状態となり、第11,12のスイッチング素子Q11,Q12がいずれもオンの状態で全オン状態となる。さらに、第2の双方向スイッチ14は、第12のスイッチング素子Q12がオンで且つ第11のスイッチング素子Q11がオフの状態には、第11のダイオードD11によって電流の向きが一方向に制限される半オン状態となる。
 このように、本実施形態における双方向スイッチ(第1の双方向スイッチ13および第2の双方向スイッチ14のそれぞれ)は、全オフ状態、全オン状態、および半オン状態からなる3つの動作状態を切替可能である。
 上記構成を言い換えれば、第1の双方向スイッチ13は、第1キャパシタC1の正極側の端子と第2キャパシタC2の負極側の端子との間に電気的に接続されている。第2の双方向スイッチ14は、第1キャパシタC1の負極側の端子と第2キャパシタC2の正極側の端子との間に電気的に接続されている。つまり、第1変換回路11の第1キャパシタC1と第2変換回路12の第2キャパシタC2とは、第1の双方向スイッチ13および第2の双方向スイッチ14を介して、たすき掛け状に接続されている。
 さらに、第1~8のスイッチング素子Q1~Q8、並びに第9~12のスイッチング素子Q9~Q12のゲートは、それぞれ制御部6に電気的に接続されている。制御部6は、第1~4のスイッチング素子Q1~Q4のオン/オフを個別に切り替え可能であって、これにより第1変換回路11を制御する。また、制御部6は、第5~8のスイッチング素子Q5~Q8のオン/オフを個別に切り替え可能であって、これにより第2変換回路12を制御する。また、制御部6は、第9,10のスイッチング素子Q9,Q10のオン/オフを個別に切り替え可能であって、これにより第1の双方向スイッチ13を制御する。また、制御部6は、第11,12のスイッチング素子Q11,Q12のオン/オフを個別に切り替え可能であって、これにより第2の双方向スイッチ14を制御する。
 なお、制御部6は、第1変換回路11、第2変換回路12、第1の双方向スイッチ13、第2の双方向スイッチ14のそれぞれについて個別に設けられていてもよい。
 本実施形態では、制御部6は、第1~12のスイッチング素子Q1~Q12に駆動信号を与えるドライブ回路61と、ドライブ回路61に信号を与えるマイコン(マイクロコンピュータ)62とを有している。
 ドライブ回路61は、第1~12のスイッチング素子Q1~Q12の各々の制御端子(ゲート)に対して駆動信号を与えることにより、各素子を個別に駆動(制御)するように構成されている。マイコン62は、ドライブ回路61にPWM(Pulse Width Modulation)信号を与えることにより、ドライブ回路61を制御するように構成されている。すなわち、制御部6は、マイコン62からの指示に応じてドライブ回路61が生成する駆動信号によって、第1~12のスイッチング素子Q1~Q12を個別に制御する。
 ここにおいて、ドライブ回路61は、2つ以上のスイッチング素子が同時にオンして、短絡電流が流れることを防止する短絡防止回路としての機能を兼ね備えていることが好ましい。すなわち、特定の組み合わせのスイッチング素子が同時にオンすると、たとえば第1入力点101と第2入力点102との間が短絡し、直流電源100からの電流が短絡電流となってスイッチング素子に流れる可能性がある。そこで、ドライブ回路61は、このような特定の組み合わせのスイッチング素子が同時にオンしないように構成されることが好ましい。たとえば、ドライブ回路61は、特定の組み合わせのスイッチング素子のゲートに入力される駆動信号が同時にH(High)レベルになると、駆動信号を強制的にL(Low)レベルに落とすことにより、特定の組み合わせのスイッチング素子を同時にオンさせないように構成される。
 フィルタ回路5は、図1に示すように、一対のインダクタL1,L2と、第3キャパシタC3とを有している。一方のインダクタL1は、第1出力点103と第3出力点105との間に電気的に接続されている。他方のインダクタL2は、第2出力点104と第4出力点106との間に電気的に接続されている。ただし、インダクタL1,L2は、第1出力点103および第2出力点104の少なくとも一方と出力端子(第3出力点105、第4出力点106)との間に電気的に接続されていればよく、インダクタL1,L2のいずれかは省略されていてもよい。つまり、インダクタL1が第1出力点103と第3出力点105との間に電気的に接続されているのみか、インダクタL2が第2出力点104と第4出力点106との間に電気的に接続されているのみでもよい。
 第3キャパシタC3は、第3出力点105と第4出力点106との間に電気的に接続されている。言い換えれば、フィルタ回路5は、第1出力点103と第2出力点104との間に電気的に接続された、インダクタL1、第3キャパシタC3、インダクタL2の直列回路である。
 第1検出部21は、第1キャパシタC1の電圧を検出するように構成されている。ここでは、第1検出部21は、第1キャパシタC1の両端に発生する電圧V1の大きさを、第1接続点201側を正極として検出する。第1検出部21は、たとえば第1接続点201と第3接続点203との間に直列に接続された一対の分圧抵抗で構成される。ただし、第1検出部21の構成はこれに限らず、第1キャパシタC1の両端に発生する電圧(両端電圧)V1の値(大きさ)を検出可能な構成であればよい。第1検出部21は、検出結果である電圧V1の値を、制御部6のマイコン62へ出力する。
 第2検出部22は、第2キャパシタC2の電圧を検出するように構成されている。ここでは、第2検出部22は、第2キャパシタC2の両端に発生する電圧V2の大きさを、第4接続点204側を正極として検出する。第2検出部22は、たとえば第4接続点204と第2接続点202との間に直列に接続された一対の分圧抵抗で構成される。ただし、第2検出部22の構成はこれに限らず、第2キャパシタC2の両端に発生する電圧(両端電圧)V2の値(大きさ)を検出可能な構成であればよい。第2検出部22は、検出結果である電圧V2の値を、制御部6のマイコン62へ出力する。
 第1検出部21および第2検出部22の検出結果を用いた制御部6の動作については後述する。
 <電力変換装置の基本動作>
 上述した構成の電力変換装置1の基本動作について、図2A,2B,3A,3B,4A,4B,5A,5Bを参照して簡単に説明する。なお、図中、太線矢印は電流経路を表し、点線の丸印が付されたスイッチング素子はオン状態の素子を表している。
 ここでいう電力変換装置1の基本動作とは、直流電源100より電力の供給が開始してから第1キャパシタC1および第2キャパシタC2が基準電圧に充電されるまでの期間(以下、「始動期間」という)の経過後の電力変換装置1の動作である。つまり、第1キャパシタC1および第2キャパシタC2が基準電圧に充電された状態からの電力変換装置1の動作を、電力変換装置1の基本動作とする。
 第1キャパシタC1についての基準電圧は、直流電源100から第1入力点101と第2入力点102との間に印加される印加電圧の1/4の大きさの電圧である。第2キャパシタC2についての基準電圧も、同様に直流電源100から第1入力点101と第2入力点102との間に印加される印加電圧の1/4の大きさの電圧である。
 以下では、直流電源100の出力電圧がE〔V〕であって、第1入力点101の電位はE〔V〕、第2入力点102の電位は0〔V〕であると仮定する。ここで、基準電圧に充電された第1キャパシタC1と第2キャパシタC2との各々の両端電圧はE/4〔V〕となる。以下では、第1出力点103と第2出力点104との電位差、つまり第1出力点103-第2出力点104間に生じる電圧を、電力変換装置1の出力電圧として説明する。
 なお、第3出力点105および第4出力点106は系統電源7に電気的に接続されているため、第3出力点105と第4出力点106との電位差、つまり第3出力点105-第4出力点106間に生じる電圧は、系統電源7の出力電圧に等しくなる。第1出力点103と第3出力点105との電位差、並びに第2出力点104と第4出力点106との間の電位差は、フィルタ回路5にて吸収されることになる。
 電力変換装置1は、第1変換回路11、第2変換回路12、第1の双方向スイッチ13、第2の双方向スイッチ14を第1~8の計8つのモードに切り替える。これにより、電力変換装置1は、第1入力点101と第2入力点102との間に印加される直流電圧(E〔V〕)を交流電圧に変換して、第1出力点103と第2出力点104との間に出力電圧を発生する。なお、以下の説明では、第1~12のスイッチング素子Q1~Q12に関し、それぞれオン/オフの状態について言及していない場合には「オフ」の状態にあることとする。また、第1~12のスイッチング素子Q1~Q12での電圧降下、および第1~12のダイオードD1~D12での電圧降下は無視できる程度と仮定する。
 ここにおいて、制御部6は、以下の2つの条件に従って、第1~12のスイッチング素子Q1~Q12を制御する。ただし、これらの条件は、第1~8のモードに適用される条件であって、後述する片側放電モードには適用されない。
 1つ目の条件としては、第1変換回路11の第1~4のスイッチング素子Q1~Q4と、第2変換回路12の第5~8のスイッチング素子Q5~Q8とで一対一のペアを設定し、ペアごとにオン/オフが切り替わるようにする。ここでは、第1,8のスイッチング素子Q1,Q8がペアとなり、第2,7のスイッチング素子Q2,Q7がペアとなり、第3,6のスイッチング素子Q3,Q6がペアとなり、第4,5のスイッチング素子Q4,Q5がペアとなる。
 2つ目の条件としては、第2のスイッチング素子Q2と第3のスイッチング素子Q3とが、同時にオンまたはオフにならないようにする。さらに、第1~4のモードにおいては第1のスイッチング素子Q1と第11のスイッチング素子Q11とが、また、第5~8のモードにおいては第4のスイッチング素子Q4と第9のスイッチング素子Q9とが、それぞれ同時にオンまたはオフにならないようにする。
 まず、図2Aに示す第1のモードでは、第1変換回路11の第1,2のスイッチング素子Q1,Q2と、第2変換回路12の第7,8のスイッチング素子Q7,Q8と、第2の双方向スイッチ14の第12のスイッチング素子Q12とがそれぞれオンの状態にある。つまり、第2の双方向スイッチ14は半オン状態にある。この状態では、図2Aに示すように、第1入力点101は、第1のスイッチング素子Q1、第2のスイッチング素子Q2を介して第1出力点103に電気的に接続される。また、第2入力点102は、第8のスイッチング素子Q8、第7のスイッチング素子Q7を介して第2出力点104に電気的に接続される。このとき、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子は第1,2,7,8のスイッチング素子Q1,Q2,Q7,Q8の計4つであって、第12のスイッチング素子Q12には電流は流れない。
 したがって、第1出力点103は第1入力点101と同電位(E〔V〕)になり、第2出力点104は第2入力点102と同電位(0〔V〕)になる。そのため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、E(=E-0)〔V〕になる。さらにこのとき、第3出力点105の電位は、第1出力点103の電位からインダクタL1の両端電圧を差し引いた電位となり、第4出力点106の電位は、第2出力点104の電位にインダクタL2の両端電圧を加えた電位となる。
 次に、図2Bに示す第2のモードでは、第1変換回路11の第1,3のスイッチング素子Q1,Q3と、第2変換回路12の第6,8のスイッチング素子Q6,Q8と、第2の双方向スイッチ14の第12のスイッチング素子Q12とがそれぞれオンの状態にある。つまり、第2の双方向スイッチ14は半オン状態にある。この状態では、図2Bに示すように、第1入力点101は、第1のスイッチング素子Q1、第1キャパシタC1、第3のスイッチング素子Q3を介して第1出力点103に電気的に接続される。また、第2入力点102は、第8のスイッチング素子Q8、第2キャパシタC2、第6のスイッチング素子Q6を介して第2出力点104に電気的に接続される。このとき、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子は第1,3,6,8のスイッチング素子Q1,Q3,Q6,Q8の計4つであって、第12のスイッチング素子Q12には電流は流れない。
 したがって、第1出力点103の電位は、第1入力点101の電位(E〔V〕)より第1キャパシタC1の両端電圧(E/4〔V〕)分だけ低い電位、つまり3E/4(=E-E/4)〔V〕となる。また、第2出力点104の電位は、第2入力点102の電位(0〔V〕)より第2キャパシタC2の両端電圧(E/4〔V〕)分だけ高い電位、つまりE/4(=0+E/4)〔V〕となる。そのため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、E/2(=3E/4-E/4)〔V〕になる。さらにこのとき、第3出力点105の電位は、第1出力点103の電位からインダクタL1の両端電圧を差し引いた電位となり、第4出力点106の電位は、第2出力点104の電位にインダクタL2の両端電圧を加えた電位となる。
 次に、図3Aに示す第3のモードでは、第1変換回路11の第2のスイッチング素子Q2と、第2変換回路12の第7のスイッチング素子Q7と、第2の双方向スイッチ14の第11,12のスイッチング素子Q11,Q12とがそれぞれオンの状態にある。つまり、第2の双方向スイッチ14は全オン状態にある。この状態では、第2出力点104は、第7のスイッチング素子Q7、第2キャパシタC2、第11のスイッチング素子Q11、第12のスイッチング素子Q12、第1キャパシタC1、第2のスイッチング素子Q2を介して第1出力点103に電気的に接続される。このとき、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子は第2,7,11,12のスイッチング素子Q2,Q7,Q11,Q12の計4つである。
 したがって、第1出力点103の電位は、第2出力点104の電位より、第1キャパシタC1の両端電圧(E/4〔V〕)と第2キャパシタC2の両端電圧(E/4〔V〕)との和の分だけ高い電位となる。そのため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、E/2(=E/4+E/4)〔V〕になる。さらにこのとき、第3出力点105の電位は、第1出力点103の電位からインダクタL1の両端電圧を差し引いた電位となり、第4出力点106の電位は、第2出力点104の電位にインダクタL2の両端電圧を加えた電位となる。また、この状態においては、第2の双方向スイッチ14が全オン状態にあるため、変換回路10は、第1出力点103と第2出力点104との間に双方向の電流を流すことができる。
 次に、図3Bに示す第4のモードでは、第1変換回路11の第3のスイッチング素子Q3と、第2変換回路12の第6のスイッチング素子Q6と、第2の双方向スイッチ14の第11,12のスイッチング素子Q11,Q12とがそれぞれオンの状態にある。つまり、第2の双方向スイッチ14は全オン状態にある。この状態では、第2出力点104は、第6のスイッチング素子Q6、第11のスイッチング素子Q11、第12のスイッチング素子Q12、第3のスイッチング素子Q3を介して第1出力点103に電気的に接続される。このとき、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子は第3,6,11,12のスイッチング素子Q3,Q6,Q11,Q12の計4つである。
 したがって、第1出力点103の電位は第2出力点104と同電位になる。そのため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、0〔V〕になる。さらにこのとき、第3出力点105の電位は、第1出力点103の電位からインダクタL1の両端電圧を差し引いた電位となり、第4出力点106の電位は、第2出力点104の電位にインダクタL2の両端電圧を加えた電位となる。また、この状態においては、第2の双方向スイッチ14が全オン状態にあるため、変換回路10は、第1出力点103と第2出力点104との間に双方向の電流を流すことができる。
 一方、第5~8のモードにおいては、電力変換装置1は、上記第1~4のモードを基準にして、第1変換回路11と第2変換回路12とで動作を入れ替え、且つ第1の双方向スイッチ13と第2の双方向スイッチ14とで動作を入れ替えたような動作を行う。つまり、第5~8のモードと第1~4のモードとでは、変換回路10の動作は、第1変換回路11および第1の双方向スイッチ13と、第2変換回路12および第2の双方向スイッチ14とが入れ替わった対称な動作となる。
 すなわち、図4Aに示す第5のモードでは、変換回路10の動作は、上記第4のモードと対称な動作となる。そのため、第5のモードでは、第1変換回路11の第2のスイッチング素子Q2と、第2変換回路12の第7のスイッチング素子Q7と、第1の双方向スイッチ13の第9,10のスイッチング素子Q9,Q10とがそれぞれオンの状態にある。つまり、第1の双方向スイッチ13は全オン状態にある。この状態では、図4Aに示すように、第1出力点103は、第2のスイッチング素子Q2、第9のスイッチング素子Q9、第10のスイッチング素子Q10、第7のスイッチング素子Q7を介して第2出力点104に電気的に接続される。このとき、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子は第2,7,9,10のスイッチング素子Q2,Q7,Q9,Q10の計4つである。
 したがって、第1出力点103の電位は第2出力点104と同電位になる。そのため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、0〔V〕になる。さらにこのとき、第3出力点105の電位は、第1出力点103の電位にインダクタL1の両端電圧を加えた電位となり、第4出力点106の電位は、第2出力点104の電位からインダクタL2の両端電圧を差し引いた電位となる。また、この状態においては、第1の双方向スイッチ13が全オン状態にあるため、変換回路10は、第1出力点103と第2出力点104との間に双方向の電流を流すことができる。
 次に、図4Bに示す第6のモードでは、変換回路10の動作は、上記第3のモードと対称な動作となる。そのため、第6のモードでは、第1変換回路11の第3のスイッチング素子Q3と、第2変換回路12の第6のスイッチング素子Q6と、第1の双方向スイッチ13の第9,10のスイッチング素子Q9,Q10とがそれぞれオンの状態にある。つまり、第1の双方向スイッチ13は全オン状態にある。この状態では、第1出力点103は、第3のスイッチング素子Q3、第1キャパシタC1、第9のスイッチング素子Q9、第10のスイッチング素子Q10、第2キャパシタC2、第6のスイッチング素子Q6を介して第2出力点104に電気的に接続される。このとき、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子は第3,6,9,10のスイッチング素子Q3,Q6,Q9,Q10の計4つである。
 したがって、第1出力点103の電位は、第2出力点104の電位より、第1キャパシタC1の両端電圧(E/4〔V〕)と第2キャパシタC2の両端電圧(E/4〔V〕)との和の分だけ低い電位となる。そのため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、-E/2(=-E/4-E/4)〔V〕になる。さらにこのとき、第3出力点105の電位は、第1出力点103の電位にインダクタL1の両端電圧を加えた電位となり、第4出力点106の電位は、第2出力点104の電位からインダクタL2の両端電圧を差し引いた電位となる。また、この状態においては、第1の双方向スイッチ13が全オン状態にあるため、変換回路10は、第1出力点103と第2出力点104との間に双方向の電流を流すことができる。
 次に、図5Aに示す第7のモードでは、変換回路10の動作は、上記第2のモードと対称な動作となる。そのため、第7のモードでは、第1変換回路11の第2,4のスイッチング素子Q2,Q4と、第2変換回路12の第5,7のスイッチング素子Q5,Q7と、第1の双方向スイッチ13の第10のスイッチング素子Q10とがそれぞれオンの状態にある。つまり、第1の双方向スイッチ13は半オン状態にある。この状態では、図5Aに示すように、第1入力点101は、第5のスイッチング素子Q5、第2キャパシタC2、第7のスイッチング素子Q7を介して第2出力点104に電気的に接続される。また、第2入力点102は、第4のスイッチング素子Q4、第1キャパシタC1、第2のスイッチング素子Q2を介して第1出力点103に電気的に接続される。このとき、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子は第2,4,5,7のスイッチング素子Q2,Q4,Q5,Q7の計4つであって、第10のスイッチング素子Q10には電流は流れない。
 したがって、第1出力点103の電位は、第2入力点102の電位(0〔V〕)より第1キャパシタC1の両端電圧(E/4〔V〕)分だけ高い電位、つまりE/4(=0+E/4)〔V〕となる。また、第2出力点104の電位は、第1入力点101の電位(E〔V〕)より第2キャパシタC2の両端電圧(E/4〔V〕)分だけ低い電位、つまり3E/4(=E-E/4)〔V〕となる。そのため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、-E/2(=E/4-3E/4)〔V〕になる。さらにこのとき、第3出力点105の電位は、第1出力点103の電位にインダクタL1の両端電圧を加えた電位となり、第4出力点106の電位は、第2出力点104の電位からインダクタL2の両端電圧を差し引いた電位となる。
 次に、図5Bに示す第8のモードでは、変換回路10の動作は、上記第1のモードと対称な動作となる。そのため、第8のモードでは、第1変換回路11の第3,4のスイッチング素子Q3,Q4と、第2変換回路12の第5,6のスイッチング素子Q5,Q6と、第1の双方向スイッチ13の第10のスイッチング素子Q10とがそれぞれオンの状態にある。つまり、第1の双方向スイッチ13は半オン状態にある。この状態では、図5Bに示すように、第1入力点101は、第5のスイッチング素子Q5、第6のスイッチング素子Q6を介して第2出力点104に電気的に接続される。また、第2入力点102は、第4のスイッチング素子Q4、第3のスイッチング素子Q3を介して第1出力点103に電気的に接続される。このとき、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子は第3,4,5,6のスイッチング素子Q3,Q4,Q5,Q6の計4つであって、第10のスイッチング素子Q10には電流は流れない。
 したがって、第1出力点103は第2入力点102と同電位(0〔V〕)になり、第2出力点104は第1入力点101と同電位(E〔V〕)になる。そのため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、-E(=0-E)〔V〕になる。さらにこのとき、第3出力点105の電位は、第1出力点103の電位にインダクタL1の両端電圧を加えた電位となり、第4出力点106の電位は、第2出力点104の電位からインダクタL2の両端電圧を差し引いた電位となる。
 要するに、電力変換装置1は、上記第1~8のモードを切り替えることにより、第1出力点103と第2出力点104との間に生じる出力電圧の大きさを、複数段階に変化させる。
 さらに詳しく説明すると、第1変換回路11は、第1キャパシタC1をフライングキャパシタとして用い、第1~4,9~12のスイッチング素子Q1~Q4,Q9~Q12のオン/オフを切り替えることにより、第1出力点103の電位を切り替える。なお、第1キャパシタC1は、原則、第2,7のモードで充電され、第3,6のモードで放電されるが、比較的高い周波数で第1~8のモードを切り替えれば、基本動作時における第1キャパシタC1の両端電圧は略一定(E/4〔V〕)とみなすことができる。
 また、第2変換回路12は、第2キャパシタC2をフライングキャパシタとして用い、第5~12のスイッチング素子Q5~Q12のオン/オフを切り替えることにより、第2出力点104の電位を切り替える。なお、第2キャパシタC2は、原則、第2,7のモードで充電され、第3,6のモードで放電されるが、比較的高い周波数で第1~8のモードを切り替えれば、基本動作時における第2キャパシタC2の両端電圧は略一定(E/4〔V〕)とみなすことができる。
 要するに、制御部6は、出力電圧の大きさが同じであって且つキャパシタ(第1キャパシタC1および第2キャパシタC2)を流れる電流の向きが逆になる一対のモードを切り替えることにより、キャパシタの充電と放電とを切り替えている。
 具体的には、制御部6は、出力電圧をE/2〔V〕とする場合には、第2のモードと第3のモードとを一対のモードとして切り替えることにより、キャパシタ(第1キャパシタC1および第2キャパシタC2)の充電と放電とを切り替える。また、制御部6は、出力電圧を-E/2〔V〕とする場合には、第7のモードと第6のモードとを一対のモードとして切り替えることにより、キャパシタ(第1キャパシタC1および第2キャパシタC2)の充電と放電とを切り替える。
 ここで、第1キャパシタC1および第2キャパシタC2が充電されるのは、原則、第2,7のモードであるから、以下では第2のモードおよび第7のモードを「充電モード」とも呼ぶ。第1キャパシタC1および第2キャパシタC2が放電されるのは、原則、第3,6のモードであるから、以下では第3のモードおよび第6のモードを「放電モード」とも呼ぶ。また、以下では、制御部6は、充電モードを選択するときに「充電指令」を出力することとし、放電モードを選択するときには「放電指令」を出力することとする。
 すなわち、制御部6は、出力電圧をE/2〔V〕とする場合において、キャパシタ(第1キャパシタC1および第2キャパシタC2)を充電するときには、充電指令を出力し、充電モードである第2のモードを選択する。制御部6は、出力電圧をE/2〔V〕とする場合において、キャパシタ(第1キャパシタC1および第2キャパシタC2)を放電するときには、放電指令を出力し、放電モードである第3のモードを選択する。
 同様に、制御部6は、出力電圧を-E/2〔V〕とする場合において、キャパシタ(第1キャパシタC1および第2キャパシタC2)を充電するときには、充電指令を出力し、充電モードである第7のモードを選択する。制御部6は、出力電圧を-E/2〔V〕とする場合において、キャパシタ(第1キャパシタC1および第2キャパシタC2)を放電するときには、放電指令を出力し、放電モードである第6のモードを選択する。
 このように、制御部6は、出力電圧の大きさが同じであって且つキャパシタを流れる電流の向きが逆になる充電モードと放電モードとを、一対のモードとして切り替えることにより、キャパシタの充電と放電とを切り替える。ただし、充電モードでキャパシタが充電され、放電モードでキャパシタが放電されるのは、変換回路10に後述する順方向電流が流れている状態に限られる。変換回路10に後述する逆方向電流が流れている状態では、充電モードでキャパシタが放電され、放電モードでキャパシタが充電される。この点については後述する。以下、とくに断りがない限り、変換回路10を流れる電流は順方向電流であると仮定して説明する。
 以上説明したように、上記第1~8のモードにおいては、電力変換装置1は、第1出力点103を高電位側、第2出力点104を低電位側とする電圧を出力電圧として出力することになる。そして、電力変換装置1は、第1~4のモードにおいて、第1出力点103と第2出力点104との間に生じる出力電圧を、E〔V〕(第1のモード)、E/2〔V〕(第2,3のモード)、0〔V〕(第4のモード)の3段階で切り替えることになる。第5~8のモードにおいては、電力変換装置1は、第1出力点103と第2出力点104との間に生じる出力電圧を、0〔V〕(第5のモード)、-E/2〔V〕(第6,7のモード)、-E〔V〕(第8のモード)の3段階で切り替えることになる。
 したがって、電力変換装置1は、上記第1~8の計8つのモードを切り替えることにより、出力電圧をE〔V〕、E/2〔V〕、0〔V〕、-E/2〔V〕、-E〔V〕の5段階で切り替えることができる。電力変換装置1は、これら5段階の出力電圧を適宜切り替えることにより、第3出力点105と第4出力点106との間に交流電圧(以下、「最終出力電圧」という)を発生する。
 ここで、最終出力電圧は、系統電源7の出力電圧に等しく、図6に示すように正弦波状の波形となる。図6では、横軸が時間軸、縦軸が電圧値を表している。ここで、最終出力電圧が0〔V〕~E〔V〕の範囲で変動する期間(つまり正弦波における正極性側の半波に相当する期間)T1~T3においては、電力変換装置1は、第1~4のモードを切り替えることで動作する。最終出力電圧が0〔V〕~-E〔V〕の範囲で変動する期間(つまり正弦波における負極性側の半波に相当する期間)T4~T6においては、電力変換装置1は、第5~8のモードを切り替えることで動作する。
 以上説明した第1~8のモードをまとめると、表1のようになる。
Figure JPOXMLDOC01-appb-T000001
 ここにおいて、制御部6は、PWM信号により、第1~12のスイッチング素子Q1~Q12のオン/オフを切り替え、上記第1~8のモードを実現する。
 さらに詳しく説明すると、図6において最終出力電圧が0〔V〕~E/2〔V〕の範囲で変動する期間T1,T3には、制御部6は、表1に示すように第2~4のモードを切り替える動作を繰り返す。ここで、制御部6は、第2のモードと第3のモードとで時間長さを調整することで、第1キャパシタC1および第2キャパシタC2の放電、充電のバランスをとる。
 さらに、図6において最終出力電圧がE/2〔V〕~E〔V〕の範囲で変動する期間T2には、制御部6は、表1に示すように第1~3のモードを切り替える動作を繰り返す。ここで、制御部6は、第2のモードと第3のモードとで時間長さを調整することで、第1キャパシタC1および第2キャパシタC2の放電、充電のバランスをとる。
 また、図6において最終出力電圧が0〔V〕~-E/2〔V〕の範囲で変動する期間T4,T6には、制御部6は、表1に示すように第5~7のモードを切り替える動作を繰り返す。ここで、制御部6は、第6のモードと第7のモードとで時間長さを調整することで、第1キャパシタC1および第2キャパシタC2の放電、充電のバランスをとる。
 さらに、図6において最終出力電圧が-E/2〔V〕~-E〔V〕の範囲で変動する期間T5には、制御部6は、表1に示すように第6~8のモードを切り替える動作を繰り返す。ここで、制御部6は、第6のモードと第7のモードとで時間長さを調整することで、第1キャパシタC1および第2キャパシタC2の放電、充電のバランスをとる。
 本実施形態において、制御部6は、PWM信号のデューティ比を変化させながら上述した第1~8のモードの切り替えを行うことで、最終出力電圧の波形が正弦波に近似するように、第1出力点103と第2出力点104との間に生じる出力電圧を制御する。要するに、電力変換装置1は、第1出力点103と第2出力点104との間に生じる出力電圧の大きさを制御部6にて5段階で変化させることにより、正弦波状の交流電圧を第3出力点105と第4出力点106との間に発生する。
 なお、第4のモードと第5のモードとは、いずれも出力電圧が0〔V〕であって、且つ第1キャパシタC1および第2キャパシタC2の放電および充電には寄与しないモードである。そのため、第4のモードと第5のモードとのいずれか一方を省略することも考えられるが、最終出力電圧の正・負のバランスを考慮すれば、電力変換装置1は、第4のモードと第5のモードとを分けた方が、スイッチングロスを小さくできて効率がよくなる。
 本実施形態の電力変換装置1によれば、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子の数(以下、「通過素子数」という)は、上述したように第1~8のいずれのモードにおいても「4」以下である。
 とくに、第2の双方向スイッチ14が全オン状態となる第3,4のモードにおいては、第11のスイッチング素子Q11と第12のスイッチング素子Q12とを別素子として数えても通過素子数は「4」である。同様に、第1の双方向スイッチ13が全オン状態となる第5,6のモードにおいては、第9のスイッチング素子Q9と第10のスイッチング素子Q10とを別素子として数えても通過素子数は「4」である。したがって、第1,2の双方向スイッチ13,14がそれぞれ1素子で構成されている場合には、第3~6のモードにおける通過素子数は「3」になる。
 ところで、制御部6は、第1キャパシタC1および第2キャパシタC2を充電するか放電するかを、第1検出部21および第2検出部22の検出結果に応じて決定することが好ましい。本実施形態では、第1検出部21の検出結果(第1キャパシタC1の電圧V1)および第2検出部22の検出結果(第2キャパシタC2の電圧V2)はマイコン62に出力されている。マイコン62は、このようにして個別に取得した第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2との平均値Vcを求める。マイコン62は、キャパシタを充電するか放電するかを、平均値Vcに応じて選択するように構成されている。なお、平均値Vcは、Vc=(V1+V2)/2で表される。
 さらに詳しく説明すると、たとえば最終出力電圧が0〔V〕~E〔V〕の範囲で変動する期間T1~T3には、制御部6は、表1に示すように第1~4のモードを切り替える動作を繰り返している。これらの場合(期間T1~T3)において、マイコン62は、第2のモード(充電モード)と第3のモード(放電モード)とのいずれを選択するかを、第1検出部21および第2検出部22の検出結果に応じて決定する。つまり、マイコン62は、第1検出部21および第2検出部22の検出結果から求めた平均値Vcと目標電圧とを比較し、比較結果によって第2のモード(充電モード)と第3のモード(放電モード)とのいずれかを選択する。マイコン62は、平均値Vcが目標電圧よりも大きければ、放電モードである第3のモードを選択し、平均値Vcが目標電圧よりも小さければ、充電モードである第2のモードを選択する。ここで、目標電圧は基準電圧(E/4〔V〕)である。
 同様に、最終出力電圧が0〔V〕~-E〔V〕の範囲で変動する期間T4~T6には、制御部6は、表1に示すように第5~8のモードを切り替える動作を繰り返す。これらの場合(期間T4~T6)において、マイコン62は、第6のモード(放電モード)と第7のモード(充電モード)とのいずれを選択するかを、第1検出部21および第2検出部22の検出結果に応じて決定する。つまり、マイコン62は、第1検出部21および第2検出部22の検出結果から求めた平均値Vcと目標電圧(E/4〔V〕)とを比較し、比較結果によって第7のモード(充電モード)と第6のモード(放電モード)とのいずれかを選択する。マイコン62は、平均値Vcが目標電圧よりも大きければ、放電モードである第6のモードを選択し、平均値Vcが目標電圧よりも小さければ、充電モードである第7のモードを選択する。
 これにより、基本動作時における第1キャパシタC1の両端電圧および第2キャパシタC2の両端電圧は、それぞれ目標電圧である基準電圧(E/4〔V〕)に維持される。ただし、上述した制御部6の動作は、第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2とが均衡している場合の動作であって、両電圧V1,V2のアンバランス(不均衡)が生じている場合の動作については、「片側放電モード」の欄で説明する。
 また、制御部6は、所定のスイッチング周期でキャパシタ(第1キャパシタC1および第2キャパシタC2)の充電と放電とを切り替えることが好ましい。ここでいうスイッチング周期は、たとえばPWM信号の周期に合わせて設定される。
 ところで、本実施形態の電力変換装置1は、上述のように第3,4のモードにおいて第2の双方向スイッチ14が全オン状態であり、第5,6のモードにおいて第1の双方向スイッチ13が全オン状態である。つまり、第1~8のいずれのモードにおいても、半導体素子(スイッチング素子、ダイオード)のうち電流が流れる素子は第1~12のスイッチング素子Q1~Q12のいずれかであって、ダイオード(第1~12のダイオードD1~D12)に電流は流れない。そのため、電力変換装置1は、第1~8のいずれのモードにおいても、第1出力点103と第2出力点104との間に双方向の電流を流すことができる。
 以下では、図2A,2B,3A,3B,4A,4B,5A,5Bに太線矢印で示す向きに変換回路10を流れる電流を「順方向電流」と呼び、順方向電流とは逆向きに変換回路10を流れる電流を「逆方向電流」と呼ぶ。すなわち、最終出力電圧が0〔V〕~E〔V〕の範囲で変動する第1~4のモードにおいては、第1出力点103から第3出力点105へ向かう電流が順方向電流となる。最終出力電圧が0〔V〕~-E〔V〕の範囲で変動する第5~8のモードにおいては、第2出力点104から第4出力点106へ向かう電流が順方向電流となる。
 電力変換装置1は、このように変換回路10が双方向の電流に適応していることにより、第1出力点103および第2出力点104間に流す出力電流と、第1出力点103および第2出力点104間に生じる出力電圧との間に位相差を設定できる。要するに、出力電流と出力電圧との間に位相差があると、出力電流が出力電圧と異符号(たとえば出力電圧が正で出力電流が負など)になる期間が生じる。
 ここで、出力電流と出力電圧とが同符号の期間には、変換回路10を流れる電流は順方向電流であるが、出力電流と出力電圧とが異符号の期間には、変換回路10を流れる電流は逆方向電流となる。そのため、電力変換装置1は、出力電流と出力電圧との間に位相差を設定する場合、変換回路10が双方向の電流に適応している必要がある。本実施形態の電力変換装置1は、変換回路10が双方向の電流に適応しているため、出力電流と出力電圧との間に位相差を設定することが可能である。
 とくに、太陽光発電装置用のパワーコンディショナ20(図7参照)に電力変換装置1が用いられる場合には、単独運転の検出や、系統電源7の電圧上昇を抑制する目的で、電力変換装置1は、出力電流と出力電圧との間に位相差を設定する場合がある。また、蓄電装置用のパワーコンディショナに電力変換装置1が用いられる場合には、出力電流と出力電圧との間に位相差を設定することで、電力変換装置1は、電力が供給される向きを制御し、蓄電装置の充電と放電とを切り替える。本実施形態の電力変換装置1は、変換回路10を双方向の電流が通過可能な状態を作り出すことで、このような用途に対応できる。
 <パワーコンディショナの構成>
 本実施形態に係るパワーコンディショナ20は、図7に示すように、上記の電力変換装置1と、解列器9とを備えている。解列器9は、第1出力点103(図1参照)および第2出力点104(図1参照)と、系統電源7との間に電気的に接続されている。図7の例では、解列器9は、第3出力点105および第4出力点106と、系統電源7との間に電気的に接続されている。言い換えれば、解列器9は、フィルタ回路5(図1参照)を介して第1出力点103および第2出力点104に接続されている。つまり、解列器9は、第1出力点103および第2出力点104と、系統電源7との間にあればよく、第1出力点103および第2出力点104に直接接続されていることは必須でなく、本実施形態のようにフィルタ回路5の後段に接続されていてもよい。
 ここで、解列器9は、第3出力点105と系統電源7との間に電気的に接続された第1接点部91と、第4出力点106と系統電源7との間に電気的に接続された第2接点部92とを有している。ただし、解列器9は、第3出力点105および第4出力点106の少なくとも一方と系統電源7との間に電気的に接続されていればよく、第1接点部91および第2接点部92のいずれかは省略されていてもよい。
 このパワーコンディショナ20は、定常時、系統連系運転を行い、直流電源100から入力される直流電力を電力変換装置1で交流電力に変換し、系統電源7および負荷8へ出力する。詳しい説明は省略するが、パワーコンディショナ20は、系統電源7の停電等の異常時には、解列器9を開放し、系統電源7から解列された状態で交流電力を出力する自立運転を行うように構成されている。
 このパワーコンディショナ20によれば、解列器9を開放(解列)することにより、第1変換回路11および第2変換回路12と系統電源7との間を電気的に切り離すことができる。そのため、パワーコンディショナ20は、電源投入後、電力変換装置1が上述した基本動作を開始する前の始動期間に、解列器9を開放することで、第1出力点103と第2出力点104との間に、フィルタ回路5を含む電流経路を構成することができる。
 ここでいう電流経路は、フィルタ回路5を構成するインダクタL1、第3キャパシタC3、およびインダクタL2を含む電流経路である。電力変換装置1は、この電流経路を充電用の経路として用いることにより、第3出力点105と第4出力点106との間が電気的に絶縁されていても第1キャパシタC1および第2キャパシタC2を充電できる。
 したがって、電力変換装置1は、第3出力点105および第4出力点106が系統電源7に接続されていなくても、第1キャパシタC1および第2キャパシタC2を充電することが可能である。言い換えれば、電力変換装置1は、一対の出力端子(第3出力点105、第4出力点106)間に何の負荷も接続されていない状態(無負荷状態)であっても、定常動作に必要なキャパシタ(第1キャパシタC1および第2キャパシタC2)を充電できる。なお、ここでいう定常動作とは、始動期間の経過後、つまり第1キャパシタC1および第2キャパシタC2が基準電圧(E/4〔V〕)に充電された後の電力変換装置1の動作であって、上述した基本動作と同義である。
 <片側放電モード>
 以下に、第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2との間にアンバランス(不均衡)が生じている場合の電力変換装置1の動作について、図8A,8B,9A,9Bを参照して詳しく説明する。なお、図中、太線矢印は電流経路を表し、点線の丸印が付されたスイッチング素子はオン状態の素子を表している。
 本実施形態では、制御部6は、第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2との差が所定の閾値を超えたときに、片側放電モードとなるように、第1~8のスイッチング素子Q1~Q8および第1,2の双方向スイッチ13,14を制御する。ここで、第1キャパシタC1の電圧V1は第1検出部21で検出され、第2キャパシタC2の電圧V2は第2検出部22で検出される。
 具体的には、たとえば最終出力電圧が0〔V〕~E〔V〕の範囲で変動する期間T1~T3においては、通常、マイコン62は、第2のモード(充電モード)と第3のモード(放電モード)とを切り替えて、電圧V1,V2を規定電圧に維持している。この状態で、第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2との差が閾値V0を超えると、マイコン62は、通常の放電モードである第3のモードに代えて、片側放電モードを選択する。
 たとえば第1キャパシタC1の電圧V1が第2キャパシタC2の電圧V2よりも高く、且つ両電圧V1,V2の差(V1-V2)が閾値V0よりも大きい場合には、マイコン62は、第1キャパシタC1のみが放電されるように図8Aの片側放電モードを選択する。この片側放電モードでは、図8Aに示すように第1変換回路11の第2のスイッチング素子Q2と、第2変換回路12の第6のスイッチング素子Q6と、第2の双方向スイッチ14の第11,12のスイッチング素子Q11,Q12とがそれぞれオンの状態にある。
 この状態では、第2出力点104は、第6のスイッチング素子Q6、第11のスイッチング素子Q11、第12のスイッチング素子Q12、第1キャパシタC1、第2のスイッチング素子Q2を介して第1出力点103に電気的に接続される。したがって、図8Aの状態では、第1キャパシタC1と第2キャパシタC2とのうち電圧が高い第1キャパシタC1のみが放電されることになり、第1キャパシタC1の電圧V1が低下する。なお、この状態において、第1出力点103の電位は第2出力点104の電位より、第1キャパシタC1の両端電圧(E/4〔V〕)の分だけ高くなるため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、E/4〔V〕になる。
 また、第2キャパシタC2の電圧V2が第1キャパシタC1の電圧V1よりも高く、且つ両電圧V1,V2の差(V2-V1)が閾値V0よりも大きい場合には、マイコン62は、第2キャパシタC2のみが放電されるように図8Bの片側放電モードを選択する。この片側放電モードでは、図8Bに示すように第1変換回路11の第3のスイッチング素子Q3と、第2変換回路12の第7のスイッチング素子Q7と、第2の双方向スイッチ14の第11,12のスイッチング素子Q11,Q12とがそれぞれオンの状態にある。
 この状態では、第2出力点104は、第7のスイッチング素子Q7、第2キャパシタC2、第11のスイッチング素子Q11、第12のスイッチング素子Q12、第3のスイッチング素子Q3を介して第1出力点103に電気的に接続される。したがって、図8Bの状態では、第1キャパシタC1と第2キャパシタC2とのうち電圧が高い第2キャパシタC2のみが放電されることになり、第2キャパシタC2の電圧V2が低下する。なお、この状態において、第1出力点103の電位は第2出力点104の電位より、第2キャパシタC2の両端電圧(E/4〔V〕)の分だけ高くなるため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、E/4〔V〕になる。
 一方、最終出力電圧が0〔V〕~-E〔V〕の範囲で変動する期間T4~T6においては、通常、マイコン62は、第7のモード(充電モード)と第6のモード(放電モード)とを切り替えて、電圧V1,V2を規定電圧に維持している。この状態で、第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2との差が閾値V0を超えると、マイコン62は、通常の放電モードである第6のモードに代えて、片側放電モードを選択する。
 たとえば第1キャパシタC1の電圧V1が第2キャパシタC2の電圧V2よりも高く、且つ両電圧V1,V2の差(V1-V2)が閾値V0よりも大きい場合には、マイコン62は、第1キャパシタC1のみが放電されるように図9Aの片側放電モードを選択する。この片側放電モードでは、図9Aに示すように第1変換回路11の第3のスイッチング素子Q3と、第2変換回路12の第7のスイッチング素子Q7と、第1の双方向スイッチ13の第9,10のスイッチング素子Q9,Q10とがそれぞれオンの状態にある。
 この状態では、第1出力点103は、第3のスイッチング素子Q3、第1キャパシタC1、第9のスイッチング素子Q9、第10のスイッチング素子Q10、第7のスイッチング素子Q7を介して第2出力点104に電気的に接続される。したがって、図9Aの状態では、第1キャパシタC1と第2キャパシタC2とのうち電圧が高い第1キャパシタC1のみが放電されることになり、第1キャパシタC1の電圧V1が低下する。なお、この状態において、第1出力点103の電位は第2出力点104の電位より、第1キャパシタC1の両端電圧(E/4〔V〕)の分だけ低くなるため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、-E/4〔V〕になる。
 また、第2キャパシタC2の電圧V2が第1キャパシタC1の電圧V1よりも高く、且つ両電圧V1,V2の差(V2-V1)が閾値V0よりも大きい場合には、マイコン62は、第2キャパシタC2のみが放電されるように図9Bの片側放電モードを選択する。この片側放電モードでは、図9Bに示すように第1変換回路11の第2のスイッチング素子Q2と、第2変換回路12の第6のスイッチング素子Q6と、第1の双方向スイッチ13の第9,10のスイッチング素子Q9,Q10とがそれぞれオンの状態にある。
 この状態では、第1出力点103は、第2のスイッチング素子Q2、第9のスイッチング素子Q9、第10のスイッチング素子Q10、第2キャパシタC2、第6のスイッチング素子Q6を介して第2出力点104に電気的に接続される。したがって、図9Bの状態では、第1キャパシタC1と第2キャパシタC2とのうち電圧が高い第2キャパシタC2のみが放電されることになり、第2キャパシタC2の電圧V2が低下する。なお、この状態において、第1出力点103の電位は第2出力点104の電位より、第2キャパシタC2の両端電圧(E/4〔V〕)の分だけ低くなるため、第1出力点103と第2出力点104との間に生じる電力変換装置1の出力電圧は、-E/4〔V〕になる。
 変換回路10は、上述したような片側放電モードで動作することにより、第1キャパシタC1と第2キャパシタC2とのうち電圧が高い方のキャパシタのみが放電されることになる。そのため、変換回路10は、上述した片側放電モードを1ないし複数回繰り返すことによって、第2キャパシタC2の電圧V2と第1キャパシタC1の電圧V1との差(V2-V1)が小さくなり、閾値V0以下に収まることになる。その結果、電力変換装置1は、一対のキャパシタ(第1キャパシタC1および第2キャパシタC2)の電圧のアンバランス(不均衡)が生じても、一対のキャパシタの電圧のバランスをとることが可能である。
 以上説明した本実施形態の制御部6は、たとえば図10に示すフローチャートに従って動作する。
 制御部6はまず、第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2との平均値Vcと基準電圧(E/4〔V〕)とを比較する(S1)。このとき、平均値Vcが基準電圧以上であれば(S1:Yes)、制御部6は、第2キャパシタC2の電圧V2から第1キャパシタC1の電圧V1を減算した差分値(V2-V1)と、閾値V0とを比較する(S2)。差分値(V2-V1)が閾値V0以下であれば(S2:Yes)、制御部6は、第1キャパシタC1の電圧V1から第2キャパシタC2の電圧V2を減算した差分値(V1-V2)と、閾値V0とを比較する(S3)。差分値(V1-V2)が閾値V0以下であれば(S3:Yes)、制御部6は、放電指令を出力して、第1キャパシタC1と第2キャパシタC2との両方を放電する通常の放電モード(第3のモードあるいは第6のモード)を選択する(S4)。つまり、電圧V1,V2の均衡がとれている状態にあれば、制御部6は、通常の放電モードを選択する。
 一方、処理S3において、差分値(V1-V2)が閾値V0を超えていれば(S3:No)、制御部6は、電圧が高い第1キャパシタC1のみを放電する片側放電モードを選択する(S5)。また、処理S2において、差分値(V2-V1)が閾値V0を超えていれば(S2:No)、制御部6は、電圧が高い第2キャパシタC2のみを放電する片側放電モードを選択する(S6)。
 一方、平均値Vcが基準電圧未満であれば(S1:No)、制御部6は、充電指令を出力して、第1キャパシタC1と第2キャパシタC2との両方を充電する通常の充電モード(第2のモードあるいは第7のモード)を選択する(S7)。
 制御部6は、これらS1~S7の処理を繰り返し行うことにより、第1キャパシタC1および第2キャパシタC2の電圧を基準電圧に維持しつつ、両電圧V1,V2のバランスをとる。
 <効果>
 以上説明した本実施形態の電力変換装置1は、第1キャパシタC1の電圧V1と第2キャパシタC2の電圧V2との差が所定の閾値を超えたときに、第1キャパシタC1と第2キャパシタC2とのうち電圧が高い方のキャパシタのみが放電されるモードで動作する。すなわち、電力変換装置1は、一対のキャパシタ(第1キャパシタC1および第2キャパシタC2)の電圧のアンバランス(不均衡)が生じても、電圧が高い方のキャパシタのみ放電を行うことで、一対のキャパシタの電圧のバランスをとることが可能である。したがって、本実施形態の電力変換装置1は、一対のキャパシタの電圧のバランスをとることで、キャパシタに要求される耐圧を下げることができる、という利点がある。つまり、より低耐圧のキャパシタを採用することが可能になる。
 要するに、従来の電力変換装置では、一対のキャパシタの電圧のアンバランスが生じると、一方のキャパシタの電圧が規定電圧を大幅に超過する可能性があるので、一対のキャパシタには規定電圧に比較して高耐圧のキャパシタを用いる必要がある。これに対して、本実施形態の電力変換装置1は、一対のキャパシタの電圧のバランスをとることで、一方のキャパシタの電圧が規定電圧を大幅に超過することを抑制でき、結果的に、一対のキャパシタには比較的低耐圧のキャパシタを用いることができる。したがって、本実施形態の電力変換装置1は、一対のキャパシタの小型化を図ることができる。
 しかも、この電力変換装置1は、一対のキャパシタの電圧のアンバランスが生じた際に、片方のキャパシタを放電することにより、一対のキャパシタの電圧のバランスをとる。つまり、電力変換装置1は、片方のキャパシタのみを充電するのではなく放電するように構成されているので、電圧のアンバランスが生じた際、直流電源100から第1キャパシタC1および第2キャパシタC2が電気的に切り離された状態で動作する。したがって、電力変換装置1は、一対のキャパシタの電圧のアンバランスに起因した漏洩電流の発生を防止することができる。
 また、電力変換装置1は、本実施形態のように、変換回路10が、第1変換回路11および第2変換回路12と、第1の双方向スイッチ13および第2の双方向スイッチ14とを備えていることが好ましい。この電力変換装置1は、直流電源100の両端間に並列接続された第1変換回路11および第2変換回路12を有し、第1変換回路11と第2変換回路12との間を第1の双方向スイッチ13および第2の双方向スイッチ14で接続している。ここで、第1変換回路11は、4つのスイッチング素子(第1~4のスイッチング素子Q1~Q4)および1つのキャパシタ(第1キャパシタC1)を有している。同様に、第2変換回路12は、4つのスイッチング素子(第5~8のスイッチング素子Q5~Q8)および1つのキャパシタ(第2キャパシタC2)を有している。
 この構成において、直流電源100から電力変換装置1に入力される電流は、10個のスイッチング素子(第1~8のスイッチング素子Q1~Q8および第1,2の双方向スイッチ13,14)のうち多くても4個の素子を通過するだけである。したがって、この電力変換装置1では、スイッチング素子の導通損失(ロス)の和が比較的小さく、電力変換効率のさらなる向上を図ることができる、という利点がある。
 さらに、電力変換装置1は、一般的に、導通損失が大きくなるほど発熱量が増えるため大型の放熱装置(ヒートシンクやファン等の空冷装置)が必要になる。本実施形態の電力変換装置1は、導通損失を小さく抑えることで放熱装置の小型化も期待できる。
 また、文献1に記載の構成と比較すると、本実施形態の電力変換装置1は、分圧用のキャパシタが必要ない分だけ、装置全体の小型化を図ることができるという利点もある。すなわち、文献1に記載の電力変換装置は、2個の直流キャパシタの直列回路に直流電圧Eを印加することで、直流電圧EをE/2ずつに分圧しているので、2個の直流キャパシタは必須の構成である。これに対して、本実施形態の電力変換装置1は、分圧用のキャパシタが必要ないので、その分、装置全体の小型化を図ることが可能である。
 また、本実施形態のように、制御部6は、第1キャパシタC1および第2キャパシタC2がそれぞれ基準電圧を中心に充電と放電とを繰り返すように、第1~8のスイッチング素子Q1~Q8および第1,2の双方向スイッチ13,14を制御することが好ましい。基準電圧は、直流電源100から第1入力点101と第2入力点102との間に印加される電圧の1/4の大きさの電圧である。
 この構成によれば、電力変換装置1は、第1出力点103と第2出力点104との間に生じる出力電圧を、上述したように第1~4のモードにおいてE〔V〕、E/2〔V〕、0〔V〕の3段階で切り替えることができる。第5~8のモードにおいては、電力変換装置1は、第1出力点103と第2出力点104との間に生じる出力電圧を、0〔V〕、-E/2〔V〕、-E〔V〕の3段階で切り替えることになる。その結果、電力変換装置1は、上記第1~8のモードを切り替えることにより、出力電圧をE〔V〕、E/2〔V〕、0〔V〕、-E/2〔V〕、-E〔V〕の5段階で切り替えることができる。
 要するに、本実施形態に係る電力変換装置1は、出力電圧を5段階で切り替える5レベルインバータでありながらも、動作としては3レベルインバータと同様であるから、通過素子数を3レベルインバータと同等の「4」以下とすることができる。したがって、この電力変換装置1は、一般的な5レベルインバータの通過素子数「6」に比べて、通過素子数を少なく抑えることができ、その結果、電力変換効率のさらなる向上を図ることができる。
 また、電力変換装置1は、本実施形態のように、第1キャパシタC1の電圧V1を検出する第1検出部21と、第2キャパシタC2の電圧V2を検出する第2検出部22とをさらに備えることが好ましい。この場合、制御部6は、第1検出部21の検出結果と第2検出部22の検出結果との平均値Vcが基準電圧となるように、第1キャパシタC1および第2キャパシタC2の充電と放電とを切り替えることが好ましい。さらに、この場合、制御部6は、第1検出部21の検出結果と第2検出部22の検出結果との差が閾値V0を超えると、片側放電モードとなるように、第1~8のスイッチング素子Q1~Q8および第1,2の双方向スイッチ13,14を制御することが好ましい。ここでいう片側放電モードは、第1キャパシタC1と第2キャパシタC2とのうち電圧が高い方のキャパシタのみが放電されるモードである。
 この構成によれば、制御部6は、第1検出部21の検出結果(電圧V1)と第2検出部22の検出結果(電圧V2)とに基づいて、両電圧V1,V2を基準電圧に維持しつつ、両電圧V1,V2の差を閾値V0以下に抑えることが可能である。したがって、電力変換装置1は、両電圧V1,V2を基準電圧に維持する制御と、両電圧V1,V2の差を閾値V0以下に抑える制御とのそれぞれについて、個別の検出部を用いる場合に比べて、検出部の必要数を抑えることができる。
 また、制御部6は、本実施形態のように、第1キャパシタC1と第2キャパシタC2とのうち第1キャパシタC1のみを放電する際には、第2,6のスイッチング素子Q2,Q6および第2の双方向スイッチ14の組み合わせをオンにすることが好ましい。あるいは、制御部6は、第1キャパシタC1と第2キャパシタC2とのうち第1キャパシタC1のみを放電する際、第3,7のスイッチング素子Q3,Q7および第1の双方向スイッチ13の組み合わせをオンにしてもよい。また、制御部6は、第1キャパシタC1と第2キャパシタC2とのうち第2キャパシタC2のみを放電する際には、第3,7のスイッチング素子Q3,Q7および第2の双方向スイッチ14の組み合わせをオンにすることが好ましい。あるいは、制御部6は、第1キャパシタC1と第2キャパシタC2とのうち第2キャパシタC2のみを放電する際、第2,6のスイッチング素子Q2,Q6および第1の双方向スイッチ13の組み合わせをオンにしてもよい。
 この構成によれば、片方のキャパシタのみ放電する片側放電モードにおいても、直流電源100から電力変換装置1に入力される電流は、第1~12のスイッチング素子Q1~Q12のうち多くても4個の素子を通過するだけである。したがって、この電力変換装置1では、スイッチング素子の導通損失(ロス)の和が比較的小さく、電力変換効率のさらなる向上を図ることができる、という利点がある。
 また、制御部6は、本実施形態のように、電力変換装置1の出力電圧が正である期間T1~T3と、電力変換装置1の出力電圧が負である期間T4~T6とで、片側放電モードの動作が異なっていてもよい。出力電圧が正である期間T1~T3においては、制御部6は、第1キャパシタC1と第2キャパシタC2とのうち第1キャパシタC1のみを放電する際には、第2,6のスイッチング素子Q2,Q6および第2の双方向スイッチ14の組み合わせをオンにする。第1キャパシタC1と第2キャパシタC2とのうち第2キャパシタC2のみを放電する際には、制御部6は、第3,7のスイッチング素子Q3,Q7および第2の双方向スイッチ14の組み合わせをオンにする。一方、出力電圧が負である期間T4~T6においては、制御部6は、第1キャパシタC1と第2キャパシタC2とのうち第1キャパシタC1のみを放電する際には、第3,7のスイッチング素子Q3,Q7および第1の双方向スイッチ13の組み合わせをオンにする。第1キャパシタC1と第2キャパシタC2とのうち第2キャパシタC2のみを放電する際、制御部6は、第2,6のスイッチング素子Q2,Q6および第1の双方向スイッチ13の組み合わせをオンにする。
 この構成によれば、片方のキャパシタのみ放電する片側放電モードにおいても、直流電源100から電力変換装置1に入力される電流は、第1~12のスイッチング素子Q1~Q12のうち多くても4個の素子を通過するだけである。したがって、この電力変換装置1では、スイッチング素子の導通損失(ロス)の和が比較的小さく、電力変換効率のさらなる向上を図ることができる、という利点がある。
 また、本実施形態に係るパワーコンディショナ20によれば、解列器9を開放(解列)することにより、第1変換回路11および第2変換回路12と系統電源7との間を電気的に切り離すことができる。したがって、パワーコンディショナ20は、定常時、系統連系運転を行い、系統電源7の停電等の異常時には、解列器9を開放し、系統電源7から解列された状態で交流電力を出力する自立運転を行うことができる。
 また、本実施形態のように、第1の双方向スイッチ13の動作状態は、第2接続点202から第1接続点201へ流れる電流を遮断し、且つ第1接続点201から第2接続点202へ流れる電流を通過させる半オン状態をさらに含んでいることが好ましい。この場合、第2の双方向スイッチ14の動作状態は、第3接続点203から第4接続点204へ流れる電流を遮断し、且つ第4接続点204から第3接続点203へ流れる電流を通過させる半オン状態をさらに含んでいることが好ましい。
 この構成によれば、第7,8のモードのように、第1接続点201から第2接続点202へ流れる電流を遮断する必要がないモードにおいては、第1の双方向スイッチ13は半オン状態でよい。したがって、制御部6は、第5~7のモード、あるいは第6~8のモードを切り替える動作を繰り返す期間(期間T4~T6)においては、第10のスイッチング素子Q10をオンし続けることができる。つまり、第5,6のモードでは第1の双方向スイッチ13は全オン状態であるので、第7,8のモードに切り替わる度に第10のスイッチング素子Q10がオフすると、第10のスイッチング素子Q10でスイッチングロスが生じる可能性がある。本実施形態の電力変換装置1は、第5~7のモード、あるいは第6~8のモードが切り替わる際に、第10のスイッチング素子Q10がオンし続けることで、第1の双方向スイッチ13で生じるスイッチングロスを低減できる。
 同様に、第1,2のモードのように、第4接続点204から第3接続点203へ流れる電流を遮断する必要がないモードにおいては、第2の双方向スイッチ14は半オン状態でよい。したがって、本実施形態の電力変換装置1は、第1~3のモード、あるいは第2~4のモードが切り替わる際に、第12のスイッチング素子Q12がオンし続けることで、第2の双方向スイッチ14で生じるスイッチングロスを低減できる。
 さらに、制御部6は、第1の双方向スイッチ13に電流が流れている状態で第1の双方向スイッチ13を半オン状態から全オン状態に移行するようにすれば、第1の双方向スイッチ13で生じるスイッチングロスを一層低減できる。すなわち、たとえば第7のモードから第6のモードへの切り替え時、制御部6は、第9のダイオードD9がオンしている状態で第9のスイッチング素子Q9をオンすることで、第9のスイッチング素子Q9のゼロボルトスイッチングを実現できる。同様に、制御部6は、第2の双方向スイッチ14に電流が流れている状態で第2の双方向スイッチ14を半オン状態から全オン状態に移行するようにすれば、第2の双方向スイッチ14で生じるスイッチングロスを一層低減できる。
 なお、電力変換装置1は、上述したように変換回路10が第1変換回路11および第2変換回路12と、第1の双方向スイッチ13および第2の双方向スイッチ14とを備えた構成に限らず、適宜変更可能である。スイッチング素子の数についても、第1~12のスイッチング素子Q1~Q12の12個に限らず、適宜変更可能である。
 また、第1~8のスイッチング素子Q1~Q8、および第9~12のスイッチング素子Q9~Q12としては、デプレッション型のnチャネルMOSFETに限らず、その他の半導体スイッチが用いられていてもよい。たとえばIGBT(Insulated Gate Bipolar Transistor)や、GaN(窒化ガリウム)などのワイドバンドギャップの半導体材料を用いたパワー半導体デバイスが用いられる。
 また、双方向スイッチ(第1の双方向スイッチ13および第2の双方向スイッチ14のそれぞれ)の具体的な構成についても、上述した構成に限らない。双方向スイッチは、たとえばGaN(窒化ガリウム)などのワイドバンドギャップの半導体材料を用いたダブルゲート(デュアルゲート)構造の双方向スイッチであってもよい。
 

Claims (6)

  1.  直流電源の高電位側にある第1入力点と前記直流電源の低電位側にある第2入力点との間に、電気的に並列に接続された第1変換回路と第2変換回路とを備え、
     前記第1変換回路は、前記第1入力点と前記第2入力点との間において、前記第1入力点側から第1のスイッチング素子、第2のスイッチング素子、第3のスイッチング素子、第4のスイッチング素子の順で、電気的に直列に接続された第1~4のスイッチング素子と、前記第2のスイッチング素子および前記第3のスイッチング素子の直列回路と電気的に並列に接続された第1キャパシタとを有しており、
     前記第2のスイッチング素子と前記第3のスイッチング素子との接続点は第1出力点であり、
     前記第2変換回路は、前記第1入力点と前記第2入力点との間において、前記第1入力点側から第5のスイッチング素子、第6のスイッチング素子、第7のスイッチング素子、第8のスイッチング素子の順で、電気的に直列に接続された第5~8のスイッチング素子と、前記第6のスイッチング素子および前記第7のスイッチング素子の直列回路と電気的に並列に接続された第2キャパシタとを有しており、
     前記第6のスイッチング素子と前記第7のスイッチング素子との接続点は第2出力点であり、
     前記第1のスイッチング素子および前記第2のスイッチング素子の接続点である第1接続点と前記第7のスイッチング素子および前記第8のスイッチング素子の接続点である第2接続点との間に電気的に接続された第1の双方向スイッチと、
     前記第3のスイッチング素子および前記第4のスイッチング素子の接続点である第3接続点と前記第5のスイッチング素子および前記第6のスイッチング素子の接続点である第4接続点との間に電気的に接続された第2の双方向スイッチと、
     前記第1~8のスイッチング素子および前記第1,2の双方向スイッチを制御することにより、前記第1出力点および前記第2出力点に対する前記直流電源と前記第1キャパシタと前記第2キャパシタとの接続状態を切り替えて、前記第1出力点と前記第2出力点との間に生じる出力電圧の大きさを複数段階に変化させる制御部とをさらに備え、
     前記制御部は、前記第1キャパシタの電圧と前記第2キャパシタの電圧との差が所定の閾値を超えたときに、前記第1キャパシタと前記第2キャパシタとのうち電圧が高い方のキャパシタのみが放電されるように、前記第1~8のスイッチング素子および前記第1,2の双方向スイッチを制御する
     ことを特徴とする電力変換装置。
  2.  前記制御部は、前記第1キャパシタおよび前記第2キャパシタがそれぞれ基準電圧を中心に充電と放電とを繰り返すように、前記第1~8のスイッチング素子および前記第1,2の双方向スイッチを制御し、
     前記基準電圧は、前記直流電源から前記第1入力点と前記第2入力点との間に印加される電圧の1/4の大きさの電圧である
     ことを特徴とする請求項1に記載の電力変換装置。
  3.  前記第1キャパシタの電圧を検出する第1検出部と、
     前記第2キャパシタの電圧を検出する第2検出部とをさらに備え、
     前記制御部は、前記第1検出部の検出結果と前記第2検出部の検出結果との平均値が前記基準電圧となるように、前記第1キャパシタおよび前記第2キャパシタの充電と放電とを切り替え、
     前記制御部は、前記第1検出部の検出結果と前記第2検出部の検出結果との差が前記閾値を超えると、前記第1キャパシタと前記第2キャパシタとのうち電圧が高い方のキャパシタのみが放電されるように、前記第1~8のスイッチング素子および前記第1,2の双方向スイッチを制御する
     ことを特徴とする請求項2に記載の電力変換装置。
  4.  前記制御部は、
     前記第1キャパシタと前記第2キャパシタとのうち前記第1キャパシタのみを放電する際には、前記第2,6のスイッチング素子および前記第2の双方向スイッチの組み合わせ、または前記第3,7のスイッチング素子および前記第1の双方向スイッチの組み合わせをオンにし、
     前記第1キャパシタと前記第2キャパシタとのうち前記第2キャパシタのみを放電する際には、前記第3,7のスイッチング素子および前記第2の双方向スイッチの組み合わせ、または前記第2,6のスイッチング素子および前記第1の双方向スイッチの組み合わせをオンにする
     ことを特徴とする請求項1~3のいずれか1項に記載の電力変換装置。
  5.  前記制御部は、
     前記出力電圧が正である期間において、
     前記第1キャパシタと前記第2キャパシタとのうち前記第1キャパシタのみを放電する際には、前記第2,6のスイッチング素子および前記第2の双方向スイッチの組み合わせをオンにし、
     前記第1キャパシタと前記第2キャパシタとのうち前記第2キャパシタのみを放電する際には、前記第3,7のスイッチング素子および前記第2の双方向スイッチの組み合わせをオンにして、
     前記出力電圧が負である期間において、
     前記第1キャパシタと前記第2キャパシタとのうち前記第1キャパシタのみを放電する際には、前記第3,7のスイッチング素子および前記第1の双方向スイッチの組み合わせをオンにし、
     前記第1キャパシタと前記第2キャパシタとのうち前記第2キャパシタのみを放電する際には、前記第2,6のスイッチング素子および前記第1の双方向スイッチの組み合わせをオンにする
     ことを特徴とする請求項1~3のいずれか1項に記載の電力変換装置。
  6.  請求項1~5のいずれか1項に記載の電力変換装置と、
     前記第1出力点および前記第2出力点と系統電源との間に電気的に接続される解列器とを備える
     ことを特徴とするパワーコンディショナ。
     
PCT/JP2015/005429 2014-10-29 2015-10-28 電力変換装置、およびそれを用いたパワーコンディショナ WO2016067614A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220476A JP6337397B2 (ja) 2014-10-29 2014-10-29 電力変換装置、およびそれを用いたパワーコンディショナ
JP2014-220476 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016067614A1 true WO2016067614A1 (ja) 2016-05-06

Family

ID=55856980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005429 WO2016067614A1 (ja) 2014-10-29 2015-10-28 電力変換装置、およびそれを用いたパワーコンディショナ

Country Status (2)

Country Link
JP (1) JP6337397B2 (ja)
WO (1) WO2016067614A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866147B2 (en) 2014-05-29 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Power-converting device and power conditioner using the same
JP2019170033A (ja) * 2018-03-22 2019-10-03 パナソニックIpマネジメント株式会社 電力変換装置
JP2019201473A (ja) * 2018-05-15 2019-11-21 オムロン株式会社 インバータ装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895643B2 (ja) * 2017-09-29 2021-06-30 パナソニックIpマネジメント株式会社 電力変換装置
CN109361322A (zh) * 2018-11-02 2019-02-19 湖南大学 非隔离型五电平逆变器及其漏电流抵制策略
CN109217704B (zh) * 2018-11-02 2020-09-01 湖南大学 一种抑制系统漏电流非隔离型五电平逆变器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093978A (ja) * 2008-10-09 2010-04-22 Toshiba Corp 電力変換装置
JP2013158077A (ja) * 2012-01-27 2013-08-15 Meidensha Corp マルチレベル電力変換器
JP2014050134A (ja) * 2012-08-29 2014-03-17 Murata Mfg Co Ltd インバータ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093978A (ja) * 2008-10-09 2010-04-22 Toshiba Corp 電力変換装置
JP2013158077A (ja) * 2012-01-27 2013-08-15 Meidensha Corp マルチレベル電力変換器
JP2014050134A (ja) * 2012-08-29 2014-03-17 Murata Mfg Co Ltd インバータ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866147B2 (en) 2014-05-29 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Power-converting device and power conditioner using the same
JP2019170033A (ja) * 2018-03-22 2019-10-03 パナソニックIpマネジメント株式会社 電力変換装置
JP2019201473A (ja) * 2018-05-15 2019-11-21 オムロン株式会社 インバータ装置
WO2019220747A1 (ja) * 2018-05-15 2019-11-21 オムロン株式会社 インバータ装置

Also Published As

Publication number Publication date
JP6337397B2 (ja) 2018-06-06
JP2016092846A (ja) 2016-05-23

Similar Documents

Publication Publication Date Title
US9831778B2 (en) Power-converting device and power conditioner using the same
WO2016067614A1 (ja) 電力変換装置、およびそれを用いたパワーコンディショナ
JP6195202B2 (ja) 電力変換装置、およびそれを用いたパワーコンディショナ
JP6227041B2 (ja) マルチレベルインバータ
JP6454939B2 (ja) 電力変換装置、およびそれを用いたパワーコンディショナ
US9806618B2 (en) Power converting device and power conditioner using the same
US11705829B2 (en) Efficient switching for converter circuit
US20180309383A1 (en) Five-Level Inverter Topology with High Voltage Utilization Ratio
US20150357939A1 (en) Cascaded h-bridge inverter capable of operating in bypass mode
JP6327563B2 (ja) 電力変換装置、およびそれを用いたパワーコンディショナ
JP5362657B2 (ja) 電力変換装置
JP6455793B2 (ja) 電力変換装置、及びそれを用いたパワーコンディショナ
JP7008495B2 (ja) 電力変換装置
JP2016092848A (ja) 電力変換装置、およびそれを用いたパワーコンディショナ
JP6447944B2 (ja) 電力変換装置、及びそれを用いたパワーコンディショナ
US9812988B2 (en) Method for controlling an inverter, and inverter
JP7008494B2 (ja) 電力変換装置
KR102377317B1 (ko) 배전압 생성 및 역률 제어 기능을 갖는 부분 스위칭 컨버터 및 이를 포함하는 전력 변환 장치
KR20170011899A (ko) 고효율 단상 태양광 인버터
JP2020089163A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856120

Country of ref document: EP

Kind code of ref document: A1