WO2016067576A1 - 異常検出装置 - Google Patents

異常検出装置 Download PDF

Info

Publication number
WO2016067576A1
WO2016067576A1 PCT/JP2015/005337 JP2015005337W WO2016067576A1 WO 2016067576 A1 WO2016067576 A1 WO 2016067576A1 JP 2015005337 W JP2015005337 W JP 2015005337W WO 2016067576 A1 WO2016067576 A1 WO 2016067576A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
low
extraction
inspection
frequency
Prior art date
Application number
PCT/JP2015/005337
Other languages
English (en)
French (fr)
Inventor
大地 橋本
隆史 中澤
晴彦 関野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/516,425 priority Critical patent/US10114064B2/en
Priority to JP2016556216A priority patent/JPWO2016067576A1/ja
Priority to CN201580056752.2A priority patent/CN107076792A/zh
Priority to EP15855470.9A priority patent/EP3214452A4/en
Publication of WO2016067576A1 publication Critical patent/WO2016067576A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31706Testing of digital circuits involving differential digital signals, e.g. testing differential signal circuits, using differential signals for testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/17Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass by means of an auxiliary voltage injected into the installation to be protected
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals

Definitions

  • the present invention relates to an abnormality detection device for detecting an abnormality of an insulation resistance of a high voltage circuit.
  • Patent Document 1 discloses a ground fault detection circuit for an electric vehicle as an abnormality detection device.
  • a ground fault detection circuit of Patent Document 1 includes a coupling capacitor having one end connected to a high voltage circuit, an oscillation circuit unit that outputs an oscillation signal to the other end of the coupling capacitor via an impedance, an impedance and a coupling capacitor And a ground fault detection circuit unit for determining the ground fault of the high voltage circuit based on the amplitude of the signal between
  • the ground fault detection circuit of Patent Document 1 if the insulation resistance of the high voltage circuit is normally maintained, the oscillation signal output from the oscillation circuit section is not greatly dropped in the ground fault detection circuit section. Detected. On the other hand, if the high voltage circuit has a ground fault, the oscillation signal output from the oscillation circuit unit greatly drops due to the current flowing from the high voltage circuit to the ground point, and the ground fault detection circuit unit detects this voltage drop. Thereby, the ground fault of a high voltage circuit can be determined.
  • the ground fault detection circuit of Patent Document 1 includes a band pass filter or a high pass filter that blocks low frequency noise generated in a high voltage circuit between the ground fault detection circuit unit and the coupling capacitor. If the low frequency noise is not blocked, the oscillation signal of the oscillation circuit unit is added to the low frequency noise and input to the ground fault detection circuit unit. For this reason, when the input signal exceeds the dynamic range of the ground fault detection circuit unit, a part of the signal input to the ground fault detection circuit unit is clipped, and it is difficult to accurately detect the ground fault. become. However, by having the bandpass filter or the highpass filter described above, signal clipping can be avoided.
  • the present invention is an abnormality detecting device that is connected to a high voltage circuit via a coupling capacitor and detects an abnormality of an insulation resistance of the high voltage circuit, and can reduce the influence of low frequency noise of the high voltage circuit and An anomaly detection device that does not require a filter circuit having an expensive input capacitor to extract the signal is provided.
  • An abnormality detection apparatus includes a coupling capacitor including a first end and a second end connected to a high voltage circuit, a signal output unit, a signal extraction unit, and a signal input unit.
  • the signal output unit is connected to the first end of the coupling capacitor via a detection resistor, and outputs an AC test signal.
  • the signal extraction unit extracts an inspection signal output between the detection resistor and the coupling capacitor as an extraction signal.
  • the signal input unit detects an abnormality in the insulation resistance of the high voltage circuit based on the level of the input extraction signal.
  • the signal extraction unit includes a signal removal filter and a subtraction circuit.
  • the signal removal filter removes a signal having a frequency of the inspection signal and passes noise having a frequency lower than that of the inspection signal.
  • the subtraction circuit outputs a difference signal between the signal that has passed through the signal removal filter and the signal that has not passed through the signal removal filter as an extraction signal.
  • the influence of the low frequency noise of the high voltage circuit can be reduced, and a filter circuit having an expensive input capacitor for extracting the inspection signal can be eliminated.
  • the block diagram which shows the abnormality detection apparatus of a comparative example The block diagram which shows the abnormality detection apparatus by Embodiment 1 of this invention Circuit diagram showing a first specific example of a low-pass filter Circuit diagram showing a second specific example of the low-pass filter Waveform diagram of the inspection signal output from the signal output unit of the abnormality detection device Waveform diagram of the signal at node n1 to which the low frequency noise of the anomaly detection device is added Waveform diagram of output signal of second low-pass filter of abnormality detection device Waveform diagram of the extracted signal output from the differential amplifier of the abnormality detection device
  • the block diagram which shows the abnormality detection apparatus by Embodiment 2 of this invention The block diagram which shows the abnormality detection apparatus by Embodiment 3 of this invention Circuit diagram showing a specific example of the buffer circuit of FIG.
  • FIG. 1 shows an abnormality detection device 200 of a comparative example to which the configuration of the ground fault detection circuit of Patent Document 1 is applied.
  • the abnormality detection device 200 includes a coupling capacitor C0 having one end connected to the high voltage circuit 100, a detection resistor R0, a signal output unit 201, a signal extraction unit 202, and a signal input unit 203.
  • the high voltage circuit 100 includes a battery 110 that supplies a high voltage and a load 120 that is driven by the high voltage.
  • the high voltage circuit 100 is separated from the ground through a high insulation resistance 111 if normal.
  • the signal output unit 201 of the abnormality detection apparatus 200 outputs an AC inspection signal to the other end of the coupling capacitor C0 via the detection resistor R0.
  • the signal extraction unit 202 inputs a signal at a node between the detection resistor R0 and the other end of the coupling capacitor C0.
  • the signal extraction unit 202 blocks low-frequency noise with a high-pass filter (HPF) 211 and blocks high-frequency noise with a low-pass filter (LPF) 212 to extract a frequency component signal of the inspection signal.
  • the differential amplifier 213 amplifies the signal that has passed through the high pass filter 211 and the low pass filter 212 and outputs the amplified signal to the signal input unit 203.
  • the signal input unit 203 detects an abnormality in the insulation resistance 111 of the high voltage circuit 100 based on the level of the extracted signal.
  • the signal extraction unit 202 includes the high-pass filter 211, it is possible to reduce the influence of low-frequency noise generated in the high-voltage circuit 100, and to avoid the inconvenience that the input signal of the signal input unit 203 is clipped.
  • the high pass filter 211 requires an input capacitor. Since a test signal having a low frequency is input to the high-pass filter 211, a relatively large capacity is required for the input capacitor. Further, it is assumed that a high voltage is applied to the high pass filter 211 due to an abnormality in the high voltage circuit 100. For this reason, the input capacitor is required to have medium and high withstand voltage characteristics. Due to these requirements for capacitance and withstand voltage, the component size of the input capacitor increases and the component cost increases. Therefore, in the abnormality detection apparatus 200, there arises a problem that the circuit area increases and the component cost increases.
  • FIG. 2 is a configuration diagram showing the abnormality detection apparatus 10 according to the first embodiment of the present invention.
  • the abnormality detection device 10 is a device that is mounted on a vehicle, for example, and detects an abnormality in the insulation resistance 111 of the high voltage circuit 100.
  • the high voltage circuit 100 includes a battery 110 that supplies a high voltage, and a load (for example, a drive motor for an electric vehicle) 120 that is driven by the high voltage.
  • the high voltage circuit 100 is separated from the ground through a high insulation resistance 111 if normal.
  • low frequency noise having a frequency assumed in advance is generated.
  • the abnormality detection device 10 includes a coupling capacitor C0, a signal output unit 11, a detection resistor R0, a signal extraction unit 12, and a signal input unit 13.
  • the abnormality detection device 10 is supplied with a low-voltage power supply (a voltage lower than that of the high-voltage circuit 100).
  • the coupling capacitor C0 connects the abnormality detection device 10 and the high voltage circuit 100 in an AC manner, and insulates the high voltage circuit 100 and the abnormality detection device 10 in a DC manner.
  • One end of the coupling capacitor C0 is connected to the high voltage circuit 100 (for example, the negative electrode of the battery 110).
  • the signal output unit 11 outputs an AC inspection signal.
  • the signal output unit 11 is supplied with an offset voltage that is an intermediate voltage of the power supply voltage.
  • the signal output unit 11 outputs an alternating voltage whose voltage changes around the offset voltage as a test signal.
  • the signal output unit 11 outputs a test signal to the other end of the coupling capacitor C0 through the detection resistor R0.
  • the detection resistor R0 is a resistor for causing a voltage drop in the inspection signal when a current flows to the high voltage circuit 100 via the coupling capacitor C0.
  • the signal extraction unit 12 extracts the inspection signal output to the node n1 between the detection resistor R0 and the coupling capacitor C0.
  • the signal extraction unit 12 includes a first low-pass filter (corresponding to a noise removal filter) 21, a second low-pass filter (corresponding to a signal removal filter) 22, and a differential amplification unit (corresponding to a subtraction circuit) 23. is doing.
  • the low-pass filter is referred to as LPF.
  • the first low-pass filter 21 removes high-frequency noise having a frequency higher than that of the inspection signal, and passes the inspection signal and low-frequency noise.
  • the cutoff frequency of the first low-pass filter 21 is set to a frequency higher than the frequency of the inspection signal.
  • the second low-pass filter 22 removes the frequency component of the inspection signal and passes low frequency noise having a frequency lower than that of the inspection signal.
  • the cutoff frequency of the second low-pass filter 22 is set between the frequency of the low frequency noise assumed in the high voltage circuit 100 and the frequency of the inspection signal.
  • the first low-pass filter 21 and the second low-pass filter 22 may be composed of an active low-pass filter having an operational amplifier OP11, input resistors R11 and R12, and capacitors C11 and C12. Further, as shown in FIG. 3B, the first low-pass filter 21 is composed of a passive low-pass filter having a resistor R13 disposed on the signal line and a capacitor C13 connected between the signal line and the ground. May be.
  • the first low-pass filter 21 and the second low-pass filter 22 do not require an input capacitor having a large capacity and a medium / high breakdown voltage characteristic.
  • the first low-pass filter 21 and the second low-pass filter 22 have characteristics that do not block the DC component of the input signal, and do not require an offset voltage when a signal to which a DC component is added is input. In addition, it is possible to pass the signal with the DC component added.
  • the differential amplifier 23 outputs a difference signal between the output of the first low-pass filter 21 and the output of the second low-pass filter 22 as an extraction signal of the signal extraction unit 12. Specifically, the differential amplifying unit 23 amplifies and outputs the difference voltage between the output voltage of the first low-pass filter 21 and the output voltage of the second low-pass filter 22 with a predetermined gain.
  • the gain is set to be greater than 1, but the gain may be 1 or less.
  • the signal input unit 13 inputs the extraction signal from the signal extraction unit 12. Specifically, the signal input unit 13 is a microcomputer, and performs A / D (analog / digital) conversion and inputs the extraction signal of the signal extraction unit 12. Further, the signal input unit 13 determines whether the insulation resistance 111 is abnormal by comparing the level value of the extracted signal with a threshold value.
  • 4A to 4D show signals output to each point of the abnormality detection device.
  • 4A is a waveform diagram of an inspection signal output from the signal output unit
  • FIG. 4B is a signal waveform diagram of a node n1 to which low-frequency noise is added
  • FIG. 4C is an output waveform diagram of a second low-pass filter
  • FIG. It is a wave form diagram of the extraction signal output from a differential amplifier.
  • the signal output unit 11 outputs an AC inspection signal that changes at a predetermined frequency with a predetermined amplitude.
  • low frequency noise lower than the frequency of the inspection signal is generated.
  • a signal obtained by adding the low frequency noise and the inspection signal is output to a node n1 between the detection resistor R0 and the coupling capacitor C0.
  • the summed signal is sent to the first low-pass filter 21 and the second low-pass filter 22.
  • the first low-pass filter 21 removes high-frequency noise having a frequency higher than that of the inspection signal. Since the high-frequency noise is not included in the waveform diagram of FIG. 4B, when the signal of FIG. 4B is input, the first low-pass filter 21 outputs a signal that is not different from that of FIG. 4B.
  • the second low-pass filter 22 removes the frequency component of the inspection signal and outputs a signal through which the low-frequency noise component is passed.
  • the differential amplifier 23 amplifies the difference signal between the first low-pass filter 21 and the second low-pass filter 22 with a predetermined gain, and outputs it as an extraction signal.
  • a predetermined offset voltage is supplied to the differential amplifier 23. Due to the predetermined offset voltage and the predetermined gain, the extracted signal output from the differential amplifier 23 to the signal input unit 13 falls within the dynamic range (for example, 0 V to 5 V) of the signal input unit 13.
  • the signal input unit 13 receives the extraction signal from the differential amplification unit 23, and determines whether the insulation resistance 111 of the high voltage circuit 100 is abnormal based on the level of the extraction signal. For example, if the insulation resistance 111 is maintained at a normal value, the amplitude of the extraction signal input to the signal input unit 13 maintains a high level. On the other hand, when the insulation resistance 111 is reduced, a current flows to the ground through the coupling capacitor C0 and the insulation resistance 111 due to the inspection signal, so that the level of the inspection signal at the node n1 is reduced due to a voltage drop caused by the detection resistor R0. Therefore, the amplitude level of the extracted signal output from the differential amplifier 23 to the signal input unit 13 decreases, and the signal input unit 13 determines whether the insulation resistance 111 is abnormal.
  • the signal extraction unit 12 does not require a filter circuit having an expensive input capacitor.
  • the second low-pass filter 22 removes the frequency component of the inspection signal and generates a signal that passes through the low-frequency noise, and the differential amplifier 23 and the signal that has passed through the second low-pass filter 22 The difference signal from the signal that has not passed through the second low-pass filter 22 is output as an extraction signal. Due to the action of the second low-pass filter 22 and the differential amplifier 23 as described above, it is possible to reduce the influence of low frequency noise from the extracted signal output from the signal extracting unit 12 to the signal input unit 13. Therefore, according to the abnormality detection device 10 of the first embodiment, the influence of the low frequency noise of the high voltage circuit 100 can be reduced, and a filter circuit having an expensive input capacitor is not required for extracting the inspection signal. be able to.
  • FIG. 5 is a configuration diagram of the abnormality detection apparatus 10A according to the second embodiment.
  • the abnormality detection apparatus 10A is different from the first embodiment in that the differential amplifier 23A is configured not to use an offset voltage.
  • symbol as Embodiment 1 is attached
  • subjected and detailed description is abbreviate
  • the differential amplifier 23A amplifies the difference signal between the first low-pass filter 21 and the second low-pass filter 22 with a predetermined gain, and outputs the amplified signal as an extraction signal.
  • the offset voltage is not supplied to the differential amplifier 23A, and the differential amplifier 23A outputs zero voltage when the subtracted voltage value becomes negative.
  • the signal input unit 13 receives an extraction signal obtained by clipping a waveform of 0 V or less from the differential amplification unit 23A.
  • the signal input unit 13 measures the peak value of the extracted signal and compares the peak value with a threshold value to determine whether the insulation resistance 111 is abnormal.
  • the differential amplifier 23A clips the waveform of 0V or less of the extraction signal, while eliminating the need to supply the offset voltage to the signal extraction unit 12. Therefore, in addition to the same effects as those of the first embodiment, it is possible to reduce the overall circuit area and the component cost.
  • FIG. 6 is a configuration diagram of an abnormality detection apparatus 10B according to the third embodiment.
  • FIG. 7 is a circuit diagram of a specific example of the buffer circuit 24 of FIG.
  • the abnormality detection device 10B is different from the first embodiment in that it includes a buffer circuit 24.
  • symbol as Embodiment 1 is attached
  • subjected and detailed description is abbreviate
  • the abnormality detection device 10B has a signal extraction unit 12B having a buffer circuit 24.
  • the signal extraction unit 12B includes a first low-pass filter 21, a second low-pass filter 22, a differential amplification unit 23, and a buffer circuit 24.
  • Buffer circuit 24 inputs a signal from node n1 and outputs a signal to first low-pass filter 21 and second low-pass filter 22.
  • the buffer circuit 24 has a large input impedance, and outputs the input inspection signal to the subsequent stage with a small voltage drop.
  • the buffer circuit 24 has a function of suppressing the amplitude of the low frequency noise and the high frequency noise input from the high voltage circuit 100 when the amplitude is excessive.
  • the buffer circuit 24 includes a negative feedback operational amplifier OP21, an input resistor R21, a voltage dividing resistor R22, a bypass capacitor C21, and protective diodes D21 and D22. is doing.
  • the input resistor R21 has one end connected to the input terminal and the other end connected to the non-inverting input terminal of the operational amplifier OP21.
  • the protection diode D21 is connected between the power supply voltage and the non-inverting input terminal of the operational amplifier OP21, and the protection diode D22 is connected between the ground and the non-inverting input terminal of the operational amplifier OP21.
  • the voltage dividing resistor R22 is connected between the ground and the non-inverting input terminal of the operational amplifier OP21.
  • the bypass capacitor C21 is connected between the ground and the non-inverting input terminal of the operational amplifier OP21.
  • the voltage dividing resistor R22 and the capacitor C21 may be connected to the output of the first offset voltage or the output of the second offset voltage instead of the ground.
  • the inspection signal output to the node n1 can be output to the first low-pass filter 21 and the second low-pass filter 22 with a small voltage drop. Further, even if an excessively low frequency noise or high frequency noise is input from the high voltage circuit 100 by the buffer circuit 24, the inspection signal is not clipped to the first low-pass filter 21 and the second low-pass filter 22. Can be output.
  • the buffer circuit 24 can obtain the effect that the signal extraction unit 12B can extract the inspection signal with higher sensitivity. .
  • the buffer circuit 24 has a function of attenuating low-frequency noise and high-frequency noise, even if the buffer circuit 24 is provided, it is possible to avoid the inspection signal being clipped before the signal input unit 13. .
  • the configuration in which the signal extraction unit 12 includes the first low-pass filter 21 is shown.
  • the first low-pass filter 21 may be omitted. Good.
  • the first low-pass filter 21 may be provided before the node n2 (see FIG. 2).
  • the node n2 is a point where the inspection signal is branched into a signal path that passes through the second low-pass filter 22 and a signal path that does not pass through the second low-pass filter 22.
  • the configuration in which the signal input unit 13 that inputs the extraction signal determines whether the insulation resistance 111 is abnormal based on the level of the extraction signal has been described.
  • a configuration may be adopted in which a separate control unit for determining abnormality is provided, and the control unit determines abnormality of the insulation resistance 111 based on the level of the extracted signal input to the signal input unit 13.
  • the present invention can be applied to, for example, an abnormality detection device that detects the presence or absence of an abnormality in insulation resistance of a high voltage circuit mounted on a vehicle.

Abstract

 異常検出装置は、第1端と、高電圧回路に接続される第2端とを含むカップリングコンデンサと、信号出力部と、信号抽出部と、信号入力部とを有する。信号出力部は、カップリングコンデンサの第1端に、検出抵抗を介して接続され、交流の検査信号を出力する。信号抽出部は、検出抵抗とカップリングコンデンサとの間に出力される検査信号を抽出信号として抽出する。信号入力部は入力された抽出信号のレベルに基づき、高電圧回路の絶縁抵抗の異常を検出する。信号抽出部は、信号除去フィルタと、減算回路とを含む。信号除去フィルタは、検査信号の周波数の信号を除去し、検査信号より低周波数のノイズを通す。減算回路は、信号除去フィルタを通過した信号と、信号除去フィルタを非通過の信号との差信号を、抽出信号として出力する。

Description

異常検出装置
 本発明は、高電圧回路の絶縁抵抗の異常を検出する異常検出装置に関する。
 以前より、高電圧回路の絶縁抵抗の異常を検出する異常検出装置が提案されている。特許文献1には、異常検出装置として、電気自動車の地絡検出回路が開示されている。特許文献1の地絡検出回路は、一端が高電圧回路に接続されるカップリングコンデンサと、カップリングコンデンサの他端にインピーダンスを介して発振信号を出力する発振回路部と、インピーダンスとカップリングコンデンサとの間の信号の振幅に基づいて高電圧回路の地絡を判定する地絡検出回路部とを有している。
 特許文献1の地絡検出回路によれば、高電圧回路の絶縁抵抗が正常に維持されていれば、発振回路部により出力される発振信号は、大きく電圧降下することなく地絡検出回路部に検出される。一方、高電圧回路が地絡すれば、発振回路部により出力された発振信号は高電圧回路から接地点へ流れる電流によって大きく電圧降下し、地絡検出回路部がこの電圧降下を検出する。これにより、高電圧回路の地絡を判定することができる。
 また、特許文献1の地絡検出回路は、地絡検出回路部とカップリングコンデンサとの間に、高電圧回路で発生する低周波ノイズを遮断するバンドパスフィルタ又はハイパスフィルタを有している。低周波ノイズが遮断されないと、発振回路部の発振信号は、低周波ノイズに加算されて地絡検出回路部に入力される。このため、入力された信号が地絡検出回路部のダイナミックレンジを超えた場合に、地絡検出回路部に入力される信号の一部がクリップされ、地絡の正確な検出を行うことが困難になる。しかしながら、上記のバンドパスフィルタ又はハイパスフィルタを有することで、信号のクリップを回避することができる。
日本国特許第3781289号公報
 本発明は、カップリングコンデンサを介して高電圧回路に接続され、高電圧回路の絶縁抵抗の異常を検出する異常検出装置において、高電圧回路の低周波ノイズの影響を削減でき、且つ、検査信号を抽出するために高価な入力コンデンサを有するフィルタ回路を必要としない異常検出装置を提供する。
 本発明の一態様に係る異常検出装置は、第1端と、高電圧回路に接続される第2端とを含むカップリングコンデンサと、信号出力部と、信号抽出部と、信号入力部とを有する。信号出力部は、カップリングコンデンサの第1端に、検出抵抗を介して接続され、交流の検査信号を出力する。信号抽出部は、検出抵抗とカップリングコンデンサとの間に出力される検査信号を抽出信号として抽出する。信号入力部は入力された抽出信号のレベルに基づき、高電圧回路の絶縁抵抗の異常を検出する。信号抽出部は、信号除去フィルタと、減算回路とを含む。信号除去フィルタは、検査信号の周波数の信号を除去し、検査信号より低周波数のノイズを通す。減算回路は、信号除去フィルタを通過した信号と、信号除去フィルタを非通過の信号との差信号を、抽出信号として出力する。
 本発明によれば、高電圧回路の低周波ノイズの影響を削減でき、且つ、検査信号を抽出するために高価な入力コンデンサを有するフィルタ回路を不要とすることができる。
比較例の異常検出装置を示す構成図 本発明の実施の形態1による異常検出装置を示す構成図 ローパスフィルタの第1具体例を示す回路図 ローパスフィルタの第2具体例を示す回路図 異常検出装置の信号出力部が出力する検査信号の波形図 異常検出装置の低周波ノイズが付加された結節点n1の信号の波形図 異常検出装置の第2のローパスフィルタの出力信号の波形図 異常検出装置の差動増幅部から出力される抽出信号の波形図 本発明の実施の形態2による異常検出装置を示す構成図 本発明の実施の形態3による異常検出装置を示す構成図 図6のバッファ回路の具体例を示す回路図
 本発明の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。図1は、特許文献1の地絡検出回路の構成を適用した、比較例の異常検出装置200を示している。異常検出装置200は、一端が高電圧回路100に接続されるカップリングコンデンサC0と、検出抵抗R0と、信号出力部201と、信号抽出部202と、信号入力部203とを有する。高電圧回路100は、高電圧を供給する電池110と、高電圧により駆動する負荷120とを有している。高電圧回路100は、正常であれば高い絶縁抵抗111を介してアースと分離されている。
 異常検出装置200の信号出力部201は、検出抵抗R0を介してカップリングコンデンサC0の他端に交流の検査信号を出力する。信号抽出部202は、検出抵抗R0とカップリングコンデンサC0の他端との中間の結節点の信号を入力する。信号抽出部202は、ハイパスフィルタ(HPF)211で低周波ノイズを遮断し、ローパスフィルタ(LPF)212で高周波ノイズを遮断して、検査信号の周波数成分の信号を抽出する。差動増幅部213は、ハイパスフィルタ211とローパスフィルタ212とを通過した信号を増幅して信号入力部203に出力する。信号入力部203は、抽出された信号のレベルに基づいて高電圧回路100の絶縁抵抗111の異常を検出する。
 このように、信号抽出部202がハイパスフィルタ211を有することで、高電圧回路100で発生する低周波ノイズによる影響を削減し、信号入力部203の入力信号がクリップされるという不都合を回避できる。
 一方、ハイパスフィルタ211には、入力コンデンサが必要となる。ハイパスフィルタ211には、周波数の高くない検査信号が入力されるため、入力コンデンサには、比較的に大きな容量が要求される。さらに、ハイパスフィルタ211には、高電圧回路100の異常により高電圧が印加されることが想定される。このため、入力コンデンサには、中高耐圧の特性が要求される。これらの容量および耐圧の要求とから、入力コンデンサの部品サイズは大きくなり、部品コストが上昇する。したがって、異常検出装置200においては、回路面積の増大、および、部品コストの増大という問題が生じる。
 以下、本発明の種々の実施の形態について図面を参照して詳細に説明する。
 (実施の形態1)
 <構成説明>
 図2は、本発明の実施の形態1による異常検出装置10を示す構成図である。異常検出装置10は、例えば車両に搭載され、高電圧回路100の絶縁抵抗111の異常を検出する装置である。高電圧回路100は、高電圧を供給する電池110と、高電圧により駆動する負荷(例えば電気自動車の駆動用モータなど)120とを有している。高電圧回路100は、正常であれば高い絶縁抵抗111を介してアースと分離されている。高電圧回路100では、予め想定される周波数の低周波ノイズが発生する。
 異常検出装置10は、カップリングコンデンサC0、信号出力部11、検出抵抗R0、信号抽出部12、および、信号入力部13を有している。異常検出装置10には、低電圧の電源(高電圧回路100の電源より低い電圧)が供給される。
 カップリングコンデンサC0は、異常検出装置10と高電圧回路100とを交流的に接続し、高電圧回路100と異常検出装置10とを直流的に絶縁する。カップリングコンデンサC0の一端は、高電圧回路100(例えば電池110の負極)に接続される。
 信号出力部11は、交流の検査信号を出力する。信号出力部11には、電源電圧の中間の電圧であるオフセット電圧が供給される。信号出力部11は、オフセット電圧を中心に電圧が変化する交流電圧を、検査信号として出力する。信号出力部11は、検出抵抗R0を通して、カップリングコンデンサC0の他端に、検査信号を出力する。
 検出抵抗R0は、カップリングコンデンサC0を介して高電圧回路100へ電流が流れたときに、検査信号に電圧降下を生じさせるための抵抗である。
 信号抽出部12は、検出抵抗R0とカップリングコンデンサC0との間の結節点n1に出力される検査信号を抽出する。信号抽出部12は、第1のローパスフィルタ(ノイズ除去フィルタに相当)21と、第2のローパスフィルタ(信号除去フィルタに相当)22と、差動増幅部(減算回路に相当)23とを有している。図中、ローパスフィルタをLPFと記す。
 第1のローパスフィルタ21は、検査信号より高い周波数の高周波ノイズを除去し、検査信号と低周波ノイズとを通す。第1のローパスフィルタ21のカットオフ周波数は、検査信号の周波数より高い周波数に設定される。
 第2のローパスフィルタ22は、検査信号の周波数成分を除去し、検査信号より周波数の低い低周波ノイズを通す。第2のローパスフィルタ22のカットオフ周波数は、高電圧回路100で想定される低周波ノイズの周波数と、検査信号の周波数との間に設定される。
 第1のローパスフィルタ21と第2のローパスフィルタ22とは、図3Aに示すように、オペアンプOP11、入力抵抗R11、R12、コンデンサC11、C12を有するアクティブ方式のローパスフィルタから構成しても良い。また、第1のローパスフィルタ21は、図3Bに示すように、信号線に配置される抵抗R13と、信号線とグラウンドとの間に接続されるコンデンサC13とを有するパッシブ方式のローパスフィルタから構成してもよい。第1のローパスフィルタ21および第2のローパスフィルタ22においては、容量が大きく中高耐圧の特性を有する入力コンデンサが必要ない。第1のローパスフィルタ21および第2のローパスフィルタ22は、入力信号の直流成分を遮断しない特性を有しており、直流成分が付加された信号が入力される場合に、オフセット電圧を要さずに、直流成分を付加したまま信号を通過させることができる。
 差動増幅部23は、第1のローパスフィルタ21の出力と、第2のローパスフィルタ22の出力との差信号を、信号抽出部12の抽出信号として出力する。具体的には、差動増幅部23は、第1のローパスフィルタ21の出力電圧と第2のローパスフィルタ22の出力電圧との差電圧を、所定の利得で増幅して出力する。利得は1より大きく設定されるが、利得は1以下としてもよい。
 信号入力部13は、信号抽出部12から抽出信号を入力する。具体的には、信号入力部13は、マイクロコンピュータであり、信号抽出部12の抽出信号をA/D(アナログ/デジタル)変換して入力する。さらに、信号入力部13は、抽出信号のレベル値を、閾値と比較するなどして、絶縁抵抗111の異常の有無を判定する。
 <動作説明>
 図4A~図4Dは、異常検出装置の各点に出力される信号を示す。図4Aは信号出力部から出力される検査信号の波形図、図4Bは低周波ノイズが付加された結節点n1の信号波形図、図4Cは第2のローパスフィルタの出力波形図、図4Dは差動増幅部から出力される抽出信号の波形図である。
 信号出力部11は、図4Aに示すように、所定振幅で所定の周波数で変化する交流の検査信号を出力する。
 高電圧回路100には、図4Cに示すように、検査信号の周波数よりも低い低周波ノイズが発生する。低周波ノイズが発生すると、図4Bに示すように、検出抵抗R0とカップリングコンデンサC0との間の結節点n1に、低周波ノイズと検査信号とが合算された信号が出力される。合算された信号は、第1のローパスフィルタ21と第2のローパスフィルタ22に送られる。
 第1のローパスフィルタ21は、検査信号より高い周波数の高周波ノイズを除去する。図4Bの波形図には高周波ノイズを含めていないので、図4Bの信号が入力された場合、第1のローパスフィルタ21からは、図4Bと変わらない信号が出力される。
 第2のローパスフィルタ22は、図4Cに示すように、検査信号の周波数成分を除去し、低周波ノイズの成分が通された信号を出力する。
 差動増幅部23は、図4Dに示すように、第1のローパスフィルタ21と、第2のローパスフィルタ22との差信号を所定利得で増幅して、抽出信号として出力する。差動増幅部23には、所定のオフセット電圧が供給される。所定のオフセット電圧と所定利得とにより、差動増幅部23から信号入力部13に出力される抽出信号は、信号入力部13のダイナミックレンジ(例えば0V~5V)に収まる。
 信号入力部13は、差動増幅部23から抽出信号を入力し、抽出信号のレベルに基づいて高電圧回路100の絶縁抵抗111の異常の有無を判定する。例えば、絶縁抵抗111が正常な値に維持されていれば、信号入力部13に入力される抽出信号の振幅は高いレベルを維持する。一方、絶縁抵抗111が小さくなると、検査信号によりカップリングコンデンサC0と絶縁抵抗111を介してグラウンドへ電流が流れることで、検出抵抗R0による電圧降下により結節点n1の検査信号のレベルが小さくなる。よって、差動増幅部23から信号入力部13へ出力される抽出信号の振幅レベルが小さくなって、信号入力部13が絶縁抵抗111の異常を判定する。
 以上のように、異常検出装置10によれば、信号抽出部12に高価な入力コンデンサを有するフィルタ回路を必要としない。さらに、第2のローパスフィルタ22が検査信号の周波数成分を除去し、且つ、低周波ノイズを通した信号を生成し、差動増幅部23が、第2のローパスフィルタ22を通過した信号と第2のローパスフィルタ22を通過していない信号との差信号を、抽出信号として出力する。このような第2のローパスフィルタ22と差動増幅部23との作用により、信号抽出部12から信号入力部13へ出力される抽出信号から、低周波ノイズの影響を削減することができる。したがって、実施の形態1の異常検出装置10によれば、高電圧回路100の低周波ノイズの影響を削減でき、且つ、検査信号を抽出するために高価な入力コンデンサを有するフィルタ回路を不要とすることができる。
 (実施の形態2)
 図5は、実施の形態2による異常検出装置10Aの構成図を示す。異常検出装置10Aは、差動増幅部23Aをオフセット電圧不使用の構成としたところが、実施の形態1と異なる。実施の形態1と同様の構成については、実施の形態1と同一符号を付して詳細な説明を省略する。
 差動増幅部23Aは、第1のローパスフィルタ21と、第2のローパスフィルタ22との差信号を所定利得で増幅して、抽出信号として出力する。差動増幅部23Aには、オフセット電圧が供給されず、差動増幅部23Aは、減算した電圧値が負になるときにはゼロ電圧を出力する。
 信号入力部13は、差動増幅部23Aから、0V以下の波形がクリップされた抽出信号が入力される。信号入力部13は、抽出信号の波高値を計測し、波高値と閾値とを比較するなどして、絶縁抵抗111の異常の有無を判定する。
 その他の動作は、実施の形態1で説明した異常検出装置10と同様である。
 以上のように、異常検出装置10Aによれば、差動増幅部23Aで、抽出信号の0V以下の波形がクリップされる一方、信号抽出部12にオフセット電圧を供給する必要がなくなる。よって、実施の形態1と同様の効果に加えて、全体的な回路面積の削減および部品コストの低減を図ることができる。
 (実施の形態3)
 図6は、実施の形態3による異常検出装置10Bの構成図である。図7は、図6のバッファ回路24の具体例の回路図である。異常検出装置10Bは、バッファ回路24を有する点が、実施の形態1と異なる。実施の形態1と同様の構成については、実施の形態1と同一符号を付して詳細な説明を省略する。
 異常検出装置10Bは、バッファ回路24を有する信号抽出部12Bを有している。信号抽出部12Bは、第1のローパスフィルタ21、第2のローパスフィルタ22、差動増幅部23、および、バッファ回路24を有する。
 バッファ回路24は、結節点n1から信号を入力し、第1のローパスフィルタ21および第2のローパスフィルタ22に信号を出力する。バッファ回路24は、入力インピーダンスが大きく、入力された検査信号を少ない電圧低下で後段に出力する。
 また、バッファ回路24は、高電圧回路100から入力される低周波ノイズおよび高周波ノイズの振幅が過大だった場合に、これらのノイズの振幅を抑える機能を有している。具体的には、図7に示すように、バッファ回路24は、負帰還されたオペアンプOP21と、入力抵抗R21と、分圧用の抵抗R22と、バイパスコンデンサC21と、保護ダイオードD21、D22とを有している。入力抵抗R21は、一端が入力端子に接続され、他端がオペアンプOP21の非反転入力端子に接続される。保護ダイオードD21は、電源電圧とオペアンプOP21の非反転入力端子との間に接続され、保護ダイオードD22は、グラウンドとオペアンプOP21の非反転入力端子との間に接続される。分圧用の抵抗R22は、グラウンドとオペアンプOP21の非反転入力端子との間に接続される。バイパスコンデンサC21は、グラウンドとオペアンプOP21の非反転入力端子との間に接続される。また、分圧用の抵抗R22とコンデンサC21はグラウンドではなく、第1オフセット電圧の出力または第2オフセット電圧の出力に接続してもよい。
 このような構成により、バッファ回路24に振幅の大きな低周波ノイズが入力された場合には、入力抵抗R21と、分圧要の抵抗R22でノイズの振幅を低減する。また、バッファ回路24に振幅の大きな高周波ノイズが入力された場合には、入力抵抗R21とバイパスコンデンサC21により、ノイズの振幅を低減する。これらにより、過大な振幅の低周波ノイズまたは高周波ノイズが入力された場合でも、検査信号が加算されている信号の振幅を、バッファ用のオペアンプOP21のダイナミックレンジ内に抑えることができる。
 このようなバッファ回路24により、結節点n1に出力された検査信号を、少ない電圧低下で第1のローパスフィルタ21および第2のローパスフィルタ22に出力することができる。また、バッファ回路24により、高電圧回路100から過大な振幅の低周波ノイズまたは高周波ノイズが入力されても、検査信号をクリップすることなく、第1のローパスフィルタ21および第2のローパスフィルタ22に出力することができる。
 その他の動作は、実施の形態1で説明した異常検出装置10と同様である。
 以上のように、異常検出装置10Bによれば、実施の形態1の効果に加えて、バッファ回路24により、信号抽出部12Bによる検査信号の抽出をより感度よく行うことができるという効果が得られる。また、バッファ回路24は、低周波ノイズおよび高周波ノイズを減衰させる機能を有しているので、バッファ回路24を設けても、信号入力部13より前段で検査信号がクリップされてしまうことを回避できる。
 以上、本発明の各実施の形態について説明した。
 なお、上記の実施の形態では、信号抽出部12が、第1のローパスフィルタ21を有する構成を示したが、高周波ノイズの発生が少ない場合には、第1のローパスフィルタ21を省略してもよい。また、第1のローパスフィルタ21は、結節点n2(図2を参照)の前段に設けてもよい。結節点n2は、検査信号を第2のローパスフィルタ22を通る信号経路と、第2のローパスフィルタ22を通らない信号経路とに分岐させる点である。
 また、上記の実施の形態では、抽出信号を入力する信号入力部13が、抽出信号のレベルに基づいて絶縁抵抗111の異常の判定を行う構成を示した。しかしながら、異常の判定を行う制御部を別に設け、制御部が信号入力部13に入力された抽出信号のレベルに基づき絶縁抵抗111の異常の判定を行う構成を採用してもよい。
 本発明は、例えば車両に搭載される高電圧回路の絶縁抵抗の異常の有無を検出する異常検出装置に適用できる。
10,10A,10B  異常検出装置
11  信号出力部
12,12B  信号抽出部
13  信号入力部
21  第1のローパスフィルタ(ノイズ除去フィルタ)
22  第2のローパスフィルタ(信号除去フィルタ)
23,23A  差動増幅部(減算回路)
24  バッファ回路
100  高電圧回路
110  電池
120  負荷
111  絶縁抵抗
R0  検出抵抗
C0  カップリングコンデンサ

Claims (4)

  1. 第1端と、高電圧回路に接続される第2端とを有するカップリングコンデンサと、
    前記カップリングコンデンサの前記第1端に、検出抵抗を介して接続され、交流の検査信号を出力する信号出力部と、
    前記検出抵抗と前記カップリングコンデンサとの間に出力される前記検査信号を抽出信号として抽出する信号抽出部と、
    前記抽出信号が入力され、入力された前記抽出信号のレベルに基づき、前記高電圧回路の絶縁抵抗の異常を検出する信号入力部と、を備え、
    前記信号抽出部は、
     前記検査信号の周波数の信号を除去し、前記検査信号より周波数の低い低周波ノイズを通す信号除去フィルタと、
     前記信号除去フィルタを通過した信号と、前記信号除去フィルタを非通過の信号との差信号を、前記抽出信号として出力する減算回路と、を有する、
    異常検出装置。
  2. 前記信号除去フィルタは、前記検査信号の周波数の信号を除去し、前記低周波ノイズを通すローパスフィルタである、
    請求項1に記載の異常検出装置。
  3. 前記信号抽出部は、前記検査信号より周波数の高い高周波ノイズを除去し、前記検査信号の周波数の信号と前記低周波ノイズとを通すノイズ除去フィルタをさらに有し、
    前記減算回路は、前記信号除去フィルタを通過した信号と、前記ノイズ除去フィルタを通過し且つ前記信号除去フィルタを非通過の信号との差信号を、前記抽出信号として出力する、
    請求項1、2のいずれか一項に記載の異常検出装置。
  4. 前記ノイズ除去フィルタは、前記検査信号より周波数の高い高周波ノイズを除去し、前記検査信号の周波数の信号と前記低周波ノイズとを通すローパスフィルタである、
    請求項3に記載の異常検出装置。
PCT/JP2015/005337 2014-10-31 2015-10-23 異常検出装置 WO2016067576A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/516,425 US10114064B2 (en) 2014-10-31 2015-10-23 Error detection device
JP2016556216A JPWO2016067576A1 (ja) 2014-10-31 2015-10-23 異常検出装置
CN201580056752.2A CN107076792A (zh) 2014-10-31 2015-10-23 异常检测装置
EP15855470.9A EP3214452A4 (en) 2014-10-31 2015-10-23 Error detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014223266 2014-10-31
JP2014-223266 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016067576A1 true WO2016067576A1 (ja) 2016-05-06

Family

ID=55856942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005337 WO2016067576A1 (ja) 2014-10-31 2015-10-23 異常検出装置

Country Status (5)

Country Link
US (1) US10114064B2 (ja)
EP (1) EP3214452A4 (ja)
JP (1) JPWO2016067576A1 (ja)
CN (1) CN107076792A (ja)
WO (1) WO2016067576A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461531B2 (ja) 2021-07-19 2024-04-03 ニチコン株式会社 複合コンデンサ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589296B (zh) * 2017-10-23 2021-02-26 宁德时代新能源科技股份有限公司 高压回路的信号采集装置、检测器、电池装置和运载工具
WO2020170557A1 (ja) * 2019-02-19 2020-08-27 三洋電機株式会社 漏電検出装置、車両用電源システム
JPWO2021106285A1 (ja) * 2019-11-26 2021-06-03
CN111896224B (zh) * 2020-08-14 2022-04-12 南方电网科学研究院有限责任公司 一种激光供电回路性能检测装置、方法及终端设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114497A (ja) * 2003-10-07 2005-04-28 Yazaki Corp 状態検出方法及び絶縁抵抗低下検出器
JP2008097743A (ja) * 2006-10-13 2008-04-24 Teac Corp 光ディスク装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255943C (zh) * 2000-10-31 2006-05-10 Tdk株式会社 电力线噪声信号滤波器
JP3761470B2 (ja) * 2001-04-04 2006-03-29 北斗電子工業株式会社 非接触電圧計測方法及び装置並びに検出プローブ
JP3781289B2 (ja) 2002-03-15 2006-05-31 株式会社デンソー 電気自動車の地絡検出回路
CN1209889C (zh) * 2003-04-21 2005-07-06 徐忠义 语音背景噪声抑制装置
JP2007187454A (ja) * 2006-01-11 2007-07-26 Toyota Motor Corp 絶縁抵抗低下検出器
WO2008016179A1 (fr) 2006-08-04 2008-02-07 Toyota Jidosha Kabushiki Kaisha Système de détermination de résistance d'isolement, appareil de détermination de résistance d'isolement et procédé de détermination de résistance d'isolement
US8222886B2 (en) * 2008-06-18 2012-07-17 Hioki Denki Kabushiki Kaisha Voltage detecting apparatus and line voltage detecting apparatus having a detection electrode disposed facing a detected object
JP5716601B2 (ja) 2011-08-02 2015-05-13 トヨタ自動車株式会社 絶縁抵抗低下検出装置
CN202230137U (zh) * 2011-10-18 2012-05-23 上海恒动汽车电池有限公司 一种电动汽车用动力电池绝缘检测系统
JP5474114B2 (ja) * 2012-03-16 2014-04-16 三菱電機株式会社 車載高電圧機器の漏電抵抗検出装置およびその漏電抵抗検出方法
JP5713030B2 (ja) 2013-01-15 2015-05-07 トヨタ自動車株式会社 電動車両および電動車両の絶縁状態判定方法
KR101508835B1 (ko) * 2013-08-06 2015-04-07 삼성전기주식회사 전력검출회로 및 그를 구비하는 rf 신호 증폭회로
CN103823112A (zh) * 2014-02-20 2014-05-28 中国北方车辆研究所 一种高压电路绝缘电阻检测装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114497A (ja) * 2003-10-07 2005-04-28 Yazaki Corp 状態検出方法及び絶縁抵抗低下検出器
JP2008097743A (ja) * 2006-10-13 2008-04-24 Teac Corp 光ディスク装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214452A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461531B2 (ja) 2021-07-19 2024-04-03 ニチコン株式会社 複合コンデンサ

Also Published As

Publication number Publication date
EP3214452A1 (en) 2017-09-06
US20170299648A1 (en) 2017-10-19
JPWO2016067576A1 (ja) 2017-08-17
EP3214452A4 (en) 2017-12-06
CN107076792A (zh) 2017-08-18
US10114064B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2016067576A1 (ja) 異常検出装置
JP4306781B2 (ja) 漏電検出回路
US9921259B2 (en) Ground fault detecting device
JP2010193704A (ja) Pwm側帯高調波を利用したロバストacシャーシ障害検出
US20110110003A1 (en) Wiring device having leakage detection function
JP6427881B2 (ja) チャージアンプ内蔵型燃焼圧センサ
US20160245853A1 (en) Systems and methods of detecting ground faults in energy storage and/or generation systems that employ dc/ac power conversion systems
CN108089092B (zh) 一种发电机转子绕组漏电检测装置
CN109752608B (zh) 负载检测器
JP2007187454A (ja) 絶縁抵抗低下検出器
CN210155536U (zh) 一种采样电路和电机控制系统
CN104515931B (zh) 一种基于磁调制的直流漏电流传感器
US9041406B2 (en) Insulation deterioration detection apparatus
JP6438729B2 (ja) 絶縁性能診断装置および疑似キャパシタの容量値の設定方法
JP5685717B2 (ja) 赤外線検出装置
JP6361575B2 (ja) 漏電検出装置
JP5382048B2 (ja) 差動信号故障検出装置及び差動信号故障検出方法
JP2007089277A (ja) 電気自動車のリーク検出装置
CN110442068B (zh) 一种采样电路和电机控制系统
KR20240051537A (ko) 전류 센서
RU2552585C1 (ru) Схема для обнаружения напряжения
WO2013011903A1 (ja) 増幅回路及び増幅方法
Dutta et al. Enhanced Data Acquisition System of Current Signature for Diagnosis of Variable Speed Induction Motor Drives with Full ADC Range Utilization and Noise Cancellation
JP2016065731A (ja) センサ装置
JP2022113359A (ja) デジタル保護リレーおよびその異常監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556216

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015855470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015855470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15516425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE