WO2016064220A1 - 온도 변화 또는 온도 구배에 의해 구동되는 회전형 구동기 및 이들을 이용한 에너지 하베스팅 장치 - Google Patents

온도 변화 또는 온도 구배에 의해 구동되는 회전형 구동기 및 이들을 이용한 에너지 하베스팅 장치 Download PDF

Info

Publication number
WO2016064220A1
WO2016064220A1 PCT/KR2015/011203 KR2015011203W WO2016064220A1 WO 2016064220 A1 WO2016064220 A1 WO 2016064220A1 KR 2015011203 W KR2015011203 W KR 2015011203W WO 2016064220 A1 WO2016064220 A1 WO 2016064220A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotary
driver
coil
energy
rotary driver
Prior art date
Application number
PCT/KR2015/011203
Other languages
English (en)
French (fr)
Inventor
김선정
김시형
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140143310A external-priority patent/KR101621167B1/ko
Priority claimed from KR1020150012035A external-priority patent/KR102311763B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US15/521,063 priority Critical patent/US20170314539A1/en
Publication of WO2016064220A1 publication Critical patent/WO2016064220A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0612Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/02Spring motors characterised by shape or material of spring, e.g. helical, spiral, coil
    • F03G1/04Spring motors characterised by shape or material of spring, e.g. helical, spiral, coil using rubber springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/06Other parts or details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/063Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the mechanic interaction
    • F03G7/0633Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the mechanic interaction performing a rotary movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/04Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving coil systems and stationary magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1853Rotary generators driven by intermittent forces
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects

Definitions

  • the present invention relates to a rotary actuator driven by a temperature change or a temperature gradient and an energy harvesting apparatus using the same. More particularly, the present invention relates to a waste environment by repeatedly and continuously rotating according to a temperature change or a temperature gradient.
  • the present invention relates to a rotary driver capable of converting thermal energy into mechanical energy and an energy harvesting device having an excellent efficiency of generating electrical energy using the same.
  • the energy harvesting technology refers to a technology for converting energy such as vibration, heat, light, and RF that are present or wasted in the environment into electrical energy. This technology is receiving much attention because the structure and performance of energy harvesting continue to evolve, and the density of electrical energy harvested is increasing.
  • thermoelectricity to convert temperature differences into electrical energy.
  • the thermoelectric effect method uses a thermoelectric material that generates a voltage due to the temperature difference between both ends.
  • the thermoelectric effect has advantages in that electrical energy can be obtained from human body temperature or waste heat, but potential difference occurs only when a constant temperature difference exists. The problem is that this is very low.
  • Non-Patent Document 1 carbon nanotube fibers
  • Non-Patent Document 2 polymer fibers containing single and multifilaments
  • Non-Patent Document 3 graphene oxide fibers
  • the twisted and twisted form of carbon nanotube yarns (Non Patent Literatures 1 and 4) exhibited a rotational drive about 1000 times larger than conventional carbon nanotube yarns.
  • the carbon nanotube seal of the type described above is a technique that can be driven by a rotational drive from the thermal energy, or by a variable temperature.
  • the carbon nanotube seal having the above structure contracts or expands upon application of a voltage based on high electrical conductivity, and converts electrical energy into thermal energy or rotational energy.
  • the conversion efficiency generated through the contraction or expansion is low, there is a problem that can not fully utilize the thermal energy of the external environment in everyday life.
  • Non Patent Literature 5 a pyroelectric material that stores energy from temperature changes
  • Non Patent Literature 6 a hybrid piezoelectric system
  • Non Patent Literature 7 a shape memory alloy
  • Non-Patent Document 1 Lima, M. D., et al. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles. Science 334, 928-932 (2012)
  • Non-Patent Document 2 Haines, C. S., et al. Artificial Muscles from Fishing Line and Sewing Thread. Science 343, 868-872 (2014).
  • Non-Patent Document 3 Cheng, H., et al. Moisture-Activated Torsional Graphene-Fibre Motor. Adv. Mater. (2014).
  • Non-Patent Document 4 J. Foroughi, G. M. Spinks, G. G. Wallace, J. Oh, M. E. Kozlov, S. L. Fang, T. Mirfakhrai, J. D. W. Madden, M. K. Shin, S. J. Kim, R. H. Baughman, Science 2011, 334, 494.
  • Non-Patent Document 5 Y. Yang, S. Wang, Y. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 6408.
  • Non-Patent Document 6 X. Wang, K. Kim, Y. Wang, M. Stadermann, A. Noy, A. V. Hamza, J. Yang, D. J. Sirbuly, Nano Lett. 2010, 10, 4091.
  • Non-Patent Document 7 D. Zakharov, G. Lebedev, O. Cugat, J. Delamare, B. Viala, T. Lafont, L. Gimeno, A. Shelyakov, J. Micromech. Microeng. 2012, 22, 094005.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the structure of the actuator, it is possible to shrink or expand in accordance with the temperature change, when rotating the part or the whole of the actuator, the rotation is It is to provide a rotary drive that occurs.
  • Another object of the present invention is to provide an energy harvesting apparatus capable of converting heat energy wasted in air into electrical energy using the rotary driver.
  • Still another object of the present invention is to provide an energy harvesting apparatus capable of converting thermal energy wasted in air into potential energy or electrical energy using the rotary driver.
  • Another object of the present invention is to provide various types of energy harvesting apparatus using the rotary driver.
  • the present invention includes a twisted structure of a single fiber or multi-fibers manufactured in a manner of rotating in the same or opposite directions to each other, wherein the fibers are divided into an upper end and a lower end with respect to the center. At least one of the upper end and the lower end of the fiber is fixed, and the upper end and the lower end of the fiber are each independently a chiral Z-type or chiral S-type structure having a twisted structure or a coiled form. It provides a rotary driver, characterized in that.
  • the fiber is any one selected from the group consisting of polymer materials such as nylon, shape memory polyurethane, polyethylene, and rubber.
  • both the upper end and the lower end of the rotary driver is fixed, it has a rotational force by the contraction or expansion of the rotary driver generated by the temperature change.
  • the rotary actuator having the twisted structure is characterized in that the deflection angle is 20 to 60 °.
  • the rotary driver When both the upper end and the lower end of the rotary driver are fixed, the rotary driver is characterized in that it is fixed after being stretched 1 to 25% of the entire length before being fixed.
  • the length change according to the temperature is characterized in that 5 to 30% of the total length.
  • the rotary driver is characterized in that it has a rotational speed of 100 to 200,000 rpm depending on the temperature change.
  • the present invention has a two-ply structure composed of two strands of the rotary actuator, and provides a two-ply rotary actuator characterized in that it behaves like one strand.
  • the two types of the rotary actuator is a chiral S-type structure, when twisted in a Z-type to form a 2-ply structure, it has a SZ twisting shape.
  • the two types of the rotary actuator is a chiral Z-type structure, when twisted into an S-type to form a 2-ply structure, it has a ZS twisted shape.
  • the present invention provides a rotary drive according to claim 1, which contracts or expands due to temperature change in order to achieve the above another object; At least one magnetic body or coil located at a point within the rotary driver and rotating as the driver rotates; And at least one coil or magnetic body disposed spaced apart from the rotary driver.
  • the magnetic actuator rotates as the rotary actuator contracts or expands according to a temperature change, and induces a change in magnetic flux passing through the coil to generate electrical energy.
  • the magnetic body is a permanent magnet, the weight of the magnetic body is characterized in that 10 to 1000 times the rotational actuator.
  • the position shift support is characterized in that the magnetic body.
  • a plate attached to any one of a lower end and an upper end of the energy harvesting device;
  • the plate further comprises an opening and closing opening and closing to generate the opening and closing, at least one pin of the same shape as the opening and closing, positioned at one point of the rotary drive, spaced apart from the plate; do.
  • the rotary driver is rotated according to a temperature, and the pin is positioned in a horizontal position spaced apart from the opening and closing by the rotation of the rotary driver to block the flow of air flowing from the opening and closing.
  • the separation distance between each plate and the pin provided with the opening and closing is characterized in that 0.1 to 3 cm.
  • both ends are fixed to the horizontal axis, the rotary drive, which contracts or expands by temperature change; Elevating means provided at a central point in the rotary driver; At least one magnetic material provided below the elevating means and connected to the elevating means and having a position change as the rotary driver rotates; And at least one coil for generating an electric field by shangdong of the magnetic material.
  • the coil is characterized in that the cylindrical shape surrounding the side of the magnetic material.
  • the coil is located on the side or the bottom of the magnetic material, characterized in that for generating an electric field by the movement of the magnetic material.
  • the magnetic body As the rotary actuator contracts or expands in response to a temperature change, the magnetic body has a positional change in the longitudinal axis direction as it rotates.
  • the change in position of the magnetic body causes a change in the separation distance between the coil and the magnetic body, and the change of the magnetic flux passing through the coil is induced to generate electric energy.
  • the longitudinal axis shifting distance of the magnetic material is characterized in that 0.1 to 3 cm.
  • the lifting means is characterized in that the pulley.
  • the present invention comprises at least one polymer fiber or a polymer sheet formed by oriented in one direction to achieve the above object,
  • the at least one polymer fiber or polymer sheet is composed of an upper end and a lower end based on the inside,
  • At least one of the upper end and the lower end of the at least one polymer fiber or polymer sheet is fixed
  • the at least one polymer fiber or polymer sheet has a twisted or twisted shape (coil) is produced by rotating the upper end and the lower end in the same direction or the opposite direction,
  • the polymer fiber may be any one selected from the group consisting of polymer materials such as nylon, polyurethane, polyethylene, and rubber.
  • the temperature gradient between the part of the rotary driver and another part may be 1 ° C. or more.
  • the diameter of the rotary driver may be 0.5 to 200 ⁇ m.
  • the maximum temperature of the rotary actuator may be 20 to 80 °C.
  • the rotary driver may be fixed after being 10 to 60% stretched over its entire length before being secured.
  • the present invention has a two-ply structure composed of two strands of the rotary actuator, and provides a two-ply rotary actuator characterized in that it behaves like one strand.
  • the present invention at least one magnetic body, which is located at the point within the rotary driver, the rotary driver for providing continuous rotation by the temperature gradient, and rotates as the rotary driver rotates to achieve the above object
  • at least one coil or magnetic body disposed spaced apart from the coil and the rotary driver provides an energy harvesting apparatus comprising a.
  • the magnetic body rotates and induces a change in magnetic flux passing through the coil to generate electrical energy.
  • the magnetic body is a permanent magnet, the weight of the magnetic body may be 1 to 1000 times the rotational actuator.
  • the rotary driver is fixed at both ends, or only one end is fixed,
  • the position change support may further include any one end of the rotatable driver that is not fixed.
  • the position change support is characterized in that the magnetic body, and positioned apart from the position change support, including a surrounding coil, when the rotary actuator is stretched and contracted according to a temperature gradient, the position change support moves horizontally inside the coil The magnetic flux passing through may be changed to generate electrical energy.
  • the plate attached to any one of the upper end and the lower end of the energy harvesting device includes an opening and closing opening and the opening for generating a closing, one point of the rotary driver Located in, and spaced apart from the plate, provides an energy harvesting device, characterized in that it further comprises at least one pin of the same shape as the opening and closing.
  • the rotary driver rotates according to a temperature gradient, and the pin is positioned at a horizontal position spaced apart from the opening and closing hole by the rotation of the rotary driver, thereby blocking the flow of air flowing from the opening and closing hole.
  • the distance between each plate and the pin provided with the opening and closing may be 0.1 to 3 cm.
  • the both ends are fixed in the horizontal axis, the rotary drive that rotates by the temperature gradient,
  • At least one magnetic material provided below the elevating means, connected to the elevating means, and having a position change as the rotary driver rotates;
  • an energy harvesting apparatus including at least one coil generating an electric field by shangdong of the magnetic material.
  • the coil may have a cylindrical shape surrounding the side of the magnetic material.
  • the coil may be positioned on the side or the bottom of the magnetic material to generate an electric field by moving up and down of the magnetic material.
  • the magnetic body As the rotary actuator rotates by a temperature gradient, the magnetic body has a shanghai copper, and a change in the position of the magnetic body causes a change in the separation distance between the coil and the magnetic body, thereby inducing a change in the magnetic flux passing through the coil to induce electrical energy. Can be generated.
  • Shanghaidong distance of the magnetic material may be 0.1 to 3 cm.
  • the lifting means may be a device for converting rotational energy into potential energy.
  • the rotary drive according to the present invention twists the fibers and improves them into a coiled structure, thereby reacting immediately, sensitively and reversibly to temperature changes.
  • the rotary actuator according to the present invention is present in the surrounding environment by using a polymer fiber produced by electrospinning alone or by using a polymer sheet oriented in a single direction, by applying twist thereto. Because it is sensitive to the continuous temperature gradient supplied from the temperature difference, and has a reversible, fast and efficient operation, it is possible to efficiently convert thermal energy wasted in the air into mechanical energy without providing a large temperature change.
  • the rotary actuator not only has excellent rotational speed, but also has excellent durability and stability, so that the rotational speed hardly decreases even after long-term use, and thus has excellent life characteristics. Accordingly, it is possible to provide various types of energy harvesting apparatuses having improved efficiency of recovering thermal energy as electrical energy using the rotary driver.
  • FIG. 1 is a view showing a variety of structures of the rotary actuator according to the present invention.
  • Figure 2 is a photograph showing a cross-sectional view and the actual appearance of the energy harvesting device according to an embodiment using a rotary actuator of the present invention.
  • FIG 3 is a photograph of a cross-sectional view (a) of the energy harvesting device according to another embodiment of the present invention, a view from above (b) and a view from the side (c).
  • FIG. 4 is a cross-sectional view showing the structure of an energy harvesting apparatus according to another embodiment of the present invention.
  • FIG. 5 is a SEM image showing in detail the structure of the rotary actuator according to the present invention.
  • FIG. 6 is a graph showing temperature, voltage, and rotation speed with time measured from an energy harvesting device manufactured from Preparation Example 5 to measure rotation speed and rotation speed (rotation angle) of a rotary actuator according to temperature change. to be.
  • Figure 7a is a graph showing the rotational speed of the actuator (ZZ-C, ZS-C) manufactured from Preparation Example 1, Preparation Example 4 according to the temperature change, Figure 7b is from Preparation Example 1, Preparation Example 4 according to the degree of tension
  • Figure 7c is a graph showing the rotational speed of the manufactured actuators (ZZ-C, ZS-C)
  • Figure 7c is a graph of the drivers (ZZ-C, ZS-C) manufactured from Preparation Examples 1 and 4 according to the moment of inertia of the magnetic body 7D is a graph showing the rotation speed, and is a graph showing the rotation speed of the driver ZS-C manufactured from Preparation Example 4 according to the number of heating and cooling cycles.
  • the driver ZS-C manufactured from Production Example 4 had a diameter of 27 ⁇ m, and a total length of 95 mm was used.
  • the hollow figure is a graph of rotation angle according to temperature
  • the figure filled with the inside is a graph of rotation speed according to temperature.
  • FIG. 8 is a graph showing a result of comparing the rotational speed with respect to the temperature of the actuator (ZS-C, ZS-N, ZZ-C, ZZ-N) having a variety of structures according to the present invention.
  • FIG. 9 is a view illustrating the influence of the weight of the position change support that prevents rotation of the lower part of the actuator and enables only the position change.
  • FIG. 10A is an actual image of a driver ZS-C manufactured from Production Example 4, which is increased by 20%
  • FIG. 10B is a view of the driver ZS-C manufactured from Production Example 4, in which the partially twisted structure is released.
  • 10C is a graph showing a change in rotation angle as the temperature of the driver ZS-C manufactured from Preparation Example 4 increased by 15%.
  • FIG. 12A is a graph showing the rotational speed of the actuator ZS-C manufactured from Preparation Example 4 according to humidity
  • FIG. 12B is a graph of the driver ZS-C prepared from Preparation Example 4 under 42.3% humidity. This graph shows the measurement of the rotation speed along the entire length.
  • FIG. 13A is a graph comparing rotation energies of the drivers ZZ-C and ZS-C manufactured from Preparation Example 1 and Preparation Example 4 according to temperature
  • FIG. 13B is a graph illustrating drivers ZS-C having different diameters.
  • Example 4) is a graph showing the relationship between the rotational speed (closed figure) and the rotational energy (open figure) according to the moment of inertia of Figure 4
  • Figure 13c is a temperature change with time of the actuator (ZS-C) manufactured from Preparation Example 4
  • It is a graph which shows rotation angle and rotation energy
  • FIG. 13D is a graph which shows the relationship between rotation energy and rotation speed according to the diameter of the actuator ZS-C manufactured from the manufacture example 4.
  • FIG. 13A is a graph comparing rotation energies of the drivers ZZ-C and ZS-C manufactured from Preparation Example 1 and Preparation Example 4 according to temperature
  • FIG. 13B is a graph illustrating drivers ZS-C having different diameters.
  • FIG. 14A is a graph comparing the relationship between the rotation energy and the force measured by heating the driver ZS-C (manufacture example 4) and the driver ZS-N having a twisted structure as a whole
  • FIG. 14B is a driver
  • FIG. 14C is a graph comparing the relationship between the rotation energy and the force measured by heating only ZS-C (manufacture example 4) and the driver ZS-N having a twisted structure only
  • Fig. 14D is a graph comparing the relationship between the rotational energy and the force measured by heating only C (manufacture example 1)) and the actuator ZZ-N having only a twisted structure.
  • FIG. 14D used a driver (ZZ-C) manufactured from Preparation Example 1 having a 15% increase in diameter having a 27 ⁇ m diameter, indicated by black lines on the graph, and a position shift having a 1.2 g weight having a 27 ⁇ m diameter.
  • the actuator (ZZ-N) having only a twisted structure including a support was used as a red line on the graph.
  • FIG. 15 illustrates an energy harvesting apparatus manufactured from Preparation Example 6, which includes a driver having a ZS-C structure of 102 ⁇ m (Preparation Example 4), wherein the three coils and a cylindrical neodymium magnetic material. It was prepared using.
  • FIG. 16 is a graph showing the torsional rigidity and the torsional modulus of elasticity of a 27 ⁇ m diameter ZS-C rotary actuator according to temperature.
  • Figure 17 shows the actual appearance of the two-ply rotary actuator having both the SZ twisted form and ZS twisted form starting from the center of the rotary actuator of the 2-ply structure of the two-ply rotary actuator according to the present invention This picture is taken.
  • FIG. 18 is a cross-sectional view of an energy harvesting apparatus according to another embodiment of the present invention.
  • FIG. 19 is a view showing a harvesting result of an energy harvesting device manufactured from Preparation Example 7.
  • FIG. 20 shows the results of measuring the energy generated when the loosening and twisting periods of the rotary actuator and the period of temperature change (19 ° C.) are equally adjusted to 5 Hz in the energy harvesting device manufactured in Preparation Example 7.
  • FIG. It is a graph.
  • FIG. 21 shows the result of measuring the energy generated when the loosening and twisting periods of the rotary actuator and the period of temperature change (8.2 ° C.) are equally adjusted to 5 Hz in the energy harvesting device manufactured in Preparation Example 7.
  • FIG. It is a graph.
  • FIG. 22 is a view showing various structures of the rotary actuator according to the present invention.
  • FIG. 23 is a view illustrating a principle in which a rotary drive according to the present invention generates a temperature gradient from a temperature difference in air to rotate a drive.
  • 24 is a view showing the manufacturing process of the polymer sheet according to the present invention, the polymer fibers are oriented in one direction.
  • Fig. 25 shows the measurement of the rotational speed ( ⁇ ) and the rotation angle ( ⁇ ) of the rotary actuator (12 cm long, 100 ⁇ m diameter) manufactured from Production Example 8 having a temperature gradient fixed at 53 ° C at the lower end. It is a graph.
  • FIG. 26 shows a rotary drive (12 cm long, 100 ⁇ m in diameter) manufactured from Preparation Example 8 when the temperature difference between the upper end and the lower end of the rotary drive is fixed at 13 ° C. and the lower end temperature is 40 to 60 ° C.
  • FIG. This graph shows the measurement of the rotation speed ( ⁇ ).
  • FIG. 27 is a graph illustrating a measurement of the rotation speed when the temperature difference between the upper end and the lower end of the rotary actuators manufactured from Manufacturing Examples 8 to 12 of different types is 10 ° C. and the temperature of the lower part is 52 ° C.
  • FIG. 8 to 12 the temperature difference between the upper end and the lower end of the rotary actuators manufactured from Manufacturing Examples 8 to 12 of different types is 10 ° C. and the temperature of the lower part is 52 ° C.
  • FIG. 28 shows that the rotating actuators prepared in Preparation Example 8 are fixed by 0 to 50% of the entire length before being fixed, and the rotational speed and the rotational energy of each of the rotating drivers are measured. The graph shown.
  • 29 is a graph showing the paddles attached to the center of the rotary actuator manufactured from Preparation Example 8, and then measuring the rotational speed and the rotational energy according to the moment of inertia by varying the diameter thereof. to be.
  • 31 is a graph showing the results of measuring the rotational speed of each cycle when the rotary actuator manufactured from Preparation Example 8, in which the lower end temperature is 53 ° C. and the lower end and upper end temperature difference is 13 ° C., is operated for a total of 8 hours. to be.
  • the interpolated graph is a diagram showing an example of the energy harvesting apparatus capable of converting thermal energy into electrical energy.
  • FIG. 35 is a graph illustrating a rectified voltage signal obtained by rectifying the voltage generated from the energy harvesting apparatus according to Preparation Example 13 under the same condition as that of FIG.
  • the interpolated diagram is a diagram of the rectifier circuit.
  • One aspect of the present invention includes a single fiber or a multi-fiber twisted structure (twist) structure made by rotating in the same direction or the opposite direction to each other, the fiber is divided into an upper end and a lower end with respect to the center, the fiber At least one of the upper end and the lower end is fixed, and the fibers of the upper end and the lower end are each independently a chiral Z-type or chiral S-type structure having a twisted structure or a twisted shape (coil) It relates to a rotary driver.
  • the rotary driver has two ends fixed to it, and both the upper end and the lower end thereof may have a twisted shape (ZZ-C) (FIG. 1A) in a chiral Z shape, and the rotary drive has two fixed ends, and Both lower ends may have a chiral S-shape twisted shape (SS-C).
  • the rotatable driver may have two ends fixed to each other and upper and lower ends twisted in opposite chirality (ZS-C, SZ-C) (FIG. 1D).
  • the rotary driver may have only one end fixed, and both the upper end and the lower end may have a twisted shape (ZZ-N) (FIG. 1B) in a chiral Z-shape, and the rotary driver is one. Only the end of is fixed, and both the upper end and the lower end may have a twisted form (SS-N) in the chiral S-shape, or the rotary actuator has only one end fixed, the upper end and the lower end May have opposite chirality twisted forms (ZS-N, SZ-N) (not shown).
  • the rotary actuator may have only one end fixed and the upper and lower ends may be twisted in a chiral Z shape (ZZ-C) (FIG. 1C), and only one end is fixed and both the upper and lower ends are fixed. It may be a chiral S-shaped twisted form (SS-C), or only one end may be fixed and twisted in the chirality opposite to the upper and lower ends (ZS-C, SZ-C).
  • ZZ-C chiral Z shape
  • SS-C chiral S-shaped twisted form
  • ZS-C, SZ-C chirality opposite to the upper and lower ends
  • the twisted form means a spring or coil form, and more specifically, the difference between the twisted structure and the twisted structure is determined by the number of revolutions (turn / m) applied according to the diameter of the fiber.
  • the fiber diameter of 27 ⁇ m twisted at 5,000 to 12,000 turns / m to form a twisted structure (twist) structure
  • the fiber 30,000 to 60,000 turns / When twisted and prepared by m to form a coiled (coil) structure.
  • the number of revolutions required according to the structure In the case of fibers having a diameter other than that shown in Table 1 in detail the number of revolutions required according to the structure.
  • a position shift support is provided at one end of the rotary actuator that is not fixed.
  • the structure fixed at both ends is to prevent the translational displacement and the rotation of the structure unwinding when the temperature rises, and the structure equipped with the positional support is linear translation when the temperature rises. displacement is to be allowed, but to prevent rotation of the structure unwinding.
  • both the upper end and the lower end of the rotary driver when both the upper end and the lower end of the rotary driver are fixed, they have a rotational force by contraction or expansion of the rotary driver generated by temperature change, and only one of the upper and lower ends of the rotary driver is fixed, and the other If one of the position change support is provided, the rotational force and the length change by the contraction or expansion of the rotary actuator generated by the temperature change.
  • the rotary driver When both the upper end and the lower end of the rotary driver are fixed, the rotary driver can be fixed after being stretched 1 to 25% of the entire length before being fixed, which is after the rotary driver is tensioned.
  • both the upper end and the lower end are fixed, a sufficient distance is formed between the coils of the rotary driver.
  • the temperature rises to cause expansion of the rotary driver not only the friction between the coils is less generated, but also the surface area of the rotary driver is wider to absorb more heat. It is improved and the rotational force loss by friction can be prevented.
  • the length change depending on the temperature may be 5 to 30% of the total length.
  • the rotary actuator according to the present invention rotates in response to a temperature change.
  • the rotary driver reacts more immediately to the temperature change of the external environment around the driver.
  • the external environment of the driver providing the temperature change is not particularly limited thereto, but may be a gas or a liquid.
  • the driver when the rotary driver is exposed to an environment in which the temperature increases, the driver has a rotational force by releasing a coiled or twisted structure.
  • the rotary actuator When the ambient temperature of the rotary actuator is lowered from the elevated temperature, the rotary actuator has a rotational force opposite to the direction as the coiled or twisted structure is re-formed. . Again, when the ambient temperature around the driver rises, the heating / cooling cycle is repeated.
  • the rotary driver can be actively cooled because instead of passively dissipating the thermal energy by the rotary driver, the rotary driver is converted into mechanical energy to cool the rotary driver. .
  • the rotary driver when the rotary driver receives a temperature change amount of 1 to 150 ° C., it may provide 100 to 200,000 rpm.
  • the rotary driver is characterized in that it still provides an excellent rotation speed (100 to 200,000 rpm) without changing irreversibly even if the heating / cooling cycle is repeated 300,000 or more.
  • the rotary driver according to the present invention It provides a power density of 5,000 to 15,000 W per kilogram of the rotary driver, which is about 40 times better than the electric motor ( ⁇ 300 W / kg) that is generally used, the rotary driver according to the present invention It can be seen that the characteristics are also excellent.
  • the fiber is not limited to this, as long as it is a polymer material such as nylon, shape memory polyurethane, polyethylene, rubber, and more preferably, it is any one selected from the group consisting of nylon, shape memory polyurethane, polyethylene, and high parts. Most preferably nylon.
  • the fiber of such a structure is irreversibly changed at a high temperature that has a large mechanical load, and thus has a disadvantage in that it cannot be driven.
  • the fiber is used at high temperature by using any one selected from the group consisting of a polymer material, that is, nylon, shape memory polyurethane, polyethylene, and rubber.
  • ZS-C type actuators can maintain a reversible structure that is unwisted and retwisted for a long time, and have a long durability and long life, and are applicable to various fields.
  • the rotary drive having the above structure using any one of nylon, shape memory polyurethane, polyethylene, and rubber, which is a polymer material returns to the initial twisted shape even when the shape is deformed by high temperature or low temperature, unlike the conventional drive.
  • the rotary drive having the above structure using any one of nylon, shape memory polyurethane, polyethylene, and rubber, which is a polymer material returns to the initial twisted shape even when the shape is deformed by high temperature or low temperature, unlike the conventional drive.
  • the average diameter of the fibers is not particularly limited, but is preferably 10 nm to more, more preferably 10 nm to 300 ⁇ m.
  • the average diameter of the rotary actuator in which the fiber is twisted in chiral Z or S shape depends on the average diameter of the fiber, and is not particularly limited thereto, but is preferably 1 ⁇ m or more, and more Preferably 1 to 150 ⁇ m.
  • the rotational driver since the rotational force induced by the change in temperature is increased according to the size of the diameter, the rotational driver may cause a problem in that the efficiency of converting the thermal energy into rotational energy is lowered.
  • the fiber preferentially has a twisted structure by the number of rotations / m applied, and then forms a twisted structure, preferably having a deflection angle (twist angle) of 20 to 60 degrees in the twisted structure.
  • This distortion is because rearrangement of the crystal and amorphous portions in the twisting direction of the fiber arrangement, and the rearranged crystal and amorphous structure affect the performance of the rotary actuator of the present invention according to the external temperature change.
  • the weight of the magnetic body provided in the rotary driver does not affect the rotational force and the kinetic energy of the rotary driver is not particularly limited thereto, but preferably 1 to 1000 times heavier than the weight of the rotary driver It is desirable to install and drive. Specifically, regardless of the weight of the magnetic material, the rotary actuator provides the same rotational force and kinetic energy as the temperature changes.
  • the total length of the rotary actuator is not particularly limited, but may be preferably 0.5 to 50 cm, preferably 2 to 30 cm.
  • the rotational speed of the rotary drive is proportional to the square root of energy, when the length of the rotary drive exceeds 15 cm, the energy continues to increase in proportion to the length, but the increase in speed is not large.
  • the rotatable driver can be used in various fields such as a device and clothes, it is most preferable to appropriately select the length according to the required place or purpose.
  • the present invention provides a rotary drive characterized in that the two-ply structure using the rotary drive two strands.
  • the rotary actuator has a two-ply structure consisting of two strands, and is characterized by behaving like one strand.
  • Such a two-ply rotary drive may have various structures depending on the twisting direction.
  • the two types of the rotary driver when twisted to form a Z-type 2-ply structure may have a SZ twisted shape, the two types of the rotary driver are chiral Z-type structure In this case, when twisted to form a two-ply structure may have a ZS twisted form.
  • the two-ply structure is twisted by twisting the two strands of the rotary driver in a direction opposite to the twisting or twisting direction of each rotary driver, the service life of the structure is not solved and is maintained for a long time.
  • FIG. 17 illustrates a two-ply rotary actuator having both a SZ twisted shape and a ZS twisted shape starting from the center of a two-ply rotary actuator in a two-ply rotary actuator according to the present invention. This is a picture taken with the actual appearance. 17 is an example of a two-ply rotary driver, and the structure of the two-ply rotary driver is not limited thereto.
  • Another aspect of the present invention relates to an energy harvesting apparatus capable of converting thermal energy into electrical energy using a rotary actuator that contracts or expands by the temperature change.
  • Figure 2a is a cross-sectional view showing the configuration of the energy harvesting device according to a first embodiment of the present invention
  • Figure 2b is an actual appearance of the energy harvesting device according to a first embodiment of the present invention.
  • the rotary actuator 110 contracts and expands due to temperature change; At least one magnetic body 120 positioned inside the rotatable driver 110 and rotating as the driver 110 rotates; And at least one coil 130 disposed to be spaced apart from the rotatable driver 110 to generate electrical energy (magnetic force, current) by changing the magnetic flux passing through the magnetic body 120 while rotating.
  • the energy harvesting device uses a faraday electromagnetic induction action in which a current is induced by a relative movement between the magnetic body 120 and the coil 130, and thus, the mechanical of the driver 110 generated by the temperature change.
  • the present invention relates to a device for generating energy as electric energy.
  • the driver 110 having the structure as described above includes a magnetic material 120 therein and is spaced apart from the magnetic material 120 included in the driver 110.
  • the energy harvesting device including the coils 130 arranged in this manner is rotated while the driver 110 contracts and expands as the temperature changes, so that the polarity of the stationary coil 130 and the rotating magnetic body 120 are different. As they cross each other, electricity is generated.
  • the driver 110 may be fixed to the upper end 140 and the lower end 150, only one of the upper end 140 and the lower end 150 may be fixed.
  • the other end that is not fixed may further include a position change support (151).
  • the position change support 151 is generally provided at the lower end of the driver 110 to allow a translational displacement of the driver 110 and to prevent rotation, thereby providing a more stable rotational motion to the driver. . That is, the position change support 151 applies a stress in the longitudinal direction to the driver 110 to induce a change in length and tension to make the structure easy to deform according to the change in external temperature. In addition, the rotation of the driver 150 generated when the temperature changes, the position change support 151 prevents loosening and induces a large rotational force of the magnetic material.
  • the coil 130 may be spaced apart by a predetermined distance from one side of the driver 110.
  • the magnetic body 120 is not limited to this as long as it is a permanent magnet. In the present embodiment, a neodymium magnetic material is used. In addition, the shape of the magnetic body 120 is not particularly limited, but preferably may be in the form of a rod or a cylindrical shape in which the NS pole is left and right.
  • the magnetic body 120 Since the weight of the magnetic body 120 is an important factor in controlling the cycle of the uncoiled and coiled cycle according to the temperature change of the rotary driver 110 in the energy harvesting device, the magnetic body 120 Is preferably 10 to 1000 times than the rotary driver 110. Outside the weight range of the magnetic body 120, the cycle period, the rotation speed and the rotation speed of the rotary actuator 110 is reduced to relatively reduce the energy conversion efficiency for the external temperature change.
  • the length of the rotary actuator is preferably 1 to 20 cm.
  • the distance between the magnetic body 120 and the coil 130 is preferably 1 mm, the rotational force of the magnetic body may be lowered by the coil if the distance is less than 1 mm.
  • the electric energy can be induced within the range of the magnetic field of the magnetic body, but when it exceeds 1 mm, the magnetic body 120 causes the magnetic flux change in the coil 130 to induce a loss. Occurs.
  • FIG 3 is a photograph of a cross-sectional view (a) of the energy harvesting device according to the second embodiment of the present invention, a view (b) and a view (c) viewed from the side.
  • the energy harvesting device according to the second embodiment of the present invention is generally similar to the energy harvesting device according to the first embodiment, but as shown in FIG. 3, the magnetic material included in the driver 210. There is a difference in that it is installed to surround 220.
  • the magnetic body 220 is provided in three systems, that is, while being spaced apart from the magnetic body 220 provided in the driver 210 by a predetermined distance and surrounding the magnetic body 220.
  • the energy harvesting apparatus is generally similar to the energy harvesting apparatus according to the first to second embodiments, but contracts or expands due to temperature change. 410); At least one coil 420 located inside the rotary driver 410 and rotating as the driver 410 rotates; And at least one magnetic body 430 disposed to be spaced apart from the rotatable driver 410 to generate electric energy (magnetic force, current) by changing a magnetic flux passing through the coil 420 as the coil 420 rotates. There is a difference.
  • the magnetic 430 is not particularly limited as long as it is a permanent magnet, but more preferably, it is a rod-type having N and S poles, or a magnet of N pole and a magnet of S pole are left and right around the rotary driver 410. It may be installed in, and spaced apart from the coil 420.
  • Another aspect of the present invention is an energy harvester according to a fourth embodiment which is fixed to the horizontal axis and converts thermal energy into potential energy by using a rotary actuator that contracts or expands due to temperature change, and then converts it into electrical energy again.
  • the energy harvesting apparatus according to the fourth embodiment will now be described with reference to FIG.
  • FIG. 18 is a cross-sectional view showing the configuration of an energy harvesting apparatus according to a fourth embodiment of the present invention.
  • Both ends of the rotary driver 510 are fixed to the horizontal axis and contract or expand due to temperature change; Elevating means (520) provided at a central point in the rotary driver (510); At least one magnetic material 530 provided below the elevating means 520 and connected to the elevating means 520 and having a position change as the rotary driver 510 rotates; At least one coil 540 for generating an electric field by the shangdong of the magnetic material 530.
  • the energy harvesting apparatus converts the rotational energy of the rotary actuator 510 generated by the temperature change into potential energy using the elevating means 520, and the magnetic body 530 and It can be generated as electrical energy using a faraday electromagnetic induction action in which current is induced by relative movement between coils 540.
  • the rotational energy of the rotary driver 510 driven by heat may be useful as the potential energy. You can switch to work.
  • the rotary driver 510 is fixed to the horizontal axis, from which the magnetic body 530 and the coil 540 further comprising an energy harvesting device for generating electrical energy I will explain.
  • the energy harvesting apparatus rotates while the rotary driver 510 contracts or expands as temperature changes, and accordingly, a center point of the rotary driver 510 is rotated.
  • the elevating means 520 is connected to the magnetic material 530 connected to the elevating means 520 rotates (moves in the vertical axis direction). This means that the thermal energy is converted into mechanical (rotary, positional) energy by the rotary actuator according to the invention.
  • the magnetic flux passing through the coil 540 is induced by the relative movement of the magnetic body 530 and the coil 540 to generate electrical energy.
  • the coil 540 is not particularly limited as long as it can generate an electric field by moving the magnetic body 530.
  • the coil 540 is provided on the top, bottom, and side surfaces of the magnetic body 530, or the magnetic body. It may be a cylindrical structure surrounding the side of 530.
  • the lifting means 520 is not particularly limited to this, but may preferably be a pulley.
  • the distance between the east and west distances of the magnetic body 530 that is, the distance in the longitudinal axis direction, is 0.1 to 3 cm.
  • the magnetic body 530 is not particularly limited as long as it is a permanent magnet, but more preferably, may be rod-shaped or cylindrical having N and S poles.
  • pyroelectric materials or piezoelectric materials have been developed to convert thermal energy existing in the external environment into mechanical energy or electrical energy.
  • the above-described pyroelectric material or piezoelectric material requires a manufacturing process for inducing polarization inside the pyroelectric material or piezoelectric material in order to generate energy, and most of them apply a high voltage (10 mA / cm), It is a complex process such as stretching at high temperatures to induce crystallization, and there is a problem in that such processes must be done in detail.
  • the actuator using the pyroelectric material or piezoelectric material requires a large temperature change in order to convert thermal energy into mechanical energy or electrical energy, and is driven only after repeated heating and cooling, thereby artificially heating and cooling the temperature.
  • thermal energy into mechanical energy from a general environment because it can be used only in a place where a repetitive cycle can be provided, or a place where a large temperature change occurs in general.
  • hybrid yarns or carbon nanotube yarns can be driven at room temperature if the temperature at which the impregnated material is melted is low (T m ), but the driving force of the hybrid yarn or carbon nanotube yarns is extremely reduced, so that energy from a general environment is reduced.
  • T m temperature at which the impregnated material is melted
  • the efficiency of generating is significantly lower. That is, the conventionally developed various types of yarns have a problem that the performance driven by temperature changes in a general environment is significantly low or difficult to apply.
  • One aspect of the present invention includes at least one polymer fiber or a polymer sheet formed by orienting the polymer fiber in one direction, wherein the at least one polymer fiber or polymer sheet is divided into an upper end and a lower end based on an inner side thereof.
  • One or more upper and lower ends of at least one polymer fiber or polymer sheet are fixed to each other, and the at least one polymer fiber or polymer sheet is a twist formed by rotating the upper and lower ends in the same or opposite directions.
  • a rotary drive having a coil (coil), when the temperature gradient of the portion and the other portion of the rotary driver occurs, the volume difference between the portion and the other portion of the rotary driver generates a continuous rotation Characterized in that.
  • the portion is expanded and released, and the other portion is rewound, thereby providing continuous rotation.
  • the rotary actuator is formed by rotating the upper end and the lower end of the at least one polymer fiber or polymer sheet in the same direction to each other to convert thermal energy into rotational energy by temperature gradient, showing excellent efficiency. Therefore, it may be the most preferable form.
  • the rotary drive according to the present invention can continuously generate a temperature gradient in the rotary drive from the temperature change of the ambient environment, because it can generate a continuous current flow, which is not a constant ambient temperature change It is possible to continuously generate electrical energy from
  • the present invention employs a polymer material in a structure capable of providing continuous rotation therefrom while continuously causing a temperature gradient in the rotary actuator.
  • the portion contracts in the vertical direction, and the polymer fiber or the polymer sheet expands in the twisted radial direction and is released. Except for the other part, it will be rewound relatively. Thereafter, the rotational energy of the other part, which is relatively over-wound, is transferred to the part so that the part is rewound, so that the rotary driver according to the present invention can provide continuous rotation.
  • the rotary actuator according to the present invention may include at least one polymer fiber or a polymer sheet formed by oriented in one direction in order to react sensitively to heat.
  • the polymer fiber may be a short fiber or a multi-fiber, and is not particularly limited as long as it is an elastic fiber having a shape memory effect.
  • the polymer fiber is any one selected from the group consisting of nylon, polyurethane, polyethylene, and rubber. do.
  • the rotary actuator according to the present invention most preferably uses polyurethane as the polymer fiber.
  • the polyurethane has a high thermal expansion between the glass transition temperature (T g ) and the melting point (T m ), and excellent shape memory effect to return to the initial state according to the temperature change, and the glass transition temperature (T g ) is 25 °C. Since it is low, it is the most preferable among the said polymer fibers.
  • a polymer sheet formed by oriented the polymer fibers in one direction rather than using only the single or multi-fiber polymer fibers, which are sensitive to heat through the electrospinning and change in volume. This is because a polymer having a micro-diameter is pulled into a fiber having a micro-diameter and manufactured into a well-arranged sheet, and then twisted and manufactured to form a heat sensitive rotary actuator.
  • the diameter of the rotary driver is 0.5 to 200 ⁇ m, when the diameter of the rotary driver exceeds 200 ⁇ m the rotation speed is greatly enjoyed to reduce the energy conversion efficiency, the rotary driver having a diameter of less than 0.5 ⁇ m Manufacturing is difficult, and even if possible, the process is complex and sensitive.
  • the rotary driver may include at least one polymer fiber or a polymer sheet formed by oriented the polymer fibers in one direction.
  • the diameter of the polymer fiber is 0.5 to 200 ⁇ m. That is, if the diameter of the polymer fiber is less than 0.5 ⁇ m it is difficult to manufacture to have a uniform diameter, if the diameter of the polymer fiber exceeds 200 ⁇ m the rotation speed is significantly reduced.
  • the rotary actuator is a polymer sheet in which the polymer fibers are oriented in one direction
  • the diameter of the polymer fibers is less than 0.5 ⁇ m
  • the diameter exceeds 200 ⁇ m the rotational speed is notably reduced, and since the rotational actuator having a diameter of 200 ⁇ m or more is manufactured, the rotational speed is significantly reduced. Therefore, it is preferable that the diameter of the polymer fiber which forms the said polymer sheet is 1-10 micrometers.
  • the polymer fiber when using the polymer sheet, the polymer fiber is oriented in one direction to apply twist to the polymer sheet formed to form a twist or twist (coil) type of rotary actuator, the polymer sheet
  • the polymer fibers forming the polymer chains are rearranged in the direction in which the twist is applied.
  • the polymer fiber forming the polymer sheet is intended to recover to an initial state (a state before twisting is applied).
  • Tg glass transition temperature
  • the polymer chain is twisted in the polymer chain in the direction of increasing entropy.
  • the rotary actuator has the same property of returning to its original shape (state before twisting) by the shape memory effect and the direction of entropy increase of the polymer chain, that is, the direction of twisting of the polymer chain.
  • the rotary actuator can provide rotation with a larger stroke as the temperature gradient occurs due to the 'synergy effect' of the two properties described above.
  • the polymer sheet rather than the polymer fiber because it rotates with a larger stroke than the rotary actuator manufactured by only twisting the polymer fiber.
  • the rotary actuator including the polymer sheet having a single orientation has a higher orientation than the rotary actuator manufactured by simply twisting at least one polymer fiber, so that the surface area is wider and more sensitive to heat. Can be represented.
  • the polymer sheet having a single orientation is formed by electrospinning a polymer solution and having at least one polymer fiber oriented in one direction.
  • the manufacturing process is illustrated in detail in FIG. 24.
  • a polymer sheet having at least one polymer fiber oriented in a single direction may be manufactured by electrospinning.
  • the polymer fibers preferably have a diameter of 0.5 to 200 ⁇ m, if the diameter of the polymer fibers is less than 0.5 ⁇ m difficult to control the polymer fibers to have a single orientation, so that the diameter of the polymer fibers exceeds 200 ⁇ m If the rotational speed is not only significantly lowered, the rotational speed is significantly lowered because a rotary actuator having a diameter of 200 ⁇ m or more is manufactured. Therefore, the diameter of the polymer fibers forming the polymer sheet may be preferably 1 ⁇ 10 ⁇ m.
  • the polymer spinning solution by electrospinning the polymer spinning solution, it is possible to manufacture a polymer fiber or a polymer sheet formed of the polymer fiber constituting the rotary actuator of the present invention, by applying a high voltage to the polymer spinning solution to a micro size diameter Eggplant can be carried out according to a known method as a step of producing a fiber. Basically, by using electric force using static electricity and using a device such as a motor in the collector, the effect of stretching can be given by mechanical force. However, in the present invention, the fiber produced through the electrospinning is most preferred. In order to manufacture a rotary actuator having excellent rotational speed and efficiency, the arrangement of the polymer chain inside the rotary actuator should be induced.
  • a pulling force caused by electrospinning is induced. It can be produced by orienting the polymer fibers of the micro diameter in a single direction by applying a twist to it, and by applying a twist to it, it can be induced simply and effectively by the method of rearranging in the direction of the applied twist, that is, the spiral direction to be.
  • the polymer fibers constituting the polymer sheet oriented in the single direction may be produced by electrospinning to induce the polymer chain oriented in the single direction.
  • the single direction means the longitudinal axis direction of the rotary actuator and this orientation is shown in FIG.
  • the polymer chain oriented in the polymer sheet is also twisted in the twist direction, that is, the polymer sheet is applied to the polymer sheet.
  • the twisting direction ie, the helical direction
  • the orientation of the polymer chain in the single direction is rearranged.
  • the properties and shape of the polymer chain having the orientation tend to twist in the direction of increasing entropy. Since the property to return to the original form (listed state) proceeds in the same direction by the memory effect, the 'synergy effect' of the two properties occurs.
  • the rotary driver can provide more rotational energy because it induces a more ideal drive, which contracts in the longitudinal direction and expands in volume.
  • the electrospinning is preferably electrospinning under the condition that the applied voltage is 10-20 kV when the distance between the spinning nozzle and the collector is 5-30 cm.
  • the upper and lower ends of the polymer fiber or polymer sheet are fixed to the electric motor and the support, respectively, and the upper and lower ends of the polymer fiber or polymer sheet are rotated in the same or opposite directions to each other. It can manufacture. At this time, at a glass transition temperature (T g ) or more of the polymer fiber or the polymer sheet, it is preferable to manufacture by rotating with a twist number of 2,000 to 60,000 turns / m, for example, when the polymer fiber or the polymer sheet is polyurethane , Preferably at 30 to 60 ° C.
  • the temperature gradient between the part of the rotary driver and another part is not particularly limited as long as it is 1 ° C. or more, which provides a rotational speed, but preferably 3 to 30 ° C. can provide a sufficiently good rotational speed.
  • the temperature gradient means that a difference in temperature occurs in a direction as heat flows from a specific point (part) to another part, and the specific point is referred to as a part in the present invention.
  • the length or area of the portion at which the temperature is the highest point is not particularly limited thereto.
  • the length ratio of the portion to the other portion is 0.1. -1 may be one.
  • the other portion is a temperature gradient from the portion, that is, a difference in temperature occurs in the direction as the heat flows from the portion to the other portion, the portion is expanded and released, the other portion is rewinding, continuous Can provide rotation.
  • the maximum temperature of the rotary driver may be appropriately selected according to the type of polymer fiber or polymer sheet included in the rotary driver, preferably, if the glass transition temperature (Tg) or more of the polymer fiber or polymer sheet. It is not specifically limited to this.
  • the rotational speed may be provided at 20 to 80 ° C.
  • T g glass transition temperature
  • Speed can be provided, more preferably at 45-60 ° C. to provide the best rotation speed.
  • the structure of the rotary driver is shown in detail in FIG. 22.
  • the rotary driver is divided into an upper end and a lower end based on an inner side, and various types of rotary actuators can be manufactured according to the twisting direction of the upper end and the lower end.
  • both the upper end and the lower end of the rotary actuator is twisted in the same direction (Z-type or S-type), or as shown in Figure 22d and 22e, the upper end
  • the imposing lower end may be made in a different direction (where one is Z-type and the other is S-type chiral structure).
  • the rotary driver may have a twisted shape (twist) (FIG. 22A), which is twisted until the coil is formed, or a twisted shape by further applying twist in the twisted shape (FIG. 22B, c, d and e).
  • the terms "twist” and “coil” in the present specification is applied to the rotation (twist) by using an electric motor to the polymer fiber or polymer sheet constituting the rotary actuator It shows the manufactured form, it is determined by the rotation applied to the diameter of the polymer fiber or the polymer sheet, that is, the number of revolutions (turn / m) (hereinafter also referred to as "twist"). More specifically, in the case of the polymer fiber having a diameter of 100 ⁇ m, when 12,000 to 18,000 revolutions (turn / m) is applied, the polymer fiber is manufactured in a twisted form, whereas the 18,000 revolutions (turn / m) is applied to the polymer fiber.
  • the twisted form (twist) form is made of a coil (coil), such as a spring or a coil.
  • coil such as a spring or a coil.
  • the rotary actuator is formed by rotating the upper end and the lower end of the at least one polymer fiber or the polymer sheet in the same direction to each other to convert thermal energy into rotational energy by a temperature gradient, because the most efficient. , Most preferred form.
  • the rotary driver may have a structure in which two ends are fixed as shown in FIGS. 22A, 22B, and 22D, or only one end is fixed, as shown in FIGS. 22C and 22E. At this time, the other end that is not fixed may be provided with a position change support.
  • Diameter of Polymer Fiber ( ⁇ m) Short fibers Twisted form Twisted form 80 Rotation speed (turn / m) 0 22,000 30,000 100 Rotation speed (turn / m) 0 18,000 25,000 120 Rotation speed (turn / m) 0 9,000 15,000
  • the rotary driver is preferably fixed after being stretched 10 to 60% of the entire length before being fixed. This is because a sufficient distance is formed between the coils of the rotary driver when both the upper end and the lower end are fixed after the rotary driver is tensioned in the above range.
  • the length change of the rotary actuator may be 10 to 60% of the total length.
  • the rotary driver according to the present invention is driven depending on the external temperature difference.
  • the rotary driver is more responsive to the temperature difference of the external environment around the driver, the external environment of the driver providing the temperature difference is not particularly limited, but may preferably be a gas or a liquid.
  • the rotary actuator according to the present invention is almost similar in rotation speed in two stages of untwisting and re-twisting, unlike various drivers capable of conventional rotary driving.
  • the rotary module using the rotary actuator according to the present invention can be calculated through the following Equation 1 using the rotational rigidity (torsional rigidity).
  • the rotation vibration period can be calculated by the following [Equation 2].
  • L Air, 1 and L Air, 2 are the lengths at the same temperature.
  • the rotary driver according to the present invention is for recovering heat energy wasted from the surrounding environment as kinetic energy or rotational energy. That is, it is possible to drive not only in places such as heaters and coolers where temperature changes are artificially or periodically generated, but also in places such as ordinary daily life where temperature changes are minimal. That is, where the temperature change is small, a slight temperature difference occurs in the air such as convection, and the temperature difference causes the temperature difference between the inside of the rotary driver and the other part to be driven due to the temperature gradient. .
  • the rotary drive of the present invention is a temperature gradient of the portion and the other portion of the rotary driver as described above, the portion is contracted in the vertical direction, the polymer fiber or polymer sheet is expanded in the twisted radial direction It will be released, but other parts except for the above part will be relatively rewound. Thereafter, the rotational energy of the other part, which is relatively over-wound, is transferred to a part and the part is rewound so that the rotary actuator according to the present invention provides continuous rotation, thereby converting thermal energy in the air into potential energy or It can be converted into mechanical energy such as rotational energy.
  • the temperature gradient between the part of the rotary actuator and another part is 1 ° C. or more, a sufficiently good rotation speed may be provided, but the temperature gradient may be preferably 3 to 30 ° C. in order to provide an excellent rotation speed.
  • the maximum temperature of the rotary driver may be appropriately selected according to the type of polymer fiber or polymer sheet included in the rotary driver, preferably, if the glass transition temperature (Tg) or more of the polymer fiber or polymer sheet.
  • Tg glass transition temperature
  • the maximum temperature of the rotary driver may be appropriately selected according to the type of polymer fiber or polymer sheet included in the rotary driver, preferably, if the glass transition temperature (Tg) or more of the polymer fiber or polymer sheet.
  • Tg glass transition temperature
  • the maximum temperature of the rotary driver may be appropriately selected according to the type of polymer fiber or polymer sheet included in the rotary driver, preferably, if the glass transition temperature (Tg) or more of the polymer fiber or polymer sheet.
  • Tg glass transition temperature
  • Speed can be provided, more preferably at 45-60 ° C. to provide the best rotation speed.
  • the length or area of the portion at which the temperature is the highest or lowest point is not particularly limited. Specifically, the length ratio of the portion to the other portion is 0.1-. 1: 1 may be.
  • the other portion is a temperature gradient from the portion, that is, the heat flows from the portion to the other portion, the difference in temperature occurs in the direction.
  • Figure 23 shows the principle that the rotary drive according to the invention is driven by generating a constant temperature gradient therein from the temperature difference present in the ambient environment.
  • the rotary actuator is not fixed at both ends, the position change support is attached, twisted in the same direction, the temperature gradient of 40 °C and 53 °C to show the process of loosening through rotation.
  • the rotary drive according to the present invention even if the ambient temperature is not heated or cooled, a difference occurs between the ambient temperature by the convection, thereby causing a temperature gradient in the rotary drive of the present invention, the rotary drive At each of the upper and lower ends of the can provide a large rotational energy and the potential energy according to the Shanghai East.
  • Another aspect of the present invention relates to an energy harvesting apparatus capable of converting thermal energy into electrical energy using a rotary driver that provides continuous rotation by the temperature gradient.
  • FIG. 2 is a cross-sectional view showing the configuration of an energy harvesting apparatus according to an embodiment of the present invention.
  • the rotary driver 110 provides continuous rotation by a temperature gradient; At least one magnetic body 120 positioned inside the rotatable driver 110 and rotating as the driver 110 rotates; And at least one coil 130 disposed to be spaced apart from the rotatable driver 110 to generate electrical energy (magnetic force, current) by changing the magnetic flux passing through the magnetic body 120 while rotating.
  • Energy harvesting device is a rotary actuator 110 generated by the temperature gradient using a faraday electromagnetic induction action is induced by the relative movement between the magnetic body 120 and the coil 130.
  • the apparatus for generating the mechanical energy of the electrical energy, the rotary driver 110 having a structure as described above includes a magnetic material 120 therein, and included in the rotary driver 110 Energy harvesting apparatus including a coil 130 spaced apart from the magnetic body 120, if the temperature gradient of a portion and a different portion of the rotary driver 110 from an external environment having a temperature difference such as convection occurs A volume difference between a portion of the rotary driver and another portion occurs to generate continuous rotation. More specifically, the rotation of the rotary driver is performed on the portion.
  • Unwound is expanded, while the other portion to the forward again, is to provide a continuous rotation, the polarity of the magnetic body 120 to rotate with a stationary coil (130) intersect so as polarity electricity is generated.
  • the driver 110 may be fixed to the upper end 140 and the lower end 150, only one of the upper end 140 and the lower end 150 may be fixed.
  • the other end that is not fixed may further include a position change support (151).
  • the position change support 151 is generally provided at the lower end of the rotary driver 110 to allow a translational displacement of the rotary driver 110, and irreversible of the rotary driver 110. It prevents untwist, providing a more stable rotational motion to the actuator. That is, the position change support 151 applies a stress in the longitudinal direction to the rotary actuator 110 to induce a change in length and tension, thereby making it easy to deform according to the temperature gradient generated from the external temperature difference. In addition, the position change support 151 prevents loosening and induces a large rotational force of the magnetic body in the continuous rotation of the rotary actuator 150 generated by the temperature gradient.
  • the coil 130 may be spaced apart by a predetermined distance from one side of the rotary driver 110.
  • the magnetic body 120 is not limited to this as long as it is a permanent magnet. In the present embodiment, a neodymium magnetic material is used. In addition, the shape of the magnetic body 120 is not particularly limited, but preferably may be in the form of a rod or a cylindrical shape in which the NS pole is left and right.
  • the magnetic body 120 is the rotary driver 110. It is preferable that it is 1 to 1000 times.
  • the rotational speed and rotational energy of the rotary driver 110 is reduced to convert the mechanical energy of the temperature gradient of the rotary driver 110 generated from an external temperature difference The efficiency is relatively reduced.
  • the rotational speed is high, but the rotational energy is low, so that the weight of the magnetic body 120 may be increased in order to maintain the excellent rotational speed and convert it into electrical energy. It is preferable that it is 1 to 10 times.
  • the length of the rotary actuator 110 is preferably 1 to 20 cm.
  • the distance between the magnetic body 120 and the coil 130 is preferably 1 mm, the rotational force of the magnetic body may be lowered by the coil if the distance is less than 1 mm.
  • the electric energy can be induced within the range of the magnetic field of the magnetic body, but when it exceeds 1 mm, the magnetic body 120 causes the magnetic flux change in the coil 130 to induce a loss. Occurs.
  • the energy harvesting device includes a plate 170 having an opening and closing hole; It may further include a pin (160) connected to the driver for generating the opening and closing of the opening and closing.
  • the plate 170 provided with the closing hole is located at the end of the lower end 150 of the rotary driver 110, and the pin 160 is fixed at an arbitrary position of the lower end 150 of the rotary driver.
  • FIG 3 is a cross-sectional view (a) of the energy harvesting apparatus according to another embodiment of the present invention, and a picture taken from the top (b) viewed from above.
  • the energy harvesting apparatus is generally similar to the energy harvesting apparatus according to the embodiment shown in FIG. 2, but as shown in FIG. There is a difference in that it is installed to surround the magnetic material 220 included in the typical driver 210.
  • the magnetic body 220 is three systems, that is, three coils 230 are connected to surround the magnetic body 220 provided in the rotary driver 210, the coil 230 is each coil 230 And means 231, 232, 233 for connecting with external devices are extended.
  • the structure of the coil 230 is shown in more detail in FIG. 6B.
  • the coil 230 is disposed to be spaced apart from the magnetic body 220 provided in the rotary driver 210 by a predetermined distance, and is provided to surround the magnetic body 220.
  • the energy harvesting device is generally similar to the energy harvesting device according to the embodiment shown in FIG. 2, but as shown in FIG. 8, it is continuous by a temperature gradient.
  • the rotary driver 410 to provide rotation; At least one coil 420 located inside the rotary driver 410 and rotating as the rotary driver 410 rotates; And at least one magnetic body 430 disposed to be spaced apart from the rotatable driver 410 to generate electric energy (magnetic force, current) by changing a magnetic flux passing through the coil 420 as the coil 420 rotates. There is a difference.
  • the magnetic 430 is not particularly limited as long as it is a permanent magnet, but more preferably, it is a rod-type having N and S poles, or a magnet of N pole and a magnet of S pole are left and right around the rotary driver 410. It may be installed in, and spaced apart from the coil 420.
  • Another aspect of the present invention is fixed to the horizontal axis, using a rotary drive that provides a continuous rotation by the temperature gradient to convert thermal energy into potential energy, according to another embodiment of the conversion to electrical energy
  • An energy harvesting apparatus is described with reference to FIG. 18.
  • FIG. 18 is a cross-sectional view showing the configuration of an energy harvesting apparatus according to another embodiment of the present invention.
  • the rotary driver 510 is fixed at both ends in a horizontal axis and provides continuous rotation by a temperature gradient; Elevating means (520) provided at a central point in the rotary driver (510); At least one magnetic material 530 provided below the elevating means 520 and connected to the elevating means 520 and having a position change as the rotary driver 510 rotates; At least one coil 540 for generating an electric field by the shangdong of the magnetic material 530.
  • Energy harvesting apparatus converts the continuous rotational energy of the rotary driver 510 generated by the temperature gradient to the potential energy using the lifting means 520, This may be generated as electrical energy using a faraday electromagnetic induction action in which a current is induced by the relative movement between the magnetic body 530 and the coil 540.
  • the rotational energy of the rotary driver 510 driven by heat may be useful as the potential energy. You can switch to work.
  • the rotary driver 510 is fixed to the horizontal axis, from which the magnetic body 530 and the coil 540 further comprising an energy harvesting device for generating electrical energy I will explain.
  • the energy harvesting device having the above-described configuration, when a temperature gradient of a part different from the part of the rotary driver 510 occurs from an external temperature difference, the part is expanded and released, and the other part is again As it is wound, it provides continuous rotation, and as a result, the magnetic body 530 connected to the elevating means 520 as the elevating means 520 connected to the central point of the rotatable driver 510 rotates. ) Moves to Shanghai East (vertical axis movement). This means that the thermal energy is converted into mechanical (rotary, positional) energy by the rotary actuator according to the invention.
  • the magnetic flux passing through the coil 540 is induced by the relative movement of the magnetic body 530 and the coil 540 to generate electrical energy.
  • the coil 540 is not particularly limited as long as it can generate an electric field by moving the magnetic body 530.
  • the coil 540 is provided on the top, bottom, and side surfaces of the magnetic body 530, or the magnetic body. It may be a cylindrical structure surrounding the side of 530.
  • the lifting means 520 is not particularly limited as long as it is a device capable of converting rotational energy into potential energy, but may preferably be a pulley.
  • the distance between the east and west distances of the magnetic body 530 that is, the distance in the longitudinal axis direction, is 0.1 to 3 cm.
  • the magnetic body 530 is not particularly limited as long as it is a permanent magnet, but more preferably, may be rod-shaped or cylindrical having N and S poles.
  • One end of the nylon 6,6 fiber precursor was attached to the motor and the other end was fixed by connecting rods to apply a constant force and prevent rotation from loosening.
  • the force exerted during the twisting influences the torsion angle or spring index of the rotary actuator.
  • the applied force is between 10 MPa and 40 MPa.
  • This embodiment was made by applying a force of 26 MPa and the torsion angle of the actuator was 45 kPa and the spring index was 1.14.
  • the driver was made by heat treatment at 210 °C in vacuum for 2 hours.
  • the center part is fixed by twisting the upper part in the Z shape and the lower part in the S shape (or vice versa).
  • FIG. 1 Representative different types of rotary actuators are shown in more detail in FIG. 1 below.
  • Example 2 which is an actuator having only a twisted structure (ZZ-N), which is not twisted into a chiral or chiral S type, has only one end fixed thereto, and after twisting, both the upper end and the lower end have a twisted chiral Z shape.
  • Example 3 which is the driver (ZZ-C) and Example 4 which is the driver (ZS-C) which has the shape which twisted, and after twisting, the upper part twisted in chiral Z shape, and the lower part twisted in chiral S shape Prepared.
  • the turns applied to form the twisted structure were calculated by dividing the final muscle length, expressed as turns / m, which is calculated from Equation 3 below.
  • the bias angle was observed and recorded from the surface of the twisted nylon 6,6 fibers.
  • r represents the radial distance from the center of the fiber
  • T represents how much the rotation was made relative to the initial fiber length
  • the coil disposed to be spaced apart from the driver is disposed to be 1 mm away from the magnetic material provided in the driver to manufacture an energy harvesting device. At this time, the coil was connected to an oscilloscope, and the coil was used for a general clock.
  • the actuator manufactured from Preparation Example 1 rotates clockwise or counterclockwise due to the repeated action of releasing and rewinding the twisted structure of the actuator as the temperature of the adjacent air is increased or cooled.
  • the magnetic flux flowing through the coil was changed to measure the induced voltage over time with an oscilloscope connected to the coil.
  • the peak number of the voltage signal over time represents the rotation speed (rotation angle) of the driver, and the rotation speed (rpm) can be found through calculation using a frequency (frequency, Hz).
  • the energy harvesting device is manufactured in the same manner as in manufacturing example 5, except that the coil is installed to surround the magnetic material provided at the center of the driver at a distance of 1 mm. Prepared. Its structure is shown in more detail in Figure 4 below.
  • FIG. 5A is a structure of a twisted rotary drive manufactured by twisting a fiber at 10,000 turns / m, wherein the rotary drive is nylon 6,6 and manufactured with 26 MPa tensile force, and the rotary drive The diameter before the coil is 29 ⁇ m and the twist angle is 45 °.
  • FIG. 5B is a coiled structure in chiral Z-type or chiral S-type, prepared by twisting the fiber at 56,000 turns / m, with an outer diameter of 62 ⁇ m and a spring index of 1.14.
  • FIG. 6 is a graph showing temperature, voltage, and rotation speed with time measured from an energy harvesting device manufactured from Preparation Example 5 to measure rotation speed and rotation speed (rotation angle) of a rotary actuator according to temperature change. to be.
  • a driver (ZZ-C) manufactured in Preparation Example 1 was used, and a thermocouple was installed to measure a change in temperature of air near a rotary driver.
  • Figure 7a is a graph showing the rotational speed of the actuator (ZZ-C, ZS-C) manufactured from Preparation Example 1, Preparation Example 4 according to the temperature change, Figure 7b is from Preparation Example 1, Preparation Example 4 according to the degree of tension
  • Figure 7c is a graph showing the rotational speed of the manufactured actuators (ZZ-C, ZS-C)
  • the driver ZS-C manufactured from Production Example 4 had a diameter of 27 ⁇ m, and a total length of 95 mm was used.
  • the hollow figure is a graph of rotation angle according to temperature
  • the figure filled with the inside is a graph of rotation speed according to temperature.
  • the driver ZS-C manufactured from Production Example 4 has a lower end portion and an upper end portion in an opposite structure, and thus, the driver ZS-C may be driven when the driver is heated as a whole without being disturbed when twisted and twisted.
  • This driver ZS-C has twice the rotation speed, the rotation speed, and the energy compared to the ZZ-C which is heated by half heating (Fig. 7A).
  • the ZZ-C and ZS-C drivers eventually have similar rotational speeds with respect to the weight or length of the heated driver.
  • the actuators ZZ-C and ZS-C having two ends fixed are structurally deformed by thermal expansion, and the stretched coil structure is contracted by heat.
  • the structural deformation is easily made for the heat, and the rotational speed was measured according to the degree of stretching (Fig. 7b) when 10 to 15%, 8 cm ZS-
  • the C drive confirmed that the maximum rotational speed was 70,200 rpm.
  • An unstretched driver is narrower than a 15% increased surface area to absorb heat, and thermal expansion causes friction between the coil and the coil, resulting in a lower rotational speed than the 15% increased driver.
  • the results of FIG. 9 show that the unstretched driver expands without shrinking with respect to heat and shows that the rotation speed is small.
  • the actuator (ZS-C) prepared from Preparation Example 4 had a mass of 238 ⁇ g, and its rotation torque was calculated to be 187 nN ⁇ m and 0.77 mP ⁇ m / kg by Equation 4 below.
  • a is the initial acceleration of the magnetic body
  • I is the moment of inertia of the magnetic body, which is calculated by the following equation (5).
  • M is the magnetic mass
  • R is the radius of the magnetic body
  • L is the length of the magnetic body.
  • the actuator of the present invention shows little decrease in the rotational speed and the rotational angle.
  • FIG. 8 is a graph showing a result of comparing the rotational speed with respect to the temperature of the actuator (ZS-C, ZS-N, ZZ-C, ZZ-N) having a variety of structures according to the present invention.
  • the driver (ZS-C) manufactured in Preparation Example 4 the driver (ZS-N) having two ends fixed and having only a twisted structure in chiral Z-type or chiral S-type, and the driver manufactured in Preparation Example 1 ZZ-C) and the driver (ZZ-N) manufactured from Production Example 2 were used.
  • the actuators were manufactured by varying the degree of stretching (%) and the weight (with load (g)) of the position change support 151 of the driver.
  • the increase in temperature is increased by 15%, and the actuator having the twisted structure has an excellent rotation speed, and in particular, when only the twisted structure is provided, the weight of the position support is much affected. Able to know.
  • the driver ZS-C manufactured from Preparation Example 4 has an excellent rotation speed and rotational speed as compared with the drivers having other structures. As described above, the driver manufactured from Preparation Example 1 that rotates when half heated. It can be seen that the rotation speed and rotation speed are twice as good as (ZS-C).
  • Figure 9 is a driver (ZZ-C) is provided with a position change support (1.2 g, 2.1 g, 3.1 g, 4.1 g) having different weights in order to check the effect of the weight of the position change support located in the lower part of the driver , And the rotation speed and tensile actuation of the preparation example 3) is measured according to time and is a result graph.
  • the position change support is shown in the lower portion in the form of a weight in Fig. 9a, each of the actuators are heated only half.
  • FIG. 10A is an actual image of a driver ZS-C manufactured from Production Example 4, which is increased by 20%
  • FIG. 10B is a view of the driver ZS-C manufactured from Production Example 4, in which the partially twisted structure is released.
  • 10C is a graph showing a change in rotation angle as the temperature of the driver ZS-C manufactured from Preparation Example 4 increased by 15%.
  • the stretch has the best rotational speed when the stretch degree is 10 to 15%, and when the temperature is increased to 90 ° C. or more based on the 15% increased driver, the structure of the driver is It can be seen that it changes irreversibly as shown in FIG. 7B.
  • 12A is a graph illustrating the rotational speed of the actuator ZS-C manufactured from Preparation Example 4 according to humidity, and accordingly, the rotational speed of the actuator is 80,640 rpm at high humidity (92.8%), and low humidity ( It can be seen that the increase was more than 12.87% than in 42.3).
  • FIG. 12B is a graph showing a measurement of the rotational speed according to the total length of the actuator ZS-C manufactured from Preparation Example 4 under a 42.3% humidity condition, and accordingly, the driver ZS-C prepared from Preparation Example 4 It can be seen that the rotation speed of is proportional to the length. Actuator (ZZ-C) manufactured from Preparation Example 4 In addition, it can be seen that the rotational speed is proportional to the length and observed up to 140,000 rpm at 15 cm.
  • FIG. 13A is a graph comparing rotation energies of the drivers ZZ-C and ZS-C manufactured from Preparation Example 1 and Preparation Example 4 according to temperature
  • FIG. 13B is a graph illustrating drivers ZS-C having different diameters.
  • Example 4) is a graph showing the relationship between the rotational speed (closed figure) and the rotational energy (open figure) according to the moment of inertia of Figure 4
  • Figure 13c is a temperature change with time of the actuator (ZS-C) manufactured from Preparation Example 4
  • It is a graph which shows rotation angle and rotation energy
  • FIG. 13D is a graph which shows the relationship between rotation energy and rotation speed according to the diameter of the actuator ZS-C manufactured from the manufacture example 4.
  • FIG. 14A is a graph comparing the relationship between the rotation energy and the force measured by heating the driver ZS-C (manufacture example 4) and the driver ZS-N having a twisted structure as a whole
  • FIG. 14B is a driver
  • FIG. 14C is a graph comparing the relationship between the rotation energy and the force measured by heating only ZS-C (manufacture example 4) and the driver ZS-N having a twisted structure only
  • Fig. 17D is a graph comparing the relationship between the rotational energy and the force measured by heating only C (manufacture example 1)) and the actuator ZZ-N having only a twisted structure
  • FIG. 17D shows the driver (ZZ-C (manufacture) Ex.
  • FIG. 14D used a driver (ZZ-C) manufactured from Preparation Example 1 having a 15% increase in diameter having a 27 ⁇ m diameter, indicated by black lines on the graph, and a position shift having a 1.2 g weight having a 27 ⁇ m diameter.
  • the actuator (ZZ-N) having only a twisted structure including a support was used as a red line on the graph.
  • a driver having a coil structure fixed at both ends has a higher rotational energy than other types of structures.
  • the actuator having only two twisted structures without the twisted structure at both ends is lower in rotational energy than other types of structures but higher in consideration of weight.
  • FIG. 15 illustrates an energy harvesting apparatus manufactured from Preparation Example 6, which includes a driver having a ZS-C structure of 102 ⁇ m (Preparation Example 4), wherein the three coils and a cylindrical neodymium magnetic material. It was prepared using.
  • the actuator (ZZ-N) manufactured from Production Example 1 has a higher mechanical force and energy density than ZS-C, but the rotation speed and the rotation speed are smaller than that of ZS-C, and thus ZS-C was used in the present apparatus.
  • the apparatus applied the appropriate actuator diameter and magnetic body weight derived from the experiments in order to have a high energy conversion rate.
  • FIG. 15B is a graph showing measurement of voltage change over time corresponding to the three coils of the apparatus of FIG. 18A. According to this, the rotation speed of the ZS-C driver in the apparatus is 3120 rpm, and the maximum 0.16 V ocv is shown. It was confirmed that it produces.
  • V is the generated voltage
  • t 1 is the initial time
  • t 2 is the time the magnetic material is stopped.
  • I is the moment of inertia and ⁇ is the rotational angular velocity at each twist and untwist.
  • the ZS-C muscle used in the device produced 0.056 kJ / kg and produced 62 ⁇ J / cm 3 at a temperature change of 65 ° C. It was confirmed that the three LEDs could be operated with the electric energy obtained from the rotational energy of the device (FIG. 15D). This shows that the device using the rotary driver has better performance than that using graphene fibers. Indicates.
  • FIG. 16 is a graph showing torsional rigidity and torsional modulus of elasticity of a ZS-C rotary actuator according to temperature. It can be observed that returning to the initial state occurs more quickly when the ambient temperature of the rotary actuator is lower than when it is increased. According to FIG. 16, when the temperature of the driver increases, the torsional elasticity coefficient can be seen to decrease. When the ambient temperature decreases and the driver tries to be twisted again, the torsional elasticity coefficient is lowered by the latent heat remaining in the driver. It can be seen that.
  • an energy harvesting device was manufactured in the same manner as in Manufacturing Example 5, except that the coil was installed on both sides, and the rotary actuator was ZS-C having a diameter of 27 ⁇ m. It was manufactured using the actuator of the structure.
  • 19B shows the generated voltage according to the temperature change of the energy harvesting apparatus. When the temperature changes from about 45 ° C. at room temperature, it is confirmed that a voltage of 2.2 V is generated.
  • 19c shows a result of measuring an electric force and a voltage according to the resistance of the energy harvesting device, wherein the energy harvesting device can generate 560 W / kg of energy with respect to the maximum driver weight through impedance matching. Confirmed.
  • FIG. 19D illustrates a capacitor generated after rectifying a voltage generated by using a bridge diode at 5 Hz as a period of unwinding and twisting cycle and temperature change (from 67.6 ° C. to 87.2 ° C.) of the rotary driver in the energy harvesting device using a bridge diode. -10V), and as shown in FIG. 19D, it was confirmed that a voltage of 1.12V was charged after 35 seconds.
  • FIG. 20 shows the results of measuring the energy generated when the unwinding and twisting periods of the rotary actuator and the period of temperature change (19 ° C., 67.6 ° C. to 87.2 ° C.) are equally set to 5 Hz in the energy harvesting device. It is a graph showing. As shown in Figure 20 it was confirmed that the average power of 124 W / kg compared to the weight of the driver can be obtained.
  • FIG. 21 is a graph showing the results of measuring the energy generated when the unwinding and twisting periods of the rotary actuator and the period of temperature change (8.2 ° C., 32.5 ° C. to 40.7 ° C.) are equally set to 5 Hz in the energy harvesting device. It is a graph showing. As shown in FIG. 21, the rotary actuator was driven at a speed of up to 33,000 rpm, and the instantaneous power was 132 W / kg, and the average power was 26.8 W / kg.
  • Polyurethane (SMP MM-2520, SMP Technologies Inc. from Japan) was dissolved in tetrahydrofuran (Aldrich) at room temperature for 7 days to prepare a polyurethane spinning solution. At this time, it was prepared by melting the polyurethane to 5.5% by weight in the total weight ratio of the spinning solution.
  • Polyurethane sheet having a single orientation of the polyurethane spinning solution prepared in step 1) by the electrospinning method was prepared.
  • the electrospinning condition is supplied to the polyurethane spinning solution to the syringe pump (Kdscientific USA) at a rate of 13 ⁇ l / min, by applying an applied voltage of 18 kV, the spinning nozzle is +11 kV, the collector is- Has a voltage of 7 kV. The distance between the spinning nozzle and the collector is 20 cm.
  • the voltage was applied using a high voltage DC power supply (WookyongTECH, Korea).
  • the diameter of the polyurethane fiber constituting the polyurethane sheet is ⁇ 4.5 ⁇ m.
  • the polyurethane sheet prepared through the electrospinning process of step 2) was attached to the shaft of the electric motor having a flat rectangular pad and a fixed support.
  • the fixed two ends of the polyurethane sheet were twisted until they had an overall twisted shape under 40 ° C. conditions to produce a rotary actuator.
  • the rotary driver is a coil type rotary driver manufactured by twisting at a rotational speed of 25,000 trun / m in the same direction.
  • both the upper end and the lower end of the rotary actuator may be manufactured by twisting in the same direction (Z-type or S-type), or the upper end and the lower end may be manufactured in different directions (where one is Z-type and the other is S-type chiral structure). Can be.
  • the rotary driver may have a twisted shape that is twisted until the coil is formed, or may further have a coil shape by further applying twist in the twisted shape.
  • An energy harvesting device capable of converting thermal energy into electrical energy was devised using a rotary driver manufactured from Preparation Example 8. Its structure is shown in more detail in FIG.
  • the two ends of the rotary driver manufactured in Preparation Example 8 are fixed, and a magnetic body is located at the center of the rotary driver.
  • a coil disposed spaced apart from the rotary driver was placed 1 mm away from the magnetic material provided in the driver to manufacture an energy harvesting device. At this time, the coil was connected to an oscilloscope, and the coil was used for a general clock.
  • the rotary driver manufactured in Preparation Example 8 According to the difference in the temperature of the adjacent air, the rotary driver manufactured in Preparation Example 8 generates a temperature gradient in the rotary driver, which causes the twisted structure of the rotary driver to be released and rewound repeatedly. Phosphorus behavior is rotated clockwise or counterclockwise, and thus induced magnetic body rotation causes the magnetic flux flowing in the coil to be changed to measure the induced voltage over time with an oscilloscope connected to the coil.
  • Morphology was analyzed using an electron scanning microscope (FE SEM, Hitachi S4700).
  • thermocouple In order to analyze the thermal characteristics of the rotary actuator, a dynamic mechanical analyzer (Dynamic Mechanical Analyzer, Seiko Exstar 6000) was used. At this time, the temperature was measured using a thermocouple.
  • Fig. 25 shows the measurement of the rotational speed ( ⁇ ) and the rotation angle ( ⁇ ) of the rotary actuator (12 cm long, 100 ⁇ m diameter) manufactured from Production Example 8 having a temperature gradient fixed at 53 ° C at the lower end. It is a graph.
  • the rotary actuator according to the present invention can be seen that the temperature difference between the upper end and the lower end provides the rotation speed from 1 °C or more, it can be seen that a sufficient rotation speed of about 1,000 rpm is provided from 3 °C or more. Therefore, it can be seen that the rotary actuator according to the present invention can provide a rotational energy, that is, a rotational speed if it is 1 ° C. or more, preferably provide excellent rotational speed and rotational angle at 3 to 30 ° C. More preferably, it is 9-13 degreeC.
  • FIG. 26 shows a rotary drive (12 cm long, 100 ⁇ m diameter) manufactured from Preparation Example 8 when the temperature difference between the upper end and the lower end of the rotary drive is fixed at 13 ° C. and the lower end temperature is 40 to 60 ° C.
  • FIG. This graph shows the measurement of the rotation speed ( ⁇ ).
  • the rotary actuator of Preparation Example 8 uses polyurethane. Since the glass transition temperature (Tg) of the polyurethane is 30.6 ° C., the temperature difference between the upper end and the lower end may be equal to 13 ° C. At this time, it was also confirmed that the rotary actuator of Preparation Example 8 can provide a sufficient rotation speed if the glass transition temperature (T g ) is 30 ° C. or more. However, the lower end temperature can provide the best rotational stroke at 45-60 ° C.
  • the rotary drive according to the present invention can provide a sufficient rotation speed if it is 30 °C or more, preferably 40 °C or more, more preferably 43 °C or more to have a rotation speed of 3,000 rpm or more.
  • the rotational speed gradually decreases from 60 ° C. or higher, up to about 80 ° C. which provides a sufficient rotation speed may be preferable, and more preferably 60 ° C. or lower.
  • the rotary actuator according to the present invention will have a different form, such as twisted form, partially twisted form and twisted form according to the applied twist (rotation).
  • Figure 27 is a graph showing the measurement of the rotational speed when the temperature difference between the upper end and the lower end of the rotary actuators manufactured from the manufacturing examples 8 to 12 of the different forms is 10 °C, the temperature of the lower end is 52 °C to be.
  • the rotary actuators are all manufactured to have a diameter of 100 ⁇ m and a length of 8 cm.
  • twist (rotation) applied in the manufacturing process is 19,000 to 35,000 turns / m it can be seen that it is possible to manufacture a rotary drive having a sufficiently good rotational speed, manufacturing a rotary drive to obtain a rotational speed of 2,000 rpm or more In order to achieve this, 21,000 to 30,000 turns / m is preferable.
  • FIG. 28 shows that the rotating actuators prepared in Preparation Example 8 are fixed by 0 to 50% of the entire length before being fixed, and the rotational speed and the rotational energy of each of the rotating drivers are measured. The graph shown.
  • the rotational actuator of Preparation Example 8 was found to have a significantly improved rotation speed per length and rotation energy per length as the% stretched with respect to the entire length was increased.
  • the rotational actuator according to the present invention is preferably fixed by tensioning 10 to 50% over the entire length before being fixed.
  • the rotary actuator according to the present invention can react quickly even at low temperature, and can also provide a fast rotational drive and provide a large rotation angle.
  • I is the moment of inertia and ⁇ is the angular velocity.
  • the diameter of the rotary driver has a sufficient rotation speed of 1,000 rpm or more when the diameter is 60 to 120 ⁇ m.
  • FIG. 30 is a graph showing the rotational speed and rotational energy of the rotary actuator manufactured from Preparation Example 8 according to the length.
  • the diameter of the rotary actuator of Production Example 8 was 100 ⁇ m
  • the average temperature was 46 ° C
  • the temperature difference was 1.08 ° C / cm.
  • the rotary actuator of the present invention has a very high rotational speed of 4,285 rpm and rotational energy density per length of 7.47 nJ / cm when having an optimized moment of inertia having a diameter of 100 ⁇ m and a length of 12 cm. It was also confirmed that the rotary actuator is not particularly limited as long as it has a length of 6 cm or more to have a sufficient rotation speed of about 2,000 rpm.
  • 31 is a graph showing the results of measuring the rotational speed of each cycle when the rotary actuator manufactured from Preparation Example 8, in which the lower end temperature is 53 ° C. and the lower end and upper end temperature difference is 13 ° C., is operated for a total of 8 hours. to be.
  • the rotary driver further has a paddle between the upper end and the lower end in order to generate an appropriate torque.
  • the paddle used 20 times heavier than the total weight of the rotary actuator.
  • the rotary actuator showed reversible and constant rotational driving without deterioration for 8 hours.
  • the initial velocity change (acceleration) of the paddle was 754 kPa, which is 15 times better than the driver made of carbon nanotube seal driven by electrochemical double layer potential (Non-Patent Document 4).
  • the interpolated graph is a diagram showing an example of the energy harvesting apparatus capable of converting thermal energy into electrical energy.
  • the energy harvesting apparatus further includes two coils and one magnetic body, and the magnetic material uses neodymium, and its weight is adjusted to have an optimized moment of inertia, and the size of the coil is It was prepared in consideration of the magnetic field of the magnetic material.
  • the energy harvesting device manufactured through this can be seen to generate a voltage according to the temperature, as shown in FIG.
  • the energy harvesting device under the same conditions as in FIG. 33 has 0.43 ⁇ J energy and 4 kW power when having an external resistance of 31 k ⁇ . This is confirmed through impedance matching.
  • V is the voltage generated when having an external resistance
  • I is the moment of inertia
  • is the rotational angular velocity
  • FIG. 35 is a graph illustrating a rectified voltage signal of a voltage generated from another energy harvesting device in a manufacturing example 13 under the same condition as that of FIG.
  • the interpolated diagram is a diagram of the rectifier circuit.
  • the energy harvesting device based on the rotary actuator according to the present invention has a power of 1.1 mW / cm 3 and an energy of 0.11 mJ / cm 3, which is significantly better than the energy harvesting device using a conventional temperature change. .
  • the expansion of the polymer and piezoelectric ZnO generates a force of 0.285 mW / cm 3 (non-patent document 6) from a temperature change of 43 ° C.
  • hybrid SMA and piezoelectric systems generate energy of 13.84 ⁇ J / cm 3 from a temperature change of 35 ° C. (Nonpatent literature 7).
  • the AC voltage generated by the irregular temperature gradient in the energy harvesting device was controlled by a conventional connected rectifier.
  • the regulated voltage was 0.28 V because the voltage was down by the connected rectifier.
  • the rotary drive according to the present invention twists the fibers and improves them into a coiled structure, thereby reacting immediately, sensitively and reversibly to temperature changes.
  • the rotary driver not only has excellent rotational speed, but also has excellent durability and stability, so that the rotational speed hardly decreases even after long-term use, and thus has excellent life characteristics. It is possible to provide various types of energy harvesting device with improved efficiency that can be recovered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Micromachines (AREA)

Abstract

본 발명은 회전형 구동기에 관한 것으로서 서로 반대방향으로 회전시키는 방식으로 제조된 비틀린(twist) 구조의 섬유를 포함하고, 상기 섬유는 중앙을 기준으로 상단부와 하단부로 나누어지고, 상기 섬유의 상단부와 하단부는 어느 하나 이상이 고정되어져 있으며, 상기 상단부와 하단부의 섬유는 각각 독립적으로 키랄성의 Z형 또는 키랄성의 S형 구조로 꼬인 형태(coil)를 갖는 것을 특징으로 하며, 온도 변화가 있을 때, 우수한 회전력을 가질 뿐만 아니라, 내구성 및 안정성이 우수하여 장기간 사용하여도 회전력의 감소가 미미하다. 또한, 본 발명에 따른 회전형 구동기는 전기방사를 통해 제조된 고분자 섬유를 단독으로 사용하거나, 상기 고분자 섬유를 단일 방향으로 배향한 고분자 시트를 비틀고(twist), 꼬인(coil) 형태로 제조한 것을 특징으로 하며, 일상적인 환경에 존재하는 온도차이로부터 공급되는 지속적인 온도구배를 이용하여, 가역적이면서 빠르고 효율적인 구동을 가지므로, 인위적인 온도변화를 제공하지 않아도 공기 중에 낭비되는 열 에너지를 효율적으로 기계적 에너지로 전환할 수 있다. 따라서 본 발명은 상기 회전형 구동기를 이용하여 열에너지를 전기에너지로 회수할 수 있는 효율 및 수명이 우수한 에너지 하베스팅 장치를 제공할 수 있다.

Description

온도 변화 또는 온도 구배에 의해 구동되는 회전형 구동기 및 이들을 이용한 에너지 하베스팅 장치
본 발명은 온도 변화 또는 온도 구배에 의해 구동되는 회전형 구동기 및 이들을 이용한 에너지 하베스팅 장치에 관한 것으로, 더욱 상세하게는 온도 변화 또는 온도 구배에 따라 반복적이고 연속적으로 회전하여 낭비되고 있는 주위 환경에서의 열 에너지를 기계적 에너지로 전환할 수 있는 회전형 구동기 및 이들을 이용하여 전기에너지를 생성할 수 있는 효율이 우수한 에너지 하베스팅 장치에 관한 것이다.
에너지 수확 기술이란, 주변 환경에 존재하거나, 낭비되고 있는 진동, 열, 빛, RF 등의 에너지를 전기에너지로 변환하는 기술을 의미한다. 이러한 기술이 크게 주목받고 있는 이유는 에너지 수확의 구조 및 성능이 지속적으로 진화하면서 수확되는 전기 에너지의 밀도가 점점 커지고 있기 때문이다.
에너지 수확 기술로는 열전 효과(thermoelectricity)를 이용하여 온도차이를 전기에너지로 변환할 수 있는 방법이 있다. 열전효과에 의한 방식은 양단의 온도차에 의해 전압이 발생되는 열전 재료를 이용하는 것으로, 사람의 체온이나 폐열로부터 전기 에너지를 얻을 수 있다는 장점이 있지만, 일정한 온도차이가 존재하여야만 전위차가 발생한다는 점과 효율이 매우 낮다는 등의 문제점이 존재한다.
상기와 같은 문제점을 해결하고자, 온도 변화(fluctuation)와 같은 열에너지, 전기화학적, 화학적, 열적 또는 습도로부터 접히거나, 상하로 움직이거나 회전하는 등의 구동(actuation)이 발생되는 다양한 인공근육들이 개발되어 왔다.
전기화학적, 열적 또는 빛으로 구동기를 자극하면 선형, 회전형 또는 수축형으로의 움직임을 나타낸다. 상기와 같은 구동기는 탄소나노튜브 섬유(비특허 문헌 1), 단일 및 다중필라멘트를 포함하는 고분자 섬유(비특허 문헌 2) 및 그래핀 산화물 섬유(비특허 문헌 3) 등이 비틀린 구조를 갖고 있는 구동기로 개발되어져 왔고, 이러한 섬유형 근육들은 우수한 굽힘 성, 선형 움직임 및 큰 회전각도와 같은 다양한 효과들이 발견되었다.
일예로, 비틀리고 꼬인 형태의 탄소 나노튜브 실(비특허 문헌 1, 4)은 종래의 일반적인 탄소나노튜브 실보다 약 1000 배 이상 더 큰 회전 구동을 나타냈다. 다시 말해, 상술한 형태의 탄소 나노튜브 실은 열적 에너지로부터 회전 구동이 유도되거나, 변화하는 온도에 의해서 자가 구동될 수 있는 기술이다.
그러나, 상기와 같은 구조의 탄소 나노튜브 실은 높은 전기전도 특성을 기반으로 전압을 인가하여 이의 제기에 따라 수축 또는 팽창하는 것으로, 전기 에너지를 열 에너지 또는 회전 에너지로 전환하는 것이다. 또한, 상기 수축 또는 팽창을 통해 발생되는 전환효율이 낮아, 일상생활 속에서 외부환경의 열 에너지를 충분히 활용할 수 없다는 문제가 존재한다.
상기의 한계점은 서술된 기술만의 것이 아니다. 현재까지 개발된 구동기는 내구성, 안정성, 수명 등의 특성들 모두 만족시키지 못하므로, 이를 개선하여 낭비되고 있는 공기 중의 열을 높은 효율 프로세스를 통하여 회전, 상하이동 및 전기로 변환될 수 있는 구동기가 개발된다면, 나노기술분야에서의 좋은 개선점이 될 것이다.
한편, 상기 탄소나노튜브를 기반으로 하는 구동기 외에, 온도변화로부터 에너지를 저장하는 초전 물질(비특허 문헌 5), 폴리머 팽창에 의한 하이브리드 압전 시스템(비특허 문헌 6) 및 형태기억합금(비특허 문헌 7) 등이 개발되어 있으나, 이들은 모두 세밀한 분극 과정이 요구되고, 열 에너지를 기계적에너지 또는 전기에너지로 전환하기 위해서 필요한 온도변화가 높아야 하며, 신축성 및 탄성이 낮아 빠르고 효율적으로, 주위 환경에 존재하는 열에너지를 활용할 수 없다는 문제가 존재하기 때문에, 상기 물질을 이용하여 에너지 전환 장치로 사용되기에는 한계가 존재한다.
따라서, 상기와 같은 문제점을 해결하면서, 일상적인 환경에서의 온도 변화에서도 구동이 가능하고, 가역적이면서 빠르며, 효율적으로 자가 구동할 수 있는 회전형 구동기를 만들고자 노력한바, 본 발명과 같은 회전형 구동기를 개발하기에 이르렀다.
(비특허문헌 1) Lima, M. D., et al. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles. Science 334, 928-932 (2012)
(비특허문헌 2) Haines, C. S., et al. Artificial Muscles from Fishing Line and Sewing Thread. Science 343, 868-872 (2014).
(비특허문헌 3) Cheng, H., et al. Moisture-Activated Torsional Graphene-Fibre Motor. Adv. Mater. (2014).
(비특허문헌 4) J. Foroughi, G. M. Spinks, G. G. Wallace, J. Oh , M. E. Kozlov, S. L. Fang, T. Mirfakhrai, J. D. W. Madden, M. K. Shin, S. J. Kim, R. H. Baughman, Science 2011, 334, 494.
(비특허문헌 5) Y. Yang, S. Wang, Y. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 6408.
(비특허문헌 6) X. Wang, K. Kim, Y. Wang, M. Stadermann, A. Noy, A. V. Hamza, J. Yang, D. J. Sirbuly, Nano Lett. 2010, 10, 4091.
(비특허문헌 7) D. Zakharov, G. Lebedev, O. Cugat, J. Delamare, B. Viala, T. Lafont, L. Gimeno, A. Shelyakov, J. Micromech. Microeng. 2012, 22, 094005.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 구동기의 구조를 개선함으로써, 온도변화에 따라 수축 또는 팽창이 가능하고, 상기 구동기의 부분 또는 전체를 가열하였을 때, 회전이 발생하는 회전형 구동기를 제공하는 것이다.
본 발명의 다른 목적은 상기 회전형 구동기를 이용하여 공기 중에 낭비되고 있는 열에너지를 전기에너지로 전환할 수 있는 에너지 하베스팅 장치를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 회전형 구동기를 이용하여 공기 중에 낭비되고 있는 열 에너지를 위치 에너지 또는 전기 에너지로 전환할 수 있는 에너지 하베스팅 장치를 제공하는 것이다.
또한, 본 발명의 목적은 주위 온도 차이에 의해 회전형 구동기 내 온도구배가 발생하게 되고, 이로 인해 구동하는, 열에 민감한 회전형 구동기를 제공하는 것이다.
본 발명의 다른 목적은 상기 회전형 구동기를 이용한 다양한 형태의 에너지 하베스팅 장치를 제공하는 것이다.
본 발명은 상기 목적을 이루기 위하여, 서로 같은 방향 혹은 반대방향으로 회전시키는 방식으로 제조된 비틀린(twist) 구조의 단일섬유 또는 다섬유를 포함하고, 상기 섬유는 중앙을 기준으로 상단부와 하단부로 나뉘어지고, 상기 섬유의 상단부와 하단부는 어느 하나 이상이 고정되어져 있으며, 상기 상단부와 하단부의 섬유는 각각 독립적으로 키랄성의 Z형 또는 키랄성의 S형 구조로 비틀린(twist) 구조 또는 꼬인 형태(coil)를 갖는 것을 특징으로 하는 회전형 구동기를 제공한다.
상기 섬유는 나일론, 형상기억 폴리우레탄, 폴리에틸렌 및 고무 등의 고분자 재로로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 한다.
상기 회전형 구동기의 상단부와 하단부가 모두 고정되어 있으면 온도변화에 의해 발생하는 상기 회전형 구동기의 수축 또는 팽창으로 회전력을 갖는 것을 특징으로 한다.
상기 회전형 구동기의 상단부와 하단부 중 어느 하나만 고정되어 있으면 온도변화에 의해 발생하는 상기 회전형 구동기의 수축 또는 팽창으로 회전력 및 길이 변화를 갖는 것을 특징으로 한다.
상기 비틀린 구조를 갖는 회전형 구동기는 편향각이 20 내지 60 °인 것을 특징으로 한다.
상기 회전형 구동기의 상단부와 하단부가 모두 고정되어 있는 경우, 상기 회전형 구동기는 고정되기 이전에 전체 길이에 대해 1 내지 25% 인장된 후, 고정되는 것을 특징으로 한다.
상기 회전형 구동기의 상단부와 하단부 중 어느 하나만 고정되어 있는 경우, 온도에 따른 길이 변화는 전체길이에 대해 5 내지 30%인 것을 특징으로 한다.
상기 회전형 구동기는 온도변화에 따라 100 내지 200,000 rpm의 회전속도를 갖는 것을 특징으로 한다.
또한, 본 발명은 상기 회전형 구동기 2 가닥으로 이루어진 2-플라이 구조를 가지고, 한 가닥처럼 거동하는 것을 특징으로 하는 2-플라이 구조의 회전형 구동기를 제공한다.
상기 회전형 구동기 2 가닥이 키랄성의 S형 구조인 경우, Z형으로 꼬아 2-플라이 구조를 형성하면 SZ 꼬임 형태를 가지는 것을 특징으로 한다.
상기 회전형 구동기 2 가닥이 키랄성의 Z형 구조인 경우, S형으로 꼬아 2-플라이 구조를 형성하면 ZS 꼬임 형태를 가지는 것을 특징으로 한다.
본 발명은 상기 다른 목적을 이루기 위하여, 온도변화에 의해 수축 또는 팽창하는, 제1항에 따른 회전형 구동기; 상기 회전형 구동기 내에 지점에 위치하고, 상기 구동기가 회전함에 따라 회전하는, 적어도 하나 이상의 자성체 또는 코일; 및 상기 회전형 구동기와 이격되어 배치되는 적어도 하나 이상의 코일 또는 자성체;를 포함하는 에너지 하베스팅 장치를 제공한다.
상기 회전형 구동기가 온도변화에 따라 수축 또는 팽창하면서, 회전함에 따라 상기 자성체가 회전하고, 상기 코일 내부를 통과하는 자속의 변화를 유도하여 전기에너지를 생성하는 것을 특징으로 한다.
상기 회전형 구동기는 양단이 모두 고정되어 있거나, 어느 하나의 말단만 고정되어 있고, 상기 회전형 구동기가 어느 하나의 말단만 고정된 경우, 상기 회전형 구동기의 고정되지 않은 어느 하나의 말단에 위치변동지지대를 더 포함하는 것을 특징으로 한다.
상기 자성체는 영구자석이고, 상기 자성체의 무게는 상기 회전형 구동기에 대해 10 내지 1000 배인 것을 특징으로 한다.
상기 위치변동지지대는 자성체인 것을 특징으로 한다.
상기 위치변동지지대와 이격되어 위치하고, 둘러싼 코일을 포함하고,
온도변화에 따라 상기 회전형 구동기가 인장되고 수축되면 위치변동지지대가 수평으로 움직이면서 상기 코일 내부를 통과하는 자속이 변하여 전기에너지를 생성하는 것을 특징으로 한다.
상기 에너지 하베스팅 장치의 하단부 및 상단부 중 어느 한 곳에 부착된, 판; 상기 판은 열림과 닫힘을 발생시키는 개폐구를 포함하고, 상기 회전형 구동기의 일 지점에 위치하고, 상기 판과 이격되어 배치된, 상기 개폐구와 동일한 모양의 적어도 하나의 핀;을 더 포함하는 것을 특징으로 한다.
상기 회전형 구동기가 온도에 따라 회전하게 되고, 상기 회전형 구동기의 회전에 의해 상기 핀이 상기 개폐구와 이격된 수평 위치에 위치하게 되어 개폐구로부터 유입되는 공기의 흐름을 차단하는 것을 특징으로 한다.
상기 개폐구가 구비된 각 판과 핀과의 이격거리는 0.1 내지 3 ㎝인 것을 특징으로 한다.
본 발명은 상기 또 다른 목적을 이루기 위하여, 양 말단이 가로축으로 고정되어 있고, 온도변화에 의해 수축 또는 팽창하는, 상기 회전형 구동기; 상기 회전형 구동기 내의 중앙 지점에 구비된 승강수단; 상기 승강수단 하부에 구비되고, 상기 승강수단과 연결되어, 상기 회전형 구동기가 회전함에 따라 위치변동을 갖는, 적어도 하나 이상의 자성체; 및 상기 자성체의 상하이동에 의해 전계를 발생시키는 적어도 하나 이상의 코일;을 포함한다.
상기 코일은 상기 자성체의 측면을 둘러싸는 원통형인 것을 특징으로 한다.
또한, 상기 코일은 상기 자성체의 측면 또는 하면에 위치하여 상기 자성체의 상하이동에 의해 전계를 발생시키는 것을 특징으로 한다.
상기 회전형 구동기가 온도변화에 따라 수축 또는 팽창하면서, 회전함에 따라 상기 자성체는 세로축 방향으로 위치변동을 갖고,
상기 자성체의 위치변동이 상기 코일과 자성체 간의 이격거리 변동을 야기하여, 상기 코일을 통과하는 자속의 변화가 유도되어 전기에너지를 생성하는 것을 특징으로 한다.
상기 자성체의 세로축 방향 위치변동 거리는 0.1 내지 3 ㎝인 것을 특징으로 한다.
상기 승강수단은 도르레인 것을 특징으로 한다.
또한, 본 발명은 상기 목적을 이루기 위하여, 적어도 하나의 고분자 섬유 또는 상기 고분자 섬유가 일 방향으로 배향되어 형성된 고분자 시트를 포함하고,
상기 적어도 하나의 고분자 섬유 또는 고분자 시트는 내측을 기준으로 상단부 및 하단부로 이루어지고,
상기 적어도 하나의 고분자 섬유 또는 고분자 시트의 상단부와 하단부는 어느 하나 이상이 고정되어져 있으며,
상기 적어도 하나의 고분자 섬유 또는 고분자 시트는 상단부와 하단부가 서로 같은 방향 혹은 반대방향으로 회전되어 제조된 비틀린(twist) 혹은 꼬인 형태(coil)를 가지는 것을 특징으로 하는 회전형 구동기로,
상기 회전형 구동기의 일부분과 다른 부분의 온도구배가 발생하면, 상기 회전형 구동기의 일부분과 다른 부분의 부피 차가 발생하여 연속적인 회전을 발생하는 것을 특징으로 하는 회전형 구동기를 제공한다.
상기 고분자 섬유는 나일론, 폴리우레탄, 폴리에틸렌 및 고무 등의 고분자 재료로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
상기 회전형 구동기의 일부분과 다른 부분과의 온도구배는 1 ℃이상 일 수 있다.
상기 회전형 구동기의 직경은 0.5 내지 200 ㎛일 수 있다.
상기 회전형 구동기의 최대온도가 20 내지 80 ℃일 수 있다.
상기 적어도 하나의 고분자 섬유 또는 고분자 시트의 상단부와 말단부가 서로 같은 방향 혹은 반대방향으로 회전되어 회전형 구동기로 제조될 때, 상기 고분자 섬유 또는 고분자 시트의 유리전이온도(Tg) 이상에서, 2,000 내지 60,000 turns/m의 꼬임수로 회전되어 제조되는 것 일 수 있다.
상기 회전형 구동기는 고정되기 이전에 전체 길이에 대해 10 내지 60% 인장된 후, 고정될 수 있다.
또한, 본 발명은 상기 회전형 구동기 2 가닥으로 이루어진 2-플라이 구조를 가지고, 한 가닥처럼 거동하는 것을 특징으로 하는 2-플라이 구조의 회전형 구동기를 제공한다.
또한, 본 발명은 상기 목적을 이루기 위하여, 온도구배에 의해 연속적인 회전을 제공하는 상기 회전형 구동기, 상기 회전형 구동기 내에 지점에 위치하고, 상기 회전형 구동기가 회전함에 따라 회전하는, 적어도 하나 이상의 자성체 또는 코일 및 상기 회전형 구동기와 이격되어 배치되는 적어도 하나 이상의 코일 또는 자성체;를 포함하는 에너지 하베스팅 장치를 제공한다.
상기 회전형 구동기가 온도구배에 의해 회전함에 따라 상기 자성체가 회전하고, 상기 코일 내부를 통과하는 자속의 변화를 유도하여 전기에너지를 생성할 수 있다.
상기 자성체는 영구자석이고, 상기 자성체의 무게는 상기 회전형 구동기에 대해 1 내지 1000 배일 수 있다.
상기 회전형 구동기는 양단이 모두 고정되어 있거나, 어느 하나의 말단만 고정되어 있고,
상기 회전형 구동기가 어느 하나의 말단만 고정된 경우, 상기 회전형 구동기의 고정되지 않은 어느 하나의 말단에 위치변동지지대를 더 포함할 수 있다.
상기 위치변동지지대는 자성체인 것을 특징으로 하고, 상기 위치변동지지대와 이격되어 위치하고, 둘러싼 코일을 포함하고, 온도구배에 따라 상기 회전형 구동기가 인장되고 수축되면 위치변동지지대가 수평으로 움직이면서 상기 코일 내부를 통과하는 자속이 변하여 전기에너지를 생성하는 것일 수 있다.
또한, 본 발명은 상기 목적을 이루기 위하여, 상기 에너지 하베스팅 장치의 상단부 및 하단부 중 어느 한 곳에 부착된, 판, 상기 판은 열림과 닫힘을 발생시키는 개폐구를 포함하고, 상기 회전형 구동기의 일 지점에 위치하고, 상기 판과 이격되어 배치된, 상기 개폐구와 동일한 모양의 적어도 하나의 핀을 더 포함하는 것을 특징으로 하는 에너지 하베스팅 장치를 제공한다.
상기 회전형 구동기가 온도구배에 따라 회전하게 되고, 상기 회전형 구동기의 회전에 의해 상기 핀이 상기 개폐구와 이격된 수평 위치에 위치하게 되어 개폐구로부터 유입되는 공기의 흐름을 차단할 수 있다.
상기 개폐구가 구비된 각 판과 핀과의 이격거리는 0.1 내지 3 ㎝일 수 있다.
또한, 본 발명은 상기 목적을 이루기 위하여, 양 말단이 가로축으로 고정되어 있고, 온도구배에 의해 회전하는 상기 회전형 구동기,
상기 회전형 구동기 내의 중앙 지점에 구비된 승강수단,
상기 승강수단 하부에 구비되고, 상기 승강수단과 연결되어, 상기 회전형 구동기가 회전함에 따라 위치변동을 갖는, 적어도 하나 이상의 자성체 및
상기 자성체의 상하이동에 의해 전계를 발생시키는 적어도 하나 이상의 코일을 포함하는 에너지 하베스팅 장치를 제공한다.
상기 코일은 상기 자성체의 측면을 둘러싸는 원통형일 수 있다.
상기 코일은 상기 자성체의 측면 또는 하면에 위치하여 상기 자성체의 상하이동에 의해 전계를 발생시킬 수 있다.
상기 회전형 구동기가 온도구배에 의해 회전함에 따라 상기 자성체는 상하이동을 갖고, 상기 자성체의 위치변동이 상기 코일과 자성체 간의 이격거리 변동을 야기하여, 상기 코일을 통과하는 자속의 변화가 유도되어 전기에너지를 생성할 수 있다.
상기 자성체의 상하이동 거리는 0.1 내지 3 ㎝일 수 있다.
상기 승강수단은 회전에너지를 위치에너지로 전환하는 장치일 수 있다.
본 발명에 따른 회전형 구동기는 섬유를 비틀고(twist), 꼬인(coil) 구조로 개선함으로써, 온도 변화에 즉각적이고, 민감하며 가역적으로 반응한다.
또한, 본 발명에 따른 회전형 구동기는 전기방사를 통해 제조된 고분자 섬유를 단독으로 사용하거나, 상기 고분자 섬유를 단일 방향으로 배향한 고분자 시트를 사용하여, 여기에 꼬임을 인가함으로써, 주위 환경에 존재하는 온도차이로부터 공급되는 지속적인 온도구배에 민감하고, 가역적이면서 빠르고 효율적인 구동을 가지기 때문에, 큰 온도변화를 제공하지 않아도 공기 중에 낭비되는 열 에너지를 효율적으로 기계적 에너지로 전환할 수 있다.
상기 회전형 구동기는 우수한 회전속도를 가질 뿐만 아니라, 내구성 및 안정성이 우수하여 장기간 사용하여도 회전속도의 감소가 거의 나타나지 않으므로, 수명특성이 우수하다. 따라서, 상기 회전형 구동기를 이용하여 열에너지를 전기에너지로 회수할 수 있는 효율이 향상된 다양한 형태의 에너지 하베스팅 장치를 제공할 수 있다.
도 1은 본 발명에 따른 회전형 구동기의 다양한 구조를 나타낸 도면이다.
도 2는 본 발명의 회전형 구동기를 이용한 일 실시예에 따른 에너지 하베스팅 장치의 단면도와 실제 모습을 나타낸 사진이다.
도 3은 본 발명의 다른 실시예에 따른 에너지 하베스팅 장치의 단면도(a)와, 위에서 바라본 모습(b) 및 측면에서 바라본 모습(c)을 촬영한 사진이다.
도 4는 본 발명의 또 다른 실시예에 따른 에너지 하베스팅 장치의 구조를 나타낸 단면도이다.
도 5는 본 발명에 따른 회전형 구동기의 구조를 상세히 나타낸 SEM 이미지이다.
도 6은 온도 변화에 따른 회전형 구동기의 회전속도 및 회전수(회전각)를 측정하기 위해, 제조예 5로부터 제조된 에너지 하베스팅 장치로부터 측정된 시간에 따른 온도, 전압 및 회전수를 나타낸 그래프이다.
도 7a는 온도변화에 따른 제조예 1, 제조예 4로부터 제조된 구동기(ZZ-C, ZS-C)의 회전속도를 나타낸 그래프이고, 도 7b는 인장 정도에 따른 제조예 1, 제조예 4로부터 제조된 구동기(ZZ-C, ZS-C)의 회전속도를 나타낸 그래프이며, 도 7c는 자성체의 관성 모멘트에 따른 제조예 1, 제조예 4로부터 제조된 구동기(ZZ-C, ZS-C)의 회전속도를 나타낸 그래프이며, 도 7d는 가열냉각 사이클 수에 따른 제조예 4로부터 제조된 구동기(ZS-C)의 회전속도를 나타낸 그래프이다. 이때, 제조예 4로부터 제조된 구동기(ZS-C)는 27 ㎛의 직경을 갖고, 전체 길이가 95 ㎜인 것을 사용하였다. 상기 도 7a에서 빈 도형은 온도에 따른 회전각에 대한 그래프이고, 내부가 채워진 도형은 온도에 따른 회전속도에 대한 그래프이다.
도 8은 본 발명에 따른 다양한 구조를 갖는 구동기(ZS-C, ZS-N, ZZ-C, ZZ-N)의 온도에 대한 회전속도를 비교한 결과를 나타낸 그래프이다.
도 9는 구동기 아래 부분에 위치한 회전을 막고 위치 변동만 가능하게 해주는 위치변동지지대의 무게가 미치는 영향을 확인하기 위하여, 각기 다른 무게를 갖는 위치변동지지대(1.2 g, 2.1 g, 3.1 g, 4.1 g)가 구비된 구동기(ZZ-C, 제조예 3)의 회전수와 인장거동(tensile actuation)을 시간에 따라 측정하여 나타낸 결과 그래프이다.
도 10a는 20% 늘어난 제조예 4로부터 제조된 구동기(ZS-C)의 실제이미지이고, 도 10b는 부분적으로 꼬인 구조가 풀려있는 비가역적으로 변한 제조예 4로부터 제조된 구동기(ZS-C)의 실제이미지이며, 도 10c는 15% 늘어난 제조예 4로부터 제조된 구동기(ZS-C)의 온도가 증가함에 따라 회전각의 변화를 나타낸 그래프이다.
도 11은 스프링 지수(spring index)가 본 발명의 구동기에 미치는 영향을 확인하기 위하여, 제조예 4로부터 제조된 구동기(ZS-C)의 늘어난(stretch) 정도에 따른 회전속도를 측정하여 비교한 결과 그래프이다.
도 12a는 습도에 따라 제조예 4로부터 제조된 구동기(ZS-C)의 회전속도를 측정하여 나타낸 그래프이고, 도 12b는 42.3% 습도 조건 하에서, 제조예 4로부터 제조된 구동기(ZS-C)의 전체 길이에 따른 회전속도를 측정하여 나타낸 그래프이다.
도 13a는 온도에 따른 제조예 1 및 제조예 4로부터 제조된 구동기(ZZ-C, ZS-C)의 회전 에너지를 비교한 그래프이고, 도 13b는 각기 다른 직경을 갖는 구동기(ZS-C, 제조예 4)의 관성 모멘트에 따른 회전속도(닫힌 도형)와 회전 에너지(열린 도형)의 관계를 나타낸 그래프이며, 도 13c는 제조예 4로부터 제조된 구동기(ZS-C)의 시간에 따른 온도 변화, 회전각 및 회전 에너지를 나타낸 그래프이며, 도 13d는 제조예 4로부터 제조된 구동기(ZS-C)의 직경에 따른 회전 에너지와 회전속도와의 관계를 나타낸 그래프이다.
도 14a는 구동기(ZS-C(제조예 4))와 비틀린 구조만을 갖는 형태의 구동기(ZS-N)를 전체적으로 가열하여 측정한 회전 에너지와 힘과의 관계를 비교한 그래프이고, 도 14b는 구동기(ZS-C(제조예 4))와 비틀린 구조만을 갖는 형태의 구동기(ZS-N)를 절반만 가열하여 측정한 회전 에너지와 힘과의 관계를 비교한 그래프이며, 도 14c는 구동기(ZZ-C(제조예 1))와 비틀린 구조만을 갖는 형태의 구동기(ZZ-N)를 절반만 가열하여 측정한 회전 에너지와 힘과의 관계를 비교한 그래프이며, 도 14d는 구동기(ZZ-C(제조예 1))와 비틀린 구조만을 갖는 형태의 구동기(ZZ-N)의 시간에 따른 온도변화, 회전각, 회전속도를 비교한 그래프이다. 이때, 도 14d는 27 ㎛ 직경을 갖는 15% 늘어난 제조예 1로부터 제조된 구동기(ZZ-C)를 사용하였고, 그래프 상에 흑색선으로 표기하였으며, 27 ㎛ 직경을 갖는 1.2 g 무게를 갖는 위치변동지지대 포함한 비틀린 구조만을 갖는 형태의 구동기(ZZ-N)를 사용하여, 상기 그래프 상에 적색선으로 표기하였다.
도 15는 제조예 6으로부터 제조된 에너지 하베스팅 장치를 시연한 것으로, 상기 장치는 102 ㎛의 ZS-C 구조의 구동기(제조예 4)를 포함하고, 상기 3 개의 코일과 원기둥 형태의 네오디윰 자성체를 사용하여 제조하였다.
도 16은 온도에 따라 27 ㎛ 직경의 ZS-C 회전형 구동기의 비틀림 강성(torsional rigidity)과 비틀림 탄성계수(torsional modulus of elasticity)를 나타낸 그래프이다.
도 17은 본 발명에 따른 2-플라이 구조의 회전형 구동기 중에서 2-플라이 구조의 회전형 구동기 중심을 기점으로 SZ 꼬임 형태와 ZS 꼬임 형태를 모두 갖는 2-플라이 구조의 회전형 구동기의 실제모습을 촬영하여 나타낸 사진이다.
도 18은 본 발명의 또 다른 실시예에 따른 에너지 하베스팅 장치의 단면도이다.
도 19는 제조예 7로부터 제조된 에너지 하베스팅 장치의 하베스팅 결과를 나타낸 도면이다.
도 20은 제조예 7로부터 제조된 에너지 하베스팅 장치에서 회전형 구동기의 풀림과 꼬임주기와 온도변화(19 ℃)의 주기를 5 Hz로 동일하게 맞추어 주었을 때, 생성되는 에너지를 측정한 결과를 나타내는 그래프이다.
도 21은 제조예 7로부터 제조된 에너지 하베스팅 장치에서 회전형 구동기의 풀림과 꼬임주기와 온도변화(8.2 ℃)의 주기를 5 Hz로 동일하게 맞추어 주었을 때, 생성되는 에너지를 측정한 결과를 나타내는 그래프이다.
도 22는 본 발명에 따른 회전형 구동기의 다양한 구조를 나타낸 도면이다.
도 23은 본 발명에 따른 회전형 구동기가 공기 중의 온도차이로부터 온도구배가 발생되어 회전구동하게 되는 원리를 나타낸 도면이다.
도 24는 고분자 섬유가 일 방향으로 배향된, 본 발명에 따른 고분자 시트의 제조과정을 나타내는 도면이다.
도 25는 하단부 온도가 53 ℃로 고정되어, 온도구배를 갖는 제조예 8로부터 제조된 회전형 구동기(12 ㎝ 길이, 100 ㎛직경)의 회전속도(■), 회전각(□)을 측정하여 나타낸 그래프이다.
도 26은 회전형 구동기의 상단부와 하단부의 온도차이가 13 ℃로 고정된 상태에서, 하단부 온도가 40~60 ℃일 때, 제조예 8로부터 제조된 회전형 구동기(12 ㎝ 길이, 100 ㎛직경)의 회전속도(■)를 측정하여 나타낸 그래프이다.
도 27은 서로 다른 형태의 제조예 8 내지 12로부터 제조된 회전형 구동기들의 상단부와 하단부 간 온도차이가 10 ℃이고, 상기 하단부의 온도가 52 ℃일 때, 회전속도를 측정하여 나타낸 그래프이다.
도 28은 제조예 8로부터 제조된 회전형 구동기는 고정되기 이전에 전체 길이에 대해 각각 0 내지 50% 인장(strain)하여, 고정한 것으로, 상기 각 회전형 구동기에 대한 회전스피드와 회전에너지를 측정하여 나타낸 그래프이다.
도 29는 제조예 8로부터 제조된 회전형 구동기의 중앙에 패들을 부착한 다음, 이의 직경을 달리하여, 관성모멘트(moment of inertia)에 따른 회전속도 및 회전에너지(torsional energy)를 측정하여 나타낸 그래프이다.
도 30은 길이에 따른 제조예 8로부터 제조된 회전형 구동기의 회전속도 및 회전에너지를 나타낸 그래프이다.
도 31은 하단부 온도가 53 ℃이고, 하단부와 상단부의 온도차이가 13 ℃인 제조예 8로부터 제조된 회전형 구동기를 총 8 시간동안 구동하였을 때, 각 사이클의 회전속도를 측정한 결과를 나타낸 그래프이다.
도 32는 제조예 8로부터 제조된 회전형 구동기의 상단부와 하단부 사이에 자성체를 구비한 제조예 13에 따른 에너지 하베스팅 장치의 시간에 따라 생성되는 전압(흑색선)과 평균 온도(청색선)를 나타낸 그래프이다. 이때, 내삽된 그래프는 열에너지를 전기에너지로 전환할 수 있는 상기 에너지 하베스팅 장치의 일예를 나타낸 도면이다.
도 33은 제조예 13에 따른 에너지 하베스팅 장치(평균온도 46 ℃)에서, 히트플레이트를 이용한 대류를 통해 12 ℃ 온도구배를 발생시켰을 때, 시간에 따라 생성되는 전압을 측정한 그래프이다.
도 34는 제조예 13에 따른 에너지 하베스팅 장치의 저항에 따른 전기적 힘과 전압을 측정하여 나타낸 그래프이다.
도 35는 도 33과 동일한 조건에서의 제조예 13에 따른 에너지 하베스팅 장치로부터 생성된 전압을 연결 정류기로 정류한 전압(rectified voltage) 신호를 나타낸 그래프이다. 내삽된 도면은 상기 정류 회로의 도면이다.
이하에서, 본 발명의 여러 측면 및 다양한 실시예에 대해 더욱 구체적으로 살펴보도록 한다.
본 발명의 일 측면은 서로 같은 방향 혹은 반대방향으로 회전시키는 방식으로 제조된 비틀린(twist) 구조의 단일섬유 또는 다섬유를 포함하고, 상기 섬유는 중앙을 기준으로 상단부와 하단부로 나뉘어지고, 상기 섬유의 상단부와 하단부는 어느 하나 이상이 고정되어져 있으며, 상기 상단부와 하단부의 섬유는 각각 독립적으로 키랄성의 Z형 또는 키랄성의 S형 구조로 비틀린 (twist) 구조 또는 꼬인 형태(coil)를 갖는 것을 특징으로 하는 회전형 구동기에 관한 것이다.
상기 회전형 구동기가 가질 수 있는 구조의 예는 도 1을 참조하여 아래에서 보다 상세히 설명한다.
상기 회전형 구동기는 두 말단이 고정되어 있고, 상단부와 하단부 모두 키랄성 Z형으로 꼬인 형태(ZZ-C)(도 1a)를 가질 수 있고, 상기 회전형 구동기는 두 말단이 고정되어 있고, 상단부와 하단부 모두 키랄성 S형으로 꼬인 형태(SS-C)를 가질 수 있다. 또는 상기 회전형 구동기는 두 말단이 고정되어 있고 상단부와 하단부가 반대방향 키랄성으로 꼬인 형태(ZS-C, SZ-C)(도 1d)일 수 있다.
또한, 상기 회전형 구동기는 하나의 말단만이 고정되어 있고, 상단부와 하단부가 모두 키랄성 Z형으로 비틀린(twist) 형태(ZZ-N)(도 1b)를 가질 수 있고, 상기 회전형 구동기는 하나의 말단만이 고정되어 있고, 상단부와 하단부가 모두 키랄성 S형으로 비틀린(twist) 형태(SS-N)를 가질 수 있으며, 또는 상기 회전형 구동기는 하나의 말단만이 고정되어 있고, 상단부와 하단부가 반대방향 키랄성으로 비틀린(twist) 형태(ZS-N, SZ-N)(미도시)를 가질 수 있다.
또한, 상기 회전형 구동기는 하나의 말단만이 고정되어 있고 상단부와 하단부 모두 키랄성 Z형으로 꼬인 형태(ZZ-C)(도 1c)일 수 있고, 하나의 말단만이 고정되어 있고 상단부와 하단부 모두 키랄성 S형으로 꼬인 형태(SS-C)일 수 있으며, 또는 하나의 말단만이 고정되어 있고 상단부와 하단부 반대방향 키랄성으로 꼬인 형태(ZS-C, SZ-C)일 수 있다.
이때, 본 명세서에서 상기 꼬인 형태는 스프링 또는 코일 형태를 의미하고, 보다 구체적으로 상기 비틀린 구조와 꼬인 구조의 차이는 상기 섬유의 직경에 따라 인가되는 회전수(turn/m)에 의해 결정되는 것을 특징으로 하며, 일 예로, 상기 섬유 직경 27 ㎛인 경우, 5,000 내지 12,000 회전수(turn)/m로 꼬아서 제조하면 비틀린(twist) 구조를 형성하고, 상기 섬유를 30,000 내지 60,000 회전수(turn)/m로 꼬아서 제조하면 꼬인(coil) 구조를 형성한다. 이외의 다른 직경을 갖는 섬유의 경우에서 구조에 따라 요구되는 회전수를 표 1에 상세히 나타내었다.
섬유 직경(㎛) 단섬유 꼬인 구조를 갖는 섬유 비틀린 구조를 갖는 섬유
23 회전수(turn/m) 0 10,000 56,000
수축 길이(%) 0 16.5 80
80 회전수(turn/m) 0 3,770 20,000
수축 길이(%) 0 14.1 75.1
106 회전수(turn/m) 0 3,000 15,000
수축 길이(%) 0 14.3 75.3
133 회전수(turn/m) 0 2,600 13,000
수축 길이(%) 0 14.4 75
상기 회전형 구동기의 구조 중에서 고정되지 않은 하나의 말단에는 위치변동지지대가 구비된다. 두 말단이 고정된 구조는 온도가 상승할 시, 선형 변위(translational displacement)와 구조가 풀어지는 회전을 방지하기 위함이고, 상기 위치변동지지대가 구비된 구조는 온도가 상승할 시, 선형 변위(translational displacement)는 허용하되, 구조가 풀어지는 회전을 방지하기 위한 것이다.
즉, 상기 회전형 구동기의 상단부와 하단부가 모두 고정되어 있으면 온도변화에 의해 발생하는 상기 회전형 구동기의 수축 또는 팽창으로 회전력을 갖고, 상기 회전형 구동기의 상단부와 하단부 중 어느 하나만 고정되어 있고, 다른 하나에 상기 위치변동지지대가 구비되어 있으면, 온도변화에 의해 발생하는 상기 회전형 구동기의 수축 또는 팽창으로 회전력 및 길이 변화를 갖는다.
상기 회전형 구동기의 상단부와 하단부가 모두 고정되어 있는 경우, 상기 회전형 구동기는 고정되기 이전에 전체 길이에 대해 1 내지 25% 인장된 후, 고정될 수 있는데, 이는 상기 회전형 구동기가 인장된 후, 상단부와 하단부가 모두 고정되면 상기 회전형 구동기의 코일 간에 충분한 거리가 형성된다. 이로 인해, 온도가 상승하여 상기 회전형 구동기의 팽창이 야기될 때, 상기 코일 간 마찰이 덜 발생할 뿐만 아니라, 상기 회전형 구동기의 표면적이 넓어져 더 많은 열을 흡수할 수 있어, 열 전환효율은 향상되고, 마찰에 의한 회전력 손실은 방지할 수 있다.
상기 회전형 구동기의 상단부와 하단부 중 어느 하나만 고정되어 있는 경우, 온도에 따른 길이 변화는 전체길이에 대해 5 내지 30%일 수 있다.
따라서 상기 각 구조에 따라서 회전형 구동기는 온도변화에 따라 발생하는 회전각 또는 회전속도와 같은 특성들이 달라지므로, 원하는 사용목적에 따라서 상기 구조로부터 적절히 선택하는 것이 바람직하다.
본 발명에 따른 회전형 구동기는 온도변화에 의존하여 회전하게 된다. 상기 회전형 구동기는 구동기 주위의 외부환경의 온도변화에 보다 즉각적으로 반응하게 되는데, 상기 온도변화를 제공하는 구동기의 외부환경은 특별히 이에 제한되지 않으나, 바람직하게는 기체 또는 액체일 수 있다.
또한, 상기 회전형 구동기가 온도가 증가하는 환경에 노출되면, 상기 구동기는 꼬인(coil) 구조 또는 비틀린(twist) 구조가 풀리면서 회전력을 갖게 된다. 상기 회전형 구동기의 주위 환경 온도가 상기 상승된 온도로부터 낮아지게 되면 상기 회전형 구동기는 풀렸던 꼬인(coil) 구조 또는 비틀린(twist) 구조가 다시 재형성되면서 상기 방향과 반대 방향의 회전력을 갖게 된다. 다시, 상기 구동기 주위 환경 온도가 상승하게 되면 상기 가열/냉각 사이클이 반복되게 된다.
이 방식으로, 상기 회전형 구동기는 능동적으로 냉각될 수 있는데, 이는, 열에너지가 상기 회전형 구동기에 의해 수동적으로 상기 열에너지를 소멸시키는 대신에, 기계적 에너지로 전환되어 상기 회전형 구동기가 냉각되기 때문이다.
즉 상기 회전형 구동기는 1 내지 150 ℃의 온도 변화량을 받게 되면, 100 내지 200,000 rpm을 제공할 수 있다.
또한, 상기 회전형 구동기는 상기 가열/냉각 사이클이 300,000 이상 반복되어도 비가역적으로 변하지 않으면서, 여전히 우수한 회전속도(100 내지 200,000 rpm)를 제공하는 것을 특징으로 한다.
상기 회전형 구동기 1 킬로그램 당 5,000 내지 15,000 W의 전력밀도를 제공하는데, 이는 일반적으로 사용되고 있는 전기 모터(~300 W/㎏)에 비해 약 40 배나 우수한 수치로, 본 발명에 따른 회전형 구동기는 전기적 특성 또한 우수하다는 것을 알 수 있다.
상기 섬유는 나일론, 형상기억 폴리우레탄, 폴리에틸렌, 고무 등의 고분자 재료이면 이에 제한되지 않으나, 보다 바람직하게는 나일론, 형상기억 폴리우레탄, 폴리에틸렌 및 고부로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하고, 가장 바람직하게는 나일론일 수 있다.
다만, 상기 ZS-C의 구조가 종래 CNT를 이용한 섬유에 적용된 바 있으나, 이러한 구조의 섬유는 큰 기계적 부하(load)를 갖게 되는 높은 온도에서 비가역적으로 변하여, 구동되지 못한다는 단점이 있기 때문에 회전형 액추에이터로 응용·적용되는데 있어, 한계가 존재하였다, 그러나, 본 발명에서 상기 섬유는 고분자 재료, 즉, 나일론, 형상기억 폴리우레탄, 폴리에틸렌, 고무로 이루어진 군으로부터 선택되는 어느 하나를 사용함으로써, 고온에서도 ZS-C 형태의 구동기가 풀리고(untwist), 다시 비틀리는(retwist) 가역적인 구조를 장기간 유지할 수 있고, 내구성 및 수명도 길어 다양한 분야에 적용 가능하다. 다시 말해, 고분자 재료인 나일론, 형상기억 폴리우레탄, 폴리에틸렌, 고무 중 어느 하나를 사용한 상기 구조를 갖는 회전형 구동기는 종래 구동기와는 달리 고온 또는 저온에 의해 형태가 변형되어도, 다시 초기 꼬인 형태로 돌아가는 가역적인 회전운동을 제공한다.
상기 섬유의 평균 직경은 특별히 이에 제한되지 않으나, 바람직하게는 10 nm 내지 그 이상이고, 보다 바람직하게는 10 nm 내지 300 ㎛이다.
또한, 상기 섬유가 키랄성 Z 또는 S형으로 꼬인 형태를 갖는 상기 회전형 구동기의 평균 직경은 상기 섬유의 평균 직경에 따라 달라지고, 특별히 이에 제한되지 않으나, 바람직하게는 1 ㎛ 내지 그 이상이고, 보다 바람직하게는 1 내지 150 ㎛일 수 있다. 이때, 상기 회전형 구동기는 직경의 크기에 따라 온도 변화에 의해 유도되는 회전력이 증가되므로, 상기 범위를 벗어나게 되면 열에너지가 회전 에너지로 전환되는 효율이 낮아지는 문제가 발생할 수 있다.
상기 섬유는 인가되는 회전수/m에 의해 비틀린 구조를 우선적으로 가진 후, 꼬인 구조를 형성하게 되는데, 상기 비틀린 구조에서 20 내지 60 도의 편향각(비틀림 각)을 갖도록 하는 것이 바람직하다. 이러한 비틀림은 섬유의 배열을 비틀림 방향으로 결정과 비결정 부분을 재배열하고 재배열된 결정과 비결정 구조는 외부 온도 변화에 따른 본 발명의 회전형 구동기 성능에 영향을 주기 때문이다.
또한, 상기 회전형 구동기에 구비되는 자성체의 무게는 상기 회전형 구동기의 회전력과 운동에너지에 영향을 미치지 않으므로 특별히 이에 제한되지 않으나, 바람직하게는 상기 회전형 구동기의 무게에 비해 1 내지 1000 배 무거운 자성체를 설치하고 구동하는 것이 바람직하다. 구체적으로, 상기 자성체의 무게에 상관없이 상기 회전형 구동기는 온도변화에 따라서 같은 회전력과 운동에너지를 제공한다.
다만, 상기 회전형 구동기에 구비된 자성체의 무게가 증가하게 되면 회전속도가 감소하나, 풀리고 꼬이는 주기는 길어지게 되므로, 결국 최종 회전력과 운동에너지는 작은 무게의 자성체가 구비된 상기 회전형 구동기와 동일하다. 따라서 본 발명의 회전형 구동기의 상술한 특성을 이용하면, 상기 자성체의 무게를 조절함으로써, 상기 회전형 구동기의 회전주기를 가열 냉각 주기에 맞게 제어할 수 있다는 장점이 존재한다.
또한, 상기 회전형 구동기는 단위길이당 낼 수 있는 운동에너지가 일정하기 때문에, 오히려, 길게 만들면 더 큰 에너지를 얻을 수 있다. 따라서 상기 회전형 구동기의 전체길이를 특별히 제한하지 않으나, 바람직하게는 0.5 내지 50 ㎝일 수 있고, 바람직하게는 2 내지 30 ㎝일 수 있다. 다만, 상기 회전형 구동기의 회전속도는 에너지의 제곱근에 비례하므로, 상기 회전형 구동기의 길이가 15 cm를 초과하게 되면 에너지는 길이에 비례하여 계속 증가하나, 속도의 증가양은 크지 않다. 그러나 상기 회전형 구동기는 다양한 장치 및 의복 등의 분야에 사용이 가능하므로, 요구되는 장소 또는 목적에 따라 길이를 적절히 선택하는 것이 가장 바람직하다.
또한, 본 발명은 상기 회전형 구동기 2 가닥을 이용하여 2-플라이 구조를 특징으로 하는 회전형 구동기를 제공한다. 상기 회전형 구동기 2 가닥으로 이루어진 2-플라이 구조를 가지고, 한 가닥처럼 거동하는 것을 특징으로 한다. 이러한, 2-플라이 구조의 회전형 구동기는 꼬이는 방향에 따라 다양한 구조를 가질 수 있다.
즉, 상기 회전형 구동기 2 가닥을 2-플라이 구조로 꼬일 때, 상기 각 회전형 구동기가 갖는 꼬임 혹은 비틀림 방향과 반대 방향으로 2 가닥을 꼬아 2-플라이 구조를 형성한다.
보다 구체적으로 상기 회전형 구동기 2 가닥이 키랄성의 S형 구조인 경우, Z형으로 꼬아 2-플라이 구조를 형성하면 SZ 꼬임 형태를 가질 수 있고, 상기 회전형 구동기 2 가닥이 키랄성의 Z형 구조인 경우, S형으로 꼬아 2-플라이 구조를 형성하면 ZS 꼬임 형태를 가질 수 있다. 이러한, 각 회전형 구동기의 꼬임 또는 비틀림 방향과 반대 방향으로 상기 회전형 구동기 2 가닥을 꼬아 2-플라이 구조를 형성하게 되면, 구조가 풀어지지 않고 장기간 유지되는 수명특성이 향상된다.
도 17은 본 발명에 따른 2-플라이 구조의 회전형 구동기 중에서 2-플라이 구조의 회전형 구동기 중심(joint)을 기점으로 SZ 꼬임 형태와 ZS 꼬임 형태를 모두 갖는 2-플라이 구조의 회전형 구동기의 실제모습을 촬영하여 나타낸 사진이다. 상기 도 17은 2-플라이 구조의 회전형 구동기의 일예로, 상기 2-플라이 구조의 회전형 구동기의 구조가 이에 제한되지 않는다.
<에너지 하베스팅 장치>
본 발명의 다른 측면은 상기 온도변화에 의해 수축 또는 팽창하는 회전형 구동기를 사용하여 열에너지를 전기에너지로 전환할 수 있는 에너지 하베스팅 장치에 관한 것이다.
도 2a는 본 발명의 제 1 실시예에 따른 에너지 하베스팅 장치의 구성을 나타낸 단면도이고, 도 2b는 본 발명의 제 1 실시예에 따른 에너지 하베스팅 장치의 실제 모습이다.
상기 도 2a 및 도 2b를 참조하여, 제 1 실시예에 따른 에너지 하베스팅 장치를 구체적으로 설명하면, 온도변화에 의해 수축·팽창하는, 상기 회전형 구동기(110); 상기 회전형 구동기(110) 내부에 위치하고, 상기 구동기(110)가 회전함에 따라 회전하는, 적어도 하나 이상의 자성체(120); 및 상기 회전형 구동기(110)와 이격되어 배치되며, 상기 자성체(120)가 회전하면서 내부를 통과하는 자속이 변하여 전기에너지(자기력, 전류)를 생성하는 적어도 하나의 코일(130)을 포함한다.
본 발명에 따른 에너지 하베스팅 장치는 자성체(120)와 코일(130) 사이의 상대적인 운동에 의해 전류가 유도되는 패러디(faraday) 전자 유도작용을 이용하여 온도 변화에 따라 발생하는 구동기(110)의 기계적 에너지를 전기 에너지로 발생시키는 장치에 관한 것으로, 상기 상술한 바와 같은 구조를 갖는 구동기(110)는 내부에 자성체(120)를 포함하고 있고, 상기 구동기(110) 내에 포함된 자성체(120)와 이격되어 배치된 코일(130)을 포함하는 에너지 하베스팅 장치는, 온도가 변화함에 따라 구동기(110)가 수축·팽창하면서 회전하여, 정지된 코일(130) 극성과 회전하는 자성체(120)의 극성이 상호 교차되면서 전기가 발생되게 된다. 이때, 상기 구동기(110)는 상단부(140)와 하단부(150)가 고정되어 있을 수도 있고, 상단부(140) 및 하단부(150) 중에서 어느 하나만이 고정될 수 있다. 이때, 상기 고정되지 않은 다른 말단은 위치변동지지대(151)를 더 포함할 수 있다.
상기 위치변동지지대(151)는 일반적으로 구동기(110)의 하단부 말단에 구비되어 상기 구동기(110)의 선형 변위(translational displacement)는 허용하고, 회전을 방지하여, 보다 안정적인 회전운동을 구동기에 제공한다. 즉, 위치변동지지대(151)는 상기 구동기(110)에 길이방향으로 스트레스를 가하여 길이 변화와 인장을 유도하여 외부 온도 변화에 따라 변형이 용이한 구조로 만들어 준다. 또한, 온도 변화시 발생하는 구동기(150)의 회전을 위치변동지지대(151)는 풀림을 방지하고 자성체의 큰 회전력 발생을 유도한다.
주지하는 바와 같이, 코일(130)의 양 끝에 검류계를 연결하여 코일(130)을 고정하고, 자성체(120)를 움직이면 상기 자성체(120)의 움직임에 따라 코일(130) 속을 흐르는 자속량(자기장)의 크기가 변화되며, 이 자속량(자기장)의 변화에 의해 코일(130)에 전류가 유도되는 전자기 유도(electromagnetic induction)작용으로 전기가 발생되는 즉, 코일(130)이 극성과 자성체(120)의 극성이 상호 교차되면서 전기를 발생시키게 된다.
상기 코일(130)은 보다 구체적으로, 도 2에 나타난 바와 같이, 구동기(110)의 일 측면에 소정의 거리만큼 이격되어 위치되어 있을 수 있다.
상기 자성체(120)는 영구자석이면 이에 제한되지 않으나, 본 실시예에서는 네오디윰 자성체를 사용한다. 또한, 상기 자성체(120)의 형태는 특별히 제한되지 않으나, 바람직하게는 막대 형태이거나 NS극이 좌우로 되어 있는 원기둥 형태일 수 있다.
상기 자성체(120)의 무게는 상기 에너지 하베스팅 장치에서 회전형 구동기(110)의 온도변화에 따른 풀리고(uncoil) 다시 꼬이는(coil) 사이클의 주기를 조절하는데 있어서 중요한 요소이므로, 상기 자성체(120)는 상기 회전형 구동기(110) 보다 10 내지 1000 배인 것이 바람직하다. 상기 자성체(120)의 무게 범위를 벗어나게 되면, 상기 회전형 구동기(110)의 사이클 주기, 회전속도 및 회전수가 감소하게 되어 외부 온도변화에 대한 에너지 전환 효율이 상대적으로 감소하게 된다.
상기 회전형 구동기의 길이는 1 내지 20 ㎝인 것이 바람직하다.
또한, 상기 자성체(120)와 코일(130) 간의 이격된 거리는 1 mm 인 것이 바람직한데, 상기 이격된 거리가 1 ㎜ 미만이면 코일에 의해 자성체의 회전력이 저하될 수 있다. 자성체의 자기장이 미치는 범위 안에서는 전기에너지를 유도 할 수 있지만 1 ㎜를 초과하게 되면 자성체(120)에 의해 코일(130) 내 자속변화를 유도함에 있어, 손실이 발생하므로 에너지 전환효율이 저하되는 문제가 발생한다.
본 발명의 에너지 하베스팅 장치에 온도에 따라 개폐되는 구성요소를 부가하여 파이프 등의 협소하면서 고온의 열이 일정하게 발생하는 장소나 일정한 따뜻한 바람이 발생하는 곳에 부착하기 극히 용이한 것이다.
이하, 제 2 실시예에 따른 에너지 하베스팅 장치에 대해 도 3을 참조하여 설명한다.
도 3은 본 발명의 제 2 실시예에 따른 에너지 하베스팅 장치의 단면도(a)와, 위에서 바라본 모습(b) 및 측면에서 바라본 모습(c)을 촬영한 사진이다.
본 발명의 제 2 실시예에 따른 에너지 하베스팅 장치는 상기 제 1 실시예에 따른 에너지 하베스팅 장치와 비교하여 전반적으로 유사하지만, 도 3에 도시된 바와 같이, 상기 구동기(210) 내에 포함된 자성체(220)를 감싸도록 설치되어 있다는 점에서 차이가 있다. 특히, 상기 자성체(220)는 3계 즉, 상기 구동기(210)에 구비된 자성체(220)와 소정의 거리만큼 이격되어 위치하면서, 상기 자성체(220)를 감싸며 구비된다.
이하, 제 3 실시예에 따른 에너지 하베스팅 장치에 대해 도 4를 참조하여 설명한다.
본 발명의 제 3 실시예에 따른 에너지 하베스팅 장치는 상기 제 1 내지 제 2 실시예에 따른 에너지 하베스팅 장치와 비교하여 전반적으로 유사하지만, 온도변화에 의해 수축 또는 팽창하는, 상기 회전형 구동기(410); 상기 회전형 구동기(410) 내부에 위치하고, 상기 구동기(410)가 회전함에 따라 회전하는, 적어도 하나 이상의 코일(420); 및 상기 회전형 구동기(410)와 이격되어 배치되며, 상기 코일(420)이 회전하면서 내부를 통과하는 자속이 변하여 전기에너지(자기력, 전류)를 생성하는 적어도 하나의 자성체(430)를 포함한다는 점에서 차이가 있다.
상기 자성(430)은 영구자석이면 특별히 이에 제한되지 않으나, 보다 바람직하게는 N, S 극을 갖는 막대형이거나, N 극의 자석과 S 극의 자석이 상기 회전형 구동기(410)를 중심으로 좌우에 설치되고, 상기 코일(420)과 이격되어 배치될 수 있다.
본 발명의 또 다른 측면은 가로축으로 고정되어 있고, 온도변화에 의해 수축 또는 팽창하는 회전형 구동기를 사용하여 열에너지를 위치에너지로 전환하고, 이를 다시 전기에너지로 전환하는 제 4 실시예에 따른 에너지 하베스팅 장치에 관한 것이다 이하, 제 4 실시예에 따른에너지 하베스팅 장치에 대해 도 18을 참조하여 설명한다.
도 18은 본 발명의 제 4 실시예에 따른 에너지 하베스팅 장치의 구성을 나타낸 단면도이다.
상기 도 18을 참조하여, 제 5 실시예에 따른 에너지 하베스팅 장치를 구체적으로 설명하면, 양 말단이 가로축으로 고정되어 있고, 온도변화에 의해 수축 또는 팽창하는, 회전형 구동기(510); 상기 회전형 구동기(510) 내의 중앙 지점에 구비된 승강수단(520); 상기 승강수단(520) 하부에 구비되고, 상기 승강수단(520)과 연결되어, 상기 회전형 구동기(510)가 회전함에 따라 위치변동을 갖는, 적어도 하나 이상의 자성체(530); 상기 자성체(530)의 상하이동에 의해 전계를 발생시키는 적어도 하나 이상의 코일(540)을 포함한다.
제 4 실시예에 따른 에너지 하베스팅 장치는 온도 변화에 따라 발생하는 상기 회전형 구동기(510)의 회전 에너지를 상기 승강수단(520)를 이용하여 위치에너지로 전환하고, 이를 상기 자성체(530)와 코일(540) 사이의 상대적인 운동에 의해 전류가 유도되는 패러디(faraday) 전자 유도작용을 이용하여 전기 에너지로 발생시킬 수 있다.
다만, 상기에서 상기 자성체(530)의 위치에너지를 전기에너지로 바꾸는 코일(540)과 같은 수단이 포함되지 않아도, 열에 의해 구동되는 상기 회전형 구동기(510)에서의 회전 에너지를 위치에너지와 같은 유용한 일로 전환할 수 있다. 그러나, 본 발명에서의 일 예로, 상기 회전형 구동기(510)가 가로축으로 고정되어 있고, 이로부터 상기 자성체(530)와 상기 코일(540)을 더 구비하여 전기에너지를 발생시키는 에너지 하베스팅 장치에 대해 설명하고자 한다.
다시 말해, 상기 제 4 실시예에 따른 에너지 하베스팅 장치는, 온도가 변화함에 따라 상기 회전형 구동기(510)가 수축 또는 팽창하면서 회전하게 되고, 이에 따라, 상기 회전형 구동기(510)의 중앙 지점에 연결되어 있는 승강수단(520)이 회전함에 따라 상기 승강수단(520)과 연결된 상기 자성체(530)가 상하이동(세로축 방향 이동)을 한다. 이는 열 에너지가 본 발명에 따른 회전형 구동기에 의해서 기계적(회전, 위치) 에너지로 전환됨을 의미한다.
상기 자성체(530)의 상하이동에 의해, 상기 자성체(530)과 코일(540)의 상대적인 운동에 의해 상기 코일(540)을 통과하는 자속의 변화가 유도되어 전기 에너지를 발생시키는 것을 특징으로 한다.
상기 코일(540)은 상기 자성체(530)의 상하이동에 의해 전계를 발생시킬 수 있는 위치라면 특별히 이에 제한되지 않으나, 바람직하게는 상기 자성체(530)의 상면, 하면, 측면에 구비되거나, 상기 자성체(530)의 측면을 둘러싸는 원통형 구조일 수 있다.
상기 자성체(530)의 측면을 둘러싸는 원통형 구조이면, 상기 자성체(530)의 상하이동시 상기 자성체(530)와 고정되어 있는 상기 원통형 코일(540) 간 상대적인 운동이 발생하여 상기 코일(540)을 통과하는 자속의 변화를 유도하므로, 전기 에너지를 발생시킬 수 있다.
상기 승강수단(520)은 특별히 이에 제한되지 않으나, 바람직하게는 도르레일 수 있다.
상기 자성체(530)의 상하이동 거리, 즉, 세로축 방향 위치 변동 거리는 0.1 내지 3 ㎝인 것이 바람직하다.
상기 자성체(530)는 영구자석이면 특별히 이에 제한되지 않으나, 보다 바람직하게는 N, S 극을 갖는 막대형이거나, 원통형일 수 있다.
한편, 종래 외부환경에 존재하는 열 에너지를 기계적 에너지 혹은 전기에너지로 전환하기 위하여 다양한 초전물질이나 압전물질 등이 개발되어 왔다. 그러나, 상술한 초전물질이나 압전물질은 에너지를 생성하기 위해 우선적으로 상기 초전물질이나 압전물질의 내부에 분극화를 유도하기 위한 제조공정이 요구되는데, 이들은 대부분 고전압(10 ㎷/㎝)을 가하거나, 결정화를 유도하기 위해 고온에서 스트레칭하는 등의 복잡한 공정이며, 이러한 과정들이 세밀하게 이루어져야 한다는 점에서 문제가 존재한다.
또한, 상기 초전물질이나 압전물질을 사용한 구동기는 열 에너지를 기계적 에너지 또는 전기에너지로 전환하기 위해 필요한 온도변화가 커야하고, 가열과 냉각이 반복적으로 이루어져야 구동하기 때문에, 인위적으로 온도를 가열하고 냉각하는 반복적인 사이클을 제공할 수 있는 장소나, 전체적으로 온도변화가 크게 발생하는 곳, 등에서만 사용가능하기 때문에, 일반 환경으로부터 열 에너지를 기계적 에너지로 전환하기 어렵다는 문제가 존재한다.
다른 하이브리드 실 또는 탄소나노튜브 실은 함입된 물질이 녹는 온도(Tm)가 낮다면 상온에서도 구동될 수는 있으나, 상기 하이브리드 실 또는 탄소나노튜브 실의 구동력이 극도로 감소되기 때문에, 일반적인 환경으로부터 에너지를 발생시키는 효율이 현저히 낮다. 즉, 종래 개발된 다양한 형태의 실은 일반적인 환경에서의 온도변화에 의해 구동되는 성능이 현저히 낮거나 적용하기 어렵다는 문제점들이 존재한다.
따라서, 상기와 같은 문제점을 해결하면서, 일상적인 환경에서의 온도 차이에서도 구동이 가능하고, 가역적이며, 빠르며, 연속적인 구동을 하는 회전형 구동기를 제조하고자 노력한 끝에, 본 발명과 같은 구조를 갖는 회전형 구동기를 발명하기에 이르렀다.
본 발명의 일 측면은 적어도 하나의 고분자 섬유 또는 상기 고분자 섬유가 일 방향으로 배향되어 형성된 고분자 시트를 포함하고, 상기 적어도 하나의 고분자 섬유 또는 고분자 시트는 내측을 기준으로 상단부와 하단부로 나뉘어지며, 상기 적어도 하나의 고분자 섬유 또는 고분자 시트의 상단부와 하단부는 어느 하나 이상이 고정되어져 있으며, 상기 적어도 하나의 고분자 섬유 또는 고분자 시트는 상단부와 하단부가 서로 같은 방향 혹은 반대방향으로 회전되어 제조된 비틀린(twist) 혹은 꼬인 형태(coil)를 가지는 회전형 구동기에 관한 것으로, 상기 회전형 구동기의 일부분과 다른 부분의 온도구배가 발생하면, 상기 회전형 구동기의 일부분과 다른 부분의 부피 차가 발생하여 연속적인 회전을 발생하는 것을 특징으로 한다.
구체적으로, 상기 회전형 구동기의 회전은 일부분과 다른 부분의 온도구배가 발생하면, 상기 일부분은 팽창되어 풀리고, 상기 다른 부분은 다시 감기게 되면서, 연속적인 회전을 제공할 수 있다.
이때, 상기 회전형 구동기는 상기 적어도 하나의 고분자 섬유 또는 고분자 시트의 상단부와 하단부가 서로 같은 방향으로 회전되어 제조된 형태가 온도구배에 의해, 열 에너지를 회전 에너지로 전환하는데, 우수한 효율을 나타내기 때문에, 가장 바람직한 형태일 수 있다.
즉, 본 발명에 따른 회전형 구동기는 주위환경의 온도변화로부터 상기 회전형 구동기 내에서 온도구배를 계속적으로 일어나게 할 수 있다면, 지속적인 전류의 흐름을 생성할 수 있기 때문에, 이는 일정하지 않은 주위 온도 변화로부터 전기에너지가 지속적으로 생성되게 할 수 있다.
본 발명은 상기 회전형 구동기 내에서 온도구배가 계속적으로 일어나게 하면서, 이로부터 연속적인 회전을 제공할 수 있는 구조로, 고분자 재료를 채용하고 있다.
즉, 상기 회전형 구동기의 일부분과 다른 부분의 온도구배가 발생하게 되면, 상기 일부분은 수직방향으로는 수축하게 되고, 고분자 섬유 또는 고분자 시트가 비틀린 방사형 방향으로는 팽창하게 되어 풀리게 되나, 상기 일부분을 제외한 다른 부분은 상대적으로 다시 감기게 된다. 이후, 상대적으로 과도하게 감기게 된 다른 부분의 회전에너지가 일부분으로 전달되어 상기 일부분이 다시 감기게 되어, 본 발명에 따른 회전형 구동기는 연속적인 회전을 제공할 수 있다.
본 발명에 따른 회전형 구동기는 열에 민감하게 반응하도록 하기 위해서, 적어도 하나의 고분자 섬유 또는 상기 고분자 섬유가 일 방향으로 배향되어 형성된 고분자 시트를 포함할 수 있다.
상기 고분자 섬유는 단섬유 또는 다섬유일 수 있고, 형상기억효과를 갖는 탄성섬유이면 특별히 이에 제한되지 않으나, 바람직하게는 나일론, 폴리우레탄, 폴리에틸렌 및 고무로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 한다. 이때, 상기 고분자 섬유 중에서 폴리우레탄이 전기방사 공정을 통해 가장 얇은 직경을 가질 수 있기 때문에, 이를 상기 회전형 구동기에 적용하면 회전속도가 가장 우수하다. 따라서, 본 발명에 따른 회전형 구동기는 상기 고분자 섬유로 폴리우레탄을 사용하는 것이 가장 바람직하다.
또한, 폴리우레탄은 유리전이온도(Tg)와 용융점(Tm) 간에 열적 팽창이 크고 온도변화에 따라 초기상태로 되돌아가려는 형상기억효과가 우수하며, 유리전이온도(Tg)가 25 ℃로 낮기 때문에, 상기 고분자 섬유 중에서 가장 바람직하다.
또한, 상기 단섬유 또는 다섬유의 고분자 섬유만을 사용하는 것보다, 상기 고분자 섬유가 일 방향으로 배향되어 형성된 고분자 시트를 사용하는 것이 가장 바람직한데, 이는 상기 전기방사를 통해 열에 민감하게 반응하면서 부피변화를 보이는 고분자를 마이크로 직경을 갖는 섬유로 뽑아 잘 배열된 시트로 제조한 다음, 상기 시트를 꼬아서 제조함으로써, 열에 민감한 회전형 구동기를 얻을 수 있기 때문이다.
상기 회전형 구동기의 직경은 0.5 내지 200 ㎛인데, 상기 회전형 구동기의 직경이 200 ㎛를 초과하게 되면 회전속도가 크게 즐어 들어 에너지 전환 효율이 감소하게 되고, 상기 직경이 0.5 ㎛ 미만인 회전형 구동기는 제조가 어려우며, 가능하다고 해도 공정이 복잡하고 민감하다는 문제가 존재한다.
또한, 상기 회전형 구동기는 적어도 하나의 고분자 섬유 또는 상기 고분자 섬유가 일 방향으로 배향되어 형성된 고분자 시트를 포함할 수 있는데, 상기 회전형 구동기가 상기 고분자 섬유로 이루어졌을 경우, 상기 고분자 섬유의 직경은 0.5 내지 200 ㎛일 수 있다. 즉, 상기 고분자 섬유의 직경이 0.5 ㎛ 미만이면 균일한 직경을 갖도록 제조하기가 어렵고, 상기 고분자 섬유의 직경이 200 ㎛를 초과하게 되면 회전속도가 현저히 떨어지게 된다.
또한, 상기 회전형 구동기가 상기 고분자 섬유가 일 방향으로 배향되어 형성된 고분자 시트일 경우, 상기 고분자 섬유의 직경이 0.5 ㎛미만이면 고분자 섬유들을 단일배향성을 갖도록 조절하기가 어렵고, 상기 고분자 섬유의 직경이 200 ㎛를 초과하게 되면 회전속도가 현저히 저하될뿐더러, 200 ㎛ 이상의 직경을 갖는 회전형 구동기가 제조되기 때문에 회전속도가 현저히 떨어지게 되게 된다. 따라서, 상기 고분자 시트를 형성하는 고분자 섬유의 직경은 1~10 ㎛인 것이 바람직하다.
구체적으로, 상기 고분자 시트를 이용할 경우, 상기 고분자 섬유가 일 방향으로 배향되어 형성된 고분자 시트에 꼬임을 인가하여 비틀린(twist) 또는 꼬인(coil) 형태의 회전형 구동기를 제조하게 되는데, 상기 고분자 시트를 이루고 있는 고분자 섬유는 꼬임이 인가되는 방향으로 고분자 체인이 재정렬하게 된다.
상기와 같이, 제조된 회전형 구동기에 상기 고분자 시트의 유리전이온도(Tg) 이상의 열이 제공되면, 상기 고분자 시트를 형성하는 고분자 섬유는 초기상태(꼬임이 인가되기 이전 상태)로 회복하고자 하는 형상기억효과에 따라 행동하고자 하고, 고분자 체인은 엔트로피가 증가하는 방향으로 상기 고분자 체인이 꼬이게 된다.
다시 말해, 상기 형상기억효과에 의해 원래의 형태(꼬임이 인가되기 이전 상태)로 되돌아가려는 성질과 상기 고분자 체인의 엔트로피 증가방향 즉, 고분자 체인이 꼬일려고 하는 방향이 동일하기 때문에, 상기 회전형 구동기가 가열되면, 상술한 두 성질의 '시너지 효과'에 의해 상기 회전형 구동기는 온도구배의 발생에 따라 더 큰 스트로크(stroke)로 회전을 제공할 수 있다.
따라서, 상술한 효과로 인해, 단순히 고분자 섬유만 꼬아서 제조된 회전형 구동기보다 큰 스트로크(stroke)로 회전을 하게 되므로, 고분자 섬유보다 상기 고분자 시트를 사용하는 것이 바람직하다.
또한, 상기 단일배향성을 갖는 고분자 시트를 포함하는 회전형 구동기는 단순히 적어도 하나의 고분자 섬유만 꼬아서 제조된 회전형 구동기보다 배향성을 갖고 있어, 표면적도 넓고, 열에 더 민감하기 때문에, 우수한 회전구동을 나타낼 수 있다.
상기 회전형 구동기에서 단일배향성을 갖는 고분자 시트는 고분자 용액을 전기방사하여, 적어도 하나의 고분자 섬유가 일 방향으로 배향되어 형성된 것으로, 도 24에 제조과정을 자세히 나타내었다.
도 24를 참조하면, 우선, 적어도 하나의 고분자 섬유가 단일 방향으로 배향된 고분자 시트를 전기방사를 통해 제조할 수 있다. 이때, 상기 고분자 섬유는 0.5 내지 200 ㎛ 직경을 갖는 것이 바람직한데, 상기 고분자 섬유의 직경이 0.5 ㎛미만이면 고분자 섬유들을 단일배향성을 갖도록 조절하기가 어렵고, 상기 고분자 섬유의 직경이 200 ㎛를 초과하게 되면 회전속도가 현저히 저하될뿐더러, 200 ㎛ 이상의 직경을 갖는 회전형 구동기가 제조되기 때문에 회전속도가 현저히 떨어지게 된다. 따라서, 상기 고분자 시트를 형성하는 고분자 섬유의 직경은 바람직하게는 1~10 ㎛일 수 있다.
보다 구체적으로, 고분자 방사용액을 전기방사함으로써, 본 발명의 회전형 구동기를 구성하는 고분자 섬유 또는 상기 고분자 섬유로 형성된 고분자 시트를 제조할 수 있는데, 상기 고분자 방사용액에 고전압을 가하여 마이크로 크기의 직경을 가지는 섬유를 제조하는 공정으로서 공지의 방법에 따라 실시할 수 있다. 기본적으로 정전기를 이용한 전기적 힘을 사용하고, 콜렉터에 모터와 같은 장치를 사용함으로써 기계적인 힘으로 연신의 효과도 줄 수 있다. 그러나, 본 발명에서는 상기 전기방사를 통해 제조된 섬유가 가장 바람직하다. 왜냐하면 우수한 회전속도 및 효율을 갖는 회전형 구동기를 제조하기 위해서는 상기 회전형 구동기 내부의 고분자 체인의 배열을 유도하여야 하는데, 전기방사를 통해 제조할 경우, 전기방사에 의해 야기된 잡아당기는 힘(pulling force)에 의해서 마이크로 직경의 상기 고분자 섬유들을 단일 방향으로 배향하여 제조할 수 있고, 여기에 꼬임을 인가함으로써, 상기 인가된 꼬임의 방향 즉, 나선형 방향으로 재정렬하는 방법으로 단순하고 효과적으로 유도할 수 있기 때문이다.
상술한 바와 같이, 상기 단일 방향으로 배향된 고분자 시트를 구성하고 있는 고분자 섬유는 전기방사를 통해 제조함으로써, 단일 방향으로 배향된 고분자 체인을 유도할 수 있다. 여기서, 단일 방향이란, 상기 회전형 구동기의 세로축 방향을 의미하며 이러한 배향성은 도 24에 나타나있다.
다음, 상기와 같은 단일 배향성을 갖는 고분자 시트에 꼬임이 인가되면, 상기 고분자 시트가 꼬이면서, 상기 고분자 시트 내에 배향되어 있던 고분자 체인도 상기 꼬임 방향으로 꼬이게 되는데, 다시 말해, 상기 고분자 시트에 인가된 꼬임 방향 즉, 나선형 방향에 따라 상기 단일 방향이었던 고분자 체인의 배향성이 재정렬 된다.
상기 본 발명의 고분자 시트에 형성된 고분자 체인의 배향성으로 인해, 상기 고분자 시트를 포함하는 회전형 구동기에 온도구배가 발생하게 되면 상기 배향성을 갖는 고분자 체인이 엔트로피가 증가하는 방향으로 꼬일려고 하는 성질과 형상기억효과에 의해 원래의 형태(나열되어 있던 상태)로 되돌아가려 하는 성질이 동일 방향으로 진행되므로 상기 두 성질의 '시너지 효과'가 발생하게 된다. 따라서, 상기 회전형 구동기가 길이방향으로는 수축하고, 부피는 팽창하는, 보다 이상적인 구동을 유도하기 때문에, 상기 회전형 구동기는 더 큰 회전에너지를 제공할 수 있다.
상기 고분자 섬유가 단일 배향성을 갖도록 하기 위해서, 상기 전기방사는 방사 노즐과 콜렉터 간의 거리가 5~30 ㎝일 때, 인가 전압이 10~20 ㎸인 조건에서 전기방사하는 것이 바람직하다.
상기 고분자 섬유 또는 고분자 시트의 상단부과 하단부를 각각 전기모터와 지지체에 고정하여, 상기 고분자 섬유 또는 고분자 시트의 상단부과 하단부를 서로 같은 방향 혹은 반대방향으로 회전시켜, 비틀리거나 꼬인 형태의 회전형 구동기를 제조할 수 있다. 이때, 상기 고분자 섬유 또는 고분자 시트의 유리전이온도(Tg) 이상에서, 2,000 내지 60,000 turns/m의 꼬임수로 회전하여 제조하는 것이 바람직한데, 일예로 상기 고분자 섬유 또는 고분자 시트가 폴리우레탄일 경우, 30 내지 60 ℃에서 수행하는 것이 바람직하다.
상기 회전형 구동기의 일부분과 다른 부분과의 온도구배는 회전속도를 제공하는 1 ℃ 이상이면 특별히 이에 제한되지 않으나, 바람직하게는 3 내지 30 ℃이면 충분히 우수한 회전속도를 제공할 수 있다.
본 발명에서 온도구배란, 특정 지점(일부분)으로부터 다른 부분으로 열이 흐르면서 그 방향에 온도의 차이가 발생하게 되는 것으로, 상기 특정 지점을 본 발명에서는 일부분이라고 하였다.
따라서, 상기 회전형 구동기는 온도구배에 의해 기계적 에너지를 발생하기 때문에, 상기 온도가 가장 높은 지점인 일부분의 길이 또는 면적은 특별히 이에 제한되지 않으나, 구체적으로 상기 일부분과 다른 부분과의 길이 비율은 0.1-1 : 1일 수 있다. 이때, 상기 다른 부분은 상기 일부분으로부터 온도구배 즉, 상기 일부분으로부터 다른 부분으로 열이 흐르면서 그 방향에 온도의 차이가 발생하게 되고, 상기 일부분은 팽창되어 풀리고, 상기 다른 부분은 다시 감기게 되면서, 연속적인 회전을 제공할 수 있다.
온도구배가 발생하지 않고, 전체적으로 가열될 경우, 회전에너지는 발생되지 않고, 길이변화만이 생성되기 때문에, 전체적으로 가열될 경우, 회전력이 제공되지 않는다는 문제가 있다.
상기 일부분이 차지하는 길이의 비율이 다른 부분에 비해 현저히 높아지게 되면, 즉, 전체적으로 가열될 경우, 단순히 가역적인 위치에너지(길이 변화)만을 제공할 뿐, 회전 에너지가 생성되지 않는다. 또한, 온도가 다시 저하되어야만 전체적인 길이가 다시 줄어들기 때문에 가역적이긴 하나, 연속적인 위치에너지 제공이 불가능하다.
또한, 상기 회전형 구동기의 최대온도는 상기 회전형 구동기에 포함되는 고분자 섬유 또는 고분자 시트의 종류에 따라 적절히 선택될 수 있으나, 바람직하게는 상기 고분자 섬유 또는 고분자 시트의 유리전이온도(Tg) 이상이면 특별히 이에 한정되지 않는다. 바람직하게는 20 내지 80 ℃이면, 회전속도를 제공할 수 있다. 일예로, 폴리우레탄 섬유가 일방향으로 배향된 고분자 시트에 꼬임을 인가하여 제조된 회전형 구동기의 경우, 상기 폴리우레탄의 유리전이온도(Tg)가 30.6 ℃이기 때문에, 30 내지 80 ℃이면 충분한 회전속도를 제공할 수 있고, 보다 바람직하게는 45 내지 60 ℃에서 가장 우수한 회전속도를 제공한다.
상기 회전형 구동기의 구조를 도 22에 자세히 나타내었다. 이를 참조하여 보다 상세히 설명하자면, 상기 회전형 구동기는 내측을 기준으로 상단부와 하단부로 나뉘어지고, 상기 상단부와 하단부의 꼬임 방향에 따라 다양한 형태의 회전형 구동기를 제조할 수 있다.
도 22a, 도 22b 및 도 22c에 나타난 바와 같이, 상기 회전형 구동기의 상단부과 하단부이 모두 동일한 방향(Z형 또는 S형)으로 꼬아 제조된 형태이거나, 도 22d 및 도 22e에 나타난 바와 같이, 상기 상단부과 하단부이 서로 다른 방향으로 제조(어느 하나가 Z형이면 다른 하나는 S형인 키랄성 구조)된 형태일 수 있다.
또한, 상기 회전형 구동기는 코일이 형성되지 전까지 꼬아 만든 비틀린 형태(twist)(도 22a)를 갖거나, 상기 비틀린 형태(twist)에서 꼬임을 더 인가하여 꼬인 형태(coil)(도 22b, c, d 및 e)로 제조될 수 있다.
이때, 본 명세서에서 상기 "비틀린 형태(twist)"와 "꼬인 형태(coil)"라는 용어는 상기 회전형 구동기를 구성하고 있는 고분자 섬유 또는 고분자 시트에 전기모터를 이용하여 회전(꼬임)을 인가하여 제조된 형태를 나타내는 것으로, 상기 고분자 섬유 또는 고분자 시트의 직경에 따라 인가되는 회전 즉, 회전수(turn/m)(이하, '꼬임수'라고도 한다.)에 의해 결정된다. 보다 구체적으로 상기 직경이 100 ㎛인 고분자 섬유의 경우, 12,000 내지 18,000 회전수(turn/m)를 인가하면 비틀린 형태(twist)로 제조되는데 반해, 상기 고분자 섬유에 상기 18,000 회전수(turn/m)를 초과한 25,000 내지 30,000의 과도한 회전수(turn/m)가 인가될 경우, 비틀린 형태(twist) 형태에서 나아가 스프링 혹은 코일과 같은 꼬인 형태(coil)로 제조되는 것을 알 수 있다. 이외의 다른 직경을 갖는 고분자 섬유의 경우에 요구되는 회전수를 아래 [표 2]에 상세히 나타내었다.
이때, 상기 회전형 구동기는 상기 적어도 하나의 고분자 섬유 또는 고분자 시트의 상단부와 하단부가 서로 같은 방향으로 회전되어 제조된 형태가 온도구배에 의해, 열 에너지를 회전 에너지로 전환하는데, 가장 효율이 높기 때문에, 가장 바람직한 형태이다.
또한, 상기 회전형 구동기는 도 22a, 도 22b 및 도 22d와 같이, 두 말단이 고정되거나, 도 22c 및 도 22e와 같이, 어느 하나의 말단만이 고정된 구조를 가질 수 있다. 이때, 고정되지 않은 다른 말단에는 위치변동지지대가 구비될 수 있다.
구체적으로, 상기와 같이 두 말단이 고정된 회전형 구동기의 경우, 회전형 구동기 내부에 온도구배가 발생하게 되면, 상하 이동과 같은 선형변위(translational displacement) 즉, 위치에너지의 발생을 방지하고, 상기 회전형 구동기의 꼬임구조가 과도하게 풀려, 비가역적인 상태가 되는 것을 방지하기 위함이다.
또한, 어느 하나의 말단만이 고정되고, 고정되지 않은 다른 말단에 위치변동지지대가 구비된 경우, 상기 회전형 구동기 내부에 온도구배가 발생하게 되면, 상하이동과 같은 선형변위 즉, 위치에너지의 발생은 허용하되, 상기 회전형 구동기의 꼬임구조가 과도하게 풀려, 비가역적인 상태가 되는 것을 방지하기 위함이다.
다시 말해, 상기 회전형 구동기의 상단부과 하단부이 모두 고정되어 있으면 온도구배에 의해 발생하는 상기 회전형 구동기의 수축 또는 팽창으로 인해 회전에너지만을 갖게 되는데 반해, 상기 회전형 구동기의 상단부과 하단부 중에서 어느 하나만 고정되어 있고, 고정되지 않은 다른 말단에 위치변동지지대가 구비된 경우에는 온도구배에 의해 발생하는 상기 회전형 구동기의 수축 또는 팽창으로 회전에너지 및 상하이동에 의한 위치에너지 모두를 갖게 된다.
고분자 섬유의 직경(㎛) 단섬유 비틀린 형태(twist) 꼬인 형태(coil)
80 회전수(turn/m) 0 22,000 30,000
100 회전수(turn/m) 0 18,000 25,000
120 회전수(turn/m) 0 9,000 15,000
상기 회전형 구동기의 상단부과 하단부이 모두 고정되어 있는 경우, 상기 회전형 구동기는 고정되기 이전에 전체 길이에 대해 10 내지 60% 인장된 후, 고정되는 것이 바람직하다. 왜냐하면 상기 회전형 구동기가 상기 범위로 인장된 후, 상단부과 하단부이 모두 고정되면 상기 회전형 구동기의 코일 간에 충분한 거리가 형성되기 때문이다.
즉, 상기 회전형 구동기 내부에 온도구배가 발생하면, 상기 회전형 구동기의 일부가 팽창되어 회전함으로써 회전 에너지를 발생하게 된다. 이때, 상기 회전형 구동기 내 코일 간에 형성된 거리 때문에, 상기 코일 간 마찰이 덜 발생하게 되고, 상기 회전형 구동기의 표면적이 넓어져 더 많은 열을 흡수할 수 있어, 열 전환효율은 향상되고, 마찰에 의한 회전력 손실을 방지할 수 있다.
상기 회전형 구동기의 상단부 및 하단부 중 어느 하나만 고정되어 있는 경우, 온도구배 발생시, 상기 회전형 구동기의 상하이동에 의한 위치에너지 변화가 발생하게 되는데, 이는 회전형 구동기의 길이변화에 의한 것이다. 즉, 상기 회전형 구동기의 길이변화는 전체길이에 대해 10 내지 60%일 수 있다.
따라서 상기 회전형 구동기의 각기 다른 구조에 따라서 온도구배에 의해 전환되는 에너지의 종류가 위치에너지 또는 회전에너지로 달라질 뿐만 아니라, 전환되는 회전에너지의 양 즉, 회전각, 회전속도 등이 달라지게 되기 때문에, 원하는 사용목적에 따라서 상기 회전형 구동기의 구조들 중에서 적절히 선택되는 것이 바람직하다.
본 발명에 따른 회전형 구동기는 외부의 온도차이에 의존하여 구동하게 된다. 상기 회전형 구동기는 구동기 주위의 외부환경의 온도차이에 보다 즉각적으로 반응하게 되는데, 상기 온도차이를 제공하는 구동기의 외부환경은 특별히 이에 제한되지 않으나, 바람직하게는 기체 또는 액체일 수 있다.
본 발명에 따른 회전형 구동기는 종래 회전형 구동이 가능한 다양한 구동기와는 달리 풀리고(untwisting), 다시 꼬이는(re-twisting) 두 단계에서의 회전속도가 거의 유사하다.
본 발명에 따른 회전형 구동기를 사용하는 회전모듈은 회전강도(torsional rigidity)를 사용하는 아래 [식 1]을 통해 계산할 수 있다. 상기 회전모듈을 구하기 이전에 회전 진동 주기는 아래 [식 2]에서 계산할 수 있다.
[식 1]
S=kAir(1/(LAir,1)+2/(LAir,2))
상기 식에서 kAir는 회전모듈이고,
LAir,1과 LAir,2는 같은 온도에서의 길이이다.
[식 2]
t=2π(I/S)1/2
상기 식에서,
t는 회전 진동 주기(torsional oscillation period)이고,
I는 패들의 관성 모멘트이며,
S는 회전강도(rigidity)
<회전형 구동기의 원리>
본 발명에 따른 회전형 구동기는 주위 환경으로부터 낭비되고 있는 열 에너지를 운동에너지 또는 회전에너지로 회수하기 위한 것이다. 즉, 온도변화가 인위적 또는 주기적으로 발생되는 가열기 및 냉각기 내부와 같은 장소뿐만 아니라, 온도변화가 미미한 평범한 일상생활과 같은 곳에서도 구동할 수 있는 것을 특징으로 한다. 즉, 온도변화가 미미한 곳은 대류와 같은 공기 중의 미미한 온도 차이가 발생하게 되고, 이러한 온도 차이로 인해, 상기 회전형 구동기 내부의 일부분과 다른 부분간에 발생하는 온도차이 즉, 온도구배 때문에 구동하게 된다.
본 발명의 회전형 구동기는 상기와 같이 상기 회전형 구동기의 일부분과 다른 부분의 온도구배가 발생하게 되면, 상기 일부분은 수직방향으로는 수축하게 되고, 고분자 섬유 또는 고분자 시트가 비틀린 방사형 방향으로는 팽창하게 되어 풀리게 되나, 상기 일부분을 제외한 다른 부분은 상대적으로 다시 감기게 된다. 이후, 상대적으로 과도하게 감기게 된 다른 부분의 회전에너지가 일부분으로 전달되어 상기 일부분이 다시 감기게 되어, 본 발명에 따른 회전형 구동기는 연속적인 회전을 제공함으로써, 공기 중의 열 에너지를 위치에너지 또는 회전에너지와 같은 기계적 에너지로 전환할 수 있다.
상기 회전형 구동기의 일부분과 다른 부분과의 온도구배가 1 ℃이상이면, 충분히 우수한 회전속도를 제공할 수 있으나, 우수한 회전속도를 제공하기 위해서는 상기 온도구배가 바람직하게 3 내지 30 ℃일 수 있다.
또한, 상기 회전형 구동기의 최대온도는 상기 회전형 구동기에 포함되는 고분자 섬유 또는 고분자 시트의 종류에 따라 적절히 선택될 수 있으나, 바람직하게는 상기 고분자 섬유 또는 고분자 시트의 유리전이온도(Tg) 이상이면 특별히 이에 한정되지 않으나, 바람직하게는 20 내지 80 ℃이면, 회전속도를 제공할 수 있다. 일예로, 폴리우레탄 섬유가 일방향으로 배향된 고분자 시트에 꼬임을 인가하여 제조된 회전형 구동기의 경우, 상기 폴리우레탄의 유리전이온도(Tg)가 30.6 ℃이기 때문에, 30 내지 80 ℃이면 충분한 회전속도를 제공할 수 있고, 보다 바람직하게는 45 내지 60 ℃에서 가장 우수한 회전속도를 제공한다.
상기 회전형 구동기는 온도구배에 의해 기계적 에너지를 발생하기 때문에, 상기 온도가 가장 높거나 낮은 지점인 일부분의 길이 또는 면적은 특별히 제한되지 않으나, 구체적으로 상기 일부분과 다른 부분과의 길이 비율은 0.1-1 : 1일 수 있다. 이때, 상기 다른 부분은 상기 일부분으로부터 온도구배 즉, 상기 일부분으로부터 다른 부분으로 열이 흐르면서 그 방향에 온도의 차이가 발생하게 된다.
도 23은 본 발명에 따른 회전형 구동기가 주위 환경에 존재하는 온도차이로부터 내부에 지속적인 온도구배를 발생시켜, 구동되는 원리를 나타낸 것이다. 이때, 상기 회전형 구동기는 양 말단이 고정되지 않고, 위치변동지지대가 부착되어 있는, 동일한 방향으로 꼬인 형태이며, 40 ℃와 53 ℃의 온도구배가 발생함에 의해 회전을 통해 풀리는 과정을 도시화하였다.
도 23에서 나타낸 바와 같이, 지속적인 온도구배에 의해 상기 폴리우레탄 시트의 방향에서 발생하게 되면 하단부이 풀리는 만큼 상대적으로 상단부은 더 감기게 된다.
즉, 본 발명에 따른 회전형 구동기는 주위 온도가 가열되거나 냉각되지 않아도, 대류에 의해 주위 온도간에 차이가 발생하게 되고, 이로 인해 본 발명의 회전형 구동기 내에 온도구배가 발생하면서, 상기 회전형 구동기의 상단부 및 하단부 각각에서 큰 회전에너지와 상하이동에 따른 위치에너지를 제공할 수 있다.
<에너지 하베스팅 장치>
본 발명의 다른 측면은 상기 온도구배에 의해 연속적인 회전을 제공하는 회전형 구동기를 사용하여 열에너지를 전기에너지로 전환할 수 있는 에너지 하베스팅 장치에 관한 것이다.
도 2는 본 발명의 일 구현예에 따른 에너지 하베스팅 장치의 구성을 나타낸 단면도이다.
상기 도 2를 참조하여, 일 구현예에 따른 에너지 하베스팅 장치를 구체적으로 설명하면, 온도구배에 의해 연속적인 회전을 제공하는, 상기 회전형 구동기(110); 상기 회전형 구동기(110) 내부에 위치하고, 상기 구동기(110)가 회전함에 따라 회전하는, 적어도 하나 이상의 자성체(120); 및 상기 회전형 구동기(110)와 이격되어 배치되며, 상기 자성체(120)가 회전하면서 내부를 통과하는 자속이 변하여 전기에너지(자기력, 전류)를 생성하는 적어도 하나의 코일(130)을 포함한다.
본 발명에 따른 에너지 하베스팅 장치는 자성체(120)와 코일(130) 사이의 상대적인 운동에 의해 전류가 유도되는 패러디(faraday) 전자 유도작용을 이용하여 온도구배에 따라 발생하는 회전형 구동기(110)의 기계적 에너지를 전기 에너지로 발생시키는 장치에 관한 것으로, 상기 상술한 바와 같은 구조를 갖는 회전형 구동기(110)는 내부에 자성체(120)를 포함하고 있고, 상기 회전형 구동기(110) 내에 포함된 자성체(120)와 이격되어 배치된 코일(130)을 포함하는 에너지 하베스팅 장치는, 대류와 같은 온도차이를 갖는 외부 환경으로부터 상기 회전형 구동기(110)의 일부분과 다른 부분의 온도구배가 발생하면, 상기 회전형 구동기의 일부분과 다른 부분의 부피 차가 발생하여 연속적인 회전을 발생하는데, 보다 구체적으로, 상기 회전형 구동기의 회전은 상기 일부분이 팽창되어 풀리고, 상기 다른 부분이 다시 감기게 되면서, 연속적인 회전을 제공하여, 정지된 코일(130) 극성과 회전하는 자성체(120)의 극성이 상호 교차되면서 전기가 발생되게 된다. 이때, 상기 구동기(110)는 상단부(140)와 하단부(150)가 고정되어 있을 수도 있고, 상단부(140) 및 하단부(150) 중에서 어느 하나만이 고정될 수 있다. 이때, 상기 고정되지 않은 다른 말단은 위치변동지지대(151)를 더 포함할 수 있다.
상기 위치변동지지대(151)는 일반적으로 회전형 구동기(110)의 하단부 말단에 구비되어 상기 회전형 구동기(110)의 선형 변위(translational displacement)는 허용하고, 상기 회전형 구동기(110)의 비가역적인 풀림(untwist)을 방지하여, 보다 안정적인 회전운동을 구동기에 제공한다. 즉, 위치변동지지대(151)는 상기 회전형 구동기(110)에 길이방향으로 스트레스를 가하여 길이 변화와 인장을 유도하여 외부 온도차이로부터 발생되는 온도구배에 따라 변형이 용이한 구조로 만들어 준다. 또한, 온도구배에 의해 발생하는 회전형 구동기(150)의 연속적인 회전을 위치변동지지대(151)는 풀림을 방지하고 자성체의 큰 회전력 발생을 유도한다.
주지하는 바와 같이, 코일(130)의 양 끝에 검류계를 연결하여 코일(130)을 고정하고, 자성체(120)를 움직이면 상기 자성체(120)의 움직임에 따라 코일(130) 속을 흐르는 자속량(자기장)의 크기가 변화되며, 이 자속량(자기장)의 변화에 의해 코일(130)에 전류가 유도되는 전자기 유도(electromagnetic induction)작용으로 전기가 발생되는 즉, 코일(130)이 극성과 자성체(120)의 극성이 상호 교차되면서 전기를 발생시키게 된다.
상기 코일(130)은 보다 구체적으로, 도 2에 나타난 바와 같이, 회전형 구동기(110)의 일 측면에 소정의 거리만큼 이격되어 위치되어 있을 수 있다.
상기 자성체(120)는 영구자석이면 이에 제한되지 않으나, 본 실시예에서는 네오디윰 자성체를 사용한다. 또한, 상기 자성체(120)의 형태는 특별히 제한되지 않으나, 바람직하게는 막대 형태이거나 NS극이 좌우로 되어 있는 원기둥 형태일 수 있다.
상기 자성체(120)의 무게는 상기 에너지 하베스팅 장치에서 회전형 구동기(110)의 온도구배에 따른 회전속도와 회전에너지를 조절하는데 있어서 중요한 요소이므로, 상기 자성체(120)는 상기 회전형 구동기(110) 보다 1 내지 1000 배인 것이 바람직하다. 상기 자성체(120)의 무게 범위를 벗어나게 되면, 상기 회전형 구동기(110)의 회전속도 및 회전에너지가 감소하게 되어 외부 온도차이로부터 발생하는 상기 회전형 구동기(110)의 온도구배를 기계적 에너지 전환하는 효율이 상대적으로 감소하게 된다. 특히, 폴리우레탄을 포함하는 상기 회전형 구동기(110)의 경우, 회전속도는 빠르나, 회전에너지가 낮기 때문에, 우수한 회전속도를 유지하면서, 이를 전기에너지로 변환하기 위해서는 상기 자성체(120)의 무게가 1 내지 10 배인 것이 바람직하다.
상기 회전형 구동기(110)의 길이는 1 내지 20 ㎝인 것이 바람직하다.
또한, 상기 자성체(120)와 코일(130) 간의 이격된 거리는 1 mm 인 것이 바람직한데, 상기 이격된 거리가 1 ㎜ 미만이면 코일에 의해 자성체의 회전력이 저하될 수 있다. 자성체의 자기장이 미치는 범위 안에서는 전기에너지를 유도 할 수 있지만 1 ㎜를 초과하게 되면 자성체(120)에 의해 코일(130) 내 자속변화를 유도함에 있어, 손실이 발생하므로 에너지 전환효율이 저하되는 문제가 발생한다.
본 발명의 에너지 하베스팅 장치에 온도에 따라 개폐되는 구성요소를 부가하여 파이프 등의 협소하면서 고온의 열이 일정하게 발생하는 장소나 일정한 따뜻한 바람이 발생하는 곳에 부착하기 극히 용이한 것이다.
상기 에너지 하베스팅 장치는 개폐구가 구비된 판(170); 상기 개폐구의 열림과 닫힘을 발생시키는 상기 구동기에 연결된 핀(160);을 더 포함할 수 있다. 상기 계폐구가 구비된 판(170)은 상기 회전형 구동기(110) 하단부(150) 말단에 위치하고, 상기 핀(160)은 상기 회전형 구동기 하단부(150)의 임의의 위치에 고정되어 있다.
이하, 다른 구현예에 따른 에너지 하베스팅 장치에 대해 도 3을 참조하여 설명한다.
도 3은 본 발명의 다른 구현예에 따른 에너지 하베스팅 장치의 단면도(a)와, 위에서 바라본 모습(b)을 촬영한 사진이다.
본 발명의 다른 구현예에 따른 에너지 하베스팅 장치는 상기 도 2에 나타낸 일 구현예에 따른 에너지 하베스팅 장치와 비교하여 전반적으로 유사하지만, 도 3a에 도시된 바와 같이, 코일(230)이 상기 회전형 구동기(210) 내에 포함된 자성체(220)를 감싸도록 설치되어 있다는 점에서 차이가 있다. 특히, 상기 자성체(220)는 3계 즉, 세개의 코일(230)이 연결되어 상기 회전형 구동기(210)에 구비된 자성체(220)를 감싸고 있고, 상기 코일(230)은 각 코일(230)과 외부의 장치와 연결할 수 있는 수단(231, 232, 233)이 연장되어 있다. 상기 코일(230)의 구조는 도 6b에 보다 구체적으로 나타나있다.
또한, 상기 코일(230)은 상기 회전형 구동기(210)에 구비된 자성체(220)와 소정의 거리만큼 이격되어 위치하면서, 상기 자성체(220)를 감싸며 구비된다.
이하, 또 다른 구현예에 따른 에너지 하베스팅 장치에 대해 도 4를 참조하여 설명한다.
본 발명의 또 다른 구현예에 따른 에너지 하베스팅 장치는 상기 도 2에 나타낸 일 구현예에 따른 에너지 하베스팅 장치와 비교하여 전반적으로 유사하지만, 도 8에 도시한 바와 같이, 온도구배에 의해 연속적인 회전을 제공하는, 상기 회전형 구동기(410); 상기 회전형 구동기(410) 내부에 위치하고, 상기 회전형 구동기(410)가 회전함에 따라 회전하는, 적어도 하나 이상의 코일(420); 및 상기 회전형 구동기(410)와 이격되어 배치되며, 상기 코일(420)이 회전하면서 내부를 통과하는 자속이 변하여 전기에너지(자기력, 전류)를 생성하는 적어도 하나의 자성체(430)를 포함한다는 점에서 차이가 있다.
상기 자성(430)은 영구자석이면 특별히 이에 제한되지 않으나, 보다 바람직하게는 N, S 극을 갖는 막대형이거나, N 극의 자석과 S 극의 자석이 상기 회전형 구동기(410)를 중심으로 좌우에 설치되고, 상기 코일(420)과 이격되어 배치될 수 있다.
본 발명의 또 다른 측면은 가로축으로 고정되어 있고, 온도구배에 의해 연속적인 회전을 제공하는 회전형 구동기를 사용하여 열에너지를 위치에너지로 전환하고, 이를 다시 전기에너지로 전환하는 또 다른 구현예에 따른 에너지 하베스팅 장치에 관한 것이다 이하, 또 다른 구현예에 따른 에너지 하베스팅 장치에 대해 도 18을 참조하여 설명한다.
도 18은 본 발명의 또 다른 구현예에 따른 에너지 하베스팅 장치의 구성을 나타낸 단면도이다.
상기 도 18을 참조하여, 또 다른 구현예에 따른 에너지 하베스팅 장치를 구체적으로 설명하면, 양 말단이 가로축으로 고정되어 있고, 온도구배에 의해 연속적인 회전을 제공하는, 회전형 구동기(510); 상기 회전형 구동기(510) 내의 중앙 지점에 구비된 승강수단(520); 상기 승강수단(520) 하부에 구비되고, 상기 승강수단(520)과 연결되어, 상기 회전형 구동기(510)가 회전함에 따라 위치변동을 갖는, 적어도 하나 이상의 자성체(530); 상기 자성체(530)의 상하이동에 의해 전계를 발생시키는 적어도 하나 이상의 코일(540)을 포함한다.
상술한 구성을 갖는 또 다른 구현예에 따른 에너지 하베스팅 장치는 온도구배에 따라 발생하는 상기 회전형 구동기(510)의 연속적인 회전에너지를 상기 승강수단(520)를 이용하여 위치에너지로 전환하고, 이를 상기 자성체(530)와 코일(540) 사이의 상대적인 운동에 의해 전류가 유도되는 패러디(faraday) 전자 유도작용을 이용하여 전기 에너지로 발생시킬 수 있다.
다만, 상기에서 상기 자성체(530)의 위치에너지를 전기에너지로 바꾸는 코일(540)과 같은 수단이 포함되지 않아도, 열에 의해 구동되는 상기 회전형 구동기(510)에서의 회전 에너지를 위치에너지와 같은 유용한 일로 전환할 수 있다. 그러나, 본 발명에서의 일 예로, 상기 회전형 구동기(510)가 가로축으로 고정되어 있고, 이로부터 상기 자성체(530)와 상기 코일(540)을 더 구비하여 전기에너지를 발생시키는 에너지 하베스팅 장치에 대해 설명하고자 한다.
다시 말해, 상술한 구성을 갖는 에너지 하베스팅 장치는, 외부 온도차이로부터 상기 회전형 구동기(510)의 일부분과 다른 부분의 온도구배가 발생하게 되면, 상기 일부분은 팽창되어 풀리고, 상기 다른 부분은 다시 감기게 되면서, 연속적인 회전을 제공하게 되고, 이에 따라, 상기 회전형 구동기(510)의 중앙 지점에 연결되어 있는 승강수단(520)이 회전함에 따라 상기 승강수단(520)과 연결된 상기 자성체(530)가 상하이동(세로축 방향 이동)을 한다. 이는 열 에너지가 본 발명에 따른 회전형 구동기에 의해서 기계적(회전, 위치) 에너지로 전환됨을 의미한다.
상기 자성체(530)의 상하이동에 의해, 상기 자성체(530)과 코일(540)의 상대적인 운동에 의해 상기 코일(540)을 통과하는 자속의 변화가 유도되어 전기 에너지를 발생시키는 것을 특징으로 한다.
상기 코일(540)은 상기 자성체(530)의 상하이동에 의해 전계를 발생시킬 수 있는 위치라면 특별히 이에 제한되지 않으나, 바람직하게는 상기 자성체(530)의 상면, 하면, 측면에 구비되거나, 상기 자성체(530)의 측면을 둘러싸는 원통형 구조일 수 있다.
상기 자성체(530)의 측면을 둘러싸는 원통형 구조이면, 상기 자성체(530)의 상하이동시 상기 자성체(530)와 고정되어 있는 상기 원통형 코일(540) 간 상대적인 운동이 발생하여 상기 코일(540)을 통과하는 자속의 변화를 유도하므로, 전기 에너지를 발생시킬 수 있다.
상기 승강수단(520)은 회전에너지를 위치에너지로 전환할 수 있는 장치이면 특별히 이에 제한되지 않으나, 바람직하게는 도르레일 수 있다.
상기 자성체(530)의 상하이동 거리, 즉, 세로축 방향 위치 변동 거리는 0.1 내지 3 ㎝인 것이 바람직하다.
상기 자성체(530)는 영구자석이면 특별히 이에 제한되지 않으나, 보다 바람직하게는 N, S 극을 갖는 막대형이거나, 원통형일 수 있다.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
제조예 1 내지 4. 회전형 구동기
나일론 6,6 섬유 전구체의 한쪽 끝은 모터에 붙이고 다른 끝은 일정한 힘을 가하고 회전이 풀림을 방지하기 위하여 막대기를 연결하여 고정하였다. 꼬는 동안 가해지는 힘은 회전형 구동기의 비틀림 각도나 스프링 지수에 영향을 준다. 가하는 힘은 10 MPa에서 40 MPa 사이이다. 상기 실시예는 26 MPa의 힘을 가하여 만들어 졌으며 구동기의 비틀림 각도는 45ㅀ이고 스프링 지수는 1.14이다. 만들어진 구동기는 진공에서 210 ℃로 2시간동안 열처리를 통하여 제조하였다. 상단부와 하단부가 다른 구조를 만들때는 가운데를 고정하여 상단부를 Z형태로 꼬고 하단부를 S형태로(혹은 반대로) 꼬아서 제조하였다.
다만, 상기 나일론 6,6 섬유가 비틀리고, 꼬이는 구조 등을 달리하여 총 네 가지 형태의 회전형 구동기를 제조하였다.
상단부와 하단부 모두 키랄성 Z형으로 꼬아 만들 때, 코일이 형성되기 전까지 꼬아 만든 ZZ-N과 코일구조로 만든 ZZ-C구조가 있다. 그리고 상당부와 하단부가 다른 키랄성 Z형 S형이 같이 있는 ZS구조에서 코일이 형성되기 전까지 꼬아 만든 ZS-N과 코일구조로 만든 ZS-C구조가 있다.
대표적인 각기 다른 형태의 회전형 구동기를 아래 도 1에 보다 자세히 나타내었다.
보다 구체적으로 설명하면, 두 말단이 고정되어 있고, 비틀린 후, 상단부와 하단부 모두 키랄성 Z형으로 꼬인 형태를 갖는 구동기(ZZ-C)인 실시예 1, 하나의 말단만이 고정되어 있고, 키랄성 Z형 또는 키랄성 S형으로 꼬이는 단계를 거치지 않은 비틀린 구조만을 갖는 구동기(ZZ-N)인 실시예 2, 하나의 말단만이 고정되어 있고, 비틀린 후, 상단부와 하단부 모두 키랄성 Z형으로 꼬인 형태를 갖는 구동기(ZZ-C)인 실시예 3 및 두 말단이 고정되어 있고, 비틀린 후, 상단부는 키랄성 Z형으로 꼬이고, 하단부는 키랄성 S형으로 꼬인 형태를 갖는 구동기(ZS-C)인 실시예 4를 제조하였다.
상기 비틀린 구조를 형성할 때 인가된 회전수(turns)는 최종 근육 길이를 나누어 계산하였고, turns/m로 표기하였으며, 이는 아래 [식 3]으로부터 계산한다. 상기 편향각(bias angle)은 비틀린 나일론 6,6 섬유의 표면으로부터 관찰 및 기록하였다.
[식 3]
Figure PCTKR2015011203-appb-I000001
상기 식에서,
r은 섬유 중앙으로부터의 반경(radial distance)을 나타내고, T는 초기 섬유 길이에 비해 얼마나 회전을 시켰는가를 나타낸다.
제조예 5. 에너지 하베스팅 장치
본 발명의 회전형 구동기를 이용하여, 열에너지를 전기에너지로 변환할 수 있는 에너지 하베스팅 장치를 고안하였다. 이의 구조를 도 2a 내지 도 2c에 보다 자세히 나타내었다.
제조예 1로부터 제조된 회전형 구동기의 두 말단이 고정되어 있고, 상기 회전형 구동기의 중앙에 자성체가 위치한다. 상기 구동기와 이격되어 배치된 코일은 상기 구동기에 구비된 상기 자성체와 1 mm 떨어져 위치하도록 배치하여 에너지 하베스팅 장치를 제조하였다. 이때, 상기 코일을 오실로스코프와 연결하였고, 상기 코일은 일반 시계에 사용되는 것을 이용하였다.
상기 제조예 1로부터 제조된 구동기는 인접한 공기의 온도가 증가 또는 냉각됨에 따라, 상기 구동기의 꼬임 구조가 풀어지고 다시 감기는 반복적인 행동으로 인해 시계방향 또는 반시계방향으로 회전하게 되고, 이로 인해 유도된 자성체 회전을 통해, 코일 속을 흐르는 자속을 변화시켜 유도된 시간에 따른 전압을 코일에 연결된 오실로스코프로 측정하였다. 상기 측정된 그래프에서 시간에 따른 전압신호의 피크 수는 구동기의 회전수(회전 각)를 나타내고, 회전속도(rpm)는 주파수(frequency, Hz)를 이용한 계산을 통해 알아낼 수 있다.
제조예 6. 에너지 하베스팅 장치.
상기 코일이 일면에 설치된 제조예 5와는 달리, 상기 구동기의 중앙에 구비된 자성체와 1 ㎜의 거리를 두면서, 전체적으로 감싸도록 코일이 설치된 것을 제외하고는 상기 제조예 5와 동일하게 에너지 하베스팅 장치를 제조하였다. 이의 구조는 하기 도 4에 보다 자세히 나타내었다.
본 발명에 따른 회전형 구동기에서 비틀림만(twist) 있는 구조와 꼬인(coil) 형태를 갖는 구조의 차이를 확인 위하여, SEM으로 촬영하였으며, 이를 도 5에 나타내었다.
도 5a는 섬유를 10,000 turns/m로 꼬아 제조된 비틀린(twist) 구조의 회전형 구동기의 구조이고, 이때, 상기 회전형 구동기는 나일론 6,6이고, 26 MPa 인장력으로 제조되었으며, 상기 회전형 구동기가 꼬이기(coil) 이전의 직경은 29 ㎛이고, 비틀린 각도는 45 °이다.
도 5b는 키랄성 Z형 또는 키랄성 S형으로 꼬인(coil) 구조로, 섬유를 56,000 turns/m으로 꼬아서 제조하였으며, 이때 외각 직경은 62 ㎛이고, 스프링 지수(spring index)는 1.14이다.
도 6은 온도 변화에 따른 회전형 구동기의 회전속도 및 회전수(회전각)를 측정하기 위해, 제조예 5로부터 제조된 에너지 하베스팅 장치로부터 측정된 시간에 따른 온도, 전압 및 회전수를 나타낸 그래프이다. 상기 에너지 하베스팅 장치에는 제조예 1로부터 제조된 구동기(ZZ-C)를 이용하였고, 회전형 구동기 근처 공기의 온도변화를 측정하기 위해 열전대(Thermocouple)를 설치하였다.
도 6을 참조하면, 구동기 주위 온도변화가 클 때, 전압 및 회전수가 증가한다는 것을 알 수 있다.
도 7a는 온도변화에 따른 제조예 1, 제조예 4로부터 제조된 구동기(ZZ-C, ZS-C)의 회전속도를 나타낸 그래프이고, 도 7b는 인장 정도에 따른 제조예 1, 제조예 4로부터 제조된 구동기(ZZ-C, ZS-C)의 회전속도를 나타낸 그래프이며, 도 7c는 자성체의 관성 모멘트에 따른 제조예 1, 제조예 4로부터 제조된 구동기(ZZ-C, ZS-C)의 회전속도를 나타낸 그래프이며, 도 7d는 가열ㅇ냉각 사이클 수에 따른 제조예 4로부터 제조된 구동기(ZS-C)의 회전속도를 나타낸 그래프이다. 이때, 제조예 4로부터 제조된 구동기(ZS-C)는 27 ㎛의 직경을 갖고, 전체 길이가 95 ㎜인 것을 사용하였다. 상기 도 10a에서 빈 도형은 온도에 따른 회전각에 대한 그래프이고, 내부가 채워진 도형은 온도에 따른 회전속도에 대한 그래프이다.
도 7을 참조하면, 제조예 4로부터 제조된 구동기(ZS-C)는 하단부와 상단부가 반대구조로 되어 있어 풀리고 꼬일 때 방해가 되지 않아서 구동기를 전체적으로 가열 되었을 때 구동이 가능하다. 이 구동기(ZS-C)는 반만 가열되어 구동하는 ZZ-C에 비하여 2배의 회전속도, 회전수 및 에너지를 가진다.(도 7a)
가열된 부분이 전체 또는 부분이냐를 고려하였을 때, 가열된 상기 구동기의 무게 혹은 길이에 대해서 ZZ-C 및 ZS-C 구동기들은 결국 유사한 회전속도를 가지는 것으로 판단된다.
두 말단이 고정된 상기 구동기(ZZ-C 및 ZS-C)들은 열적 팽창에 의해 구조적 변형이 일어나는데, 늘어난 코일 구조는 열에 의해서 수축을 하게 된다. 위치변동지지대를 이용하거나 양단을 고정하여 늘려서(stretch) 열에 대해서 구조적 변형이 용이하게 만들어 늘어난(stretch) 정도에 따라 회전속도를 측정한 결과(도 7b) 10 내지 15%일 때, 8 cm ZS-C 구동기는 최대 회전속도가 70,200 rpm이라는 것을 확인하였다. 늘어나지 않은 구동기는 열을 흡수하기 위한 표면적이 15% 늘어난 구동기에 비해 좁고, 열적 팽창으로 인해 코일과 코일사이에 마찰이 발생하므로, 15% 늘어난 구동기에 비해 낮은 회전속도를 나타낸다. 도 9의 결과는 늘리지 않은 구동기는 열에 대해서 수축하지 않고 팽창하는 것을 보여주고 회전속도가 작은 것을 보여주어 이를 뒷받침하다.
제조예 4로부터 제조된 구동기(ZS-C)의 중앙에 위치한 자성체의 무게에 따른 관성 모멘트에 의한 회전속도 및 회전토크를 측정한 결과(도 7c), 자성체의 무게에 따라 회전토크는 일정하나, 속도는 점차 감소하는 것을 확인하였다. 즉, 상기 구동기의 자성체 무게를 조절함으로써, 상기 구동기의 회전속도를 제어할 수 있다는 것을 알 수 있다.
상기 제조예 4로부터 제조된 구동기(ZS-C)는 질량이 238 ㎍으로, 이의 회전토크는 아래 [식 4]에 의해서 187 nN·m과 0.77 mP·m/㎏로 계산되었다.
[식 4]
τ=I·a
상기 식에서,
a는 자성체의 초기 가속도이고, I는 자성체의 관성 모멘트이고, 이는 아래 [식 5]에 의해 계산되었다.
[식 5]
I=1/4MR2+1/12ML2
상기 식에서,
M은 자성체 질량이고, R은 자성체의 반지름, L은 자성체의 길이이다.
이때, 회전각은 자성체의 무게에 상관없이 회전각이 유지되는데, 이는 자성체의 무게가 상기 회전형 구동기를 통해 열에너지가 회전력으로 전환되는데 영향을 미치지 않고 있음을 나타내고 있으며, 이러한 자성체의 무게는 단지 꼬인 구조가 가열과 냉각에 의해 풀리고 다시 꼬이는 하나의 사이클 시간, 즉 간격을 조절할 수 있다.
상기 도 7d의 결과를 통해 가열·냉각 사이클 수와 회전 액츄에이션 주기가 유사하다면 본 발명의 구동기는 회전속도 및 회전각 등의 감소가 거의 나타나지 않는다는 것을 확인하였다.
즉, 상기 도 7c와 도 7d의 결과로부터 제조예 4로부터 제조된 구동기(ZS-C)의 지속적인 안정성을 위해서는 상기 구동기에 비해 24배 무거운 무게를 갖는 자성체를 구비하면 300,000 사이클 동안 안정적이고 연속적인 회전속도를 갖도록 할 수 있다는 것을 확인하였다.
도 8은 본 발명에 따른 다양한 구조를 갖는 구동기(ZS-C, ZS-N, ZZ-C, ZZ-N)의 온도에 대한 회전속도를 비교한 결과를 나타낸 그래프이다. 이때, 제조예 4로부터 제조된 구동기(ZS-C)와, 두 말단이 고정되어 있고, 키랄성 Z형 또는 키랄성 S형으로 비틀린 구조만을 갖는 구동기(ZS-N)와 제조예 1로부터 제조된 구동기(ZZ-C), 제조예 2로부터 제조된 구동기(ZZ-N)를 사용하였다. 또한, 상기 구동기들은 늘어난 정도(stretched (%))와 상기 구동기의 위치변동지지대(151)의 무게(with load (g))를 달리하여 제조하였다.
상기 도 8을 참조하면, 전체적으로, 온도 증가에 따라 15% 늘어나 있고, 꼬인 구조를 갖는 구동기가 회전속도가 우수하였으며, 특히, 단순히 비틀린 구조만 갖는 경우, 위치변동지지대의 무게에 영향을 많이 받는 것을 알 수 있다.
또한, 제조예 4로부터 제조된 구동기(ZS-C)는 다른 구조를 갖는 구동기들에 비해서 우수한 회전속도, 회전수를 갖는데, 상술한 바와 같이, 절반 가열되었을 때 회전하는 제조예 1로부터 제조된 구동기(ZS-C)보다 회전수 및 회전속도가 두 배 더 우수하다는 것을 확인할 수 있다.
도 9는 구동기 아래 부분에 위치한 위치변동지지대의 무게가 미치는 영향을 확인하기 위하여, 각기 다른 무게를 갖는 위치 변동지지대(1.2 g, 2.1 g, 3.1 g, 4.1 g)가 구비된 구동기(ZZ-C, 제조예 3)의 회전수와 인장거동(tensile actuation)을 시간에 따라 측정하여 나타낸 결과 그래프이다. 이때, 상기 위치변동지지대는 도 9a에서 추형태로 아래 부분에 표시된 것이고, 상기 각 구동기는 절반만 가열하였다.
상기 도 9를 참조하면, 상기 위치변동지지대의 무게가 1.2 g일 때, 다른 위치변동지지대를 구비하였을 때에 비해 회전속도가 상당히 낮은 것을 확인하였다.
도 10a는 20 % 늘어난 제조예 4로부터 제조된 구동기(ZS-C)의 실제이미지이고, 도 10b는 부분적으로 꼬인 구조가 풀려있는 비가역적으로 변한 제조예 4로부터 제조된 구동기(ZS-C)의 실제이미지이며, 도 10c는 15% 늘어난 제조예 4로부터 제조된 구동기(ZS-C)의 온도가 증가함에 따라 회전각의 변화를 나타낸 그래프이다.
도 10을 참조하면, 늘어난(stretch) 정도가 10 내지 15% 일 때가 가장 우수한 회전속도를 갖는다는 것을 확인하였고, 15% 늘어난 구동기를 기준으로 온도가 90 ℃ 이상으로 증가하게 되면 구동기의 구조가 상기 도 7b와 같이 비가역적으로 변화한다는 것을 알 수 있다.
도 11은 스프링 지수(spring index)가 본 발명의 구동기에 미치는 영향을 확인하기 위하여, 제조예 4로부터 제조된 구동기(ZS-C)의 늘어난(stretch) 정도에 따른 회전속도를 측정하여 비교한 결과 그래프로, 이에 따르면 1.14 스프링 지수를 갖는 구동기(ZS-C)는 1.4 스프링 지수를 갖는 구동기(ZS-C)에 비해 높은 회전속도를 갖는다는 것을 알 수 있다.
도 12a는 습도에 따라 제조예 4로부터 제조된 구동기(ZS-C)의 회전속도를 측정하여 나타낸 그래프로, 이에 따르면, 높은 습도(92.8%)에서 구동기의 회전속도가 80,640 rpm으로, 낮은 습도(42.3)에서 보다 12.87%로 더 증가하였다는 것을 알 수 있다.
도 12b는 42.3% 습도 조건 하에서, 제조예 4로부터 제조된 구동기(ZS-C)의 전체 길이에 따른 회전속도를 측정하여 나타낸 그래프로, 이에 따르면, 제조예 4로부터 제조된 구동기(ZS-C)의 회전속도는 길이에 비례하는 것을 알 수 있다. 제조예 4로부터 제조된 구동기(ZZ-C) 또한, 회전속도는 길이에 비례하는 것을 알 수 있고 15 cm 에서 최대 140,000 rpm 까지 관찰하였다.
도 13a는 온도에 따른 제조예 1 및 제조예 4로부터 제조된 구동기(ZZ-C, ZS-C)의 회전 에너지를 비교한 그래프이고, 도 13b는 각기 다른 직경을 갖는 구동기(ZS-C, 제조예 4)의 관성 모멘트에 따른 회전속도(닫힌 도형)와 회전 에너지(열린 도형)의 관계를 나타낸 그래프이며, 도 13c는 제조예 4로부터 제조된 구동기(ZS-C)의 시간에 따른 온도 변화, 회전각 및 회전 에너지를 나타낸 그래프이며, 도 13d는 제조예 4로부터 제조된 구동기(ZS-C)의 직경에 따른 회전 에너지와 회전속도와의 관계를 나타낸 그래프이다. 이때, 상기 구동기의 무게를 238 ㎍로 하였다.
도 13을 참조하면, 절반만 가열된 제조예 1로부터 제조된 구동기(ZZ-C)는 11,900 W/㎏을 생성함을 알 수 있고, 이는 종래 전기모터보다 40 배 더 높고, CNT 섬유(71.9 W/㎏)보다 198 배 더 우수한 수치이다.
0.1 초 동안 가열된 공기에 의해서 온도변화량이 64 ℃였을 때, 직경에 따른 제조예 4로부터 제조된 구동기(ZS-C)는 회전력이 관성 모멘트와 비례하여 증가함이 관찰되었고, 일정한 온도에서는 가열 시간에 따라 회전속도가 증가하였다.
도 14a는 구동기(ZS-C(제조예 4))와 비틀린 구조만을 갖는 형태의 구동기(ZS-N)를 전체적으로 가열하여 측정한 회전 에너지와 힘과의 관계를 비교한 그래프이고, 도 14b는 구동기(ZS-C(제조예 4))와 비틀린 구조만을 갖는 형태의 구동기(ZS-N)를 절반만 가열하여 측정한 회전 에너지와 힘과의 관계를 비교한 그래프이며, 도 14c는 구동기(ZZ-C(제조예 1))와 비틀린 구조만을 갖는 형태의 구동기(ZZ-N)를 절반만 가열하여 측정한 회전 에너지와 힘과의 관계를 비교한 그래프이며, 도 17d는 구동기(ZZ-C(제조예 1))와 비틀린 구조만을 갖는 형태의 구동기(ZZ-N)의 시간에 따른 온도변화, 회전각, 회전속도를 비교한 그래프이다. 이때, 도 14d는 27 ㎛ 직경을 갖는 15% 늘어난 제조예 1로부터 제조된 구동기(ZZ-C)를 사용하였고, 그래프 상에 흑색선으로 표기하였으며, 27 ㎛ 직경을 갖는 1.2 g 무게를 갖는 위치변동지지대 포함한 비틀린 구조만을 갖는 형태의 구동기(ZZ-N)를 사용하여, 상기 그래프 상에 적색 선으로 표기하였다.
이를 참조하면, 두 말단이 고정된 코일 구조를 갖는 구동기가 다른 형태의 구조에 비해 더 높은 회전 에너지를 갖는다는 것을 알 수 있다. 다만, 두 말단이 고정된 꼬인 구조를 갖지 않고, 비틀린 구조만을 갖는 구동기는 다른 형태의 구조에 비해 회전 에너지가 낮지만 무게를 고려한다면 더 높다는 것을 확인하였다.
도 15는 제조예 6으로부터 제조된 에너지 하베스팅 장치를 시연한 것으로, 상기 장치는 102 ㎛의 ZS-C 구조의 구동기(제조예 4)를 포함하고, 상기 3 개의 코일과 원기둥 형태의 네오디윰 자성체를 사용하여 제조하였다.
제조예 1로부터 제조된 구동기(ZZ-N)는 ZS-C보다 기계적인 힘과 에너지 밀도가 높지만, ZS-C보다 회전속도와 회전수가 작으므로, 본 장치에는 ZS-C를 사용하였다. 또한, 상기 장치는 높은 에너지 전환율을 갖도록 하기 위해 상기 실험들로부터 도출된 적절한 구동기의 직경과 자성체 무게를 적용하였다.
도 15b는 상기 도 18a의 장치의 3 개의 코일에 대응하는 시간에 따른 전압변화를 측정하여 나타낸 그래프로, 이에 따르면, 상기 장치에서 ZS-C 구동기의 회전속도는 3120 rpm이고, 최대 0.16 Vocv를 생성한다는 것을 확인하였다.
또한, 상기 장치로부터 에너지 전환효율을 계산하기 위해서 아래 [식 6]을 사용하였다.
[식 6]
Figure PCTKR2015011203-appb-I000002
상기 식에서,
V는 생성된 전압이고, t1은 초기 시간, t2는 자성체가 멈춘 시간이다.
I는 관성모멘트이고, ω는 각 비틀림(twist)과 풀림(untwist)에서의 회전각속도이다.
상기 장치에 사용된 ZS-C 근육은 0.056 kJ/㎏을 생성하였고, 65 ℃의 온도변화량에서 62 μJ/㎝3을 생성하였다. 상기 장치의 회전 에너지로부터 획득된 전기에너지로 3개의 LED를 작동시킬 수 있다는 것을 확인하였다.(도 15d) 이는 상기 회전형 구동기를 이용한 장치는 그래핀 섬유를 사용한 것보다 더욱 우수한 성능을 갖는다는 것을 나타낸다.
도 15d는 제조예 4로부터 제조된 구동기(ZS-C)가 0.3 초의 긴 시간동안 가열되었을 때, 꼬인 구조가 많이 풀렸으나, 더 큰 회전력으로 다시 꼬이게 된다는 것을 확인하였는데, 이는 상기 구동기에 남아있는 잔재열로 인해 탄성모듈러스가 낮아진 상태이기 때문이다.
도 16은 온도에 따라 ZS-C 회전형 구동기의 비틀림 강성(torsional rigidity)과 비틀림 탄성계수(torsional modulus of elasticity)를 나타낸 그래프이다. 상기 회전형 구동기의 주위 온도가 증가될 때 보다, 낮아질 때 더 빠르게 초기상태로 되돌아오는 것을 관찰할 수 있다. 도 16에 따르면 구동기의 온도가 올라갔을 때, 비틀림 탄성계수가 감소하는 것을 볼 수 있는데, 주위온도가 내려가 다시 구동기가 꼬이려 할 때, 구동기에 남아 있는 잠열에 의해 비틀림 탄성계수가 낮아서 더 빨리 돌아온다는 것을 알 수 있다.
제조예 7. 에너지 하베스팅 장치
상기 코일이 일면에 설치된 제조예 5와는 달리, 상기 코일을 양면에 모두 설치한 것을 제외하고는 상기 제조예 5와 동일하게 에너지 하베스팅 장치를 제조하였으며, 회전형 구동기는 직경 27 ㎛의 ZS-C 구조의 구동기를 사용하여 제조하였다.
도 19b는 상기 에너지 하베스팅 장치의 온도 변화에 따른 생성 전압을 나타낸 것으로, 온도가 상온에서부타 약 45 ℃의 변화가 발생할 때, 2.2 V의 전압이 생성되는 것을 확인하였다.
도 19c는 상기 에너지 하베스팅 장치의 저항에 따른 전기적 힘과 전압을 측정한 결과를 나타낸 것으로서, 상기 에너지 하베스팅 장치는 임피던스 매칭을 통한 최대 구동기 무게 대비 560 W/kg의 에너지를 생성할 수 있음을 확인하였다.
도 19d는 상기 에너지 하베스팅 장치에서 회전형 구동기의 풀림과 꼬임주기와 온도변화(67.6 ℃에서 87.2 ℃)의 주기를 5 Hz로 하여 생성된 전압을 브릿지 다이오드를 이용하여 정류한 후 커패시터(330 ㎌-10V)에 충전한 결과를 나타낸 것으로서, 도 19d에 나타난 바와 같이 35 초 후에 1.12 V의 전압이 충전되는 것을 확인하였다.
도 20은 상기 에너지 하베스팅 장치에서 회전형 구동기의 풀림과 꼬임주기와 온도변화(19 ℃, 67.6 ℃에서 87.2 ℃)의 주기를 5 Hz로 동일하게 맞추어 주었을 때, 생성되는 에너지를 측정한 결과를 나타내는 그래프이다. 도 20에 나타난 바와 같이 구동기 무게 대비 124 W/kg의 평균전력을 얻을 수 있음을 확인하였다.
도 21은 상기 에너지 하베스팅 장치에서 회전형 구동기의 풀림과 꼬임주기와 온도변화(8.2 ℃, 32.5 ℃에서 40.7 ℃)의 주기를 5 Hz로 동일하게 맞추어 주었을 때, 생성되는 에너지를 측정한 결과를 나타내는 그래프이다. 도 21에 나타난 바와 같이 상기 조건에서 회전형 구동기가 최대 33,000 rpm의 속도로 구동하며, 순간 전력은 132 W/kg, 평균 전력은 26.8 W/kg을 생성할 수 있음을 확인하였다.
제조예 8. 폴리우레탄 회전형 구동기의 제조
1) 폴리우레탄 방사용액의 제조.
폴리우레탄(SMP MM-2520, SMP Technologies Inc. from Japan)을 테트라하이드로퓨란(tetrahydrofuran; Aldrich)에 상온에서 7 일 동안 용해하여 폴리우레탄 방사용액을 제조하였다. 이때, 상기 방사용액의 전체 중량비에 5.5 중량%로 폴리우레탄을 녹여 준비하였다.
2) 전기방사 : 폴리우레탄 시트의 제조.
상기 1) 단계에서 제조한 폴리우레탄 방사용액을 전기방사 방법으로 단일배향성을 갖는 폴리우레탄 시트를 제조하였다. 이때, 전기방사 조건은 상기 폴리우레탄 방사용액을 실린지 펌프(Kdscientific USA)로 13 ㎕/min의 속도로 공급하고, 18 ㎸의 인가전압을 가함으로써, 방사 노즐은 +11kV이고, 상기 콜렉터는 -7kV 전압을 갖는다. 상기 방사 노즐과 콜렉터 간의 거리는 20 ㎝이다. 이때, 고전압 DC 전원 공급기(WookyongTECH, Korea)를 사용하여 전압을 인가하였다. 이때, 상기 폴리우레탄 시트를 구성하는 폴리우레탄 섬유의 직경은 ~4.5 ㎛이다.
3) 회전형 구동기 제조
상기 2) 단계의 전기방사공정을 통해 제조된 폴리우레탄 시트를 평평한 직사각형 패드와 고정된 지지체를 갖는 전기모터의 샤프트(shaft)에 부착하였다. 상기 폴리우레탄 시트의 고정된 두 말단을 40 ℃ 조건 하에서 전체적으로 꼬인 형태를 가질 때까지 꼬임을 부가하여 회전형 구동기를 제조하였다. 보다 구체적으로, 상기 회전형 구동기는 동일한 방향으로 25,000 trun/m의 회전속도로 꼬임 부가하여 제조된 코일 형태의 회전형 구동기이다.
이때, 상기 회전형 구동기의 내측을 기준으로 상단부과 하단부으로 나뉘어지고, 상단부과 하단부의 꼬임 방향에 따라 다양한 형태의 회전형 구동기를 제조할 수 있다.
우선, 상기 회전형 구동기의 상단부과 하단부이 모두 동일한 방향(Z형 또는 S형)으로 꼬아 제조되거나, 상기 상단부과 하단부이 서로 다른 방향으로 제조(어느 하나가 Z형이면 다른 하나는 S형인 키랄성 구조)될 수 있다.
또한, 상기 회전형 구동기는 코일이 형성되지 전까지 꼬아 만든 비틀린 형태(twist)를 갖거나, 상기 비틀린 형태(twist)에서 꼬임을 더 인가하여 코일 형태(coil)를 가질 수 있다.
제조예 9 내지 12.
상기 제조예 8에서 전기방사를 통해 제조된 폴리우레탄 시트에 각각 19,000 turns/m(제조예 9), 21,000 turns/m(제조예 10), 23,000 turns/m(제조예 11) 및 27,000 turns/m(제조예 12)의 회전속도로 꼬임 부가하여 부분적으로 꼬인 비틀린 형태 또는 코일 형태의 회전형 구동기를 제조했다는 것을 제외하고는 모두 상기 제조예 8과 동일하게 제조하였다.
제조예 13. 에너지 하베스팅 장치
상기 제조예 8로부터 제조된 회전형 구동기를 이용하여, 열에너지를 전기에너지로 변환할 수 있는 에너지 하베스팅 장치를 고안하였다. 이의 구조를 도 2에 보다 자세히 나타내었다.
제조예 8로부터 제조된 회전형 구동기의 두 말단이 고정되어 있고, 상기 회전형 구동기의 중앙에 자성체가 위치한다. 상기 회전형 구동기와 이격되어 배치된 코일은 상기 구동기에 구비된 상기 자성체와 1 mm 떨어져 위치하도록 배치하여 에너지 하베스팅 장치를 제조하였다. 이때, 상기 코일을 오실로스코프와 연결하였고, 상기 코일은 일반 시계에 사용되는 것을 이용하였다.
상기 제조예 8로부터 제조된 회전형 구동기는 인접한 공기의 온도에 존재하는 차이에 따라, 상기 회전형 구동기 내에 온도구배가 발생하게 되고, 이로 인해 상기 회전형 구동기의 꼬임 구조가 풀어지고 다시 감기는 반복적인 행동으로 인해 시계방향 또는 반시계방향으로 회전하게 되고, 이로 인해 유도된 자성체 회전을 통해, 코일 속을 흐르는 자속을 변화시켜 유도된 시간에 따른 전압을 코일에 연결된 오실로스코프로 측정하였다.
회전 스피드 및 회전수의 측정.
회전형 구동기의 회전 스피드를 측정하기 위해서, 두 가지 방법을 사용하였다, 하나는 초고속 카메라(1000 frame per second, Phantoms)를 사용하는 것이고, 다른 하나는 자기장 방향의 변화를 측정하는 것이다.
자기장 방향의 변화를 측정하는 방법을 보다 구체적으로 설명하자면, 제조예 8로부터 제조된 회전형 구동기의 상단부과 하단부 중심에 자성체를 부착함으로써, 상기 회전형 구동기가 온도구배에 따라 구동될 때, 자기장 변화를 야기할 수 있도록 제조하였다. 이를 통해 상기 회전형 구동기의 주위에 설치된 코일로부터 전압이 생성되고, 상기 전압은 오실로스코프를 통해 기록될 것이다.
즉, 회전형 구동기의 회전 스피드와 회전수와 관련되어 있는 전압 신호를 시간에 따라 진동수(Hz)와 피크 수를 확인할 수 있다. 분당 회전 피크는 최고 진동수(Hz) × 60으로 계산된다. 상기 두 방법은 동일한 결과를 보여준다.
회전형 구동기의 물리적 특성 분석.
1) 형태분석
전자주사 현미경(FE SEM, Hitachi S4700)을 이용하여 형태를 분석하였다.
2) 동역학적 특성 분석(Dynamic mechanical Analysis)
회전형 구동기의 열적 특성을 분석하기 위해서, 동역학적열특성 분석기(Dynamic Mechanical Analyzer, Seiko Exstar 6000)을 사용하였다. 이때, 온도는 열전대를 이용하여 측정하였다.
도 25는 하단부 온도가 53 ℃로 고정되어, 온도구배를 갖는 제조예 8로부터 제조된 회전형 구동기(12 ㎝ 길이, 100 ㎛직경)의 회전속도(■), 회전각(□)을 측정하여 나타낸 그래프이다.
도 25에 나타난 바와 같이, 상기 제조예 8의 회전형 구동기의 온도구배에 의한 상단부과 하단부의 온도차이(7~13 ℃)에 따라서 회전속도와 회전각이 증가한다는 것을 확인하였다. 이를 통해 본 발명에 따른 회전형 구동기는 상단부과 하단부의 온도차이가 1 ℃이상부터 회전속도를 제공하고 있음을 확인할 수 있는데, 약 1,000 rpm의 충분한 회전속도는 3 ℃ 이상부터 제공됨을 알 수 있다. 따라서, 본 발명에 따른 회전형 구동기는 1 ℃ 이상이면 회전에너지 즉, 회전속도를 제공할 수 있고, 바람직하게는 3 내지 30 ℃에서 우수한 회전속도와 회전각을 제공할 수 있다는 것을 알 수 있고, 보다 바람직하게는 9 내지 13 ℃이다.
도 26은 회전형 구동기의 상단부과 하단부의 온도차이가 13 ℃로 고정된 상태에서, 하단부 온도가 40~60 ℃일 때, 제조예 8로부터 제조된 회전형 구동기(12 ㎝ 길이, 100 ㎛직경)의 회전속도(■)를 측정하여 나타낸 그래프이다.
도 26에 나타난 바와 같이, 상기 제조예 8의 회전형 구동기는 폴리우레탄을 사용한 것으로, 상기 폴리우레탄의 유리전이온도(Tg)가 30.6 ℃이기 때문에, 상단부과 하단부의 온도차이가 13 ℃로 동일할 때, 상기 제조예 8의 회전형 구동기는 유리전이온도(Tg)인 30 ℃ 이상이면 충분한 회전속도를 제공할 수 있다는 것도 확인하였다. 그러나, 하단부의 온도가 45~60 ℃ 조건에서 가장 우수한 회전 스트로크(stroke)를 제공할 수 있다.
이를 통해, 본 발명에 따른 회전형 구동기는 30 ℃ 이상이면 충분한 회전속도를 제공할 수 있는데, 바람직하게는 40 ℃이상이고, 3,000 rpm이상의 회전속도를 갖기 위해서는 43 ℃이상인 것이 더욱 바람직하다. 다만, 60 ℃이상부터는 회전속도가 점차 저하되므로, 충분한 회전속도를 제공하는 약 80 ℃까지가 바람직하고, 더욱 바람직하게는 60 ℃이하일 수 있다.
본 발명에 따른 회전형 구동기는 인가된 꼬임(회전)에 따라 비틀린 형태, 부분적으로 꼬인 비틀린 형태 및 꼬인 형태 등 각기 다른 형태를 갖게 된다. 이때, 상기 각기 다른 형태의 회전형 구동기의 성능을 비교한 것이다. 구체적으로, 도 27는 서로 다른 형태의 제조예 8 내지 12로부터 제조된 회전형 구동기들의 상단부과 하단부 간 온도차이가 10 ℃이고, 상기 하단부의 온도가 52 ℃일 때, 회전속도를 측정하여 나타낸 그래프이다. 여기서, 상기 회전형 구동기들은 모두 100 ㎛의 직경과 8 ㎝길이를 갖도록 제조되었다.
도 27에 나타난 바와 같이, 전체적으로 꼬인 제조예 8로부터 제조된 회전형 구동기가 가장 우수한 회전속도를 갖고 있다는 것을 알 수 있다. 그러나, 1,000 rpm 이상의 충분한 회전속도를 제조예 9 내지 12 로부터 제조된 회전형 구동기 역시 나타내었다.
즉, 제조과정에서 인가된 꼬임(회전)이 19,000 내지 35,000 turns/m 이면 충분히 우수한 회전속도를 갖는 회전형 구동기를 제조할 수 있음을 알 수 있는데, 2,000 rpm 이상의 회전속도를 얻는 회전형 구동기를 제조하기 위해서는 21,000 내지 30,000 turns/m인 것이 바람직하다.
도 28은 제조예 8로부터 제조된 회전형 구동기는 고정되기 이전에 전체 길이에 대해 각각 0 내지 50% 인장(strain)하여, 고정한 것으로, 상기 각 회전형 구동기에 대한 회전스피드와 회전에너지를 측정하여 나타낸 그래프이다.
도 28에 나타난 바와 같이, 제조예 8의 회전형 구동기는 고정되기 이전에 전체 길이에 대해 인장한 %가 높을수록 길이당 회전속도와 길이당 회전에너지가 현저히 향상되는 것을 알 수 있었다.
특히, 0%일 때, 회전속도는 100 rpm/㎝이지만, 회전에너지가 너무나 낮은 것을 확인할 수 있다. 구체적으로, 50% 인장되어 고정된 회전형 구동기의 길이당 회전속도와 회전에너지는 0% 인장되어 고정된 회전형 구동기의 길이당 회전속도와 회전에너지보다 각각 3배, 13배 더 우수한 것을 알 수 있다. 따라서, 본 발명에 따른 회전형 구동기는 고정되기 이전에 전체 길이에 대해 10 내지 50% 인장하여 고정되는 것이 바람직하다.
이처럼, 회전형 구동기가 인장되어 고정된 경우, 코일 사이에 틈(clearance)이 제공되고, 이를 통해 흡수할 수 있는 열의 양이 많아지게 된다. 또한, 풀리는(untwist) 방향으로 신장(tensile) 강도가 증가함으로써, 열적 팽창에 의해 야기된 코일 사이의 마찰이 감소된다.
상기와 같은 이유를 통해 본 발명에 따른 회전형 구동기는 낮은 온도에서도 빠르게 반응할 수 있고, 회전 구동도 빠르며, 큰 회전각을 제공할 수 있다.
도 29는 제조예 8로부터 제조된 회전형 구동기의 중앙에 패들을 부착한 다음, 이의 직경을 달리하여, 관성모멘트(moment of inertia)에 따른 회전속도 및 회전에너지(torsional energy)를 측정하여 나타낸 그래프이다. 이때, 상기 회전에너지는 아래 [식 7]을 통해 계산하였다.
[식 7]
1/2(Iω2)
상기 식에서, I는 관성모멘트이고, ω는 각 속도(angular velocity)이다.
도 29에 나타난 바와 같이, 최적화된 관성모멘트를 갖는 회전형 구동기의 경우, 3,000 rpm의 높은 회전속도를 나타내었다.
또한, 회전형 구동기의 직경과 회전에너지는 비례하여 증가하는 것을 확인하였는데, 이는 회전형 구동기의 직경이 증가할수록 표면적 또한 증가하기 때문이다. 다만, 회전형 구동기의 직경이 증가할수록 회전속도는 점차 감소한다는 것을 알 수 있다.
구체적으로, 상기 회전형 구동기의 관성모멘트를 최적화하기 위해서는 상기 회전형 구동기의 직경이 60 내지 120 ㎛ 이면 1,000 rpm이상의 충분한 회전속도를 갖는다는 것을 알 수 있다.
도 30은 길이에 따른 제조예 8로부터 제조된 회전형 구동기의 회전속도 및 회전에너지를 나타낸 그래프이다. 이때, 제조예 8의 회전형 구동기의 직경은 100 ㎛이고, 평균온도는 46 ℃이고, 온도차는 1.08 ℃/㎝이다.
도 30에 나타난 바와 같이, 제조예 8의 회전형 구동기의 길이가 길어짐에 따라, 회전에너지 및 회전속도도 증가하는 것을 확인하였다. 이는, 상기 회전형 구동기의 회전에너지가 각속도의 제곱이기 때문이다.
이를 통해, 본 발명의 회전형 구동기는 100 ㎛ 직경과 12 ㎝ 길이를 가지는 최적화된 관성모멘트를 가질 경우, 매우 높은 4,285 rpm의 회전속도와 7.47 nJ/㎝의 길이당 회전에너지밀도를 나타낸다는 것을 확인하였으며, 회전형 구동기는 약 2,000 rpm의 충분한 회전속도를 갖기 위해 6 ㎝이상의 길이를 갖는다면 특별히 이에 제한되지 않는다는 것도 확인하였다.
도 31은 하단부 온도가 53 ℃이고, 하단부과 상단부의 온도차이가 13 ℃인 제조예 8로부터 제조된 회전형 구동기를 총 8 시간동안 구동하였을 때, 각 사이클의 회전속도를 측정한 결과를 나타낸 그래프이다.
여기서, 상기 회전형 구동기는 적절한 토크(torque)를 발생시키기 위해, 상단부과 하단부 사이에 패들을 더 구비하였다. 상기 패들은 회전형 구동기 전체 중량보다 20 배 무거운 것을 사용하였다.
이때, 상기 회전형 구동기의 온도구배에 의해 풀리고(untwisting), 다시 꼬이는(twisting) 하나의 사이클에 대한 회전각(rotation angle;■)과 회전속도(□)를 측정하여 내삽 그래프에 나타내었다.
도 31에 나타난 바와 같이, 상기 회전형 구동기는 8 시간 동안 성능의 저하없이 가역적이고, 일정한 회전구동을 나타내고 있음을 확인하였다.
또한, 상기 패들의 초기속도 변화(acceleration;가속도)는 754 ㎯ 였고, 이는 전기화학적 이중층 전위에 의해 구동되는 탄소나노튜브 실로 이루어진 구동기보다 15배 더 우수한 수치이다(비특허 문헌 4).
상기 회전형 구동기 1 ㎎의 토크(torque)는 11 nN·m2로, 초기 패들 속도(acceleration;α)과 패들의 관성모멘트(I=1/4MR2+1/12ML2, 여기서 M은 패들 질량, R은 radius, L은 길이)로부터 아래 [식 8]를 통해 계산하였다.
[식 8]
τ = I + α
도 32는 제조예 8로부터 제조된 회전형 구동기의 상단부과 하단부 사이에 자성체를 구비한 제조예 13에 따른 에너지 하베스팅 장치의 시간에 따라 생성되는 전압(흑색선)과 평균 온도(청색선)를 나타낸 그래프이다. 이때, 내삽된 그래프는 열에너지를 전기에너지로 전환할 수 있는 상기 에너지 하베스팅 장치의 일예를 나타낸 도면이다.
상기 에너지 하베스팅 장치는 두 개의 코일과 하나의 자성체를 더 구비하고 있는 것으로, 상기 자성체는 네오디윰(neodymium)을 사용하였고, 이의 중량은 최적화된 관성모멘트를 가지도록 조절하였으며, 상기 코일의 크기는 상기 자성체의 자기장을 고려하여 제조하였다.
이를 통해 제조된 상기 에너지 하베스팅 장치는 도 32에 나타난 바와 같이, 온도에 따른 전압을 생성하는 것을 확인할 수 있다.
도 33은 제조예 13에 따른 에너지 하베스팅 장치(평균온도 46 ℃)에서, 히트플레이트를 이용한 대류를 통해 12 ℃ 온도구배를 발생시켰을 때, 시간에 따라 생성되는 전압을 측정한 그래프이다.
도 33에 나타난 바와 같이, 12 ℃의 온도구배가 발생할 때, 상기 에너지 하베스팅 장치에서 생성된 전압은 0.81 V이고, 상기 에너지 하베스팅 장치의 자성체의 회전속도는 4,200 rpm이였다.
도 34는 제조예 13에 따른 에너지 하베스팅 장치의 저항에 따른 전기적 힘과 전압을 측정하여 나타낸 그래프이다.
상기 도 33과 동일한 조건의 상기 에너지 하베스팅 장치는 31 kΩ의 외부저항을 가질 때, 0.43 μJ 에너지와 4 ㎼ 힘(power)을 갖는다. 이는 임피던스 매칭을 통해서 확인한 것이다.
상기 회전형 구동기를 기반으로 하는 에너지 하베스팅 장치의 회전에너지가 전기에너지로 전환된 효율은 9.3%이고, 이는 아래 [식 9]로부터 계산하였다.
[식 9]
Figure PCTKR2015011203-appb-I000003
상기 식에서,
V는 외부저항을 가질 때, 생성된 전압이고,
I는 관성모멘트이며,
ω는 회전 각속도이다.
도 35는 도 33과 동일한 조건에서의 제조예 13에 다른 에너지 하베스팅 장치로부터 생성된 전압을 연결 정류기로 정류한 전압(rectified voltage) 신호를 나타낸 그래프이다. 내삽된 도면은 상기 정류 회로의 도면이다.
본 발명에 따른 회전형 구동기를 기반으로 하는 에너지 하베스팅 장치는 1.1 ㎽/㎤의 힘과 0.11 mJ/㎤의 에너지를 갖는데, 이는 종래 온도변화를 이용하는 에너지 하베스팅 장치보다 현저히 우수한 수치임을 알 수 있다.
일예로 고분자의 팽창과 압전 ZnO는 43 ℃의 온도변화로부터 0.285 ㎽/㎤의 힘(비특허 문헌 6)을 생성하고, 하이브리드 SMA와 압전 시스템은 35 ℃ 온도변화로부터 13.84 μJ/㎤의 에너지를 생성하였다(비특허 문헌 7).
상기 에너지 하베스팅 장치에서의 비규칙적인 온도구배에 의해 생성된 상기 AC 전압은 통상의 연결 정류기에 의해 조절하였다. 상기 조절된 전압은 0.28 V 였는데, 이는 상기 연결된 정류기에 의해 전압이 다운되었기 때문이다.
본 발명에 따른 회전형 구동기는 섬유를 비틀고(twist), 꼬인(coil) 구조로 개선함으로써, 온도 변화에 즉각적이고, 민감하며 가역적으로 반응한다.
또한, 주위 환경에 존재하는 온도차이로부터 공급되는 지속적인 온도구배에 민감하고, 가역적이면서 빠르고 효율적인 구동을 가지기 때문에, 큰 온도변화를 제공하지 않아도 공기 중에 낭비되는 열 에너지를 효율적으로 기계적 에너지로 전환할 수 있다.
상기 회전형 구동기는 우수한 회전속도를 가질 뿐만 아니라, 내구성 및 안정성이 우수하여 장기간 사용하여도 회전속도의 감소가 거의 나타나지 않으므로, 수명특성이 우수하고, 따라서 상기 회전형 구동기를 이용하여 열에너지를 전기에너지로 회수할 수 있는 효율이 향상된 다양한 형태의 에너지 하베스팅 장치를 제공할 수 있다.

Claims (45)

  1. 서로 같은 방향 혹은 반대방향으로 회전시키는 방식으로 제조된 비틀린(twist) 구조의 단일섬유 또는 다섬유를 포함하고,
    상기 섬유는 중앙을 기준으로 상단부와 하단부로 나뉘어지고,
    상기 섬유의 상단부와 하단부는 어느 하나 이상이 고정되어져 있으며,
    상기 상단부와 하단부의 섬유는 각각 독립적으로 키랄성의 Z형 또는 키랄성의 S형 구조로 비틀린(twist) 구조 또는 꼬인 형태(coil)를 갖는 것을 특징으로 하는 회전형 구동기.
  2. 제1항에 있어서,
    상기 섬유는 나일론, 형상기억 폴리우레탄, 폴리에틸렌 및 고무로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 회전형 구동기.
  3. 제1항에 있어서,
    상기 회전형 구동기의 상단부와 하단부가 모두 고정되어 있으면 온도변화에 의해 발생하는 상기 회전형 구동기의 수축 또는 팽창으로 회전력을 갖는 것을 특징으로 하고,
    상기 회전형 구동기의 상단부와 하단부 중 어느 하나만 고정되어 있으면 온도변화에 의해 발생하는 상기 회전형 구동기의 수축 또는 팽창으로 회전력 및 길이 변화를 갖는 것을 특징으로 하는 회전형 구동기.
  4. 제1항에 있어서,
    상기 비틀린 구조를 갖는 회전형 구동기는 편향각이 20 내지 60°인 것을 특징으로 하는 회전형 구동기.
  5. 제1항에 있어서,
    상기 회전형 구동기의 상단부와 하단부가 모두 고정되어 있는 경우, 상기 회전형 구동기는 고정되기 이전에 전체 길이에 대해 1 내지 25 % 인장된 후, 고정되는 것을 특징으로 하는 회전형 구동기.
  6. 제1항에 있어서,
    상기 회전형 구동기의 상단부와 하단부 중 어느 하나만 고정되어 있는 경우, 온도에 따른 길이 변화는 전체길이에 대해 5 내지 30%인 것을 특징으로 하는 회전형 구동기.
  7. 제1항에 있어서,
    상기 회전형 구동기는 온도변화에 따라 100 내지 200,000 rpm의 회전속도를 갖는 것을 특징으로 하는 회전형 구동기.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 회전형 구동기 2 가닥으로 이루어진 2-플라이 구조를 가지고, 한 가닥처럼 거동하는 것을 특징으로 하는 2-플라이 구조의 회전형 구동기.
  9. 제8항에 있어서,
    상기 회전형 구동기 2 가닥이 키랄성의 S형 구조인 경우, Z형으로 꼬아 2-플라이 구조를 형성하면 SZ 꼬임 형태를 가지고,
    상기 회전형 구동기 2 가닥이 키랄성의 Z형 구조인 경우, S형으로 꼬아 2-플라이 구조를 형성하면 ZS 꼬임 형태를 가지는 것을 특징으로 하는 2플라이 구조의 회전형 구동기.
  10. 온도변화에 의해 수축 또는 팽창하는, 제1항 또는 제7항에 따른 회전형 구동기;
    상기 회전형 구동기 내에 지점에 위치하고, 상기 구동기가 회전함에 따라 회전하는, 적어도 하나 이상의 자성체 또는 코일; 및
    상기 회전형 구동기와 이격되어 배치되는 적어도 하나 이상의 코일 또는 자성체;를 포함하는 에너지 하베스팅 장치.
  11. 제10항에 있어서,
    상기 회전형 구동기가 온도변화에 따라 수축 또는 팽창하면서, 회전함에 따라 상기 자성체가 회전하고, 상기 코일 내부를 통과하는 자속의 변화를 유도하여 전기에너지를 생성하는 것을 특징으로 하는 에너지 하베스팅 장치.
  12. 제10항에 있어서,
    상기 회전형 구동기는 양단이 모두 고정되어 있거나, 어느 하나의 말단만 고정되어 있고,
    상기 회전형 구동기가 어느 하나의 말단만 고정된 경우, 상기 회전형 구동기의 고정되지 않은 어느 하나의 말단에 위치변동지지대를 더 포함하는 것을 특징으로 하는 에너지 하베스팅 장치.
  13. 제10항에 있어서,
    상기 자성체는 영구자석이고,
    상기 자성체의 무게는 상기 회전형 구동기에 대해 10 내지 1000 배인 것을 특징으로 하는 에너지 하베스팅 장치.
  14. 제12항에 있어서,
    상기 위치변동지지대는 자성체인 것을 특징으로 하고,
    상기 위치변동지지대와 이격되어 위치하고, 둘러싼 코일을 포함하고,
    온도변화에 따라 상기 회전형 구동기가 인장되고 수축되면 위치변동지지대가 수평으로 움직이면서 상기 코일 내부를 통과하는 자속이 변하여 전기에너지를 생성하는 것을 특징으로 하는 에너지 하베스팅 장치.
  15. 제10항에 있어서,
    상기 에너지 하베스팅 장치의 하단부 및 상단부 중 어느 한 곳에 부착된, 판;
    상기 판은 열림과 닫힘을 발생시키는 개폐구를 포함하고,
    상기 회전형 구동기의 일 지점에 위치하고, 상기 판과 이격되어 배치된, 상기 개폐구와 동일한 모양의 적어도 하나의 핀;을 더 포함하는 것을 특징으로 하는 에너지 하베스팅 장치.
  16. 제15항에 있어서,
    상기 회전형 구동기가 온도변화에 따라 회전하게 되고,
    상기 회전형 구동기의 회전에 의해 상기 핀이 상기 개폐구와 이격된 수평 위치에 위치하게 되어 개폐구로부터 유입되는 공기의 흐름을 차단하는 것을 특징으로 하는 에너지 하베스팅 장치.
  17. 제15항에 있어서,
    상기 개폐구가 구비된 각 판과 핀과의 이격거리는 0.1 내지 3 ㎝인 것을 특징으로 하는 에너지 하베스팅 장치.
  18. 양 말단이 가로축으로 고정되어 있고, 온도변화에 의해 수축 또는 팽창하는, 제1항 또는 제7항에 따른 회전형 구동기;
    상기 회전형 구동기 내의 중앙 지점에 구비된 승강수단;
    상기 승강수단 하부에 구비되고, 상기 승강수단과 연결되어, 상기 회전형 구동기가 회전함에 따라 위치변동을 갖는, 적어도 하나 이상의 자성체; 및
    상기 자성체의 상하이동에 의해 전계를 발생시키는 적어도 하나 이상의 코일;을 포함하는 에너지 하베스팅 장치.
  19. 제18항에 있어서,
    상기 코일은 상기 자성체의 측면을 둘러싸는 원통형인 것을 특징으로 하는 에너지 하베스팅 장치.
  20. 제18항에 있어서,
    상기 코일은 상기 자성체의 측면 또는 하면에 위치하여 상기 자성체의 상하이동에 의해 전계를 발생시키는 것을 특징으로 하는 에너지 하베스팅 장치.
  21. 제18항에 있어서,
    상기 회전형 구동기가 온도변화에 따라 수축 또는 팽창하면서, 회전함에 따라 상기 자성체는 상하이동을 갖고,
    상기 자성체의 위치변동이 상기 코일과 자성체 간의 이격거리 변동을 야기하여, 상기 코일을 통과하는 자속의 변화가 유도되어 전기에너지를 생성하는 것을 특징으로 하는 에너지 하베스팅 장치.
  22. 제18항에 있어서,
    상기 자성체의 상하이동 거리는 0.1 내지 3 ㎝인 것을 특징으로 하는 에너지 하베스팅 장치.
  23. 제18항에 있어서,
    상기 승강수단은 도르레인 것을 특징으로 하는 에너지 하베스팅 장치.
  24. 적어도 하나의 고분자 섬유 또는 상기 고분자 섬유가 일 방향으로 배향되어 형성된 고분자 시트를 포함하고,
    상기 적어도 하나의 고분자 섬유 또는 고분자 시트는 내측을 기준으로 상단부 및 하단부로 이루어지고,
    상기 적어도 하나의 고분자 섬유 또는 고분자 시트의 상단부와 하단부는 어느 하나 이상이 고정되어져 있으며,
    상기 적어도 하나의 고분자 섬유 또는 고분자 시트는 상단부와 하단부가 서로 같은 방향 혹은 반대방향으로 회전되어 제조된 비틀린(twist) 혹은 꼬인 형태(coil)를 가지는 것을 특징으로 하는 회전형 구동기로,
    상기 회전형 구동기의 일부분과 다른 부분의 온도구배가 발생하면, 상기 회전형 구동기의 일부분과 다른 부분의 부피 차가 발생하여 연속적인 회전을 발생하는 것을 특징으로 하는 회전형 구동기.
  25. 제24항에 있어서,
    상기 고분자 섬유는 나일론, 폴리우레탄, 폴리에틸렌 및 고무 등의 고분자 재료로 이루어진 군으로부터 선택되는 어느 하나인 회전형 구동기.
  26. 제24항에 있어서,
    상기 회전형 구동기의 일부분과 다른 부분과의 온도구배는 1 ℃ 이상인 것을 특징으로 하는 회전형 구동기.
  27. 제24항에 있어서,
    상기 회전형 구동기의 직경은 0.5 내지 200 ㎛인 것을 특징으로 하는 회전형 구동기.
  28. 제24항에 있어서,
    상기 회전형 구동기의 최대온도가 20 내지 80 ℃ 인 것을 특징으로 하는 회전형 구동기.
  29. 제24항에 있어서,
    상기 적어도 하나의 고분자 섬유 또는 고분자 시트의 상단부와 하단부가 서로 같은 방향 혹은 반대방향으로 회전되어 회전형 구동기로 제조될 때, 상기 고분자 섬유 또는 고분자 시트의 유리전이온도(Tg) 이상에서, 2,000 내지 60,000 turns/m의 꼬임수로 회전되어 제조되는 것을 특징으로 하는 회전형 구동기.
  30. 제24항에 있어서,
    상기 회전형 구동기는 고정되기 이전에 전체 길이에 대해 10 내지 60% 인장된 후, 고정되는 것을 특징으로 하는 회전형 구동기.
  31. 제24항 내지 제30항 중 어느 한 항에 따른 회전형 구동기 2 가닥으로 이루어진 2-플라이 구조를 가지고, 한 가닥처럼 거동하는 것을 특징으로 하는 2-플라이 구조의 회전형 구동기.
  32. 온도구배에 의해 연속적인 회전을 제공하는, 제24항 또는 제31항에 따른 회전형 구동기;
    상기 회전형 구동기 내에 지점에 위치하고, 상기 회전형 구동기가 회전함에 따라 회전하는, 적어도 하나 이상의 자성체 또는 코일; 및
    상기 회전형 구동기와 이격되어 배치되는 적어도 하나 이상의 코일 또는 자성체;를 포함하는 에너지 하베스팅 장치.
  33. 제32항에 있어서,
    상기 회전형 구동기가 온도구배에 의해 회전함에 따라 상기 자성체가 회전하고, 상기 코일 내부를 통과하는 자속의 변화를 유도하여 전기에너지를 생성하는 것을 특징으로 하는 에너지 하베스팅 장치.
  34. 제32항에 있어서,
    상기 자성체는 영구자석이고,
    상기 자성체의 무게는 상기 회전형 구동기에 대해 1 내지 1000 배인 것을 특징으로 하는 에너지 하베스팅 장치.
  35. 제32항에 있어서,
    상기 회전형 구동기는 양단이 모두 고정되어 있거나, 어느 하나의 말단만 고정되어 있고,
    상기 회전형 구동기가 어느 하나의 말단만 고정된 경우, 상기 회전형 구동기의 고정되지 않은 어느 하나의 말단에 위치변동지지대를 더 포함하는 것을 특징으로 하는 에너지 하베스팅 장치.
  36. 제35항에 있어서,
    상기 위치변동지지대는 자성체인 것을 특징으로 하고,
    상기 위치변동지지대와 이격되어 위치하고, 둘러싼 코일을 포함하고,
    온도구배에 따라 상기 회전형 구동기가 인장되고 수축되면 위치변동지지대가 수평으로 움직이면서 상기 코일 내부를 통과하는 자속이 변하여 전기에너지를 생성하는 것을 특징으로 하는 에너지 하베스팅 장치.
  37. 제32항에 있어서,
    상기 에너지 하베스팅 장치의 하단부 및 상단부 중 어느 한 곳에 부착된, 판;
    상기 판은 열림과 닫힘을 발생시키는 개폐구를 포함하고,
    상기 회전형 구동기의 일 지점에 위치하고, 상기 판과 이격되어 배치된, 상기 개폐구와 동일한 모양의 적어도 하나의 핀;을 더 포함하는 것을 특징으로 하는 에너지 하베스팅 장치.
  38. 제37항에 있어서,
    상기 회전형 구동기가 온도구배에 따라 회전하게 되고,
    상기 회전형 구동기의 회전에 의해 상기 핀이 상기 개폐구와 이격된 수평 위치에 위치하게 되어 개폐구로부터 유입되는 공기의 흐름을 차단하는 것을 특징으로 하는 에너지 하베스팅 장치.
  39. 제37항에 있어서,
    상기 개폐구가 구비된 각 판과 핀과의 이격거리는 0.1 내지 3 ㎝인 것을 특징으로 하는 에너지 하베스팅 장치.
  40. 양 말단이 가로축으로 고정되어 있고, 온도구배에 의해 회전하는, 제24항 또는 제31항에 따른 회전형 구동기;
    상기 회전형 구동기 내의 중앙 지점에 구비된 승강수단;
    상기 승강수단 하부에 구비되고, 상기 승강수단과 연결되어, 상기 회전형 구동기가 회전함에 따라 위치변동을 갖는, 적어도 하나 이상의 자성체; 및
    상기 자성체의 상하이동에 의해 전계를 발생시키는 적어도 하나 이상의 코일;을 포함하는 에너지 하베스팅 장치.
  41. 제40항에 있어서,
    상기 코일은 상기 자성체의 측면을 둘러싸는 원통형인 것을 특징으로 하는 에너지 하베스팅 장치.
  42. 제40항에 있어서,
    상기 코일은 상기 자성체의 측면 또는 하면에 위치하여 상기 자성체의 상하이동에 의해 전계를 발생시키는 것을 특징으로 하는 에너지 하베스팅 장치.
  43. 제40항에 있어서,
    상기 회전형 구동기가 온도구배에 의해 회전함에 따라 상기 자성체는 상하이동을 갖고,
    상기 자성체의 위치변동이 상기 코일과 자성체 간의 이격거리 변동을 야기하여, 상기 코일을 통과하는 자속의 변화가 유도되어 전기에너지를 생성하는 것을 특징으로 하는 에너지 하베스팅 장치.
  44. 제40항에 있어서,
    상기 자성체의 상하이동 거리는 0.1 내지 3 ㎝인 것을 특징으로 하는 에너지 하베스팅 장치.
  45. 제40항에 있어서,
    상기 승강수단은 회전에너지를 위치에너지로 전환하는 장치인 것을 특징으로 하는 에너지 하베스팅 장치.
PCT/KR2015/011203 2014-10-22 2015-10-22 온도 변화 또는 온도 구배에 의해 구동되는 회전형 구동기 및 이들을 이용한 에너지 하베스팅 장치 WO2016064220A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/521,063 US20170314539A1 (en) 2014-10-22 2015-10-22 Rotation-type actuator actuated by temperature fluctuation or temperature gradient and energy harvesting device using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140143310A KR101621167B1 (ko) 2014-10-22 2014-10-22 온도변화에 구동되는 회전형 구동기 및 이를 이용한 에너지 하베스팅 장치
KR10-2014-0143310 2014-10-22
KR10-2015-0012035 2015-01-26
KR1020150012035A KR102311763B1 (ko) 2015-01-26 2015-01-26 온도 구배에 의해 구동되는 회전형 구동기 및 이를 이용한 에너지 하베스팅 장치

Publications (1)

Publication Number Publication Date
WO2016064220A1 true WO2016064220A1 (ko) 2016-04-28

Family

ID=55761173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011203 WO2016064220A1 (ko) 2014-10-22 2015-10-22 온도 변화 또는 온도 구배에 의해 구동되는 회전형 구동기 및 이들을 이용한 에너지 하베스팅 장치

Country Status (2)

Country Link
US (1) US20170314539A1 (ko)
WO (1) WO2016064220A1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108115664A (zh) * 2017-12-21 2018-06-05 哈尔滨工业大学 一种有自传感功能的人工肌肉
WO2018123240A1 (ja) * 2016-12-27 2018-07-05 リンテック株式会社 アクチュエータ及びその製造方法
WO2018156761A1 (en) * 2017-02-23 2018-08-30 Lintec Of America, Inc. Continuous production of muscle fibers
WO2018160555A1 (en) * 2017-02-28 2018-09-07 Lintec Of America, Inc. Manufacturing of artificial muscle actuators
WO2018173742A1 (ja) * 2017-03-23 2018-09-27 株式会社デンソー 可動装置
WO2018173746A1 (ja) * 2017-03-23 2018-09-27 株式会社デンソー 可動装置
WO2018173743A1 (ja) * 2017-03-23 2018-09-27 株式会社デンソー 可動装置、その製造方法、および、その制御方法
WO2018191291A1 (en) * 2017-04-10 2018-10-18 Other Lab, Llc Coiled actuator system and method
JP6534134B1 (ja) * 2017-07-27 2019-06-26 パナソニックIpマネジメント株式会社 アクチュエータを駆動する方法、アクチュエータ、およびアクチュエータを製造する方法
JP2019520522A (ja) * 2016-04-29 2019-07-18 リンテック・オブ・アメリカ・インコーポレイテッド 双安定アクチュエータ装置
CN110462209A (zh) * 2017-03-23 2019-11-15 株式会社电装 可动装置
US10793981B2 (en) 2015-05-21 2020-10-06 Other Lab, Llc System and method for thermally adaptive materials
US11885577B2 (en) 2015-05-20 2024-01-30 Other Lab, Llc Heat exchanger array system and method for an air thermal conditioner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030637B2 (en) * 2015-12-18 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Actuator
US9897078B2 (en) * 2016-05-24 2018-02-20 The Boeing Company Bi-directional rotary shape memory alloy element actuator assemblies, and systems and methods including the same
WO2019102799A1 (ja) * 2017-11-21 2019-05-31 リンテック株式会社 アクチュエータ
JP6837246B2 (ja) * 2017-11-27 2021-03-03 パナソニックIpマネジメント株式会社 アクチュエータ装置
JP7091888B2 (ja) * 2018-02-19 2022-06-28 株式会社デンソー アクチュエータ装置
WO2019164768A1 (en) 2018-02-20 2019-08-29 Lintec Of America, Inc. Untwisted artificial muscle
JP7292287B2 (ja) * 2018-09-07 2023-06-16 リンテック株式会社 アクチュエータ
WO2020054633A1 (ja) * 2018-09-10 2020-03-19 東レ株式会社 アクチュエータ用繊維、並びにそれを用いたアクチュエータおよび繊維製品
JP7095509B2 (ja) * 2018-09-12 2022-07-05 株式会社デンソー アクチュエータ装置
JP7379241B2 (ja) * 2020-03-25 2023-11-14 三菱重工業株式会社 回転機の診断監視装置及び方法
CN113430692B (zh) * 2021-06-08 2022-06-07 浙江理工大学 一种各向异性加捻纤维束及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649379B1 (ko) * 1999-10-21 2006-11-24 인벤티오 아게 로프 편향구조와 이에 적합한 합성 섬유 로프 및, 이들의용도
KR20080045238A (ko) * 2008-03-24 2008-05-22 쿨만-윌스도프 모터스, 엘엘씨 교류 및 3-상 전류용 mp-a 및 mp―t 기기, 다극기기
KR20100090432A (ko) * 2009-02-06 2010-08-16 (주)아이블포토닉스 압전자성복합체를 이용한 무선 자가발전 충전장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002323407A1 (en) * 2001-08-24 2003-03-10 University Of Virginia Patent Foundation Reversible shape memory multifunctional structural designs and method of using and making the same
US8272214B2 (en) * 2008-03-07 2012-09-25 GM Global Technology Operations LLC Shape memory alloy cables
US8628372B2 (en) * 2011-04-29 2014-01-14 Pedro L. Cabrera Shape memory alloy actuator assembly
US9903350B2 (en) * 2012-08-01 2018-02-27 The Board Of Regents, The University Of Texas System Coiled and non-coiled twisted polymer fiber torsional and tensile actuators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649379B1 (ko) * 1999-10-21 2006-11-24 인벤티오 아게 로프 편향구조와 이에 적합한 합성 섬유 로프 및, 이들의용도
KR20080045238A (ko) * 2008-03-24 2008-05-22 쿨만-윌스도프 모터스, 엘엘씨 교류 및 3-상 전류용 mp-a 및 mp―t 기기, 다극기기
KR20100090432A (ko) * 2009-02-06 2010-08-16 (주)아이블포토닉스 압전자성복합체를 이용한 무선 자가발전 충전장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAINES ET AL.: "ARTIFICIAL MUSCLES FROM FISHING LINE AND SEWING THREAD.", SCIENCE, vol. 343, no. 6173, 21 February 2014 (2014-02-21), pages 868 - 872, XP002747796, DOI: doi:10.1126/science.1246906 *
LIMA ET AL.: "ELECTRICALLY, CHEMICALLY, AND PHOTONICALLY POWERED TORSIONAL AND TENSILE ACTUATION OF HYBRID CARBON NANOTUBE YARN MUSCLES.", SCIENCE, vol. 338, no. 6109, 16 November 2012 (2012-11-16), pages 928 - 932 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885577B2 (en) 2015-05-20 2024-01-30 Other Lab, Llc Heat exchanger array system and method for an air thermal conditioner
US10793981B2 (en) 2015-05-21 2020-10-06 Other Lab, Llc System and method for thermally adaptive materials
US11686024B2 (en) 2015-05-21 2023-06-27 Other Lab, Llc System and method for thermally adaptive materials
JP2019520522A (ja) * 2016-04-29 2019-07-18 リンテック・オブ・アメリカ・インコーポレイテッド 双安定アクチュエータ装置
US10982739B2 (en) 2016-04-29 2021-04-20 Lintec Of America, Inc. Bi-stable actuator devices
CN110100096A (zh) * 2016-12-27 2019-08-06 琳得科株式会社 致动器及其制造方法
TWI737841B (zh) * 2016-12-27 2021-09-01 日商琳得科股份有限公司 致動器及其製造方法
CN110100096B (zh) * 2016-12-27 2020-10-16 琳得科株式会社 致动器及其制造方法
WO2018123240A1 (ja) * 2016-12-27 2018-07-05 リンテック株式会社 アクチュエータ及びその製造方法
US11199181B2 (en) 2017-02-23 2021-12-14 Lintec Of America, Inc. Continuous production of muscle fibers
TWI741150B (zh) * 2017-02-23 2021-10-01 美商琳得科美國股份有限公司 肌肉纖維的連續生產技術
WO2018156761A1 (en) * 2017-02-23 2018-08-30 Lintec Of America, Inc. Continuous production of muscle fibers
JP7148529B2 (ja) 2017-02-28 2022-10-05 リンテック・オブ・アメリカ・インコーポレイテッド 人工筋肉アクチュエータの製造
US11299825B2 (en) 2017-02-28 2022-04-12 Lintec Of America Manufacturing of artificial muscle actuators
JP2020509805A (ja) * 2017-02-28 2020-04-02 リンテック・オブ・アメリカ・インコーポレイテッド 人工筋肉アクチュエータの製造
WO2018160555A1 (en) * 2017-02-28 2018-09-07 Lintec Of America, Inc. Manufacturing of artificial muscle actuators
TWI708598B (zh) * 2017-02-28 2020-11-01 美商琳得科美國股份有限公司 用以製造人工肌肉致動器纖維之方法與裝置
JP2018161009A (ja) * 2017-03-23 2018-10-11 株式会社デンソー 可動装置
JP2018159353A (ja) * 2017-03-23 2018-10-11 株式会社デンソー 可動装置
WO2018173742A1 (ja) * 2017-03-23 2018-09-27 株式会社デンソー 可動装置
CN110462208A (zh) * 2017-03-23 2019-11-15 株式会社电装 可动装置
CN110431304A (zh) * 2017-03-23 2019-11-08 株式会社电装 可动装置、可动装置的制造方法及可动装置的控制方法
CN110462209A (zh) * 2017-03-23 2019-11-15 株式会社电装 可动装置
CN110462209B (zh) * 2017-03-23 2021-04-09 株式会社电装 可动装置
WO2018173746A1 (ja) * 2017-03-23 2018-09-27 株式会社デンソー 可動装置
US11002256B2 (en) 2017-03-23 2021-05-11 Denso Corporation Movable device
WO2018173743A1 (ja) * 2017-03-23 2018-09-27 株式会社デンソー 可動装置、その製造方法、および、その制御方法
JP2018161010A (ja) * 2017-03-23 2018-10-11 株式会社デンソー 可動装置、その製造方法、および、その制御方法
EP3610056A4 (en) * 2017-04-10 2020-12-23 Other Lab, LLC SYSTEM AND PROCEDURE OF A COIL ACTUATOR
WO2018191291A1 (en) * 2017-04-10 2018-10-18 Other Lab, Llc Coiled actuator system and method
US11519106B2 (en) 2017-04-10 2022-12-06 Other Lab, Llc Coiled actuator system and method
US10793979B2 (en) 2017-04-10 2020-10-06 Other Lab, Llc Coiled actuator system and method
JP6534134B1 (ja) * 2017-07-27 2019-06-26 パナソニックIpマネジメント株式会社 アクチュエータを駆動する方法、アクチュエータ、およびアクチュエータを製造する方法
CN108115664A (zh) * 2017-12-21 2018-06-05 哈尔滨工业大学 一种有自传感功能的人工肌肉

Also Published As

Publication number Publication date
US20170314539A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
WO2016064220A1 (ko) 온도 변화 또는 온도 구배에 의해 구동되는 회전형 구동기 및 이들을 이용한 에너지 하베스팅 장치
WO2018101734A1 (en) Display device
WO2019059529A1 (en) DISPLAY DEVICE
WO2017026666A1 (ko) 발열체 제조방법과 그 발열체 및 사용방법
WO2009139543A1 (ko) 떨림 보정기능이 구비된 영상 촬영 장치
WO2012039548A1 (ko) 영구자석과 전자석을 결합한 자성체 홀딩장치
WO2020158964A1 (ko) 액션 로봇
WO2021066213A1 (ko) 디스플레이 디바이스
WO2018043922A1 (ko) 원적외선 열선 제조방법 및 그 원적외선 열선
WO2011096658A2 (en) Traction motor module
WO2013035989A2 (ko) 발전시 회전력이 발생하는 발전동기
WO2011002151A2 (ko) 떨림 보정기능이 구비된 영상 촬영 장치
WO2017188766A1 (ko) 정보 출력 장치
WO2017171182A1 (ko) 풍력 발전 시스템의 컨버터 구동 장치 및 컨버터 제어 장치, 풍력 발전 시스템의 스위칭 소자 모듈 구동 장치 및 스위칭 소자 모듈 제어 장치
WO2019226011A1 (ko) 정보 출력 장치
WO2020141702A1 (ko) 잠금 장치
WO2018048191A1 (ko) 자동차 원적외선 난방장치 제조방법 및 그 난방장치
WO2018101802A2 (ko) 가열 어셈블리
WO2018080027A1 (ko) 유연 열전 모듈 및 이를 포함하는 열전 장치
WO2021256840A1 (ko) 출력을 향상시킨 발전장치
WO2024117872A1 (ko) 안테나, 그의 제조방법, 및 그를 포함하는 플렉서블 시스템
WO2019031836A1 (ko) 정보 출력 장치
WO2021145602A1 (ko) 의류처리장치 및 그 제어방법
WO2020141871A1 (ko) 탄소나노튜브 폼의 제조방법 및 탄소나노튜브를 포함하는 열전소자
WO2020017888A1 (ko) 케이블 체적 적응형 바 타입 케이블 정리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852935

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15521063

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852935

Country of ref document: EP

Kind code of ref document: A1