WO2016063917A1 - Surface protective sheet - Google Patents

Surface protective sheet Download PDF

Info

Publication number
WO2016063917A1
WO2016063917A1 PCT/JP2015/079725 JP2015079725W WO2016063917A1 WO 2016063917 A1 WO2016063917 A1 WO 2016063917A1 JP 2015079725 W JP2015079725 W JP 2015079725W WO 2016063917 A1 WO2016063917 A1 WO 2016063917A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
sheet
wafer
curable resin
layer
Prior art date
Application number
PCT/JP2015/079725
Other languages
French (fr)
Japanese (ja)
Inventor
和幸 田村
茂人 奥地
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2016555258A priority Critical patent/JP6559151B2/en
Publication of WO2016063917A1 publication Critical patent/WO2016063917A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a surface protection sheet, and more particularly to a surface protection sheet used for protecting a circuit surface when grinding a back surface of a semiconductor wafer having a circuit formed on the surface.
  • bumps made of solder or the like are often used for bonding a semiconductor chip and a substrate.
  • the pressure difference due to bump steps directly affects the back side, and the cushioning properties of the adhesive sheet used for surface protection cannot be suppressed, and bumps are applied during the grinding process.
  • the wafer was damaged or dimples (dimples formed on the back surface) were generated, impairing the reliability of the completed device.
  • the thickness of the finish is made relatively thick so as not to damage the wafer, or the design in which the density of arranging the bumps is sparse has been avoided.
  • the thickness of the pressure-sensitive adhesive layer is increased and the flowability of the pressure-sensitive adhesive is further increased so that the pressure-sensitive adhesive layer and the edge of the wafer are brought into close contact with each other.
  • the adhesive when the adhesive is fluidized, it becomes easier for the adhesive to wrap around the base part of the bump, and the adhesive that adheres to the base part of the bump due to the peeling operation of the adhesive sheet causes in-layer destruction, part of which is on the circuit surface. There are times when it arrives. This is a problem that may occur even when an adhesive sheet using an energy ray curable adhesive is used. If the adhesive remaining on the circuit surface is not removed by solvent cleaning or the like, it remains as a foreign substance of the device and impairs the reliability of the completed device.
  • Patent Document 1 uses a protective tape whose adhesive force can be controlled by appropriate processing, and affixes the protective tape to the semiconductor wafer only in the strong adhesive state only on the periphery of the semiconductor wafer.
  • An attaching method is disclosed. In this method, an ultraviolet curable adhesive tape is used as a protective tape if necessary, and the adhesive layer that contacts the element formation region of the wafer is cured prior to attaching the semiconductor wafer. It is for fixing.
  • Patent Document 2 proposes a protective tape in which an annular adhesive portion is provided on the outer peripheral portion of a hard base material as a countermeasure against a high bump wafer.
  • the annular adhesive portion faces the end portion of the wafer on which no bump is formed, and is in close contact with the end portion of the wafer to protect the circuit surface.
  • the thickness of the outer peripheral adhesive portion is set in accordance with the bump height of the wafer, and is conventionally about 100 to 200 ⁇ m.
  • An object of the present invention is to provide a surface protective sheet having sufficient antistatic performance.
  • the present invention for solving the above problems includes the following gist.
  • the surface protective sheet of the present invention generation of static electricity due to peeling electrification can be suppressed, and damage to the wafer circuit due to static electricity can be prevented.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • the perspective view of the sheet for surface protection concerning other modes of the present invention is shown.
  • FIG. 4 is a sectional view taken along line BB in FIG. 3.
  • the state which affixes the surface protection sheet which concerns on this invention on the bump surface of a wafer, and performs wafer back surface grinding is shown.
  • An example of the usage aspect of the conventional surface protection sheet is shown.
  • the surface protection sheet 10 according to the present invention is used when grinding the back surface of a semiconductor wafer.
  • a perspective view of one embodiment of the surface protecting sheet 10 is shown in FIG. 1, and a cross-sectional view of FIG. 1 is shown in FIG.
  • the surface protecting sheet 10 of the present invention is provided on one side of a base material 5 composed of an antistatic coating layer 1 composed of an inorganic conductive filler and a cured product of a curable resin (A) and a support film 2.
  • a non-adhesive portion 3 having a diameter smaller than the outer diameter of the semiconductor wafer to be attached and an adhesive portion 4 surrounding the non-adhesive portion 3 are provided.
  • the surface of the non-adhesive portion 3 and the surface of the adhesive portion 4 are continuous and on the same plane. It may be.
  • the base material used for the surface protective sheet of the present invention comprises an antistatic coating layer and a support film. Below, it demonstrates in order of an antistatic coat layer and a support film.
  • the antistatic coating layer is formed so as to cover one side or both sides of a support film described later.
  • an antistatic coating layer By providing an antistatic coating layer, static electricity generated by peeling electrification is effectively diffused when the surface protection sheet according to the present invention is peeled off from an adherend (such as a semiconductor wafer), and antistatic performance is improved.
  • the antistatic coating layer is composed of an inorganic conductive filler and a cured product of the curable resin (A), and can be obtained by a method of curing a blend containing the inorganic conductive filler and the curable resin (A).
  • the inorganic conductive filler is not particularly limited, but for example, metal filler such as metal powder such as Cu, Al, Ni, Sn, Zn, zinc oxide, titanium oxide, tin oxide, indium oxide, antimony oxide, etc.
  • metal filler such as metal powder such as Cu, Al, Ni, Sn, Zn, zinc oxide, titanium oxide, tin oxide, indium oxide, antimony oxide, etc.
  • the metal oxide filler is mentioned.
  • tin oxide-based metal oxide fillers are preferable because they are relatively inexpensive and versatile.
  • antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), or the like can be used as the tin oxide-based metal oxide filler.
  • the average particle size of the inorganic conductive filler is not particularly limited, and is preferably 0.01 to 1 ⁇ m, more preferably 0.02 to 0.5 ⁇ m.
  • the average particle size is a value measured with a particle size distribution measuring device (Microtrack UPA-150 manufactured by Nikkiso Co., Ltd.).
  • the antistatic coating layer is preferably 100 to 600 parts by weight, more preferably 150 to 600 parts by weight, and particularly preferably 200 to 600 parts by weight of the inorganic conductive filler with respect to 100 parts by weight of the cured product of the curable resin (A). Contains part by mass. In addition, there is substantially no difference between the blending ratio of the curable resin (A) and the inorganic conductive filler before curing and the blending ratio of the cured product of the curable resin (A) and the inorganic conductive filler. It is normal.
  • the blending ratio of the curable resin (A) and the inorganic conductive filler before curing is regarded as the blending ratio of the cured product of the curable resin (A) and the inorganic conductive filler.
  • the curable resin (A) is not particularly limited, but an energy beam curable resin, a thermosetting resin, or the like is used, and an energy beam curable resin is preferably used.
  • the energy ray curable resin is not particularly limited.
  • a resin composition mainly composed of an energy ray curable resin such as an energy ray polymerizable urethane (meth) acrylate oligomer or an epoxy (meth) acrylate oligomer is preferable.
  • the weight average molecular weight Mw of the urethane (meth) acrylate oligomer or epoxy (meth) acrylate oligomer (referred to as polystyrene converted by gel permeation chromatography) is usually about 1000 to 70000, preferably 1500 to 60000. is there.
  • Said urethane (meth) acrylate oligomer and epoxy (meth) acrylate oligomer can be used individually by 1 type or in combination of 2 or more types.
  • a binder component may be added to the component of the curable resin (A).
  • a binder component include an acrylic resin, a polyester resin, a urethane resin, and a polyamide resin.
  • the energy ray curable resin may be a polymer having an energy ray curable functional group in the side chain. If such a polymer is used as an energy ray curable resin, the adhesion to the support film can be improved without lowering the crosslinking density.
  • a polymer for example, a polymer whose main chain is an acrylic polymer and whose side chain has an energy ray-curable double bond or an epoxy group as a functional group can be used.
  • the polymerization curing time and irradiation amount by energy beam irradiation can be reduced.
  • the photopolymerization initiator include benzoin compounds, acetophenone compounds, acylphosphinoxide compounds, titanocene compounds, thioxanthone compounds, peroxide compounds and other photopolymerization initiators, and photosensitizers such as amines and quinones.
  • Specific examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • a dispersing agent may be added to the curable resin (A) in order to improve the dispersibility of the inorganic conductive filler in the resin.
  • additives such as coloring agents, such as a pigment and dye, may contain.
  • the antistatic coat layer can be formed by forming and curing a composition containing an inorganic conductive filler and a curable resin (A) directly on a support film described later. Moreover, the compound containing an inorganic electroconductive filler and curable resin (A) is cast in a thin film form on a process film in a liquid state, Furthermore, the compound containing the curable resin (B) mentioned later is further on it. By casting, a substrate composed of an antistatic coat layer and a support film can be obtained. The procedure for curing at this time may be performed immediately after each film formation, or may be performed collectively after forming the substrate.
  • the thickness of the antistatic coating layer is preferably 0.2 to 5 ⁇ m, more preferably 0.5 to 5 ⁇ m, and particularly preferably 1 to 4 ⁇ m. By setting the thickness of the antistatic coating layer within the above range, high antistatic performance tends to be maintained.
  • the surface resistivity of the antistatic coating layer is preferably 1 ⁇ 10 12 ⁇ / ⁇ or less, more preferably 1 ⁇ 10 11 ⁇ / ⁇ or less, and particularly preferably 1 ⁇ 10 10 ⁇ / ⁇ or less.
  • the surface resistivity of the antistatic coating layer exceeds 1 ⁇ 10 12 ⁇ / ⁇ , it is difficult to stably suppress the generation of static electricity when peeling the surface protective sheet of the present invention from the adherend. May be.
  • the antistatic performance of the surface protecting sheet can be improved.
  • the surface resistivity of the antistatic coating layer was determined by conditioning a sample obtained by cutting the antistatic coating layer to 100 mm ⁇ 100 mm for 24 hours under conditions of 23 ° C. and an average humidity of 50% RH.
  • the resistance value can be measured according to JIS K 6911;
  • the support film used for the surface protecting sheet of the present invention is not particularly limited as long as it is a resin sheet, and various resin sheets can be used.
  • a resin sheet include resin films such as polyolefin, polyvinyl chloride, acrylic rubber, and urethane.
  • the support film may be a single layer or a laminate. Moreover, the film which gave the process of bridge
  • a thermoplastic resin sheet formed by extrusion molding may be used, or a film made of a cured product obtained by thinning and curing the curable resin (B) by a predetermined means is used. May be.
  • a film made of a cured product of the curable resin (B) is used as the support film, the stress relaxation rate and Young's modulus of the substrate can be easily controlled, and the adhesion to the antistatic coating layer can be improved. it can.
  • the curable resin (B) is not particularly limited, an energy beam curable resin, a thermosetting resin, or the like is used similarly to the curable resin (A) used for the antistatic coating layer, preferably an energy beam curable type. Resin is used.
  • energy beam curable resin is not specifically limited, For example, energy beam curable urethane-containing resin can be used.
  • a support film containing a cured product of an energy ray-curable urethane-containing resin is preferable because it has excellent stress relaxation properties and easily adjusts the stress relaxation rate of the substrate to a range described later.
  • the energy ray curable urethane-containing resin include an energy ray curable resin mainly composed of a urethane (meth) acrylate resin or a urethane polymer and an energy ray polymerizable monomer.
  • the urethane (meth) acrylate resin is a composition containing a urethane (meth) acrylate oligomer, and if necessary, a compound containing a thiol group in the molecule, an N-nitrosamine polymerization inhibitor and / or an N-oxyl polymerization. Inhibitors may be included.
  • Urethane (meth) acrylate oligomer is a compound having a (meth) acryloyl group and having a urethane bond.
  • Such a urethane (meth) acrylate oligomer can be obtained by reacting a (meth) acrylate having a hydroxyl group with a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound and a polyvalent isocyanate compound.
  • (meth) acryl is used in the meaning including both acrylic and methacrylic.
  • the polyol compound is not particularly limited as long as it is a compound having two or more hydroxy groups, and known compounds can be used. Specifically, for example, any of alkylene diol, polyether type polyol, polyester type polyol, and polycarbonate type polyol may be used, but a better effect can be obtained by using the polyether type polyol.
  • the polyol is not particularly limited, and may be a bifunctional diol, a trifunctional triol, or a tetrafunctional or higher polyol. From the viewpoint of availability, versatility, and reactivity, It is particularly preferred to use a diol. Among these, polyether type diol is preferably used.
  • a polyether type diol which is a representative example of a polyether type polyol, is generally represented by HO-(-R-O-) n-H.
  • R is a divalent hydrocarbon group, preferably an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms, and particularly preferably an alkylene group having 2 or 3 carbon atoms.
  • alkylene groups having 1 to 6 carbon atoms ethylene, propylene, or tetramethylene is preferable, and ethylene or propylene is particularly preferable.
  • particularly preferred polyether type diols include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol
  • more particularly preferred polyether type diols include polyethylene glycol and polypropylene glycol.
  • n is the number of repetitions of R, preferably about 10 to 250, more preferably about 25 to 205, and particularly preferably about 40 to 185.
  • n is smaller than 10
  • the urethane bond concentration of the urethane (meth) acrylate oligomer is increased, the elasticity of the support film is increased, and the Young's modulus of the substrate in the present invention may be excessively increased.
  • n is larger than 250, there is a concern that the Young's modulus exceeds the upper limit of the range described later, due to the strong interaction between the polyether chains.
  • a terminal isocyanate urethane prepolymer in which an ether bond (-(-R-O-) n-) is introduced is produced by a reaction between a polyether type diol and a polyvalent isocyanate compound.
  • the urethane (meth) acrylate oligomer contains a structural unit derived from the polyether type diol.
  • the polyester type polyol can be obtained by polycondensation of a polyol compound and a polybasic acid component.
  • the polyol compound include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3 -Methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, hexanediol, octanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2- Examples thereof include various known glycols such as butyl-1,3-propanediol, 1,4-cyclohexanedimethanol, bisphenol A ethylene glycol or propylene glycol a
  • polyester polybasic acid components As the polybasic acid component used for the production of the polyester type polyol, various known ones generally known as polyester polybasic acid components can be used. Specifically, for example, dibasic acids such as adipic acid, maleic acid, succinic acid, oxalic acid, fumaric acid, malonic acid, glutaric acid, pimelic acid, azelaic acid, sebacic acid and suberic acid, aromatic polybasic acids And anhydrides corresponding to these, derivatives thereof, dimer acid, hydrogenated dimer acid, and the like. In addition, in order to provide moderate hardness to a coating film, it is preferable to use an aromatic polybasic acid.
  • dibasic acids such as adipic acid, maleic acid, succinic acid, oxalic acid, fumaric acid, malonic acid, glutaric acid, pimelic acid, azelaic acid, sebacic acid and suberic acid
  • aromatic polybasic acid examples include dibasic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid, polybasic acids such as trimellitic acid and pyromellitic acid, and the like. Corresponding acid anhydrides and derivatives thereof may be mentioned. In addition, you may use various well-known catalysts for the said esterification reaction as needed. Examples of the catalyst include tin compounds such as dibutyltin oxide and stannous octylate, and alkoxytitanium such as tetrabutyl titanate and tetrapropyl titanate.
  • the polycarbonate type polyol is not particularly limited, and known ones can be used. Specifically, for example, a reaction product of the above-described glycols and alkylene carbonate can be used.
  • the molecular weight of the polyol compound is preferably about 500 to 10,000, and more preferably about 800 to 9000.
  • molecular weight is lower than 1000, the urethane bond density
  • concentration of a urethane (meth) acrylate oligomer will become high, and the Young's modulus of the base material in this invention may become high. If the molecular weight is too high, there is a concern that the Young's modulus exceeds the upper limit of the range described later, due to the strong interaction between the polyether chains.
  • the molecular weight of the polyol compound is the number of polyol functional groups ⁇ 56.11 ⁇ 1000 / hydroxyl value [mgKOH / g], and is calculated from the hydroxyl value of the polyol compound.
  • polyvalent isocyanate compound examples include aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, and dicyclohexylmethane-2,4.
  • aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate
  • isophorone diisocyanate norbornane diisocyanate
  • dicyclohexylmethane-4,4′-diisocyanate dicyclohexylmethane-2,4.
  • Aliphatic diisocyanates such as' -diisocyanate, ⁇ , ⁇ '-diisocyanate dimethylcyclohexane, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, tolidine diisocyanate, tetramethylene xylylene diisocyanate, naphthalene-1, And aromatic diisocyanates such as 5-diisocyanate.
  • isophorone diisocyanate hexamethylene diisocyanate, or xylylene diisocyanate because the viscosity of the urethane (meth) acrylate oligomer can be kept low and the handleability becomes good.
  • a terminal (meth) acrylate having a hydroxy group is reacted with a terminal isocyanate urethane prepolymer obtained by reacting the polyol compound as described above with a polyvalent isocyanate compound to obtain a urethane (meth) acrylate oligomer.
  • the (meth) acrylate having a hydroxy group is not particularly limited as long as it is a compound having a hydroxy group and a (meth) acryloyl group in one molecule, and known ones can be used. Specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 5-hydroxycyclooctyl (meta ) Acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate and other hydroxyalkyl (meth) acrylates, N -Reactants obtained by reacting (meth) acrylic acid with diglycidyl ester of hydroxy group-containing (meth) acrylamide,
  • the terminal isocyanate urethane prepolymer and the hydroxy group-containing (meth) acrylate may be reacted in the presence of a solvent and a catalyst, if necessary.
  • the reaction may be performed at about 60 to 100 ° C. for about 1 to 4 hours.
  • the urethane (meth) acrylate oligomer obtained has a photopolymerizable double bond in the molecule, and has a property of being polymerized and cured by irradiation with energy rays to form a film.
  • Said urethane (meth) acrylate oligomer can be used individually by 1 type or in combination of 2 or more types.
  • the urethane (meth) acrylate oligomer may be a monofunctional urethane (meth) acrylate oligomer having only one (meth) acryloyl group in the molecule, or may have two or more (meth) acryloyl groups in the molecule.
  • a polyfunctional urethane (meth) acrylate oligomer may be sufficient, a polyfunctional urethane (meth) acrylate oligomer is preferable.
  • the Young's modulus of the obtained substrate can be controlled by the urethane (meth) acrylate oligomer being a polyfunctional urethane (meth) acrylate oligomer. There is an advantage that it becomes easy.
  • the number of (meth) acryloyl groups possessed by the polyfunctional urethane (meth) acrylate oligomer is preferably 2 to 3 (the urethane (meth) acrylate oligomer is a bifunctional urethane (meth) acrylate oligomer). Is more preferable.
  • the weight-average molecular weight of the urethane (meth) acrylate oligomer thus obtained is not particularly limited, but the urethane (meth) acrylate oligomer is polyfunctional.
  • the weight average molecular weight is preferably about 1500 to 10,000, and more preferably 4000 to 9000.
  • the weight average molecular weight 1500 or more it is easy to suppress an increase in the crosslinking density in the polymer of urethane (meth) acrylate oligomer and to adjust the Young's modulus of the base material to an extent that does not exceed the upper limit of the range described below. Become. Moreover, by setting it as 10,000 or less, it becomes easy to suppress the fall of the crosslinking density in the polymer of a urethane (meth) acrylate oligomer, and to adjust so that the Young's modulus of a base material may not fall below the minimum of the below-mentioned range. Moreover, the viscosity of a urethane (meth) acrylate oligomer can be made low and the handleability of the coating liquid for film forming improves.
  • the energy ray polymerizable monomer has an energy ray polymerizable double bond in the molecule, and particularly in the present invention, such as isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and phenylhydroxypropyl (meth) acrylate.
  • a (meth) acrylic ester compound having a relatively bulky group is preferably used.
  • the energy ray polymerizable monomer is preferably 5 to 900 parts by weight, more preferably 10 to 500 parts by weight, and particularly preferably 30 to 200 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate oligomer. Used.
  • the amount of energy beam polymerizable monomer is in such a range, derived from (meth) acryloyl group of urethane (meth) acrylate oligomer
  • the interval between the portions to be processed becomes an appropriate level, and it becomes easy to control the Young's modulus of the base material within the range described later.
  • urethane polymers are urethane polymers that do not have a polymerizable functional group such as a (meth) acryloyl group in the molecule.
  • a polymerizable functional group such as a (meth) acryloyl group in the molecule.
  • the above-mentioned polyol compound and a polyvalent isocyanate compound are reacted. Can be obtained.
  • the same one as described above for diluting the urethane (meth) acrylate resin can be used, and N, N-dimethylaminoethyl acrylate, N, N-dimethylaminopropyl methacrylamide, Nitrogen-containing monomers such as acryloylmorpholine, N, N-dimethylacrylamide, N, N-diethylacrylamide, imide acrylate and N-vinylpyrrolidone may be used.
  • the energy ray polymerizable monomer is preferably used in a proportion of 5 to 900 parts by mass, more preferably 10 to 500 parts by mass, and particularly preferably 30 to 200 parts by mass with respect to 100 parts by mass of the urethane polymer.
  • the polymerization curing time and irradiation amount by energy beam irradiation can be reduced by mixing a photopolymerization initiator in the resin.
  • a photoinitiator the same thing as what mixes with curable resin (A) can be mixed.
  • the amount of the photopolymerization initiator used is preferably 0.05 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, and particularly preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the energy beam curable resin. Part by mass.
  • a photoinitiator the same thing as what mixes with curable resin (A) can be mixed.
  • the curable resin (B) may contain additives such as inorganic fillers such as calcium carbonate, silica and mica, metal fillers such as iron and lead, and colorants such as pigments and dyes. .
  • a method for forming a support film after casting a composition containing the curable resin (B) in a thin film on a process film in a liquid state, this is formed into a film by a predetermined means, and the process film is removed.
  • a support film can be manufactured. According to such a manufacturing method, the stress applied to the resin during film formation is small, and dimensional changes due to aging or heating are less likely to occur.
  • the formed film reduces the formation of fish eyes, thereby improving the uniformity of the film thickness and the thickness accuracy is usually within 2%.
  • the thickness of the support film is preferably 40 to 300 ⁇ m, more preferably 60 to 250 ⁇ m, and particularly preferably 80 to 200 ⁇ m.
  • the surface on which the antistatic coat layer of the support film is formed or the surface on which the pressure-sensitive adhesive layer is provided is subjected to corona treatment or other treatment such as primer treatment in order to improve the adhesion with these layers.
  • a layer may be provided.
  • the support film formed by the raw materials and methods as described above exhibits excellent stress relaxation properties.
  • the substrate used in the present invention exhibits excellent stress relaxation properties by employing a support film having excellent stress relaxation properties.
  • the stress relaxation rate of the substrate after 1 minute at 10% elongation is preferably 60% or more, more preferably 65% or more, and particularly preferably 75 to 90%.
  • the Young's modulus of the substrate is 100 to 2000 MPa, preferably 125 to 1500 MPa, more preferably 125 to 1000 MPa. If the surface protection sheet is provided with an antistatic coating layer, cracks (breaks) may occur in the antistatic coating layer in the wafer back grinding process. Due to the occurrence of such cracks, the conductivity in the surface direction of the antistatic coating layer may be cut and the effect of diffusing the peeling charge may be reduced. According to the surface protective sheet of the present invention, by setting the Young's modulus of the base material within the above range, the surface protective sheet is moderately imparted with resistance to pulling, thereby preventing cracks in the antistatic coating layer. In addition, it is possible to suppress a decrease in antistatic performance.
  • the Young's modulus of the substrate is less than 100 MPa, cracks occur in the antistatic coating layer, and the antistatic performance is lowered. Further, if the Young's modulus of the substrate exceeds 2000 MPa, the stress relaxation rate of the substrate decreases, making it difficult to obtain a substrate having a stress relaxation rate in a desired range, and the effect of preventing wafer warpage. descend.
  • a non-adhesive portion having a diameter smaller than the outer diameter of the semiconductor wafer to be attached and an adhesive portion surrounding the non-adhesive portion are formed on one surface of the substrate.
  • the adhesive part may be composed of a double-sided adhesive tape, or may be composed of a single adhesive layer.
  • the double-sided pressure-sensitive adhesive tape is formed by forming a pressure-sensitive adhesive layer on both surfaces of a core material film.
  • the thickness of the adhesive part may be adjusted as appropriate according to the height of the bumps and other irregularities provided on the semiconductor wafer to which the surface protection sheet is attached. However, it is preferably 3 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, particularly preferably about 7 to 30 ⁇ m. When the thickness of the adhesive part is too thin, sufficient adhesive strength cannot be obtained, and the protective function may be lowered. On the other hand, when the thickness of the pressure-sensitive adhesive portion is increased, the pressure-sensitive adhesive portion can be formed with a double-sided pressure-sensitive adhesive tape, and there is no need to use a single-layer pressure-sensitive adhesive film. When the adhesive portion 4 is formed of a double-sided adhesive tape, the thickness of the adhesive portion is preferably about 5 to 300 ⁇ m, more preferably about 10 to 200 ⁇ m.
  • the surface protection sheet of the present invention can suppress the occurrence of peeling electrification even when the thickness of the adhesive portion is thus reduced. In this case, it is preferable to use a single-layer adhesive film as the adhesive part.
  • the thickness of the core material film of the double-sided pressure-sensitive adhesive tape varies, but is generally about 10 ⁇ m. For this reason, when an adhesive part is thin, when an adhesive part is comprised with a double-sided adhesive tape, the thickness of an adhesive layer will become thin and sufficient adhesive force may not be obtained.
  • the height of the adhesive part may be 0 (zero).
  • the surface of the non-adhesive part and the surface of the adhesive part are continuous and on the same plane.
  • Such a sheet for surface protection forms an energy ray curable pressure sensitive adhesive layer as described later on the entire surface of the base material, and only the inner peripheral portion that comes into contact with the circuit surface of the wafer is cured with energy rays to reduce the adhesive force.
  • the adhesive strength is obtained only on the outer peripheral portion.
  • the width of the adhesive portion affects the adhesive strength, and the adhesive strength increases as the width of the adhesive portion increases.
  • the width of the adhesive portion is preferably about 0.1 to 30 mm, more preferably about 1 to 20 mm, and particularly preferably about 2 to 10 mm.
  • the width of the adhesive portion is too narrow, the adhesive force of the surface protection sheet may become inadequate.
  • the width of the adhesive portion is too wide, the adhesive portion may reach the circuit formation region of the wafer and the circuit may be contaminated by the adhesive.
  • the type of the adhesive part is not specified as long as it has an appropriate re-peelability to the wafer, and can be formed by various conventionally known adhesives.
  • the pressure-sensitive adhesive is not limited at all, but rubber-based, acrylic-based, silicone-based, urethane-based, polyvinyl ether, and other pressure-sensitive adhesives are used.
  • an energy ray curable pressure-sensitive adhesive that is cured by irradiation with energy rays and becomes removable, a heat-foaming type, or a water swelling type pressure-sensitive adhesive can also be used.
  • the energy ray curable (ultraviolet ray curable, electron beam curable) pressure-sensitive adhesive it is particularly preferable to use an ultraviolet curable pressure-sensitive adhesive.
  • energy beam curable pressure-sensitive adhesives are described in, for example, JP-A-60-196956 and JP-A-60-223139.
  • water-swelling pressure-sensitive adhesive those described in, for example, JP-B-5-77284 and JP-B-6-101455 are preferably used.
  • Non-adhesive part The non-adhesive part is surrounded by the above-mentioned adhesive part, and is usually designed to have a slightly smaller diameter than the outer diameter of the semiconductor wafer to be stuck.
  • the non-adhesive part may be in a surface state that does not exhibit any adhesive property, but can be used without any problem as long as it has an adhesive force that exhibits an appropriate removability of 600 mN / 25 mm or less.
  • Such a non-adhesive part may specifically be the surface of the substrate (FIGS. 1 and 2), or may be formed of a cured product of an energy ray-curable adhesive layer (FIG. 1). 3, FIG. 4).
  • the surface protective sheet 10 As shown in FIG. 1, the surface protective sheet 10 according to the present invention has a non-diameter smaller than the outer diameter of a semiconductor wafer to be attached to one side of a base material 5 composed of the antistatic coating layer 1 and the support film 2.
  • the adhesive part 3 and the adhesive part 4 surrounding the non-adhesive part 3 are provided.
  • the non-adhesive part 3 and the adhesive part 4 can be provided on the antistatic coating layer 1 or the support film 2. In FIG. 1, the non-adhesive part 3 and the adhesive part 4 are formed on the support film 2.
  • the non-adhesive portion 3 faces the circuit forming portion provided with the bumps 8 of the wafer 7 to be bonded, as shown in FIG.
  • the outer portion of the non-wafer 4 is configured such that the adhesive portion 4 faces.
  • the pressure-sensitive adhesive portion 4 is formed of a single pressure-sensitive adhesive layer (the configuration shown in FIGS. 1 and 2) will be described as an example of creating the surface protection sheet 10.
  • the adhesive part 4 is composed of a single adhesive layer (adhesive film), and before the adhesive film is laminated on the base material 5, it is cut and removed into a substantially circular shape by means of punching or the like so that the adhesive part is not formed. Form. At this time, if the adhesive film is sandwiched between two release films, one release film and the adhesive film are punched out, and the other release film is not completely punched out, the remaining release film becomes the carrier of the adhesive film, and thereafter This processing is also preferable because it can be carried out continuously by roll-to-roll.
  • the method for forming the base material 5 is not particularly limited, and the antistatic coat layer 1 and the support film 2 are separately formed and laminated to obtain the base material 5 (production method (I)), or a curable resin.
  • (B) is applied onto the process sheet and pre-cured to form a pre-cured layer, and the composition including the inorganic conductive filler and the curable resin (A) is formed on the pre-cured layer.
  • the method (manufacturing method (II)) which has the process of apply
  • the surface protective sheet 10 having the base material 5 obtained by the production method (II) forms a coating layer to be an antistatic coating layer on the surface of the support film in a pre-cured layer state, and supports the antistatic coating layer 1 and the support layer. Since the film 2 is completely cured together, the adhesion between the antistatic coating layer 1 and the support film 2 is excellent, and the antistatic performance can be improved. Moreover, after apply
  • the die-cut adhesive film is laminated on the substrate 5 to obtain the surface protecting sheet 10. Since the adhesive layer does not exist in the above-described opening, the non-adhesive portion 3 is formed.
  • the structure at this stage may be used as the surface protective sheet 10 of the present invention.
  • the adhesive portion 4 is adhered to the outer surface of the wafer while the non-adhesive portion 3 of the surface protecting sheet 10 is aligned with the position of the circuit surface of the wafer. Then, the surface protection sheet protruding from the wafer is cut and separated along the outer periphery of the wafer 7 and subjected to back surface grinding.
  • the outer periphery of the adhesive portion 4 is punched out in a shape substantially concentric with the non-adhesive portion 3 and in accordance with the outer diameter of the wafer to be attached.
  • This is a molded structure. That is, the substrate 5 and the adhesive portion 4 are cut and removed in advance according to the outer diameter of the wafer 4 and temporarily attached on the release film.
  • the surface protection sheet shown in FIG. 3 and FIG. 4 forms an energy beam curable pressure-sensitive adhesive layer on the substrate 5, and the energy beam curable pressure-sensitive adhesive layer is formed in the size and shape of the circuit formation region of the wafer.
  • the non-adhesive part 3 corresponding to the circuit formation region is formed by irradiating energy rays in accordance with the above.
  • the wafer may be a wafer having no bumps on the circuit surface, but the surface protection sheet of the present invention is particularly preferably used for protecting the circuit surface of a wafer having bumps on the circuit surface.
  • the height of the bump is not particularly limited. However, when the adhesive portion 4 is composed of a single-layer adhesive layer, the height of the bump is preferably about 5 to 300 ⁇ m. Further, the position of the outermost bump is preferably 0.7 to 30 mm inside from the outer periphery of the wafer. A wafer on which such bumps are formed close to the outer periphery is difficult to protect with a conventional surface protective adhesive sheet, but is more preferably used in the present invention.
  • the wafer 7 having the above surface protection configuration is ground by a normal grinding method using a grinder 6 or the like by placing the surface protection sheet 10 side on a wafer fixing base (not shown) of a wafer grinding apparatus. Do.
  • the adhesive portion 4 is securely bonded to the outer portion of the wafer 7 so as to surround the entire circumference, the intrusion of cleaning water or the like during the grinding process does not occur and the circuit surface of the wafer is not contaminated. Further, since the apexes of the bumps are in contact with the substrate 5 with an appropriate pressure with respect to the wafer circuit surface, the surface protection sheet is less likely to be peeled off or displaced during grinding.
  • the adhesive portion 4 is formed of an energy ray curable adhesive
  • the adhesive portion is irradiated with energy rays to separate the wafer 7 from the surface protecting sheet 10.
  • the wafer 7 is fixed to the surface protection sheet 10 in the ring-shaped adhesive portion 4. Since the ring-shaped pressure-sensitive adhesive portion 4 has a narrow width and thus has a weak adhesive force, the wafer 7 can be easily peeled off.
  • the surface protection sheet 10 of the present invention when the surface protection sheet 10 is peeled from the wafer surface, the wafer surface is hardly contaminated by residues derived from the surface protection sheet, and defective products are generated. The quality of the obtained semiconductor chip can be stabilized. Furthermore, according to the surface protection sheet 10 of the present invention, it is possible to effectively diffuse the static electricity generated by the peeling charging when the wafer 7 is separated from the surface protection sheet 10.
  • the Young's modulus of the base material was measured using a universal tensile testing machine (Tensilon RTA-T-2M manufactured by Orientec Co., Ltd.) in accordance with JIS K7161: 1994 under an environment of 23 ° C. and 50% humidity at a tensile speed of 200 mm / Measured in minutes.
  • the sheet for surface protection prepared in Examples or Comparative Examples was attached to a silicon wafer (200 mm ⁇ , thickness 750 ⁇ m) using a tape mounter (Adwill RAD-3500 manufactured by Lintec). Thereafter, the silicon wafer was ground to a thickness of 150 ⁇ m using DFG-840 manufactured by Disco Corporation. After grinding, without removing the surface protection sheet, the wafer was placed on a surface plate for precision inspection with a flatness of 1st class conforming to JIS B 7513; 1992 so that the surface protection sheet was on the upper side. .
  • the surface protective sheet of Example or Comparative Example was stuck on the wafer circuit surface to obtain a laminate of the wafer and the surface protective sheet.
  • the laminate was left in an environment with an average temperature of about 23 ° C. and an average humidity of 65% RH for 30 days after preparation of the laminate. After standing, the laminate was first cut into a 10 ⁇ 10 cm square. Next, the surface protection sheet was peeled from the wafer at 500 mm / min. At this time, the charged potential charged on the surface protection sheet was measured from a distance of 50 mm using a current collecting potential measuring device (KSD-6110 manufactured by Kasuga Electric Co., Ltd.) in an environment of 23 ° C. and humidity 65% RH (measurement lower limit value). 0.1 kV).
  • KSD-6110 manufactured by Kasuga Electric Co., Ltd.
  • Example 1 50 parts by mass of a bifunctional urethane acrylate oligomer (weight average molecular weight of 8000) obtained by adding 2-hydroxyethyl acrylate to the end of a urethane oligomer synthesized from a polyester type polyol having a molecular weight of 2000 and isophorone diisocyanate as a skeleton, acrylic A mixture of 25 parts by mass of isobornyl acrylate and 25 parts by mass of 2-hydroxy-3-phenoxypropyl acrylate as a monomer (energy ray polymerizable monomer), and Darocur 1173 (product name, manufactured by BASF) as a photopolymerization initiator A formulation containing 1 part by mass was applied and spread on a release film, and cured with ultraviolet rays to obtain a support film having a thickness of 100 ⁇ m.
  • a bifunctional urethane acrylate oligomer weight average molecular weight of 8000
  • the pressure-sensitive adhesive was removed by punching in advance, and a single-layer pressure-sensitive adhesive layer (single-layer pressure-sensitive adhesive film) having a thickness of 20 ⁇ m made of an ultraviolet curable pressure-sensitive adhesive provided with a circular adhesive-free portion was prepared. .
  • a surface protecting sheet having a non-adhesive portion and a pressure-sensitive adhesive portion was prepared.
  • the size of the non-adhesive part was 190 mm in diameter.
  • Example 2 A surface protecting sheet was prepared in the same manner as in Example 1 except that the weight average molecular weight of the urethane acrylate oligomer was set to 3000 in the production of the support film. Each evaluation result is shown in Table 1.
  • Example 3 For surface protection, the same as in Example 1 except that the weight average molecular weight of the urethane acrylate oligomer was 6000, the amount of ATO added was 400 parts by mass, and the thickness of the antistatic coating layer was 0.25 ⁇ m. Created a sheet. Each evaluation result is shown in Table 1.
  • Example 4 A surface protecting sheet was prepared in the same manner as in Example 1 except that the amount of ATO added was 150 parts by mass and the thickness of the antistatic coating layer was 4.8 ⁇ m. Each evaluation result is shown in Table 1.
  • Example 1 A surface protecting sheet was prepared in the same manner as in Example 1 except that the antistatic coating layer was not provided. Each evaluation result is shown in Table 1.
  • Example 2 A surface protecting sheet was prepared in the same manner as in Example 1 except that the weight average molecular weight of the urethane acrylate oligomer was 12000 in the production of the support film. Each evaluation result is shown in Table 1.

Abstract

[Problem] To provide a surface protective sheet exhibiting sufficient antistatic performance. [Solution] This surface protective sheet is used when grinding the rear surface of a semiconductor wafer having a circuit formed on the front surface. The surface protective sheet has, provided to one surface of a base material, which comprises a support film and an antistatic coating layer including an inorganic conductive filler and a cured product of a curable resin (A), a non-adhesive part having a smaller diameter than the external diameter of the semiconductor wafer to be affixed, and an adhesive part surrounding the non-adhesive part. The Young's modulus of the base material is 100-2000 MPa.

Description

表面保護用シートSurface protection sheet
 本発明は、表面保護用シートに関し、さらに詳しくは表面に回路が形成された半導体ウエハの裏面研削の際に、回路面を保護するために用いられる表面保護用シートに関する。 The present invention relates to a surface protection sheet, and more particularly to a surface protection sheet used for protecting a circuit surface when grinding a back surface of a semiconductor wafer having a circuit formed on the surface.
 半導体装置の高密度実装化に伴い、半導体チップと基板の接合にはハンダ等からなるボール状、柱状ないし円錐台状の電極(以下、「バンプ」)が用いられることが多い。このようなバンプが回路面に形成されたウエハの裏面を研削すると、バンプの段差による圧力差が裏面に直接影響し、表面保護に用いる粘着シートのクッション性では抑えきれずに研削工程中にバンプやウエハが破損したり、ディンプル(裏面に生成する窪み)が生成し、完成したデバイスの信頼性を損なう要因となっていた。このような場合、従来ではウエハの破損を起こさないように仕上げの厚を比較的厚めにするか、バンプを配列する密度が疎となるような設計で回避していた。 2. Description of the Related Art With high-density mounting of semiconductor devices, ball-shaped, columnar, or truncated cone-shaped electrodes (hereinafter referred to as “bumps”) made of solder or the like are often used for bonding a semiconductor chip and a substrate. When the back side of a wafer with such bumps formed on the circuit surface is ground, the pressure difference due to bump steps directly affects the back side, and the cushioning properties of the adhesive sheet used for surface protection cannot be suppressed, and bumps are applied during the grinding process. As a result, the wafer was damaged or dimples (dimples formed on the back surface) were generated, impairing the reliability of the completed device. In such a case, conventionally, the thickness of the finish is made relatively thick so as not to damage the wafer, or the design in which the density of arranging the bumps is sparse has been avoided.
 しかし、近年においてはバンプを高密度に配列することが要請されるデバイスが多くなっている。このようなデバイスに対して通常の表面保護用の粘着シートAを用いると、図6に示したように、バンプが邪魔をしてウエハの端部に粘着剤層が貼付できなくなることがある。この結果、裏面研削時に熱や切削屑の除去を目的として噴霧された洗浄水の一部が、回路面側に浸入し、回路面を汚損してしまうことがあった。 However, in recent years, an increasing number of devices are required to arrange bumps at high density. When a normal adhesive sheet A for surface protection is used for such a device, as shown in FIG. 6, the bumps may obstruct the adhesive layer from being attached to the edge of the wafer. As a result, part of the cleaning water sprayed for the purpose of removing heat and cutting waste during back grinding may infiltrate the circuit surface side and damage the circuit surface.
 このため、粘着剤層の厚みを厚くし、さらに粘着剤の流動性を高めることにより、粘着剤層とウエハの端部を密着させるようにして対処している。しかし、粘着剤が流動化すると、バンプの根本部分に粘着剤が回り込み易くなり、粘着シートの剥離操作によってバンプの根本部分に付着した粘着剤が層内破壊を起こし、その一部が回路面に残着することがある。これはエネルギー線硬化型粘着剤を用いた粘着シートを用いた場合であっても起こりうる問題であった。回路面に残着した粘着剤は溶剤洗浄等により除去しなければ、デバイスの異物として残留し完成したデバイスの信頼性を損なう。 For this reason, the thickness of the pressure-sensitive adhesive layer is increased and the flowability of the pressure-sensitive adhesive is further increased so that the pressure-sensitive adhesive layer and the edge of the wafer are brought into close contact with each other. However, when the adhesive is fluidized, it becomes easier for the adhesive to wrap around the base part of the bump, and the adhesive that adheres to the base part of the bump due to the peeling operation of the adhesive sheet causes in-layer destruction, part of which is on the circuit surface. There are times when it arrives. This is a problem that may occur even when an adhesive sheet using an energy ray curable adhesive is used. If the adhesive remaining on the circuit surface is not removed by solvent cleaning or the like, it remains as a foreign substance of the device and impairs the reliability of the completed device.
 特許文献1には、適宜処理により粘着力の制御可能な保護テープを用い、半導体ウエハの周辺部に対してのみ保護テープを強粘着状態で貼り付けることを特徴とする半導体ウエハへの保護テープ貼り付け方法が開示されている。この方法は、要すれば紫外線硬化型粘着テープを保護テープとして用い、半導体ウエハの貼付に先立ち、ウエハの素子形成領域に当接する粘着剤層を硬化させておき、ウエハの周辺部でのみウエハの固定を行うものである。 Patent Document 1 uses a protective tape whose adhesive force can be controlled by appropriate processing, and affixes the protective tape to the semiconductor wafer only in the strong adhesive state only on the periphery of the semiconductor wafer. An attaching method is disclosed. In this method, an ultraviolet curable adhesive tape is used as a protective tape if necessary, and the adhesive layer that contacts the element formation region of the wafer is cured prior to attaching the semiconductor wafer. It is for fixing.
 しかし、特許文献1の方法では、硬化された粘着剤層と未硬化の粘着剤層とは同一平面上にある。このため、バンプの高さが高くなると、バンプが邪魔をしてウエハの端部に粘着剤層が貼付できなくなる。したがって、図6に示したような、洗浄水が回路面側に浸入するという問題は、なお充分には解決されない。特にチップ収量を高めるために、ウエハの端部にまで回路を形成すると、粘着シートを貼付する糊代が狭くなり、粘着シートの貼付が困難になったり、粘着シートが剥離しやすくなる。 However, in the method of Patent Document 1, the cured pressure-sensitive adhesive layer and the uncured pressure-sensitive adhesive layer are on the same plane. For this reason, when the height of the bump becomes high, the bump interferes and the adhesive layer cannot be attached to the edge of the wafer. Therefore, the problem that the cleaning water permeates into the circuit surface side as shown in FIG. 6 is still not sufficiently solved. In particular, when a circuit is formed as far as the end of the wafer in order to increase the chip yield, the adhesive margin to which the adhesive sheet is attached becomes narrow, making it difficult to attach the adhesive sheet, and the adhesive sheet is easily peeled off.
 特許文献2には、高バンプウエハに対する対策として、硬質基材の外周部に環状の接着部を設けた保護テープが提案されている。環状の接着部は、バンプが形成されていないウエハの端部に対向し、ウエハ端部に密着して、回路面を保護する。このような保護テープにおいては、外周接着部の厚みは、ウエハのバンプ高さに応じて設定され、従来は100~200μm程度であった。 Patent Document 2 proposes a protective tape in which an annular adhesive portion is provided on the outer peripheral portion of a hard base material as a countermeasure against a high bump wafer. The annular adhesive portion faces the end portion of the wafer on which no bump is formed, and is in close contact with the end portion of the wafer to protect the circuit surface. In such a protective tape, the thickness of the outer peripheral adhesive portion is set in accordance with the bump height of the wafer, and is conventionally about 100 to 200 μm.
特開平5-62950号公報JP-A-5-62950 特開2001-196404号公報JP 2001-196404 A
 しかし、特許文献2の保護テープを用いてウエハの裏面研削を行うと、ウエハから保護テープを剥離する際に剥離帯電により静電気が発生し、ウエハの表面に形成された回路に損傷を与えることがあった。近年、ウエハ表面に形成される回路は、配線が微細化され高密度化しているため、剥離帯電による静電気の発生が特に問題となっている。 However, when the back surface of the wafer is ground using the protective tape of Patent Document 2, static electricity is generated due to peeling charging when the protective tape is peeled from the wafer, and the circuit formed on the surface of the wafer may be damaged. there were. In recent years, circuits formed on the surface of a wafer are particularly problematic in that static electricity is generated due to peeling charging because wiring is miniaturized and densified.
 本発明は、十分な帯電防止性能を有する表面保護用シートを提供することを目的としている。 An object of the present invention is to provide a surface protective sheet having sufficient antistatic performance.
 上記課題を解決する本発明は、以下の要旨を含む。
〔1〕表面に回路が形成された半導体ウエハの裏面研削を行う際に用いる表面保護用シートであって、
 無機導電性フィラーと硬化性樹脂(A)の硬化物とを含む帯電防止コート層及び支持フィルムからなる基材の片面に、貼付する半導体ウエハの外径よりも小径の非粘着部と、該非粘着部を囲繞する粘着部とを有し、
 基材のヤング率が100~2000MPaである表面保護用シート。
The present invention for solving the above problems includes the following gist.
[1] A surface protection sheet used when grinding a back surface of a semiconductor wafer having a circuit formed on the surface,
A non-adhesive portion having a diameter smaller than the outer diameter of a semiconductor wafer to be attached to one side of a substrate comprising an antistatic coating layer and a support film comprising an inorganic conductive filler and a cured product of the curable resin (A), and the non-adhesive Having an adhesive part surrounding the part,
A surface protecting sheet having a Young's modulus of a substrate of 100 to 2000 MPa.
〔2〕10%伸張時の1分経過後における基材の応力緩和率が60%以上である〔1〕に記載の表面保護用シート。 [2] The sheet for surface protection according to [1], wherein the stress relaxation rate of the substrate after 1 minute at the time of 10% elongation is 60% or more.
〔3〕帯電防止コート層が、硬化性樹脂(A)の硬化物100質量部に対して無機導電性フィラーを100~600質量部含有する〔1〕または〔2〕に記載の表面保護用シート。 [3] The surface protection sheet according to [1] or [2], wherein the antistatic coating layer contains 100 to 600 parts by mass of an inorganic conductive filler with respect to 100 parts by mass of the cured product of the curable resin (A). .
〔4〕支持フィルムが硬化性樹脂(B)の硬化物を含む〔1〕~〔3〕のいずれかに記載の表面保護用シート。 [4] The surface protection sheet according to any one of [1] to [3], wherein the support film contains a cured product of the curable resin (B).
〔5〕硬化性樹脂(B)が、エネルギー線硬化型含ウレタン樹脂である〔4〕に記載の表面保護用シート。 [5] The sheet for surface protection according to [4], wherein the curable resin (B) is an energy ray curable urethane-containing resin.
〔6〕帯電防止コート層の厚さが0.2~5μmである〔1〕~〔5〕のいずれかに記載の表面保護用シート。 [6] The surface protective sheet according to any one of [1] to [5], wherein the antistatic coating layer has a thickness of 0.2 to 5 μm.
〔7〕粘着部の厚さが30μm以下である〔1〕~〔6〕のいずれかに記載の表面保護用シート。 [7] The surface protective sheet according to any one of [1] to [6], wherein the adhesive portion has a thickness of 30 μm or less.
〔8〕粘着部が、単層の粘着剤層により構成されている〔7〕に記載の表面保護用シート。 [8] The surface protecting sheet according to [7], wherein the adhesive portion is constituted by a single adhesive layer.
〔9〕上記〔1〕~〔8〕のいずれかに記載の表面保護用シートを製造する方法であって、
 硬化性樹脂(B)を含む配合物を工程シート上に塗布し予備硬化して、予備硬化層を形成する工程と、
 無機導電性フィラーと硬化性樹脂(A)とを含む配合物から形成される塗膜または樹脂層を予備硬化層上に設ける工程と、
 予備硬化層を硬化し、基材を形成する工程とをこの順で有する表面保護用シートの製造方法。
[9] A method for producing the surface protection sheet according to any one of [1] to [8] above,
Applying a pre-cured composition containing a curable resin (B) on a process sheet to form a pre-cured layer;
Providing a coating film or resin layer formed from a blend containing an inorganic conductive filler and a curable resin (A) on a precured layer;
The manufacturing method of the sheet | seat for surface protection which has the process of hardening | curing a preliminary-hardening layer and forming a base material in this order.
 本発明の表面保護用シートによれば、剥離帯電による静電気の発生を抑制し、静電気によるウエハ回路の損傷を防止できる。 According to the surface protective sheet of the present invention, generation of static electricity due to peeling electrification can be suppressed, and damage to the wafer circuit due to static electricity can be prevented.
本発明に係る表面保護用シートの斜視図を示す。The perspective view of the sheet for surface protection concerning the present invention is shown. 図1のA-A線断面図を示す。FIG. 2 is a sectional view taken along line AA in FIG. 本発明の他の態様に係る表面保護用シートの斜視図を示す。The perspective view of the sheet for surface protection concerning other modes of the present invention is shown. 図3のB-B線断面図を示す。FIG. 4 is a sectional view taken along line BB in FIG. 3. 本発明に係る表面保護用シートをウエハのバンプ面に貼付しウエハ裏面研削を行う状態を示す。The state which affixes the surface protection sheet which concerns on this invention on the bump surface of a wafer, and performs wafer back surface grinding is shown. 従来の表面保護用シートの使用態様の一例を示す。An example of the usage aspect of the conventional surface protection sheet is shown.
 以下、本発明について、図面を参照しながらさらに具体的に説明する。本発明に係る表面保護用シート10は、半導体ウエハの裏面研削を行う際に用いられる。表面保護用シート10の一態様について斜視図を図1に示し、図1の断面図を図2に示す。図示したように、本発明の表面保護用シート10は、無機導電性フィラーと硬化性樹脂(A)の硬化物とからなる帯電防止コート層1及び支持フィルム2からなる基材5の片面に、貼付する半導体ウエハの外径よりも小径の非粘着部3と、該非粘着部3を囲繞する粘着部4とを有する。 Hereinafter, the present invention will be described more specifically with reference to the drawings. The surface protection sheet 10 according to the present invention is used when grinding the back surface of a semiconductor wafer. A perspective view of one embodiment of the surface protecting sheet 10 is shown in FIG. 1, and a cross-sectional view of FIG. 1 is shown in FIG. As shown in the drawing, the surface protecting sheet 10 of the present invention is provided on one side of a base material 5 composed of an antistatic coating layer 1 composed of an inorganic conductive filler and a cured product of a curable resin (A) and a support film 2. A non-adhesive portion 3 having a diameter smaller than the outer diameter of the semiconductor wafer to be attached and an adhesive portion 4 surrounding the non-adhesive portion 3 are provided.
 なお、本発明の他の態様においては、図3に斜視図、図4に断面図を示したように、非粘着部3の表面と粘着部4の表面とが連続し同一平面上にある形態であってもよい。 In another aspect of the present invention, as shown in the perspective view of FIG. 3 and the cross-sectional view of FIG. 4, the surface of the non-adhesive portion 3 and the surface of the adhesive portion 4 are continuous and on the same plane. It may be.
 本発明の表面保護用シートに使用される基材は、帯電防止コート層と支持フィルムとからなる。以下において、帯電防止コート層、支持フィルムの順に説明する。 The base material used for the surface protective sheet of the present invention comprises an antistatic coating layer and a support film. Below, it demonstrates in order of an antistatic coat layer and a support film.
(帯電防止コート層)
 帯電防止コート層は、後述する支持フィルムの片面または両面を被覆するように形成される。帯電防止コート層を設けることで、本発明に係る表面保護用シートを被着体(例えば半導体ウエハ等)から剥離する際に剥離帯電により発生する静電気を効果的に拡散し、帯電防止性能が向上する。帯電防止コート層は、無機導電性フィラーと硬化性樹脂(A)の硬化物とからなり、無機導電性フィラーと硬化性樹脂(A)とを含む配合物を硬化する方法により得ることができる。
(Antistatic coating layer)
The antistatic coating layer is formed so as to cover one side or both sides of a support film described later. By providing an antistatic coating layer, static electricity generated by peeling electrification is effectively diffused when the surface protection sheet according to the present invention is peeled off from an adherend (such as a semiconductor wafer), and antistatic performance is improved. To do. The antistatic coating layer is composed of an inorganic conductive filler and a cured product of the curable resin (A), and can be obtained by a method of curing a blend containing the inorganic conductive filler and the curable resin (A).
 無機導電性フィラーは特に限定されないが、例えばCu、Al、Ni、Sn、Zn等の金属粉末等の金属フィラーや、酸化亜鉛系、酸化チタン系、酸化スズ系、酸化インジウム系、酸化アンチモン系等の金属酸化物フィラーが挙げられる。これらの中でも、比較的安価であり、汎用性があることから酸化スズ系の金属酸化物フィラーが好ましい。酸化スズ系の金属酸化物フィラーとして、具体的には、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)等を用いることができる。 The inorganic conductive filler is not particularly limited, but for example, metal filler such as metal powder such as Cu, Al, Ni, Sn, Zn, zinc oxide, titanium oxide, tin oxide, indium oxide, antimony oxide, etc. The metal oxide filler is mentioned. Among these, tin oxide-based metal oxide fillers are preferable because they are relatively inexpensive and versatile. Specifically, antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), or the like can be used as the tin oxide-based metal oxide filler.
 無機導電性フィラーの平均粒子径は特に限定されず、好ましくは0.01~1μm、より好ましくは0.02~0.5μmである。平均粒子径は、粒度分布測定装置(日機装社製マイクロトラックUPA-150)により測定した値である。 The average particle size of the inorganic conductive filler is not particularly limited, and is preferably 0.01 to 1 μm, more preferably 0.02 to 0.5 μm. The average particle size is a value measured with a particle size distribution measuring device (Microtrack UPA-150 manufactured by Nikkiso Co., Ltd.).
 帯電防止コート層は、硬化性樹脂(A)の硬化物100質量部に対して、無機導電性フィラーを好ましくは100~600質量部、より好ましくは150~600質量部、特に好ましくは200~600質量部含有する。なお、硬化前の硬化性樹脂(A)および無機導電性フィラーの配合量比と、硬化性樹脂(A)の硬化物および無機導電性フィラーの配合量比には実質的に差がないのが通常である。そのため、本発明では硬化前の硬化性樹脂(A)および無機導電性フィラーの配合量比を、硬化性樹脂(A)の硬化物および無機導電性フィラーの配合量比とみなす。帯電防止コート層における無機導電性フィラーの含有量を上記範囲とすることで、優れた帯電防止性能を発現することができる。帯電防止コート層における無機導電性フィラーの含有量が100質量部未満の場合、帯電防止性能が低下することがある。また、帯電防止コート層における無機導電性フィラーの含有量が600質量部を超える場合、半導体ウエハを加工する工程において、帯電防止コート層にクラックが発生することがあり、その結果、帯電防止性能が低下することがある。 The antistatic coating layer is preferably 100 to 600 parts by weight, more preferably 150 to 600 parts by weight, and particularly preferably 200 to 600 parts by weight of the inorganic conductive filler with respect to 100 parts by weight of the cured product of the curable resin (A). Contains part by mass. In addition, there is substantially no difference between the blending ratio of the curable resin (A) and the inorganic conductive filler before curing and the blending ratio of the cured product of the curable resin (A) and the inorganic conductive filler. It is normal. Therefore, in the present invention, the blending ratio of the curable resin (A) and the inorganic conductive filler before curing is regarded as the blending ratio of the cured product of the curable resin (A) and the inorganic conductive filler. By setting the content of the inorganic conductive filler in the antistatic coating layer in the above range, excellent antistatic performance can be exhibited. When the content of the inorganic conductive filler in the antistatic coating layer is less than 100 parts by mass, the antistatic performance may be deteriorated. In addition, when the content of the inorganic conductive filler in the antistatic coating layer exceeds 600 parts by mass, cracks may occur in the antistatic coating layer in the process of processing the semiconductor wafer. May decrease.
 硬化性樹脂(A)は特に限定されないが、エネルギー線硬化型樹脂、熱硬化型樹脂等が用いられ、好ましくはエネルギー線硬化型樹脂が用いられる。 The curable resin (A) is not particularly limited, but an energy beam curable resin, a thermosetting resin, or the like is used, and an energy beam curable resin is preferably used.
 エネルギー線硬化型樹脂は特に限定されないが、例えば、エネルギー線重合性のウレタン(メタ)アクリレートオリゴマーや、エポキシ(メタ)アクリレートオリゴマー等のオリゴマー系エネルギー線硬化型樹脂を主剤とした樹脂組成物が好ましく用いられる。ウレタン(メタ)アクリレートオリゴマーやエポキシ(メタ)アクリレートオリゴマーの重量平均分子量Mw(ゲルパーミテーションクロマトグラフィーによるポリスチレン換算値をいう。)は、通常1000~70000程度であり、好ましくは1500~60000の範囲である。上記のウレタン(メタ)アクリレートオリゴマーやエポキシ(メタ)アクリレートオリゴマーは一種単独で、または二種以上を組み合わせて用いることができる。 The energy ray curable resin is not particularly limited. For example, a resin composition mainly composed of an energy ray curable resin such as an energy ray polymerizable urethane (meth) acrylate oligomer or an epoxy (meth) acrylate oligomer is preferable. Used. The weight average molecular weight Mw of the urethane (meth) acrylate oligomer or epoxy (meth) acrylate oligomer (referred to as polystyrene converted by gel permeation chromatography) is usually about 1000 to 70000, preferably 1500 to 60000. is there. Said urethane (meth) acrylate oligomer and epoxy (meth) acrylate oligomer can be used individually by 1 type or in combination of 2 or more types.
 エネルギー線硬化型樹脂におけるオリゴマー系エネルギー線硬化型樹脂の含有量を大きくすると、後述する支持フィルムとの密着性が低下する場合がある。支持フィルムとの密着性を向上させるため、硬化性樹脂(A)の成分中にバインダー成分を添加してもよい。このようなバインダー成分としては、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリアミド樹脂等が挙げられる。 When the content of the oligomeric energy ray curable resin in the energy ray curable resin is increased, the adhesion with the support film described later may be lowered. In order to improve the adhesion to the support film, a binder component may be added to the component of the curable resin (A). Examples of such a binder component include an acrylic resin, a polyester resin, a urethane resin, and a polyamide resin.
 また、エネルギー線硬化型樹脂は側鎖にエネルギー線硬化性の官能基を有するポリマーであってもよい。このようなポリマーをエネルギー線硬化型樹脂として使用すれば、架橋密度を下げることなく支持フィルムとの密着性を向上させることができる。このようなポリマーとしては、例えば、主鎖がアクリルポリマーであり、側鎖にエネルギー線硬化性二重結合やエポキシ基を官能基として有するものが使用できる。 The energy ray curable resin may be a polymer having an energy ray curable functional group in the side chain. If such a polymer is used as an energy ray curable resin, the adhesion to the support film can be improved without lowering the crosslinking density. As such a polymer, for example, a polymer whose main chain is an acrylic polymer and whose side chain has an energy ray-curable double bond or an epoxy group as a functional group can be used.
 エネルギー線硬化型樹脂に、光重合開始剤を混入することにより、エネルギー線照射による重合硬化時間ならびに照射量を少なくすることができる。光重合開始剤としては、ベンゾイン化合物、アセトフェノン化合物、アシルフォスフィノキサイド化合物、チタノセン化合物、チオキサントン化合物、パーオキサイド化合物等の光重合開始剤、アミンやキノン等の光増感剤などが挙げられ、具体的には1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどが挙げられる。 By mixing a photopolymerization initiator in the energy beam curable resin, the polymerization curing time and irradiation amount by energy beam irradiation can be reduced. Examples of the photopolymerization initiator include benzoin compounds, acetophenone compounds, acylphosphinoxide compounds, titanocene compounds, thioxanthone compounds, peroxide compounds and other photopolymerization initiators, and photosensitizers such as amines and quinones. Specific examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
 また、硬化性樹脂(A)には、無機導電性フィラーの樹脂中の分散性を向上させるために、分散剤を配合してもよい。また、顔料や染料等の着色剤等の添加物が含有されていてもよい。 Further, a dispersing agent may be added to the curable resin (A) in order to improve the dispersibility of the inorganic conductive filler in the resin. Moreover, additives, such as coloring agents, such as a pigment and dye, may contain.
 帯電防止コート層は、後述する支持フィルム上に直接、無機導電性フィラーと硬化性樹脂(A)とを含む配合物を製膜、硬化することで形成できる。また、無機導電性フィラーと硬化性樹脂(A)とを含む配合物を液状状態で工程フィルム上に薄膜状にキャストし、さらにその上に、後述する硬化性樹脂(B)を含む配合物をキャストすることにより、帯電防止コート層と支持フィルムとからなる基材を得ることができる。このときの硬化を行う手順は、それぞれの製膜の直後でもよいし、基材を製膜後、一括で行ってもよい。 The antistatic coat layer can be formed by forming and curing a composition containing an inorganic conductive filler and a curable resin (A) directly on a support film described later. Moreover, the compound containing an inorganic electroconductive filler and curable resin (A) is cast in a thin film form on a process film in a liquid state, Furthermore, the compound containing the curable resin (B) mentioned later is further on it. By casting, a substrate composed of an antistatic coat layer and a support film can be obtained. The procedure for curing at this time may be performed immediately after each film formation, or may be performed collectively after forming the substrate.
 帯電防止コート層の厚さは、好ましくは0.2~5μm、より好ましくは0.5~5μm、特に好ましくは1~4μmである。帯電防止コート層の厚さを上記範囲とすることで、高い帯電防止性能が維持される傾向がある。 The thickness of the antistatic coating layer is preferably 0.2 to 5 μm, more preferably 0.5 to 5 μm, and particularly preferably 1 to 4 μm. By setting the thickness of the antistatic coating layer within the above range, high antistatic performance tends to be maintained.
 また、帯電防止コート層の表面抵抗率は、好ましくは1×1012Ω/□以下、より好ましくは1×1011Ω/□以下、特に好ましくは1×1010Ω/□以下である。帯電防止コート層の表面抵抗率が1×1012Ω/□を超えると、本発明の表面保護用シートを被着体から剥離する際に、静電気の発生を安定的に抑制することが困難になることがある。帯電防止コート層の表面抵抗率を上記範囲とすることにより、表面保護用シートの帯電防止性能を向上させることができる。帯電防止コート層の表面抵抗率は、帯電防止コート層を100mm×100mmに裁断して得られたサンプルを、23℃、平均湿度50%RHの条件下で24時間調湿した後、その表面の抵抗値を、JIS K 6911;1995に準拠して測定することができる。 The surface resistivity of the antistatic coating layer is preferably 1 × 10 12 Ω / □ or less, more preferably 1 × 10 11 Ω / □ or less, and particularly preferably 1 × 10 10 Ω / □ or less. When the surface resistivity of the antistatic coating layer exceeds 1 × 10 12 Ω / □, it is difficult to stably suppress the generation of static electricity when peeling the surface protective sheet of the present invention from the adherend. May be. By setting the surface resistivity of the antistatic coating layer in the above range, the antistatic performance of the surface protecting sheet can be improved. The surface resistivity of the antistatic coating layer was determined by conditioning a sample obtained by cutting the antistatic coating layer to 100 mm × 100 mm for 24 hours under conditions of 23 ° C. and an average humidity of 50% RH. The resistance value can be measured according to JIS K 6911;
(支持フィルム)
 本発明の表面保護用シートに使用される支持フィルムは、樹脂シートであれば特に限定されず、各種の樹脂シートが使用可能である。このような樹脂シートとしては、例えば、ポリオレフィン、ポリ塩化ビニル、アクリルゴム、ウレタン等の樹脂フィルムが挙げられる。支持フィルムはこれらの単層であってもよいし、積層体からなってもよい。また、架橋等の処理を施したフィルムであってもよい。
(Support film)
The support film used for the surface protecting sheet of the present invention is not particularly limited as long as it is a resin sheet, and various resin sheets can be used. Examples of such a resin sheet include resin films such as polyolefin, polyvinyl chloride, acrylic rubber, and urethane. The support film may be a single layer or a laminate. Moreover, the film which gave the process of bridge | crosslinking etc. may be sufficient.
 このような支持フィルムとしては、熱可塑性樹脂を押出成形によりシート化したものが使用されてもよいし、硬化性樹脂(B)を所定手段により薄膜化、硬化した硬化物からなるフィルムが使われてもよい。支持フィルムとして、硬化性樹脂(B)の硬化物からなるフィルムを用いると、基材の応力緩和率やヤング率の制御が容易になると共に、帯電防止コート層との密着性を向上させることができる。 As such a support film, a thermoplastic resin sheet formed by extrusion molding may be used, or a film made of a cured product obtained by thinning and curing the curable resin (B) by a predetermined means is used. May be. When a film made of a cured product of the curable resin (B) is used as the support film, the stress relaxation rate and Young's modulus of the substrate can be easily controlled, and the adhesion to the antistatic coating layer can be improved. it can.
 硬化性樹脂(B)は特に限定されないが、帯電防止コート層に使用する硬化性樹脂(A)と同様に、エネルギー線硬化型樹脂、熱硬化型樹脂等が用いられ、好ましくはエネルギー線硬化型樹脂が用いられる。エネルギー線硬化型樹脂は特に限定されないが、たとえば、エネルギー線硬化型含ウレタン樹脂を用いることができる。エネルギー線硬化型含ウレタン樹脂の硬化物を含む支持フィルムは応力緩和性に優れ、基材の応力緩和率を後述する範囲に調整しやすいことから好ましい。
 エネルギー線硬化型含ウレタン樹脂としては、ウレタン(メタ)アクリレート樹脂やウレタンポリマーと、エネルギー線重合性モノマーとを主成分とするエネルギー線硬化型樹脂が挙げられる。
Although the curable resin (B) is not particularly limited, an energy beam curable resin, a thermosetting resin, or the like is used similarly to the curable resin (A) used for the antistatic coating layer, preferably an energy beam curable type. Resin is used. Although energy beam curable resin is not specifically limited, For example, energy beam curable urethane-containing resin can be used. A support film containing a cured product of an energy ray-curable urethane-containing resin is preferable because it has excellent stress relaxation properties and easily adjusts the stress relaxation rate of the substrate to a range described later.
Examples of the energy ray curable urethane-containing resin include an energy ray curable resin mainly composed of a urethane (meth) acrylate resin or a urethane polymer and an energy ray polymerizable monomer.
 ウレタン(メタ)アクリレート樹脂は、ウレタン(メタ)アクリレートオリゴマーを含む組成物であり、必要に応じ分子内にチオール基を含有する化合物や、N-ニトロソアミン系重合禁止剤および/またはN-オキシル系重合禁止剤を含んでもよい。 The urethane (meth) acrylate resin is a composition containing a urethane (meth) acrylate oligomer, and if necessary, a compound containing a thiol group in the molecule, an N-nitrosamine polymerization inhibitor and / or an N-oxyl polymerization. Inhibitors may be included.
 ウレタン(メタ)アクリレートオリゴマーは、(メタ)アクリロイル基を有し、ウレタン結合を有する化合物である。このようなウレタン(メタ)アクリレートオリゴマーは、ポリオール化合物と、多価イソシアネート化合物とを反応させて得られる末端イソシアネートウレタンプレポリマーに、ヒドロキシル基を有する(メタ)アクリレートを反応させて得られる。なお、本明細書において、(メタ)アクリルは、アクリルおよびメタクリルの両者を包含した意味で用いる。 Urethane (meth) acrylate oligomer is a compound having a (meth) acryloyl group and having a urethane bond. Such a urethane (meth) acrylate oligomer can be obtained by reacting a (meth) acrylate having a hydroxyl group with a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound and a polyvalent isocyanate compound. In the present specification, (meth) acryl is used in the meaning including both acrylic and methacrylic.
 ポリオール化合物は、ヒドロキシ基を2つ以上有する化合物であれば、特に限定されず、公知のものを使用することができる。具体的には、たとえばアルキレンジオール、ポリエーテル型ポリオール、ポリエステル型ポリオール、ポリカーボネート型ポリオールの何れであってもよいが、ポリエーテル型ポリオールを用いることで、より良好な効果が得られる。また、ポリオールであれば特に限定はされず、2官能のジオール、3官能のトリオール、さらには4官能以上のポリオールであってよいが、入手の容易性、汎用性、反応性などの観点から、ジオールを使用することが特に好ましい。これらの中でも、ポリエーテル型ジオールが好ましく使用される。 The polyol compound is not particularly limited as long as it is a compound having two or more hydroxy groups, and known compounds can be used. Specifically, for example, any of alkylene diol, polyether type polyol, polyester type polyol, and polycarbonate type polyol may be used, but a better effect can be obtained by using the polyether type polyol. The polyol is not particularly limited, and may be a bifunctional diol, a trifunctional triol, or a tetrafunctional or higher polyol. From the viewpoint of availability, versatility, and reactivity, It is particularly preferred to use a diol. Among these, polyether type diol is preferably used.
 ポリエーテル型ポリオールの代表例であるポリエーテル型ジオールは、一般にHO-(-R-O-)n-Hで示される。ここで、Rは2価の炭化水素基、好ましくはアルキレン基であり、さらに好ましくは炭素数1~6のアルキレン基、特に好ましくは炭素数2または3のアルキレン基である。また、炭素数1~6のアルキレン基の中でも好ましくはエチレン、プロピレン、またはテトラメチレン、特に好ましくはエチレンまたはプロピレンである。したがって、特に好ましいポリエーテル型ジオールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールが挙げられ、さらに特に好ましいポリエーテル型ジオールとしては、ポリエチレングリコール、ポリプロピレングリコールが挙げられる。nはRの繰り返し数であり、10~250程度が好ましく、25~205程度とすることがさらに好ましく、40~185程度とすることが特に好ましい。nが10より小さいと、ウレタン(メタ)アクリレートオリゴマーのウレタン結合濃度が高くなってしまい、支持フィルムの弾性が昂進し、本発明における基材のヤング率が過度に高くなることがある。nが250より大きいと、ポリエーテル鎖同士の相互作用が強くなることに起因して、ヤング率が後述する範囲の上限を超える懸念がある。 A polyether type diol, which is a representative example of a polyether type polyol, is generally represented by HO-(-R-O-) n-H. Here, R is a divalent hydrocarbon group, preferably an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms, and particularly preferably an alkylene group having 2 or 3 carbon atoms. Among the alkylene groups having 1 to 6 carbon atoms, ethylene, propylene, or tetramethylene is preferable, and ethylene or propylene is particularly preferable. Accordingly, particularly preferred polyether type diols include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and more particularly preferred polyether type diols include polyethylene glycol and polypropylene glycol. n is the number of repetitions of R, preferably about 10 to 250, more preferably about 25 to 205, and particularly preferably about 40 to 185. When n is smaller than 10, the urethane bond concentration of the urethane (meth) acrylate oligomer is increased, the elasticity of the support film is increased, and the Young's modulus of the substrate in the present invention may be excessively increased. If n is larger than 250, there is a concern that the Young's modulus exceeds the upper limit of the range described later, due to the strong interaction between the polyether chains.
 ポリエーテル型ジオールと、多価イソシアネート化合物との反応により、エーテル結合部(-(-R-O-)n-)が導入された、末端イソシアネートウレタンプレポリマーが生成する。このようなポリエーテル型ジオールを用いることで、ウレタン(メタ)アクリレートオリゴマーは、ポリエーテル型ジオールから誘導される構成単位を含有する。 A terminal isocyanate urethane prepolymer in which an ether bond (-(-R-O-) n-) is introduced is produced by a reaction between a polyether type diol and a polyvalent isocyanate compound. By using such a polyether type diol, the urethane (meth) acrylate oligomer contains a structural unit derived from the polyether type diol.
 ポリエステル型ポリオールはポリオール化合物と多塩基酸成分を重縮合させることにより得られる。ポリオール化合物としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、ヘキサンジオール、オクタンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、1,4-シクロヘキサンジメタノール、ビスフェノールAのエチレングリコールまたはプロピレングリコール付加物等の公知の各種グリコール類などが挙げられる。ポリエステル型ポリオールの製造に用いられる多塩基酸成分としては、一般にポリエステルの多塩基酸成分として知られている各種公知のものを使用することができる。具体的には、例えば、アジピン酸、マレイン酸、コハク酸、しゅう酸、フマル酸、マロン酸、グルタル酸、ピメリン酸、アゼライン酸、セバシン酸、スベリン酸等の二塩基酸、芳香族多塩基酸、これらに対応する無水物やその誘導体およびダイマー酸、水添ダイマー酸などが挙げられる。なお、塗膜に適度の硬度を付与するためには、芳香族多塩基酸を用いるのが好ましい。当該芳香族多塩基酸としては、例えば、無水フタル酸、イソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸等の二塩基酸や、トリメリット酸、ピロメリット酸等の多塩基酸およびこれらに対応する酸無水物やその誘導体が挙げられる。なお、当該エステル化反応には、必要に応じて各種公知の触媒を使用してもよい。触媒としては、例えば、ジブチルスズオキサイドやオクチル酸第一スズなどのスズ化合物やテトラブチルチタネート、テトラプロピルチタネートなどのアルコキシチタンが挙げられる。 The polyester type polyol can be obtained by polycondensation of a polyol compound and a polybasic acid component. Examples of the polyol compound include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3 -Methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, hexanediol, octanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2- Examples thereof include various known glycols such as butyl-1,3-propanediol, 1,4-cyclohexanedimethanol, bisphenol A ethylene glycol or propylene glycol adduct. As the polybasic acid component used for the production of the polyester type polyol, various known ones generally known as polyester polybasic acid components can be used. Specifically, for example, dibasic acids such as adipic acid, maleic acid, succinic acid, oxalic acid, fumaric acid, malonic acid, glutaric acid, pimelic acid, azelaic acid, sebacic acid and suberic acid, aromatic polybasic acids And anhydrides corresponding to these, derivatives thereof, dimer acid, hydrogenated dimer acid, and the like. In addition, in order to provide moderate hardness to a coating film, it is preferable to use an aromatic polybasic acid. Examples of the aromatic polybasic acid include dibasic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid, polybasic acids such as trimellitic acid and pyromellitic acid, and the like. Corresponding acid anhydrides and derivatives thereof may be mentioned. In addition, you may use various well-known catalysts for the said esterification reaction as needed. Examples of the catalyst include tin compounds such as dibutyltin oxide and stannous octylate, and alkoxytitanium such as tetrabutyl titanate and tetrapropyl titanate.
 ポリカーボネート型ポリオールとしては、特に限定されず、公知のものを用いることができる。具体的には、例えば、前述したグリコール類とアルキレンカーボネートとの反応物などが挙げられる。 The polycarbonate type polyol is not particularly limited, and known ones can be used. Specifically, for example, a reaction product of the above-described glycols and alkylene carbonate can be used.
 ポリオール化合物の分子量としては、500~10000程度が好ましく、800~9000程度とすることがさらに好ましい。分子量が1000より低いと、ウレタン(メタ)アクリレートオリゴマーのウレタン結合濃度が高くなってしまい、本発明における基材のヤング率が高くなることがある。分子量が高すぎると、ポリエーテル鎖同士の相互作用が強くなることに起因して、ヤング率が後述する範囲の上限を超える懸念がある。 The molecular weight of the polyol compound is preferably about 500 to 10,000, and more preferably about 800 to 9000. When molecular weight is lower than 1000, the urethane bond density | concentration of a urethane (meth) acrylate oligomer will become high, and the Young's modulus of the base material in this invention may become high. If the molecular weight is too high, there is a concern that the Young's modulus exceeds the upper limit of the range described later, due to the strong interaction between the polyether chains.
 なお、ポリオール化合物の分子量は、ポリオール官能基数×56.11×1000/水酸基価[mgKOH/g]であり、ポリオール化合物の水酸基価から算出される。 The molecular weight of the polyol compound is the number of polyol functional groups × 56.11 × 1000 / hydroxyl value [mgKOH / g], and is calculated from the hydroxyl value of the polyol compound.
 多価イソシアネート化合物としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネート類、イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、ω,ω’-ジイソシアネートジメチルシクロヘキサン等の脂環族系ジイソシアネート類、4,4'-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、トリジンジイソシアネート、テトラメチレンキシリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等の芳香族系ジイソシアネート類などが挙げられる。これらの中では、イソホロンジイソシアネートやヘキサメチレンジイソシアネート、キシリレンジイソシアネートを用いることが、ウレタン(メタ)アクリレートオリゴマーの粘度を低く維持でき、取り扱い性が良好となるため好ましい。 Examples of the polyvalent isocyanate compound include aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, and dicyclohexylmethane-2,4. Aliphatic diisocyanates such as' -diisocyanate, ω, ω'-diisocyanate dimethylcyclohexane, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, tolidine diisocyanate, tetramethylene xylylene diisocyanate, naphthalene-1, And aromatic diisocyanates such as 5-diisocyanate. Among these, it is preferable to use isophorone diisocyanate, hexamethylene diisocyanate, or xylylene diisocyanate because the viscosity of the urethane (meth) acrylate oligomer can be kept low and the handleability becomes good.
 上記のようなポリオール化合物と、多価イソシアネート化合物とを反応させて得られる末端イソシアネートウレタンプレポリマーに、ヒドロキシ基を有する(メタ)アクリレートを反応させてウレタン(メタ)アクリレートオリゴマーが得られる。 A terminal (meth) acrylate having a hydroxy group is reacted with a terminal isocyanate urethane prepolymer obtained by reacting the polyol compound as described above with a polyvalent isocyanate compound to obtain a urethane (meth) acrylate oligomer.
 ヒドロキシ基を有する(メタ)アクリレートとしては、1分子中にヒドロキシ基および(メタ)アクリロイル基を有する化合物であれば、特に限定されず、公知のものを使用することができる。具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシシクロヘキシル(メタ)アクリレート、5-ヒドロキシシクロオクチル(メタ)アクリレート、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド等のヒドロキシ基含有(メタ)アクリルアミド、ビスフェノールAのジグリシジルエステルに(メタ)アクリル酸を反応させて得られる反応物などが挙げられる。 The (meth) acrylate having a hydroxy group is not particularly limited as long as it is a compound having a hydroxy group and a (meth) acryloyl group in one molecule, and known ones can be used. Specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 5-hydroxycyclooctyl (meta ) Acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate and other hydroxyalkyl (meth) acrylates, N -Reactants obtained by reacting (meth) acrylic acid with diglycidyl ester of hydroxy group-containing (meth) acrylamide, bisphenol A, such as methylol (meth) acrylamide And the like.
 末端イソシアネートウレタンプレポリマーおよびヒドロキシ基を有する(メタ)アクリレートを反応させるための条件としては、末端イソシアネートウレタンプレポリマーとヒドロキシ基を有する(メタ)アクリレートとを、必要に応じて溶剤、触媒の存在下、60~100℃程度で、1~4時間程度反応させればよい。 As conditions for reacting the terminal isocyanate urethane prepolymer and the hydroxy group-containing (meth) acrylate, the terminal isocyanate urethane prepolymer and the hydroxy group-containing (meth) acrylate may be reacted in the presence of a solvent and a catalyst, if necessary. The reaction may be performed at about 60 to 100 ° C. for about 1 to 4 hours.
 得られるウレタン(メタ)アクリレートオリゴマーは、分子内に光重合性の二重結合を有し、エネルギー線照射により重合硬化し、皮膜を形成する性質を有する。上記のウレタン(メタ)アクリレートオリゴマーは一種単独で、または二種以上を組み合わせて用いることができる。ウレタン(メタ)アクリレートオリゴマーは、分子中にただ1つの(メタ)アクリロイル基を有する単官能ウレタン(メタ)アクリレートオリゴマーであってもよいし、分子中に2つ以上の(メタ)アクリロイル基を有する多官能ウレタン(メタ)アクリレートオリゴマーであってもよいが、多官能ウレタン(メタ)アクリレートオリゴマーが好ましい。ウレタン(メタ)アクリレートオリゴマーが多官能ウレタン(メタ)アクリレートオリゴマーであることで、後述のようにウレタン(メタ)アクリレートオリゴマーの重量平均分子量を調整することで、得られる基材のヤング率の制御が容易となるという利点がある。多官能ウレタン(メタ)アクリレートオリゴマーの有する(メタ)アクリロイル基の数は、2~3個であることが好ましく、2個である(ウレタン(メタ)アクリレートオリゴマーが、二官能ウレタン(メタ)アクリレートオリゴマーである)ことがより好ましい。 The urethane (meth) acrylate oligomer obtained has a photopolymerizable double bond in the molecule, and has a property of being polymerized and cured by irradiation with energy rays to form a film. Said urethane (meth) acrylate oligomer can be used individually by 1 type or in combination of 2 or more types. The urethane (meth) acrylate oligomer may be a monofunctional urethane (meth) acrylate oligomer having only one (meth) acryloyl group in the molecule, or may have two or more (meth) acryloyl groups in the molecule. Although a polyfunctional urethane (meth) acrylate oligomer may be sufficient, a polyfunctional urethane (meth) acrylate oligomer is preferable. By adjusting the weight average molecular weight of the urethane (meth) acrylate oligomer as will be described later, the Young's modulus of the obtained substrate can be controlled by the urethane (meth) acrylate oligomer being a polyfunctional urethane (meth) acrylate oligomer. There is an advantage that it becomes easy. The number of (meth) acryloyl groups possessed by the polyfunctional urethane (meth) acrylate oligomer is preferably 2 to 3 (the urethane (meth) acrylate oligomer is a bifunctional urethane (meth) acrylate oligomer). Is more preferable.
 このようにして得られたウレタン(メタ)アクリレートオリゴマーの重量平均分子量(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算値をいう、以下同様。)は、特に限定されないが、ウレタン(メタ)アクリレートオリゴマーが多官能ウレタン(メタ)アクリレートオリゴマーである場合に、重量平均分子量を、1500~10000程度とすることが好ましく、4000~9000とすることがより好ましい。重量平均分子量を1500以上とすることで、ウレタン(メタ)アクリレートオリゴマーの重合物における架橋密度の上昇を抑え、基材のヤング率を後述の範囲の上限を超えない程度に調整することが容易となる。また、10000以下とすることで、ウレタン(メタ)アクリレートオリゴマーの重合物における架橋密度の低下を抑え、基材のヤング率を後述の範囲の下限を下回らないように調整することが容易となる。また、ウレタン(メタ)アクリレートオリゴマーの粘度を低くすることができ、製膜用塗布液のハンドリング性が向上する。 The weight-average molecular weight of the urethane (meth) acrylate oligomer thus obtained (polystyrene converted value by gel permeation chromatography, the same shall apply hereinafter) is not particularly limited, but the urethane (meth) acrylate oligomer is polyfunctional. In the case of a urethane (meth) acrylate oligomer, the weight average molecular weight is preferably about 1500 to 10,000, and more preferably 4000 to 9000. By making the weight average molecular weight 1500 or more, it is easy to suppress an increase in the crosslinking density in the polymer of urethane (meth) acrylate oligomer and to adjust the Young's modulus of the base material to an extent that does not exceed the upper limit of the range described below. Become. Moreover, by setting it as 10,000 or less, it becomes easy to suppress the fall of the crosslinking density in the polymer of a urethane (meth) acrylate oligomer, and to adjust so that the Young's modulus of a base material may not fall below the minimum of the below-mentioned range. Moreover, the viscosity of a urethane (meth) acrylate oligomer can be made low and the handleability of the coating liquid for film forming improves.
 上記のようなウレタン(メタ)アクリレート樹脂を使用する場合、支持フィルムの成膜が困難な場合が多いため、通常は、エネルギー線重合性モノマーで希釈して成膜した後、これを硬化して支持フィルムを得る。エネルギー線重合性モノマーは、分子内にエネルギー線重合性の二重結合を有し、特に本発明では、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、フェニルヒドロキシプロピル(メタ)アクリレート等の比較的嵩高い基を有する(メタ)アクリルエステル系化合物が好ましく用いられる。 When using the urethane (meth) acrylate resin as described above, since it is often difficult to form a support film, it is usually diluted with an energy ray polymerizable monomer and then cured. A support film is obtained. The energy ray polymerizable monomer has an energy ray polymerizable double bond in the molecule, and particularly in the present invention, such as isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and phenylhydroxypropyl (meth) acrylate. A (meth) acrylic ester compound having a relatively bulky group is preferably used.
 上記エネルギー線重合性モノマーは、ウレタン(メタ)アクリレート系オリゴマー100質量部に対して、好ましくは5~900質量部、さらに好ましくは10~500質量部、特に好ましくは30~200質量部の割合で用いられる。エネルギー線重合性モノマーの配合量がこのような範囲にあることで、ウレタン(メタ)アクリレートオリゴマーとエネルギー線重合性モノマーの共重合物において、ウレタン(メタ)アクリレートオリゴマーの(メタ)アクリロイル基に由来する部分の間隔が適度な程度となり、基材のヤング率を後述の範囲に制御することが容易となる。 The energy ray polymerizable monomer is preferably 5 to 900 parts by weight, more preferably 10 to 500 parts by weight, and particularly preferably 30 to 200 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate oligomer. Used. In the copolymerization of urethane (meth) acrylate oligomer and energy beam polymerizable monomer, the amount of energy beam polymerizable monomer is in such a range, derived from (meth) acryloyl group of urethane (meth) acrylate oligomer The interval between the portions to be processed becomes an appropriate level, and it becomes easy to control the Young's modulus of the base material within the range described later.
 エネルギー線硬化型樹脂の硬化物からなるフィルムとしては、ウレタンポリマーとエネルギー線重合性モノマーとを主成分とするエネルギー線硬化型含ウレタン樹脂を硬化させて得られる支持フィルムを用いてもよい。
 ウレタンポリマーはウレタン(メタ)アクリレートオリゴマーと異なり、分子中に(メタ)アクリロイル基等の重合性官能基を有しないウレタン系重合体であり、たとえば上述のポリオール化合物と多価イソシアネート化合物とを反応させて得ることができる。
 エネルギー線重合性モノマーは、ウレタン(メタ)アクリレート樹脂を希釈するものとして上述したのと同じものを用いることができるほか、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルメタクリルアミド、アクリロイルモルホリン、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、イミドアクリレート、N-ビニルピロリドン、等の含窒素モノマーを用いてもよい。
As a film made of a cured product of an energy beam curable resin, a support film obtained by curing an energy beam curable urethane-containing resin mainly composed of a urethane polymer and an energy beam polymerizable monomer may be used.
Unlike urethane (meth) acrylate oligomers, urethane polymers are urethane polymers that do not have a polymerizable functional group such as a (meth) acryloyl group in the molecule. For example, the above-mentioned polyol compound and a polyvalent isocyanate compound are reacted. Can be obtained.
As the energy ray polymerizable monomer, the same one as described above for diluting the urethane (meth) acrylate resin can be used, and N, N-dimethylaminoethyl acrylate, N, N-dimethylaminopropyl methacrylamide, Nitrogen-containing monomers such as acryloylmorpholine, N, N-dimethylacrylamide, N, N-diethylacrylamide, imide acrylate and N-vinylpyrrolidone may be used.
 上記エネルギー線重合性モノマーは、ウレタンポリマー100質量部に対して、好ましくは5~900質量部、さらに好ましくは10~500質量部、特に好ましくは30~200質量部の割合で用いられる。 The energy ray polymerizable monomer is preferably used in a proportion of 5 to 900 parts by mass, more preferably 10 to 500 parts by mass, and particularly preferably 30 to 200 parts by mass with respect to 100 parts by mass of the urethane polymer.
 支持フィルムを、上記のエネルギー線硬化型樹脂から形成する場合には、該樹脂に光重合開始剤を混入することにより、エネルギー線照射による重合硬化時間ならびに照射量を少なくすることができる。光重合開始剤としては、硬化性樹脂(A)に混入するものと同じものを混入することができる。 When the support film is formed from the above-mentioned energy beam curable resin, the polymerization curing time and irradiation amount by energy beam irradiation can be reduced by mixing a photopolymerization initiator in the resin. As a photoinitiator, the same thing as what mixes with curable resin (A) can be mixed.
 光重合開始剤の使用量は、エネルギー線硬化型樹脂100質量部に対して、好ましくは0.05~15質量部、さらに好ましくは0.1~10質量部、特に好ましくは0.5~5質量部である。光重合開始剤としては、硬化性樹脂(A)に混入するものと同じものを混入することができる。 The amount of the photopolymerization initiator used is preferably 0.05 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, and particularly preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the energy beam curable resin. Part by mass. As a photoinitiator, the same thing as what mixes with curable resin (A) can be mixed.
 また、上述の硬化性樹脂(B)中に、炭酸カルシウム、シリカ、雲母などの無機フィラー、鉄、鉛等の金属フィラー、顔料や染料等の着色剤等の添加物が含有されていてもよい。 The curable resin (B) may contain additives such as inorganic fillers such as calcium carbonate, silica and mica, metal fillers such as iron and lead, and colorants such as pigments and dyes. .
 支持フィルムの製膜方法としては、硬化性樹脂(B)を含む配合物を液状状態で工程フィルム上に薄膜状にキャストした後に、これを所定の手段によりフィルム化し、工程フィルムを除去することで支持フィルムを製造できる。このような製法によれば、製膜時に樹脂にかかる応力が少なく、経時あるいは加熱による寸法変化が起こりにくくなる。また、固形の不純物を取り除きやすいので、製膜したフィルムはフィッシュアイの形成が少なくなり、これにより、膜厚の均一性が向上し、厚み精度は通常2%以内になる。 As a method for forming a support film, after casting a composition containing the curable resin (B) in a thin film on a process film in a liquid state, this is formed into a film by a predetermined means, and the process film is removed. A support film can be manufactured. According to such a manufacturing method, the stress applied to the resin during film formation is small, and dimensional changes due to aging or heating are less likely to occur. In addition, since solid impurities can be easily removed, the formed film reduces the formation of fish eyes, thereby improving the uniformity of the film thickness and the thickness accuracy is usually within 2%.
 支持フィルムの厚さは、好ましくは40~300μm、より好ましくは60~250μm、特に好ましくは80~200μmである。 The thickness of the support film is preferably 40 to 300 μm, more preferably 60 to 250 μm, and particularly preferably 80 to 200 μm.
 さらに、支持フィルムの帯電防止コート層が形成される面や粘着剤層が設けられる面には、これらの層との密着性を向上させるために、コロナ処理を施したり、プライマー処理等の他の層を設けてもよい。 Furthermore, the surface on which the antistatic coat layer of the support film is formed or the surface on which the pressure-sensitive adhesive layer is provided is subjected to corona treatment or other treatment such as primer treatment in order to improve the adhesion with these layers. A layer may be provided.
 上記のような原材料および方法により製膜された支持フィルムは、応力緩和性に優れた性質を示す。たとえばかかる応力緩和性に優れた支持フィルムを採用すること等により、本発明に用いる基材は優れた応力緩和性を示す。10%伸張時の1分経過後における基材の応力緩和率は、好ましくは60%以上、より好ましくは65%以上、特に好ましくは75~90%である。基材の応力緩和率を上記範囲とすることで、該基材を用いた本発明の表面保護用シートは、被着体に貼付した際に発生する残留応力を速やかに解消し、半導体ウエハの裏面を研削する工程(半導体ウエハを加工する工程)において半導体ウエハを極薄に研削した場合であっても、半導体ウエハの反りを抑制できる。基材の応力緩和率が60%未満であると、半導体ウエハを加工する工程において発生する応力により、半導体ウエハに反りが発生する場合がある。 The support film formed by the raw materials and methods as described above exhibits excellent stress relaxation properties. For example, the substrate used in the present invention exhibits excellent stress relaxation properties by employing a support film having excellent stress relaxation properties. The stress relaxation rate of the substrate after 1 minute at 10% elongation is preferably 60% or more, more preferably 65% or more, and particularly preferably 75 to 90%. By making the stress relaxation rate of the base material within the above range, the surface protection sheet of the present invention using the base material quickly eliminates the residual stress generated when it is attached to the adherend. Even when the semiconductor wafer is ground extremely thinly in the step of grinding the back surface (step of processing the semiconductor wafer), the warpage of the semiconductor wafer can be suppressed. When the stress relaxation rate of the substrate is less than 60%, the semiconductor wafer may be warped due to the stress generated in the process of processing the semiconductor wafer.
 また、基材のヤング率は、100~2000MPaであり、好ましくは125~1500MPa、より好ましくは125~1000MPaである。表面保護用シートに、帯電防止コート層が設けられていると、ウエハの裏面研削工程において帯電防止コート層にクラック(断裂)が発生することがある。かかるクラックの発生により、帯電防止コート層の面方向の導電性が切断され、剥離帯電を拡散する効果が低下することがある。本発明の表面保護用シートによれば、基材のヤング率を上記範囲とすることで、表面保護用シートの引っ張りに対する耐性が適度に付与されることで、帯電防止コート層のクラックが防止され、帯電防止性能の低下を抑制できる。基材のヤング率が100MPa未満であると、帯電防止コート層にクラックが発生し、帯電防止性能が低下する。また、基材のヤング率が2000MPaを超えると、基材の応力緩和率が低下し、所望の範囲の応力緩和率を有する基材を得ることが困難になり、ウエハの反りを防止する効果が低下する。 Also, the Young's modulus of the substrate is 100 to 2000 MPa, preferably 125 to 1500 MPa, more preferably 125 to 1000 MPa. If the surface protection sheet is provided with an antistatic coating layer, cracks (breaks) may occur in the antistatic coating layer in the wafer back grinding process. Due to the occurrence of such cracks, the conductivity in the surface direction of the antistatic coating layer may be cut and the effect of diffusing the peeling charge may be reduced. According to the surface protective sheet of the present invention, by setting the Young's modulus of the base material within the above range, the surface protective sheet is moderately imparted with resistance to pulling, thereby preventing cracks in the antistatic coating layer. In addition, it is possible to suppress a decrease in antistatic performance. If the Young's modulus of the substrate is less than 100 MPa, cracks occur in the antistatic coating layer, and the antistatic performance is lowered. Further, if the Young's modulus of the substrate exceeds 2000 MPa, the stress relaxation rate of the substrate decreases, making it difficult to obtain a substrate having a stress relaxation rate in a desired range, and the effect of preventing wafer warpage. descend.
〔粘着部〕
 基材の片面には、貼付する半導体ウエハの外径よりも小径の非粘着部と、該非粘着部を囲繞する粘着部が形成されてなる。
(Adhesive part)
A non-adhesive portion having a diameter smaller than the outer diameter of the semiconductor wafer to be attached and an adhesive portion surrounding the non-adhesive portion are formed on one surface of the substrate.
 粘着部は、両面粘着テープにより構成されていてもよく、また単層の粘着剤層により構成されていてもよい。両面粘着テープは、芯材フィルムの両面に粘着剤層が形成されてなる。 The adhesive part may be composed of a double-sided adhesive tape, or may be composed of a single adhesive layer. The double-sided pressure-sensitive adhesive tape is formed by forming a pressure-sensitive adhesive layer on both surfaces of a core material film.
 粘着部を単層の粘着剤層により形成する場合、粘着部の厚さは、表面保護用シートが貼付される半導体ウエハ上に設けられたバンプ等の凹凸の高さによって適宜に調整すればよいが、好ましくは3~100μm、さらに好ましくは5~50μm、特に好ましくは7~30μm程度である。粘着部の厚みが薄すぎる場合には、十分な粘着力が得られず、保護機能が低下することがある。一方、粘着部の厚みが厚くなる場合には、両面粘着テープにより粘着部を形成することができ、単層粘着フィルムを使用する必要がなくなる。また、粘着部4を両面粘着テープで形成する場合には、粘着部の厚さは、好ましくは5~300μm、さらに好ましくは10~200μm程度である。 When the adhesive part is formed of a single adhesive layer, the thickness of the adhesive part may be adjusted as appropriate according to the height of the bumps and other irregularities provided on the semiconductor wafer to which the surface protection sheet is attached. However, it is preferably 3 to 100 μm, more preferably 5 to 50 μm, particularly preferably about 7 to 30 μm. When the thickness of the adhesive part is too thin, sufficient adhesive strength cannot be obtained, and the protective function may be lowered. On the other hand, when the thickness of the pressure-sensitive adhesive portion is increased, the pressure-sensitive adhesive portion can be formed with a double-sided pressure-sensitive adhesive tape, and there is no need to use a single-layer pressure-sensitive adhesive film. When the adhesive portion 4 is formed of a double-sided adhesive tape, the thickness of the adhesive portion is preferably about 5 to 300 μm, more preferably about 10 to 200 μm.
 また、粘着部の厚さが、30μm以下である場合には、表面保護用シートを半導体ウエハに貼付した場合に、表面保護用シートと、バンプの設けられていない領域における半導体ウエハ表面が接近することになる。このため、粘着部の厚さが30μmよりも大きい場合よりも表面保護用シートの剥離帯電の発生が増加する傾向がある。本発明の表面保護用シートは、このように粘着部の厚さを小さくしても、剥離帯電の発生を抑制することができる。
 この場合においては、粘着部として単層粘着フィルムを用いることが好ましい。両面粘着テープの芯材フィルムの厚みは様々だが、10μm程度であることが一般的である。このため、粘着部が薄い場合に、粘着部を両面粘着テープで構成すると、粘着剤層の厚みが薄くなり、十分な粘着力が得られないことがあるためである。
Further, when the thickness of the adhesive portion is 30 μm or less, when the surface protection sheet is attached to the semiconductor wafer, the surface protection sheet and the surface of the semiconductor wafer in the region where the bumps are not provided approach each other. It will be. For this reason, there exists a tendency for generation | occurrence | production of peeling electrification of the sheet | seat for surface protection to increase rather than the case where the thickness of an adhesion part is larger than 30 micrometers. The surface protective sheet of the present invention can suppress the occurrence of peeling electrification even when the thickness of the adhesive portion is thus reduced.
In this case, it is preferable to use a single-layer adhesive film as the adhesive part. The thickness of the core material film of the double-sided pressure-sensitive adhesive tape varies, but is generally about 10 μm. For this reason, when an adhesive part is thin, when an adhesive part is comprised with a double-sided adhesive tape, the thickness of an adhesive layer will become thin and sufficient adhesive force may not be obtained.
 なお、粘着部の高さは0(ゼロ)であってもよい。この場合には、図3に斜視図、図4に断面図を示したように、非粘着部の表面と粘着部の表面とが連続し同一平面上にある形態となる。このような表面保護用シートは、基材の全面に後述するようなエネルギー線硬化型粘着剤層を形成し、ウエハの回路面と接触する内周部のみをエネルギー線硬化し、粘着力を低下し、外周部にのみ粘着力を保持するようにして得られる。 In addition, the height of the adhesive part may be 0 (zero). In this case, as shown in a perspective view in FIG. 3 and a cross-sectional view in FIG. 4, the surface of the non-adhesive part and the surface of the adhesive part are continuous and on the same plane. Such a sheet for surface protection forms an energy ray curable pressure sensitive adhesive layer as described later on the entire surface of the base material, and only the inner peripheral portion that comes into contact with the circuit surface of the wafer is cured with energy rays to reduce the adhesive force. In addition, the adhesive strength is obtained only on the outer peripheral portion.
 また、粘着部の幅は、粘着力に影響を及ぼし、粘着部の幅が広いほど粘着力は高くなる。本発明において粘着部の幅は、好ましくは0.1~30mm、さらに好ましくは1~20mm、特に好ましくは2~10mm程度である。粘着部の幅が狭すぎる場合には、表面保護用シートの粘着力が不十分になることがある。一方、粘着部の幅が広すぎると、ウエハの回路形成領域にまで粘着部が及び、粘着剤により回路が汚染されることがある。 Also, the width of the adhesive portion affects the adhesive strength, and the adhesive strength increases as the width of the adhesive portion increases. In the present invention, the width of the adhesive portion is preferably about 0.1 to 30 mm, more preferably about 1 to 20 mm, and particularly preferably about 2 to 10 mm. When the width | variety of an adhesion part is too narrow, the adhesive force of the surface protection sheet may become inadequate. On the other hand, if the width of the adhesive portion is too wide, the adhesive portion may reach the circuit formation region of the wafer and the circuit may be contaminated by the adhesive.
 粘着部は、ウエハに対し適度な再剥離性があればその種類は特定されず、従来より公知の種々の粘着剤により形成され得る。このような粘着剤としては、何ら限定されるものではないが、たとえばゴム系、アクリル系、シリコーン系、ウレタン系、ポリビニルエーテル等の粘着剤が用いられる。また、エネルギー線の照射により硬化して再剥離性となるエネルギー線硬化型粘着剤や、加熱発泡型、水膨潤型の粘着剤も用いることができる。 The type of the adhesive part is not specified as long as it has an appropriate re-peelability to the wafer, and can be formed by various conventionally known adhesives. The pressure-sensitive adhesive is not limited at all, but rubber-based, acrylic-based, silicone-based, urethane-based, polyvinyl ether, and other pressure-sensitive adhesives are used. In addition, an energy ray curable pressure-sensitive adhesive that is cured by irradiation with energy rays and becomes removable, a heat-foaming type, or a water swelling type pressure-sensitive adhesive can also be used.
 エネルギー線硬化(紫外線硬化、電子線硬化)型粘着剤としては、特に紫外線硬化型粘着剤を用いることが好ましい。このようなエネルギー線硬化型粘着剤の具体例は、たとえば特開昭60-196956号公報および特開昭60-223139号公報に記載されている。また、水膨潤型粘着剤としては、たとえば特公平5-77284号公報、特公平6-101455号公報等に記載のものが好ましく用いられる。 As the energy ray curable (ultraviolet ray curable, electron beam curable) pressure-sensitive adhesive, it is particularly preferable to use an ultraviolet curable pressure-sensitive adhesive. Specific examples of such energy beam curable pressure-sensitive adhesives are described in, for example, JP-A-60-196956 and JP-A-60-223139. As the water-swelling pressure-sensitive adhesive, those described in, for example, JP-B-5-77284 and JP-B-6-101455 are preferably used.
〔非粘着部〕
 非粘着部は、上記の粘着部により囲繞されてなり、通常、貼付される半導体ウエハの外径よりもやや小径となるように設計される。非粘着部は、まったく粘着性を示さない表面状態であってもよいが、600mN/25mm以下の適度な再剥離性を示す粘着力であれば、問題なく使用できる。このような非粘着部は、具体的には前記基材の表面(図1、図2)であってもよく、またエネルギー線硬化型粘着剤層の硬化物により形成されていてもよい(図3、図4)。
(Non-adhesive part)
The non-adhesive part is surrounded by the above-mentioned adhesive part, and is usually designed to have a slightly smaller diameter than the outer diameter of the semiconductor wafer to be stuck. The non-adhesive part may be in a surface state that does not exhibit any adhesive property, but can be used without any problem as long as it has an adhesive force that exhibits an appropriate removability of 600 mN / 25 mm or less. Such a non-adhesive part may specifically be the surface of the substrate (FIGS. 1 and 2), or may be formed of a cured product of an energy ray-curable adhesive layer (FIG. 1). 3, FIG. 4).
(表面保護用シート10の作成)
 本発明に係る表面保護用シート10は、図1に示すように、上記帯電防止コート層1と支持フィルム2とからなる基材5の片面に、貼付する半導体ウエハの外径よりも小径の非粘着部3と、該非粘着部3を囲繞する粘着部4とを有する。以下、その作成の方法の一例について説明する。非粘着部3及び粘着部4は、帯電防止コート層1上または支持フィルム2上に設けることができる。なお、図1においては、支持フィルム2上に非粘着部3及び粘着部4を形成している。
(Preparation of surface protection sheet 10)
As shown in FIG. 1, the surface protective sheet 10 according to the present invention has a non-diameter smaller than the outer diameter of a semiconductor wafer to be attached to one side of a base material 5 composed of the antistatic coating layer 1 and the support film 2. The adhesive part 3 and the adhesive part 4 surrounding the non-adhesive part 3 are provided. Hereinafter, an example of the creation method will be described. The non-adhesive part 3 and the adhesive part 4 can be provided on the antistatic coating layer 1 or the support film 2. In FIG. 1, the non-adhesive part 3 and the adhesive part 4 are formed on the support film 2.
 表面保護用シート10は、その使用時において、図5に示すように、貼付されるウエハ7のバンプ8が設けられた回路形成部分には、非粘着部3が対面し、回路が形成されていないウエハ4の外郭部分は粘着部4が対面するように構成されている。以下、表面保護用シート10の作成例として、粘着部4が単層の粘着剤層により形成される場合(図1、図2に示す構成)を例にとり説明する。 When the surface protection sheet 10 is used, the non-adhesive portion 3 faces the circuit forming portion provided with the bumps 8 of the wafer 7 to be bonded, as shown in FIG. The outer portion of the non-wafer 4 is configured such that the adhesive portion 4 faces. Hereinafter, a case where the pressure-sensitive adhesive portion 4 is formed of a single pressure-sensitive adhesive layer (the configuration shown in FIGS. 1 and 2) will be described as an example of creating the surface protection sheet 10.
 粘着部4は、単層の粘着剤層(粘着フィルム)からなり、粘着フィルムを基材5に積層する前に、打ち抜き等の手段で略円形に切断除去して、粘着部が形成されない開口部を形成する。このとき、粘着フィルムを2枚の剥離フィルムで挟み、片方の剥離フィルムと粘着フィルムを打ち抜き、他方の剥離フィルムは完全に打ち抜かないようにすれば、残留した剥離フィルムが粘着フィルムのキャリアとなり、以降の加工もroll-to-rollで連続して行えるので好ましい。 The adhesive part 4 is composed of a single adhesive layer (adhesive film), and before the adhesive film is laminated on the base material 5, it is cut and removed into a substantially circular shape by means of punching or the like so that the adhesive part is not formed. Form. At this time, if the adhesive film is sandwiched between two release films, one release film and the adhesive film are punched out, and the other release film is not completely punched out, the remaining release film becomes the carrier of the adhesive film, and thereafter This processing is also preferable because it can be carried out continuously by roll-to-roll.
 基材5を形成する方法は特に限定されず、帯電防止コート層1と支持フィルム2とを別々に製膜し、積層して基材5を得る方法(製法(I))や、硬化性樹脂(B)を含む配合物を工程シート上に塗布し予備硬化して、予備硬化層を形成する工程と、無機導電性フィラーと硬化性樹脂(A)とを含む配合物を予備硬化層上に塗布し、塗膜層を形成する工程と、予備硬化層と塗膜層とを硬化し、基材を形成する工程とを有する方法(製法(II))が挙げられる。製法(II)で得られた基材5を有する表面保護用シート10は、予備硬化層状態の支持フィルムの表面に、帯電防止コート層となる塗布層を形成し、帯電防止コート層1と支持フィルム2とを一括して完全硬化するため、帯電防止コート層1と支持フィルム2との密着性に優れ、また帯電防止性能を向上させることができる。また、無機導電性フィラーと硬化性樹脂(A)とを含む配合物を別の工程フィルム上に塗布し、硬化させて樹脂膜を得た後に、予備硬化層と積層させる方法(製法(III))を採用してもよい。この場合であっても、帯電防止コート層1と支持フィルム2との密着性は製法(I)の場合よりも高くなる傾向がある。 The method for forming the base material 5 is not particularly limited, and the antistatic coat layer 1 and the support film 2 are separately formed and laminated to obtain the base material 5 (production method (I)), or a curable resin. (B) is applied onto the process sheet and pre-cured to form a pre-cured layer, and the composition including the inorganic conductive filler and the curable resin (A) is formed on the pre-cured layer. The method (manufacturing method (II)) which has the process of apply | coating and forming a coating-film layer, and the process of hardening | curing a precured layer and a coating-film layer and forming a base material is mentioned. The surface protective sheet 10 having the base material 5 obtained by the production method (II) forms a coating layer to be an antistatic coating layer on the surface of the support film in a pre-cured layer state, and supports the antistatic coating layer 1 and the support layer. Since the film 2 is completely cured together, the adhesion between the antistatic coating layer 1 and the support film 2 is excellent, and the antistatic performance can be improved. Moreover, after apply | coating the compound containing an inorganic electroconductive filler and curable resin (A) on another process film and making it harden | cure and obtaining a resin film, it is the method of laminating | stacking with a precured layer (manufacturing method (III)) ) May be adopted. Even in this case, the adhesion between the antistatic coating layer 1 and the support film 2 tends to be higher than that in the production method (I).
 続いて型抜きされた粘着フィルムを基材5に積層し、表面保護用シート10が得られる。前記した開口部には粘着剤層は存在しないため、非粘着部3となる。 Subsequently, the die-cut adhesive film is laminated on the substrate 5 to obtain the surface protecting sheet 10. Since the adhesive layer does not exist in the above-described opening, the non-adhesive portion 3 is formed.
 この段階の構成(以下「未成形構成」ともいう)で本発明の表面保護用シート10として使用してもよい。この構成で使用する場合は、表面保護用シート10の非粘着部3をウエハの回路面の位置に合わせつつ、粘着部4をウエハの外郭へ貼着する。そして、ウエハよりはみ出している表面保護用シートをウエハ7の外周に沿って切断分離して裏面研削に供する。 The structure at this stage (hereinafter also referred to as “unformed structure”) may be used as the surface protective sheet 10 of the present invention. When used in this configuration, the adhesive portion 4 is adhered to the outer surface of the wafer while the non-adhesive portion 3 of the surface protecting sheet 10 is aligned with the position of the circuit surface of the wafer. Then, the surface protection sheet protruding from the wafer is cut and separated along the outer periphery of the wafer 7 and subjected to back surface grinding.
 本発明の表面保護用シートの他の態様としては、未成形構成の作成に続き、非粘着部3と略同心円状に、かつ貼付するウエハの外径に合わせて粘着部4の外周を打ち抜くなどして成形した構成である。すなわち、予め基材5および粘着部4をウエハ4の外径に合わせて切断除去を行っておき、剥離フィルム上に仮着しておく。予めウエハと同形状にカットすることにより、ウエハに表面保護用シートを貼付する際、カッターで表面保護用シートを切除する工程を行わずに済む。このようにすれば、カッター刃によりウエハの端部に傷を付け、その後の加工でウエハの損傷を誘引するようなことがなくなる。 As another aspect of the surface protecting sheet of the present invention, following the creation of the unmolded structure, the outer periphery of the adhesive portion 4 is punched out in a shape substantially concentric with the non-adhesive portion 3 and in accordance with the outer diameter of the wafer to be attached. This is a molded structure. That is, the substrate 5 and the adhesive portion 4 are cut and removed in advance according to the outer diameter of the wafer 4 and temporarily attached on the release film. By cutting the surface protection sheet into the same shape as the wafer in advance, when the surface protection sheet is affixed to the wafer, it is not necessary to perform a step of cutting the surface protection sheet with a cutter. In this way, the edge of the wafer is scratched by the cutter blade, and subsequent processing does not induce damage to the wafer.
 また、図3、図4に示す表面保護用シートは、基材5上にエネルギー線硬化型粘着剤層を形成し、エネルギー線硬化型粘着剤層を、ウエハの回路形成領域の大きさ、形状に合わせてエネルギー線照射して、回路形成領域に対応した非粘着部3を形成して得られる。 Moreover, the surface protection sheet shown in FIG. 3 and FIG. 4 forms an energy beam curable pressure-sensitive adhesive layer on the substrate 5, and the energy beam curable pressure-sensitive adhesive layer is formed in the size and shape of the circuit formation region of the wafer. The non-adhesive part 3 corresponding to the circuit formation region is formed by irradiating energy rays in accordance with the above.
(ウエハの裏面研削)
 次に本発明の表面保護用シートの使用態様の一例として、本シートをウエハの裏面研削時の表面保護用シートとして使用した場合を例にとり説明する。
(Backside grinding of wafer)
Next, as an example of a usage mode of the surface protection sheet of the present invention, a case where the sheet is used as a surface protection sheet at the time of grinding the back surface of a wafer will be described as an example.
 ウエハの裏面研削に際しては、図5に示すように表面保護用シート10の粘着部4が、ウエハ7のバンプ8に対面しないように精度よく位置合わせをした後、粘着部4とウエハ7の外周端部とを密着させ、半導体ウエハを研削するための表面保護形態とする。 When grinding the back surface of the wafer, as shown in FIG. 5, after aligning the adhesive portion 4 of the surface protecting sheet 10 with high precision so as not to face the bumps 8 of the wafer 7, the outer periphery of the adhesive portion 4 and the wafer 7 is aligned. A surface protection mode for grinding the semiconductor wafer by bringing the end portion into close contact is adopted.
 なお、基材5、粘着部4が予めウエハと同形状にカットされていない場合には、ウエハに表面保護用シート10を貼付した後に、カッターで表面保護用シートの不要部(ウエハからはみ出した部分)を切除する。 In addition, when the base material 5 and the adhesion part 4 are not cut in the same shape as a wafer beforehand, after sticking the surface protection sheet 10 to a wafer, the unnecessary part (the protrusion of the surface protection sheet protruded from the wafer) with a cutter. Cut out part.
 ウエハは、回路面にバンプを有しないウエハであってもよいが、本発明の表面保護用シートは、回路面上にバンプを有するウエハの回路面の保護に特に好ましく用いられる。バンプの高さは、特に限定はされないが、粘着部4を単層粘着剤層で構成する場合には、バンプの高さは5~300μm程度が好ましい。また、最も外に配置されるバンプの位置はウエハの外周から0.7~30mm内側であることが好ましい。このようなバンプが外周部近くまで形成されたウエハは、従来の表面保護用粘着シートでの保護が困難であったが、本発明においてより好適に用いられる。 The wafer may be a wafer having no bumps on the circuit surface, but the surface protection sheet of the present invention is particularly preferably used for protecting the circuit surface of a wafer having bumps on the circuit surface. The height of the bump is not particularly limited. However, when the adhesive portion 4 is composed of a single-layer adhesive layer, the height of the bump is preferably about 5 to 300 μm. Further, the position of the outermost bump is preferably 0.7 to 30 mm inside from the outer periphery of the wafer. A wafer on which such bumps are formed close to the outer periphery is difficult to protect with a conventional surface protective adhesive sheet, but is more preferably used in the present invention.
 上記のような表面保護形態としたウエハ7は、ウエハ研削装置のウエハ固定台(図示せず)に表面保護用シート10側を戴置し、グラインダー6などを用いた通常の研削手法で研削を行う。 The wafer 7 having the above surface protection configuration is ground by a normal grinding method using a grinder 6 or the like by placing the surface protection sheet 10 side on a wafer fixing base (not shown) of a wafer grinding apparatus. Do.
 ウエハ7の外郭部には粘着部4が全周を囲って確実に接着しているため、研削加工時の洗浄水等の浸入は起こらずウエハの回路面を汚染することがない。また、ウエハ回路面に対してはバンプの頂点が適度な圧力で基材5に接しているため、研削加工時に表面保護用シートの剥がれや位置ずれ等が起きにくくなる。 Since the adhesive portion 4 is securely bonded to the outer portion of the wafer 7 so as to surround the entire circumference, the intrusion of cleaning water or the like during the grinding process does not occur and the circuit surface of the wafer is not contaminated. Further, since the apexes of the bumps are in contact with the substrate 5 with an appropriate pressure with respect to the wafer circuit surface, the surface protection sheet is less likely to be peeled off or displaced during grinding.
 その後、粘着部4をエネルギー線硬化型粘着剤で形成した場合には粘着部にエネルギー線を照射し、表面保護用シート10からウエハ7を分離する。ウエハ7は、図示したように、リング状の粘着部4において表面保護用シート10に固定されている。リング状の粘着部4の幅は狭く、したがって接着力も弱いため、ウエハ7の剥離は容易である。また、本発明の表面保護用シート10によれば、ウエハ表面から表面保護用シート10を剥離する際に、表面保護用シート由来の残渣物によるウエハ表面の汚染が極めて少なく、不良品の発生を抑制でき、また得られる半導体チップの品質も安定する。さらにまた、本発明の表面保護用シート10によれば、表面保護用シート10からウエハ7を分離する際に剥離帯電により発生する静電気を効果的に拡散できる。 Thereafter, when the adhesive portion 4 is formed of an energy ray curable adhesive, the adhesive portion is irradiated with energy rays to separate the wafer 7 from the surface protecting sheet 10. As illustrated, the wafer 7 is fixed to the surface protection sheet 10 in the ring-shaped adhesive portion 4. Since the ring-shaped pressure-sensitive adhesive portion 4 has a narrow width and thus has a weak adhesive force, the wafer 7 can be easily peeled off. In addition, according to the surface protection sheet 10 of the present invention, when the surface protection sheet 10 is peeled from the wafer surface, the wafer surface is hardly contaminated by residues derived from the surface protection sheet, and defective products are generated. The quality of the obtained semiconductor chip can be stabilized. Furthermore, according to the surface protection sheet 10 of the present invention, it is possible to effectively diffuse the static electricity generated by the peeling charging when the wafer 7 is separated from the surface protection sheet 10.
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の実施例および比較例において、各種物性の評価は次のように行った。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples. In the following examples and comparative examples, various physical properties were evaluated as follows.
<基材のヤング率>
 基材のヤング率は、万能引張試験機(オリエンテック社製テンシロンRTA-T-2M)を用いて、JIS K7161:1994に準拠して、23℃、湿度50%の環境下において引張速度200mm/分で測定した。
<Young's modulus of the substrate>
The Young's modulus of the base material was measured using a universal tensile testing machine (Tensilon RTA-T-2M manufactured by Orientec Co., Ltd.) in accordance with JIS K7161: 1994 under an environment of 23 ° C. and 50% humidity at a tensile speed of 200 mm / Measured in minutes.
<基材の応力緩和率>
 実施例または比較例で使用した基材を幅15mm、長さ100mmに切り出して試験片を得た。この試験片を、オリエンテック社製テンシロンRTA-100を用いて室温(23℃)にて速度200mm/分で引っ張った。10%伸張した状態で引張を停止し、その時の応力Aと、伸張停止の1分後の応力Bとから、応力緩和率=(A-B)/A×100(%)の式に基づいて応力緩和率を算出した。
<Stress relaxation rate of substrate>
The base material used in the examples or comparative examples was cut into a width of 15 mm and a length of 100 mm to obtain a test piece. This test piece was pulled at a speed of 200 mm / min at room temperature (23 ° C.) using Tensilon RTA-100 manufactured by Orientec. Tensile is stopped in the state of 10% elongation, and the stress relaxation rate = (A−B) / A × 100 (%) based on the stress A at that time and the stress B 1 minute after the elongation stop. The stress relaxation rate was calculated.
<研削後のウエハの反り>
 実施例または比較例で作成した表面保護用シートをシリコンウエハ(200mmφ、厚み750μm)に、テープマウンター(リンテック社製Adwill RAD-3500)を用いて貼付した。その後、ディスコ社製 DFG-840を用いてシリコンウエハの厚みが150μmとなるように研削した。研削後、表面保護用シートを除去せずに、ウエハをJIS B 7513;1992に準拠した平面度1級の精密検査用の定盤上に、表面保護用シートが上側となるように載置した。
<Warpage of wafer after grinding>
The sheet for surface protection prepared in Examples or Comparative Examples was attached to a silicon wafer (200 mmφ, thickness 750 μm) using a tape mounter (Adwill RAD-3500 manufactured by Lintec). Thereafter, the silicon wafer was ground to a thickness of 150 μm using DFG-840 manufactured by Disco Corporation. After grinding, without removing the surface protection sheet, the wafer was placed on a surface plate for precision inspection with a flatness of 1st class conforming to JIS B 7513; 1992 so that the surface protection sheet was on the upper side. .
 測定は定盤をゼロ地点とし、17ヵ所の測定ポイントを求めた。反り量は、最大値と最小値の差とした。 Measured with the surface plate as the zero point, 17 measurement points were obtained. The amount of warpage was the difference between the maximum value and the minimum value.
<剥離帯電>
 ウエハ回路面に、実施例または比較例の表面保護用シートを貼付し、ウエハと表面保護用シートとの積層体を得た。積層体について、積層体作成後から30日間、平均温度約23℃、平均湿度65%RHの環境下に放置した。放置後、まず、積層体を10×10cmの四角形に裁断した。次に、表面保護用シートをウエハから500mm/分で剥離した。このとき、表面保護用シートに帯電した帯電電位を50mmの距離から集電式電位測定機(春日電機社製 KSD-6110)により23℃、湿度65%RHの環境下で測定した(測定下限値0.1kV)。
<Peeling electrification>
The surface protective sheet of Example or Comparative Example was stuck on the wafer circuit surface to obtain a laminate of the wafer and the surface protective sheet. The laminate was left in an environment with an average temperature of about 23 ° C. and an average humidity of 65% RH for 30 days after preparation of the laminate. After standing, the laminate was first cut into a 10 × 10 cm square. Next, the surface protection sheet was peeled from the wafer at 500 mm / min. At this time, the charged potential charged on the surface protection sheet was measured from a distance of 50 mm using a current collecting potential measuring device (KSD-6110 manufactured by Kasuga Electric Co., Ltd.) in an environment of 23 ° C. and humidity 65% RH (measurement lower limit value). 0.1 kV).
<ウエハのクラック>
 研削後のウエハの反りを評価したのと同じ方法によりウエハを研削した後、表面保護用シートをウエハより剥離し、帯電防止コート層面をデジタル顕微鏡にて観察し、帯電防止コート層のクラックの有無を確認した。
<Wafer cracks>
After grinding the wafer using the same method used to evaluate the warpage of the wafer after grinding, peel off the surface protection sheet from the wafer, observe the surface of the antistatic coating layer with a digital microscope, and check for cracks in the antistatic coating layer. It was confirmed.
(実施例1)
 分子量2000のポリエステル型ポリオールとイソホロンジイソシアネートから合成されたウレタンオリゴマーを骨格とし、その末端に2-ヒドロキシエチルアクリレートを付加して得た二官能ウレタンアクリレートオリゴマー(重量平均分子量8000)50質量部、アクリル系モノマー(エネルギー線重合性モノマー)としてのイソボルニルアクリレート25質量部と2-ヒドロキシ-3-フェノキシプロピルアクリレート25質量部の混合物、および光重合開始剤としてのダロキュア1173(製品名、BASF社製)1質量部を含む配合物を剥離フィルム上に塗布展延し、紫外線により硬化させてなる厚さ100μmの支持フィルムを得た。
 エポキシアクリレート系樹脂100質量部(重量平均分子量2000)に、平均粒子径0.1μmのアンチモンドープ酸化スズ(ATO)を230質量部、光重合開始剤(BASF社製イルガキュア184)を2質量部配合した配合物を得た。この配合物を支持フィルムの片面に塗布し、紫外線を照射することにより、厚みが2μmの帯電防止コート層を設けた。一方、予め打ち抜きにより粘着剤を除去して、円形の粘着剤が存在しない部分を設けた紫外線硬化型粘着剤からなる単層の20μmの厚さの粘着剤層(単層粘着フィルム)を作成した。この粘着剤層を支持フィルムの帯電防止コート層を設けた面とは逆の面に貼り合せることにより、非粘着部と粘着部とを有する表面保護用シートを作成した。非粘着部の大きさは、直径190mmとした。各評価結果を表1に示す。
(Example 1)
50 parts by mass of a bifunctional urethane acrylate oligomer (weight average molecular weight of 8000) obtained by adding 2-hydroxyethyl acrylate to the end of a urethane oligomer synthesized from a polyester type polyol having a molecular weight of 2000 and isophorone diisocyanate as a skeleton, acrylic A mixture of 25 parts by mass of isobornyl acrylate and 25 parts by mass of 2-hydroxy-3-phenoxypropyl acrylate as a monomer (energy ray polymerizable monomer), and Darocur 1173 (product name, manufactured by BASF) as a photopolymerization initiator A formulation containing 1 part by mass was applied and spread on a release film, and cured with ultraviolet rays to obtain a support film having a thickness of 100 μm.
100 parts by mass of epoxy acrylate resin (weight average molecular weight 2000), 230 parts by mass of antimony-doped tin oxide (ATO) having an average particle size of 0.1 μm, and 2 parts by mass of photopolymerization initiator (Irgacure 184 manufactured by BASF) The resulting formulation was obtained. This blend was applied to one side of a support film and irradiated with ultraviolet rays to provide an antistatic coating layer having a thickness of 2 μm. On the other hand, the pressure-sensitive adhesive was removed by punching in advance, and a single-layer pressure-sensitive adhesive layer (single-layer pressure-sensitive adhesive film) having a thickness of 20 μm made of an ultraviolet curable pressure-sensitive adhesive provided with a circular adhesive-free portion was prepared. . By sticking this pressure-sensitive adhesive layer on the surface of the support film opposite to the surface provided with the antistatic coating layer, a surface protecting sheet having a non-adhesive portion and a pressure-sensitive adhesive portion was prepared. The size of the non-adhesive part was 190 mm in diameter. Each evaluation result is shown in Table 1.
(実施例2)
 支持フィルムの製造においてウレタンアクリレートオリゴマーの重量平均分子量を3000とした以外は実施例1と同様にして表面保護用シートを作成した。各評価結果を表1に示す。
(Example 2)
A surface protecting sheet was prepared in the same manner as in Example 1 except that the weight average molecular weight of the urethane acrylate oligomer was set to 3000 in the production of the support film. Each evaluation result is shown in Table 1.
(実施例3)
 支持フィルムの製造においてウレタンアクリレートオリゴマーの重量平均分子量を6000とし、ATOの添加量を400質量部とし、帯電防止コート層の厚みを0.25μmとした以外は実施例1と同様にして表面保護用シートを作成した。各評価結果を表1に示す。
(Example 3)
For surface protection, the same as in Example 1 except that the weight average molecular weight of the urethane acrylate oligomer was 6000, the amount of ATO added was 400 parts by mass, and the thickness of the antistatic coating layer was 0.25 μm. Created a sheet. Each evaluation result is shown in Table 1.
(実施例4)
 ATOの添加量を150質量部とし、帯電防止コート層の厚みを4.8μmとした以外は実施例1と同様にして表面保護用シートを作成した。各評価結果を表1に示す。
Example 4
A surface protecting sheet was prepared in the same manner as in Example 1 except that the amount of ATO added was 150 parts by mass and the thickness of the antistatic coating layer was 4.8 μm. Each evaluation result is shown in Table 1.
(比較例1)
 帯電防止コート層を設けなかった以外は実施例1と同様にして表面保護用シートを作成した。各評価結果を表1に示す。
(Comparative Example 1)
A surface protecting sheet was prepared in the same manner as in Example 1 except that the antistatic coating layer was not provided. Each evaluation result is shown in Table 1.
(比較例2)
 支持フィルムの製造においてウレタンアクリレートオリゴマーの重量平均分子量を12000とした以外は実施例1と同様にして表面保護用シートを作成した。各評価結果を表1に示す。
(Comparative Example 2)
A surface protecting sheet was prepared in the same manner as in Example 1 except that the weight average molecular weight of the urethane acrylate oligomer was 12000 in the production of the support film. Each evaluation result is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 1・・・帯電防止コート層
 2・・・支持フィルム
 3・・・非粘着部
 4・・・粘着部
 5・・・基材
 10・・・表面保護用シート
 
DESCRIPTION OF SYMBOLS 1 ... Antistatic coating layer 2 ... Support film 3 ... Non-adhesion part 4 ... Adhesion part 5 ... Base material 10 ... Sheet for surface protection

Claims (9)

  1.  表面に回路が形成された半導体ウエハの裏面研削を行う際に用いる表面保護用シートであって、
     無機導電性フィラーと硬化性樹脂(A)の硬化物とを含む帯電防止コート層及び支持フィルムからなる基材の片面に、貼付する半導体ウエハの外径よりも小径の非粘着部と、該非粘着部を囲繞する粘着部とを有し、
     基材のヤング率が100~2000MPaである表面保護用シート。
    A surface protection sheet used when grinding a back surface of a semiconductor wafer having a circuit formed on the surface,
    A non-adhesive portion having a diameter smaller than the outer diameter of a semiconductor wafer to be attached to one side of a substrate comprising an antistatic coating layer and a support film comprising an inorganic conductive filler and a cured product of the curable resin (A), and the non-adhesive Having an adhesive part surrounding the part,
    A surface protecting sheet having a Young's modulus of a substrate of 100 to 2000 MPa.
  2.  10%伸張時の1分経過後における基材の応力緩和率が60%以上である請求項1に記載の表面保護用シート。 The sheet for surface protection according to claim 1, wherein the stress relaxation rate of the base material after 1 minute at the time of 10% elongation is 60% or more.
  3.  帯電防止コート層が、硬化性樹脂(A)の硬化物100質量部に対して無機導電性フィラーを100~600質量部含有する請求項1または2に記載の表面保護用シート。 The surface protection sheet according to claim 1 or 2, wherein the antistatic coating layer contains 100 to 600 parts by mass of an inorganic conductive filler with respect to 100 parts by mass of the cured product of the curable resin (A).
  4.  支持フィルムが硬化性樹脂(B)の硬化物を含む請求項1~3のいずれかに記載の表面保護用シート。 4. The surface protecting sheet according to claim 1, wherein the support film contains a cured product of the curable resin (B).
  5.  硬化性樹脂(B)が、エネルギー線硬化型含ウレタン樹脂である請求項4に記載の表面保護用シート。 The sheet for surface protection according to claim 4, wherein the curable resin (B) is an energy ray curable urethane-containing resin.
  6.  帯電防止コート層の厚さが0.2~5μmである請求項1~5のいずれかに記載の表面保護用シート。 6. The surface protective sheet according to claim 1, wherein the antistatic coating layer has a thickness of 0.2 to 5 μm.
  7.  粘着部の厚さが30μm以下である請求項1~6のいずれかに記載の表面保護用シート。 The surface protective sheet according to any one of claims 1 to 6, wherein the adhesive portion has a thickness of 30 µm or less.
  8.  粘着部が、単層の粘着剤層により構成されている請求項7に記載の表面保護用シート。 The sheet for surface protection according to claim 7, wherein the adhesive part is composed of a single adhesive layer.
  9.  請求項1~8のいずれかに記載の表面保護用シートを製造する方法であって、
     硬化性樹脂(B)を含む配合物を工程シート上に塗布し予備硬化して、予備硬化層を形成する工程と、
     無機導電性フィラーと硬化性樹脂(A)とを含む配合物から形成される塗膜または樹脂層を予備硬化層上に設ける工程と、
     予備硬化層を硬化し、基材を形成する工程とをこの順で有する表面保護用シートの製造方法。
    A method for producing the surface protective sheet according to any one of claims 1 to 8,
    Applying a pre-cured composition containing a curable resin (B) on a process sheet to form a pre-cured layer;
    Providing a coating film or resin layer formed from a blend containing an inorganic conductive filler and a curable resin (A) on a precured layer;
    The manufacturing method of the sheet | seat for surface protection which has the process of hardening | curing a preliminary-hardening layer and forming a base material in this order.
PCT/JP2015/079725 2014-10-23 2015-10-21 Surface protective sheet WO2016063917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016555258A JP6559151B2 (en) 2014-10-23 2015-10-21 Surface protection sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014216544 2014-10-23
JP2014-216544 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016063917A1 true WO2016063917A1 (en) 2016-04-28

Family

ID=55760948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079725 WO2016063917A1 (en) 2014-10-23 2015-10-21 Surface protective sheet

Country Status (3)

Country Link
JP (1) JP6559151B2 (en)
TW (1) TWI688477B (en)
WO (1) WO2016063917A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228663A (en) * 2016-06-22 2017-12-28 住友ベークライト株式会社 Semiconductor element protecting adhesive tape and method of producing semiconductor element protecting adhesive tape
WO2018021145A1 (en) * 2016-07-26 2018-02-01 三井化学東セロ株式会社 Method for manufacturing semiconductor device
JPWO2017188205A1 (en) * 2016-04-28 2019-02-28 リンテック株式会社 Protective film forming film and protective film forming composite sheet
JP2019212780A (en) * 2018-06-06 2019-12-12 株式会社ディスコ Tape adhesion device
KR20200090350A (en) * 2019-01-21 2020-07-29 주식회사 야스 Cover Film for protecting adhesive sheet using adhesive chuck
CN113165136A (en) * 2019-02-26 2021-07-23 株式会社迪思科 Adhesive sheet for grinding back surface and method for manufacturing semiconductor wafer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7317482B2 (en) * 2018-10-16 2023-07-31 株式会社ディスコ Wafer processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245932A (en) * 1995-03-10 1996-09-24 Lintec Corp Antistatic adhesive sheet
JP2001196404A (en) * 2000-01-11 2001-07-19 Fujitsu Ltd Semiconductor device and method of manufacturing the same
JP2007296751A (en) * 2006-04-28 2007-11-15 Mitsubishi Plastics Ind Ltd Resin laminate
JP2010177542A (en) * 2009-01-30 2010-08-12 Lintec Corp Antistatic adhesive sheet
JP2012097188A (en) * 2010-11-02 2012-05-24 Mitsubishi Plastics Inc Flame-retardant resin film and process for producing the film
JP2012216619A (en) * 2011-03-31 2012-11-08 Lintec Corp Surface protection sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704225B2 (en) * 2006-01-30 2011-06-15 富士フイルム株式会社 Album creating apparatus, album creating method, and album creating program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245932A (en) * 1995-03-10 1996-09-24 Lintec Corp Antistatic adhesive sheet
JP2001196404A (en) * 2000-01-11 2001-07-19 Fujitsu Ltd Semiconductor device and method of manufacturing the same
JP2007296751A (en) * 2006-04-28 2007-11-15 Mitsubishi Plastics Ind Ltd Resin laminate
JP2010177542A (en) * 2009-01-30 2010-08-12 Lintec Corp Antistatic adhesive sheet
JP2012097188A (en) * 2010-11-02 2012-05-24 Mitsubishi Plastics Inc Flame-retardant resin film and process for producing the film
JP2012216619A (en) * 2011-03-31 2012-11-08 Lintec Corp Surface protection sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017188205A1 (en) * 2016-04-28 2019-02-28 リンテック株式会社 Protective film forming film and protective film forming composite sheet
JP2017228663A (en) * 2016-06-22 2017-12-28 住友ベークライト株式会社 Semiconductor element protecting adhesive tape and method of producing semiconductor element protecting adhesive tape
WO2018021145A1 (en) * 2016-07-26 2018-02-01 三井化学東セロ株式会社 Method for manufacturing semiconductor device
JPWO2018021145A1 (en) * 2016-07-26 2018-07-26 三井化学東セロ株式会社 Manufacturing method of semiconductor device
US10515839B2 (en) 2016-07-26 2019-12-24 Mitsui Chemicals Tohcello, Inc. Method for manufacturing semiconductor device
JP2019212780A (en) * 2018-06-06 2019-12-12 株式会社ディスコ Tape adhesion device
JP7055567B2 (en) 2018-06-06 2022-04-18 株式会社ディスコ Tape sticking device
KR20200090350A (en) * 2019-01-21 2020-07-29 주식회사 야스 Cover Film for protecting adhesive sheet using adhesive chuck
KR102193721B1 (en) 2019-01-21 2020-12-21 주식회사 야스 Cover Film for protecting adhesive sheet using adhesive chuck
CN113165136A (en) * 2019-02-26 2021-07-23 株式会社迪思科 Adhesive sheet for grinding back surface and method for manufacturing semiconductor wafer

Also Published As

Publication number Publication date
TWI688477B (en) 2020-03-21
JP6559151B2 (en) 2019-08-14
TW201630734A (en) 2016-09-01
JPWO2016063917A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6559151B2 (en) Surface protection sheet
JP6541775B2 (en) Adhesive tape for work processing
JP5762781B2 (en) Base film and pressure-sensitive adhesive sheet provided with the base film
TWI580569B (en) Adhesive sheet
TWI671193B (en) Surface protection sheet substrate and surface protection sheet
JP6389456B2 (en) Composite sheet for forming protective film, chip with protective film, and method for manufacturing chip with protective film
JPWO2014155756A1 (en) Adhesive sheet, composite sheet for forming protective film, and method for producing chip with protective film
JP5893250B2 (en) Chip protective film forming sheet, semiconductor chip manufacturing method, and semiconductor device
CN107001875B (en) Film-like adhesive composite sheet and method for manufacturing semiconductor device
JP6559150B2 (en) Surface protection sheet
JP5785420B2 (en) Protective film forming sheet and semiconductor chip manufacturing method
CN108701641B (en) Sheet for forming protective film, method for manufacturing sheet for forming protective film, and method for manufacturing semiconductor device
KR20170029416A (en) Protective membrane forming film
KR20170029417A (en) Protective membrane forming film
JP6007069B2 (en) Adhesive sheet
JP2016213477A (en) Protective film formation sheet
CN108701597B (en) Composite sheet for forming protective film
JP2022157810A (en) Support sheet, composite sheet for resin film formation, kit, and manufacturing method of chip with resin film
JP2021082767A (en) Kit, and method for manufacturing third laminate by use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555258

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852839

Country of ref document: EP

Kind code of ref document: A1