WO2016063860A1 - Board processing method, computer storage medium, and board processing system - Google Patents

Board processing method, computer storage medium, and board processing system Download PDF

Info

Publication number
WO2016063860A1
WO2016063860A1 PCT/JP2015/079538 JP2015079538W WO2016063860A1 WO 2016063860 A1 WO2016063860 A1 WO 2016063860A1 JP 2015079538 W JP2015079538 W JP 2015079538W WO 2016063860 A1 WO2016063860 A1 WO 2016063860A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
substrate
post
processing
wafer
Prior art date
Application number
PCT/JP2015/079538
Other languages
French (fr)
Japanese (ja)
Inventor
誠司 永原
豪介 白石
寺下 裕一
勝 友野
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2016063860A1 publication Critical patent/WO2016063860A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a substrate processing method, a computer storage medium, and a substrate processing system.
  • a resist film is formed as a photosensitive film on a substrate such as a semiconductor wafer (hereinafter referred to as a “wafer”), and then the resist film is subjected to an exposure process and a development process. Thus, a predetermined resist pattern is formed on the substrate.
  • a coating / development processing system which is a substrate processing system equipped with various processing units for processing wafers and a transport mechanism for transporting wafers, and an exposure apparatus provided outside the coating / development processing system. Done.
  • an electron beam exposure process has been proposed as an alternative exposure method for EUV resist.
  • the exposure process using an electron beam since the electron beam is scanned on the wafer to draw a predetermined pattern, the exposure process still takes time.
  • the exposure process is performed by the exposure processing apparatus.
  • the tact time from when the process is completed to when the wafer is returned to the coating and developing treatment system may vary from wafer to wafer.
  • the tact time until the wafer returned to the coating and developing system after the exposure process is subjected to the post-exposure baking process (hereinafter referred to as “PEB process”) is set uniformly among the wafers. Therefore, if the tact time is shifted in the exposure apparatus, the time from the exposure process to the PEB process is not constant, and as a result, there arises a problem that the line width of the resist pattern varies between wafers.
  • the present invention has been made in view of this point, and an object of the present invention is to make the line width of a resist pattern desired regardless of the time from the end of exposure processing to the start of PEB processing.
  • one aspect of the present invention is a substrate processing method for processing a substrate on which a resist film is formed, wherein an exposure step of exposing a pattern on the resist film on the substrate with an electron beam; A post-exposure step for performing post-exposure with UV light on the resist film on the substrate after the exposure of the pattern, a PEB treatment step for performing PEB treatment on the post-exposure substrate, and PEB treatment A development process step of developing a resist film on the substrate by developing a subsequent resist film, and when the tact time from the end of the exposure step to the start of the post-exposure step deviates from a predetermined time, The exposure amount in the post-exposure process is corrected according to the shift in tact time.
  • the resist film on the substrate is subjected to the post-exposure with the UV light.
  • Energy can be input auxiliary by irradiation to decompose the acid generator in the resist film to generate an acid, or to promote the generation of a radical component.
  • the tact time is the same as the predetermined time at the time when the PEB treatment process is started. It can be in the same state as the case. As a result, the line width of the resist pattern can be made desired regardless of the time from the end of the exposure process to the start of the PEB process.
  • one aspect of the present invention is a readable program storing a program that operates on a computer of a control device that controls the substrate processing system so that the substrate processing method is executed by the substrate processing system.
  • a computer storage medium A computer storage medium.
  • a substrate processing system for processing a substrate, a processing station provided with a plurality of processing apparatuses for performing PEB processing and development processing on the substrate, the substrate processing system, An exposure apparatus that is provided outside the substrate processing system and that exposes a pattern to the resist film on the substrate with an electron beam, an interface station that delivers the substrate to and from the exposure apparatus, and the exposure apparatus performs pattern exposure.
  • the line width of the resist pattern can be made desired regardless of the time from the end of the exposure process to the start of the PEB process.
  • FIG. 1 is a plan view schematically showing an outline of a configuration of a coating and developing treatment system according to an embodiment.
  • 1 is a front view schematically showing an outline of a configuration of a coating and developing treatment system according to an embodiment.
  • 1 is a rear view schematically showing an outline of a configuration of a coating and developing treatment system according to an embodiment.
  • FIG. It is the side view which showed the outline of the structure of the light irradiation apparatus typically. It is the top view which showed the outline of the structure of the light irradiation apparatus typically. It is a time chart from the exposure process of each wafer to PEB process. It is the top view which showed typically the outline of the structure of the light irradiation apparatus concerning other embodiment.
  • FIG. 1 is an explanatory view schematically showing an outline of a configuration of a coating and developing treatment system 1 as a substrate processing system according to the present embodiment.
  • 2 and 3 are a front view and a rear view, respectively, schematically showing the outline of the internal configuration of the coating and developing treatment system 1.
  • the coating and developing treatment system 1 includes a cassette station 10 in which a cassette C containing a plurality of wafers W is loaded and unloaded, and a processing station having a plurality of various processing devices for performing predetermined processing on the wafers W. 11, an interface station 12 provided adjacent to the processing station 11, a post-exposure station 13 for performing post-exposure on the wafer after pattern exposure, and an interface station 14 connected to the post-exposure station 13. ing.
  • an exposure device 15 that performs pattern exposure on the wafer W is provided adjacently.
  • the interface station 14 delivers the wafer W to and from the exposure apparatus 15.
  • the exposure apparatus 15 is provided with an exposure stage 15a that performs pattern exposure on a plurality of wafers W simultaneously by electron beams on the wafer W after resist formation. In the exposure apparatus 15 in the present embodiment, for example, four wafers W are simultaneously exposed.
  • the cassette station 10 is provided with a plurality of cassette mounting plates 21 on which a cassette C is placed and a wafer transfer device 23 that is movable on a transfer path 22 extending in the X direction. It has been.
  • the wafer transfer device 23 is also movable in the vertical direction and the vertical axis ( ⁇ direction), and between the cassette C on each cassette mounting plate 21 and a transfer device of a transfer block G3 of the processing station 11 described later. Can transfer the wafer W.
  • the processing station 11 is provided with a plurality of, for example, four blocks G1, G2, G3, and G4 having various devices.
  • a plurality of liquid processing apparatuses for example, a lower antireflection film that forms an antireflection film (hereinafter referred to as a “lower antireflection film”) below the resist film of the wafer W.
  • Forming device 30 resist coating device 31 for applying a resist solution to wafer W to form a resist film, and upper antireflection film for forming an antireflection film (hereinafter referred to as "upper antireflection film") on the resist film of wafer W
  • the film forming apparatus 32 and the development processing apparatus 33 for developing the wafer W are stacked in, for example, four stages from the bottom.
  • an EUV resist is used as the resist in the present embodiment.
  • Each of the devices 30 to 33 in the first block G1 has a plurality of cups F, for example, four cups F, for accommodating the wafers W during processing, and can process the plurality of wafers W in parallel.
  • a heat treatment apparatus 40 for performing heat treatment of the wafer W, an adhesion apparatus 41 as a hydrophobic treatment apparatus for hydrophobizing the wafer W, and an outer peripheral portion of the wafer W are exposed.
  • Peripheral exposure devices 42 are arranged side by side in the vertical and horizontal directions.
  • the heat treatment apparatus 40 includes a hot plate for placing and heating the wafer W and a cooling plate for placing and cooling the wafer W, and can perform both heat treatment and cooling treatment.
  • various heat treatments such as a pre-bake process performed before exposure and a PEB process performed after exposure are performed.
  • the delivery block G3 is provided with a plurality of delivery devices 50, 51, 52, 53, 54, 55, 56 in order from the bottom.
  • the delivery block G4 is provided with a plurality of delivery devices 60, 61, 62 in order from the bottom.
  • a wafer transfer mechanism 70 is provided next to the delivery block G3 on the positive side in the Y direction.
  • the wafer transfer mechanism 70 has a transfer arm that is movable in the Y direction, the ⁇ direction, and the vertical direction, for example.
  • Wafer inspection devices 71 and 72 are provided on both the X direction positive side and the negative direction side of the wafer transfer mechanism 70 with the wafer transfer mechanism 70 interposed therebetween.
  • wafer placement units 73 and 74 for temporarily storing a plurality of wafers W are provided.
  • the wafer placement unit 73 is disposed closer to the second block G2, and the wafer placement unit 74 is disposed closer to the first block G1.
  • the wafer transfer mechanism 70 moves up and down while supporting the wafer W, and moves the wafer W between the transfer devices, the wafer inspection devices 71 and 72, and the wafer placement units 73 and 74 in the transfer block G3. Can be transported.
  • the wafer inspection apparatus 71 in this embodiment measures, for example, the line width and sidewall angle of a pattern formed on the wafer W.
  • the wafer inspection device 72 measures, for example, an overlay error between an already formed pattern and a pattern exposed thereafter.
  • a wafer transfer area D is formed in an area between the first block G1 and the second block G2.
  • a plurality of wafer transfer mechanisms 80 are arranged in the wafer transfer area D.
  • the wafer transfer mechanism 80 has a transfer arm that is movable in the Y direction, the X direction, the ⁇ direction, and the vertical direction, for example.
  • the wafer transfer mechanism 80 moves within the wafer transfer area D, and includes a predetermined transfer device and wafer mounting unit 73 in the transfer block G4 in the interface block 12 and the surrounding first block G1, the second block G2, and the like.
  • the wafer W can be transferred to 74.
  • the interface station 12 includes the transfer block G4 having the transfer devices 60, 61 and 62, and the wafer transfer mechanism 90 capable of transferring the wafer W to and from the plurality of transfer devices 60, 61 and 62.
  • the wafer transfer mechanism 90 has an arm that is movable in the X direction, the Y direction, the ⁇ direction, and the vertical direction, for example.
  • the post-exposure station 13 is provided with a load lock chamber 100 configured to be evacuated inside at a position accessible by the wafer transfer mechanism 90 of the interface station 12.
  • a wafer transfer mechanism 101 is provided at a position where the load lock chamber 100 can be accessed.
  • a light irradiation device 102 is provided at a position accessible by the wafer transport mechanism 101 as a device for performing post exposure by irradiating the wafer after pattern exposure with UV light.
  • the light irradiation device 102 includes a mounting table 103 on which the wafer W is mounted, and a light irradiation unit that irradiates the wafer W on the mounting table 103 with UV light having a predetermined wavelength. 104.
  • the light irradiation unit 104 in the present embodiment is configured as a so-called batch exposure type apparatus that performs batch exposure on the entire surface of the resist film R formed on the wafer W.
  • the light irradiation unit 104 includes a plurality of straight tube-shaped light sources 105 that are longer than the diameter of the wafer W, for example.
  • the light sources 105 are arranged side by side without a gap so as to cover the entire upper surface of the wafer W, for example.
  • Each light source 105 emits UV light toward the wafer W.
  • the wavelength of the UV light is, for example, 220 to 280 nm, and various wavelength bands, for example, 222 nm, 248 nm, or 254 nm are used according to the sensitivity of the resist to be used.
  • the light irradiation unit 104 may employ, for example, a linear light source and move or rotate at least one of the wafer W or the light source so that the UV light scans on the wafer W.
  • the light irradiation unit 104 a light irradiation device configured to perform post-exposure by irradiating UV light one shot at a time in accordance with the pattern exposure shot size in the exposure device 15 may be adopted.
  • the post-exposure station 13 is configured to be airtight, and can be depressurized to a predetermined degree of depressurization, for example, 10 ⁇ 4 Pa to 10 ⁇ 7 Pa by a decompression device (not shown). As a result, during UV light irradiation or movement in the post-exposure station 13, it is possible to suppress the deactivation of acids and radicals due to amine components and oxygen contained in a trace amount in the air. Further, since the post-exposure station 13 is configured to be airtight, the post-exposure station 13 is maintained in a low-oxygen atmosphere by sealing a non-oxidizing gas such as nitrogen instead of reducing the pressure. Also good.
  • the interface station 14 connected to the post exposure station 13 is also airtight.
  • a delivery device 110 having a mounting table or the like is provided at a position accessible by the wafer transfer mechanism 101 of the post exposure station 13.
  • a wafer transfer mechanism 112 for transferring the wafer W of the transfer device 110 to and from a load lock chamber 111 configured to be evacuated inside is provided.
  • the load lock chamber 111 of the interface station 14 is connected to an exposure apparatus 15 that performs pattern exposure.
  • the load lock chamber 111 is configured to accommodate a plurality of, for example, four wafers W, and the four wafers W are collectively delivered between the interface station 14 and the exposure apparatus 15.
  • “collectively delivered” refers to delivering a plurality of wafers W in one exhaust operation by exhausting the interior with a plurality of wafers W accommodated in the load lock chamber 111. It does not matter whether or not a plurality of wafers W are actually delivered to and from each load lock chamber 111 simultaneously in parallel.
  • the wafer transfer mechanism 112 transfers, for example, wafers W to and from the load lock chamber 111 one by one. Therefore, when the wafers W are “collectively transferred”, for example, four wafers Of the wafers W, the wafer W that is first delivered by the load lock chamber 111 and the wafer W that is delivered second and later have different transfer timings.
  • the load lock chamber 100 described above can store four wafers W in the same manner as the load lock chamber 111, and can transfer the four wafers W to and from the interface station 12 at once.
  • the wafers W that have been post-exposed by the light irradiation device 102 are sequentially transferred to the interface station 12 side through the load lock chamber one by one.
  • the exposure stage 15a pattern exposure is performed on the resist on the wafer W by, for example, an electron beam.
  • the exposure device 15 has a predetermined degree of reduced pressure, for example, 10 ⁇ 4 by a decompression device (not shown). The pressure is reduced to Pa to 10 ⁇ 7 Pa.
  • the above coating and developing treatment system 1 is provided with a control device 300 as shown in FIG.
  • the control device 300 controls the operation of drive systems such as the above-described various processing devices and wafer transport mechanisms based on the processing recipe, and also the takt time for wafer processing in the various processing devices and the takt time for wafer transport by the respective wafer transport mechanisms. Time is managed and information regarding exposure of the wafer W is exchanged with the exposure apparatus 15.
  • the control device 300 is configured by a computer including, for example, a CPU, a memory, and the like. For example, by executing a program stored in the memory, the coating processing in the coating and developing processing system 1 can be realized.
  • Various programs for realizing the coating process in the coating and developing system 1 are, for example, a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), and a memory card. Or the like installed in the control device 300 from the storage medium H is used.
  • a cassette C containing a plurality of wafers W is placed on a predetermined cassette placement plate 21 of the cassette station 10. Thereafter, the wafers W in the cassette C are sequentially taken out by the wafer transfer device 23 and transferred to the delivery block G3 of the processing station 11.
  • the wafer W is transferred to, for example, the wafer placement unit 73 by the wafer transfer mechanism 70.
  • the wafer W is transferred to the heat treatment apparatus 40 of the second block G2 by the wafer transfer mechanism 80, and the temperature is adjusted.
  • the wafer W is transferred by the wafer transfer mechanism 80 to, for example, the lower antireflection film forming apparatus 30 of the first block G1, and a lower antireflection film is formed on the wafer W.
  • the wafer W is transferred to the heat treatment apparatus 40 of the second block G2, and heat treatment is performed.
  • the wafer W is transferred to the adhesion device 41 of the second block G2 and subjected to a hydrophobic treatment. Thereafter, the wafer W is transferred to the resist coating device 31 by the wafer transfer mechanism 80, and a resist film is formed on the wafer W. In this case, the resist film formed on the wafer W is a so-called photosensitized resist for EUV exposure. Thereafter, the wafer W is transferred to the heat treatment apparatus 40 and pre-baked.
  • the wafer W is transferred to the upper antireflection film forming apparatus 32, and an upper antireflection film is formed on the wafer W. Thereafter, the wafer W is transferred to the heat treatment apparatus 40, heated, and the temperature is adjusted. Thereafter, the wafer W is transferred to the peripheral exposure device 42 and subjected to peripheral exposure processing.
  • the wafer W is transferred to the delivery block G 4 and transferred to the load lock chamber 100 of the post exposure station 13 by the wafer transfer mechanism 90 of the interface station 12.
  • subsequent wafers W that have been subjected to the peripheral exposure processing in the same lot are sequentially loaded into the load lock chamber 100.
  • the interface station 14 After the four wafers W are accommodated in the load lock chamber 100, the interface station 14. The degree of vacuum is the same as that of the post exposure station 13.
  • each wafer W is sequentially transferred to the load lock chamber 111 by the wafer transfer mechanism 101 and the wafer transfer mechanism 112 of the interface station 14, and after the four wafers W are accommodated in the load lock chamber 111, the wafer W is generally exposed.
  • the degree of vacuum is the same as that of the device 15. Thereafter, each wafer W is transported to the exposure device 15, placed on the exposure stage 15a, and the pattern is exposed to the wafers W simultaneously by an electron beam (exposure process). At this time, information on the start time and end time of pattern exposure is exchanged with the control device 300.
  • the four wafers W on which the pattern exposure has been completed are transferred to the load lock chamber 111, and after that, the pressure is reduced to the same level as the interface station 14 and the post exposure station 13, and then transferred to the transfer device 110 by the wafer transfer mechanism 112. It is conveyed sequentially.
  • the wafer W transferred to the delivery device 110 is transferred to the light irradiation device 102 by the wafer transfer mechanism 101.
  • the wafer W that has been exposed to the pattern by the electron beam in the exposure device 15 is collectively exposed to UV light having a predetermined wavelength (post-exposure step).
  • a final resist pattern before the development processing is formed on the wafer W.
  • the wafer W first unloaded from the load lock chamber 111 and the wafer W unloaded second and later are subjected to post exposure with different exposure amounts. The exposure amount in this post exposure will be described.
  • the time from the pattern exposure in the exposure device 15 to the PEB treatment should be made constant.
  • the process from the pattern exposure in the exposure apparatus 15 to the post exposure is performed.
  • the time and the time from post-exposure to PEB processing may be made constant. In this case, naturally, it is assumed that the pattern exposure conditions in the exposure apparatus 15, the post-exposure conditions in the light irradiation apparatus 102, and the PEB processing conditions in the heat treatment apparatus 40 are constant between the wafers. .
  • the exposure apparatus 15 performs pattern exposure on the plurality of wafers W simultaneously in parallel, and the plurality of wafers W are collectively brought into the interface station 14 via the load lock chamber 111.
  • the time from the end of pattern exposure to the start of PEB processing is not constant between the wafers W. This will be specifically described below.
  • the pattern exposure end time of each wafer W becomes the same time, for example, as shown in FIG. In FIG. 6, for example, among the four wafers W in the same lot, the wafer W processed first in the processing station 11 is “wafer W1”, and the second wafer W processed in the processing station 11 is “ In the following, numbers are assigned in the order of processing as “Wafer W2”.
  • the wafers W1 to W4 are delivered to the load lock chamber 111 at once.
  • the wafer W ⁇ b> 1 is transferred from the load lock chamber 111 to the transfer device 110 by the wafer transfer mechanism 112 of the interface station 14.
  • the wafer is transferred to the light irradiation device 102 by the wafer transfer mechanism 101, and post exposure is performed by the light irradiation device 102.
  • the transfer process of the wafer W1 by the wafer transfer mechanism 112 is described as “transfer A”
  • the transfer process of the wafer W1 by the wafer transfer mechanism 101 is described as “transfer B”.
  • the post-exposure wafer W1 is transferred in the order of the wafer transfer mechanism 101, the load lock chamber 100, the wafer transfer mechanism 90, the transfer block G4, the wafer transfer mechanism 80, and the heat treatment apparatus 40, and the heat treatment apparatus 40 performs the PEB process. Done.
  • the transfer process from the light irradiation apparatus 102 to the heat treatment apparatus 40 is described as “transfer C”.
  • the transfer A for the wafer W2 is performed. While the wafer transfer mechanism 112 performs the transfer A for the wafer W1, the wafer W2 is changed to “D1” in FIG.
  • the load lock chamber 111 is in a standby state for the indicated time.
  • the time (tact time) from the end of the exposure process to the start of the PEB process is increased as compared with the wafer W1 at least by the time D1.
  • the tact time of the wafers W3 and W4 is increased by the time D2 and D3.
  • the acid concentration in the resist film is different between the wafer W1 and the subsequent wafers W2 to W4, and the line width of the resist pattern formed after the development processing varies.
  • the present inventors set the acid concentration in the resist film at the time of starting the development processing to be constant between the wafers W1 to W4, and in order to obtain a desired resist pattern line width,
  • the idea was to correct the exposure amount of UV light during exposure (product of irradiation time and irradiation intensity). That is, the acid concentration in the resist film is changed by increasing / decreasing the exposure amount of the UV light at the post-exposure according to the amount of deviation of the tauto time from the end of the pattern exposure to the start of the PEB process, and the line width of the resist pattern Adjust it.
  • the amount of shift in tact time from the end of pattern exposure to the start of post exposure may be treated as the same amount of shift in tauto time from the end of pattern exposure to the start of PEB processing.
  • post exposure is performed on the wafer W1 with a predetermined exposure amount set in advance. Further, in the post-exposure on the wafer W2, based on the information obtained from the exposure apparatus 15 by the control device 300, a time D1, which is a shift amount of the tact time from the end of pattern exposure to the start of post-exposure, is calculated and corresponds to the time D1. Thus, the exposure amount is corrected. Then, post-exposure S is performed on the wafer W2 with the corrected exposure amount.
  • the time until the wafer W is delivered to the light irradiation apparatus 102 is actually measured based on the exposure start and end time information from the exposure apparatus 15 by the control apparatus 300.
  • the transfer time from the load lock chamber 111 to the light irradiation device 102 may be calculated by reading from the transfer schedule. Thereby, before the post-exposure is started by the light irradiation device 102, it is detected that the tact time from the end of the pattern exposure to the start of the PEB processing is shifted. Correction can be performed.
  • the post-exposure T and the post-exposure U are sequentially performed on the wafers W3 and W4 with the exposure amounts corrected corresponding to the times D2 and D3, respectively.
  • the exposure correction value for example, a correlation between the time from the end of pattern exposure to the end of post-exposure and the amount of exposure to be corrected in order to obtain the desired resist pattern line width is obtained in advance by a test performed in advance. In addition, it is determined based on the correlation.
  • the correction of the exposure amount is realized by changing at least one of the irradiation time and the irradiation intensity of the UV light. However, when the irradiation time is changed, from the start of post exposure to the start of PEB processing between the wafers W1 to W4. Therefore, it is preferable to correct only the irradiation intensity. Moreover, when correcting irradiation time, it is preferable to determine a correction value in consideration of change of irradiation time.
  • each of the wafers W1 to W4 after the post exposure is sequentially transferred to the heat treatment apparatus 40 by the wafer transfer mechanism 80 and sequentially subjected to PEB (PEB processing step).
  • PEB processing step PEB processing step
  • each of the wafers W1 to W4 is transferred to, for example, the development processing device 33 and developed, and a resist pattern is formed on the wafer W.
  • the exposure amount of each of the wafers W2 to W4 is corrected in the post-exposure by the light irradiation apparatus 102, in the wafers W2 to W4 in which the tom time from the end of pattern exposure to the start of PEB processing is shifted from the wafer W1
  • the line width of the resist pattern can be made desired.
  • the wafers W1 to W4 are transferred to the heat treatment apparatus 40 and subjected to a post-bake process. Thereafter, the wafers W1 to W4 are transferred to the wafer inspection apparatuses 71 and 72 via the wafer mounting portions 73 and 74, respectively.
  • the wafer inspection apparatus 71 for example, the line width of the final pattern is measured, and the measurement result is output to the control apparatus 300. Further, the overlay error is measured for the wafer W transferred to the wafer inspection device 72, and the measurement result is output to the control device 300.
  • control device 300 for example, based on the measurement result in the wafer inspection device 71, the processing parameters in the exposure device 15, the light irradiation device 102, the heat treatment device 40, and the like are corrected as necessary. Thereafter, each of the wafers W1 to W4 is transferred to the cassette C of the predetermined cassette mounting plate 21, and a series of photolithography processes is completed.
  • the post-exposure by UV light is performed on the resist film on the wafer W after the pattern exposure is performed by the exposure apparatus 15 and before the PEB processing by the heat treatment apparatus 40.
  • energy can be input auxiliary by irradiation with UV light to decompose the acid generator in the resist film to generate an acid or promote the generation of a radical component.
  • the tact time from the start of PEB processing deviates from a predetermined time
  • post-exposure is performed with an exposure amount corrected according to the deviation of the tact time, so that the amount of acid generated in the resist film
  • the amount of radical components generated can be adjusted as appropriate. Therefore, even when the time from the end of pattern exposure to the start of post-exposure deviates from a predetermined time, the tact time is the same as the predetermined time in the state of the resist film at the time of starting the PEB processing step. It can be in the same state as the case. As a result, the line width of the resist pattern can be made desired regardless of the time from the end of pattern exposure to the start of PEB processing.
  • a fine resist pattern can be formed with higher accuracy.
  • the PEB can be changed from the end of the pattern exposure. It is also possible to make the time until the start of processing constant. However, if the transfer schedule at the processing station 11 is changed, the control becomes very complicated. Also, for example, the number of wafers W that can be subjected to pattern exposure simultaneously and in parallel by the exposure apparatus 15 can be simultaneously PEB processed on the processing station 11 side.
  • the batch delivery of the wafer W to and from the exposure apparatus 15 via the load lock chamber 111 has been described.
  • the cause of the shift amount is not limited to the contents of the present embodiment.
  • the wafers W1 to W4 are collectively delivered, for example, due to the configuration of the coating and developing treatment system 1, it is difficult to match the tact times in the transfer C.
  • a resist pattern having a desired line width can be formed by correcting the exposure amount in post-exposure in consideration of the time from the end of pattern exposure to the start of PEB processing, regardless of the cause of the difference in tact time. Can do. Note that if there is a deviation in the tom time due to an event after the post-exposure, specifically if the time required for the transfer C of each of the wafers W1 to W4 does not match, the deviation in the tom time will be reduced at the start of PEB processing. Even if it detects, since the post-exposure has already been completed, the exposure amount in the post-exposure cannot be corrected. In such a case, for example, before performing the post-exposure, the time required for “carrying C” from the light irradiation device 102 to the heat treatment device 40 is read from the carrying schedule. It is preferable to determine.
  • the case where the light irradiation apparatus 102 performs batch post-exposure on the entire surface of the wafer W has been described.
  • post-exposure is not necessarily performed collectively.
  • a plurality of light sources 120 shorter than the diameter of the wafer W are arranged in a straight line from the one end side of the wafer W toward the other end side of the wafer W over a length equal to or larger than the diameter of the wafer W.
  • the light irradiation unit 121 may be configured.
  • a moving mechanism 122 that moves the light irradiation unit 121 relative to the wafer W in a direction orthogonal to the length direction of the light irradiation unit 121 is provided.
  • the wafer inspection apparatus 71 for example, inspection is performed over the entire surface of the wafer W, but when it is desired to adjust the line width only for a predetermined region, the light irradiation unit 121 is configured to increase or decrease the exposure output for each light source 120. Thus, it is possible to further adjust the exposure amount only for a predetermined region.
  • the moving mechanism 122 that moves the light irradiation unit 121 relative to the wafer W is illustrated, but the light irradiation unit 121 is fixed, for example, and is moved to the mounting table 103.
  • the wafer W may be moved relative to the light irradiation unit 121.
  • the control device 300 receives information on the exposure order of each shot in the exposure device 15. Then, the post-exposure of each shot may be performed by the light irradiation device 102 in the same order as the exposure device 15 based on the information. In such a case, the exposure amount in the post-exposure may be corrected for each shot. By doing so, the tact time from the pattern exposure in the exposure apparatus 15 to the post exposure in the light irradiation apparatus 102 can be strictly managed in shot units. As a result, a resist pattern with higher accuracy can be formed on the wafer W.
  • a moving mechanism (not shown) that relatively moves the mounting table 103 and the light irradiation unit 121 in, for example, the XY direction may be provided in at least one of the mounting table 103 and the light irradiation unit 121.
  • the post exposure station 13 is configured as a section adjacent to the interface station 14, but the post exposure station 13 is of course integrated with the interface station 14 to form one post exposure. You may comprise as a station or an interface station.
  • the case where the exposure of the pattern is performed by the electron beam in the exposure apparatus 15 has been described as an example.
  • the pattern exposure is not limited to the exposure by the electron beam, but EUV exposure, ArF exposure, KrF exposure. This can also be applied to the case where pattern exposure is performed by the above-mentioned method, and the case where pattern exposure is performed using i-line or g-line.
  • the semiconductor wafer coating and developing processing system is an example.
  • the present invention is applied to developing and developing other substrates such as FPDs (flat panel displays) other than semiconductor wafers and mask reticles for photomasks. It can also be applied to a processing system.
  • the present invention is useful when constructing a substrate processing system for performing EUV exposure processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Electron Beam Exposure (AREA)

Abstract

A board processing method for processing a board on which a resist film has been formed comprises: an exposure step in which an electron beam is used to perform a pattern exposure of the resist film on the board; a post-exposure step in which a UV light is used to perform a post-exposure of the resist film on the board after performance of the pattern exposure; a PEB processing step in which a PEB processing is performed for the board after the post-exposure; and a development processing step in which the resist film as subjected to the PEB processing is developed, thereby forming a resist pattern on the board. If a cycle time from the end of the exposure step to the start of the PEB processing step deviates from a predetermined time, the exposure amount in the post-exposure step is corrected in accordance with the deviation of the cycle time.

Description

基板処理方法、コンピュータ記憶媒体及び基板処理システムSubstrate processing method, computer storage medium, and substrate processing system
(関連出願の相互参照)
 本願は、2014年10月23日に日本国に出願された特願2014-216612号に基づき、優先権を主張し、その内容をここに援用する。
(Cross-reference of related applications)
This application claims priority based on Japanese Patent Application No. 2014-216612 for which it applied to Japan on October 23, 2014, and uses the content here.
 本発明は、基板処理方法、コンピュータ記憶媒体及び基板処理システムに関するものである。 The present invention relates to a substrate processing method, a computer storage medium, and a substrate processing system.
 半導体デバイスの製造工程におけるフォトリソグラフィー処理では、例えば半導体ウェハ(以下、「ウェハ」という)等の基板上に、感光性被膜としてレジスト膜が形成され、その後レジスト膜に露光処理及び現像処理を施すことで、基板上に所定のレジストパターンが形成される。これらの一連の処理は、ウェハを処理する各種処理部やウェハを搬送する搬送機構などを搭載した基板処理システムである塗布現像処理システムと、当該塗布現像処理システムの外部に設けられた露光装置で行われる。 In a photolithography process in a semiconductor device manufacturing process, for example, a resist film is formed as a photosensitive film on a substrate such as a semiconductor wafer (hereinafter referred to as a “wafer”), and then the resist film is subjected to an exposure process and a development process. Thus, a predetermined resist pattern is formed on the substrate. These series of processes are performed by a coating / development processing system, which is a substrate processing system equipped with various processing units for processing wafers and a transport mechanism for transporting wafers, and an exposure apparatus provided outside the coating / development processing system. Done.
 ところで近年、半導体装置のさらなる高集積化に伴い、レジストパターンの微細化が求められている。レジストパターンの微細化を実現するために、既に、KrFエキシマレーザー、ArFエキシマレーザーを用いた露光処理が実用化されている。 By the way, in recent years, with further higher integration of semiconductor devices, miniaturization of resist patterns has been demanded. In order to realize a finer resist pattern, an exposure process using a KrF excimer laser or an ArF excimer laser has already been put into practical use.
 このような露光処理に関し、最近では、より一層のパターンの微細化を実現するために、EUV(Extreme Ultraviolet;極端紫外)光及びEUVレジストを用いた露光処理が提案されている(例えば特許文献1参照)。 With regard to such exposure processing, recently, exposure processing using EUV (Extreme Ultraviolet) light and EUV resist has been proposed in order to realize further pattern miniaturization (for example, Patent Document 1). reference).
日本国特開2006-78744号公報Japanese Unexamined Patent Publication No. 2006-78744
 ところで、ArFレーザー等に比べてEUV光はそのエネルギーが弱いため、EUV露光を採用すると露光する時間が長くなり、その結果スループットが低下してしまう。スループットを向上させるにはEUV光による露光装置を複数設置することが考えられるが、当該露光装置は非常に高価であるため、製造コストの観点から好ましくない。 By the way, since EUV light has a weaker energy than an ArF laser or the like, when EUV exposure is adopted, the exposure time becomes longer, resulting in a decrease in throughput. In order to improve the throughput, it is conceivable to install a plurality of exposure apparatuses using EUV light. However, since the exposure apparatus is very expensive, it is not preferable from the viewpoint of manufacturing cost.
 そこで、EUVレジストに対する代替の露光方法として、電子線による露光処理が提案されている。但し、電子線による露光処理においては、ウェハ上に電子線を走査させて所定のパターンを描くため、やはり露光処理には時間がかかる。その解決策として、露光装置内に複数のステージを設け、複数のウェハを各ステージで同時並行に露光処理することが検討されている。 Therefore, an electron beam exposure process has been proposed as an alternative exposure method for EUV resist. However, in the exposure process using an electron beam, since the electron beam is scanned on the wafer to draw a predetermined pattern, the exposure process still takes time. As a solution to this problem, it has been studied to provide a plurality of stages in the exposure apparatus and perform exposure processing on a plurality of wafers in parallel at each stage.
 しかしながら、通常、塗布現像処理システムと露光装置との間でのウェハの受け渡しは1枚ずつ行われるので、露光装置内で複数のウェハが同時並行に露光処理された場合、露光処理装置で露光処理が完了してから塗布現像処理システムにウェハが戻されるまでのタクトタイムが、ウェハ毎に異なってしまうことがある。その一方、露光処理後に塗布現像処理システムに戻されたウェハがポストエクスポージャーベーキング処理(以下、「PEB処理」という)されるまでのタクトタイムは各ウェハ間で一律に設定されている。そのため、露光装置でタクトタイムがずれると、露光処理からPEB処理までの時間が一定にならず、その結果、ウェハ間でレジストパターンの線幅がばらつくという問題が生じてしまう。 However, since wafers are usually transferred one by one between the coating and developing treatment system and the exposure apparatus, when a plurality of wafers are exposed simultaneously in the exposure apparatus, the exposure process is performed by the exposure processing apparatus. The tact time from when the process is completed to when the wafer is returned to the coating and developing treatment system may vary from wafer to wafer. On the other hand, the tact time until the wafer returned to the coating and developing system after the exposure process is subjected to the post-exposure baking process (hereinafter referred to as “PEB process”) is set uniformly among the wafers. Therefore, if the tact time is shifted in the exposure apparatus, the time from the exposure process to the PEB process is not constant, and as a result, there arises a problem that the line width of the resist pattern varies between wafers.
 本発明はかかる点に鑑みてなされたものであり、露光処理終了からPEB処理開始までの時間によらず、レジストパターンの線幅を所望なものとすることを目的としている。 The present invention has been made in view of this point, and an object of the present invention is to make the line width of a resist pattern desired regardless of the time from the end of exposure processing to the start of PEB processing.
 前記の目的を達成するため、本発明の一態様は、レジスト膜が形成された基板を処理する基板処理方法であって、基板上のレジスト膜に電子線によりパターンの露光を行う露光工程と、前記パターンの露光が行なわれた後の基板上のレジスト膜に対して、UV光によるポスト露光を行うポスト露光工程と、ポスト露光後の基板に対してPEB処理を行うPEB処理工程と、PEB処理後のレジスト膜を現像して基板上にレジストパターンを形成する現像処理工程と、を有し、前記露光工程終了から前記ポスト露光工程開始までのタクトタイムが所定の時間からずれる場合には、当該タクトタイムのずれに応じて、当該ポスト露光工程における露光量を補正する。 In order to achieve the above object, one aspect of the present invention is a substrate processing method for processing a substrate on which a resist film is formed, wherein an exposure step of exposing a pattern on the resist film on the substrate with an electron beam; A post-exposure step for performing post-exposure with UV light on the resist film on the substrate after the exposure of the pattern, a PEB treatment step for performing PEB treatment on the post-exposure substrate, and PEB treatment A development process step of developing a resist film on the substrate by developing a subsequent resist film, and when the tact time from the end of the exposure step to the start of the post-exposure step deviates from a predetermined time, The exposure amount in the post-exposure process is corrected according to the shift in tact time.
 本発明の一態様によれば、パターン露光が行なわれた後であってPEB処理前に、基板上のレジスト膜に対してUV光によるポスト露光を行うので、当該パターン露光の後に、UV光の照射によって補助的にエネルギーを投入して、レジスト膜中の酸発生剤を分解して酸を発生させたり、ラジカル成分の発生を促進させることができる。そして、例えば露光装置内で複数のウェハが同時並行に露光処理される場合など、露光工程終了からPEB処理工程開始までのタクトタイムが所定の時間からずれることが想定される場合、換言すれば、露光工程終了からポスト露光工程開始までの時間が所定の時間からずれる場合、当該タクトタイムのずれに応じて補正された露光量でポスト露光を行うので、レジスト膜中の酸の発生量や、ラジカル成分の発生量を適宜調整することができる。したがって、露光工程終了からポスト露光工程開始までの時間が所定の時間からずれた場合であっても、PEB処理工程を開始する時点でのレジスト膜の状態を、タクトタイムが所定の時間通りであった場合と同様の状態にすることができる。その結果、露光処理終了からPEB処理開始までの時間によらず、レジストパターンの線幅を所望なものとすることができる。 According to one embodiment of the present invention, after the pattern exposure is performed and before the PEB process, the resist film on the substrate is subjected to the post-exposure with the UV light. Energy can be input auxiliary by irradiation to decompose the acid generator in the resist film to generate an acid, or to promote the generation of a radical component. And, for example, when a plurality of wafers are subjected to exposure processing in parallel in the exposure apparatus, when it is assumed that the tact time from the end of the exposure process to the start of the PEB processing process deviates from a predetermined time, in other words, When the time from the end of the exposure process to the start of the post-exposure process deviates from a predetermined time, post-exposure is performed with an exposure amount corrected according to the deviation in the tact time, so that the amount of acid generated in the resist film and radicals The amount of components generated can be adjusted as appropriate. Therefore, even if the time from the end of the exposure process to the start of the post-exposure process deviates from a predetermined time, the tact time is the same as the predetermined time at the time when the PEB treatment process is started. It can be in the same state as the case. As a result, the line width of the resist pattern can be made desired regardless of the time from the end of the exposure process to the start of the PEB process.
 別の観点によれば、本発明の一態様は、前記基板処理方法を基板処理システムによって実行させるように、当該基板処理システムを制御する制御装置のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体である。 According to another aspect, one aspect of the present invention is a readable program storing a program that operates on a computer of a control device that controls the substrate processing system so that the substrate processing method is executed by the substrate processing system. A computer storage medium.
 さらに別の観点による本発明の一態様は、基板を処理する基板処理システムであって、基板にPEB処理及び現像処理を行う複数の処理装置が設けられた処理ステーションと、前記基板処理システムと、当該前記基板処理システムの外部に設けられて基板上のレジスト膜に電子線によりパターンの露光を行う露光装置と、の間で基板を受け渡すインターフェイスステーションと、前記露光装置でパターンの露光が行なわれた後の基板上のレジスト膜に対して、UV光によるポスト露光を行う光照射装置と、制御装置と、を有し、前記制御装置は、前記露光装置での露光終了から処理ステーションでのPEB処理開始までのタクトタイムが規定の時間からずれた場合には、当該タクトタイムのずれに応じて前記光照射装置でのポスト露光における露光量を補正するように構成されている。 According to still another aspect of the present invention, there is provided a substrate processing system for processing a substrate, a processing station provided with a plurality of processing apparatuses for performing PEB processing and development processing on the substrate, the substrate processing system, An exposure apparatus that is provided outside the substrate processing system and that exposes a pattern to the resist film on the substrate with an electron beam, an interface station that delivers the substrate to and from the exposure apparatus, and the exposure apparatus performs pattern exposure. A light irradiation device for performing post-exposure with UV light on the resist film on the substrate after the control, and a control device, the control device from the end of exposure in the exposure device to the PEB in the processing station If the tact time until the start of processing deviates from the specified time, post-exposure with the light irradiation device is performed according to the tact time deviation. It is configured to correct the exposure amount that.
 本発明によれば、露光処理終了からPEB処理開始までの時間によらず、レジストパターンの線幅を所望なものとすることができる。 According to the present invention, the line width of the resist pattern can be made desired regardless of the time from the end of the exposure process to the start of the PEB process.
実施の形態にかかる塗布現像処理システムの構成の概略を模式的に示した平面図である。1 is a plan view schematically showing an outline of a configuration of a coating and developing treatment system according to an embodiment. 実施の形態にかかる塗布現像処理システムの構成の概略を模式的に示した正面図である。1 is a front view schematically showing an outline of a configuration of a coating and developing treatment system according to an embodiment. 実施の形態にかかる塗布現像処理システムの構成の概略を模式的に示した背面図である。1 is a rear view schematically showing an outline of a configuration of a coating and developing treatment system according to an embodiment. FIG. 光照射装置の構成の概略を模式的に示した側面図である。It is the side view which showed the outline of the structure of the light irradiation apparatus typically. 光照射装置の構成の概略を模式的に示した平面図である。It is the top view which showed the outline of the structure of the light irradiation apparatus typically. 各ウェハの露光処理からPEB処理までのタイムチャートである。It is a time chart from the exposure process of each wafer to PEB process. 他の実施の形態にかかる光照射装置の構成の概略を模式的に示した平面図である。It is the top view which showed typically the outline of the structure of the light irradiation apparatus concerning other embodiment.
 以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる基板処理システムとしての塗布現像処理システム1の構成の概略を模式的に示す説明図である。図2及び図3は、各々塗布現像処理システム1の内部構成の概略を模式的に示す、正面図と背面図である。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is an explanatory view schematically showing an outline of a configuration of a coating and developing treatment system 1 as a substrate processing system according to the present embodiment. 2 and 3 are a front view and a rear view, respectively, schematically showing the outline of the internal configuration of the coating and developing treatment system 1.
 塗布現像処理システム1は、図1に示すように複数枚のウェハWを収容したカセットCが搬入出されるカセットステーション10と、ウェハWに所定の処理を施す複数の各種処理装置を備えた処理ステーション11と、処理ステーション11に隣接して設けられたインターフェイスステーション12と、パターン露光後のウェハに対してポスト露光を行うポスト露光ステーション13と、ポスト露光ステーション13に接続されたインターフェイスステーション14を有している。塗布現像処理システム1のインターフェイスステーション14のY方向正方向側には、ウェハWに対してパターンの露光を行う露光装置15が隣接して設けられている。インターフェイスステーション14は、露光装置15との間でウェハWの受け渡しを行う。露光装置15には、レジスト形成後のウェハWに対して、電子線によって複数のウェハWに対して同時並行にパターンの露光を行う露光ステージ15aが設けられている。なお、本実施の形態における露光装置15では、例えば4枚のウェハWに対して同時に露光が行われる。 As shown in FIG. 1, the coating and developing treatment system 1 includes a cassette station 10 in which a cassette C containing a plurality of wafers W is loaded and unloaded, and a processing station having a plurality of various processing devices for performing predetermined processing on the wafers W. 11, an interface station 12 provided adjacent to the processing station 11, a post-exposure station 13 for performing post-exposure on the wafer after pattern exposure, and an interface station 14 connected to the post-exposure station 13. ing. On the positive side in the Y direction of the interface station 14 of the coating and developing treatment system 1, an exposure device 15 that performs pattern exposure on the wafer W is provided adjacently. The interface station 14 delivers the wafer W to and from the exposure apparatus 15. The exposure apparatus 15 is provided with an exposure stage 15a that performs pattern exposure on a plurality of wafers W simultaneously by electron beams on the wafer W after resist formation. In the exposure apparatus 15 in the present embodiment, for example, four wafers W are simultaneously exposed.
 カセットステーション10には、カセット載置台20上に複数配置された、カセットCを載置する複数のカセット載置板21と、X方向に延びる搬送路22上を移動自在なウェハ搬送装置23が設けられている。ウェハ搬送装置23は、上下方向及び鉛直軸周り(θ方向)にも移動自在であり、各カセット載置板21上のカセットCと、後述する処理ステーション11の受け渡しブロックG3の受け渡し装置との間でウェハWを搬送できる。 The cassette station 10 is provided with a plurality of cassette mounting plates 21 on which a cassette C is placed and a wafer transfer device 23 that is movable on a transfer path 22 extending in the X direction. It has been. The wafer transfer device 23 is also movable in the vertical direction and the vertical axis (θ direction), and between the cassette C on each cassette mounting plate 21 and a transfer device of a transfer block G3 of the processing station 11 described later. Can transfer the wafer W.
 処理ステーション11には、各種装置を備えた複数の、例えば4つのブロックG1、G2、G3、G4が設けられている。例えば第1のブロックG1には、図2に示すように複数の液処理装置、例えばウェハWのレジスト膜の下層に反射防止膜(以下「下部反射防止膜」という)を形成する下部反射防止膜形成装置30、ウェハWにレジスト液を塗布してレジスト膜を形成するレジスト塗布装置31、ウェハWのレジスト膜の上層に反射防止膜(以下「上部反射防止膜」という)を形成する上部反射防止膜形成装置32、ウェハWを現像処理する現像処理装置33が、下から順に例えば4段に重ねられている。なお、本実施の形態におけるレジストとしては、例えばEUVレジストが用いられる。 The processing station 11 is provided with a plurality of, for example, four blocks G1, G2, G3, and G4 having various devices. For example, in the first block G1, as shown in FIG. 2, a plurality of liquid processing apparatuses, for example, a lower antireflection film that forms an antireflection film (hereinafter referred to as a “lower antireflection film”) below the resist film of the wafer W. Forming device 30, resist coating device 31 for applying a resist solution to wafer W to form a resist film, and upper antireflection film for forming an antireflection film (hereinafter referred to as "upper antireflection film") on the resist film of wafer W The film forming apparatus 32 and the development processing apparatus 33 for developing the wafer W are stacked in, for example, four stages from the bottom. For example, an EUV resist is used as the resist in the present embodiment.
 これら第1のブロックG1の各装置30~33は、処理時にウェハWを収容する複数のカップF、例えば4台のカップFを有し、複数のウェハWを並行して処理することができる。 Each of the devices 30 to 33 in the first block G1 has a plurality of cups F, for example, four cups F, for accommodating the wafers W during processing, and can process the plurality of wafers W in parallel.
 例えば第2のブロックG2には、図3に示すようにウェハWの熱処理を行う熱処理装置40や、ウェハWを疎水化処理する疎水化処理装置としてのアドヒージョン装置41、ウェハWの外周部を露光する周辺露光装置42が上下方向と水平方向に並べて設けられている。熱処理装置40は、ウェハWを載置して加熱する熱板と、ウェハWを載置して冷却する冷却板を有し、加熱処理と冷却処理の両方を行うことができる。なお、熱処理装置40では、露光前に行われるプリベーク処理や露光後に行われるPEB処理など、様々な熱処理が行われる。 For example, in the second block G2, as shown in FIG. 3, a heat treatment apparatus 40 for performing heat treatment of the wafer W, an adhesion apparatus 41 as a hydrophobic treatment apparatus for hydrophobizing the wafer W, and an outer peripheral portion of the wafer W are exposed. Peripheral exposure devices 42 are arranged side by side in the vertical and horizontal directions. The heat treatment apparatus 40 includes a hot plate for placing and heating the wafer W and a cooling plate for placing and cooling the wafer W, and can perform both heat treatment and cooling treatment. In the heat treatment apparatus 40, various heat treatments such as a pre-bake process performed before exposure and a PEB process performed after exposure are performed.
 受け渡しブロックG3には、複数の受け渡し装置50、51、52、53、54、55、56が下から順に設けられている。受け渡しブロックG4には、複数の受け渡し装置60、61、62が下から順に設けられている。 The delivery block G3 is provided with a plurality of delivery devices 50, 51, 52, 53, 54, 55, 56 in order from the bottom. The delivery block G4 is provided with a plurality of delivery devices 60, 61, 62 in order from the bottom.
 図1に示すように受け渡しブロックG3のY方向正方向側の隣には、ウェハ搬送機構70が設けられている。ウェハ搬送機構70は、例えばY方向、θ方向及び上下方向に移動自在な搬送アームを有している。ウェハ搬送機構70のX方向正方向側及び負方向側には、ウェハ検査装置71、72がウェハ搬送機構70を挟んで設けられている。 As shown in FIG. 1, a wafer transfer mechanism 70 is provided next to the delivery block G3 on the positive side in the Y direction. The wafer transfer mechanism 70 has a transfer arm that is movable in the Y direction, the θ direction, and the vertical direction, for example. Wafer inspection devices 71 and 72 are provided on both the X direction positive side and the negative direction side of the wafer transfer mechanism 70 with the wafer transfer mechanism 70 interposed therebetween.
 ウェハ搬送機構70のY方向正方向側には複数のウェハWを一時的に収容するウェハ載置部73、74が設けられている。ウェハ載置部73は第2のブロックG2寄りに、ウェハ載置部74は第1のブロックG1寄りに配置されている。そして、ウェハ搬送機構70は、ウェハWを支持した状態で上下に移動して、受け渡しブロックG3内の各受け渡し装置、ウェハ検査装置71、72及びウェハ載置部73、74との間でウェハWを搬送できる。なお、本実施の形態におけるウェハ検査装置71は、例えばウェハWに形成されたパターンの線幅及やサイドウォールアングルなどを測定するものである。ウェハ検査装置72は、例えば既に形成されているパターンとその後に露光されるパターンとのオーバレイ誤差を測定するものである。 On the positive side in the Y direction of the wafer transfer mechanism 70, wafer placement units 73 and 74 for temporarily storing a plurality of wafers W are provided. The wafer placement unit 73 is disposed closer to the second block G2, and the wafer placement unit 74 is disposed closer to the first block G1. Then, the wafer transfer mechanism 70 moves up and down while supporting the wafer W, and moves the wafer W between the transfer devices, the wafer inspection devices 71 and 72, and the wafer placement units 73 and 74 in the transfer block G3. Can be transported. Note that the wafer inspection apparatus 71 in this embodiment measures, for example, the line width and sidewall angle of a pattern formed on the wafer W. The wafer inspection device 72 measures, for example, an overlay error between an already formed pattern and a pattern exposed thereafter.
 図1に示すように第1のブロックG1と第2のブロックG2との間の領域には、ウェハ搬送領域Dが形成されている。ウェハ搬送領域Dには、ウェハ搬送機構80が複数配置されている。ウェハ搬送機構80は、例えばY方向、X方向、θ方向及び上下方向に移動自在な搬送アームを有している。ウェハ搬送機構80は、ウェハ搬送領域D内を移動し、周囲の第1のブロックG1、第2のブロックG2並びにインターフェイスステーション12にある受け渡しブロックG4内の所定の受け渡し装置及びウェハ載置部73、74に対してウェハWを搬送できる。 As shown in FIG. 1, a wafer transfer area D is formed in an area between the first block G1 and the second block G2. In the wafer transfer area D, a plurality of wafer transfer mechanisms 80 are arranged. The wafer transfer mechanism 80 has a transfer arm that is movable in the Y direction, the X direction, the θ direction, and the vertical direction, for example. The wafer transfer mechanism 80 moves within the wafer transfer area D, and includes a predetermined transfer device and wafer mounting unit 73 in the transfer block G4 in the interface block 12 and the surrounding first block G1, the second block G2, and the like. The wafer W can be transferred to 74.
 インターフェイスステーション12には、前記したように、受け渡し装置60、61、62を有する受け渡しブロックG4と、これら複数の受け渡し装置60、61、62に対して、ウェハWを搬入出可能なウェハ搬送機構90が設けられている。ウェハ搬送機構90は、例えばX方向、Y方向、θ方向及び上下方向に移動自在なアームを有している。 As described above, the interface station 12 includes the transfer block G4 having the transfer devices 60, 61 and 62, and the wafer transfer mechanism 90 capable of transferring the wafer W to and from the plurality of transfer devices 60, 61 and 62. Is provided. The wafer transfer mechanism 90 has an arm that is movable in the X direction, the Y direction, the θ direction, and the vertical direction, for example.
 ポスト露光ステーション13には、インターフェイスステーション12のウェハ搬送機構90によりアクセス可能な位置に、内部を排気可能に構成されたロードロック室100が設けられている。そしてこのポスト露光ステーション13内において、ロードロック室100にアクセス可能な位置にウェハ搬送機構101が設けられている。また、ウェハ搬送機構101がアクセス可能な位置には、パターン露光後のウェハに対してUV光を照射してポスト露光を行う装置としての、光照射装置102が設けられている。 The post-exposure station 13 is provided with a load lock chamber 100 configured to be evacuated inside at a position accessible by the wafer transfer mechanism 90 of the interface station 12. In the post exposure station 13, a wafer transfer mechanism 101 is provided at a position where the load lock chamber 100 can be accessed. Further, a light irradiation device 102 is provided at a position accessible by the wafer transport mechanism 101 as a device for performing post exposure by irradiating the wafer after pattern exposure with UV light.
 光照射装置102は、たとえば図4及び図5に示すように、ウェハWを載置する載置台103と、載置台103上のウェハWに対して所定の波長のUV光を照射する光照射部104とを有している。本実施の形態における光照射部104は、ウェハW上に形成されたレジスト膜Rの全面に対して一括して露光するいわゆる一括露光タイプの装置として構成されている。光照射部104は、例えばウェハWの直径よりも長い直管形状の光源105を複数有している。各光源105は、例えばウェハWの上面の全面を覆うように隙間なく並べて配置されている。各光源105からは、UV光がウェハWに向けて照射される。UV光の波長は、たとえば220~280nmであり、使用するレジストの感度に合せて種々の波長帯、例えば222nm、248nm又は254nmが用いられる。なお、光照射部104は、例えばライン状の光源を採用して、ウェハWまたは当該光源の少なくとも一方を移動させたり回転させたりして、ウェハW上をUV光が走査する構成であってもよく、ウェハWの上面の全面に対して均一にUV光を照射できるものであれば、本実施の形態の内容に限定されるものではない。また、光照射部104としては、露光装置15におけるパターン露光のショットサイズにに対応して、1ショットずつUV光を照射してポスト露光する構成の光照射装置を採用してもよい。 For example, as shown in FIGS. 4 and 5, the light irradiation device 102 includes a mounting table 103 on which the wafer W is mounted, and a light irradiation unit that irradiates the wafer W on the mounting table 103 with UV light having a predetermined wavelength. 104. The light irradiation unit 104 in the present embodiment is configured as a so-called batch exposure type apparatus that performs batch exposure on the entire surface of the resist film R formed on the wafer W. The light irradiation unit 104 includes a plurality of straight tube-shaped light sources 105 that are longer than the diameter of the wafer W, for example. The light sources 105 are arranged side by side without a gap so as to cover the entire upper surface of the wafer W, for example. Each light source 105 emits UV light toward the wafer W. The wavelength of the UV light is, for example, 220 to 280 nm, and various wavelength bands, for example, 222 nm, 248 nm, or 254 nm are used according to the sensitivity of the resist to be used. Note that the light irradiation unit 104 may employ, for example, a linear light source and move or rotate at least one of the wafer W or the light source so that the UV light scans on the wafer W. As long as it can uniformly irradiate the entire upper surface of the wafer W with UV light, it is not limited to the contents of the present embodiment. Further, as the light irradiation unit 104, a light irradiation device configured to perform post-exposure by irradiating UV light one shot at a time in accordance with the pattern exposure shot size in the exposure device 15 may be adopted.
 ポスト露光ステーション13は気密に構成され、図示しない減圧装置によって、所定の減圧度、例えば10-4Pa~10-7Paに減圧可能である。これにより、UV光照射中やポスト露光ステーション13内での移動において、空気中に微量に含まれるアミン成分や酸素に起因する、酸やラジカルの失活を抑制できる。また、ポスト露光ステーション13は気密に構成されているので、減圧に代えて、例えば窒素などの非酸化性のガスを封入することで、ポスト露光ステーション13内を低酸素雰囲気に保持するようにしてもよい。 The post-exposure station 13 is configured to be airtight, and can be depressurized to a predetermined degree of depressurization, for example, 10 −4 Pa to 10 −7 Pa by a decompression device (not shown). As a result, during UV light irradiation or movement in the post-exposure station 13, it is possible to suppress the deactivation of acids and radicals due to amine components and oxygen contained in a trace amount in the air. Further, since the post-exposure station 13 is configured to be airtight, the post-exposure station 13 is maintained in a low-oxygen atmosphere by sealing a non-oxidizing gas such as nitrogen instead of reducing the pressure. Also good.
 ポスト露光ステーション13と接続されているインターフェイスステーション14も気密に構成されている。インターフェイスステーション14における、ポスト露光ステーション13のウェハ搬送機構101がアクセス可能な位置には、載置台等を有する受け渡し装置110が設けられている。受け渡し装置110の隣には、この受け渡し装置110のウェハWを、内部を排気可能に構成されたロードロック室111との間で搬送するウェハ搬送機構112が設けられている。 The interface station 14 connected to the post exposure station 13 is also airtight. In the interface station 14, a delivery device 110 having a mounting table or the like is provided at a position accessible by the wafer transfer mechanism 101 of the post exposure station 13. Next to the transfer device 110, a wafer transfer mechanism 112 for transferring the wafer W of the transfer device 110 to and from a load lock chamber 111 configured to be evacuated inside is provided.
 インターフェイスステーション14のロードロック室111は、パターンの露光を行う露光装置15と接続されている。ロードロック室111では、複数枚、例えば4枚のウェハWを収容可能に構成されており、インターフェイスステーション14と露光装置15との間で4枚のウェハWが一括して受け渡される。なお、ここでいう「一括して受け渡される」とは、ロードロック室111に複数枚のウェハWを収容した状態で内部を排気することにより、一度の排気動作で複数枚のウェハWを受け渡し可能とすることを意味しており、実際に各ロードロック室111との間で複数枚のウェハWの受け渡しが同時並行に行われるか否かについては問わない。本実施の形態では、ウェハ搬送機構112は、例えばロードロック室111との間でウェハWの受け渡しを一枚ずつ行うため、ウェハWが「一括して受け渡される」場合、例えば4枚のウェハWのうち、最初にロードロック室111により受け渡されるウェハWと、2番目以降に受け渡されるウェハWでは、以降の搬送のタイミングは異なったものとなる。 The load lock chamber 111 of the interface station 14 is connected to an exposure apparatus 15 that performs pattern exposure. The load lock chamber 111 is configured to accommodate a plurality of, for example, four wafers W, and the four wafers W are collectively delivered between the interface station 14 and the exposure apparatus 15. Here, “collectively delivered” refers to delivering a plurality of wafers W in one exhaust operation by exhausting the interior with a plurality of wafers W accommodated in the load lock chamber 111. It does not matter whether or not a plurality of wafers W are actually delivered to and from each load lock chamber 111 simultaneously in parallel. In the present embodiment, the wafer transfer mechanism 112 transfers, for example, wafers W to and from the load lock chamber 111 one by one. Therefore, when the wafers W are “collectively transferred”, for example, four wafers Of the wafers W, the wafer W that is first delivered by the load lock chamber 111 and the wafer W that is delivered second and later have different transfer timings.
 また、前出のロードロック室100もロードロック室111と同様に4枚のウェハWを収容可能であり、インターフェイスステーション12との間で4枚のウェハWを一括して受け渡すことができるが、本実施の形態では、光照射装置102でポスト露光が完了したウェハWを順次ロードロック室を介してインターフェイスステーション12側に1枚ずつ受け渡す場合を例にして説明する。 In addition, the load lock chamber 100 described above can store four wafers W in the same manner as the load lock chamber 111, and can transfer the four wafers W to and from the interface station 12 at once. In the present embodiment, an example will be described in which the wafers W that have been post-exposed by the light irradiation device 102 are sequentially transferred to the interface station 12 side through the load lock chamber one by one.
 露光ステージ15aでは、たとえば電子線によって、ウェハW上のレジストに対してパターンの露光が行われる。かかる露光処理では、雰囲気中にガス分子があると、当該ガス分子により吸収されて電子線エネルギーが減衰するため、露光装置15内は、図示しない減圧装置によって、所定の減圧度、例えば10-4Pa~10-7Paに減圧されている。 In the exposure stage 15a, pattern exposure is performed on the resist on the wafer W by, for example, an electron beam. In such an exposure process, if there are gas molecules in the atmosphere, they are absorbed by the gas molecules and the electron beam energy is attenuated. Therefore, the exposure device 15 has a predetermined degree of reduced pressure, for example, 10 −4 by a decompression device (not shown). The pressure is reduced to Pa to 10 −7 Pa.
 以上の塗布現像処理システム1には、図1に示すように制御装置300が設けられている。制御装置300は、処理レシピに基づいて上述の各種処理装置や各ウェハ搬送機構などの駆動系の動作を制御すると共に、各種処理装置におけるウェハ処理のタクトタイムや各ウェハ搬送機構によるウェハ搬送におけるタクトタイムを管理したり、露光装置15との間でウェハWの露光に関する情報のやり取りを行っている。 The above coating and developing treatment system 1 is provided with a control device 300 as shown in FIG. The control device 300 controls the operation of drive systems such as the above-described various processing devices and wafer transport mechanisms based on the processing recipe, and also the takt time for wafer processing in the various processing devices and the takt time for wafer transport by the respective wafer transport mechanisms. Time is managed and information regarding exposure of the wafer W is exchanged with the exposure apparatus 15.
 なお制御装置300は、例えばCPUやメモリなどを備えたコンピュータにより構成され、例えばメモリに記憶されたプログラムを実行することによって、塗布現像処理システム1における塗布処理を実現できる。なお、塗布現像処理システム1における塗布処理を実現するための各種プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどの記憶媒体Hに記憶されていたものであって、その記憶媒体Hから制御装置300にインストールされたものが用いられている。 The control device 300 is configured by a computer including, for example, a CPU, a memory, and the like. For example, by executing a program stored in the memory, the coating processing in the coating and developing processing system 1 can be realized. Various programs for realizing the coating process in the coating and developing system 1 are, for example, a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), and a memory card. Or the like installed in the control device 300 from the storage medium H is used.
 次に、以上のように構成された塗布現像処理システム1で行われるウェハWの処理方法について、塗布現像処理システム1全体で行われるウェハ処理のプロセスと共に説明する。 Next, a wafer W processing method performed in the coating and developing treatment system 1 configured as described above will be described together with a wafer processing process performed in the coating and developing processing system 1 as a whole.
 ウェハWの処理にあたっては、先ず、複数枚のウェハWを収容したカセットCがカセットステーション10の所定のカセット載置板21に載置される。その後、ウェハ搬送装置23によりカセットC内の各ウェハWが順次取り出され、処理ステーション11の受け渡しブロックG3に搬送される。 In processing the wafer W, first, a cassette C containing a plurality of wafers W is placed on a predetermined cassette placement plate 21 of the cassette station 10. Thereafter, the wafers W in the cassette C are sequentially taken out by the wafer transfer device 23 and transferred to the delivery block G3 of the processing station 11.
 次にウェハWは、ウェハ搬送機構70によって例えばウェハ載置部73に搬送される。次いでウェハWは、ウェハ搬送機構80によって第2のブロックG2の熱処理装置40に搬送され温度調節される。その後、ウェハWは、ウェハ搬送機構80によって例えば第1のブロックG1の下部反射防止膜形成装置30に搬送され、ウェハW上に下部反射防止膜が形成される。その後ウェハWは、第2のブロックG2の熱処理装置40に搬送され、加熱処理が行われる。 Next, the wafer W is transferred to, for example, the wafer placement unit 73 by the wafer transfer mechanism 70. Next, the wafer W is transferred to the heat treatment apparatus 40 of the second block G2 by the wafer transfer mechanism 80, and the temperature is adjusted. Thereafter, the wafer W is transferred by the wafer transfer mechanism 80 to, for example, the lower antireflection film forming apparatus 30 of the first block G1, and a lower antireflection film is formed on the wafer W. Thereafter, the wafer W is transferred to the heat treatment apparatus 40 of the second block G2, and heat treatment is performed.
 その後ウェハWは、第2のブロックG2のアドヒージョン装置41に搬送され、疎水化処理される。その後ウェハWは、ウェハ搬送機構80によってレジスト塗布装置31に搬送され、ウェハW上にレジスト膜が形成される。この場合、ウェハWに形成されるレジスト膜は、EUV露光用の、いわゆる光増感型のレジストである。その後ウェハWは、熱処理装置40に搬送されて、プリベーク処理される。 Thereafter, the wafer W is transferred to the adhesion device 41 of the second block G2 and subjected to a hydrophobic treatment. Thereafter, the wafer W is transferred to the resist coating device 31 by the wafer transfer mechanism 80, and a resist film is formed on the wafer W. In this case, the resist film formed on the wafer W is a so-called photosensitized resist for EUV exposure. Thereafter, the wafer W is transferred to the heat treatment apparatus 40 and pre-baked.
 次にウェハWは、上部反射防止膜形成装置32に搬送され、ウェハW上に上部反射防止膜が形成される。その後ウェハWは、熱処理装置40に搬送されて、加熱され、温度調節される。その後、ウェハWは、周辺露光装置42に搬送され、周辺露光処理される。 Next, the wafer W is transferred to the upper antireflection film forming apparatus 32, and an upper antireflection film is formed on the wafer W. Thereafter, the wafer W is transferred to the heat treatment apparatus 40, heated, and the temperature is adjusted. Thereafter, the wafer W is transferred to the peripheral exposure device 42 and subjected to peripheral exposure processing.
 次にウェハWは受け渡しブロックG4に搬送され、インターフェイスステーション12のウェハ搬送機構90によって、ポスト露光ステーション13のロードロック室100へと搬送される。この際、ロードロック室100には、例えば同一ロットであって周辺露光処理が完了した後続のウェハWが順次搬入され、例えばロードロック室100に4枚のウェハWが収容された後に、インターフェイスステーション14、ポスト露光ステーション13と同じ真空度にされる。次いで各ウェハWは、ウェハ搬送機構101、インターフェイスステーション14のウェハ搬送機構112によって、ロードロック室111へと順次搬送され、当該ロードロック室111に4枚のウェハWが収容された後に、概ね露光装置15と同じ真空度にされる。その後、各ウェハWは露光装置15へと搬送され、露光ステージ15aに載置されて電子線により各ウェハWに対して同時並行にパターンの露光がなされる(露光工程)。この際、パターン露光の開始時刻や終了時刻の情報が、制御装置300との間でやり取りされる。 Next, the wafer W is transferred to the delivery block G 4 and transferred to the load lock chamber 100 of the post exposure station 13 by the wafer transfer mechanism 90 of the interface station 12. At this time, for example, subsequent wafers W that have been subjected to the peripheral exposure processing in the same lot are sequentially loaded into the load lock chamber 100. For example, after the four wafers W are accommodated in the load lock chamber 100, the interface station 14. The degree of vacuum is the same as that of the post exposure station 13. Next, each wafer W is sequentially transferred to the load lock chamber 111 by the wafer transfer mechanism 101 and the wafer transfer mechanism 112 of the interface station 14, and after the four wafers W are accommodated in the load lock chamber 111, the wafer W is generally exposed. The degree of vacuum is the same as that of the device 15. Thereafter, each wafer W is transported to the exposure device 15, placed on the exposure stage 15a, and the pattern is exposed to the wafers W simultaneously by an electron beam (exposure process). At this time, information on the start time and end time of pattern exposure is exchanged with the control device 300.
 パターンの露光が終了した4枚のウェハWは、ロードロック室111へと搬送され、その後インターフェイスステーション14、ポスト露光ステーション13と同じ減圧度にされた後、ウェハ搬送機構112によって受け渡し装置110へと順次搬送される。次いで、受け渡し装置110へと搬送されたウェハWは、ウェハ搬送機構101によって、光照射装置102へと搬送される。 The four wafers W on which the pattern exposure has been completed are transferred to the load lock chamber 111, and after that, the pressure is reduced to the same level as the interface station 14 and the post exposure station 13, and then transferred to the transfer device 110 by the wafer transfer mechanism 112. It is conveyed sequentially. Next, the wafer W transferred to the delivery device 110 is transferred to the light irradiation device 102 by the wafer transfer mechanism 101.
 光照射装置102では、露光装置15において電子線によるパターンの露光が終了したウェハWに対して、所定波長のUV光によって、一括露光がなされる(ポスト露光工程)。これによって、ウェハW上に、現像処理前の最終のレジストパターンが形成される。この際、光照射装置102では、例えばロードロック室111から最初に搬出されたウェハWと2番目以降に搬出されたウェハWとでは、異なる露光量でポスト露光が行われる。このポスト露光における露光量について説明する。 In the light irradiation device 102, the wafer W that has been exposed to the pattern by the electron beam in the exposure device 15 is collectively exposed to UV light having a predetermined wavelength (post-exposure step). As a result, a final resist pattern before the development processing is formed on the wafer W. At this time, in the light irradiation apparatus 102, for example, the wafer W first unloaded from the load lock chamber 111 and the wafer W unloaded second and later are subjected to post exposure with different exposure amounts. The exposure amount in this post exposure will be described.
 各ウェハW間でのレジストパターンの線幅を一定にするためには、露光によりレジスト膜中に発生した酸濃度を現像処理の時点でウェハW毎に一定にすることが重要である。そして本発明者らによれば、レジスト膜中に発生した酸濃度を一定にするには、露光装置15でのパターン露光からPEB処理までの時間を一定にすればよいことが確認されている。なお、本実施の形態では、UV光によるポスト露光を行うので、露光装置15でのパターン露光からPEB処理までの時間を一定にするためには、露光装置15でのパターン露光からポスト露光までの時間、及びポスト露光からPEB処理までの時間をそれぞれ一定にすればよい。この際、当然に、露光装置15でのパターン露光の条件、光照射装置102でのポスト露光の条件、及び熱処理装置40でのPEB処理の条件は各ウェハ間で一定にすることを前提としている。 In order to make the line width of the resist pattern between the wafers W constant, it is important to make the acid concentration generated in the resist film by exposure constant for each wafer W at the time of development processing. According to the inventors, it has been confirmed that in order to make the acid concentration generated in the resist film constant, the time from the pattern exposure in the exposure device 15 to the PEB treatment should be made constant. In the present embodiment, since post exposure is performed with UV light, in order to make the time from pattern exposure in the exposure apparatus 15 to PEB processing constant, the process from the pattern exposure in the exposure apparatus 15 to the post exposure is performed. The time and the time from post-exposure to PEB processing may be made constant. In this case, naturally, it is assumed that the pattern exposure conditions in the exposure apparatus 15, the post-exposure conditions in the light irradiation apparatus 102, and the PEB processing conditions in the heat treatment apparatus 40 are constant between the wafers. .
 しかしながら、例えば本実施の形態のように、例えば露光装置15で同時並行に複数のウェハWに対してパターン露光が行われ、ロードロック室111を介して複数のウェハWが一括してインターフェイスステーション14側に受け渡される場合、パターン露光の終了からPEB処理開始までの時間が各ウェハW間で一定にならないことが考えられる。以下、具体的に説明する。 However, as in the present embodiment, for example, the exposure apparatus 15 performs pattern exposure on the plurality of wafers W simultaneously in parallel, and the plurality of wafers W are collectively brought into the interface station 14 via the load lock chamber 111. When it is transferred to the side, it is considered that the time from the end of pattern exposure to the start of PEB processing is not constant between the wafers W. This will be specifically described below.
 露光装置15で複数のウェハWに対して同時並行にパターン露光が行われると、例えば図6に示すように、各ウェハWのパターン露光終了時刻は同時刻となる。なお、図6では、例えば同一ロットの4枚のウェハWのうち、1番目に処理ステーション11で処理されるウェハWを「ウェハW1」、2番目に処理ステーション11で処理されるウェハWを「ウェハW2」として、以降、処理順に番号を付している。 When pattern exposure is performed simultaneously on a plurality of wafers W by the exposure apparatus 15, the pattern exposure end time of each wafer W becomes the same time, for example, as shown in FIG. In FIG. 6, for example, among the four wafers W in the same lot, the wafer W processed first in the processing station 11 is “wafer W1”, and the second wafer W processed in the processing station 11 is “ In the following, numbers are assigned in the order of processing as “Wafer W2”.
 各ウェハW1~W4の露光処理が同時並行に行われると、各ウェハW1~W4は一括してロードロック室111に受け渡される。次いで、上述の通り、インターフェイスステーション14のウェハ搬送機構112により、例えばウェハW1が、ロードロック室111から、受け渡し装置110に受け渡される。その後、ウェハ搬送機構101により光照射装置102に受け渡され、光照射装置102でポスト露光が行われる。なお、図6では、ウェハ搬送機構112によるウェハW1の搬送の過程を「搬送A」と、ウェハ搬送機構101によるウェハW1の搬送の過程を「搬送B」と記載している。 When the exposure processing of the wafers W1 to W4 is performed in parallel, the wafers W1 to W4 are delivered to the load lock chamber 111 at once. Next, as described above, for example, the wafer W <b> 1 is transferred from the load lock chamber 111 to the transfer device 110 by the wafer transfer mechanism 112 of the interface station 14. Thereafter, the wafer is transferred to the light irradiation device 102 by the wafer transfer mechanism 101, and post exposure is performed by the light irradiation device 102. In FIG. 6, the transfer process of the wafer W1 by the wafer transfer mechanism 112 is described as “transfer A”, and the transfer process of the wafer W1 by the wafer transfer mechanism 101 is described as “transfer B”.
 次いで、ポスト露光後のウェハW1は、ウェハ搬送機構101、ロードロック室100、ウェハ搬送機構90、受け渡しブロックG4、ウェハ搬送機構80、熱処理装置40の順に受け渡され、熱処理装置40でPEB処理が行われる。なお、図6では、光照射装置102から熱処理装置40でまでの搬送の過程を「搬送C」と記載している。 Next, the post-exposure wafer W1 is transferred in the order of the wafer transfer mechanism 101, the load lock chamber 100, the wafer transfer mechanism 90, the transfer block G4, the wafer transfer mechanism 80, and the heat treatment apparatus 40, and the heat treatment apparatus 40 performs the PEB process. Done. In FIG. 6, the transfer process from the light irradiation apparatus 102 to the heat treatment apparatus 40 is described as “transfer C”.
 そして、ウェハW1の搬送Aが終了した後に、ウェハW2についての搬送Aが行われるが、ウェハ搬送機構112がウェハW1についての搬送Aを行っている間、ウェハW2は図6の「D1」に示される時間だけロードロック室111に待機した状態となる。そうすると、ウェハW2では、少なくとも、この時間D1の分だけ露光処理の終了からPEB処理開始までの時間(タクトタイム)がウェハW1と比較して増加してしまう。同様の理由で、ウェハW3、ウェハW4についても、時間D2、D3の分だけタクトタイムが増加してしまう。この場合、ウェハW1とそれ以降のウェハW2~W4では、現像処理開始時点でのレジスト膜中の酸濃度が異なり、現像処理後に形成されるレジストパターンの線幅にばらつきが生じてしまう。 Then, after the transfer A of the wafer W1 is completed, the transfer A for the wafer W2 is performed. While the wafer transfer mechanism 112 performs the transfer A for the wafer W1, the wafer W2 is changed to “D1” in FIG. The load lock chamber 111 is in a standby state for the indicated time. Then, in the wafer W2, the time (tact time) from the end of the exposure process to the start of the PEB process is increased as compared with the wafer W1 at least by the time D1. For the same reason, the tact time of the wafers W3 and W4 is increased by the time D2 and D3. In this case, the acid concentration in the resist film is different between the wafer W1 and the subsequent wafers W2 to W4, and the line width of the resist pattern formed after the development processing varies.
 そこで本発明者らは、現像処理開始時点でのレジスト膜中の酸濃度をウェハW1~W4間で一定にし、レジストパターンの線幅を所望なものとするために、光照射装置102でのポスト露光時のUV光の露光量(照射時間と照射強度との積)を補正することを着想した。即ち、パターン露光終了からPEB処理開始までのタムトタイムのずれ量に応じて、ポスト露光時のUV光の露光量を増減させることにより、レジスト膜中の酸濃度を変化させ、レジストパターンの線幅を調整するのである。 Therefore, the present inventors set the acid concentration in the resist film at the time of starting the development processing to be constant between the wafers W1 to W4, and in order to obtain a desired resist pattern line width, The idea was to correct the exposure amount of UV light during exposure (product of irradiation time and irradiation intensity). That is, the acid concentration in the resist film is changed by increasing / decreasing the exposure amount of the UV light at the post-exposure according to the amount of deviation of the tauto time from the end of the pattern exposure to the start of the PEB process, and the line width of the resist pattern Adjust it.
 なお、ポスト露光終了からPEB処理開始までのタクトタイムについては、上述の通り、ポスト露光後のウェハWを、ロードロック室100を介して順次処理ステーション12側に受け渡すことで、各ウェハW1~W4間で一定にすることが可能であるので、搬送Cに伴うウェハW1~W4でのずれは生じない。したがって、本実施の形態では、パターン露光終了からポスト露光開始までのタクトタイムのずれ量を、パターン露光終了からPEB処理開始までのタムトタイムのずれ量と同一なものとして扱う場合がある。 As for the tact time from the end of the post exposure to the start of the PEB processing, as described above, the wafer W after the post exposure is sequentially transferred to the processing station 12 side through the load lock chamber 100, so that each wafer W1 to Since it can be made constant between W4, there is no deviation in the wafers W1 to W4 accompanying the transfer C. Therefore, in the present embodiment, the amount of shift in tact time from the end of pattern exposure to the start of post exposure may be treated as the same amount of shift in tauto time from the end of pattern exposure to the start of PEB processing.
 そして、光照射装置102では、ウェハW1に対して予め定められた所定の露光量でポスト露光が行われる。また、ウェハW2に対するポスト露光では、制御装置300が露光装置15から入手した情報に基づき、パターン露光終了からポスト露光開始までのタクトタイムのずれ量である時間D1を算出し、当該時間D1に対応して露光量が補正される。そして、ウェハW2に対して当該補正後の露光量でポスト露光Sが行われる。この際、時間D1の算出にあたっては、実際に制御装置300により露光装置15からの露光開始、終了時刻情報に基づいて、例えばウェハWが光照射装置102に対して受け渡されるまでの時間を実測してもよいし、例えばロードロック室111から光照射装置102までの搬送時間を搬送スケジュールから読み取ることで算出してもよい。これにより、光照射装置102でポスト露光を開始する前に、パターン露光終了からPEB処理開始までのタクトタイムがずれることを検出し、光照射装置102でのポスト露光の際に適切な露光量の補正を行うことができる。 Then, in the light irradiation device 102, post exposure is performed on the wafer W1 with a predetermined exposure amount set in advance. Further, in the post-exposure on the wafer W2, based on the information obtained from the exposure apparatus 15 by the control device 300, a time D1, which is a shift amount of the tact time from the end of pattern exposure to the start of post-exposure, is calculated and corresponds to the time D1. Thus, the exposure amount is corrected. Then, post-exposure S is performed on the wafer W2 with the corrected exposure amount. At this time, when calculating the time D1, the time until the wafer W is delivered to the light irradiation apparatus 102, for example, is actually measured based on the exposure start and end time information from the exposure apparatus 15 by the control apparatus 300. Alternatively, for example, the transfer time from the load lock chamber 111 to the light irradiation device 102 may be calculated by reading from the transfer schedule. Thereby, before the post-exposure is started by the light irradiation device 102, it is detected that the tact time from the end of the pattern exposure to the start of the PEB processing is shifted. Correction can be performed.
以降、順次ウェハW3、W4に対して、時間D2、D3に対応して補正された露光量でポスト露光T、ポスト露光Uがそれぞれ行われる。なお、露光量の補正値については、例えば予め行う試験によりパターン露光終了からポスト露光終了までの時間と、所望のレジストパターンの線幅を得るために補正すべき露光量との相関関係を予め取得しておき、その相関関係に基づいて決定される。なお、露光量の補正は、UV光の照射時間と照射強度の少なくともいずれかを変更することで実現されるが、照射時間を変更すると、ウェハW1~W4間でポスト露光開始からPEB処理開始までの時間にずれが生じるため、照射強度のみを補正することが好ましい。また、照射時間を補正する場合は、照射時間の変更を加味して補正値を決定することが好ましい。 Thereafter, the post-exposure T and the post-exposure U are sequentially performed on the wafers W3 and W4 with the exposure amounts corrected corresponding to the times D2 and D3, respectively. As for the exposure correction value, for example, a correlation between the time from the end of pattern exposure to the end of post-exposure and the amount of exposure to be corrected in order to obtain the desired resist pattern line width is obtained in advance by a test performed in advance. In addition, it is determined based on the correlation. The correction of the exposure amount is realized by changing at least one of the irradiation time and the irradiation intensity of the UV light. However, when the irradiation time is changed, from the start of post exposure to the start of PEB processing between the wafers W1 to W4. Therefore, it is preferable to correct only the irradiation intensity. Moreover, when correcting irradiation time, it is preferable to determine a correction value in consideration of change of irradiation time.
 その後、ポスト露光が終了した各ウェハW1~W4は、ウェハ搬送機構80によって熱処理装置40に順次搬送され、順次PEB処理される(PEB処理工程)。その後各ウェハW1~W4は、たとえば現像処理装置33に搬送されて現像処理され、ウェハW上にレジストパターンが形成される。この際、光照射装置102でのポスト露光において、各ウェハW2~W4の露光量が補正されているので、パターン露光終了からPEB処理開始までのタムトタイムがウェハW1からずれているウェハW2~W4においても、レジストパターンの線幅を所望なものとすることができる。 Thereafter, each of the wafers W1 to W4 after the post exposure is sequentially transferred to the heat treatment apparatus 40 by the wafer transfer mechanism 80 and sequentially subjected to PEB (PEB processing step). Thereafter, each of the wafers W1 to W4 is transferred to, for example, the development processing device 33 and developed, and a resist pattern is formed on the wafer W. At this time, since the exposure amount of each of the wafers W2 to W4 is corrected in the post-exposure by the light irradiation apparatus 102, in the wafers W2 to W4 in which the tom time from the end of pattern exposure to the start of PEB processing is shifted from the wafer W1 In addition, the line width of the resist pattern can be made desired.
 現像処理終了後、各ウェハW1~W4は、熱処理装置40に搬送され、ポストベーク処理される。その後各ウェハW1~W4は、ウェハ載置部73、74を経由してウェハ検査装置71、72に搬送される。ウェハ検査装置71では、例えば最終パターンの線幅が測定され、測定結果は、制御装置300に出力される。またウェハ検査装置72に搬送されたウェハWに対しては、オーバレイ誤差の測定が行われ、測定結果は制御装置300に出力される。そして、制御装置300では、例えばウェハ検査装置71における測定結果に基づき、必要に応じて露光装置15、光照射装置102及び熱処理装置40などでの処理パラメータが適宜補正される。その後、各ウェハW1~W4は、所定のカセット載置板21のカセットCに搬送され、一連のフォトリソグラフィー工程が完了する。 After the development process is completed, the wafers W1 to W4 are transferred to the heat treatment apparatus 40 and subjected to a post-bake process. Thereafter, the wafers W1 to W4 are transferred to the wafer inspection apparatuses 71 and 72 via the wafer mounting portions 73 and 74, respectively. In the wafer inspection apparatus 71, for example, the line width of the final pattern is measured, and the measurement result is output to the control apparatus 300. Further, the overlay error is measured for the wafer W transferred to the wafer inspection device 72, and the measurement result is output to the control device 300. In the control device 300, for example, based on the measurement result in the wafer inspection device 71, the processing parameters in the exposure device 15, the light irradiation device 102, the heat treatment device 40, and the like are corrected as necessary. Thereafter, each of the wafers W1 to W4 is transferred to the cassette C of the predetermined cassette mounting plate 21, and a series of photolithography processes is completed.
 以上の実施の形態によれば、露光装置15でパターン露光が行なわれた後であって熱処理装置40でのPEB処理前に、ウェハW上のレジスト膜に対してUV光によるポスト露光を行うので、当該パターン露光の後に、UV光の照射によって補助的にエネルギーを投入して、レジスト膜中の酸発生剤を分解して酸を発生させたり、ラジカル成分の発生を促進させることができる。そして、例えば露光装置15内で複数のウェハW1~W4が同時並行に露光処理される場合など、パターン露光終了からポスト露光開始までの時間が所定の時間からずれる場合、換言すれば、パターン露光終了からPEB処理開始までのタクトタイムが予め定められた所定の時間からずれる場合、当該タクトタイムのずれに応じて補正された露光量でポスト露光を行うので、レジスト膜中の酸の発生量や、ラジカル成分の発生量を適宜調整することができる。したがって、パターン露光終了からポスト露光開始までの時間が所定の時間からずれた場合であっても、PEB処理工程を開始する時点でのレジスト膜の状態を、タクトタイムが所定の時間通りであった場合と同様の状態にすることができる。その結果、パターン露光終了からPEB処理開始までの時間によらず、レジストパターンの線幅を所望なものとすることができる。 According to the above embodiment, the post-exposure by UV light is performed on the resist film on the wafer W after the pattern exposure is performed by the exposure apparatus 15 and before the PEB processing by the heat treatment apparatus 40. After the pattern exposure, energy can be input auxiliary by irradiation with UV light to decompose the acid generator in the resist film to generate an acid or promote the generation of a radical component. When the time from the end of pattern exposure to the start of post exposure deviates from a predetermined time, for example, when a plurality of wafers W1 to W4 are exposed simultaneously in the exposure apparatus 15, in other words, the pattern exposure ends. When the tact time from the start of PEB processing deviates from a predetermined time, post-exposure is performed with an exposure amount corrected according to the deviation of the tact time, so that the amount of acid generated in the resist film, The amount of radical components generated can be adjusted as appropriate. Therefore, even when the time from the end of pattern exposure to the start of post-exposure deviates from a predetermined time, the tact time is the same as the predetermined time in the state of the resist film at the time of starting the PEB processing step. It can be in the same state as the case. As a result, the line width of the resist pattern can be made desired regardless of the time from the end of pattern exposure to the start of PEB processing.
 また、現像処理されたウェハWの検査結果を、露光装置15や光照射装置102、熱処理装置40のパラメータにフィードバックすることで、より精度よく微細なレジストパターンを形成することができる。 Further, by feeding back the inspection result of the developed wafer W to the parameters of the exposure apparatus 15, the light irradiation apparatus 102, and the heat treatment apparatus 40, a fine resist pattern can be formed with higher accuracy.
 なお、現像処理の時点でレジスト膜中の酸濃度をウェハW1~W4間で一定にするという観点からは、例えばウェハW2~W4において搬送Cに要する時間を変化させることで、パターン露光終了からPEB処理開始までの時間を一定にすることも考えられる。しかしながら、処理ステーション11での搬送スケジュールを変更すると制御が非常に複雑化してしまい、また、例えば露光装置15で同時並行にパターン露光できるウェハWの枚数が処理ステーション11側で同時にPEB処理できるウェハWの枚数よりも多い場合、搬送Cにおいても待ち時間が生じてしまい、最終的に各ウェハW1~W4のタクトタイムを合わせることができない。また、搬送Cの時間を延長することは、ウェハ処理のスループットの観点からも好ましくない。この点、本実施の形態のように、光照射装置102でのポスト露光における露光量を補正すれば、ウェハWの搬送スケジュールやPEB処理における加熱条件など、その他の条件については変更することなく、容易に、現像処理の時点でレジスト膜中の酸濃度をウェハW1~W4間で一定にすることができる。 From the viewpoint of keeping the acid concentration in the resist film constant between the wafers W1 to W4 at the time of the development processing, for example, by changing the time required for the conveyance C in the wafers W2 to W4, the PEB can be changed from the end of the pattern exposure. It is also possible to make the time until the start of processing constant. However, if the transfer schedule at the processing station 11 is changed, the control becomes very complicated. Also, for example, the number of wafers W that can be subjected to pattern exposure simultaneously and in parallel by the exposure apparatus 15 can be simultaneously PEB processed on the processing station 11 side. When the number of wafers is larger than the number of wafers, a waiting time also occurs in the transfer C, and the tact times of the wafers W1 to W4 cannot be finally adjusted. In addition, it is not preferable to extend the time for the conveyance C from the viewpoint of wafer processing throughput. In this regard, if the exposure amount in the post-exposure in the light irradiation apparatus 102 is corrected as in this embodiment, the other conditions such as the wafer W transfer schedule and the heating conditions in the PEB process are not changed. It is easy to make the acid concentration in the resist film constant between the wafers W1 to W4 at the time of development processing.
 以上の実施の形態では、パターン露光終了からPEB処理開始までのタクトタイムのずれ量の一因として、ロードロック室111を介した露光装置15とのウェハWの一括受け渡しを挙げたが、タクトタイムのずれ量の原因は本実施の形態の内容に限定されるものではない。例えば、ロードロック室100においてもロードロック室111と同様に一括してウェハW1~W4の受け渡しを行う場合や、例えば塗布現像処理システム1の構成上、搬送Cにおけるタクトタイムを一致させるのが困難な場合など、タクトタイムのずれの原因によらず、パターン露光終了からPEB処理開始までの時間を考慮してポスト露光における露光量を補正することで、所望の線幅のレジストパターンを形成することができる。なお、ポスト露光以降の事象に起因してタムトタイムにずれが生じる場合、具体的には各ウェハW1~W4の搬送Cに要する時間が一致しない場合などは、PEB処理開始の時点でタムトタイムのずれを検出しても、既にポスト露光が終了しているためポスト露光における露光量の補正を行うことができない。かかる場合、例えばポスト露光を行う前に、光照射装置102から熱処理装置40までの「搬送C」に要する時間を搬送スケジュールから読み取るなどして、ポスト露光の開始前にタクトタイムのずれの有無を判定することが好ましい。 In the above embodiment, as one cause of the deviation of the tact time from the end of pattern exposure to the start of PEB processing, the batch delivery of the wafer W to and from the exposure apparatus 15 via the load lock chamber 111 has been described. The cause of the shift amount is not limited to the contents of the present embodiment. For example, in the load lock chamber 100 as well as in the load lock chamber 111, when the wafers W1 to W4 are collectively delivered, for example, due to the configuration of the coating and developing treatment system 1, it is difficult to match the tact times in the transfer C. In such a case, a resist pattern having a desired line width can be formed by correcting the exposure amount in post-exposure in consideration of the time from the end of pattern exposure to the start of PEB processing, regardless of the cause of the difference in tact time. Can do. Note that if there is a deviation in the tom time due to an event after the post-exposure, specifically if the time required for the transfer C of each of the wafers W1 to W4 does not match, the deviation in the tom time will be reduced at the start of PEB processing. Even if it detects, since the post-exposure has already been completed, the exposure amount in the post-exposure cannot be corrected. In such a case, for example, before performing the post-exposure, the time required for “carrying C” from the light irradiation device 102 to the heat treatment device 40 is read from the carrying schedule. It is preferable to determine.
 なお、以上の実施の形態では、光照射装置102においてウェハWの全面に対して一括してポスト露光する場合について説明したが、ポスト露光は必ずしも一括で行う必要はなく、例えば光源105に代えて、図7に示すように、ウェハWの直径より短い複数の光源120を、ウェハWの一端側からウェハWの他端側に向けてウェハWの直径以上の長さにわたって直線上に並べることにより光照射部121を構成してもよい。かかる場合、例えば光照射部121を、ウェハWに対して当該光照射部121の長さ方向と直交する方向に相対的に移動させる移動機構122が設けられる。ウェハ検査装置71では、例えばウェハWの全面にわたって検査が行われるが、所定の領域のみについて線幅を調整したい場合には、光照射部121を各光源120ごとに露光出力を増減させるように構成することで、所定の領域についてのみさらに露光量を調整することができる。なお、図7では、光照射部121をウェハWに対して相対的に移動させる移動機構122を描図しているが、例えば光照射部121を固定しておき、例えば載置台103に移動機構を設けてウェハWを光照射部121に対して相対的に移動させるようにしもよい。 In the above-described embodiment, the case where the light irradiation apparatus 102 performs batch post-exposure on the entire surface of the wafer W has been described. However, post-exposure is not necessarily performed collectively. As shown in FIG. 7, a plurality of light sources 120 shorter than the diameter of the wafer W are arranged in a straight line from the one end side of the wafer W toward the other end side of the wafer W over a length equal to or larger than the diameter of the wafer W. The light irradiation unit 121 may be configured. In such a case, for example, a moving mechanism 122 that moves the light irradiation unit 121 relative to the wafer W in a direction orthogonal to the length direction of the light irradiation unit 121 is provided. In the wafer inspection apparatus 71, for example, inspection is performed over the entire surface of the wafer W, but when it is desired to adjust the line width only for a predetermined region, the light irradiation unit 121 is configured to increase or decrease the exposure output for each light source 120. Thus, it is possible to further adjust the exposure amount only for a predetermined region. In FIG. 7, the moving mechanism 122 that moves the light irradiation unit 121 relative to the wafer W is illustrated, but the light irradiation unit 121 is fixed, for example, and is moved to the mounting table 103. The wafer W may be moved relative to the light irradiation unit 121.
 また、露光装置15におけるパターン露光のショットサイズに対応して1ショットずつポスト露光を行う光照射装置102を用いる場合は、例えば制御装置300で露光装置15での各ショットの露光順序の情報を受信し、当該情報に基づいて露光装置15と同じ順序で光照射装置102により各ショットのポスト露光を行ってもよい。かかる場合、各ショット毎に、ポスト露光における露光量を補正するようにしてもよい。そうすることで、露光装置15におけるパターン露光から、光照射装置102におけるポスト露光までのタクトタイムをショット単位で厳密に管理できる。その結果、ウェハW上により精度の高いレジストパターンを形成できる。かかる場合、載置台103か光照射部121の少なくともいずれかに、載置台103と光照射部121を例えばXY方向に相対的に移動させる移動機構(図示せず)を設けるようにしてもよい。 Further, when using the light irradiation device 102 that performs post exposure one shot at a time corresponding to the pattern exposure shot size in the exposure device 15, for example, the control device 300 receives information on the exposure order of each shot in the exposure device 15. Then, the post-exposure of each shot may be performed by the light irradiation device 102 in the same order as the exposure device 15 based on the information. In such a case, the exposure amount in the post-exposure may be corrected for each shot. By doing so, the tact time from the pattern exposure in the exposure apparatus 15 to the post exposure in the light irradiation apparatus 102 can be strictly managed in shot units. As a result, a resist pattern with higher accuracy can be formed on the wafer W. In such a case, a moving mechanism (not shown) that relatively moves the mounting table 103 and the light irradiation unit 121 in, for example, the XY direction may be provided in at least one of the mounting table 103 and the light irradiation unit 121.
 なお、前記した実施の形態では、ポスト露光ステーション13は、インターフェイスステーション14とは隣接したセクションとして構成していたが、もちろんポスト露光ステーション13は、インターフェイスステーション14とを一体にして、1つのポスト露光ステーション又はインターフェイスステーションとして構成してもよい。 In the above-described embodiment, the post exposure station 13 is configured as a section adjacent to the interface station 14, but the post exposure station 13 is of course integrated with the interface station 14 to form one post exposure. You may comprise as a station or an interface station.
 なお、以上の実施の形態では、露光装置15において電子線によりパターンの露光を行う場合を例として説明したが、パターン露光にあたっては電子線による露光に限定されず、EUV露光やArF露光、KrF露光によりパターン露光を行った場合や、i線、g線によりパターン露光を行った場合においても適用できる。 In the above embodiment, the case where the exposure of the pattern is performed by the electron beam in the exposure apparatus 15 has been described as an example. However, the pattern exposure is not limited to the exposure by the electron beam, but EUV exposure, ArF exposure, KrF exposure. This can also be applied to the case where pattern exposure is performed by the above-mentioned method, and the case where pattern exposure is performed using i-line or g-line.
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。以上の実施の形態では、半導体ウェハの塗布現像処理システムにおける例であったが、本発明は、半導体ウェハ以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板の塗布現像処理システムである場合にも適用できる。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood. The present invention is not limited to this example and can take various forms. In the above embodiment, the semiconductor wafer coating and developing processing system is an example. However, the present invention is applied to developing and developing other substrates such as FPDs (flat panel displays) other than semiconductor wafers and mask reticles for photomasks. It can also be applied to a processing system.
 本発明は、EUV露光処理を行う基板処理システムを構築する際に有用である。 The present invention is useful when constructing a substrate processing system for performing EUV exposure processing.
  1 塗布現像処理システム
  10 カセットステーション
  11 処理ステーション
  12、14 インターフェイスステーション
  13 ポスト露光ステーション
  15 露光装置
  20 カセット載置台
  21 カセット載置板
  22 搬送路
  23 ウェハ搬送装置
  30 下部反射防止膜形成装置
  31 レジスト塗布装置
  32 上部反射防止膜形成装置
  33 現像処理装置
  40 熱処理装置
  41 アドヒージョン装置
  42 周辺露光装置
  70 ウェハ搬送機構
  71、72 ウェハ検査装置
  80 ウェハ搬送機構
  90 ウェハ搬送機構
 100、111  ロードロック室
 102 光照射装置
 300 制御装置
  W  ウェハ
  D  ウェハ搬送領域
  C  カセット
DESCRIPTION OF SYMBOLS 1 Coating / development processing system 10 Cassette station 11 Processing station 12, 14 Interface station 13 Post exposure station 15 Exposure apparatus 20 Cassette mounting base 21 Cassette mounting plate 22 Transport path 23 Wafer transfer apparatus 30 Lower antireflection film forming apparatus 31 Resist coating apparatus 32 Upper antireflection film forming device 33 Development processing device 40 Heat treatment device 41 Adhesion device 42 Peripheral exposure device 70 Wafer transfer mechanism 71, 72 Wafer inspection device 80 Wafer transfer mechanism 90 Wafer transfer mechanism 100, 111 Load lock chamber 102 Light irradiation device 300 Controller W Wafer D Wafer transfer area C Cassette

Claims (12)

  1. レジスト膜が形成された基板を処理する基板処理方法であって、
    基板上のレジスト膜に電子線によりパターンの露光を行う露光工程と、
    前記パターンの露光が行なわれた後の基板上のレジスト膜に対して、UV光によるポスト露光を行うポスト露光工程と、
    ポスト露光後の基板に対してPEB処理を行うPEB処理工程と、
    PEB処理後のレジスト膜を現像して基板上にレジストパターンを形成する現像処理工程と、を有し、
    前記露光工程終了から前記PEB処理工程開始までのタクトタイムが所定の時間からずれる場合には、当該タクトタイムのずれに応じて、前記ポスト露光工程における露光量を補正する。
    A substrate processing method for processing a substrate on which a resist film is formed,
    An exposure step of exposing the resist film on the substrate to an electron beam pattern;
    A post-exposure step of performing post-exposure with UV light on the resist film on the substrate after the exposure of the pattern;
    A PEB processing step for performing PEB processing on the post-exposure substrate;
    Developing a resist film after PEB treatment to form a resist pattern on the substrate, and
    When the tact time from the end of the exposure process to the start of the PEB processing process deviates from a predetermined time, the exposure amount in the post-exposure process is corrected according to the shift in the tact time.
  2. 請求項1に記載の基板処理方法において、
    前記露光工程では、複数枚の基板に対して同時にパターンの露光が行われ、
    前記ポスト露光工程終了から前記PEB処理工程開始までの時間は、各基板間で同一である。
    The substrate processing method according to claim 1,
    In the exposure step, pattern exposure is performed simultaneously on a plurality of substrates,
    The time from the end of the post-exposure process to the start of the PEB process is the same for each substrate.
  3. 請求項1に記載の基板処理方法において、
    前記ポスト露光は、
    基板と、
    基板の直径より短い複数の光源が、基板の一端側から基板の他端側に向けて基板の直径以上の長さにわたって直線上に並べて設けられた光照射部とを、
    前記光源が並べられた方向と直交する方向に相対的に移動させることにより行われる。
    The substrate processing method according to claim 1,
    The post exposure is
    A substrate,
    A plurality of light sources shorter than the diameter of the substrate are arranged in a straight line over a length equal to or larger than the diameter of the substrate from one end side of the substrate to the other end side of the substrate,
    This is performed by relatively moving the light sources in a direction orthogonal to the direction in which the light sources are arranged.
  4. 請求項2に記載の基板処理方法において、
    前記ポスト露光は、
    基板と、
    基板の直径より短い複数の光源が、基板の一端側から基板の他端側に向けて基板の直径以上の長さにわたって直線上に並べて設けられた光照射部とを、
    前記光源が並べられた方向と直交する方向に相対的に移動させることにより行われる。
    The substrate processing method according to claim 2,
    The post exposure is
    A substrate,
    A plurality of light sources shorter than the diameter of the substrate are arranged in a straight line over a length equal to or larger than the diameter of the substrate from one end side of the substrate to the other end side of the substrate,
    This is performed by relatively moving the light sources in a direction orthogonal to the direction in which the light sources are arranged.
  5. レジスト膜が形成された基板を処理する基板処理方法を、
    基板処理システムによって実行させるように、当該基板処理システムを制御する制御装置のコンピュータ上で動作するプログラムを格納した、読み取り可能なコンピュータ記憶媒体であって、
    前記基板処理方法は、
    基板上のレジスト膜に電子線によりパターンの露光を行う露光工程と、
    前記パターンの露光が行なわれた後の基板上のレジスト膜に対して、UV光によるポスト露光を行うポスト露光工程と、
    ポスト露光後の基板に対してPEB処理を行うPEB処理工程と、
    PEB処理後のレジスト膜を現像して基板上にレジストパターンを形成する現像処理工程と、を有し、
    前記露光工程終了から前記PEB処理工程開始までのタクトタイムが所定の時間からずれる場合には、当該タクトタイムのずれに応じて、前記ポスト露光工程における露光量を補正する。
    A substrate processing method for processing a substrate on which a resist film is formed,
    A readable computer storage medium storing a program operating on a computer of a control device that controls the substrate processing system to be executed by the substrate processing system,
    The substrate processing method includes:
    An exposure step of exposing the resist film on the substrate to an electron beam pattern;
    A post-exposure step of performing post-exposure with UV light on the resist film on the substrate after the exposure of the pattern;
    A PEB processing step for performing PEB processing on the post-exposure substrate;
    Developing a resist film after PEB treatment to form a resist pattern on the substrate, and
    When the tact time from the end of the exposure process to the start of the PEB processing process deviates from a predetermined time, the exposure amount in the post-exposure process is corrected according to the shift in the tact time.
  6. 請求項5に記載の読み取り可能なコンピュータ記憶媒体において、
    前記露光工程では、複数枚の基板に対して同時にパターンの露光が行われ、
    前記ポスト露光工程終了から前記PEB処理工程開始までの時間は、各基板間で同一である。
    The readable computer storage medium of claim 5.
    In the exposure step, pattern exposure is performed simultaneously on a plurality of substrates,
    The time from the end of the post-exposure process to the start of the PEB process is the same for each substrate.
  7. 請求項5に記載の読み取り可能なコンピュータ記憶媒体において、
    前記ポスト露光は、
    基板と、
    基板の直径より短い複数の光源が、基板の一端側から基板の他端側に向けて基板の直径以上の長さにわたって直線上に並べて設けられた光照射部とを、
    前記光源が並べられた方向と直交する方向に相対的に移動させることにより行われる。
    The readable computer storage medium of claim 5.
    The post exposure is
    A substrate,
    A plurality of light sources shorter than the diameter of the substrate are arranged in a straight line over a length equal to or larger than the diameter of the substrate from one end side of the substrate to the other end side of the substrate,
    This is performed by relatively moving the light sources in a direction orthogonal to the direction in which the light sources are arranged.
  8. 請求項7に記載の読み取り可能なコンピュータ記憶媒体において、
    前記ポスト露光は、
    基板と、
    基板の直径より短い複数の光源が、基板の一端側から基板の他端側に向けて基板の直径以上の長さにわたって直線上に並べて設けられた光照射部とを、
    前記光源が並べられた方向と直交する方向に相対的に移動させることにより行われる。
    The readable computer storage medium of claim 7.
    The post exposure is
    A substrate,
    A plurality of light sources shorter than the diameter of the substrate are arranged in a straight line over a length equal to or larger than the diameter of the substrate from one end side of the substrate to the other end side of the substrate,
    This is performed by relatively moving the light sources in a direction orthogonal to the direction in which the light sources are arranged.
  9. 基板を処理する基板処理システムであって、
    基板にPEB処理及び現像処理を行う複数の処理装置が設けられた処理ステーションと、
    前記基板処理システムと、当該前記基板処理システムの外部に設けられて基板上のレジスト膜に電子線によりパターンの露光を行う露光装置と、の間で基板を受け渡すインターフェイスステーションと、
    前記露光装置でパターンの露光が行なわれた後の基板上のレジスト膜に対して、UV光によるポスト露光を行う光照射装置と、
    制御装置と、を有し、
    前記制御装置は、前記露光装置での露光終了から処理ステーションでのPEB処理開始までのタクトタイムが規定の時間からずれた場合には、当該タクトタイムのずれに応じて前記光照射装置でのポスト露光における露光量を補正するように構成されている。
    A substrate processing system for processing a substrate,
    A processing station provided with a plurality of processing apparatuses for performing PEB processing and development processing on a substrate;
    An interface station that delivers the substrate between the substrate processing system and an exposure apparatus that is provided outside the substrate processing system and exposes a pattern on the resist film on the substrate with an electron beam;
    A light irradiation device that performs post-exposure with UV light on the resist film on the substrate after exposure of the pattern by the exposure device;
    A control device,
    When the tact time from the end of exposure in the exposure apparatus to the start of PEB processing in the processing station deviates from a specified time, the control device performs post-processing in the light irradiation apparatus according to the tact time deviation. The exposure amount in the exposure is corrected.
  10. 請求項9に記載の基板処理システムにおいて、
    前記露光装置と前記インターフェイスステーションは、ロードロック室を介して接続され、
    前記露光装置では、複数枚の基板に対して同時にパターンの露光が行われ、
    前記ロードロック室と前記露光装置の間では、複数枚の基板が一括して受け渡される。
    The substrate processing system according to claim 9, wherein
    The exposure apparatus and the interface station are connected via a load lock chamber,
    In the exposure apparatus, pattern exposure is simultaneously performed on a plurality of substrates,
    A plurality of substrates are delivered at once between the load lock chamber and the exposure apparatus.
  11. 請求項9に記載の基板処理システムにおいて、
    前記光照射装置は、
    基板の直径より短い複数の光源が、基板の一端側から基板の他端側に向けて基板の直径以上の長さにわたって直線上に並べて設けられた光照射部と、
    前記光照射部と基板を、前記光源が並べられた方向と直交する方向に相対的に移動させる移動機構と、を有する。
    The substrate processing system according to claim 9, wherein
    The light irradiation device is:
    A plurality of light sources shorter than the diameter of the substrate, a light irradiation unit provided in a straight line over a length equal to or greater than the diameter of the substrate from one end of the substrate toward the other end of the substrate;
    A moving mechanism that relatively moves the light irradiation unit and the substrate in a direction orthogonal to a direction in which the light sources are arranged.
  12. 請求項10に記載の基板処理システムにおいて、
    前記光照射装置は、
    基板の直径より短い複数の光源が、基板の一端側から基板の他端側に向けて基板の直径以上の長さにわたって直線上に並べて設けられた光照射部と、
    前記光照射部と基板を、前記光源が並べられた方向と直交する方向に相対的に移動させる移動機構と、を有する。
    The substrate processing system according to claim 10, wherein
    The light irradiation device is:
    A plurality of light sources shorter than the diameter of the substrate, a light irradiation unit provided in a straight line over a length equal to or greater than the diameter of the substrate from one end of the substrate toward the other end of the substrate;
    A moving mechanism that relatively moves the light irradiation unit and the substrate in a direction orthogonal to a direction in which the light sources are arranged.
PCT/JP2015/079538 2014-10-23 2015-10-20 Board processing method, computer storage medium, and board processing system WO2016063860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014216612A JP2016086042A (en) 2014-10-23 2014-10-23 Substrate processing method, program, computer storage medium, and substrate processing system
JP2014-216612 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016063860A1 true WO2016063860A1 (en) 2016-04-28

Family

ID=55760893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079538 WO2016063860A1 (en) 2014-10-23 2015-10-20 Board processing method, computer storage medium, and board processing system

Country Status (3)

Country Link
JP (1) JP2016086042A (en)
TW (1) TW201626437A (en)
WO (1) WO2016063860A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016221261A1 (en) * 2016-10-28 2018-05-03 Carl Zeiss Smt Gmbh Process for the microlithographic production of microstructured components

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276713A (en) * 1990-03-27 1991-12-06 Nippon Telegr & Teleph Corp <Ntt> Pattern forming material and pattern forming method
JPH09237745A (en) * 1996-02-28 1997-09-09 Toshiba Corp Pattern forming method, aligner and semiconductor device
JPH1167653A (en) * 1997-08-25 1999-03-09 Matsushita Electron Corp Pattern-forming method
JPH1195442A (en) * 1997-09-24 1999-04-09 Sharp Corp Photoresist pattern forming method
JPH11233404A (en) * 1998-02-10 1999-08-27 Nec Corp Method for forming photo-resist pattern
JP2001013671A (en) * 1999-06-30 2001-01-19 Toshiba Corp Pattern forming method
JP2009021457A (en) * 2007-07-13 2009-01-29 Fujitsu Microelectronics Ltd Pattern forming method, and semiconductor device manufacturing method
JP2013232611A (en) * 2012-04-02 2013-11-14 Sokudo Co Ltd Exposure device, substrate processing device, substrate exposure method, and substrate processing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140718A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Formation of pattern
JPH0385722A (en) * 1989-08-30 1991-04-10 Toshiba Corp Pattern formation
JPH05136038A (en) * 1991-11-14 1993-06-01 Toshiba Corp Electron beam lithographic device
JPH0653106A (en) * 1992-07-29 1994-02-25 Nec Corp Formation of fine resist pattern
JPH08222501A (en) * 1995-02-13 1996-08-30 Sony Corp Exposure method
JPH10312946A (en) * 1997-05-09 1998-11-24 Sony Corp Device and method for exposure
JPH11162844A (en) * 1997-09-25 1999-06-18 Toshiba Corp Pattern formation
JP2001230175A (en) * 2000-02-14 2001-08-24 Matsushita Electric Ind Co Ltd Pattern formation method and electron beam exposure system
JP2002008970A (en) * 2000-06-23 2002-01-11 Nec Corp Method of correcting proximity effects in electron beam exposure, and method of manufacturing semiconductor device
DE102004022329B3 (en) * 2004-05-06 2005-12-29 Infineon Technologies Ag Dynamic dosage adaptation method in lithography projector, involves setting exposure amount for each light exposure area, based on difference between time set for exposing each exposure area and time set for stabilizing resist layer
JP2009194242A (en) * 2008-02-15 2009-08-27 Tokyo Electron Ltd Coating and developing device, coating and developing method, and storage medium
JP4683163B2 (en) * 2010-10-29 2011-05-11 凸版印刷株式会社 Photomask pattern drawing method
JP2015144179A (en) * 2014-01-31 2015-08-06 東京エレクトロン株式会社 Substrate processing system, substrate processing method, and computer storage medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276713A (en) * 1990-03-27 1991-12-06 Nippon Telegr & Teleph Corp <Ntt> Pattern forming material and pattern forming method
JPH09237745A (en) * 1996-02-28 1997-09-09 Toshiba Corp Pattern forming method, aligner and semiconductor device
JPH1167653A (en) * 1997-08-25 1999-03-09 Matsushita Electron Corp Pattern-forming method
JPH1195442A (en) * 1997-09-24 1999-04-09 Sharp Corp Photoresist pattern forming method
JPH11233404A (en) * 1998-02-10 1999-08-27 Nec Corp Method for forming photo-resist pattern
JP2001013671A (en) * 1999-06-30 2001-01-19 Toshiba Corp Pattern forming method
JP2009021457A (en) * 2007-07-13 2009-01-29 Fujitsu Microelectronics Ltd Pattern forming method, and semiconductor device manufacturing method
JP2013232611A (en) * 2012-04-02 2013-11-14 Sokudo Co Ltd Exposure device, substrate processing device, substrate exposure method, and substrate processing method

Also Published As

Publication number Publication date
JP2016086042A (en) 2016-05-19
TW201626437A (en) 2016-07-16

Similar Documents

Publication Publication Date Title
US8440376B2 (en) Exposure determining method, method of manufacturing semiconductor device, and computer program product
JP6293645B2 (en) Substrate processing system
JP5017147B2 (en) Substrate processing method, program, computer storage medium, and substrate processing system
JP2008277528A (en) Substrate processing method, substrate processing system, and computer-readable recording medium
US8198005B2 (en) Method of forming resist pattern
JP5391055B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing system
WO2008096835A1 (en) Substrate processing method and coating/developing apparatus
WO2015115166A1 (en) Substrate processing system, substrate processing method, and computer storage medium
JP5162314B2 (en) Substrate processing method, program, computer storage medium, and substrate processing system
WO2016063860A1 (en) Board processing method, computer storage medium, and board processing system
JP2010003905A (en) Substrate processing apparatus and substrate processing system
JP2011066113A (en) Hydrophobic treatment apparatus, hydrophobic treatment method, program, and computer storage medium
JP6726792B2 (en) Patterning device cooling device
JP2004273646A (en) Load lock chamber, processing system, and processing method
JP4920317B2 (en) Substrate processing method, program, computer-readable recording medium, and substrate processing system
JP5186264B2 (en) Substrate processing method, program, computer storage medium, and substrate processing system
WO2010150584A1 (en) Substrate treatment method, computer recording medium, and substrate treatment system
US8420303B2 (en) Substrate processing method, computer-readable storage medium and substrate processing system
JP2008300777A (en) Treatment method of substrate, treatment apparatus of substrate, and computer-readable storage medium
de Boeij et al. Driving exposure accuracy and cost-of-ownership on DUV immersion and dry-NXT scanner products
JP2023163641A (en) Substrate processing method, computer storage medium and substrate processing device
JP2023054751A (en) Charged particle beam drawing method and charged particle beam drawing apparatus
JP2009016653A (en) Substrate processing method and computer-readable storage medium
JP2005167213A (en) Device manufacturing method and lithographic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852244

Country of ref document: EP

Kind code of ref document: A1