JPH03276713A - Pattern forming material and pattern forming method - Google Patents

Pattern forming material and pattern forming method

Info

Publication number
JPH03276713A
JPH03276713A JP2075673A JP7567390A JPH03276713A JP H03276713 A JPH03276713 A JP H03276713A JP 2075673 A JP2075673 A JP 2075673A JP 7567390 A JP7567390 A JP 7567390A JP H03276713 A JPH03276713 A JP H03276713A
Authority
JP
Japan
Prior art keywords
resist
pattern
light
electron beam
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2075673A
Other languages
Japanese (ja)
Inventor
Koji Ban
弘司 伴
Haruyori Tanaka
啓順 田中
Jiro Nakamura
二朗 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2075673A priority Critical patent/JPH03276713A/en
Publication of JPH03276713A publication Critical patent/JPH03276713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To improve the shape of accumulated energy profile which is formed as a latent image by electron beam lithography and to improve the shape of a pattern and resolution by performing the electron beam lithography and the projection of light within a specified wavelength range for resist at the same level. CONSTITUTION:In negative-type elecron-beam resit comprising novolak resin or p-hydroxystyrene resin, melamine compound and acid generating agent, the acid generating agent forms acid by the projection of the electron beam. With the acid as a catalyst, the resin and the melamine compound are bridged, and negatives property is obtained. In resist material, intense absorption is present in far infrared region. There is a window part where the absorbance becomes the minimum value in the vicinity of 240-260nm. In the p-hydroxystirene resin, the window is located in the vicinity of 248nm. In the vicinity of 265nm, epsilonbecomes large up to about 0.7mum<-1>. Then, the light is projected at this wavelength region. Thus the shape of a pattern is improved. The light is selectively projected on the wavelength region at the optimum value in the range of 0.5-1.2mum<-1> for epsilon of the resist material. Thus, the shape of the pattern is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子製造技術における、微細なレジス
トパタンの形成技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technique for forming fine resist patterns in semiconductor device manufacturing technology.

〔従来の技術〕[Conventional technology]

近年の半導体産業において、A S I C(apPl
ication 5pecified intergr
ated circuits)に代表されるカスタムL
SIの需要が急速に伸びている。DRAMに代表される
大量生産型のLSIは光リソグラフィーにより生産され
ているが、少量・多品目型の需要となるASICでは、
電子線直接描画技術も有用なパタン形成方法と位置付け
される。電子線リソグラフィーは光露光用マスクの製造
分野では既に実用化されており、完成度の高い微細加工
技術である。レジスト膜厚を薄くすれば、0.1μmの
線幅のパタンも形成可能であり、基本的には光露光技術
よりも解像性が高い。また、パタン創生機能を有するこ
と、マスクが不要であること、等の特徴があり、少量・
多品目の生産には最適である。
In recent years in the semiconductor industry, ASIC (apPl)
cation 5specified intergr.
Custom L represented by
Demand for SI is rapidly growing. Mass-produced LSIs, such as DRAM, are produced using optical lithography, but ASICs, which are in demand in small quantities and with many products,
Electron beam direct writing technology is also positioned as a useful pattern formation method. Electron beam lithography has already been put into practical use in the field of manufacturing masks for light exposure, and is a highly complete microfabrication technology. If the resist film thickness is made thinner, it is possible to form a pattern with a line width of 0.1 μm, and the resolution is basically higher than that of light exposure technology. In addition, it has features such as having a pattern creation function and not requiring a mask.
It is ideal for producing multiple items.

般的に、LSI等の素子製造において、ある程度の工程
を経た基板は、配線層等により基板表面に0.5μm程
度の段差ができる。このような段差を被覆し、なおかつ
基板加工をするためには、レジストの膜厚を1〜2μm
程度にする必要がある。しかし、電子線リソグラフィー
で1〜2μmの膜厚のレジストをアスペクト比が2程度
の条件でパタン形成しようとすると、近接効果がパタン
形状と解像性に顕著に影響し始める。すなわち、パタン
形状が矩形とならずに台形状若しくは三角形状になり、
解像性が低下する。近接効果は、入射電子のレジスト膜
内中における前方散乱と、基板からの後方散乱を含む。
Generally, in the manufacture of devices such as LSIs, a substrate that has gone through a certain number of steps has a level difference of about 0.5 μm on the surface of the substrate due to wiring layers and the like. In order to cover such steps and still process the substrate, the resist film thickness must be 1 to 2 μm.
It is necessary to make it to a certain extent. However, when attempting to form a pattern using electron beam lithography on a resist with a film thickness of 1 to 2 μm with an aspect ratio of approximately 2, the proximity effect begins to significantly affect the pattern shape and resolution. In other words, the pattern shape is not rectangular but trapezoidal or triangular;
Resolution decreases. The proximity effect includes forward scattering of incident electrons within the resist film and back scattering from the substrate.

膜厚が厚くなると前者の影響により、レジスト膜内に形
成される潜像は末広がりの形状となり、現像後のパタン
はその形状を反映したものとなる。その図面を図2に示
す。すなわち、図2は従来のパタン形成方法で形成され
たレジストパタンの断面形状を示す模式図である。この
ような、末広がりの断面形状を有するレジストパタンで
は、基板加工をドライエツチングで行う場合、寸法精度
を確保することが困難となる。寸法精度の高い基板加工
を行うには、矩形の断面形状を有するレジストパタンか
望ましい。
As the film thickness increases, due to the former effect, the latent image formed in the resist film takes on a shape that spreads toward the end, and the pattern after development reflects this shape. The drawing is shown in FIG. That is, FIG. 2 is a schematic diagram showing a cross-sectional shape of a resist pattern formed by a conventional pattern forming method. With a resist pattern having such a cross-sectional shape that widens toward the end, it is difficult to ensure dimensional accuracy when processing the substrate by dry etching. In order to process a substrate with high dimensional accuracy, a resist pattern having a rectangular cross-sectional shape is desirable.

このようなパタン形状の劣化を回避する方法として、多
層レジスト法が有用であることは良く知られているが、
工程数が増え、また、ダストの発生源となりやすいため
、生産レベルで使用するには問題がある。単層レジスト
のパタン形状の改善については、従来フォトレジスト等
に対して、■遠紫外線照射〔例えば、スガら、ジャーナ
ル オブ バキューム サイエンスアンド テクノロジ
ー(J、 Vac、Sci、 Technol、)第8
6巻、第366頁(1988)〕、■ソーキング処理〔
例えば、オガワら、マイクロプロセスコンファレンス、
(東京、1988年)、第164頁〕、■表面に不溶層
を塗布形成〔例えば、オガワら、マイクロプロセスコン
ファレンス、(東京、1988年)、第86頁〕、等に
よる表面難溶層形成処理が報告されている。
It is well known that the multilayer resist method is useful as a method to avoid such deterioration of pattern shape.
There are problems in using it at a production level because the number of steps increases and it tends to become a source of dust. Regarding the improvement of the pattern shape of single-layer resist, for conventional photoresists etc., ■ Far ultraviolet irradiation [for example, Suga et al., Journal of Vacuum Science and Technology (J, Vac, Sci, Technol, ) Vol.
Volume 6, page 366 (1988)], ■ Soaking process [
For example, Ogawa et al., Microprocess Conference,
(Tokyo, 1988), p. 164], ■ forming an insoluble layer on the surface [e.g., Ogawa et al., Micro Process Conference, (Tokyo, 1988), p. 86], etc. has been reported.

通常のレジスト材料は、芳香族置換基を有するだめに、
遠紫外線領域を強く吸収する。電子線描画の前若しくは
後に遠紫外線を照射する方法は、レジストの表面のみを
感光させて、レジスト表面に難溶化層を形成するもので
ある。ソーキング処理を行う方法では、アルカリ現像型
のレジストをアルカリ水溶液やクロロベンゼン等の溶媒
に浸漬して、レジスト膜表面を変性させて難溶化層を形
成するものである。表面に不溶層を塗布形成する方法は
、例えば、ポリメチルペンテンスルホン(PMPS)を
薄くレジスト表面に塗布して、2層レジスト構成とし、
電子線描画部はPMPSの自己現像を利用し、未描画部
は残存したPMPSが現像液に対して不溶層となって機
能する。
Ordinary resist materials have aromatic substituents,
Strongly absorbs deep ultraviolet light. The method of irradiating far ultraviolet rays before or after electron beam lithography exposes only the surface of the resist to form a hardly soluble layer on the resist surface. In the soaking method, an alkali-developable resist is immersed in a solvent such as an alkaline aqueous solution or chlorobenzene to modify the resist film surface and form a hardly soluble layer. A method of coating and forming an insoluble layer on the surface is, for example, by coating a thin layer of polymethylpentene sulfone (PMPS) on the resist surface to form a two-layer resist structure.
The electron beam drawing section utilizes self-development of PMPS, and the remaining PMPS functions in the undrawn section as an insoluble layer in the developer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これらの表面難溶層形成処理法は、パタン形状の改良の
点及び解像性の向上の点で、未処理のものと比較すると
改善が認められる。しかし、パタン断面の中央部が窪む
ことか多く、必ずしも基板加工に適したパタン形状を有
しているとはいえなかった。
These surface hardly soluble layer forming treatment methods are found to be improved in terms of pattern shape improvement and resolution improvement when compared to untreated materials. However, the central part of the pattern cross section is often depressed, and it cannot be said that the pattern shape is necessarily suitable for substrate processing.

本発明の目的は、電子線の直接描画におけるパタン形状
の改良と高解像性を達成するための、パタン形成材料と
パタン形成方法を提供することにある。
An object of the present invention is to provide a pattern forming material and a pattern forming method for achieving improved pattern shape and high resolution in direct electron beam writing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明の第1の発明はパタン形成
方法に関する発明であって、ネガ型電子線レジストを用
いたパタン形成方法において、電子線描画の工程、該レ
ジスト塗布膜の吸光係数が0.5〜1,2μm−1であ
る波長領域の光を照射する工程、及び現像の工程の各工
程を包含することを特徴とする。
To summarize the present invention, the first aspect of the present invention relates to a pattern forming method, and the pattern forming method using a negative electron beam resist includes an electron beam drawing step, an extinction coefficient of the resist coating film, and a pattern forming method using a negative electron beam resist. It is characterized by including the steps of irradiating light in a wavelength range of 0.5 to 1.2 μm −1 and developing.

そして、本発明の第2の発明はレジスト材料に関する発
明であって、ノボラック樹脂若しくはp−ヒドロキシス
チレン樹脂、メラミン化合物、酸発生剤の3成分を必須
とし、第4成分として紫外線吸収剤を含んでも含まなく
てもよい、ネガ型電子線レジストにおいて、該レジスト
塗布膜の吸光係数が、248 nm、 254 nm、
 313om、365nm又は436 nmの紫外線に
対して、0.5〜1,2μm−1であることを特徴とす
る。
The second invention of the present invention relates to a resist material, which includes three essential components: a novolak resin or p-hydroxystyrene resin, a melamine compound, and an acid generator, and may also contain an ultraviolet absorber as a fourth component. In the negative electron beam resist which does not need to contain, the extinction coefficient of the resist coating film is 248 nm, 254 nm,
It is characterized in that it is 0.5 to 1.2 μm −1 for ultraviolet rays of 313 ohm, 365 nm or 436 nm.

本発明のパタン形成方法においては、上記3工程以外に
他の工程を付加してもよく、例えば、上記現像の工程の
前に熱処理を行ってもよい。
In the pattern forming method of the present invention, other steps may be added in addition to the above three steps, and for example, heat treatment may be performed before the above development step.

また、電子線描画工程と光照射工程は任意の順序で行っ
てよい。
Further, the electron beam drawing step and the light irradiation step may be performed in any order.

本発明は、電子線描画と光照射を同層のレジストに対し
て行うことにより、電子線描画によって潜像として形成
される蓄積エネルギープロファイルの形状を改善し、パ
タン形状の改善と解像性の向上を図るものである。
The present invention improves the shape of the stored energy profile formed as a latent image by electron beam lithography by performing electron beam lithography and light irradiation on the same layer of resist, thereby improving the pattern shape and resolution. This is intended to improve the quality of life.

レジスト膜内に入射した光は、ランバートベア式(1式
)に従って減衰する。
The light incident on the resist film is attenuated according to the Lambert-Beer equation (Equation 1).

I (d) ”IoX 10−”      (1)こ
こで、d=ニレジスト面からの深さ、I(d)深さdに
おける紫外線強度、■。=入射紫外線強度、ε−照射紫
外線に対するレジストの吸光係数、である。反射率−R
の基板を用い、レジスト膜厚−Tの場合、基板からの反
射光まで考慮すると、紫外線の膜厚方向の強度分布は2
式のように表せる。
I (d) "IoX 10-" (1) where d = depth from the resist surface, I (d) UV intensity at depth d, ■. = incident ultraviolet light intensity, ε - resist extinction coefficient for irradiated ultraviolet light. Reflectance-R
When using a substrate with a resist film thickness of -T, the intensity distribution of ultraviolet light in the film thickness direction is 2
It can be expressed as the formula.

I (d) −1o X  1O−ed十Rx 1. 
x 10G”2T)(2)深さdにおいてΔdのレジス
ト膜が、時間tの露光により吸収するエネルギー八Eは
3式のように表せる。
I (d) -1o X 1O-ed1Rx 1.
x 10G"2T) (2) The energy 8E absorbed by the resist film of Δd at depth d due to exposure for time t can be expressed as in equation 3.

△E= 2JO3xεxI(d)xtxΔd  (3)
従来の遠紫外線照射による表面難溶化法では、遠紫外線
に対するレジストの吸光係数が大きいために、遠紫外線
はレジスト膜厚方向で急峻に減衰し、レジスト表面近傍
のみが強く露光される。そのために、現像後のパタンは
レジスト表面が残り、パタン中央部が窪んだ、逆テーパ
状の形状になりやすい短所があった。一方、吸光係数が
小さい場合には、パタン形状の改善の効果は小さく、レ
ジスト膜底部まで露光されるために、カブリとして現わ
れやすい。2式及び3式をみるとわかるように、深さd
において与えられるエネルギーは、露光量のみならず吸
光係数の関数となっている。これは、レジストの吸光係
数を制御することにより、光エネルギーの吸収量を膜厚
方向で制御することができることを意味する。本発明者
らは、これを鋭意検討した結果、従来の表面難溶化処理
を包含する概念である、潜像プロファイルの形状改善と
いうことに気付き、本発明を完成するに到った。すなわ
ち、図1−aに示すような電子線描画による潜像の蓄積
エネルギープロファイルに、図1bに示すような紫外線
照射によるエネルギーを加えて、図1−cのように蓄積
エネルギープロファイルを改善し、図1−dに示すよう
な矩形のパタンを得るものである。
△E= 2JO3xεxI(d)xtxΔd (3)
In the conventional method of making the surface insoluble by irradiating far ultraviolet rays, since the resist has a large extinction coefficient for far ultraviolet rays, the far ultraviolet rays attenuate steeply in the direction of the resist film thickness, and only the vicinity of the resist surface is strongly exposed. For this reason, the resist surface remains on the pattern after development, and the pattern tends to have a reverse tapered shape with a depression in the center. On the other hand, when the extinction coefficient is small, the effect of improving the pattern shape is small and the bottom of the resist film is exposed, which tends to appear as fog. As you can see from equations 2 and 3, the depth d
The energy given in is a function not only of the exposure amount but also of the extinction coefficient. This means that by controlling the extinction coefficient of the resist, the amount of light energy absorbed can be controlled in the film thickness direction. As a result of intensive study, the inventors of the present invention realized that the concept of improving the shape of the latent image profile includes the conventional surface treatment to make the surface insoluble, and completed the present invention. That is, by adding energy from ultraviolet irradiation as shown in FIG. 1b to the accumulated energy profile of a latent image formed by electron beam lithography as shown in FIG. 1-a, the accumulated energy profile is improved as shown in FIG. 1-c. A rectangular pattern as shown in FIG. 1-d is obtained.

化学反応論的には以下のような光・放射線化学反応がレ
ジスト膜内で進むと考えられる。電子線レジスト中のネ
ガ化に寄与する感応性化合物あるいは感応基をSとする
。Sは、電子線照射により励起されたのち(4式)、化
学変化を起こし、レジストを架橋させる(5式)。レジ
ストが紫外部や遠紫外部に適当な吸収を持っていれば、
Sは紫外線や遠紫外線によっても励起されうる。
From a chemical reaction theory, it is thought that the following photo/radiation chemical reactions proceed within the resist film. Let S be a sensitive compound or a sensitive group that contributes to negativeization in the electron beam resist. After being excited by electron beam irradiation (formula 4), S causes a chemical change and crosslinks the resist (formula 5). If the resist has appropriate absorption in the ultraviolet and deep ultraviolet regions,
S can also be excited by ultraviolet or deep ultraviolet light.

もし、レジストが適当な吸収を持たない場合でも、適当
な分光増感剤を加えて、感光性を付与することができる
場合がある。このような場合は、まず、増感剤りが光に
より励起しく6式)励起した増感剤分子からエネルギー
移動してSを励起させる(7式)。
Even if the resist does not have appropriate absorption, it may be possible to impart photosensitivity by adding an appropriate spectral sensitizer. In such a case, first, the sensitizer is excited by light, and energy is transferred from the excited sensitizer molecule (Equation 6) to excite S (Equation 7).

光 D   →   D* (6) D”+S  → D十S”      (7)7式によ
って生成したS*は5式により、架橋を引起こす。ここ
でDは必ずしも電子線レジストに付加的に添加する材料
である必要はなく、電子線レジストに化学的に導入した
増感基であってもなんら差支えない。また、ここでDを
励起する光は、6式及び7式の反応を起こすことができ
るのであれば波長を限定するものではない。
Light D → D* (6) D"+S → D0S" (7) S* generated by formula 7 causes crosslinking according to formula 5. Here, D does not necessarily have to be a material additionally added to the electron beam resist, and may be a sensitizing group chemically introduced into the electron beam resist. Further, the wavelength of the light that excites D is not limited as long as it can cause the reactions of formulas 6 and 7.

電子線による蓄積エネルギープロファイルハ、電子線の
加速電圧、レジスト膜厚、基板の材質、レジストの組成
、等により変化する。そのために、光照射による潜像プ
ロファイルの形状改善には、それらの条件によって、最
適の吸光係数が異なる。シリコン基板を用い、加速電圧
30kV、膜厚−17μm、パタンルール0.8μmの
場合には、ε=0.7μm−1程度に調整すると、良好
なパタンを得ることができた。
The energy profile accumulated by the electron beam varies depending on the accelerating voltage of the electron beam, the thickness of the resist film, the material of the substrate, the composition of the resist, and the like. Therefore, the optimum extinction coefficient for improving the shape of the latent image profile by light irradiation differs depending on the conditions. When a silicon substrate was used, an accelerating voltage of 30 kV, a film thickness of -17 μm, and a pattern rule of 0.8 μm, a good pattern could be obtained by adjusting ε=0.7 μm−1.

また、膜厚1μmで、パタンルール−0,5μmの場合
には、ε=1゜2μm−1程度に調整すると良好なパタ
ンか得られた。本発明者らは鋭意検討した結果、描画条
件が種々に変化しても、εの最適値は0.5〜1.2μ
m−1の範囲の中にあり、εが最適値をとる場合には光
エネルギーはバラ1 ンスよく膜厚方向に分配され、パタン形状は良好になる
ことが判った。
Further, when the film thickness was 1 μm and the pattern rule was −0.5 μm, a good pattern was obtained by adjusting ε=1°2 μm−1. As a result of intensive study by the present inventors, the optimal value of ε is 0.5 to 1.2μ even if the writing conditions vary.
It was found that when ε is within the range of m-1 and takes the optimum value, the light energy is distributed in a well-balanced manner in the film thickness direction, and the pattern shape is good.

まず、本発明のパタン形成方法について簡単に説明する
。例えば、248nmの遠紫外部でε1μm−1を有す
るネガ型電子線レジストのクロロメチル化ポリスチレン
(CMS)を用いた場合、電子線描画したのちに、Kr
Pエキシマレザ等の適当な光源を用いて光照射すること
により、パタン形状の改善を図ることができる。
First, the pattern forming method of the present invention will be briefly explained. For example, when using chloromethylated polystyrene (CMS), a negative electron beam resist, which has ε1 μm−1 in the far ultraviolet region of 248 nm, after electron beam writing, Kr
By irradiating with light using a suitable light source such as P excimer laser, the pattern shape can be improved.

この際、光照射の工程を電子線描画の工程の先に行って
も後に行ってもよい。また、レジストを感光化させるた
めに、適当な増感剤を添加してもなんら差支えない。C
MSの例で述べれば、2540mにおけるεは0.2μ
m−1程度と小さいので、増感剤として例えばフェノチ
アジンを加え、ε=0.8μm−1と調整すれば、低圧
水銀灯等の適当な光源を用いて、パタン形状の改善を良
好に行うことができる。また、増感剤を添加する替りに
増感基を化学的にレジスト材料に導入してもよい。この
際、2式及び3式で示さ2 れるようなレジスト内での光エネルギーの分配を制御す
るために、露光源としてはなるべく波長幅の狭い光が望
ましく、そのような光源としては輝線やレーザあるいは
干渉フィルタ等で狭帯化した光がある。これは、現像工
程の前に熱処理工程を行う場合でも同様である。
At this time, the light irradiation step may be performed before or after the electron beam lithography step. Further, in order to sensitize the resist, there is no problem in adding a suitable sensitizer. C
Using the example of MS, ε at 2540m is 0.2μ
Since it is small, about m-1, for example, by adding phenothiazine as a sensitizer and adjusting ε = 0.8 μm-1, it is possible to improve the pattern shape using an appropriate light source such as a low-pressure mercury lamp. can. Furthermore, instead of adding a sensitizer, a sensitizing group may be chemically introduced into the resist material. At this time, in order to control the distribution of light energy within the resist as shown in Equations 2 and 3, it is desirable that the exposure source be light with a wavelength as narrow as possible, and such light sources include bright lines and lasers. Alternatively, there is light that has been narrowed by an interference filter or the like. This also applies when a heat treatment step is performed before the development step.

以下、本発明方法の1例について簡単に説明する。ノボ
ラック樹脂若しくはp−ヒドロキシスチレン樹脂、メラ
ミン化合物、酸発生剤からなるネガ型電子線レジストで
は、電子線照射により、酸発生剤が酸を生成し、これが
触媒となって、フェノール樹脂若しくはp9ヒドロキシ
スチレン樹脂とメラミン化合物が架橋してネガ化する。
An example of the method of the present invention will be briefly described below. In a negative electron beam resist consisting of a novolac resin or p-hydroxystyrene resin, a melamine compound, and an acid generator, the acid generator generates an acid by electron beam irradiation, which acts as a catalyst to generate an acid such as a phenol resin or p-hydroxystyrene. The resin and melamine compound crosslink and become negative.

通常、これらのレジスト材料では、遠紫外領域に強い吸
収を有するものの、240〜260 nm近傍で吸光度
が極小となる、窓の部分がある。典型的な場合、ノボラ
ック樹脂とメラミン化合物と酸発生剤からなるレジスト
材料は25Snm付近で、ε−0,4μm −1程度に
なる。
Usually, these resist materials have a strong absorption in the deep ultraviolet region, but there is a window portion where the absorbance is minimal in the vicinity of 240 to 260 nm. Typically, a resist material made of a novolak resin, a melamine compound, and an acid generator has a thickness of about ε-0.4 μm −1 at around 25 Snm.

この領域を光照射してもパタン改善の効果は小3 さい。しかし、248nmにおいては、ε=0.9μm
−1程度になるため、この波長域を光照射することによ
り、パタン形状の改善を図ることができる。また026
5mm近傍においてもε=0.8μm−1程度になるた
め同様な効果を得ることができる。また、p−ヒドロキ
シスチレン樹脂では、窓は248nm近傍になり、εは
0.2μm−1程度にまで小さくなる。しかし、265
nm近傍ではεが0,7μm−1程度にまで大きくな) るため、この波長域を光照射することにより、パタン形
状の改善を図ることができる。このように、この1例で
は、レジスト材料のεが0.5〜1.2μm lの範囲
の中にある最適値のところの波長域を選択的に光照射し
てパタン形状の改善を図るものである。なお、熱処理の
工程はネガ化反応を促進させるために行うものである。
Even if this area is irradiated with light, the effect of improving the pattern is small. However, at 248nm, ε=0.9μm
Since it is about -1, the pattern shape can be improved by irradiating light in this wavelength range. Also 026
Even in the vicinity of 5 mm, since ε=0.8 μm−1, a similar effect can be obtained. Furthermore, in the case of p-hydroxystyrene resin, the window is around 248 nm, and ε is as small as about 0.2 μm −1 . However, 265
Since ε increases to about 0.7 μm-1 in the vicinity of nm, the pattern shape can be improved by irradiating light in this wavelength range. In this way, in this example, the pattern shape is improved by selectively irradiating light in the wavelength range of the optimum value within the range of ε of the resist material from 0.5 to 1.2 μm l. It is. Note that the heat treatment step is performed to promote the negative conversion reaction.

本具体例においても、光照射工程は電子線描画工程の先
に行っても後に行ってもよい。
Also in this specific example, the light irradiation step may be performed before or after the electron beam lithography step.

以下、本発明のレジスト材料の1例、すなわち本発明の
第2の発明について簡単に説明する。
Hereinafter, one example of the resist material of the present invention, that is, the second invention of the present invention will be briefly described.

4 基板全面を均一に光照射するために適当な出力を有する
ような光源はあまり多くない。本発明では、特定の波長
に対してεが0.5〜1.2μm−1になるように、材
料を調製するものである。ここで、特定の波長とは、2
48 nm (KrFエキシマレーザ)若しくは254
 nm (低圧水銀灯の輝線)若しくは313nm(高
圧水銀灯の輝線)若しくは365 nm (超高圧水銀
灯の輝線)若しくは436nm(超高圧水銀灯の輝線)
とした。ノボラック樹脂やp−ヒドロキシスチレン樹脂
は合成方法や異性体の混合比等により吸光係数を調整す
ることができる。また、適当な増感剤を添加して吸光係
数を調整してもよい。増感剤は、混合してレジスト塗布
膜を形成した際に相溶する材料であれば、特定されるも
のではない。
4. There are not many light sources that have an appropriate output for uniformly irradiating the entire surface of the substrate. In the present invention, the material is prepared so that ε is 0.5 to 1.2 μm −1 for a specific wavelength. Here, the specific wavelength is 2
48 nm (KrF excimer laser) or 254
nm (bright line of low pressure mercury lamp) or 313 nm (bright line of high pressure mercury lamp) or 365 nm (bright line of ultra high pressure mercury lamp) or 436 nm (bright line of ultra high pressure mercury lamp)
And so. The extinction coefficient of novolak resin and p-hydroxystyrene resin can be adjusted by the synthesis method, the mixing ratio of isomers, etc. Furthermore, the extinction coefficient may be adjusted by adding a suitable sensitizer. The sensitizer is not specified as long as it is a compatible material when mixed to form a resist coating film.

前記第2の発明のレジスト材料を用いるパタン形成方法
の1例では、電子線をパタン状に描画する工程、εを0
.5〜1.2μ「1に調整した波長域の光を基板全面に
照射する工程、熱処理工程、現像工程、により行われる
。当該方法に5 おいても、光照射工程は電子線描画工程の先に行っても
後に行ってもよい。
In one example of a pattern forming method using the resist material of the second invention, in the step of drawing an electron beam in a pattern, ε is set to 0.
.. This is carried out by irradiating the entire surface of the substrate with light in the wavelength range adjusted to 5 to 1.2μ, a heat treatment step, and a development step. You can go before or after.

〔実施例〕〔Example〕

以下、本発明を実施例により、更に具体的に説明するが
、本発明はこれら実施例に限定されない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例I CMSをクロロベンゼンに溶解させ、2μm厚の塗布膜
を形成した。248 nmにおける吸光係数は1.0μ
m−1であった。
Example I CMS was dissolved in chlorobenzene to form a coating film with a thickness of 2 μm. Extinction coefficient at 248 nm is 1.0μ
It was m-1.

加速電圧−30kV、露光量= 3 μC/cm2で1
.0μmのライン&スペースのパタンを描画し、しかる
のちに、KrFエキシマレーザを用いて248nm光を
3 mJ/cm2照射した。メチルイソブチルケトン(
MIBK)で2分間現像し、パタンを得た。参照実験の
紫外線露光をしない試料と比較し、パタン断面形状の矩
形化と解像性の改善とが認められた。また、光照射と電
子線描画の順を変えて、先に光照射し、しかるのちに電
子線描画を行っても、同様なパタン形状の改6 善が言返められた。
1 at acceleration voltage -30kV, exposure amount = 3 μC/cm2
.. A line and space pattern of 0 μm was drawn, and then 248 nm light was irradiated at 3 mJ/cm 2 using a KrF excimer laser. Methyl isobutyl ketone (
MIBK) for 2 minutes to obtain a pattern. Compared to the sample in the reference experiment which was not exposed to ultraviolet light, it was observed that the cross-sectional shape of the pattern was rectangular and the resolution was improved. Furthermore, even when the order of light irradiation and electron beam writing was changed, and light irradiation was performed first and electron beam writing was performed afterwards, a similar improvement in pattern shape was observed.

実施例2 CMSをクロロベンゼンに溶解させ、フェノチアジンを
添加して、254nmの吸光係数が0.8μm−1にな
るようにフェノチアジンの量を調整した。このレジスト
をシリコン基板上にスピンコードし、85℃で2分間プ
リベークして、1.7μm厚の塗布膜を形成した。加速
電圧−30kV、露光量= 4 μC/cm2で0.8
μmのライン&スペースのパタンを描画し、しかるのち
に254 nm光を照射して、MIBKで現像した。
Example 2 CMS was dissolved in chlorobenzene, phenothiazine was added, and the amount of phenothiazine was adjusted so that the extinction coefficient at 254 nm was 0.8 μm −1 . This resist was spin-coded onto a silicon substrate and prebaked at 85° C. for 2 minutes to form a coating film with a thickness of 1.7 μm. Acceleration voltage -30kV, exposure amount = 4 μC/cm2, 0.8
A line and space pattern of μm was drawn, then irradiated with 254 nm light and developed with MIBK.

参照実験の紫外線露光をしない試料と比較し、パタン断
面形状の矩形化と解像性の改善とが認められた。
Compared to the sample in the reference experiment which was not exposed to ultraviolet light, it was observed that the cross-sectional shape of the pattern was rectangular and the resolution was improved.

実施例3 CMSのクロロメチル基と1−ピレンマグネシウムプロ
ミドを反応させてCMSにピレニル基を導入した。ピレ
ニル基の導入量は塗布膜1μm当り340nmの吸光度
が0.8になるように調整した。このレジストをシリコ
ン基板上にスフ ピンコートし、85℃で1分間プリベークして、1.5
μm厚の塗布膜を形成した。365 nm光を全面照射
し、しかるのちに、電子線で0.8μmのライン&スペ
ースのパタンを描画した。MIBKで2分間現像しパタ
ンを得た。参照実験の紫外線露光をしない試料と比較し
、パタン断面形状の矩形化と解像性の改善とが認められ
た。
Example 3 A pyrenyl group was introduced into CMS by reacting the chloromethyl group of CMS with 1-pyrenemagnesium bromide. The amount of pyrenyl group introduced was adjusted so that the absorbance at 340 nm was 0.8 per 1 μm of the coating film. This resist was coated with a quick pin on a silicon substrate, prebaked at 85°C for 1 minute, and
A coating film with a thickness of μm was formed. The entire surface was irradiated with 365 nm light, and then a 0.8 μm line and space pattern was drawn with an electron beam. A pattern was obtained by developing with MIBK for 2 minutes. Compared to the sample in the reference experiment which was not exposed to ultraviolet light, it was observed that the cross-sectional shape of the pattern was rectangular and the resolution was improved.

実施例4 ノボラック樹脂にジアジド化合物を感光剤として加えた
ネガ型レジストに、アニシルを添加し、1μm厚の塗布
膜当り313nmの吸収強度が1.2になるように、ア
ニシルの添加量を調整した。この組成のレジストをシリ
コン基板上にスピンコードし、85℃で2分間プリベー
クして1.0μm厚の塗布膜を形成した。加速電圧30
kV、il光量= 30 μC/cm2で0.6μmの
ライン&スペースのパタンを描画し、しかるのちに、3
13nmの光を照射した。3%のテトラメチルアンモニ
ウムヒドロキシド(TMAH)水溶液で現像し、パタン
を得た。参照実験の紫8 外線露光をしない試料と比較し、パタン断面形状の矩形
化と解像性の改善と力電忍められた。
Example 4 Anisyl was added to a negative resist prepared by adding a diazide compound to a novolac resin as a photosensitizer, and the amount of anisyl added was adjusted so that the absorption intensity at 313 nm was 1.2 per 1 μm thick coating film. . A resist having this composition was spin-coded onto a silicon substrate and prebaked at 85° C. for 2 minutes to form a coating film with a thickness of 1.0 μm. Accelerating voltage 30
Draw a 0.6 μm line and space pattern at kV, ill light intensity = 30 μC/cm2, and then
It was irradiated with 13 nm light. A pattern was obtained by developing with a 3% aqueous solution of tetramethylammonium hydroxide (TMAH). Compared to the purple 8 sample in the reference experiment that was not exposed to external radiation, the cross-sectional shape of the pattern was made rectangular, the resolution was improved, and the power was suppressed.

実施例5 ノボラック樹脂、メラミン化合物、酸発生剤の3成分か
らなるネガ型電子線レジストの248nmの吸光係数は
0.9μm−1であった。該レジストをシリコン基板上
にスピンコードし、85℃で2分間プリベークして、1
.2μm厚の塗布膜を形成した。加速電圧=30kV、
露光量4.8μC/cm2で0.6μmのライン&スペ
ースのパタンを描画し、しかるのちに、KrFエキシマ
レーザからの248nmの光を6 mJ/cm’照射し
た。
Example 5 The extinction coefficient at 248 nm of a negative electron beam resist consisting of three components: a novolac resin, a melamine compound, and an acid generator was 0.9 μm −1 . The resist was spin-coded onto a silicon substrate, prebaked at 85°C for 2 minutes, and then
.. A coating film with a thickness of 2 μm was formed. Acceleration voltage = 30kV,
A 0.6 μm line and space pattern was drawn at an exposure dose of 4.8 μC/cm 2 , and then 248 nm light from a KrF excimer laser was irradiated at 6 mJ/cm'.

105℃で2分間熱処理を行い、3%のTMAH水溶液
で現像した。参照実験の紫外線露光をしない試料と比較
し、パタン断面形状の矩形化と解像性の改善とが認めら
れた。
Heat treatment was performed at 105° C. for 2 minutes, and development was performed with a 3% TMAH aqueous solution. Compared to the sample in the reference experiment which was not exposed to ultraviolet light, it was observed that the cross-sectional shape of the pattern was rectangular and the resolution was improved.

実施例6 p−ヒドロキシスチレン樹脂、メラミン化合物、酸発生
剤の3成分からなるネガ型電子線レジストの265nm
における吸光係数は1.0μm 19 であった。該レジストをシリコン基板上にスピンコード
し、85℃で2分間プリベークして、1.0μm厚の塗
布膜を形成した。加速電圧30kVS露光量= 3.2
 μC7cm2で0.6μmのライン&スペースのパタ
ンを描画し、265nmの光を照射した。265nm光
は、キセノン−水銀灯からの遠紫外線を干渉フィルタを
用いて単色化して得た。105℃で2分間熱処理を行い
、3%のTMAH水溶液で現像した。参照実験の紫外線
露光をしない試料と比較し、パタン断面形状の矩形化と
解像性の改善とが認められた。
Example 6 265 nm negative electron beam resist consisting of three components: p-hydroxystyrene resin, melamine compound, and acid generator
The extinction coefficient at was 1.0 μm 19 . The resist was spin-coded onto a silicon substrate and prebaked at 85° C. for 2 minutes to form a coating film with a thickness of 1.0 μm. Acceleration voltage 30kVS exposure amount = 3.2
A line and space pattern of 0.6 μm was drawn using μC7cm 2 and irradiated with 265 nm light. The 265 nm light was obtained by monochromating far ultraviolet light from a xenon-mercury lamp using an interference filter. Heat treatment was performed at 105° C. for 2 minutes, and development was performed with a 3% TMAH aqueous solution. Compared to the sample in the reference experiment which was not exposed to ultraviolet light, it was observed that the cross-sectional shape of the pattern was rectangular and the resolution was improved.

実施例7 ノボラック樹脂、メラミン化合物、酸発生剤の3成分か
らなるネガ型電子線レジストにフェナジンを添加し、3
65 nmの吸光係数が0.5μm−1になるように、
フェナジンの添加量を調整した。この組成のレジストを
シリコン基板上にスピンコードし、85℃で2分間プリ
ベークして、2.0μm厚の塗布膜を形成した。加速電
圧−30kV、露光量−10μC7cm2で1.00 μmのライン&スペースのパタンを描画し、しかるのち
に、365nmの光を2.5 J 7cm”照射した。
Example 7 Phenazine was added to a negative electron beam resist consisting of three components: a novolak resin, a melamine compound, and an acid generator.
So that the extinction coefficient at 65 nm is 0.5 μm-1,
The amount of phenazine added was adjusted. A resist having this composition was spin-coded onto a silicon substrate and prebaked at 85° C. for 2 minutes to form a coating film with a thickness of 2.0 μm. A 1.00 μm line and space pattern was drawn at an accelerating voltage of −30 kV and an exposure amount of −10 μC 7 cm 2 , and then 2.5 J 7 cm” of 365 nm light was irradiated.

105℃で2分間熱処理を行った。3%のTMAH水溶
液で現像しパタンを得た。参照実験の紫外線露光をしな
い試料と比較し、パタン断面形状の矩形化と解像性の改
善とが認められた。
Heat treatment was performed at 105°C for 2 minutes. A pattern was obtained by developing with a 3% TMAH aqueous solution. Compared to the sample in the reference experiment which was not exposed to ultraviolet light, it was observed that the cross-sectional shape of the pattern was rectangular and the resolution was improved.

実施例8 SAL601ER7(シラプレー社)にアニシルを添加
し、313nmの吸光係数が1.2μm−1になるよう
に、アニシルの添加量を調整した。
Example 8 Anisyl was added to SAL601ER7 (Silapray), and the amount of anisyl added was adjusted so that the extinction coefficient at 313 nm was 1.2 μm −1 .

この組成のレジストをシリコン基板上にスピンコードし
、85℃で2分間プリベークして、0.8μm厚の塗布
膜を形成した。加速電圧30kV、露光量= 10 μ
C7cm”で0.4μmのライン&スペースのパタンを
描画し、しかるのちに、313nmの光を照射した。1
05℃で2分間熱処理を行った。3%のTMAR水溶液
で現像しパタンを得た。参照実験の紫外線露光をしない
試料と比較し、パタン断面形状の矩形化1 と解像性の改善とが認められた。
A resist having this composition was spin-coded onto a silicon substrate and prebaked at 85° C. for 2 minutes to form a coating film with a thickness of 0.8 μm. Acceleration voltage 30kV, exposure amount = 10μ
A 0.4 μm line and space pattern was drawn with C7 cm”, and then 313 nm light was irradiated.1
Heat treatment was performed at 05°C for 2 minutes. A pattern was obtained by developing with a 3% TMAR aqueous solution. Compared to the sample in the reference experiment which was not exposed to ultraviolet rays, rectangularization of the cross-sectional shape of the pattern1 and improvement of resolution were observed.

実施例9 ノボラック樹脂、メラミン化合物、酸発生剤の3成分か
らなるネガ型電子線レジスト材料を用いた。ノボラック
樹脂のクレゾール異性体混合比の調整により、該レジス
ト材料の254 nmにおける吸光係数を0.7μm 
暑にした。塗布溶媒として酢酸2−エトキシエチルを用
いて、該レジストをシリコン基板上にスピンコードし、
85℃で2分間プリベークして、1.7μm厚の塗布膜
を形成した。加速電圧=30kV、ji光量−4μC/
cm2で0.8μmのライン&スペースのパタンを描画
し、しかるのちに、254 nmの光を6 mJ/cm
2照射した。105℃で熱処理を行ったのち、3%のT
MAH水溶液で現像し、ネガ型パタンを得た。参照実験
の紫外線露光をしない試料と比較し、パタン断面形状の
矩形化と解像性の改善とが認められた。また、光照射と
電子線描画の順を変えて、先に光照射し、しかるのちに
電子線描画を行っても、同様なパタン2 形状の改善が認められた。
Example 9 A negative electron beam resist material consisting of three components: a novolak resin, a melamine compound, and an acid generator was used. By adjusting the mixing ratio of cresol isomers in the novolak resin, the extinction coefficient at 254 nm of the resist material was adjusted to 0.7 μm.
It was hot. spin-coding the resist onto a silicon substrate using 2-ethoxyethyl acetate as a coating solvent;
Prebaking was performed at 85° C. for 2 minutes to form a coating film with a thickness of 1.7 μm. Accelerating voltage = 30kV, ji light amount -4μC/
Draw a line and space pattern of 0.8 μm in cm2, and then apply 254 nm light at 6 mJ/cm.
2 irradiations were performed. After heat treatment at 105℃, 3% T
It was developed with an MAH aqueous solution to obtain a negative pattern. Compared to the sample in the reference experiment which was not exposed to ultraviolet light, it was observed that the cross-sectional shape of the pattern was rectangular and the resolution was improved. Further, even when the order of light irradiation and electron beam drawing was changed, and light irradiation was performed first and electron beam drawing was performed afterwards, a similar improvement in the pattern 2 shape was observed.

実施例10 SAL601ER7(シラプレー社)は254 nmの
吸光係数が0.4μm−1であった。このSALにフェ
ノチアジンを添加し、吸光係数を0.7μm−1に調整
した。これをシリコン基板上にスピンコードし、85℃
で2分間プリベークして、1.7μm厚の塗布膜を形成
した。加速電圧−30kVXi光量−3,5μC7cm
2で0.8μmのライン&スペースのパタンを描画し、
しかるのちに、254 nmの光を5 mJ/cm2照
射した。
Example 10 SAL601ER7 (Silapray) had an extinction coefficient of 0.4 μm −1 at 254 nm. Phenothiazine was added to this SAL to adjust the extinction coefficient to 0.7 μm-1. This was spin-coded onto a silicon substrate and heated to 85°C.
This was prebaked for 2 minutes to form a coating film with a thickness of 1.7 μm. Acceleration voltage - 30kVXi Light intensity - 3.5μC 7cm
2 to draw a 0.8 μm line and space pattern,
Thereafter, 254 nm light was irradiated at 5 mJ/cm2.

105℃で熱処理を行い、MF622現像液で20分間
現像しパタンを得た。参照実験の紫外線露光をしない試
料と比較し、パタン断面形状の矩形化と解像性の改善と
が認められた。紫外線吸収剤としてフェノチアジンの代
りに、2ニトロナフトール、2−メトキシフェノチアジ
ン、フェナジン、ピレン、を用いても、同様なパタン形
状の改善が認められた。
A heat treatment was performed at 105° C., and a pattern was obtained by developing with MF622 developer for 20 minutes. Compared to the sample in the reference experiment which was not exposed to ultraviolet light, it was observed that the cross-sectional shape of the pattern was rectangular and the resolution was improved. A similar improvement in pattern shape was observed when 2-nitronaphthol, 2-methoxyphenothiazine, phenazine, or pyrene was used instead of phenothiazine as the ultraviolet absorber.

実施例11 3 p−ヒドロキシスチレン樹脂、メチロールメラミン、酸
発生剤の3成分からなるレジスト材料を調製したところ
、248nmの吸光度が塗布膜1μm当り、0.25で
あった。この材料にフェノチアジンを添加し、塗布膜1
μm当りの吸光度を0.6に調整した。これをシリコン
基板上にスピンコードし、85℃で2分間プリベークし
て、2.0μm厚の塗布膜を形成した。加速電圧=30
kV、露光量= 6 μC7cm2で1.0μmのライ
ン&スペースのパタンを描画し、しかるのちに、248
nmの光を6 mJ/cm”照射した。
Example 11 A resist material consisting of three components: p-hydroxystyrene resin, methylolmelamine, and acid generator was prepared, and the absorbance at 248 nm was 0.25 per μm of coated film. By adding phenothiazine to this material, coating film 1
The absorbance per μm was adjusted to 0.6. This was spin-coded onto a silicon substrate and prebaked at 85° C. for 2 minutes to form a coating film with a thickness of 2.0 μm. Acceleration voltage = 30
kV, exposure amount = 6 μC 7 cm2 to draw a 1.0 μm line and space pattern, then 248
6 mJ/cm'' of light was irradiated.

105℃で熱処理を行い増感した。TMAHの0.8%
水溶液で10分間現像しパタンを得た。
It was sensitized by heat treatment at 105°C. 0.8% of TMAH
A pattern was obtained by developing with an aqueous solution for 10 minutes.

参照実験の紫外線露光をしない試料と比較し、パタン断
面形状の矩形化と解像性の改善とが認められた。フェノ
チアジンの代りに、ノボラック樹脂、アニシル、2−ニ
トロナフトール、2メトキシフエノチアジン、フェナジ
ン、ピレン、等を用いても、248nmの吸光度を調節
することができ、フェノチアジンの場合と同様なパタン
形状の改善が認められた。
Compared to the sample in the reference experiment which was not exposed to ultraviolet light, it was observed that the cross-sectional shape of the pattern was rectangular and the resolution was improved. Even if novolak resin, anisyl, 2-nitronaphthol, 2methoxyphenothiazine, phenazine, pyrene, etc. are used instead of phenothiazine, the absorbance at 248 nm can be adjusted, and a pattern shape similar to that of phenothiazine can be obtained. Improvement was observed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明により、電子線描画技術に
よって形成する微細パタンの形状の改善を行うことがで
き、半導体素子製造において有用である。
As described above, according to the present invention, it is possible to improve the shape of a fine pattern formed by electron beam drawing technology, and this invention is useful in semiconductor device manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

図1−aは電子線描画によってレジスト膜内申に潜像と
して形成される蓄積エネルギー等高線を示す模式図、図
1−bは紫外線全面照射によってレジスト膜内申に潜像
として形成される蓄積エネルギー等高線を示す模式図、
図1−cは電子線描画と紫外線全面照射の併用によって
レジスト膜内申に潜像として形成される蓄積エネルギー
等高線を示す模式図、図1−dはレジストパタンの断面
形状を示す模式図、図2は従来のパタン形成方法で形成
されたレジストパタンの断面形状を示す模式図である。 5 レジ′ストノでタレ −78− 図 /−C 図
Figure 1-a is a schematic diagram showing the stored energy contour lines formed as a latent image on the resist film by electron beam lithography, and Figure 1-b is a schematic diagram showing the stored energy contour lines formed as a latent image on the resist film by full-surface irradiation with ultraviolet rays. Schematic diagram showing,
FIG. 1-c is a schematic diagram showing the accumulated energy contour lines formed as a latent image in the resist film by a combination of electron beam lithography and full-surface ultraviolet irradiation, FIG. 1-d is a schematic diagram showing the cross-sectional shape of the resist pattern, and FIG. 1 is a schematic diagram showing a cross-sectional shape of a resist pattern formed by a conventional pattern forming method. 5 Sauce at the register -78- Figure/-C Figure

Claims (1)

【特許請求の範囲】 1、ネガ型電子線レジストを用いたパタン形成方法にお
いて、電子線描画の工程、該レジスト塗布膜の吸光係数
が0.5〜1.2μm^−^1である波長領域の光を照
射する工程、及び現像の工程の各工程を包含することを
特徴とするパタン形成方法。 2、ノボラック樹脂若しくはp−ヒドロキシスチレン樹
脂、メラミン化合物、酸発生剤の3成分を必須とし、第
4成分として紫外線吸収剤を含んでも含まなくてもよい
、ネガ型電子線レジストにおいて、該レジスト塗布膜の
吸光係数が、248nm、254nm、313nm、3
65nm又は436nmの紫外線に対して、0.5〜1
.2μm^−^1であることを特徴とするレジスト材料
[Scope of Claims] 1. In a pattern forming method using a negative electron beam resist, in the step of electron beam drawing, a wavelength range in which the extinction coefficient of the resist coating film is 0.5 to 1.2 μm^-^1 1. A pattern forming method comprising the steps of irradiating with light and developing. 2. In a negative electron beam resist that requires three components: a novolac resin or p-hydroxystyrene resin, a melamine compound, and an acid generator, and may or may not contain an ultraviolet absorber as a fourth component, resist coating. The extinction coefficient of the film is 248 nm, 254 nm, 313 nm, 3
0.5 to 1 for ultraviolet rays of 65 nm or 436 nm
.. A resist material characterized by having a thickness of 2 μm^-^1.
JP2075673A 1990-03-27 1990-03-27 Pattern forming material and pattern forming method Pending JPH03276713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075673A JPH03276713A (en) 1990-03-27 1990-03-27 Pattern forming material and pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075673A JPH03276713A (en) 1990-03-27 1990-03-27 Pattern forming material and pattern forming method

Publications (1)

Publication Number Publication Date
JPH03276713A true JPH03276713A (en) 1991-12-06

Family

ID=13582956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075673A Pending JPH03276713A (en) 1990-03-27 1990-03-27 Pattern forming material and pattern forming method

Country Status (1)

Country Link
JP (1) JPH03276713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063860A1 (en) * 2014-10-23 2016-04-28 東京エレクトロン株式会社 Board processing method, computer storage medium, and board processing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063860A1 (en) * 2014-10-23 2016-04-28 東京エレクトロン株式会社 Board processing method, computer storage medium, and board processing system
JP2016086042A (en) * 2014-10-23 2016-05-19 東京エレクトロン株式会社 Substrate processing method, program, computer storage medium, and substrate processing system

Similar Documents

Publication Publication Date Title
JP7009568B2 (en) Photosensitivity Chemical Amplification Resist Methods and Techniques Using Chemicals and Processes
JP6909374B2 (en) Limit dimensional control using photosensitizing chemistry or photosensitive chemically amplified resist
Mimura et al. Deep-UV photolithography
JPH07261393A (en) Negative resist composition
US5266424A (en) Method of forming pattern and method of manufacturing photomask using such method
JPH05205989A (en) Lithography method and manufacture of semiconductor device
TW201923828A (en) Methods for sensitizing photoresist using flood exposures
US5015559A (en) Process for forming a fine resist pattern
KR910007315B1 (en) Method of forming fine resist pattem in electro beam or x-ray lithography
JP3373748B2 (en) Method for manufacturing semiconductor device
JPH03276713A (en) Pattern forming material and pattern forming method
US11994804B2 (en) Lithography apparatus, patterning system, and method of patterning a layered structure
JPH0786127A (en) Formation of resist pattern
JP2553545B2 (en) Pattern forming method
JPH07106235A (en) Formation of pattern
JPH01231039A (en) Material for photodecolorizable layer and method for forming pattern by using same
KR100329716B1 (en) High resolution lithography method
JPH05136026A (en) Pattern forming method
JP2653072B2 (en) Pattern formation method
EP1148388A1 (en) Pattern formation material and pattern formation method
JPS63304250A (en) Formation of fine resist pattern
KR20210099692A (en) Photoresist composition, photolithography method using the same, and method of manufacturing semiconductor device using the same
JPH03146954A (en) Resist pattern forming method
KR100546110B1 (en) Photoresist Crosslinking Agent and Photoresist Composition Containing the Same
JP2002006506A (en) Undercoating resin composition and method for manufacturing resist image using the same