WO2016061880A1 - 一种多探头近场天线测试系统 - Google Patents
一种多探头近场天线测试系统 Download PDFInfo
- Publication number
- WO2016061880A1 WO2016061880A1 PCT/CN2014/093412 CN2014093412W WO2016061880A1 WO 2016061880 A1 WO2016061880 A1 WO 2016061880A1 CN 2014093412 W CN2014093412 W CN 2014093412W WO 2016061880 A1 WO2016061880 A1 WO 2016061880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- probe
- field antenna
- testing system
- arch ring
- turntable
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/10—Radiation diagrams of antennas
Definitions
- the present invention relates to an antenna test system, and more particularly to a multi-probe near-field antenna test system for antenna active and passive testing.
- the antenna under test In a traditional single-probe antenna test system, the antenna under test must be rotated two-dimensionally before a single probe to ensure that the field surrounding the antenna under test is on a spherical surface. Since this two-dimensional rotation takes a lot of time, the single probe test system is inefficient, and at the same time, the test time is longer. Moreover, the probability of occurrence of test problems caused by external factors such as environmental changes and instrument instability is higher.
- the object of the present invention is to provide a multi-probe near-field antenna test system, which adopts a dual-polarized ultra-wideband multi-probe array.
- the invention solves the problem that the traditional single probe test system has long test time due to the two-dimensional rotation of the object to be tested, the test efficiency is low, and the test is susceptible to the environment and the instrument.
- a multi-probe near-field antenna test system including a test system software carrier, and a test system software carrier connected by an active switching device a multi-probe near-field antenna testing device
- the multi-probe near-field antenna testing device comprises a base, a metal arch ring fixed on the base, and a plurality of dual-polarized super-distributed uniformly arranged at an angle interval inside the metal arch ring Broadband broadband characteristics of the probe and the foam pole, the lower end of the foam pole is connected to the goniometer through the metal arch ring, the upper end of the foam pole is placed on the stage, and the stage can carry the object to be tested so that the object to be tested is in the metal arch ring
- a probe selection unit connected to the probe is disposed in the metal arch ring
- the base is provided with an interconnecting control device, a power module, a receiving amplifier, a transmitting amplifier and a transmission switching device.
- test system software carrier is connected to the active switching device via a vector network analyzer or a wireless communication device.
- the inner side of the metal arch ring is provided with absorbing cotton, and the absorbing cotton integrally wraps the metal arch ring, and the probes respectively protrude from the opening of the absorbing cotton and are directed to the center position of the metal arch ring.
- the goniometer comprises a guide rail, a turntable arranged on the guide rail, a rotary motor connected to the turntable and a moving motor, and the rotary motor is connected with the inner core of the turntable to drive the turntable to rotate in a horizontal plane; the moving motor is connected with the turntable housing to drive the turntable on the guide rail Doing left and right movement, the foam pole is connected to the turntable.
- the guide rail has a curved surface shape, and the movement can be converted into a rotation of the object to be measured in a plane perpendicular to the horizontal plane when the turntable moves left and right.
- the left and right edge positions of the guide rail are respectively provided with a turntable abnormality trigger switch.
- the probe switching unit described above is a plurality of multi-channel high-speed electronic switches, and the corresponding probes and polarizations can be selected by controlling multiple high-speed electronic switches to open and close different paths.
- the probe switching unit and the probe are connected by a radio frequency coaxial cable.
- the above transmission switching device is a controllable electronic switch.
- the multi-probe near-field antenna test system of the present invention is A dual-polarized ultra-wideband probe array that surrounds the object to be measured 360 degrees around the object to be measured, and replaces the slow mechanical scan by fast electronic scanning.
- the object to be tested only needs one-dimensional rotation to determine the field surrounding a spherical surface of the antenna under test.
- the test efficiency can theoretically increase by more than 40 times.
- the multi-probe near-field antenna test system of the present invention has 2208 sample points for the field description of the object to be tested. This process requires the rotation position of the turntable to change twice, and the turntable angle of each turntable is rotated 11 times.
- the traditional single-probe test system needs to rotate the object under test and rotate the probe a total of 2208 times.
- the present invention significantly improves test efficiency.
- the multi-probe near-field antenna test system of the invention has high test efficiency without sacrificing sampling accuracy. Test accuracy has significant advantages.
- the traditional single-probe test system often needs to manually switch different instruments when performing different tests.
- the multi-probe near-field antenna test system of the invention does not need to manually switch the test instruments, automatically switches the instruments, and the operation convenience is obviously improved.
- FIG. 1 is a structural diagram of a multi-probe near-field antenna testing device of the present invention
- Figure 2 is a front view of the goniometer of the present invention.
- Figure 3 is a perspective structural view of the goniometer of the present invention.
- Figure 4 is a structural view of a first embodiment of the stage of the present invention.
- Figure 5 is a structural view of a second embodiment of the stage of the present invention.
- Figure 6 is a block diagram of the system structure of the present invention.
- a multi-probe near-field antenna test system includes a test system software carrier (not shown), and a plurality of multi-probe near-field antennas connected to the test system software carrier via active switching devices. Test Equipment.
- the test system software carrier is first connected to the active switching device via a vector network analyzer or wireless communication device.
- the multi-probe near-field antenna testing device comprises a base 6, a metal arch ring fixed on the base 6 via the bracket 2, and a plurality of probes with dual-polarized ultra-wideband characteristics uniformly distributed at an angular interval inside the metal arch ring 1. 4 and foam pole 5.
- the metal arch 1 is a ring formed by splicing four parts.
- the inside of the metal arch ring 1 is provided with a absorbing cotton 3, and the absorbing cotton 3 wraps the metal arch ring 1 integrally, and the probe 4 respectively protrudes from the opening of the absorbing cotton 3 and points to the center position of the metal arch ring 1.
- the metal arch ring 1 is provided with a probe selection unit connected to the probe.
- the probe switching unit is a plurality of multi-channel high-speed electronic switches.
- the corresponding probe 4 and polarization can be selected by controlling multiple high-speed electronic switches to open and close different paths.
- the probe switching unit and the probe 4 are connected by a radio frequency coaxial cable.
- the lower end of the foam holding rod 5 is connected to the goniometer 7 through the metal arch ring 1.
- the upper end of the foam holding rod 5 is placed on the stage, and the stage can carry the object to be tested so that the object to be tested is at the center of the metal arch ring 1.
- the stage can be cylindrical (as shown in FIG. 4) or hemispherical (as shown in FIG. 5)).
- the goniometer 7 includes a guide rail 10, a turntable 11 provided on the guide rail 10, a rotary electric machine 12 connected to the turntable 11, and a moving motor 8.
- the turntable 11 includes an inner core and an outer casing, the inner core can be rotated in a horizontal plane, and the outer casing is fixed to the guide rail 10
- the upper part can be moved to the left and right, and the rotating electric machine 12 is connected to the inner core of the turntable 11 to drive the turntable 11 to rotate in the horizontal plane.
- the moving motor 8 is connected to the outer casing of the turntable 11 to drive the turntable 11 to move left and right on the guide rail 10.
- the foam pole 5 is connected to the turret of the goniometer 7.
- the guide rail 10 has a curved surface shape, and this movement can be converted into a rotation of the object to be measured in a plane perpendicular to the horizontal plane when the turntable 11 is moved left and right.
- the left and right edge positions of the guide rail 10 are also respectively provided with an abnormal touch of the turntable
- the switch 9 will trigger the trigger switch 9 if the rotation of the turntable 11 is too large for a special reason, and the motor will be stopped urgently to avoid damage caused by the bumper hitting other components.
- the base 6 is provided with interconnecting control devices, power modules, receiving amplifiers, transmitting amplifiers, and transmission switching devices.
- the test system software carrier is an ordinary PC.
- the vector network analyzer and radio communicator are connected to the test system software carrier through a standard interface (supporting GPIB and network port), and are connected to the active switching device through a radio frequency interface.
- the active switching device connects the amplifier through the RF cable and the transmitting amplifier to achieve different test contents.
- the control device is connected to the test system software carrier and is controlled by the test system software carrier. The main function of the control device is to convert the commands issued by the software into logic level control high speed switches.
- the control device is connected to the transmission switching device, the probe selection unit, the active switching device, and controls the transmission switching device to switch the transmitting and receiving paths, the probe selection unit high-speed switch and the switching probe, and the active switching device to switch different multi-probe near-field antenna testing devices .
- the control unit also controls the rotation of the motor.
- the transmission switching device transmits the switching command issued by the software to the active switching device or the like, and transmits the motor control command issued by the software to the motor.
- the transmission switching device is a controllable electronic switch.
- the function of the vector network analyzer is to implement passive measurement, and the equipment produced by Agilent Technologies Co., Ltd. can be selected, and the equipment equipped with other GPIB interfaces can also be selected; the function of the radio communication device is to realize active measurement. , you can choose the equipment produced by Agilent Technologies Co., Ltd., or you can choose equipment made by other companies equipped with GPIB interface or network port;
- the workflow is: the computer running the system test software runs the test software, and all the instructions are for the instrument and the control device.
- the control device controls the active switching device to select the corresponding instrument to connect to the system.
- the control device controls the transmission switching device to select the phase-to-call transmission direction.
- the test system test software is started to send each instruction of the test process to the control device and the instrument to control the test process. After the test process, the system test software calculates the corresponding test knot. fruit.
- the test system software carrier runs the test software, and the control system hardware scans in the space of 3 to 10 wavelength range.
- the scan results are discrete points. These discrete values contain amplitude and phase values that form a description of the near-field signal amplitude and phase distribution.
- the computational part of the test software uses a strict mode expansion theory to obtain a description of the far field surrounding the object space. This description of the far field includes information such as TRP, TIS, efficiency, gain, and direction.
- the present invention uses a near-field measurement technique of spherical scanning, and the measured raw data is a spherical distribution description of the near-field amplitude and phase of the signal.
- the multi-probe near-field antenna test system of the present invention sets a double-polarized ultra-wideband probe array that surrounds the object to be measured 360 degrees around the object to be tested, and replaces the slow mechanical scan by fast electronic scanning.
- the object to be tested only needs one-dimensional rotation to determine the field surrounding a spherical surface of the antenna under test.
- the test efficiency can theoretically increase by more than 40 times.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
一种多探头近场天线测试系统,包括测试系统软件载体、与测试系统软件载体经有源切换装置连接的多个多探头近场天线测试设备,多探头近场天线测试设备包括底座、固定在底座上的金属拱环、设于金属拱环内侧按一定角度间隔均匀分布的多个具有双极化超宽带宽带特性的探头和泡沫抱杆,泡沫抱杆下端穿过金属拱环与测角器连接,泡沫抱杆上端放置载物台,载物台可承载被测物使被测物处于金属拱环中心位置,所述金属拱环内设有与探头连接的探头选择单元,底座内设置有相互连接的控制装置、电源模块、接收放大器、发射放大器和传输切换装置。该多探头近场天线测试系统在被测物外围设360度包围被测物的双极化超宽带探头阵列,通过快速电子扫描代替慢速机械扫描。被测物仅需要一维旋转即可确定包围该被测天线的一个球面上的场。测试效率理论上可提高40倍以上。
Description
本发明涉及天线测试系统,更具体地说,涉及一种天线有源和无源测试的多探头近场天线测试系统。
移动通信的迅猛发展推动了天线的研发工作,国内出现了一些年产天线达到几百万台、品种达到数百种之多的企业。天线测试的速度已经成为企业研发工作进程的瓶颈。
传统的单探头天线测试系统,测试中被测天线必须在一个单探头前二维旋转,以确保包围该被测天线在一个球面上的场。由于这种二维旋转需要耗费大量时间,导致单探头测试系统测试效率低下,同时,测试时间越长。而且由环境变化,仪器不稳定性等外在因素导致的测试问题发生的概率越高。
发明内容
本发明的目的在于,提供一种多探头近场天线测试系统,采用双极化超宽带多探头阵列,测试时仅需要被测天线进行一维180度旋转,测试效率大大提升。本发明解决了传统单探头测试系统由于被测物要进行二维旋转导致的测试时间长,测试效率低,测试易受环境和仪器影响的问题。
本发明解决其技术问题所采用的技术方案如下所述:一种多探头近场天线测试系统,包括测试系统软件载体、与测试系统软件载体经有源切换装置连接的多
个多探头近场天线测试设备,所述多探头近场天线测试设备包括底座、固定在底座上的金属拱环、设于金属拱环内侧按一定角度间隔均匀分布的多个具有双极化超宽带宽带特性的探头和泡沫抱杆,泡沫抱杆下端穿过金属拱环与测角器连接,泡沫抱杆上端放置载物台,载物台可承载被测物使被测物处于金属拱环中心位置,所述金属拱环内设有与探头连接的探头选择单元,所述底座内设置有相互连接的控制装置、电源模块、接收放大器、发射放大器和传输切换装置。
上述测试系统软件载体经矢量网络分析仪或无线通讯仪与有源切换装置连接。
上述金属拱环内侧设有吸波棉,吸波棉将金属拱环整体包裹,所述探头分别从吸波棉开孔处伸出并指向金属拱环中心位置。
上述测角器包括导轨、设于导轨上的转台、与转台连接的旋转电机和移动电机,旋转电机与转台内芯连接,带动转台在水平面旋转;移动电机与转台外壳连接,带动转台在导轨上做左右移动,所述泡沫抱杆与转台连接。
根据上述技术方案,作为优选,所述导轨为弧面状,可使转台左右移动时将这种移动转换成被测物在垂直于水平面的平面旋转。
根据上述技术方案,作为优选,所述导轨的左右边缘位置分别设有转台异常触发开关。
上述的探头切换单元为多个多路高速电子开关,通过控制多路高速电子开关打开、关闭不同通路可以选择相应的探头以及极化。
上述探头切换单元和探头通过射频同轴线缆连接。
上述传输切换装置为可控的电子开关。
根据上述结构的本发明,其有益效果在于,本发明多探头近场天线测试系统
在被测物外围设360度包围被测物的双极化超宽带探头阵列,通过快速电子扫描代替慢速机械扫描。被测物仅需要一维旋转即可确定包围该被测天线的一个球面上的场。测试效率理论上可提高40倍以上。
本发明多探头近场天线测试系统对被测物的场描述采样点数为2208个。此过程需要转台转动位置变动2次,每个转台位置转台角度转动11次。传统的单探头测试系统则需要转动被测物,转动探头共2208次。本发明显著提升了测试效率。
传统的单探头测试系统往往通过降低采样密度来得到效率上的一定提升。本发明多探头近场天线测试系统测试效率高,无需牺牲采样精度。测试精度有显著优势。
传统单探头测试系统在进行不同测试时往往需要手动切换不同仪器,本发明多探头近场天线测试系统无需手动切换测试仪器,自动切换仪器,操作便利性明显提升。
下面结合附图以及实施例对本发明做进一步的说明。
图1为本发明多探头近场天线测试设备的结构图;
图2为本发明测角器主视结构图;
图3为本发明测角器立体结构图;
图4为本发明载物台实施例一结构图;
图5为本发明载物台实施例二结构图;
图6为本发明系统结构框图。
如图1-6所示,一种多探头近场天线测试系统,包括测试系统软件载体(图中未示出)、与测试系统软件载体经有源切换装置连接的多个多探头近场天线测试设备。测试系统软件载体经矢量网络分析仪或无线通讯仪首先与有源切换装置连接。
多探头近场天线测试设备包括底座6、经支架2固定在底座6上的金属拱环1、设于金属拱环1内侧按一定角度间隔均匀分布的多个具有双极化超宽带特性的探头4和泡沫抱杆5。金属拱环1是由四部分拼接起的环形。金属拱环1内侧设有吸波棉3,吸波棉3将金属拱环1整体包裹,探头4分别从吸波棉3开孔处伸出并指向金属拱环1中心位置。金属拱环1内设有与探头连接的探头选择单元,探头切换单元为多个多路高速电子开关,通过控制多路高速电子开关打开、关闭不同通路可以选择相应的探头4以及极化。探头切换单元和探头4通过射频同轴线缆连接。泡沫抱杆5下端穿过金属拱环1与测角器7连接。泡沫抱杆5上端放置载物台,载物台可承载被测物使被测物处于金属拱环1中心位置,载物台可为柱形(如图4所示)或半球形(如图5所示)。测角器7包括导轨10、设于导轨10上的转台11、与转台11连接的旋转电机12和移动电机8,转台11包括内芯和外壳,内芯可以在水平面转动,外壳固定在导轨10上可以左右移动,旋转电机12与转台11内芯连接,带动转台11在水平面旋转;移动电机8与转台11外壳连接,带动转台11在导轨10上做左右移动。具体地,泡沫抱杆5与测角器7转台连接。导轨10为弧面状,可使转台11左右移动时将这种移动转换成被测物在垂直于水平面的平面旋转。导轨10的左右边缘位置还分别设有转台异常触
发开关9,如果因为特殊原因导致转台11左右转动幅度过大时会触发触发开关9,电机紧急停止,避免抱杆撞到其他组件造成损坏。底座6内设置有相互连接的控制装置、电源模块、接收放大器、发射放大器和传输切换装置。
测试系统软件载体为普通PC机,矢量网络分析仪、无线电通信仪通过标准接口(支持GPIB和网口)连接至测试系统软件载体,通过射频接口连接至有源切换装置。有源切换装置通过射频电缆和发射放大器,接收放大器连接,实现不同的测试内容。控制装置连接至测试系统软件载体并受控于测试系统软件载体,控制装置主要功能是将软件发出的命令转换为逻辑电平控制高速开关。控制装置连接至传输切换装置、探头选择单元、有源切换装置,并控制传输切换装置切换发射和接收通路、探头选择单元高速开关和切换探头、有源切换装置切换不同多探头近场天线测试设备。控制装置还控制电机转动。传输切换装置将软件发出的切换指令传输至有源切换装置等,将软件发出的电机控制指令传输至电机。传输切换装置为可控的电子开关。
本实施例中,矢量网络分析仪其功能是实现无源测量,可选择安捷伦科技有限公司生产的设备,也可选择其他公司生产的配备GPIB接口的设备;无线电通讯仪其功能是实现有源测量,可选择安捷伦科技有限公司生产的设备,也可选择其他公司生产的配备有GPIB接口或网口的设备;
工作流程为:安装系统测试软件的计算机运行测试软件,所有指令针对的对象是仪器和控制装置。控制装置接收到切换仪器指令后控制有源切换装置选择相应的仪器连接入系统。控制装置接收到传输切换指令后控制传输切换装置选择相呼传输方向。开始测试系统测试软件的将测试过程的各中指令发送给控制装置和仪器,控制测试过程。测试过程结束后系统测试软件通过计算得出相应的测试结
果。
本发明系统具体实施过程为:
测试系统软件载体通过运行测试软件,控制系统硬件在3~10波长范围的空间进行扫描。扫描结果为离散的点。这些离散的数值包含了幅度值和相位值,构成了近场信号幅度和相位分布的描述。测试软件的运算部分运用严格的模式展开理论运算得到包围被测物空间的远场的描述,这种对远场的描述包括了TRP,TIS,效率,增益,方向图等信息。
本发明采用球面扫描的近场测量技术,测量的到的原始数据为信号近场幅度和相位的球面分布描述。
本发明多探头近场天线测试系统在被测物外围设360度包围被测物的双极化超宽带探头阵列,通过快速电子扫描代替慢速机械扫描。被测物仅需要一维旋转即可确定包围该被测天线的一个球面上的场。测试效率理论上可提高40倍以上。
Claims (9)
- 一种多探头近场天线测试系统,其特征在于,包括测试系统软件载体、与测试系统软件载体经有源切换装置连接的多个多探头近场天线测试设备,所述多探头近场天线测试设备包括底座、固定在底座上的金属拱环、设于金属拱环内侧按一定角度间隔均匀分布的多个具有双极化超宽带宽带特性的探头和泡沫抱杆,泡沫抱杆下端穿过金属拱环与测角器连接,泡沫抱杆上端放置载物台,载物台可承载被测物使被测物处于金属拱环中心位置,所述金属拱环内设有与探头连接的探头选择单元,所述底座内设置有相互连接的控制装置、电源模块、接收放大器、发射放大器和传输切换装置。
- 根据权利要求1所述的一种多探头近场天线测试系统,其特征在于,所述测试系统软件载体经矢量网络分析仪或无线通讯仪与有源切换装置连接。
- 根据权利要求1所述的一种多探头近场天线测试系统,其特征在于,所述金属拱环内侧设有吸波棉,吸波棉将金属拱环整体包裹,所述探头分别从吸波棉开孔处伸出并指向金属拱环中心位置。
- 根据权利要求1所述的一种多探头近场天线测试系统,其特征在于,所述测角器包括导轨、设于导轨上的转台、与转台连接的旋转电机和移动电机,旋转电机与转台内芯连接,带动转台在水平面旋转;移动电机与转台外壳连接,带动转台在导轨上做左右移动,所述泡沫抱杆与转台连接。
- 根据权利要求4所述的一种多探头近场天线测试系统,其特征在于,所述导轨为弧面状,可使转台左右移动时将这种移动转换成被测物在垂直于水平面的平面旋转。
- 根据权利要求4或5所述的一种多探头近场天线测试系统,其特征在于, 所述导轨的左右边缘位置分别设有转台异常触发开关。
- 根据权利要求1所述的一种多探头近场天线测试系统,其特征在于,所述的探头切换单元为多个多路高速电子开关,通过控制多路高速电子开关打开、关闭不同通路可以选择相应的探头以及极化。
- 根据权利要求1或7所述的一种多探头近场天线测试系统,其特征在于,所述探头切换单元和探头通过射频同轴线缆连接。
- 根据权利要求1所述的一种多探头近场天线测试系统,其特征在于,所述传输切换装置为可控的电子开关。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420613077.1U CN204129122U (zh) | 2014-10-22 | 2014-10-22 | 一种多探头近场天线测试系统 |
CN201420613077.1 | 2014-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016061880A1 true WO2016061880A1 (zh) | 2016-04-28 |
Family
ID=52385467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/093412 WO2016061880A1 (zh) | 2014-10-22 | 2014-12-10 | 一种多探头近场天线测试系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN204129122U (zh) |
WO (1) | WO2016061880A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106443210A (zh) * | 2016-12-03 | 2017-02-22 | 刘科宏 | 有源基站天线三维空间辐射场相位的测试系统和方法 |
CN107290600A (zh) * | 2017-07-05 | 2017-10-24 | 中山香山微波科技有限公司 | 高精密天线室内场测试系统及其测试平台 |
CN108761220A (zh) * | 2018-08-13 | 2018-11-06 | 苏州特拉芯光电技术有限公司 | 一种太赫兹天线机器人近场三合一测试系统 |
CN111579886A (zh) * | 2020-05-19 | 2020-08-25 | 中国电子科技集团公司第三十八研究所 | 一种球面近场天线测量系统及校正方法 |
CN112180180A (zh) * | 2020-08-27 | 2021-01-05 | 西安朗普达通信科技有限公司 | 一种多探头近场ota测试系统的多通道测试方法 |
CN112575808A (zh) * | 2020-12-29 | 2021-03-30 | 天津航天机电设备研究所 | 一种用于外场的重载天线测试转台 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104764938B (zh) * | 2015-03-10 | 2017-10-10 | 中国电子科技集团公司第十研究所 | 自带相参通道的天线近场测量方法 |
CN105445566A (zh) * | 2015-11-13 | 2016-03-30 | 西北工业大学 | 球面多探头天线测试数据处理方法 |
CN106154059A (zh) * | 2016-06-29 | 2016-11-23 | 四川莱源科技有限公司 | 一种多探头球面近场测量系统 |
CN106199219A (zh) * | 2016-06-29 | 2016-12-07 | 四川莱源科技有限公司 | 一种贴片微带天线检测系统 |
CN106199218A (zh) * | 2016-06-29 | 2016-12-07 | 四川莱源科技有限公司 | 新型多探头近场天线测量装置 |
CN106338654A (zh) * | 2016-08-19 | 2017-01-18 | 成都全码特时代科技有限公司 | 一种天线测量装置 |
CN106093603A (zh) * | 2016-08-19 | 2016-11-09 | 成都全码特时代科技有限公司 | 用于天线测量的扫描装置 |
CN106093604A (zh) * | 2016-08-19 | 2016-11-09 | 成都全码特时代科技有限公司 | 一种多探头天线扫描装置 |
CN108132389B (zh) * | 2016-12-01 | 2023-11-10 | 深圳市新益技术有限公司 | 电磁场采样系统与在目标电磁场检测中使用多个单极化探头进行采样的方法 |
CN108241095B (zh) * | 2016-12-23 | 2023-11-17 | 深圳市新益技术有限公司 | 一种多探头和单探头综合测试系统和测试方法 |
CN108303601A (zh) * | 2017-01-12 | 2018-07-20 | 深圳市新益技术有限公司 | 一种具有多级射频开关的天线测试系统 |
CN108303599A (zh) * | 2017-01-12 | 2018-07-20 | 深圳市新益技术有限公司 | 射频开关的集成装置及带有该装置的天线测试系统 |
CN106970272A (zh) * | 2017-05-19 | 2017-07-21 | 四川莱源科技有限公司 | 近场远场多功能测试系统 |
CN108037374B (zh) * | 2017-10-12 | 2020-03-31 | 西安天和防务技术股份有限公司 | 一种阵列天线近场标定方法 |
CN109683148A (zh) * | 2017-10-19 | 2019-04-26 | 深圳市新益技术有限公司 | 目标散射特性测试方法 |
CN107765106A (zh) * | 2017-11-17 | 2018-03-06 | 中国信息通信研究院 | 一种针对多探头球面近场的探头一致性检测系统 |
CN107991541B (zh) * | 2017-11-27 | 2020-04-21 | 中国电子科技集团公司第三十八研究所 | 一种近场天线测试控制装置及其测试方法 |
CN108508393A (zh) * | 2018-07-03 | 2018-09-07 | 上海益麦电磁技术有限公司 | 一种多探头天线测试系统探头校准系统和校准方法 |
CN111588614A (zh) * | 2018-08-07 | 2020-08-28 | 赵林峰 | 一种裤式阴部按摩器 |
KR102088036B1 (ko) * | 2018-09-19 | 2020-05-22 | 주식회사 아모텍 | 안테나 성능 시험장치 |
CN109725275B (zh) * | 2018-12-26 | 2022-08-30 | 刘科宏 | 基于近场多探头天线测量系统的探头校准方法 |
CN111474417A (zh) * | 2020-05-18 | 2020-07-31 | 深圳市新益技术有限公司 | 一种宽频天线测量系统及测试方法 |
CN111579888A (zh) * | 2020-06-23 | 2020-08-25 | 石家庄硕华电子科技有限公司 | 一种天线测试用环形测试架 |
CN112333728B (zh) * | 2020-09-29 | 2022-08-16 | 深圳星航物连科学技术有限公司 | 一种快速辨识被测物的ota测试系统 |
CN113092882B (zh) * | 2021-04-01 | 2024-04-05 | 杭州永谐科技有限公司东莞分公司 | 一种多探头天线安装支架 |
CN116321268B (zh) * | 2023-03-06 | 2023-11-03 | 乾位智通(深圳)技术有限公司 | 检测数据记录系统、方法、装置和uwb模块检测装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6191744B1 (en) * | 1999-09-27 | 2001-02-20 | Jeffrey Snow | Probe movement system for spherical near-field antenna testing |
CN2888459Y (zh) * | 2006-05-08 | 2007-04-11 | 京信通信技术(广州)有限公司 | 柱面球面合一的多探头近场天线测量系统 |
CN103267902A (zh) * | 2013-05-20 | 2013-08-28 | 中国电子科技集团公司第四十一研究所 | 一种基于硬件触发的快速天线测试装置及方法 |
KR101337488B1 (ko) * | 2011-05-26 | 2013-12-05 | 광주과학기술원 | 리튬 이차전지용 전극, 이의 제조방법 및 리튬 이차전지 |
CN103630761A (zh) * | 2013-11-20 | 2014-03-12 | 中国电子科技集团公司第四十一研究所 | 一种多探头球面近场通道校准装置及方法 |
CN203798911U (zh) * | 2013-12-25 | 2014-08-27 | 深圳市新益技术有限公司 | 一种十六探头近场天线测试系统 |
-
2014
- 2014-10-22 CN CN201420613077.1U patent/CN204129122U/zh not_active Ceased
- 2014-12-10 WO PCT/CN2014/093412 patent/WO2016061880A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6191744B1 (en) * | 1999-09-27 | 2001-02-20 | Jeffrey Snow | Probe movement system for spherical near-field antenna testing |
CN2888459Y (zh) * | 2006-05-08 | 2007-04-11 | 京信通信技术(广州)有限公司 | 柱面球面合一的多探头近场天线测量系统 |
KR101337488B1 (ko) * | 2011-05-26 | 2013-12-05 | 광주과학기술원 | 리튬 이차전지용 전극, 이의 제조방법 및 리튬 이차전지 |
CN103267902A (zh) * | 2013-05-20 | 2013-08-28 | 中国电子科技集团公司第四十一研究所 | 一种基于硬件触发的快速天线测试装置及方法 |
CN103630761A (zh) * | 2013-11-20 | 2014-03-12 | 中国电子科技集团公司第四十一研究所 | 一种多探头球面近场通道校准装置及方法 |
CN203798911U (zh) * | 2013-12-25 | 2014-08-27 | 深圳市新益技术有限公司 | 一种十六探头近场天线测试系统 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106443210A (zh) * | 2016-12-03 | 2017-02-22 | 刘科宏 | 有源基站天线三维空间辐射场相位的测试系统和方法 |
CN106443210B (zh) * | 2016-12-03 | 2023-10-17 | 刘科宏 | 有源基站天线三维空间辐射场相位的测试系统和方法 |
CN107290600A (zh) * | 2017-07-05 | 2017-10-24 | 中山香山微波科技有限公司 | 高精密天线室内场测试系统及其测试平台 |
CN107290600B (zh) * | 2017-07-05 | 2023-11-07 | 中山香山微波科技有限公司 | 高精密天线室内场测试系统及其测试平台 |
CN108761220A (zh) * | 2018-08-13 | 2018-11-06 | 苏州特拉芯光电技术有限公司 | 一种太赫兹天线机器人近场三合一测试系统 |
CN111579886A (zh) * | 2020-05-19 | 2020-08-25 | 中国电子科技集团公司第三十八研究所 | 一种球面近场天线测量系统及校正方法 |
CN111579886B (zh) * | 2020-05-19 | 2022-08-09 | 中国电子科技集团公司第三十八研究所 | 一种球面近场天线测量系统的校正方法 |
CN112180180A (zh) * | 2020-08-27 | 2021-01-05 | 西安朗普达通信科技有限公司 | 一种多探头近场ota测试系统的多通道测试方法 |
CN112575808A (zh) * | 2020-12-29 | 2021-03-30 | 天津航天机电设备研究所 | 一种用于外场的重载天线测试转台 |
Also Published As
Publication number | Publication date |
---|---|
CN204129122U (zh) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016061880A1 (zh) | 一种多探头近场天线测试系统 | |
CN204649862U (zh) | 一种多探头近场天线测试系统 | |
CN205643543U (zh) | 一种24探头近场天线测试系统 | |
US9244105B2 (en) | Portable spherical near-field antenna measurement system | |
CN205506947U (zh) | 一种128探头近场天线测试系统 | |
CN110794222B (zh) | 一种天线测试系统及其控制方法 | |
CN104569635B (zh) | 无线终端天线性能测试系统 | |
CN104935386B (zh) | 终端天线耦合测试系统 | |
WO2017032209A1 (zh) | 一种lte天线智能测量系统 | |
US10151783B2 (en) | Antenna measuring station | |
US10863371B2 (en) | Measurement arrangement and measurement method | |
US20110084887A1 (en) | System for testing multi-antenna devices | |
CN102594961A (zh) | 一种手机天线的测试系统 | |
CN109586811B (zh) | 一种航天微波类产品全向辐射发射预测试系统及方法 | |
CN211374898U (zh) | 天线测试系统 | |
CN214669327U (zh) | 一种测试系统 | |
WO2021258916A1 (zh) | Aau测试方法、装置、多探头吸波暗箱、存储介质及电子装置 | |
US10470009B2 (en) | Test device and test method | |
CN113671271B (zh) | 一种三维空间自动轨迹控制的天线测试数据采集方法 | |
Boehm et al. | Robotically controlled directivity and gain measurements of integrated antennas at 280 GHz | |
CN117405978A (zh) | 基于半实物射频仿真幅相电控的天线测试方法及相关系统 | |
CN210665889U (zh) | 探头滑轨测试系统 | |
CN206096272U (zh) | 一种192探头近场天线测试系统 | |
CN206096271U (zh) | 一种168探头近场天线测试系统 | |
CN104780002A (zh) | 一种具有多个探头的小型化ota测试系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14904497 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/09/2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14904497 Country of ref document: EP Kind code of ref document: A1 |