WO2016060310A1 - 연속식 쿠에트-테일러 결정화기를 이용하는 코어쉘 적층입자 제조방법 - Google Patents

연속식 쿠에트-테일러 결정화기를 이용하는 코어쉘 적층입자 제조방법 Download PDF

Info

Publication number
WO2016060310A1
WO2016060310A1 PCT/KR2014/010034 KR2014010034W WO2016060310A1 WO 2016060310 A1 WO2016060310 A1 WO 2016060310A1 KR 2014010034 W KR2014010034 W KR 2014010034W WO 2016060310 A1 WO2016060310 A1 WO 2016060310A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
core
reactant
particles
laminated
Prior art date
Application number
PCT/KR2014/010034
Other languages
English (en)
French (fr)
Inventor
김우식
타이쿠옹디엔
박병천
강성훈
정왕모
박홍규
Original Assignee
주식회사 엘지화학
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 경희대학교 산학협력단 filed Critical 주식회사 엘지화학
Priority to US14/422,079 priority Critical patent/US10347913B2/en
Publication of WO2016060310A1 publication Critical patent/WO2016060310A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for preparing core-shell laminated particles, and more particularly, to form a core particle first in a Kuet-Taylor crystallizer and then to stack the shell layer on the core particle in the same crystallizer in-line. It relates to a method for producing core-shell laminated particles to be formed.
  • the company Since the positive electrode active material of a lithium secondary battery is a very important factor that determines the performance, lifespan, and capacity of the battery, the company is devoted to developing a technology that can reliably produce a large amount of the positive electrode active material in accordance with the demand of the rapidly increasing secondary battery market. It is a trend.
  • the main factors that determine the physical properties of the core-shell laminated particles include the composition, size, shape of the core particles, and the composition and thickness of the shell layer.
  • Patent Document 1 Republic of Korea Patent Publication No. 2013-80565 (published Jul. 15, 2013)
  • Patent Document 2 Republic of Korea Registered Patent No. 1062404 (Registered August 30, 2011)
  • the problem to be solved by the present invention is that the core particles are first formed in the Kuet-Taylor crystallizer, and the shell layer is laminated on the core particles in the same crystallizer in-line. It is to provide a method for producing a core-shell laminated particles that can solve the problem.
  • the core reactant inlet, the shell reactant inlet, and the core reactant in the outer cylinder along the flow direction of the fluid flowing in the Kuet-Taylor fluid passage between the outer cylinder and the inner cylinder;
  • a continuous Kuet-Taylor crystallizer having a product outlet formed sequentially is used, and core particles are first formed in the fluid passage by a core reactant introduced through the core reactant inlet, followed by input through the shell reactant inlet.
  • a shell layer is laminated around the core particles by the shell reactant, so that the core shell laminated particles having the shell layer laminated around the core particles are externally discharged through the product outlet. It provides a manufacturing method.
  • mass production can be easily achieved by continuously generating the core particles and the shell layer in one Kuet-Taylor crystallizer.
  • the flow path of the Kuet-Taylor crystallizer is narrow and has an active fluid flow, thereby making it possible to generate particles of uniform size.
  • the formation of the shell layer is sensitively affected by the concentration of the shell reactant, the rotational speed of the inner rotating cylinder, the average residence time of the shell reactant, and the pH of the shell reactant, core shell lamination with excellent electrical properties and durability through optimization of process conditions The particles can be easily obtained in large quantities.
  • FIG. 1 is a perspective view schematically showing the structure of a continuous Kuet-Taylor crystallizer used in the production of core-shell laminated particles by the manufacturing method according to an embodiment of the present invention.
  • FIG. 2A is an exploded perspective view schematically showing the structure of the external fixed cylinder and the internal member cylinder in the continuous Kuet-Taylor crystallization apparatus of FIG. 1, and FIG. 2B is a cross-sectional perspective view thereof.
  • FIG. 3 is a cross-sectional structural view schematically showing the structure of the core-shell laminated particles produced by the manufacturing method according to an embodiment of the present invention.
  • Figure 4 is an electron micrograph of the core-shell laminated particles prepared by the manufacturing method according to an embodiment of the present invention.
  • Core shell laminated particle production method the core reactant inlet, shell reactant inlet to the outer cylinder along the flow direction of the fluid flowing in the Kuet-Taylor fluid passage between the outer cylinder and the inner cylinder, and A continuous Kuet-Taylor crystallizer having a product outlet formed sequentially is used, and core particles are first formed in the fluid passage by a core reactant introduced through the core reactant inlet, followed by input through the shell reactant inlet.
  • the shell reactant is formed so that the shell layer is laminated around the core particles, so that the core shell laminated particles having the shell layer laminated around the core particles are discharged to the outside through the product outlet.
  • FIG. 1 is a perspective view schematically showing the structure of a continuous Kuet-Taylor crystallization apparatus used in the production of core-shell laminated particles by the manufacturing method according to an embodiment of the present invention
  • Figure 2a is a continuous type of FIG.
  • Fig. 2B is an exploded perspective view schematically showing the structures of the external fixed cylinder and the internal member cylinder in the Kuet-Taylor crystallization machine.
  • the outer fixed cylinder 110 and the inner rotating cylinder 120 include.
  • the inner rotating cylinder 120 has a rotating shaft 131 in the same direction as the longitudinal axis of the outer fixed cylinder 110 to be rotatable about the rotating shaft 131 in the state spaced apart from the outer fixed cylinder 110, the outer fixed cylinder ( 110 is installed in.
  • the rotation of the rotating shaft 131 is made through the driving of the motor 130.
  • the outer cylinder may be rotated and the inner cylinder may be fixed, but the case where the inner cylinder is rotated is taken as an example.
  • the core reactant inlet 140, the shell reactant inlet 150, and the product outlet 160 are sequentially formed along the flow direction of the fluid flowing in the fluid passage 170 so as to communicate with the fluid passage 170. Is formed.
  • the core reactant inlet 140 includes a metallic aqueous solution inlet 141, a basic aqueous solution inlet 142, and an ammonia aqueous solution inlet 143.
  • the metallic aqueous solution inlet 141, the basic aqueous solution inlet 142, and the ammonia aqueous solution inlet 143 are not all required to be present individually, but may be configured to reduce the number thereof.
  • the shell reactant inlet 150 also includes a metallic aqueous solution inlet 151, a basic aqueous solution inlet 152, and an aqueous ammonia solution inlet 153, and as before, all of them may be present individually, but may be present in common with each other. It may be.
  • the metallic aqueous solution inlets 141 and 151 and the basic aqueous solution inlets 142 and 152 may be considered in consideration of the reaction between the metallic aqueous solution and the basic aqueous solution. It is preferable to face each other to face 152). Opposing here includes not only being installed facing each other but also being positioned on the same starting line.
  • the method for preparing the core-shell laminated particles according to the embodiment of the present invention using the continuous Kuet-Taylor crystallization apparatus 100 having the above-described structure may be performed according to the following method.
  • the core reactant is introduced through the core reactant inlet 140, and the shell reactant is introduced through the shell reactant inlet 150. Accordingly, the core particles 10 are first formed in the fluid passage 170 by the core reactants introduced through the core reactant inlet 140, and then by the shell reactants introduced through the shell reactant inlet 150.
  • the shell layer 20 is laminated around the core particles 10 in the fluid passage 170. As a result, the core shell laminated particles 1 in which the shell layer 20 is laminated around the core particles 10 are formed. External discharge through the product outlet 160.
  • the core reactant includes a metallic aqueous solution, a basic aqueous solution, and an aqueous ammonia (NH 4 OH) solution.
  • the metallic aqueous solution is cobalt (Co), Mn (manganese), nickel (Ni), aluminum (Al), cobalt (Co), manganese (Mn), aluminum (Al), magnesium (Mg), copper (Cu ),
  • a metal salt comprising at least one metal selected from the group consisting of zinc (Zn), iron (Fe), vanadium (V), chromium (Cr), titanium (Ti), tungsten (W) and molybdenum (Mo). It can be used dissolved in water.
  • the metal salt may be a metal sulfate containing one or more of the metals described above, and more specifically, NiSO 4 ⁇ 6H 2 O, CoSO 4 ⁇ 7H 2 O, or MnSO 4 ⁇ H 2 O And the like.
  • sodium hydroxide (NaOH) or potassium hydroxide aqueous solution can be used as the basic aqueous solution.
  • the composition of the metallic aqueous solution introduced through the core reactant inlet 140 may be different from the composition of the metallic aqueous solution injected through the shell reactant inlet 150.
  • the core particles 10 are finally prepared in the core particles 10, the core particles 10 include a compound of the formula (1), and the shell layer may be mixed, added to each suitable amount adjusted to an appropriate content.
  • the shell layer 20 in the core shell laminated particles to be finally produced includes a compound of [Ni 0.475 Co 0.05 Mn 0.475] (OH) 2
  • the metallic aqueous solution and the basic aqueous solution may be added at the same flow rate, and the aqueous ammonia solution may be 1/10 of the input amount of the shell reactant.
  • the core-shell laminated particles 1 manufactured by the manufacturing method according to the present invention are hybrid particles in which the high electrical properties of the nickel-rich core particles 10 and the electrical stability of the shell layer 20 are combined. It can be expected to be an ideal electrode material with high cycling stability and high capacitance. Therefore, the uniformity of the thickness of the shell layer 20 can be seen as an important factor in determining the electrochemical properties of the core shell laminated particles (1).
  • the thickness uniformity of the shell side is influenced by the concentration of the shell reactant in the manufacturing process, the rotation speed of the inner rotating cylinder 120, the average residence time of the shell reactant, and the pH of the shell reactant.
  • the concentration of the shell reactant may be 1.0M or less.
  • the concentration of the shell reactant is excessively higher than 1M, the nucleation of the shell solid is rapidly increased and self-aggregation (homo-agglomerate) occurs rather than stacking the shell layer 20 on the core particles 10. Because. When the self aggregation occurs, it is difficult to form the shell layer 20 having a uniform thickness.
  • the rotation speed of the inner rotating cylinder 120 may be specifically 100rpm to 3000rpm.
  • the flow strength of the cue-Taylor vortex 171 may not be sufficient to induce uniform lamination, but may cause self-agglomeration of the shell solid.
  • the rotational speed of the cylinder 120 is slower than 100 rpm, the shell layer 20 is not properly formed, and when the inner rotation cylinder 120 rotates at 3000 rpm or more, the shell layer is caused by the shear strength of the cue-taylor vortex 171. Since the tendency for 20 to chip out becomes so large that the thickness increase of the shell layer 20 is insignificant, the effectiveness may be lowered.
  • the residence time can be 30 to 90 minutes. If the average residence time is too short out of the above-mentioned average residence time, the shell layer 20 is not laminated to the core particles 10 and self-aggregates, so that it is difficult to form a shell layer with a uniform thickness, and the average residence time exceeds 90 minutes. In this case, the change of tap-denity with the increase of average residence time is insignificant.
  • the pH of the shell reactant may be specifically pH11 to pH13. If the pH is out of the above range it is difficult to form a shell layer 20 of uniform thickness due to self-aggregation of the shell solid.
  • Figure 3 is a schematic cross-sectional view showing the structure of the core-shell laminated particles produced by the manufacturing method according to an embodiment of the present invention.
  • the core shell laminated particles 1 manufactured by the manufacturing method according to an exemplary embodiment of the present invention have a structure in which the shell layer 20 is laminated around the surface of the core particles 10.
  • the core particles (10) comprises a compound of the formula (1) of nickel-rich (Ni-rich) excellent in electrical properties, and the shell layer is nickel and manganese It may include a compound of the formula (2) showing excellent durability, including the same amount.
  • the core particle may include a compound of [Ni 0.9 Co 0.05 Mn 0.05 ] (OH) 2
  • the shell layer 20 may include a compound of [Ni 0.475 Co 0.05 Mn 0.475 ] (OH) 2 . can do.
  • the core particles 10 have excellent electrical characteristics, and the shell layer 20 has excellent durability, so that the core shell laminated particles 1 manufactured by the manufacturing method have excellent electrical characteristics and durability at the same time. do.
  • This is useful as a cathode active material of a lithium secondary battery.
  • the core reactant inlet, the shell reactant inlet, and the product outlet are sequentially formed in the outer cylinder along the flow direction of the fluid flowing in the Kuet-Taylor fluid passage between the outer cylinder and the inner cylinder.
  • Core shell laminated particles were prepared using a continuous Kurt-taylor hardener.
  • a mixture of metal sulfates of NiSO 4 ⁇ 6H 2 O, CoSO 4 ⁇ 7H 2 O, and MnSO 4 ⁇ H 2 O is introduced through the metallic aqueous solution inlets 141 and 151, and the basic aqueous solution inlets 142 and 152 are used.
  • Aqueous solution of sodium hydroxide (NaOH) was added thereto, and NH 4 OH solution was added through ammonia solution inlets (143, 153).
  • the metallic aqueous solution and the basic aqueous solution were added at the same flow rate, and the aqueous ammonia solution was made to be 1/10 of the input amount of the shell reactant.
  • nitrogen gas was continuously blown into the reactant solution to prevent oxidation of the reactants described above.
  • the concentration of the shell reactant is 0.9M
  • the rotational speed of the inner cylinder 120 is 1000rpm
  • the shell reactant injected into the shell reactant inlet 150 stays in the fluid passage 170 until it is discharged to the product outlet 160 outside
  • the average residence time was 60 minutes and the pH of the shell reactants was 11-13.
  • the core particles comprise a compound of [Ni 0.9 Co 0.05 Mn 0.05 ] (OH) 2
  • the shell layer prepared core shell laminated particles comprising a compound of [Ni 0.475 Co 0.05 Mn 0.475] (OH) 2 . .
  • the core-shell laminated particles were analyzed using an energy-dispersive X-ray spectroscopy (EDX). The results are shown in Tables 1 and 2 below.
  • EDX energy-dispersive X-ray spectroscopy
  • Tables 1 and 2 show the results of analyzing the core and the shell in the core-shell laminated particles, respectively.
  • the core particle 10 has a composition of Ni rich of about 90.4% by weight of Ni, about 4.9% by weight of Mn, and about 4.7% by weight of Co, the shell layer 20 of about 48.3% by weight of Ni, about 45.1% by weight of Mn, Co was about 6.6% by weight, and it was confirmed that Ni and Mn had almost the same composition (error range ⁇ 7%).
  • the core shell laminated particles can be easily mass-produced by continuously generating the core particles and the shell layer in one Kuet-Taylor crystallizer.
  • the flow path of the Kuet-Taylor crystallizer is narrow and has an active fluid flow, thereby making it possible to generate particles of uniform size.
  • the formation of the shell layer is sensitively affected by the shell reactant concentration, the rotational speed of the inner rotating cylinder, the average residence time of the shell reactant, and the pH of the shell reactant, the core having excellent electrical properties and durability through the appropriate process conditions mentioned above.
  • Shell laminated particles can be easily obtained in large quantities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명에서는 외부원통과 내부원통 사이의 쿠에트-테일러 유체통로에 흐르는 유체의 흐름방향을 따라 상기 외부원통에 코어 반응물 유입구, 쉘 반응물 유입구, 및 생성물 유출구가 순차적으로 형성된 연속식 쿠에트-테일러 결정화기를 이용하되, 상기 코어 반응물 유입구를 통해서 투입되는 코어 반응물에 의하여 상기 유체통로에서 코어입자가 먼저 형성되도록 한 다음에 상기 쉘 반응물 유입구를 통해서 투입되는 쉘 반응물에 의하여 상기 코어입자의 둘레에 쉘층이 적층 형성되도록 하여, 상기 코어입자의 둘레에 쉘층이 적층된 코어쉘 적층입자가 상기 생성물 유출구를 통해서 외부 배출되도록 하는 코어쉘 적층입자 제조방법이 제공된다. 본 발명에 따른 코어쉘 적층입자의 제조방법에 의해 우수한 전기적 특성과 내구성을 갖는 코어쉘 적층입자를 균일한 입자크기로 제조할 수 있으며, 또, 하나의 쿠에트-테일러 결정화기에서 코어입자와 쉘층을 연속적으로 생성시킴으로써, 상기 코어쉘 적층입자를 용이하게 대량 생산할수 있다.

Description

연속식 쿠에트-테일러 결정화기를 이용하는 코어쉘 적층입자 제조방법
본 발명은 코어쉘 적층입자 제조방법에 관한 것으로서, 보다 상세하게는 쿠에트-테일러 결정화기에서 코어입자를 먼저 형성하고 이에 연속하여(in-line) 동일한 결정화기 내에서 상기 코어입자에 쉘층을 적층 형성하는 코어쉘 적층입자 제조방법에 관한 것이다.
리튬 이차전지의 양극 활물질은 전지의 성능, 수명, 및 용량을 결정하는 매우 중요한 요소이기 때문에, 급증하는 이차전지 시장의 수요에 따라 양극 활물질을 신뢰성 있게 대량으로 생산할 수 있는 기술개발에 심혈을 기울이고 있는 추세이다.
이러한 일환으로 코어입자에 쉘층이 적층 형성된 코어쉘 적층입자를 양극 활물질의 전구체로 사용코자 하는 시도가 있었다(대한민국 공개특허 제2013-80565호.2013.07.15.공개). 이러한 코어쉘 적층구조는 코어입자와 쉘층이 상호보완적인 기능을 수행함으로써 양극활물질로서의 자격을 갖추기에 유리하기 때문에 매우 바람직하다는 평가를 받고 있다.
코어쉘 적층입자의 물성을 결정하는 주요인자로 코어입자의 조성, 크기, 모양, 쉘층의 조성 및 두께를 들 수 있다.
종래에는 이러한 코어쉘 적층입자를 형성하기 위해서 임펠러를 이용하여 회전요동을 유도하는 단순한 공침반응기를 사용하여 제조하였다. 이러한 공침반응기의 일예가 대한민국 등록특허 제1062404호(2011.08.30.등록)에 개시된 바 있다. 그러나 종래의 이러한 임펠러 방식의 공침반응기를 통해서는 반응공간이 벌크(bulk) 형태로 크기 때문에 위와 같은 주요인자를 정밀 제어하는데 상당히 어려움이 많으며, 특히 하나의 공침반응기에서 코어입자와 쉘층을 연속하여 완성하기가 어렵다는 단점이 있다. 이는 종래의 제조방식으로는 원하는 성분 및 조성을 가지는 코어쉘 적층입자를 얻기가 어려우며 또한 이를 대량 생산하기에 부적합하다는 것을 의미한다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허 제2013-80565호(2013.07.15.공개)
(특허문헌 2) 대한민국 등록특허 제1062404호(2011.08.30.등록)
이에 따라, 본 발명이 해결하고자 하는 과제는 쿠에트-테일러 결정화기에서 코어입자를 먼저 형성하고, 이에 연속하여(in-line) 동일한 결정화기 내에서 상기 코어입자에 쉘층을 적층 형성함으로써 상술한 종래의 문제점을 해결할 수 있는 코어쉘 적층입자의 제조방법을 제공하는데 있다.
상기 과제를 달성하기 위하여, 본 발명의 일 실시예에 따르면, 외부원통과 내부원통 사이의 쿠에트-테일러 유체통로에 흐르는 유체의 흐름방향을 따라 상기 외부원통에 코어 반응물 유입구, 쉘 반응물 유입구, 및 생성물 유출구가 순차적으로 형성된 연속식 쿠에트-테일러 결정화기를 이용하되, 상기 코어 반응물 유입구를 통해서 투입되는 코어 반응물에 의하여 상기 유체통로에서 코어입자가 먼저 형성되도록 한 다음에 상기 쉘 반응물 유입구를 통해서 투입되는 쉘 반응물에 의하여 상기 코어입자의 둘레에 쉘층이 적층 형성되도록 하여, 상기 코어입자의 둘레에 쉘층이 적층된 코어쉘 적층입자가 상기 생성물 유출구를 통해서 외부 배출되도록 하는 것을 특징으로 하는 코어쉘 적층입자 제조방법을 제공한다.
본 발명에 따르면, 하나의 쿠에트-테일러 결정화기에서 코어입자와 쉘층을 연속적으로 생성시킴으로써 손쉽게 대량생산을 도모할 수 있다. 또한 쿠에트-테일러 결정화기의 유로통로가 종래의 임펠러 유동방식의 경우와 달리 좁으면서도 활발한 유체유동을 가지므로 균일한 크기의 입자를 생성시킬 수 있게 된다. 그리고 쉘 반응물 농도, 내부회전원통의 회전속도, 쉘 반응물의 평균체류시간, 쉘 반응물의 pH에 의해 쉘층의 형성이 민감하게 영향을 받으므로 공정 조건의 최적화를 통하여 전기적 특성과 내구성이 우수한 코어쉘 적층입자를 대량으로 쉽게 얻을 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 제조방법에 의해 코어쉘 적층입자의 제조시 사용되는 연속식 쿠에트-테일러 결정화기의 구조를 개략적으로 나타낸 사시도이다.
도 2a은 상기 도 1의 연속식 쿠에트-테일러 결정화기에 있어서의 외부고정원통과 내부회원원통의 구조를 개략적으로 나타낸 분해사시도이고, 도 2b는 그 단면사시도이다.
도 3은 본 발명의 일 실시예에 따른 제조방법에 의해 제조되는 코어쉘 적층입자이 구조를 개략적으로 나타낸 단면 구조도이다.
도 4는 본 발명의 일 실시예에 따른 제조방법에 의해 제조된 코어쉘 적층입자에 대한 전자현미경 사진이다.
[부호의 설명]
1: 코어쉘 적층입자
10: 코어입자
20: 쉘층
100: 연속식 쿠에트-테일러 결정화기
110: 외부고정원통
120: 내부회전원통
130: 모터
131: 회전축
140: 코어 반응물 유입구
141, 151: 금속성 수용액 유입구
142, 152: 염기성 수용액 유입구
143, 153: 암모니아 수용액 유입구
150: 쉘 반응물 유입구
160: 생성물 유출구
170: 유체통로
171: 쿠에트-테일러 와류
이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서 본 발명의 권리범위가 이러한 실시예에 한정되는 것으로 해석돼서는 안 된다.
본 발명의 일 실시예에 따른 코어쉘 적층입자 제조방법은, 외부원통과 내부원통 사이의 쿠에트-테일러 유체통로에 흐르는 유체의 흐름방향을 따라 상기 외부원통에 코어 반응물 유입구, 쉘 반응물 유입구, 및 생성물 유출구가 순차적으로 형성된 연속식 쿠에트-테일러 결정화기를 이용하되, 상기 코어 반응물 유입구를 통해서 투입되는 코어 반응물에 의하여 상기 유체통로에서 코어입자가 먼저 형성되도록 한 다음에 상기 쉘 반응물 유입구를 통해서 투입되는 쉘 반응물에 의하여 상기 코어입자의 둘레에 쉘층이 적층 형성되도록 하여, 상기 코어입자의 둘레에 쉘층이 적층된 코어쉘 적층입자가 상기 생성물 유출구를 통해서 외부 배출되도록 하는 것을 특징으로 한다.
도 1은 본 발명의 일 실시예에 따른 제조방법에 의해 코어쉘 적층입자의 제조시 사용되는 연속식 쿠에트-테일러 결정화기의 구조를 개략적으로 나타낸 사시도이고, 도 2a은 상기 도 1의 연속식 쿠에트-테일러 결정화기에 있어서의 외부고정원통과 내부회원원통의 구조를 개략적으로 나타낸 분해사시도이며, 도 2b는 그 단면사시도이다. 이하 도 1 및 도 2a, 2b를 참조하여 본 발명의 일 실시예에 따른 제조방법을 설명한다.
도 1 및 도 2a, 2b에 나타난 바와 같이, 본 발명의 일 실시예에 따른 제조방법에 사용가능한 쿠에트-테일러 결정화기(100)는, 외부고정원통(110)과 내부회전원통(120)을 포함한다. 내부회전원통(120)은 외부고정원통(110)의 종축과 같은 방향의 회전축(131)을 가져서 외부고정원통(110)에 이격된 상태로 회전축(131)을 축으로 회전가능하게 외부고정원통(110) 내에 설치된다. 회전축(131)의 회전은 모터(130)의 구동을 통해 이루어진다. 외부원통이 회전되고 내부원통이 고정될 수도 있으나, 여기서는 내부원통이 회전하는 경우를 예로 들었다.
내부회전원통(120)이 회전하면 외부고정원통(110)과 내부회전원통(120) 사이의 틈새인 유체통로(170)에서 내부회전원통(120)쪽에 위치하고 있던 유체가 원심력에 의해 외부고정원통(110) 방향으로 나가려는 경향을 가지게 되고, 이로 인하여 유체는 불안정하게 되어, 회전축(131)을 따라 규칙적이며 서로 반대방향으로 회전하는 고리쌍 배열의 와류를 형성한다. 이를 테일러 혹은 쿠에트-테일러 와류(171)라 한다.
외부고정원통(110)에는 유체통로(170)와 연통되도록 유체통로(170)에 흐르는 유체의 흐름방향을 따라 코어 반응물 유입구(140), 쉘 반응물 유입구(150), 생성물 유출구(160)가 순차적으로 형성된다.
또, 코어 반응물 유입구(140)는 금속성 수용액 유입구(141), 염기성 수용액 유입구(142) 및 암모니아 수용액 유입구(143)을 포함한다. 이때 금속성 수용액 유입구(141), 염기성 수용액 유입구(142), 및 암모니아 수용액 유입구(143)는 모두 개별적으로 존재해야 하는 것은 아니며 공유하여 그 개수가 줄어들도록 구성될 수도 있다.
또, 쉘 반응물 유입구(150)의 경우도 금속성 수용액 유입구(151), 염기성 수용액 유입구(152), 및 암모니아 수용액 유입구(153)를 포함하며, 앞서와 마찬가지로 이들은 모두 개별적으로 존재할 수도 있지만 서로 공유하여 존재할 수도 있다.
금속성 수용액 유입구(141, 151)와 염기성 수용액 유입구(142, 152)가 개별적으로 존재하는 경우에는, 금속성 수용액과 염기성 수용액의 반응을 고려하여 금속성 수용액 유입구(141, 151)과 염기성 수용액 유입구(142, 152)을 마주보도록 서로 대향하게 설치하는 것이 바람직하다. 여기서의 대향이라 함은 단순히 마주보게 설치되는 것뿐만 아니라 동일한 출발선상에 위치하도록 하는 것도 포함하는 것이다.
이에 따라, 상기한 구조를 갖는 연속식 쿠에트-테일러 결정화기(100)를 이용한 본 발명의 일 실시예에 따른 코어쉘 적층입자의 제조방법은, 하기와 같은 방법에 따라 실시될 수 있다.
코어 반응물 유입구(140)를 통해서는 코어 반응물을 투입하고, 쉘 반응물 유입구(150)를 통해서는 쉘 반응물을 투입한다. 이에 따라 코어 반응물 유입구(140)를 통하여 투입되는 코어 반응물에 의해 코어입자(10)가 유체통로(170)에서 먼저 형성되도록 하고, 다음으로, 쉘 반응물 유입구(150)를 통하여 투입되는 쉘 반응물에 의해서 유체통로(170)에서 코어입자(10)의 둘레에 쉘층(20)이 적층 형성되도록 하여, 결과적으로는 코어입자(10)의 둘레에 쉘층(20)이 적층된 코어쉘 적층입자(1)가 생성물 유출구(160)를 통하여 외부 배출되도록 한다.
이때 상기 코어 반응물은 금속성 수용액, 염기성 수용액 및 암모니아(NH4OH) 수용액을 포함한다.
상기 금속성 수용액으로는 구체적으로 코발트(Co), Mn(망간), 니켈(Ni), 알루미늄(Al), 코발트(Co), 망간(Mn), 알루미늄(Al), 마그네슘(Mg), 구리(Cu), 아연(Zn), 철(Fe), 바나듐(V), 크롬(Cr), 티타늄(Ti), 텅스텐(W) 및 몰리브덴(Mo)으로 이루어진 군으로부터 선택된 1종 이상의 금속을 포함하는 금속염이 물에 용해된 것을 사용할 수 있다.
보다 구체적으로, 상기 금속염은 상기한 1종 이상의 금속을 포함하는 금속설페이트(metal sulfate)일 수 있으며, 보다 더 구체적으로 NiSO4·6H2O, CoSO4·7H2O 또는 MnSO4·H2O 등일 수 있다.
또, 상기 염기성 수용액으로는 구체적으로 수산화나트륨(NaOH) 또는 수산화칼륨 수용액을 사용할 수 있다.
이때, 코어 반응물 유입구(140)를 통해서 투입되는 금속성 수용액의 조성과 쉘 반응물 유입구(150)를 통해서 투입되는 금속성 수용액의 조성은 다를 수 있다.
구체적으로는 최종 제조되는 코어쉘 적층입자에서 코어입자(10)가 하기 화학식 1의 화합물을 포함하고, 쉘층이 하기 화학식 2의 화합물을 포함하도록 각각 적절한 함량으로 조절하여 혼합, 투입할 수 있다.
[화학식 1]
[NixCoyMnz](OH)2
(상기 화학식 1에서, 0<x<1, 0<y<1, 0<z<1이고, x+y+z=1이며, x>y+z이다)
[화학식 2]
[NiaCobMnc](OH)2
(상기 화학식 2에서, 0<a<1, 0<b<1, 0<c<1이고, a+b+c=1이며, a=c이다)
일례로, 최종 제조되는 코어쉘 적층입자에서의 쉘층(20)이 [Ni0.475Co0.05Mn0.475](OH)2의 화합물을 포함하도록 할 경우, 쉘 반응물 유입구(150) 중에서 금속성 수용액 유입구(151)로 투입되는 쉘 반응물로서 Ni 함유 금속염, Co 함유 금속염 및 Mn 함유 금속염을 Ni:Co:Mn = 0.475:0.05:0.475가 되도록 혼합하여 투입할 수 있다.
상기 금속성 수용액과 염기성 수용액은 동일한 유속으로 투입될 수 있으며, 암모니아 수용액은 쉘 반응물 투입량의 1/10이 되도록 할 수 있다. 또 이때 반응물의 산화를 방지하기 위하여 질소기체를 반응물 용액에 계속해서 공급하는 것이 바람직할 수 있다.
본 발명에 따른 제조방법에 의해 제조된 코어쉘 적층입자(1)는, 니켈-리치 코어입자(10)의 높은 전기적 특성(capacity)와 쉘층(20)의 전기적 안정성을 결합한 하이브리드 형태의 입자로서, 높은 안정성(cycling stability)과 높은 전기용량(capacity)을 갖춘 이상적인 전극재료라 예상할 수 있다. 따라서 쉘층(20)의 두께 균일성은 코어쉘 적층입자(1)의 전기화학적 특성을 결정하는 중요한 인자라 볼 수 있다. 쉘 측의 두께 균일성은 그 제조과정에서의 쉘 반응물이 농도, 내부회전원통(120)의 회전속도, 쉘 반응물의 평균체류시간 그리고 쉘 반응물의 pH 등에 의해 영향을 받는다.
이에 본 발명의 일 실시예에 따른 코어쉘 적층입자의 제조방법에 있어서, 상기 쉘 반응물의 농도는 1.0M 이하일 수 있다.
만약, 쉘 반응물의 농도가 1M을 초과하여 지나치게 높을 경우 코어입자(10)에 쉘층(20)이 적층되기 보다는 쉘 고체의 핵 생성이 급격히 증가하고 스스로 응집하는 자기응집(homo-agglomerate)이 발생하기 때문이다. 이렇게 자기응집 현상이 발생하면 균일한 두께의 쉘층(20) 형성이 어렵다.
또, 본 발명의 일 실시예에 따른 코어쉘 적층입자의 제조방법에 있어서, 내부회전원통(120)의 회전속도는 구체적으로 100rpm 내지 3000rpm일 수 있다.
내부회전원통(120)이 너무 느리게 회전하면 쿠에트-테일러 와류(171)의 유동강도가 충분하지 않아 균일한 적층을 유도하지 못하고 오히려 쉘고체의 자기응집(homo-agglomeration)이 야기되어, 내부회전원통(120)의 회전속도가 100rpm보다 더 느릴 경우에는 쉘층(20)이 제대로 형성되지 않고, 내부회전원통(120)이 3000rpm 이상으로 회전하면 쿠에트-테일러 와류(171)의 전단강도에 의하여 쉘층(20)이 깍여 나가버리는 성향이 너무 커져 쉘층(20)의 두께증가가 미미하기 때문에 실효성이 저하될 우려가 있다.
또, 본 발명의 일 실시예에 따른 코어쉘 적층입자의 제조방법에 있어서, 쉘 반응물 유입구(150)로 투입된 쉘 반응물이 생성물 유출구(160)로 외부 배출되기 전까지 유체통로(170)에 체류하는 평균체류시간은 30분 내지 90분일 수 있다. 만약 상기한 평균체류시간을 벗어나 평균체류시간이 지나치게 짧으면 쉘층(20)이 코어입자(10)에 적층되지 않고 자기응집되어 균잉한 두께의 쉘층 형성이 어렵고, 또 평균체류시간이 90분을 초과할 경우 평균체류시간의 증가에 따른 탭 밀도(tap-denity)의 변화가 미미하다.
또, 본 발명의 일 실시예에 따른 코어쉘 적층입자의 제조방법에 있어서, 쉘 반응물의 pH는 구체적으로 pH11 내지 pH13일 수 있다. 만약 pH가 상기한 범위를 벗어날 경우 쉘 고체의 자기응집으로 인해 균일한 두께의 쉘층(20) 형성이 어렵다.
도 3은 상기 본 발명의 일 실시예에 따른 제조방법에 의해 제조되는 코어쉘 적층입자의 구조를 개략적으로 나타낸 단면 구조도이다.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 제조방법에 의해 제조되는 코어쉘 적층입자(1)는 코어입자(10)의 표면 둘레에 쉘층(20)이 적층 형성된 구조를 갖는다.
구체적으로, 상기 코어쉘 적층입자(1)에 있어서, 상기 코어입자(10)는 전기적 특성이 뛰어난 니켈-리치(Ni-rich)의 하기 화학식 1의 화합물을 포함하고, 그리고 상기 쉘층은 니켈과 망간을 동량으로 포함하여 뛰어난 내구성을 나타내는 하기 화학식 2의 화합물을 포함할 수 있다.
[화학식 1]
[NixCoyMnz](OH)2
(상기 화학식 1에서, 0<x<1, 0<y<1, 0<z<1이고, x+y+z=1이며, x>y+z이다)
[화학식 2]
[NiaCobMnc](OH)2
(상기 화학식 2에서, 0<a<1, 0<b<1, 0<c<1이고, a+b+c=1이며, a=c이다)
보다 구체적으로, 상기 코어입자는 [Ni0.9Co0.05Mn0.05](OH)2의 화합물을 포함할 수 있고, 상기 쉘층(20)은 [Ni0.475Co0.05Mn0.475](OH)2의 화합물을 포함할 수 있다.
이와 같이 상기 코어입자(10)는 전기적 특성이 뛰어나고, 쉘층(20)은 내구성이 뛰어난 특성을 가짐으로써, 상기 제조방법에 의해 제조된 코어쉘 적층입자(1)는 우수한 전기적 특성과 내구성을 동시에 가지게 된다. 이에 리튬이차전지의 양극활물질로서 유용하다.
이하 실시예를 들어 본 발명을 구체적으로 설명한다. 그러나 이하 실시예는 본 발명의 예시일 뿐 본 발명을 이에 한정하는 의미는 아니다.
[실시예]
도 1 및 도 2a, 2b에서와 같이, 외부원통과 내부원통 사이의 쿠에트-테일러 유체통로에 흐르는 유체의 흐름방향을 따라 상기 외부원통에 코어 반응물 유입구, 쉘 반응물 유입구 및 생성물 유출구가 순차적으로 형성된 연속식 쿠어트-테일러 경정화기를 이용하여 코어쉘 적층입자를 제조하였다.
상세하게는 상기 금속성 수용액 유입구(141, 151)를 통해 NiSO4·6H2O, CoSO4·7H2O 및 MnSO4·H2O의 금속설페이트의 혼합물을 투입하고, 염기성 수용액 유입구(142, 152)를 통해서는 수산화나트륨(NaOH) 수용액을 투입하였으며, 암모니아 수용액 유입구(143, 153)를 통해서는 NH4OH 용액을 투입하였다. 이때 코어 반응물 유입구(140) 중에서 금속성 수용액 유입구(111)로 투입되는 금속설페이트, NiSO4·6H2O, CoSO4·7H2O 및 MnSO4·H2O는 Ni:Co:Mn = 0.9:0.05:0.05가 되도록 혼합하여 투입하고, 또, 쉘 반응물 유입구(150) 중에서 금속성 수용액 유입구(151)로 투입되는 금속설페이트, NiSO4·6H2O, CoSO4·7H2O 및 MnSO4·H2O는 Ni:Co:Mn = 0.475:0.05:0.475가 되도록 혼합하여 투입하였다. 또, 상기 금속성 수용액과 염기성 수용액은 동일한 유속으로 투입하였으며, 상기 암모니아 수용액은 쉘 반응물 투입량의 1/10이 되도록 하였다. 또 상기한 반응물들의 산화 방지를 위하여 질소기체를 반응물 용액에 계속해서 불어넣었다. 또, 쉘 반응물의 농도는 0.9M, 내부원통(120)의 회전속도는 1000rpm, 쉘 반응물 유입구(150)로 투입된 쉘 반응물이 생성물 유출구(160)로 외부 배출되기 전까지 유체통로(170)에 체류하는 평균체류시간을 60분, 쉘 반응물의 pH를 11~13로 하였다. 결과로서, 코어입자는 [Ni0.9Co0.05Mn0.05](OH)2 의 화합물을 포함하고, 쉘층은 [Ni0.475Co0.05Mn0.475](OH)2의 화합물을 포함하는 코어쉘 적층입자를 제조하였다.
상기에서 제조한 코어쉘 적층입자를 전자 현미경으로 관찰하고, 그 결과를 도 4에 나타내었다(전자현미경 측정 조건: EHT=10.00kV, Signal A=InLens, contrast=27.0%, Mag=50.00KX, WD=5.1mm).
또, 상기 코어쉘 적층입자에 대해 에너지 분산형 X선 분광기(Energy-dispersive X-ray spectroscopy, EDX)를 이용하여 분석하였다. 그 결과를 하기 표 1 및 2에 나타내었다.
하기 표 1 및 2는 상기 코어쉘 적층입자에 있어서 코어 및 쉘에 대한 분석 결과를 각각 나타낸다.
표 1
구성성분 중량% 원자%
Ni 90.44 90.97
Mn 4.91 4.46
Co 4.65 4.57
표 2
구성성분 중량% 원자%
Ni 48.34 47.97
Mn 45.07 46.56
Co 6.59 5.47
분석 결과, 코어입자(10)는 Ni 약 90.4중량%, Mn 약 4.9중량%, Co 약 4.7중량%의 Ni 리치의 조성을 가지고, 쉘층(20)은 Ni 약 48.3중량%, Mn 약 45.1중량%, Co 약 6.6중량%로, Ni와 Mn이 거의 동량인 조성을 가짐을 확인할 수 있었다(오차범위 ±7%).
상술한 바와 같이 본 발명의 제조방법에 의하면, 하나의 쿠에트-테일러 결정화기에서 코어입와 쉘층을 연속적으로 생성시킴으로써 코어쉘 적층입자를 손쉽게 대량생산을 도모할 수 있다. 또한 쿠에트-테일러 결정화기의 유로통로가 종래의 임펠러 유동방식의 경우와 달리 좁으면서도 활발한 유체유동을 가지므로 균일한 크기의 입자를 생성시킬 수 있게 된다. 그리고 쉘 반응물 농도, 내부회전원통의 회전속도, 쉘 반응물의 평균체류시간, 쉘 반응물의 pH에 의해 쉘층의 형성이 민감하게 영향을 받으므로 위에서 언급한 적절한 공정 조건을 통하여 전기적 특성과 내구성이 우수한 코어쉘 적층입자를 대량으로 쉽게 얻을 수 있다.

Claims (8)

  1. 외부원통과 내부원통 사이의 쿠에트-테일러 유체통로에 흐르는 유체의 흐름방향을 따라 상기 외부원통에 코어 반응물 유입구, 쉘 반응물 유입구, 및 생성물 유출구가 순차적으로 형성된 연속식 쿠에트-테일러 결정화기를 이용하되, 상기 코어 반응물 유입구를 통해서 투입되는 코어 반응물에 의하여 상기 유체통로에서 코어입자가 먼저 형성되도록 한 다음에 상기 쉘 반응물 유입구를 통해서 투입되는 쉘 반응물에 의하여 상기 코어입자의 둘레에 쉘층이 적층 형성되도록 하여, 상기 코어입자의 둘레에 쉘층이 적층된 코어쉘 적층입자가 상기 생성물 유출구를 통해서 외부 배출되도록 하는 것을 특징으로 하는 코어쉘 적층입자 제조방법.
  2. 제1항에 있어서,
    상기 코어 반응물 및 쉘 반응물은 각각 독립적으로 금속성 수용액, 염기성 수용액, 및 암모니아 수용액을 포함하는 것을 특징으로 하는 코어쉘 적층입자 제조방법.
  3. 제2항에 있어서,
    상기 코어입자는 하기 화학식 1의 화합물을 포함하고, 그리고 상기 쉘층은 하기 화학식 2의 화합물을 포함하는 것을 특징으로 하는 코어쉘 적층입자 제조방법.
    [화학식 1]
    [NixCoyMnz](OH)2
    (상기 화학식 1에서, 0<x<1, 0<y<1, 0<z<1이고, x+y+z=1이며, x>y+z이다)
    [화학식 2]
    [NiaCobMnc](OH)2
    (상기 화학식 2에서, 0<a<1, 0<b<1, 0<c<1이고, a+b+c=1이며, a=c이다)
  4. 제1항에 있어서,
    상기 쉘 반응물의 농도가 1.0M 이하인 것을 특징으로 하는 코어쉘 적층입자 제조방법.
  5. 제1항에 있어서,
    상기 내부원통의 회전속도가 100rpm 내지 3000rpm인 것을 특징으로 하는 코어쉘 적층입자 제조방법.
  6. 제1항에 있어서,
    상기 쉘 반응물 유입구로 투입된 쉘 반응물이 상기 생성물 유출구로 외부 배출되기 전까지 상기 유체통로에 체류하는 평균체류시간이 30분 내지 90분인 것을 특징으로 하는 코어쉘 적층입자 제조방법.
  7. 제1항에 있어서,
    상기 쉘 반응물의 pH가 11 내지 13인 것을 특징으로 하는 코어쉘 적층입자 제조방법.
  8. 제1항에 있어서,
    상기 쉘 반응물의 농도가 1.0M 이하이고, 상기 내부원통의 회전속도가 100rpm 내지 3000rpm이며, 상기 쉘 반응물 유입구로 투입된 쉘 반응물이 상기 생성물 유출구로 외부 배출되기 전까지 상기 유체통로에 체류하는 평균체류시간이 30분 내지 90분이고, 상기 쉘 반응물의 pH가 11 내지 13이며, 상기 쉘 반응물이 금속성 수용액, 염기성 수용액, 및 암모니아 수용액을 포함하는 것을 특징으로 하는 코어쉘 적층입자 제조방법.
PCT/KR2014/010034 2014-10-14 2014-10-23 연속식 쿠에트-테일러 결정화기를 이용하는 코어쉘 적층입자 제조방법 WO2016060310A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/422,079 US10347913B2 (en) 2014-10-14 2014-10-23 Method for preparing core-shell structured particle by using continuous Couette-Taylor crystallizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140138172A KR20160044090A (ko) 2014-10-14 2014-10-14 연속식 쿠에트-테일러 결정화기를 이용하는 코어쉘 적층입자 제조방법
KR10-2014-0138172 2014-10-14

Publications (1)

Publication Number Publication Date
WO2016060310A1 true WO2016060310A1 (ko) 2016-04-21

Family

ID=55746838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010034 WO2016060310A1 (ko) 2014-10-14 2014-10-23 연속식 쿠에트-테일러 결정화기를 이용하는 코어쉘 적층입자 제조방법

Country Status (2)

Country Link
KR (1) KR20160044090A (ko)
WO (1) WO2016060310A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4023607A4 (en) * 2019-11-29 2023-10-25 Svolt Energy Technology Co., Ltd CARBONATE PRECURSOR HAVING HIGH NICKEL CONTENT AND LOW COBALT SANDWICH STRUCTURE, CORRESPONDING PREPARATION METHOD AND APPLICATION THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738192B1 (ko) * 2005-06-14 2007-07-10 에스케이 주식회사 코아·쉘 다층구조를 갖는 리튬이차전지용 양극 활물질과이를 사용한 리튬이차전지 및 그 제조 방법
KR101172867B1 (ko) * 2010-09-15 2012-08-09 경희대학교 산학협력단 리튬 이차전지용 양극 활물질 전구체 제조방법
KR20130032563A (ko) * 2011-09-23 2013-04-02 케이엔디티앤아이 주식회사 결정화 반응장치 및 이를 이용한 고순도 탄산리튬의 제조방법
KR20130080565A (ko) * 2012-01-05 2013-07-15 한국교통대학교산학협력단 코어-쉘 이중층 구조를 갖는 리튬이차전지 양극활물질 및 제조방법 그리고, 그 양극활물질을 포함한 리튬이차전지
KR20140083854A (ko) * 2012-12-24 2014-07-04 주식회사 포스코 이차전지용 양극 전구체 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738192B1 (ko) * 2005-06-14 2007-07-10 에스케이 주식회사 코아·쉘 다층구조를 갖는 리튬이차전지용 양극 활물질과이를 사용한 리튬이차전지 및 그 제조 방법
KR101172867B1 (ko) * 2010-09-15 2012-08-09 경희대학교 산학협력단 리튬 이차전지용 양극 활물질 전구체 제조방법
KR20130032563A (ko) * 2011-09-23 2013-04-02 케이엔디티앤아이 주식회사 결정화 반응장치 및 이를 이용한 고순도 탄산리튬의 제조방법
KR20130080565A (ko) * 2012-01-05 2013-07-15 한국교통대학교산학협력단 코어-쉘 이중층 구조를 갖는 리튬이차전지 양극활물질 및 제조방법 그리고, 그 양극활물질을 포함한 리튬이차전지
KR20140083854A (ko) * 2012-12-24 2014-07-04 주식회사 포스코 이차전지용 양극 전구체 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4023607A4 (en) * 2019-11-29 2023-10-25 Svolt Energy Technology Co., Ltd CARBONATE PRECURSOR HAVING HIGH NICKEL CONTENT AND LOW COBALT SANDWICH STRUCTURE, CORRESPONDING PREPARATION METHOD AND APPLICATION THEREOF

Also Published As

Publication number Publication date
KR20160044090A (ko) 2016-04-25

Similar Documents

Publication Publication Date Title
KR101812517B1 (ko) 리튬 이차전지용 양극활물질
Hua et al. Lithium-ion (de) intercalation mechanism in core-shell layered Li (Ni, Co, Mn) O2 cathode materials
TW522598B (en) Nickel hydroxide electrode material and method for making the same
WO2013115446A1 (ko) 리튬 복합 전이금속 산화물의 전구체 제조용 반응기 및 전구체 제조방법
KR101275845B1 (ko) 쿠에트 테일러 와류를 이용한 리튬 이차전지용 양극 활물질 전구체 제조 장치
WO2016039511A1 (ko) 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
WO2015122554A1 (ko) 쿠에트 테일러 반응기를 이용한 니켈 코발트 망간 복합 전구체의 연속식 제조 방법
WO2012050406A2 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2014133370A1 (ko) 리튬이차전지용 양극활물질
CN112331840B (zh) 一种锂离子电池用富镍钴高熵陶瓷正极材料及其制备方法
WO2015133692A1 (ko) 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
WO2016129733A1 (ko) 고밀도 니켈-코발트-망간 복합 전구체의 제조 방법
WO2022065935A1 (ko) 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 단입자의 고상합성방법, 이로부터 형성된 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 단입자 및 이를 포함하는 양극 및 리튬 이차전지
KR101905362B1 (ko) 양극활물질용 금속 복합체, 이를 포함하는 양극활물질 및 이의 제조 방법
US20230059571A1 (en) Cathode material stabilization
WO2014077663A1 (ko) 나트륨 이차전지용 양극활물질 및 이의 제조 방법
WO2016060310A1 (ko) 연속식 쿠에트-테일러 결정화기를 이용하는 코어쉘 적층입자 제조방법
WO2016108375A1 (ko) 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질
CN114649525B (zh) 一种富锂锰基@三元复合前驱体、正极材料以及该正极材料的制备方法
CN114744164A (zh) 三元正极材料前驱体及其制备方法、三元正极材料、锂离子电池及正极和涉电设备
WO2022114718A1 (ko) 배향성 구조를 갖는 리튬전지용 양극활물질 및 이의 제조방법
WO2022059966A1 (ko) 합금 분말 및 이의 제조방법
WO2014046363A1 (en) Aparatus and method for preparing electrode active material
US10347913B2 (en) Method for preparing core-shell structured particle by using continuous Couette-Taylor crystallizer
WO2020111807A1 (ko) 리튬 이차 전지용 양극 활물질 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14422079

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903866

Country of ref document: EP

Kind code of ref document: A1