WO2016060205A1 - 静電チャック装置 - Google Patents
静電チャック装置 Download PDFInfo
- Publication number
- WO2016060205A1 WO2016060205A1 PCT/JP2015/079188 JP2015079188W WO2016060205A1 WO 2016060205 A1 WO2016060205 A1 WO 2016060205A1 JP 2015079188 W JP2015079188 W JP 2015079188W WO 2016060205 A1 WO2016060205 A1 WO 2016060205A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrostatic chuck
- adhesive layer
- layer
- group
- thickness
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68757—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N13/00—Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
Definitions
- the present invention relates to an electrostatic chuck device.
- an electrostatic chuck device In the semiconductor manufacturing process, when processing a wafer, an electrostatic chuck device is used as a device for simply mounting and fixing the wafer on a sample stage and maintaining the wafer at a desired temperature. With higher integration and higher performance of semiconductor elements, wafer processing has been miniaturized, and plasma etching technology that has high production efficiency and enables large-area microfabrication is often used.
- a cooling medium such as water is circulated through the temperature adjustment base of the electrostatic chuck device to cool the wafer from the lower side. Due to variations in the heat input in the wafer surface, a temperature distribution is generated in the wafer surface. For example, the temperature tends to be high at the center of the wafer and low at the edge.
- a local temperature distribution is generated in the surface of a plate-like sample such as a silicon wafer, so that silicon accompanying plasma application is generated.
- An electrostatic chuck device capable of performing local temperature control of a plate-like sample such as a wafer is disclosed (for example, see Patent Document 1).
- An object of the present invention is to provide an electrostatic chuck device that is excellent in adhesiveness between an electrostatic chuck portion and a base portion and is excellent in in-plane temperature uniformity of the electrostatic chuck portion. Let it be an issue.
- One main surface is a mounting surface on which a plate-like sample is mounted and an electrostatic chuck portion including an internal electrode for electrostatic adsorption, a first adhesive layer, a sheet material, and a second An adhesive layer and a temperature adjustment base for adjusting the electrostatic chuck to a desired temperature are provided in this order,
- the first adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m;
- the second adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m.
- One main surface is a mounting surface on which a plate-like sample is to be mounted and an electrostatic chuck portion having a built-in electrostatic adsorption internal electrode;
- a plurality of heating members bonded to each other with a gap between each other, a first adhesive layer, a sheet material, a second adhesive layer, and a base portion having a function of cooling the electrostatic chuck portion;
- the first adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m;
- the second adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m.
- a polymer material layer that embeds a gap between the heating members, and the layer thickness of the polymer material layer extends from the surface opposite to the placement surface of the electrostatic chuck portion from the surface of the heating member.
- the electrostatic chuck device according to ⁇ 2> which is the same as the shortest distance to the surface on the first adhesive layer side.
- ⁇ 5> The electrostatic chuck device according to any one of ⁇ 2> to ⁇ 4>, wherein an insulating material layer is provided between the heating member and the base portion.
- the bonding layer is at least selected from the group consisting of an epoxy group, an isocyanate group, an amino group, a mercapto group, a vinyl group, a styryl group, a methacryl group, an acrylic group, a ureido group, a sulfide group, and an isocyanurate group.
- the electrostatic chuck device according to any one of ⁇ 1> to ⁇ 5>, which is a layer having a structure derived from a compound having one reactive functional group.
- Y represents an epoxy group, an isocyanate group, an amino group, a mercapto group, a vinyl group, a styryl group, a methacryl group, an acrylic group, a ureido group, a sulfide group, or an isocyanurate group
- L 1 Represents a linking group.
- M represents a silicon atom, a titanium atom, or a zirconium atom.
- R represents an alkyl group having 1 to 5 carbon atoms
- L 2 represents a single bond or carbonyl
- n represents an integer of 1 to 3.
- R ′ represents an alkyl group having 1 to 3 carbon atoms or a phenyl group.
- ⁇ 9> Any one of ⁇ 1> to ⁇ 8>, wherein the sheet material is thicker than a total layer thickness of the first adhesive layer and the second adhesive layer, and the thickness of the sheet material is 20 ⁇ m to 500 ⁇ m. It is an electrostatic chuck apparatus as described in one.
- the sheet material includes any one selected from the group consisting of a silicone elastomer and a fluorine elastomer.
- the mounting surface is an aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body, an aluminum oxide (Al 2 O 3 ) sintered body, an aluminum nitride (AlN) sintered body, or an oxide
- Al 2 O 3 —SiC aluminum oxide-silicon carbide
- Al 2 O 3 aluminum oxide
- AlN aluminum nitride
- an electrostatic chuck device having excellent adhesion between the electrostatic chuck portion and the base portion and excellent in-plane temperature uniformity of the electrostatic chuck portion.
- the electrostatic chuck device of the present invention has an electrostatic chuck portion in which one main surface is a mounting surface on which a plate-like sample is mounted and an internal electrode for electrostatic adsorption is built-in, 1 adhesive layer, a sheet material, a second adhesive layer, and a temperature adjustment base portion for adjusting the electrostatic chuck portion to a desired temperature in this order,
- the first adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m;
- the second adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m.
- an electrostatic chuck portion in which one main surface is a mounting surface on which a plate-like sample is mounted and an internal electrode for electrostatic adsorption is built-in, A plurality of heating members bonded to a surface opposite to the mounting surface of the electrostatic chuck portion with a gap therebetween, a first adhesive layer, a sheet material, a second adhesive layer, and the static A base portion having a function of cooling the electric chuck portion in this order,
- the first adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m;
- the second adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m.
- FIG. 1 is a schematic diagram showing an example of a laminated configuration of the electrostatic chuck apparatus of the present invention according to the first embodiment.
- the electrostatic chuck device 80 includes an electrostatic chuck portion 2 that fixes a wafer, and a thick disk-shaped temperature adjustment base portion 10 that adjusts the electrostatic chuck portion 2 to a desired temperature. Between the electrostatic chuck part 2 and the temperature adjusting base part 10, a first adhesive layer 4, a sheet material 6, and a second adhesive layer 8 are provided in this order from the electrostatic chuck part 2 side.
- the first adhesive layer 4 in FIG. 1 includes a bonding layer 14 and a silicone adhesive layer (first silicone adhesive layer) 24.
- the first adhesive layer 4 in FIG. 1 includes two bonding layers 14 (14e and 14s), but may be only the bonding layer 14e on the electrostatic chuck portion 2 side, or the bonding layer on the sheet material 6 side. Only 14s may be sufficient. That is, for example, the silicone adhesive layer 24 may be located on one side of the electrostatic chuck portion 2 side and the sheet material 6 side, and the bonding layer 14 may be located on the other side.
- the second adhesive layer 8 includes a bonding layer 18 and a silicone adhesive layer (second silicone adhesive layer) 28. The second adhesive layer 8 of FIG.
- the first bonding layer 18 has two bonding layers 18 (18e, 18s), but may be only on the bonding layer 18s on the sheet material 6 side, or on the temperature adjustment base 10 side. Only the layer 18e may be used. That is, for example, the silicone adhesive layer 28 may be positioned on one side of the sheet material 6 side and the temperature adjusting base portion 10 side, and the bonding layer 18 may be positioned on the other side.
- the bonding layer 14 and the silicone adhesive layer 24 are interposed between the electrostatic chuck portion 2 and the sheet material 6, and the sheet material 6 and the temperature adjusting base portion 10 are arranged. Since the bonding layer 18 and the silicone adhesive layer 28 are interposed between the layers, it is considered that the adhesiveness between the electrostatic chuck portion and the temperature adjusting base portion is excellent. Further, the bonding layer 14 and the bonding layer 18 have a thickness of 1 nm to 500 nm, respectively, and the silicone adhesive layer 24 and the silicone adhesive layer 28 have a thickness of 2 ⁇ m to 30 ⁇ m, respectively.
- the laminated structure of the electrostatic chuck device of the present invention is not limited to the structure shown in FIG. In the following description, the reference numerals in the drawings are omitted.
- the electrostatic chuck device of the present invention includes a first adhesive layer that bonds the electrostatic chuck portion and the sheet material, and a second adhesive layer that bonds the sheet material and the temperature adjusting base portion.
- An adhesive layer is provided.
- the first adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m.
- the second adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a thickness of 2 ⁇ m. Contains a ⁇ 30 ⁇ m silicone adhesive layer.
- Each of the first adhesive layer and the second adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m. It has excellent adhesiveness and excellent in-plane temperature uniformity of the electrostatic chuck portion.
- the layer thickness of the bonding layer is difficult to be smaller than the molecular size of the compound constituting the bonding layer, and from this viewpoint, the thickness is set to 1 nm or more.
- the layer thickness of the bonding layer is 500 nm or less, the in-plane temperature uniformity of the electrostatic chuck portion is excellent.
- the layer thickness of the bonding layer is preferably 2 nm to 300 nm, more preferably 2 nm to 150 nm.
- the adhesive layer may have a plurality of bonding layers, but the total layer thickness of the bonding layers is preferably 2000 nm or less from the viewpoint of in-plane temperature uniformity of the electrostatic chuck portion.
- the first adhesive layer and the second adhesive layer each have a silicone adhesive layer in addition to the bonding layer.
- the adhesive layer further includes a silicone adhesive layer, adhesion between the electrostatic chuck portion and the sheet material and adhesion between the sheet material and the temperature adjusting base portion can be strengthened.
- first adhesive layer and the second adhesive layer may have one bonding layer and a silicone adhesive layer, or may have two or more layers.
- the first adhesive layer includes a silicone adhesive layer
- the first adhesive layer includes two bonding layers
- the silicone adhesive layer includes the bonding layer on the electrostatic chuck portion side, and the sheet.
- a laminated structure positioned between the material-side bonding layer; and the second adhesive layer has two bonding layers
- the second silicone adhesive layer has a sheet material-side bonding layer and temperature control.
- the laminated structure located between the base part side joining layer is mentioned.
- the first adhesive layer and the second adhesive layer may be the same or different.
- the bonding layer has at least one reactivity selected from the group consisting of epoxy groups, isocyanate groups, amino groups, mercapto groups, vinyl groups, styryl groups, methacryl groups, acrylic groups, ureido groups, sulfide groups, and isocyanurate groups.
- a layer having a structure derived from a compound having a functional group is preferable.
- the compound having the reactive functional group may be referred to as a bonding layer compound.
- the component (for example, silicone resin) and the component (for example, aluminum) constituting the surface of the temperature adjustment base portion are excellent in reactivity, affinity, adhesion, etc., as a result, the layer thickness of the bonding layer is reduced. Easy to make small.
- the bonding layer compound will be described in further detail.
- the bonding layer compound is at least one selected from the group consisting of epoxy groups, isocyanate groups, amino groups, mercapto groups, vinyl groups, styryl groups, methacryl groups, acrylic groups, ureido groups, sulfide groups, and isocyanurate groups.
- the reactive functional group of the bonding layer compound is excellent in reactivity with organic compounds such as rubber, polymer compounds and resins.
- the reactive functional group is preferably an epoxy group, an isocyanate group, an amino group, and a mercapto group.
- the bonding layer compound further has a hydrolyzable group.
- the hydrolyzable group is easily bonded to an inorganic compound such as glass, metal, and metal oxide, and also easily bonded to a silicone resin, and thus has excellent adhesion.
- Examples of the hydrolyzable group include an alkoxy group and an acyloxy group.
- the alkoxy group preferably has 1 to 5 carbon atoms, and the alkyl group portion of the alkoxy group may be linear, branched or cyclic. Specific examples include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, and a butoxy group.
- the acyloxy group preferably has 1 to 5 carbon atoms, and the alkyl group portion of the acyloxy group may be linear, branched or cyclic. Specific examples include acetyloxy group, propanoyloxy group, butanoyloxy group, pentanoyloxy group and the like.
- the alkoxy group preferably has 1 to 3 carbon atoms, and more preferably has 1 to 2 carbon atoms.
- the acyloxy group preferably has 1 to 3 carbon atoms, and more preferably has 1 to 2 carbon atoms.
- the bonding layer compound is preferably represented by the following general formula (1).
- Y is a reactive functional group, and is an epoxy group, isocyanate group, amino group, mercapto group, vinyl group, styryl group, methacryl group, acrylic group, ureido group, sulfide group, or isocyanurate.
- L 1 represents a linking group.
- M represents a silicon atom, a titanium atom, a titanium atom, or a zirconium atom.
- R represents an alkyl group having 1 to 5 carbon atoms
- L 2 represents a single bond or carbonyl
- n represents an integer of 1 to 3.
- R ′ represents an alkyl group having 1 to 3 carbon atoms or a phenyl group.
- Y is preferably an epoxy group, an isocyanate group, an amino group, or a mercapto group from the viewpoint of hydrolyzability of the bonding layer compound.
- the linking group represented by L 1 include a single bond, an alkylene group having 1 to 4 carbon atoms, an alkenylene group having 2 to 8 carbon atoms, an alkynylene group having 2 to 8 carbon atoms, a carbonyl group, an oxygen atom, and a sulfur atom. Or a combination thereof.
- L 1 is a single bond.
- the reactive functional group concentration represents the number of moles of the reactive functional group (Y) per unit mass of the bonding layer compound.
- a group represented by (O-L 2 -R) n is a hydrolyzable group.
- L 2 represents a single bond or a carbonyl group, and preferably a single bond.
- the alkyl group represented by R may be linear, branched or cyclic, for example, methyl group, ethyl group, n-propylisopropyl group, n-butyl group, t-butyl group, n-pentyl group.
- Etc. R preferably has 1 to 3 carbon atoms. higher n is small, i.e., as the O-L 2 -R in the general formula (1) is large, excellent reactivity with the inorganic compounds and silicone resins.
- the bonding layer compound may be used as the bonding layer compound.
- a silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd. for example, KBM-903, KBM-403, KBM-803, KBE-9007, KBM-1003, KBM- 5103, KBM-503, etc.
- KBM-903, KBM-403, KBM-803, KBE-9007, KBM-1003, KBM- 5103, KBM-503, etc. can be preferably used.
- the bonding layer compound having a hydrolyzable group is used in forming the bonding layer
- the bonding layer compound and alcohol For example, isopropyl alcohol
- water, and a catalyst for example, hydrochloric acid, nitric acid, ammonia, etc.
- the bonding layer compound is hydrolyzed in advance and then used as a bonding layer solution.
- the bonding layer compound having undergone hydrolysis has a structure in which (OL 2 -R) n in the general formula (1) is represented by (OH) n .
- each of the first adhesive layer and the second adhesive layer further includes a silicone adhesive layer.
- the adhesive layer further includes a silicone adhesive layer, thereby further strengthening the adhesion between the electrostatic chuck portion and the sheet material and the adhesion between the sheet material and the temperature adjusting base portion. it can.
- the thickness of the silicone adhesive layer is 2 ⁇ m to 30 ⁇ m for each of the first silicone adhesive layer and the second silicone adhesive layer. When the thickness of the silicone adhesive layer is 2 ⁇ m or more, a strong adhesive force can be obtained, and when it is 30 ⁇ m or less, the in-plane temperature uniformity of the electrostatic chuck portion is not easily impaired.
- the thickness of the silicone adhesive layer is preferably 2 ⁇ m to 20 ⁇ m, and more preferably 2 ⁇ m to 15 ⁇ m.
- the position of the silicone adhesive layer is not limited as long as it is within the adhesive layer.
- the first silicone adhesive layer is positioned on one side of the electrostatic chuck portion side and the sheet material side
- the bonding layer is positioned on the other side
- the second silicone adhesive layer is positioned on the sheet material.
- the bonding layer may be positioned on one side of the temperature adjustment base portion and the temperature adjustment base portion side.
- a silicone adhesive layer may be located between the two bonding layers.
- the silicone adhesive layer contains at least silicone rubber, and if necessary, other resins such as epoxy resin and polyimide resin, and thermally conductive fillers such as aluminum nitride (AlN) and aluminum oxide (Al 2 O 3 ). You may go out.
- the silicone rubber a silicone rubber having a one-component and two-component condensation type or addition type reaction mechanism is preferable from the point of relieving a difference in thermal expansion due to a difference in temperature between the electrostatic chuck portion and the temperature adjusting base portion. In general, those represented by the following general formula (2) are used.
- R 1 to R 6 each independently represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and an alkyl group A part or all of the hydrogen atoms of the alkenyl group and aryl group may be substituted with a fluorine atom.
- m represents a repeating unit.
- the alkyl group having 1 to 5 carbon atoms may be linear or branched.
- the number of carbon atoms of R 1 to R 6 is preferably independently 1 to 3, more preferably 1 to 2, and still more preferably 1.
- Examples of the alkenyl group having 2 to 5 carbon atoms include vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 2-butenyl group and pentenyl group.
- the aryl group having 6 to 12 carbon atoms represents a phenyl group, a naphthyl group, or the like, and may further have a substituent such as an alkyl group having 1 to 5 carbon atoms or a halogen atom.
- Part or all of the hydrogen atoms of the alkyl group, alkenyl group and aryl group in the general formula (2) may be substituted with fluorine atoms.
- a propyl group as an example, a trifluoropropyl group (—CH 2 CH 2 CF 3 ) in which the hydrogen atom of the methyl group at the terminal of the propyl group (—CH 2 CH 2 CH 3 ) is replaced with a fluorine atom. There may be.
- silicone resin As the main component (70% by mass or more of the total mass of the silicone adhesive layer), it has heat resistance up to 200 ° C., and other epoxy resin and polyimide resin that are other heat-resistant adhesives as the main component. It is preferable because it has a large elongation compared to the adhesive to be applied, can relieve stress between the electrostatic chuck portion and the temperature adjusting base portion, and has high thermal conductivity.
- the silicone adhesive layer may be composed of a commercially available silicone adhesive (including a silicone adhesive), for example, a silicone adhesive (for example, SD 4580 PSA, SD 4584 PSA, SD manufactured by Toray Dow Corning) 4585 PSA, SD 4587 L PSA, SD 4560 PSA, etc., manufactured by Momentive, Inc., silicone adhesive (eg, XE13-B3208, TSE3212, TSE3261-G, TSE3280-G, TSE3281-G, TSE3221, TSE326M, TSE326M, etc. ), A silicone adhesive (for example, KE-1820, KE-1823, KE-1825, KE-1830, KE-1833, etc.) manufactured by Shin-Etsu Silicone.
- a silicone adhesive for example, SD 4580 PSA, SD 4584 PSA, SD manufactured by Toray Dow Corning 4585 PSA, SD 4587 L PSA, SD 4560 PSA, etc., manufactured by Momentive, Inc.
- silicone adhesive eg,
- the sheet material is a member that relieves stress caused by a temperature difference between the electrostatic chuck portion and the temperature adjusting base portion. From this viewpoint, the sheet material is selected from the group consisting of a silicone elastomer and a fluorine elastomer. It is preferable to contain any of these. Silicone elastomers are mainly composed of organopolysiloxane, and can be classified into polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane. Some are modified with vinyl groups, alkoxy groups, and the like. Specific examples include KE series [manufactured by Shin-Etsu Chemical Co., Ltd.], SE series, CY series, SH series [manufactured by Toray Dow Corning Silicone Co., Ltd.] and the like.
- the sheet material may contain a silicone-based elastomer or a fluorine-based elastomer alone, or may contain two or more types, one or more types of silicone-based elastomers, and one or more types of fluorine-based elastomers. Both of them may be included.
- the sheet material is preferably thicker than the total thickness of the first adhesive layer and the second adhesive layer.
- the thickness of the sheet material is preferably 20 ⁇ m to 500 ⁇ m. When the thickness of the sheet material is 20 ⁇ m or more, it is easy to relieve stress caused by the temperature difference between the electrostatic chuck portion and the temperature adjusting base portion, and when it is 500 ⁇ m or less, the in-plane temperature of the electrostatic chuck portion A decrease in uniformity can be suppressed.
- the Shore hardness (A) of the sheet material is preferably 20 to 80 from the viewpoint of alleviating the stress caused by the temperature difference between the electrostatic chuck portion and the temperature adjusting base portion.
- the electrostatic chuck portion has one main surface as a placement surface on which a plate-like sample is placed and incorporates an electrostatic adsorption internal electrode. More specifically, for example, a mounting plate whose upper surface is a mounting surface on which a plate-like sample such as a semiconductor wafer is mounted, and a support plate that is integrated with the mounting plate and supports the mounting plate, The internal electrode for electrostatic adsorption provided between the mounting plate and the support plate, an insulating material layer (insulating material layer in chuck) for insulating the periphery of the internal electrode for electrostatic adsorption, and the support plate are penetrated.
- the power supply terminal is configured to be provided with a power supply terminal for applying a DC voltage to the electrostatic adsorption internal electrode.
- the surface adjacent to the first adhesive layer is the surface of the support of the electrostatic chuck portion.
- the mounting plate and the support plate are disk-shaped with the same shape of the stacked surfaces, and are an aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body, aluminum oxide (Al 2 O 3 ).
- Insulating ceramics having mechanical strength such as sintered body, aluminum nitride (AlN) sintered body, yttrium oxide (Y 2 O 3 ) sintered body and having durability against corrosive gas and plasma. It is preferable that it consists of a ligation. It is preferable that a plurality of projections having a diameter smaller than the thickness of the plate-like sample are formed on the placement surface of the placement plate, and these projections support the plate-like sample.
- the thickness of the electrostatic chuck portion (the total thickness of the mounting plate and the support plate) is preferably 0.7 mm to 3.0 mm.
- the thickness of the electrostatic chuck portion is 0.7 mm or more, the mechanical strength of the electrostatic chuck portion can be ensured.
- the thickness of the electrostatic chuck portion is 3.0 mm or less, the heat transfer in the lateral direction of the electrostatic chuck portion is less likely to increase, and a predetermined in-plane temperature distribution is easily obtained. Thermal response is not easily degraded.
- the lateral direction of the electrostatic chuck portion refers to the electrostatic chuck portion, the first and second adhesive layers, the sheet material, the temperature adjustment base portion, and the first and second adhesions as shown in FIG. In a layered structure of layers, a direction perpendicular to the stacking direction is referred to.
- the internal electrode for electrostatic adsorption is used as an electrode for an electrostatic chuck for generating a charge and fixing a plate-like sample with electrostatic adsorption force.
- the shape and size of the internal electrode are appropriately adjusted depending on the application. Is done.
- the internal electrode for electrostatic adsorption includes an aluminum oxide-tantalum carbide (Al 2 O 3 —Ta 4 C 5 ) conductive composite sintered body, an aluminum oxide-tungsten (Al 2 O 3 —W) conductive composite sintered body, Aluminum oxide-silicon carbide (Al 2 O 3 -SiC) conductive composite sintered body, aluminum nitride-tungsten (AlN-W) conductive composite sintered body, aluminum nitride-tantalum (AlN-Ta) conductive composite sintered body It is made of a conductive ceramic such as a body, or a refractory metal such as tungsten (W), tantalum (Ta), or molybdenum (Mo).
- the thickness of the internal electrode for electrostatic adsorption is not particularly limited, but is preferably 0.1 ⁇ m to 100 ⁇ m, and more preferably 5 ⁇ m to 20 ⁇ m.
- the thickness of the internal electrode for electrostatic adsorption is 0.1 ⁇ m or more, sufficient conductivity can be ensured, and when the thickness is 100 ⁇ m or less, the mounting plate and the support plate, The difference in coefficient of thermal expansion with the internal electrode for adsorption is not easily increased, and cracks are unlikely to occur at the bonding interface between the mounting plate and the support plate.
- the internal electrode for electrostatic adsorption having such a thickness can be easily formed by a film forming method such as sputtering or vapor deposition, or a coating method such as screen printing.
- the insulating layer surrounds the internal electrode for electrostatic adsorption to protect the internal electrode for electrostatic adsorption from the corrosive gas and its plasma, and at the boundary between the mounting plate and the support plate, that is, the internal for electrostatic adsorption
- the outer peripheral region other than the electrodes is joined and integrated.
- the insulating material layer is preferably composed of an insulating material having the same composition or the same main component as the material constituting the mounting plate and the support plate.
- the power feeding terminal is a rod-shaped terminal provided to apply a DC voltage to the electrostatic adsorption internal electrode.
- the material for the power supply terminal is not particularly limited as long as it is a conductive material having excellent heat resistance, but the thermal expansion coefficient approximates that of the electrostatic adsorption internal electrode and the support plate.
- a conductive ceramic constituting the internal electrode for electrostatic adsorption or a metal material such as tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), Kovar alloy, etc. is preferable. Used.
- the power feeding terminal is preferably insulated from the temperature adjusting base by an insulator having insulation properties.
- the power feeding terminal is joined and integrated with the support plate, and the mounting plate and the support plate are joined and integrated with the electrostatic adsorption internal electrode and the insulating material layer to constitute an electrostatic chuck portion. It is preferable.
- the temperature adjusting base portion is a member for adjusting the electrostatic chuck portion to a desired temperature, and the shape is not particularly limited, but is usually a thick disk shape.
- the temperature adjusting base is preferably a water-cooled base or the like in which a flow path for circulating water is formed.
- the material constituting the temperature adjusting base include metals excellent in thermal conductivity, conductivity, and workability, composite materials containing these metals, and ceramics. Specifically, for example, aluminum (Al), aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS) and the like are preferably used. It is preferable that at least the surface exposed to the plasma of the temperature adjusting base portion is subjected to anodizing or an insulating film such as alumina is formed.
- the solvent of the bonding layer solution contains at least water, and may further include an organic solvent that dissolves the bonding layer compound.
- the organic solvent is not particularly limited as long as it can dissolve the bonding layer compound, and includes, for example, at least one selected from the group consisting of alcohols and ketones.
- the alcohol include methanol, ethanol, isopropyl alcohol, and the like.
- the ketone include acetone, methyl ethyl ketone, and the like.
- the solvent for the bonding layer solution is preferably a mixed solvent of alcohol and water, and more preferably a mixed solvent of isopropyl alcohol and water.
- the bonding layer solution is preferably prepared in the range where the concentration of the bonding layer compound is 0.05% by mass to 5% by mass from the viewpoint of uniform application with a thin film.
- the concentration of the bonding layer compound in the bonding layer solution is more preferably 0.1% by mass to 1% by mass.
- the bonding layer solution may contain a catalyst in order to promote hydrolysis of the bonding layer compound.
- the catalyst include hydrochloric acid, nitric acid, ammonia, and the like, among which hydrochloric acid and ammonia are preferable.
- the bonding layer solution preferably does not contain a catalyst.
- the reactive functional group is an epoxy group, an isocyanate group, or an amino group. Or a bonding layer compound which is a mercapto group.
- Examples of the method for applying the bonding layer solution to the electrostatic chuck portion, the temperature adjusting base portion, or the sheet material include spraying, brush coating, bar coater coating, and ink jet ejection. Among these, application with a bar coater is preferable from the viewpoint of easy adjustment of the thickness of the bonding layer.
- the bonding layer solution After the bonding layer solution is applied to the electrostatic chuck part, the temperature adjusting base part, or the sheet material, it is preferable to heat the application surface of the bonding layer solution to blow off the solvent.
- the adhesion between the electrostatic chuck portion, the temperature adjusting base portion, or the sheet material and the adherend can be increased. Heating the application surface of the bonding layer solution depends on the thickness of the bonding layer, the concentration of the bonding layer compound in the bonding layer solution, the type of the bonding layer compound, etc., but at 80 ° C. to 120 ° C. for 30 seconds. It is preferable to carry out the conditions for up to 5 minutes.
- a solution for an adhesive layer in which a silicone adhesive is dissolved in a solvent may be used from the viewpoint of easy application.
- the method for applying the silicone adhesive or the adhesive layer solution include the same methods as the method for applying the bonding layer solution to the electrostatic chuck portion, the temperature adjusting base portion, and the like, and the preferred embodiments are also the same. That is, application by a bar coater is preferable.
- the solvent constituting the adhesive layer solution is not particularly limited as long as it can dissolve the silicone adhesive, and examples thereof include at least one selected from the group consisting of alcohol, ketone, and water.
- the alcohol include methanol, ethanol, isopropyl alcohol, and the like.
- the ketone include acetone, methyl ethyl ketone, and the like. Among these, it is preferable to use a ketone, and it is more preferable to use methyl ethyl ketone.
- the adhesive layer solution may be prepared by diluting the silicone adhesive with a solvent to such an extent that the adhesive layer solution can be easily applied. Moreover, it is preferable that there are few solvents from a viewpoint of workability
- the method for applying the adhesive layer solution to the electrostatic chuck portion, the temperature adjusting base portion, etc. is the same as the method for applying the bonding layer solution to the electrostatic chuck portion, the temperature adjusting base portion, etc.
- the preferred embodiment is also the same. That is, application by a bar coater is preferable.
- FIG. 2 is a schematic cross-sectional view showing an example of a laminated configuration of the electrostatic chuck device of the present invention according to the second embodiment.
- the electrostatic chuck apparatus 100 includes an electrostatic chuck portion 102 that fixes a wafer, a heating member 150 that heats the electrostatic chuck portion 102, and a thick disk-shaped base that has a function of cooling the electrostatic chuck portion 102. Part 110.
- the heating member 150 is positioned on a surface opposite to the mounting surface of the electrostatic chuck unit 102 (referred to as a heating member installation surface), and is fixed to the electrostatic chuck unit 102 with a gap therebetween by an adhesive 152.
- the heating member 150 can be configured by, for example, a plurality of patterns in which a narrow band-shaped metal material is meandered. Although four heating members 150 are shown in FIG. 2, these heating members 150 may be connected in a single pattern, or may be configured by a plurality of patterns of the same type or different types. . For example, a plurality of annular heating members having different diameters may be arranged concentrically.
- the first adhesive layer 104 of FIG. 2 includes a bonding layer 114 and a silicone adhesive layer (first silicone adhesive layer) 124.
- the first adhesive layer 104 in FIG. 2 includes two bonding layers 114 (114e and 114s), but may be only the bonding layer 114e on the electrostatic chuck portion 2 side, or the bonding layer on the sheet material 106 side. It may be only 114s.
- the silicone adhesive layer 124 may be located on one side of the electrostatic chuck portion 102 side and the sheet material 106 side, and the bonding layer 114 may be located on the other side.
- the second adhesive layer 108 includes a bonding layer 118 and a silicone adhesive layer (second silicone adhesive layer) 128.
- the second adhesive layer 108 in FIG. 2 includes two bonding layers 118 (118e and 118s), but may be only in the bonding layer 118s on the sheet material 106 side, or only the bonding layer 118e on the base portion 110 side. It may be. That is, for example, the silicone adhesive layer 128 may be positioned on one side of the sheet material 106 side and the base portion 110 side, and the bonding layer 118 may be positioned on the other side.
- the electrostatic chuck device 100 includes an insulating material layer 160 and an adhesive 162 that fixes the insulating material layer 160 to the base portion 110 between the second adhesive layer 108 and the base portion 110.
- the insulating material layer 160 is provided at a position adjacent to the base portion 110, but the position of the insulating material layer 160 is not particularly limited.
- the heating member 150 and the electrostatic chuck portion 102 It may be provided between the heating member 150 and the sheet material 106.
- FIG. 3 is a schematic cross-sectional view showing another example of the laminated configuration of the electrostatic chuck device of the present invention according to the second embodiment.
- the electrostatic chuck device 200 includes an electrostatic chuck unit 202 that fixes a wafer, a heating member 250 that heats the electrostatic chuck unit 202, and a thick disc-shaped base that has a function of cooling the electrostatic chuck unit 202. Part 210. Between the electrostatic chuck portion 202 and the base portion 210, in order from the electrostatic chuck portion 202 side, an adhesive 252, a heating member 250, a first adhesive layer 204, a sheet material 206, a second adhesive layer 208, An insulating material layer 260 and an adhesive 262 are included.
- the polymer material layer 230 is sequentially disposed between the electrostatic chuck unit 202 and the base unit 210 from the electrostatic chuck unit 202 side.
- a sheet material 206, a second adhesive layer 208, an insulating material layer 260, and an adhesive 262 are included.
- the adhesive 252 and the heating member 250 and the polymer material layer 230 are arranged in parallel on a surface (heating member installation surface) opposite to the mounting surface of the electrostatic chuck portion 202.
- the electrostatic chuck portion 202, the adhesive 252, the heating member 250, the sheet material 206, the second adhesive layer 208, the insulating material layer 260, the adhesive 262, and the base portion 210 are electrostatic Since the electrostatic chuck unit 102, the adhesive 152, the heating member 150, the sheet material 106, the second adhesive layer 108, the insulating material layer 160, the adhesive 162, and the base unit 110 in the chuck device 100 have the same configuration, the explanation is omitted. Is omitted.
- a heating member 250 is disposed with a gap provided on a surface (heating member installation surface) opposite to the mounting surface of the electrostatic chuck unit 202.
- the electrostatic chuck device 200 has a polymer material layer 230 that embeds a gap between the heating members 250 (a gap between the heating members 250) on the heating member installation surface.
- the polymer material layer 230 includes the shortest distance from the surface where the heating member 250 is not provided to the surface of the polymer material layer 230 on the sheet material 206 side of the heating member installation surface, and the heating member 250 from the heating member installation surface. The shortest distance to the surface on the sheet material 206 side is the same.
- the shortest distance from the heating member installation surface to the surface of the polymer material layer 230 on the sheet material 206 side indicates the layer thickness of the polymer material layer 230 in the stacking direction of the electrostatic chuck device 200.
- the electrostatic chuck device 200 includes the polymer material layer 230, unevenness due to the presence of the heating member 250 on the heating member installation surface is eliminated, and the first adhesive layer 204 can be easily formed on the heating member 250.
- the polymer material layer 230 may further embed a gap between the end on the heating member installation surface and the heating member 250.
- the first adhesive layer 204 is provided adjacent to both the surface of the heating member 250 on the sheet material 206 side and the surface of the polymer material layer 230 on the sheet material 206 side.
- the first adhesive layer 204 includes a bonding layer 214 and a silicone adhesive layer (first silicone adhesive layer) 224.
- the first adhesive layer 204 in FIG. 3 includes two bonding layers 214 (214e and 214s), but may be only the bonding layer 214e on the electrostatic chuck portion 202 side or the bonding layer on the sheet material 206 side. It may be only 214s.
- the silicone adhesive layer 224 may be located on one side of the electrostatic chuck portion 202 side and the sheet material 206 side, and the bonding layer 214 may be located on the other side.
- the second adhesive layer 208 includes a bonding layer 218 and a silicone adhesive layer (second silicone adhesive layer) 228.
- the second adhesive layer 208 in FIG. 3 includes two bonding layers 218 (218e and 218s), but may be only in the bonding layer 218s on the sheet material 206 side, or only the bonding layer 218e on the base portion 210 side. It may be. That is, for example, the silicone adhesive layer 228 may be located on one side of the sheet material 206 side and the base portion 210 side, and the bonding layer 218 may be located on the other side.
- FIG. 4 is a schematic cross-sectional view showing another example of the laminated configuration of the electrostatic chuck device of the present invention according to the second embodiment.
- the electrostatic chuck device 300 includes an electrostatic chuck portion 302 that fixes a wafer, a heating member 350 that heats the electrostatic chuck portion 302, and a thick disc-shaped base that has a function of cooling the electrostatic chuck portion 302. Part 310. Between the electrostatic chuck portion 302 and the base portion 310, an adhesive 352, a heating member 350, a polymer material layer 330, a first adhesive layer 304, a sheet material 306, Two adhesive layers 308, an insulating material layer 360, and an adhesive 362.
- the electrostatic chuck 302, the adhesive 352, the heating member 350, the sheet material 306, the second adhesive layer 308, the insulating material layer 360, the adhesive 362, and the base 310 are respectively electrostatically Since the electrostatic chuck unit 102, the adhesive 152, the heating member 150, the sheet material 106, the second adhesive layer 108, the insulating material layer 160, the adhesive 162, and the base unit 110 in the chuck device 100 have the same configuration, the explanation is omitted. Is omitted.
- a heating member 350 is disposed with a gap provided on a surface (heating member installation surface) opposite to the mounting surface of the electrostatic chuck unit 302.
- the electrostatic chuck device 300 has a polymer material layer 330 that embeds a gap between the heating members 350 (a gap between the heating members 350) on the heating member installation surface.
- the polymer material layer 330 embeds a gap between the heating members 350 and covers the surface of the heating member 350 (the surface of the heating member 350 on the sheet material 306 side) and has a flat surface.
- the first adhesive layer 304 is provided adjacent to the surface of the polymer material layer 330 on the sheet material 306 side.
- the first adhesive layer 304 includes a bonding layer 314 and a silicone adhesive layer (first silicone adhesive layer) 324.
- the first adhesive layer 304 in FIG. 4 includes two bonding layers 314 (314e and 314s).
- the bonding layer 314e on the electrostatic chuck 302 side alone may be used, or the bonding layer on the sheet material 306 side. It may be only 314s.
- the silicone adhesive layer 324 may be located on one side of the electrostatic chuck portion 302 side and the sheet material 306 side, and the bonding layer 314 may be located on the other side.
- the second adhesive layer 308 includes a bonding layer 318 and a silicone adhesive layer (second silicone adhesive layer) 328.
- the second adhesive layer 308 in FIG. 4 includes two bonding layers 318 (318e and 318s), but may be only in the bonding layer 318s on the sheet material 306 side or only the bonding layer 318e on the base portion 310 side. It may be. That is, for example, the silicone adhesive layer 328 may be positioned on one side of the sheet material 306 side and the base portion 310 side, and the bonding layer 318 may be positioned on the other side.
- the electrostatic chuck apparatus 100 of FIG. 2 includes the bonding layer 114 and the silicone adhesive layer 124 between the electrostatic chuck portion 102 and the sheet material 106, and the sheet material 106 and the base portion 110. Since the bonding layer 118 and the silicone adhesive layer 128 are interposed between these layers, it is considered that the adhesiveness between the electrostatic chuck portion 102 and the base portion 110 is excellent. Further, the bonding layer 114 and the bonding layer 118 have a thickness of 1 nm to 500 nm, respectively, and the silicone adhesive layer 124 and the silicone adhesive layer 128 have a thickness of 2 ⁇ m to 30 ⁇ m, respectively.
- the electrostatic chuck device 200 of FIG. 3 and the electrostatic chuck device 300 of FIG. 4 are also considered to operate in the same manner as the electrostatic chuck device 100 of FIG.
- the laminated structure of the electrostatic chuck device of the present invention is not limited to the structure shown in FIGS. In the following description, the reference numerals in the drawings are omitted.
- the electrostatic chuck device of the present invention includes a first adhesive layer that bonds the electrostatic chuck portion and the sheet material, and a second adhesive layer that bonds the sheet material and the base portion.
- the first adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m.
- the second adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a thickness of 2 ⁇ m. Contains a ⁇ 30 ⁇ m silicone adhesive layer.
- the first adhesive layer and the second adhesive layer include a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m, respectively, so that the adhesiveness between the electrostatic chuck portion and the base portion is improved. And excellent in-plane temperature uniformity of the electrostatic chuck portion.
- the silicone adhesive layer exists in both the gap of the heating member and the surface of the heating member as in the electrostatic chuck apparatus of FIG. 2, the “silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m” It means that the maximum layer thickness in the laminating direction of the agent layer is 2 ⁇ m to 30 ⁇ m.
- the layer thickness of the bonding layer is difficult to be smaller than the molecular size of the compound constituting the bonding layer, and from this viewpoint, the thickness is set to 1 nm or more. Moreover, since the layer thickness of the bonding layer is 500 nm or less, the in-plane temperature uniformity of the electrostatic chuck portion is excellent.
- the layer thickness of the bonding layer is preferably 2 nm to 300 nm, more preferably 2 nm to 150 nm.
- the adhesive layer may have a plurality of bonding layers, but the total layer thickness of the bonding layers is preferably 2000 nm or less from the viewpoint of in-plane temperature uniformity of the electrostatic chuck portion.
- the first adhesive layer and the second adhesive layer each have a silicone adhesive layer in addition to the bonding layer.
- the adhesive layer further includes a silicone adhesive layer, the adhesion between the electrostatic chuck portion and the sheet material and the adhesion between the sheet material and the base portion can be strengthened.
- first adhesive layer and the second adhesive layer may have one bonding layer and a silicone adhesive layer, or may have two or more layers.
- the first adhesive layer includes a silicone adhesive layer
- the first adhesive layer includes two bonding layers
- the silicone adhesive layer includes the bonding layer on the electrostatic chuck portion side, and the sheet.
- a laminated structure positioned between the bonding layer on the material side; and the second adhesive layer has two bonding layers
- the second silicone adhesive layer includes the bonding layer on the sheet material side and the base portion.
- the laminated structure located between the side joining layers is mentioned.
- the first adhesive layer and the second adhesive layer may be the same or different.
- the bonding layer is the same as the bonding layer having the same configuration as the bonding layer included in the electrostatic chuck device according to the first embodiment, and the preferred mode is also the same.
- the bonding layer compound By forming the bonding layer using the bonding layer compound, the bonding layer compound, components constituting the surface of the electrostatic chuck portion (for example, a sintered body containing aluminum), and the surface of the sheet material are formed. Excellent reactivity, affinity, adhesion, etc. between the component (for example, silicone resin) and the component constituting the surface of the base portion (for example, aluminum). As a result, it is easy to reduce the thickness of the bonding layer. .
- the bonding layer compound used for forming the bonding layer is the same as the bonding layer compound described in the description of the electrostatic chuck device according to the first embodiment, and the bonding layer compound further has a hydrolyzable group.
- the preferred embodiments are also the same.
- the bonding layer solution can also be used in the same manner as the bonding layer solution of the electrostatic chuck device according to the first embodiment.
- Each of the first adhesive layer and the second adhesive layer further includes a silicone adhesive layer.
- the adhesive layer further includes a silicone adhesive layer, the adhesion between the electrostatic chuck portion and the sheet material and the adhesion between the sheet material and the base portion can be further strengthened.
- the thickness of the silicone adhesive layer is the same as that of the silicone adhesive layer included in the electrostatic chuck device according to the first embodiment, and the preferred mode is also the same.
- the position of the silicone adhesive layer is not limited as long as it is within the adhesive layer.
- the first silicone adhesive layer is positioned on one side of the electrostatic chuck portion side and the sheet material side
- the bonding layer is positioned on the other side
- the second silicone adhesive layer is positioned on the sheet material.
- the bonding layer may be positioned on one side of the base portion and the base portion side.
- a silicone adhesive layer may be located between the two bonding layers.
- the component configuration of the silicone adhesive layer is the same as the component configuration of the silicone adhesive layer included in the electrostatic chuck device according to the first embodiment, and the preferred mode is also the same.
- silicone rubber As the main component (70% by mass or more of the total mass of the silicone adhesive layer), it has heat resistance up to 200 ° C, and the main component is epoxy resin, polyimide resin, etc., which are other heat-resistant adhesives. It is preferable because it has a large elongation compared to the adhesive, and can relieve stress between the electrostatic chuck portion and the base portion and has high thermal conductivity.
- the sheet material is a member that relieves stress caused by a temperature difference between the electrostatic chuck portion and the base portion.
- the sheet material is the same as the sheet material included in the electrostatic chuck device according to the first embodiment, and the preferred mode is also the same.
- the sheet material is preferably thicker than the total thickness of the first adhesive layer and the second adhesive layer.
- the thickness of the sheet material is preferably 20 ⁇ m to 500 ⁇ m.
- the Shore hardness (A) of the sheet material is preferably 20 to 80 from the viewpoint of alleviating the stress caused by the temperature difference between the electrostatic chuck portion and the base portion.
- the electrostatic chuck unit is the same as the electrostatic chuck unit included in the electrostatic chuck device according to the first embodiment, and the preferred mode is also the same.
- the lateral direction of the electrostatic chuck portion is the electrostatic chuck portion, the first and second adhesive layers, the sheet material, and the like as shown in FIG.
- the power feeding terminal is insulated from the base portion by an insulating insulator.
- the heating member is located on the surface opposite to the mounting surface of the electrostatic chuck portion, and is fixed to the electrostatic chuck portion with a gap with an adhesive.
- the form of the heating member is not particularly limited, but is preferably a heater element composed of two or more heater patterns independent of each other.
- the heater element includes, for example, an inner heater formed at the center of the surface opposite to the mounting surface of the electrostatic chuck portion (heating member installation surface) and an outer ring formed outside the peripheral edge of the inner heater. It can be constituted by two heaters independent of each other.
- Each of the inner heater and the outer heater repeatedly arranges a pattern in which a narrow band-shaped metal material is meandering around this axis around the central axis of the heating member installation surface, and adjacent patterns are arranged with each other. By connecting, it can be set as one continuous belt-like heater pattern.
- By controlling the inner and outer heaters independently it is possible to accurately control the in-plane temperature distribution of the plate-like sample fixed to the placement surface of the placement plate of the electrostatic chuck portion by electrostatic adsorption. it can.
- a nonmagnetic metal thin plate having a constant thickness of 0.2 mm or less, preferably 0.1 mm or less, such as titanium (Ti) thin plate, tungsten (W) thin plate, molybdenum (Mo) thin plate, etc. It is preferably formed by etching into a desired heater pattern by a lithography method.
- the thickness of the heater element is 0.2 mm or less, the pattern shape of the heater element is hardly reflected as the temperature distribution of the plate sample, and the in-plane temperature of the plate sample is easily maintained in a desired temperature pattern.
- the heater element when the heater element is formed of a nonmagnetic metal, the heater element does not easily generate heat due to the high frequency even when the electrostatic chuck device is used in a high frequency atmosphere, and the in-plane temperature of the plate-like sample is set to a desired constant temperature or a constant temperature. It becomes easy to maintain the pattern.
- the thickness of the heater element when a heater element is formed using a non-magnetic metal thin plate having a constant thickness, the thickness of the heater element is constant over the entire heating surface, and the amount of heat generation is also constant over the entire heating surface. The temperature distribution on the placement surface can be made uniform.
- Adhesive that fixes the heating member to the surface opposite to the mounting surface of the electrostatic chuck portion is a sheet having heat resistance and insulation properties such as polyimide resin, silicone resin, epoxy resin, etc. Alternatively, it is preferable to use a film-like adhesive resin.
- the thickness of the heating member adhesive is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m.
- the in-plane thickness variation of the heating member adhesive is preferably within 10 ⁇ m from the viewpoint of increasing the in-plane uniformity of heat transmitted from the heating member to the electrostatic chuck portion.
- the electrostatic chuck device preferably has a polymer material layer that embeds the gap between the heating members.
- the layer thickness in the stacking direction of the electrostatic chuck device of the polymer material layer located on the surface opposite to the mounting surface of the electrostatic chuck portion (heating member installation surface) where the heating member is not provided is At least the same thickness as the shortest distance from the heating member installation surface to the surface of the heating member on the sheet material side.
- the layer thickness of the polymer material layer on the surface of the heating member Is preferably 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 25 ⁇ m from the viewpoint of in-plane temperature uniformity of the electrostatic chuck portion.
- Polymer materials that can form the polymer material layer include heat-resistant resins such as polyimide resins, silicone adhesives (silicone rubbers), silicone resins, fluorine-based resins, RTV (room temperature vulcanizing) rubbers, and fluorine silicone rubbers. Can be mentioned. These may use only 1 type and may use 2 or more types. Among these, from the viewpoint of heat resistance, heat-resistant resins such as polyimide resins, silicone adhesives, fluororesins, and fluorosilicone rubbers are preferable, and polyimide resins, silicone adhesives, and fluororesins are more preferable.
- the silicone adhesive (silicone rubber) is preferably in a liquid state.
- the electrostatic chuck device according to the second embodiment preferably has an insulating material layer covering at least a part of the base portion. Since the electrostatic chuck device of the present invention according to the second embodiment has a heating member that heats the electrostatic chuck portion, it suppresses conduction (short circuit failure) between the electrostatic chuck portion and the base portion. In order to improve the voltage resistance of the base portion, it is preferable to have an insulating material layer.
- the insulating material layer only needs to cover at least a part of the base portion, but is preferably a film-like or sheet-like layer that covers the entire base portion.
- the insulating material layer may be located between the electrostatic chuck portion and the base portion, and may be composed of a plurality of layers as well as a single layer. For example, you may have an insulating material layer in the position adjacent to a base part, between a heating member and an electrostatic chuck part, between a heating member and a sheet
- the insulating material layer is preferably provided at a position between the heating member and the base portion and in the vicinity of the base portion from the viewpoint of ease of forming the insulating material layer.
- the adhesive (insulating material layer adhesive) used for fixing the insulating material layer is not particularly limited, and is a sheet-like or film-like adhesive resin having heat resistance and insulation properties, such as polyimide resin, silicone resin, and epoxy resin. Can be used.
- the thickness of the insulating layer adhesive is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m.
- the in-plane thickness variation of the insulating layer adhesive is preferably within 10 ⁇ m from the viewpoint of increasing the in-plane uniformity of temperature control of the electrostatic chuck portion by the base portion.
- the thermal conductivity of the insulating material layer is preferably 0.05 W / mk or more and 0.5 W / mk or less, more preferably 0.1 W / mk or more and 0.25 W / from the viewpoint of temperature adjustment of the electrostatic chuck portion. mk or less.
- aluminum (Al), aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS) and the like are preferably used. It is preferable that at least the surface of the base portion exposed to plasma is anodized or an insulating film such as alumina is formed.
- the manufacturing method of the electrostatic chuck device according to the second embodiment is not particularly limited as long as it is a method capable of forming the stacked configuration of the electrostatic chuck device of the present invention according to the second embodiment.
- the heating member is fixed in advance on the heating member installation surface of the electrostatic chuck portion with a heating member adhesive.
- a polymer material is embedded in the recesses formed by the electrostatic chuck portion and the heating member, and the height of the polymer material layer and the heating member is aligned, or FIG.
- the concave portion and the heating member are covered with a polymer material, and the surface of the polymer material layer is made flat.
- the electrostatic chuck device includes an insulating material layer, it is preferable to fix the insulating material layer on the base portion with an adhesive (insulating material layer adhesive).
- the heating member may be fixed on the heating member installation surface with an interval between individual heating members, or after heating a film or plate-like heating member on the heating member installation surface, heating is performed. A part of the member may be removed by etching or the like to expose the heating member installation surface to form a gap.
- the electrostatic chuck unit fixes the heating member on the heating member installation surface in advance, embeds the gap between the heating members with a polymer material, and coats the heating member with the polymer material to form the polymer material layer.
- the formed structure is described as a representative.
- the “polymer material layer surface” is referred to as “the heating member installation surface and the heating member side surface and surface”. You can replace it.
- the electrostatic chuck portion has a polymer material layer as shown in FIG.
- the “polymer material layer surface” is referred to as “polymer material layer surface”. And “heating member surface”.
- the base portion will be described on behalf of a configuration in which the insulating material layer is not fixed. In the following description, in the configuration in which the insulating material layer is fixed on the base portion, the “base portion surface” may be read as “insulating material layer surface”.
- the manufacture of the electrostatic chuck device according to the second embodiment applies, for example, a bonding layer solution to the surface of the polymer material layer, the sheet material, and the base portion of the electrostatic chuck portion, respectively.
- a method in which the bonding layer solution application surface of the polymer material layer is bonded to one surface of the sheet material, and the bonding layer solution application surface of the base portion is bonded to the other surface of the sheet material; bonding to both surfaces of the sheet material Examples include a method in which after the layer solution is applied, the surface of the polymer material layer is bonded to one surface of the sheet material, and the surface of the base portion is bonded to the other surface of the sheet material.
- the bonding layer solution and the solvent thereof are the same as the bonding layer solution and the solvent described in the description of the manufacture of the electrostatic chuck device according to the first embodiment, and the preferred embodiments are also the same.
- the polymer material layer is preferably formed using a polymer material layer solution containing a polymer material and a solvent for dissolving the polymer material.
- the solvent for dissolving the polymer material include methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone depending on the type of the polymer material.
- the solvent is methyl ethyl ketone. It is preferable.
- the concentration of the polymer material in the solution for the polymer material layer depends on the type of polymer material used, the coating method of the solution, and the like.
- the content is preferably 5% by mass to 5% by mass, and more preferably 0.1% by mass to 1% by mass.
- the concentration of the polymer material in the solution for the polymer material layer is preferably 30% by mass to 70% by mass from the viewpoint of easy printing, and 40% by mass to More preferably, it is 60 mass%.
- Methods for applying the bonding layer solution to the electrostatic chuck part, heating member, polymer material layer, insulating material layer, base part, or sheet material include application by screen printing as described above and application by spin coating. , Spraying, brushing, application by a bar coater, ejection by an inkjet method, and the like. Among these, application with a bar coater is preferable from the viewpoint of easy adjustment of the thickness of the bonding layer.
- the solution for bonding layers is applied by spray application or brush application. It is preferable to give.
- the side surface or the surface of the heating member, spray coating or brush coating is preferable.
- the bonding layer solution After the bonding layer solution is applied to the electrostatic chuck portion, the base portion, or the sheet material, it is preferable to heat the application surface of the bonding layer solution to remove the solvent.
- the bonding layer solution application surface By heating the bonding layer solution application surface, the adhesion between the electrostatic chuck portion, the base portion, or the sheet material and the adherend can be increased.
- the heating of the application surface of the bonding layer solution depends on the thickness of the bonding layer, the concentration of the bonding layer compound in the bonding layer solution, the type of the bonding layer compound, etc., but at 80 ° C. to 120 ° C. for 30 seconds. It is preferable to carry out the conditions for up to 5 minutes.
- the bonding layer can be formed by applying the silicone adhesive to the base portion to which the solution for application is applied or the sheet material to which the solution for the bonding layer is applied.
- the silicone adhesive may be a low-viscosity liquid, a high-viscosity liquid, or a solid adhesive. However, from the viewpoint of suppressing the solvent from remaining in the electrostatic chuck device, the silicone adhesive may be used. It is preferable to use a liquid silicone adhesive which does not contain.
- a solution for an adhesive layer in which a silicone adhesive is dissolved in a solvent may be used from the viewpoint of easy application.
- the method for applying the silicone adhesive or the adhesive layer solution include the same method as the method for applying the bonding layer solution to the electrostatic chuck portion, the base portion, and the like, and the preferred embodiments are also the same. That is, application by a bar coater is preferable.
- the silicone adhesive may be applied by a screen printing method. preferable.
- the adhesive layer solution and the solvent constituting the solution are the same as the adhesive layer solution and the solvent constituting the solution described in the description of the manufacture of the electrostatic chuck device according to the first embodiment, and are preferable. The aspect is also the same.
- Examples of the method for applying the adhesive layer solution to the electrostatic chuck portion, the base portion, and the like include the same methods as the method for applying the bonding layer solution to the electrostatic chuck portion, the base portion, and the like. . That is, application by a bar coater is preferable.
- the adhesive layer solution After the adhesive layer solution is applied to the electrostatic chuck portion, the base portion, and the like, it is preferable to heat the application surface of the adhesive layer solution and blow off the solvent.
- the heating of the application surface of the adhesive layer solution varies depending on the thickness of the adhesive layer, the concentration of the silicone adhesive in the adhesive layer solution, the type of the silicone adhesive, etc., but under normal pressure, 80 ° C. to 120 ° C. It is preferably carried out at 1 ° C. for 1 second to 7 minutes. Under reduced pressure, it is preferable to heat at 50 ° C. as the upper limit.
- the electrostatic chuck portion is preferably manufactured as follows. First, a plate-like mounting plate and a support plate are produced from an aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body. In this case, a mixed powder containing silicon carbide powder and aluminum oxide powder is formed into a desired shape, and then fired at a temperature of 1600 ° C. to 2000 ° C. in a non-oxidizing atmosphere, preferably an inert atmosphere for a predetermined time. By doing so, a mounting plate and a support plate can be obtained.
- Al 2 O 3 —SiC aluminum oxide-silicon carbide
- the power feeding terminal is manufactured so as to have a size and shape that can be fixed in close contact with the fixing hole of the support plate.
- a method for producing the power supply terminal for example, when the power supply terminal is made of a conductive composite sintered body, a method of forming a conductive ceramic powder into a desired shape and pressurizing and firing can be cited.
- the conductive ceramic powder used for the power feeding terminal is preferably a conductive ceramic powder made of the same material as the electrostatic adsorption internal electrode.
- the power feeding terminal is made of metal, a method of using a refractory metal and forming by a metal working method such as a grinding method or powder metallurgy is exemplified.
- a conductive material such as the above-mentioned conductive ceramic powder was dispersed in an organic solvent containing terpinol and ethyl cellulose so as to come into contact with the power supply terminal in a predetermined region on the surface of the support plate into which the power supply terminal was fitted.
- a coating solution for forming an internal electrode for electrostatic adsorption is applied and dried to form an internal electrode forming layer for electrostatic adsorption.
- this coating method it is desirable to use a screen printing method or the like because it is necessary to apply the film to a uniform thickness.
- Other methods include forming a thin film of the above-mentioned refractory metal by vapor deposition or sputtering, or arranging an electroconductive ceramic or refractory metal thin plate to provide an internal electrode for electrostatic adsorption. There is a method of forming a formation layer.
- the same composition or main component as the mounting plate and the support plate is used.
- An insulating material layer including a powder material having the same component is formed.
- This insulating material layer is formed by, for example, screen-printing a coating solution in which an insulating material powder having the same composition or the same main component as the mounting plate and the supporting plate is dispersed in an organic solvent containing terpinol and ethyl cellulose in the predetermined area. It can be formed by applying and drying.
- the mounting plate is overlaid on the electrostatic adsorption internal electrode forming layer and the insulating material layer on the support plate, and these are then integrated by hot pressing under high temperature and high pressure.
- the atmosphere in this hot press is preferably a vacuum or an inert atmosphere such as Ar, He, N 2 or the like.
- the pressure is preferably 5 to 10 MPa, and the temperature is preferably 1600 ° C. to 1850 ° C.
- the internal electrode forming layer for electrostatic adsorption is fired to become an internal electrode for electrostatic adsorption made of a conductive composite sintered body.
- the support plate and the mounting plate are joined and integrated through the insulating material layer.
- the power feeding terminal is refired by hot pressing under high temperature and high pressure, and is closely fixed to the fixing hole of the support plate. Then, the upper and lower surfaces, outer periphery, gas holes and the like of these joined bodies are machined to form an electrostatic chuck portion.
- the electrostatic chuck device according to the first embodiment is disclosed in the following ⁇ a1> to ⁇ a7>. According to the present invention relating to the first embodiment, there is provided an electrostatic chuck device that is excellent in adhesiveness between the electrostatic chuck portion and the temperature adjusting base portion and is excellent in in-plane temperature uniformity of the electrostatic chuck portion. Is done.
- the first adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m;
- the second adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m.
- the bonding layer is at least selected from the group consisting of an epoxy group, an isocyanate group, an amino group, a mercapto group, a vinyl group, a styryl group, a methacryl group, an acrylic group, a ureido group, a sulfide group, and an isocyanurate group.
- the electrostatic chuck device according to ⁇ a1> which is a layer having a structure derived from a compound having one reactive functional group.
- the compound having a reactive functional group is the electrostatic chuck device according to ⁇ a3> represented by the following general formula (1).
- Y represents an epoxy group, an isocyanate group, an amino group, a mercapto group, a vinyl group, a styryl group, a methacryl group, an acrylic group, a ureido group, a sulfide group, or an isocyanurate group
- L 1 Represents a linking group.
- M represents a silicon atom, a titanium atom, or a zirconium atom.
- R represents an alkyl group having 1 to 5 carbon atoms
- L 2 represents a single bond or carbonyl
- n represents an integer of 1 to 3.
- R ′ represents an alkyl group having 1 to 3 carbon atoms or a phenyl group.
- ⁇ A5> Any one of ⁇ a1> to ⁇ a4>, wherein the sheet material is thicker than a total layer thickness of the first adhesive layer and the second adhesive layer, and the thickness of the sheet material is 20 ⁇ m to 500 ⁇ m It is an electrostatic chuck apparatus as described in one.
- ⁇ A6> The electrostatic chuck device according to any one of ⁇ a1> to ⁇ a5>, in which the sheet material includes any one selected from the group consisting of a silicone elastomer and a fluorine elastomer.
- the mounting surface is an aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body, an aluminum oxide (Al 2 O 3 ) sintered body, an aluminum nitride (AlN) sintered body, or an oxide
- Al 2 O 3 —SiC aluminum oxide-silicon carbide
- Al 2 O 3 aluminum oxide
- AlN aluminum nitride
- the electrostatic chuck device according to any one of ⁇ a1> to ⁇ a6>, which is made of a sintered body of yttrium (Y 2 O 3 ).
- the electrostatic chuck device according to the second embodiment is disclosed in the following ⁇ b1> to ⁇ b10>. According to the second embodiment of the present invention, there is provided an electrostatic chuck device that is excellent in adhesiveness between the electrostatic chuck portion and the base portion and excellent in in-plane temperature uniformity of the electrostatic chuck portion.
- the first adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m;
- the second adhesive layer includes a bonding layer having a thickness of 1 nm to 500 nm and a silicone adhesive layer having a thickness of 2 ⁇ m to 30 ⁇ m.
- a polymer material layer that embeds a gap between the heating members, and the layer thickness of the polymer material layer is different from the surface opposite to the placement surface of the electrostatic chuck portion.
- the electrostatic chuck device according to ⁇ b1> which is the same as the shortest distance to the surface on the first adhesive layer side.
- ⁇ B3> The electrostatic chuck device according to ⁇ b1>, having a polymer material layer that embeds a gap between the heating members and covers the surface of the heating member, and the polymer material layer surface is flat. .
- ⁇ B4> The electrostatic chuck device according to any one of ⁇ b1> to ⁇ b3>, which includes an insulating material layer between the heating member and the base portion.
- the bonding layer is at least selected from the group consisting of an epoxy group, an isocyanate group, an amino group, a mercapto group, a vinyl group, a styryl group, a methacryl group, an acrylic group, a ureido group, a sulfide group, and an isocyanurate group.
- the electrostatic chuck device according to any one of ⁇ b1> to ⁇ b4>, which is a layer having a structure derived from a compound having one reactive functional group.
- the compound having a reactive functional group is the electrostatic chuck device according to ⁇ b6> represented by the following general formula (1).
- Y represents an epoxy group, isocyanate group, amino group, mercapto group, vinyl group, styryl group, methacryl group, acrylic group, ureido group, sulfide group, or isocyanurate group
- L 1 represents Represents a linking group.
- M represents a silicon atom, a titanium atom, or a zirconium atom.
- R represents an alkyl group having 1 to 5 carbon atoms
- L 2 represents a single bond or carbonyl
- n represents an integer of 1 to 3.
- R ′ represents an alkyl group having 1 to 3 carbon atoms or a phenyl group.
- ⁇ B8> Any one of ⁇ b1> to ⁇ b7>, wherein the sheet material is thicker than a total layer thickness of the first adhesive layer and the second adhesive layer, and the thickness of the sheet material is 20 ⁇ m to 500 ⁇ m. It is an electrostatic chuck apparatus as described in one.
- ⁇ B9> The electrostatic chuck device according to any one of ⁇ b1> to ⁇ b8>, wherein the sheet material includes any one selected from the group consisting of a silicone elastomer and a fluorine elastomer.
- the mounting surface is an aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body, an aluminum oxide (Al 2 O 3 ) sintered body, an aluminum nitride (AlN) sintered body, or an oxide
- Al 2 O 3 —SiC aluminum oxide-silicon carbide
- Al 2 O 3 aluminum oxide
- AlN aluminum nitride
- Examples and comparative examples relating to the electrostatic chuck device according to the first embodiment are shown in Examples a1 to a25 and Comparative examples a1 to a4, and Examples and Comparative Examples relating to the electrostatic chuck device according to the second embodiment. Examples are shown in Examples b1 to b19 and Comparative Examples b1 to b4.
- Table 1 shows the base materials, bonding layer compounds, adhesive layers, and sheet materials used in the production of the laminates of Examples a1 to a25 and Comparative Examples a1 to a4. Details of each material are as follows.
- silane coupling agents having the product numbers shown in Table 1 manufactured by Shin-Etsu Chemical Co., Ltd. were used. Each silane coupling agent has a reactive functional group shown in Table 1. The silane coupling agent was added with isopropyl alcohol (IPA), a predetermined amount of water, and a catalyst except for those specifically mentioned in Table 1, and hydrolyzed at 60 ° C. to obtain a bonding layer solution. did.
- IPA isopropyl alcohol
- the bonding layer solution was prepared by mixing the components shown in Table 1 in the amounts shown in Table 1. However, a bonding layer solution using a silane coupling agent (bonding layer compounds A, B, C, and D in Table 2) whose reactive functional group is an amino group, an epoxy group, a mercapto group, or an isocyanate group Used no catalyst (the amount of the catalyst was 0% by mass). The compounding amount of the catalyst in the bonding layer solution using the silane coupling agent (bonding layer compounds E, F, and G in Table 2) whose reactive functional group is a vinyl group, an acrylic group, or a methacryl group is 0. .5% by mass.
- Silicone adhesive layer Silicone adhesive KE-1820 manufactured by Shin-Etsu Silicone The silicone adhesive layer was used as an adhesive layer solution obtained by diluting the silicone adhesive with methyl ethyl ketone to a concentration of 30% by mass.
- the adhesive layer solution was applied to the bonding layer surface on the substrate 1 using a bar coat so as to have the film thickness shown in Table 3.
- the adhesive layer solution was applied to the surface of the bonding layer on the substrate 2 using a bar coat so as to have a film thickness shown in Table 3.
- One surface of the sheet material of the type shown in Table 3 is bonded to the application surface of the adhesive layer solution on the substrate 1, and the other surface of the sheet material is applied to the application surface of the adhesive layer solution on the substrate 2.
- the surfaces were bonded together and heated at 100 ° C. for 3 minutes to obtain a laminate.
- Example a22 A bonding layer solution containing a silane coupling agent of the type shown in Table 3 was applied to both surfaces of the type of sheet material shown in Table 3 using a bar coater so as to have a film thickness shown in Table 3, and 100 ° C. For 1 minute.
- sheet material 2 The sheet material having the application surface of the bonding layer solution on both sides thus obtained is hereinafter referred to as “sheet material 2”.
- Example a1 In the production of the laminate of Example a1, a laminate was obtained in the same manner except that the sheet material 2 prepared in advance was used instead of the sheet material used in Example a1.
- Example a23 The adhesive layer solution was applied to one side of the substrate 1 of the type shown in Table 3 using a bar coat so as to have the film thickness shown in Table 3. Similarly, the adhesive layer solution was applied to one surface of the substrate 2 using a bar coat so as to have a film thickness shown in Table 3. One surface of the sheet material 2 is bonded to the application surface of the solution for the adhesive layer on the substrate 1, and the other surface of the sheet material 2 is bonded to the application surface of the solution for the adhesive layer solution on the substrate 2. And heated at 100 ° C. for 3 minutes to obtain a laminate.
- Example a24 A bonding layer solution containing a silane coupling agent of the type shown in Table 3 is applied to one side of a sheet material of the type shown in Table 3 using a bar coater so as to have a film thickness shown in Table 3, and 100 ° C. For 1 minute.
- the sheet material having the application surface of the bonding layer solution on one side thus obtained is hereinafter referred to as “sheet material 3”.
- a bonding layer solution containing a silane coupling agent of the type shown in Table 3 is applied to one side of the substrate 1 of the type shown in Table 3 using a bar coater so as to have a film thickness shown in Table 3. Heated at 0 ° C. for 1 minute.
- the adhesive layer solution was applied to the surface of the bonding layer on the substrate 1 using a bar coat so as to have a film thickness shown in Table 3.
- the bonding layer solution was not applied to one side of the substrate 2 of the type shown in Table 3, and the adhesive layer solution was applied to the film thickness shown in Table 3 using a bar coat.
- the surface of the base material 1 on which the adhesive layer solution is not applied is bonded to the surface of the sheet material 3 on which the adhesive layer solution is not applied, and the adhesive layer solution on the base material 2 is applied on the surface of the sheet material.
- the application surfaces of the bonding layer solution 3 were bonded together and heated at 100 ° C. for 3 minutes to obtain a laminate.
- Example a25 The bonding layer solution was not applied to one side of the substrate 1 of the type shown in Table 3, but the adhesive layer solution was applied to the film thickness shown in Table 3 using a bar coat.
- a bonding layer solution containing a silane coupling agent of the type shown in Table 3 is applied to one side of the substrate 2 of the type shown in Table 3 using a bar coater so as to have a film thickness shown in Table 3.
- the adhesive layer solution was applied to the surface of the bonding layer on the substrate 2 using a bar coat so as to have a film thickness shown in Table 3.
- One surface of the sheet material 2 is bonded to the application surface of the solution for the adhesive layer on the substrate 1, and the other surface of the sheet material 2 is bonded to the application surface of the solution for the adhesive layer solution on the substrate 2. And heated at 100 ° C. for 3 minutes to obtain a laminate.
- film thickness thickness Using the film thickness VL-50A manufactured by Mitutoyo Corporation, the total thickness of the laminates of Examples a1 to a25 and Comparative Examples a1 to a4 was measured. Among the obtained measurement results, the difference between the layer thickness at the largest layer thickness and the layer thickness at the smallest layer thickness is film thickness fluctuation, and when there is film thickness fluctuation of 10 ⁇ m or more, C, film thickness fluctuation is 10 ⁇ m. A case of less than A was evaluated as A.
- the film thickness fluctuation is an index of the in-plane temperature uniformity of the wafer fixed to the electrostatic chuck device, and when the film thickness fluctuation is less than 10 ⁇ m, the in-plane temperature uniformity of the electrostatic chuck portion is excellent.
- the laminate of the example having a bonding layer having a layer thickness of 1 to 500 nm showed high adhesion and film thickness blur evaluation. Therefore, if the electrostatic chuck device having the laminated structure of the embodiment is created, the adhesiveness between the electrostatic chuck portion and the temperature adjusting base portion is excellent and the in-plane temperature uniformity of the electrostatic chuck portion is excellent. There is expected.
- the laminates of Examples b1 to b19 and Comparative Examples b1 to b4 include an electrostatic chuck portion 302, an adhesive 352, a heating member 350, a polymer material layer 330, a first adhesive layer 304, a sheet material 306 in FIG.
- the second adhesive layer 308 and the base portion 310 are stacked in this order.
- some of the laminated bodies of the comparative examples do not have one or both of the first adhesive layer 304 and the second adhesive layer 308.
- the laminates of Examples b1 to b19 and Comparative Examples b1 to b4 do not include the insulating material layer 360 and the adhesive 362 in FIG.
- Examples b1 to b19 and Comparative Examples b1 to b4 the laminate of the electrostatic chuck portion 302, the adhesive 352, the heating member 350, and the polymer material layer 330 in FIG.
- the part 310 is referred to as the base material 2.
- Table 5 shows the base materials, bonding layer compounds, adhesive layers (silicone adhesive layers), and sheet materials used in the production of the laminates of Examples b1 to b19 and Comparative Examples b1 to b4. Details of each material are as follows.
- the base material 1 is composed of a base material type A in which the polymer material of the polymer material layer is a silicone adhesive (manufactured by Momentive, TSE3221; silicone rubber), and the polymer material is polyimide resin (manufactured by PI Engineering Laboratory, Q -Two types of base material type B which are IP-1022E) were prepared.
- a base material type A in which the polymer material of the polymer material layer is a silicone adhesive (manufactured by Momentive, TSE3221; silicone rubber), and the polymer material is polyimide resin (manufactured by PI Engineering Laboratory, Q -Two types of base material type B which are IP-1022E) were prepared.
- the substrate 2 an aluminum jig (diameter 40 mm, thickness 2 cm; substrate type C) was used.
- Ti foil heating member
- a ceramic plate Al 2 O 3 —SiC composite sintered body serving as an electrostatic chuck portion via TSE3221 (manufactured by Momentive) as an adhesive for heating member.
- TSE3221 manufactured by Momentive
- a polymer material solution was applied by screen printing on a ceramic plate on which an uneven surface by a Ti pattern was formed, and a flat polymer material layer was formed on the recesses between the Ti foils and the Ti foil.
- the thickness of the polymer material layer is such that the distance from the ceramic plate surface (heating member installation surface) to the polymer material layer surface is 100 ⁇ m, and the distance from the Ti foil surface to the polymer material layer surface is 20 ⁇ m.
- the thickness was
- the concentration of the polymer material in the polymer material layer solution used for forming the polymer material layer was 50% by mass (solvent: methyl ethyl ketone).
- silane coupling agents having the product numbers shown in Table 5 manufactured by Shin-Etsu Chemical Co., Ltd. were used. Each silane coupling agent has a reactive functional group shown in Table 4.
- the silane coupling agent was hydrolyzed by heating at 60 ° C. with addition of isopropyl alcohol (IPA), a predetermined amount of water and a catalyst, except for those specifically described in Table 6 (Example b14). Thus, a bonding layer solution was obtained.
- Example b14 a bonding layer solution that was not hydrolyzed without heating at 60 ° C. was used.
- the bonding layer solution was prepared by mixing the components shown in Table 5 in the amounts shown in Table 4. However, the bonding layer solution using a silane coupling agent (bonding layer compounds A, B, C, and D in Table 5) whose reactive functional group is an amino group, an epoxy group, a mercapto group, or an isocyanate group Used no catalyst (the amount of the catalyst was 0% by mass). The compounding amount of the catalyst in the bonding layer solution using the silane coupling agent (bonding layer compounds E, F, and G in Table 5) whose reactive functional group is vinyl group, acrylic group, or methacryl group is 0. .5% by mass.
- Silicone adhesive layer A: Silicone adhesive TSE3221 manufactured by Momentive Performance Materials Japan GK The silicone adhesive layer was used as an adhesive layer solution obtained by diluting the silicone adhesive with methyl ethyl ketone to a concentration of 30% by mass.
- the adhesive layer solution was applied to the bonding layer surface on the substrate 1 using a bar coat so as to have a film thickness shown in “Adhesive layer 1” in Table 6.
- the adhesive layer solution was applied to the surface of the bonding layer on the substrate 2 using a bar coat so as to have a film thickness shown in “Adhesive layer 2” in Table 6. Bonding one surface of the sheet material to the application surface of the adhesive layer solution on the substrate 1, and bonding the other surface of the sheet material to the application surface of the adhesive layer solution on the substrate 2, The laminate was obtained by heating at 100 ° C. for 3 minutes.
- Example b15 Using a bar coater, a bonding layer solution containing a silane coupling agent of the type shown in Table 6 on both sides of the sheet material of the type shown in Table 6, using “Baring layer 1S” and “Junction layer 2S” in Table 6. The film was coated so as to have the thickness shown in FIG.
- sheet material 2 The sheet material having the application surface of the bonding layer solution on both sides thus obtained is hereinafter referred to as “sheet material 2”.
- sheet material 2 The sheet material having the application surface of the bonding layer solution on both sides thus obtained.
- Example b16 In the production of the laminate of Example b15, a laminate was obtained in the same manner except that the substrate 1 was changed from the substrate species A to the substrate species B.
- Example b17 The adhesive layer solution was applied to the surface of the polymer material layer of the substrate 1 of the type shown in Table 6 using a bar coat so as to have a film thickness shown in “Adhesive Layer 1” in Table 6. Similarly, the adhesive layer solution was applied to one surface of the substrate 2 using a bar coat so as to have a film thickness shown in “Adhesive layer 2” in Table 6. One surface of the sheet material 2 is bonded to the application surface of the solution for the adhesive layer on the substrate 1, and the other surface of the sheet material 2 is bonded to the application surface of the solution for the adhesive layer solution on the substrate 2. And heated at 100 ° C. for 3 minutes to obtain a laminate.
- Example b18 Using a bar coater, a film for a bonding layer containing a silane coupling agent of the type shown in Table 6 on one side of the sheet material of the type shown in Table 6 has a film thickness shown in “Junction layer 2S” in Table 6. And then heated at 100 ° C. for 1 minute.
- sheet material 3 The sheet material having the application surface of the bonding layer solution on one side thus obtained is hereinafter referred to as “sheet material 3”.
- a bonding layer solution containing a silane coupling agent of the type shown in Table 6 is applied to the “bonding layer 1E” of Table 6 on the surface of the polymer material layer of the type of substrate 1 shown in Table 6 using a bar coater. It apply
- the adhesive layer solution was applied to the bonding layer surface on the base material 1 using a bar coat so as to have a film thickness shown in “Adhesive layer 1” in Table 6.
- the bonding layer solution is not applied to one surface of the substrate 2 of the type shown in Table 6, and the adhesive layer solution is coated with a film thickness shown in “Adhesive Layer 2” of Table 6 using a bar coat. It applied so that it might become.
- the surface of the base material 1 on which the adhesive layer solution is not applied is bonded to the surface of the sheet material 3 on which the adhesive layer solution is not applied, and the adhesive layer solution on the base material 2 is applied on the surface of the sheet material.
- the application surfaces of the bonding layer solution 3 were bonded together and heated at 100 ° C. for 3 minutes to obtain a laminate.
- Example b19 The bonding layer solution is not applied to the surface of the polymer material layer of the substrate 1 of the type shown in Table 6, and the adhesive layer solution is shown in “Adhesive Layer 1” in Table 6 using a bar coat. It applied so that it might become a film thickness.
- a film for a bonding layer containing a silane coupling agent of the type shown in Table 6 on one surface of the substrate 2 of the type shown in Table 6, using a bar coater is shown in the “bonding layer 2E” of Table 6 It was applied to a thickness and heated at 100 ° C. for 1 minute.
- the adhesive layer solution was applied to the bonding layer surface on the base material 2 using a bar coat so as to have a film thickness shown in “Adhesive layer 2” in Table 6.
- One surface of the sheet material 2 is bonded to the application surface of the solution for the adhesive layer on the substrate 1, and the other surface of the sheet material 2 is bonded to the application surface of the solution for the adhesive layer solution on the substrate 2. And heated at 100 ° C. for 3 minutes to obtain a laminate.
- film thickness fluctuation is an index of the in-plane temperature uniformity of the wafer fixed to the electrostatic chuck device, and when the film thickness fluctuation is less than 10 ⁇ m, the in-plane temperature uniformity of the electrostatic chuck portion is excellent.
- the laminate of the example having a bonding layer with a layer thickness of 1 to 500 nm had high adhesion and film thickness blur evaluation. Therefore, if the electrostatic chuck device having the laminated structure of the embodiment is created, the adhesiveness between the electrostatic chuck portion and the temperature adjusting base portion is excellent and the in-plane temperature uniformity of the electrostatic chuck portion is excellent. There is expected.
- Electrostatic chuck part 4 1st contact bonding layer 6 Sheet material 8 2nd contact bonding layer 10 Base part for temperature adjustment 14 Bonding layer 18 Bonding layer 24 Silicone adhesive layer 28 Silicone adhesive layer 80 Electrostatic chuck apparatus 100 Electrostatic Chuck device 102 Electrostatic chuck portion 104 First adhesive layer 106 Sheet material 108 Second adhesive layer 110 Base portion 114 Bonding layer 118 Bonding layer 124 Silicone adhesive layer 128 Silicone adhesive layer 150 Heating member 152 Adhesive 160 Insulating material Layer 162 adhesive
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
半導体素子の高集積化や高性能化に伴い、ウエハの加工の微細化が進んでおり、生産効率が高く、大面積の微細加工が可能なプラズマエッチング技術がよく用いられている。静電チャック装置に固定されたウエハにプラズマを照射すると、このウエハの表面温度が上昇する。そこで、この表面温度の上昇を抑えるために、静電チャック装置の温度調整用ベース部に水等の冷却媒体を循環させてウエハを下側から冷却しているが、この際、プラズマによるウエハへの入熱のウエハ面内のばらつきにより、ウエハの面内で温度分布が発生する。例えば、ウエハの中心部では温度が高くなり、縁辺部では温度が低くなる傾向にある。
また、従来のヒータ機能付き静電チャック装置では、ヒータの急速な昇降温により、静電チャック部や温度調整用ベース部やヒータ自体にクラックが発生することがあり、静電チャック装置としての耐久性が不十分であるという問題点があった。
かかる問題を解決するために、例えば、プラズマエッチング装置等の処理装置に適用した場合に、シリコンウエハ等の板状試料の面内に局所的な温度分布を生じさせることにより、プラズマ印加に伴うシリコンウエハ等の板状試料の局所的な温度制御を行うことが可能な静電チャック装置が開示されている(例えば、特許文献1参照)。
本発明は、静電チャック部とベース部との接着性に優れ、かつ、静電チャック部の面内温度均一性に優れる静電チャック装置を提供することを目的とし該目的を達成することを課題とする。
<1> 一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、第1の接着層と、シート材と、第2の接着層と、前記静電チャック部を所望の温度に調整する温度調整用ベース部とをこの順に備え、
前記第1の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、
前記第2の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む静電チャック装置である。
前記第1の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、
前記第2の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む静電チャック装置である。
〔一般式(1)中、Yは、エポキシ基、イソシアネート基、アミノ基、メルカプト基、ビニル基、スチリル基、メタクリル基、アクリル基、ウレイド基、スルフィド基、又はイソシアヌレート基を表し、L1は連結基を表す。Mは、ケイ素原子、チタン原子又は、ジルコニウム原子を表す。Rは炭素数1~5のアルキル基を表し、L2は単結合又はカルボニルを表し、nは1~3の整数を表す。R’は炭素数1~3のアルキル基又はフェニル基を表す。〕
第1の実施形態に係る本発明の静電チャック装置は、一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、第1の接着層と、シート材と、第2の接着層と、前記静電チャック部を所望の温度に調整する温度調整用ベース部とをこの順に備え、
前記第1の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、
前記第2の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む。
前記第1の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、
前記第2の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む。
まず、第1の実施形態に係る本発明の静電チャック装置における静電チャック部、第1及び第2の接着層、シート材、並びに温度調整用ベース部の積層構成について説明する。
図1は、第1の実施形態に係る本発明の静電チャック装置の積層構成の一例を示す模式図である。
静電チャック装置80は、ウエハを固定する静電チャック部2と、静電チャック部2を所望の温度に調整する厚みのある円板状の温度調整用ベース部10とを有する。静電チャック部2と温度調整用ベース部10との間には、静電チャック部2側から順に、第1の接着層4、シート材6、及び第2の接着層8を有する。
同様に、第2の接着層8は、接合層18と、シリコーン接着剤層(第2のシリコーン接着剤層)28を有する。図1の第2の接着層8は、2つの接合層18(18e、18s)を有するが、シート材6側の接合層18sのみにあってもよいし、温度調整用ベース部10側の接合層18eのみであってもよい。すなわち、例えば、シリコーン接着剤層28が、シート材6側及び温度調整用ベース部10側の一方の側に位置し、接合層18が他方の側に位置していてもよい。
本発明の静電チャック装置の積層構成は図1に示す構成に限られない。
以下、図面の符号を省略して説明する。
第1の実施形態に係る本発明の静電チャック装置は、静電チャック部とシート材とを接着する第1の接着層、及び、シート材と温度調整用ベース部とを接着する第2の接着層を備える。
また、第1の接着層は、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、第2の接着層は、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む。第1の接着層及び第2の接着層が、それぞれ層厚1nm~500nmの接合層と厚さ2μm~30μmのシリコーン接着剤層とを含むことで、静電チャック部と温度調整用ベース部との接着性に優れ、かつ、静電チャック部の面内温度均一性に優れる。
接合層の層厚は、接合層を構成する化合物の分子サイズよりも小さくすることは困難であり、かかる観点から、1nm以上とする。また、接合層の層厚が500nm以下であることで、静電チャック部の面内温度均一性に優れる。
接合層の層厚は、2nm~300nmが好ましく、2nm~150nmがより好ましい。
また、接着層は、複数の接合層を有していてもよいが、静電チャック部の面内温度均一性の観点から、接合層の合計の層厚は2000nm以下であることが好ましい。
例えば、第1の接着層がシリコーン接着剤層を有し、第1の接着層が2層の接合層を有し、シリコーン接着剤層が、前記静電チャック部側の接合層と、前記シート材側の接合層との間に位置する積層構成;及び、第2の接着層が2層の接合層を有し、第2のシリコーン接着剤層が、シート材側の接合層と、温度調整用ベース部側の接合層との間に位置する積層構成が挙げられる。
第1の接着層と第2の接着層とは同じであってもよいし、異なっていてもよい。
接合層を、接合層用化合物を用いて形成することで、接合層用化合物と、静電チャック部の表面を構成する成分(例えば、アルミニウムを含む焼結体)、シート材の表面を構成する成分(例えば、シリコーン樹脂)、及び温度調整用ベース部の表面を構成する成分と(例えば、アルミニウム)との反応性、親和性、密着性等に優れるため、結果として、接合層の層厚を小さくし易い。
接合層用化合物について、さらに詳述する。
接合層用化合物は、エポキシ基、イソシアネート基、アミノ基、メルカプト基、ビニル基、スチリル基、メタクリル基、アクリル基、ウレイド基、スルフィド基、及びイソシアヌレート基からなる群より選択される少なくとも1つの反応性官能基を有する。
接合層用化合物の反応性官能基は、ゴム、高分子化合物、樹脂等の有機化合物との反応性に優れる。反応性官能基は、以上の中でも、エポキシ基、イソシアネート基、アミノ基、及びメルカプト基が好ましい。
接合層用化合物は、更に加水分解性基を有することが好ましい。加水分解性基は、ガラス、金属、金属酸化物等の無機化合物と結合し易く、また、シリコーン樹脂とも結合し易いことから、密着性に優れる。
アルコキシ基は、炭素数が1~5であることが好ましく、アルコキシ基のアルキル基部分は、直鎖状でも、分岐状でも、環状でもよい。具体的には、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基等が挙げられる。
アシルオキシ基は、炭素数が1~5であることが好ましくアシルオキシ基のアルキル基部分は、直鎖状でも、分岐状でも、環状でもよい。具体的には、例えば、アセチルオキシ基、プロパノイルオキシ基、ブタノイルオキシ基、ペンタノイルオキシ基等が挙げられる。
アルコキシ基の炭素数は1~3であることがより好ましく、1~2であることが更に好ましい。アシルオキシ基の炭素数は1~3であることがより好ましく、1~2であることが更に好ましい。
接合層用化合物は、下記一般式(1)で表されることが好ましい。
Mは、ケイ素原子、チタン原子、チタン原子又は、ジルコニウム原子を表す。
Rは炭素数1~5のアルキル基を表し、L2は単結合又はカルボニルを表し、nは1~3の整数を表す。R’は炭素数1~3のアルキル基又はフェニル基を表す。
L1で表される連結基としては、単結合、炭素数1~4のアルキレン基、炭素数2~8のアルケニレン基、炭素数2~8のアルキニレン基、カルボニル基、酸素原子、硫黄原子等のいずれか、又は、これらの組み合わせが挙げられる。
中でも、接合層用化合物の加水分解性の観点及び反応性官能基濃度を高くする観点から、L1は単結合であることが好ましい。
ここで、反応性官能基濃度とは、接合層用化合物の単位質量当たりの反応性官能基(Y)のモル数を表す。
L2は、単結合又はカルボニル基を表し、単結合が好ましい。
Rで表されるアルキル基は、直鎖状でも、分岐状でも、環状でもよく、例えば、メチル基、エチル基、n-プロピルイソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル基等が挙げられる。Rの炭素数は1~3であることが好ましい。
nが小さいほど、すなわち、一般式(1)中のO-L2-Rが多いほど、無機化合物及びシリコーン樹脂との反応性に優れる。nは2~3の整数であることが好ましい。
Mは、接合層用化合物の反応性及び接合層用化合物の入手容易性の観点から、ケイ素原子(Si)であることが好ましい。
R’で表されるアルキル基は、直鎖状でも、分岐状でもよく、例えば、メチル基、エチル基、n-プロピルイソプロピル基等が挙げられる。Rの炭素数は1~2であることが好ましい。
接合層用化合物を予め加水分解させてから接合層用溶液として用い、接合層を形成することで、接合層の形成後に加水分解による気泡の発生を抑制し、静電チャック部の面内温度均一性の低下を抑制することができる。
加水分解を行った接合層用化合物は、一般式(1)中の(O-L2-R)nが、(OH)nで表される構造を有する。
第1の接着層及び第2の接着層は、それぞれ、シリコーン接着剤層を更に有する。既述のように、接着層が更にシリコーン接着剤層を含むことで、静電チャック部とシート材との接着、及び、シート材と温度調整用ベース部との接着をより強固にすることができる。
シリコーン接着剤層の厚さは、第1のシリコーン接着剤層及び第2のシリコーン接着剤層共に、それぞれ2μm~30μmである。シリコーン接着剤層の厚さが2μm以上あることで、強固な接着力を得ることができ、30μm以下であることで、静電チャック部の面内温度均一性を損ないにくい。
シリコーン接着剤層の厚さは、2μm~20μmであることが好ましく、2μm~15μmであることがより好ましい。
例えば、第1のシリコーン接着剤層が、静電チャック部側及びシート材側の一方の側に位置し、接合層が他方の側に位置したり、第2のシリコーン接着剤層が、シート材側及び温度調整用ベース部側の一方の側に位置し、接合層が他方の側に位置していてもよい。
また、接着層が接合層を2層以上含む積層構成として説明したように、2つの接合層の間にシリコーン接着剤層が位置していてもよい。
シリコーンゴムとしては、静電チャック部と温度調整用ベース部の温度の違いによる熱膨張差を緩和させる点より、1成分および2成分の縮合型または付加型の反応機構を持つシリコーンゴムが好ましく、一般的に下記一般式(2)で表されるものが用いられている。
炭素数2~5のアルケニル基としては、ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、ペンテニル基等が挙げられる。
炭素数6~12のアリール基としては、フェニル基、ナフチル基等を表し、更に、炭素数1~5のアルキル基、ハロゲン原子等の置換基を有していてもよい。
シリコーン接着剤層は、市販のシリコーン接着剤(シリコーン粘着剤を含む)により構成されていてもよく、例えば、東レ・ダウコーニング社製、シリコーン粘着剤(例えば、SD 4580 PSA、SD 4584 PSA、SD 4585 PSA、SD 4587 L PSA、SD 4560 PSA等)、モメンティブ社製、シリコーン接着剤(例えば、XE13-B3208、TSE3212、TSE3261-G、TSE3280-G、TSE3281-G、TSE3221、TSE326、TSE326M、TSE325等)、信越シリコーン社製、シリコーン接着剤(例えば、KE-1820、KE-1823、KE-1825、KE-1830、KE-1833等)等が挙げられる。
シート材は、静電チャック部と温度調整用ベース部との温度差により生じる応力を緩和する部材であり、かかる観点から、シート材は、シリコーン系エラストマー、及びフッ素系エラストマーからなる群より選択されるいずれかを含有することが好ましい。
シリコーン系エラストマーとしては、オルガノポリシロキサンを主成分としたもので、ポリジメチルシロキサン系、ポリメチルフェニルシロキサン系、ポリジフェニルシロキサン系に分けられる。一部をビニル基、アルコキシ基等で変性したものもある。具体例として、KEシリーズ〔信越化学工業(株)製〕、SEシリーズ、CYシリーズ、SHシリーズ〔以上、東レダウコーニングシリコーン(株)製〕などが挙げられる。
シート材は、シリコーン系エラストマー、又はフッ素系エラストマーを、それぞれ単独で含んでいてもよいし、2種以上を含んでいてもよいし、1種以上のシリコーン系エラストマーと1種以上のフッ素系エラストマーの両方を含んでいてもよい。
シート材のショア硬度(A)は、静電チャック部と温度調整用ベース部との温度差により生じる応力を緩和する観点から、20~80であることが好ましい。
静電チャック部は、一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵する。
より具体的には、例えば、上面が半導体ウエハ等の板状試料を載置する載置面とされた載置板と、この載置板と一体化され該載置板を支持する支持板と、これら載置板と支持板との間に設けられた静電吸着用内部電極及び静電吸着用内部電極の周囲を絶縁する絶縁材層(チャック内絶縁材層)と、支持板を貫通するようにして設けられ静電吸着用内部電極に直流電圧を印加する給電用端子とにより構成されていることが好ましい。
静電チャック部において、第1の接着層と隣接する面は、静電チャック部の支持体の表面である。
載置板の載置面には、直径が板状試料の厚みより小さい突起部が複数個形成され、これらの突起部が板状試料を支える構成であることが好ましい。
静電吸着用内部電極は、酸化アルミニウム-炭化タンタル(Al2O3-Ta4C5)導電性複合焼結体、酸化アルミニウム-タングステン(Al2O3-W)導電性複合焼結体、酸化アルミニウム-炭化ケイ素(Al2O3-SiC)導電性複合焼結体、窒化アルミニウム-タングステン(AlN-W)導電性複合焼結体、窒化アルミニウム-タンタル(AlN-Ta)導電性複合焼結体等の導電性セラミックス、又は、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属により形成されている。
このような厚さの静電吸着用内部電極は、スパッタ法、蒸着法等の成膜法、又はスクリーン印刷法等の塗工法により容易に形成することができる。
また、給電用端子は支持板に接合一体化され、さらに、載置板と支持板とは、静電吸着用内部電極及び絶縁材層により接合一体化されて静電チャック部を構成していることが好ましい。
温度調整用ベース部は、静電チャック部を所望の温度に調整するための部材であり、形状は特に制限されないが、通常、厚みのある円板状である。温度調整用ベース部は、その内部に水を循環させる流路が形成された水冷ベース等であることが好ましい。
温度調整用ベース部を構成する材料は、熱伝導性、導電性、及び加工性に優れた金属、これらの金属を含む複合材、並びに、セラミックスが挙げられる。具体的には、例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS)等が好適に用いられる。温度調整用ベース部の少なくともプラズマに曝される面は、アルマイト処理が施されているか、アルミナ等の絶縁膜が成膜されていることが好ましい。
第1の実施形態に係る静電チャック装置の製造方法は、第1の実施形態に係る本発明の静電チャック装置の積層構成を形成し得る方法であれば、特に制限されないが、接合層の形成にあたっては、接合層の層厚を小さくする観点から、接合層用化合物と水と必要に応じて接合層用化合物を溶解する有機溶媒とを含む接合層用溶液を用いることが好ましい。
具体的には、静電チャック部表面及び温度調整用ベース部表面に、それぞれ接合層用溶液を付与し、シート材の一方の面に、静電チャック部の接合層用溶液付与面を貼り合わせ、シート材の他方の面に温度調整用ベース部の接合層用溶液付与面を貼り合わせる方法;シート材の両面に接合層用溶液を付与した後、シート材の一方の面に静電チャック部を貼り合わせ、シート材の他方の面に温度調整用ベース部を貼り合わせる方法等が挙げられる。
接合層用溶液の溶媒は中でも、アルコールと水との混合溶媒を用いることが好ましく、イソプロピルアルコールと水との混合溶媒を用いることがより好ましい。
接合層用溶液は、薄膜での均一塗布の観点から、接合層用化合物の濃度が、0.05質量%~5質量%となる範囲で調製することが好ましい。接合層用溶液中の接合層用化合物の濃度は、0.1質量%~1質量%であることがより好ましい。
更に、接合層用溶液は、接合層用化合物の加水分解を促進するために触媒を含でいてもよい。触媒としては、塩酸、硝酸、アンモニア等が挙げられ、中でも、塩酸、及びアンモニアが好ましい。
静電チャック装置内に触媒が残存することを抑制する観点から、接合層用溶液は、触媒を含まないことが好ましく、接合層用化合物として、反応性官能基がエポキシ基、イソシアネート基、アミノ基、又はメルカプト基である接合層用化合物を含むことが好ましい。
接合層用溶液の付与面を加熱は、接合層の厚さ、接合層用溶液中の接合層用化合物の濃度、接合層用化合物の種類等により異なるが、80℃~120℃で、30秒~5分間の条件で行うことが好ましい。
シリコーン接着剤は、粘性の低い液体状、粘性の高い液体状、固体状のいずれの接着剤であってもよいが、静電チャック装置内に溶媒が残存することを抑制する観点から、溶媒を含まない液状のシリコーン接着剤を用いることが好ましい。
固体状又は粘性の高い液体状のシリコーン接着剤を用いる場合は、付与容易性の観点から、シリコーン接着剤を溶媒に溶かした接着剤層用溶液を用いてもよい。
シリコーン接着剤又は接着剤層用溶液の付与方法は、接合層用溶液を静電チャック部、温度調整用ベース部等に付与する方法と同じ方法が挙げられ好ましい態様も同様である。すなわち、バーコーターによる塗布が好ましい。
接着剤層用溶液は、接着剤層用溶液が塗工し易くなる程度にシリコーン接着剤を溶媒で希釈して調製すればよい。また、施工性及び溶媒残留抑制の観点から、溶媒が少ないことが好ましく、シリコーン接着剤の濃度は、20質量%以上が好ましく、30質量%以上がより好ましい。
接着剤層用溶液の付与面の加熱は、接着剤層の厚さ、接着剤層用溶液中のシリコーン接着剤の濃度、シリコーン接着剤の種類等により異なるが、常圧下では、80℃~120℃で、1秒~7分間の条件で行うことが好ましい。減圧下では、50℃を上限として加熱することが好ましい。
次に、第2の実施形態に係る本発明の静電チャック装置における静電チャック部、加熱部材、第1及び第2の接着層、シート材、並びにベース部の積層構成について説明する。
図2は、第2の実施形態に係る本発明の静電チャック装置の積層構成の一例を示す断面模式図である。
静電チャック装置100は、ウエハを固定する静電チャック部102と、静電チャック部102を加熱する加熱部材150と、静電チャック部102を冷却する機能を有する厚みのある円板状のベース部110とを有する。静電チャック部102とベース部110との間には、静電チャック部102側から順に、接着剤152、加熱部材150、第1の接着層104、シート材106、第2の接着層108、絶縁材層160、及び接着剤162を有する。
第1の接着層104は、接合層114と、シリコーン接着剤層(第1のシリコーン接着剤層)124とを有する。図2の第1の接着層104は、2つの接合層114(114e、114s)を有するが、静電チャック部2側の接合層114eのみであってもよいし、シート材106側の接合層114sのみであってもよい。例えば、シリコーン接着剤層124が、静電チャック部102側及びシート材106側の一方の側に位置し、接合層114が他方の側に位置していてもよい。
図2においては、絶縁材層160をベース部110に隣接する位置に設けているが、絶縁材層160の位置は特に制限されず、例えば、加熱部材150と静電チャック部102との間、加熱部材150とシート材106との間等に設けられていてもよい。
静電チャック装置200は、ウエハを固定する静電チャック部202と、静電チャック部202を加熱する加熱部材250と、静電チャック部202を冷却する機能を有する厚みのある円板状のベース部210とを有する。静電チャック部202とベース部210との間には、静電チャック部202側から順に、接着剤252、加熱部材250、第1の接着層204、シート材206、第2の接着層208、絶縁材層260、及び接着剤262を有する。また、高分子材料層230がある位置においては、静電チャック部202とベース部210との間には、静電チャック部202側から順に、高分子材料層230、第1の接着層204、シート材206、第2の接着層208、絶縁材層260、及び接着剤262を有する。接着剤252及び加熱部材250と、高分子材料層230とは、静電チャック部202の載置面と反対側の面(加熱部材設置面)上に並列している。
静電チャック装置200における静電チャック部202、接着剤252、加熱部材250、シート材206、第2の接着層208、絶縁材層260、接着剤262、及びベース部210は、それぞれ、静電チャック装置100における静電チャック部102、接着剤152、加熱部材150、シート材106、第2の接着層108、絶縁材層160、接着剤162、及びベース部110と同じ構成であるので、説明を省略する。
なお、加熱部材設置面から高分子材料層230のシート材206側表面までの最短距離とは、高分子材料層230の静電チャック装置200の積層方向の層厚を指す。
静電チャック装置200が高分子材料層230を有することにより、加熱部材設置面上に加熱部材250が存在することによる凹凸が解消され、加熱部材250上に第1の接着層204を形成し易くなる。
また、高分子材料層230は、更に、加熱部材設置面上の端部と加熱部材250との間隙を埋設してもよい。
第1の接着層204は、接合層214と、シリコーン接着剤層(第1のシリコーン接着剤層)224とを有する。図3の第1の接着層204は、2つの接合層214(214e、214s)を有するが、静電チャック部202側の接合層214eのみであってもよいし、シート材206側の接合層214sのみであってもよい。例えば、シリコーン接着剤層224が、静電チャック部202側及びシート材206側の一方の側に位置し、接合層214が他方の側に位置していてもよい。
静電チャック装置300は、ウエハを固定する静電チャック部302と、静電チャック部302を加熱する加熱部材350と、静電チャック部302を冷却する機能を有する厚みのある円板状のベース部310とを有する。静電チャック部302とベース部310との間には、静電チャック部302側から順に、接着剤352、加熱部材350、高分子材料層330、第1の接着層304、シート材306、第2の接着層308、絶縁材層360、及び接着剤362を有する。
静電チャック装置300における静電チャック部302、接着剤352、加熱部材350、シート材306、第2の接着層308、絶縁材層360、接着剤362、及びベース部310は、それぞれ、静電チャック装置100における静電チャック部102、接着剤152、加熱部材150、シート材106、第2の接着層108、絶縁材層160、接着剤162、及びベース部110と同じ構成であるので、説明を省略する。
静電チャック装置300が高分子材料層330を有することにより、加熱部材設置面上に加熱部材350が存在することによる凹凸が解消され、加熱部材350上に第1の接着層304を形成し易くなる。
第1の接着層304は、接合層314と、シリコーン接着剤層(第1のシリコーン接着剤層)324とを有する。図4の第1の接着層304は、2つの接合層314(314e、314s)を有するが、静電チャック部302側の接合層314eのみであってもよいし、シート材306側の接合層314sのみであってもよい。例えば、シリコーン接着剤層324が、静電チャック部302側及びシート材306側の一方の側に位置し、接合層314が他方の側に位置していてもよい。
図3の静電チャック装置200及び図4の静電チャック装置300についても、図2の静電チャック装置100と同様に作用するものと考えられる。
本発明の静電チャック装置の積層構成は図2~図4に示す構成に限られない。
以下、図面の符号を省略して説明する。
第2の実施形態に係る本発明の静電チャック装置は、静電チャック部とシート材とを接着する第1の接着層、及び、シート材とベース部とを接着する第2の接着層を備える。
また、第1の接着層は、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、第2の接着層は、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む。第1の接着層及び第2の接着層が、それぞれ層厚1nm~500nmの接合層と厚さ2μm~30μmのシリコーン接着剤層とを含むことで、静電チャック部とベース部との接着性に優れ、かつ、静電チャック部の面内温度均一性に優れる。
なお、図2の静電チャック装置のように、加熱部材の間隙と加熱部材表面の両方にシリコーン接着剤層が存在する場合、「厚さ2μm~30μmのシリコーン接着剤層」とは、シリコーン接着剤層の積層方向における層厚の最大層厚として、2μm~30μmであることを意味する。
接合層の層厚は、接合層を構成する化合物の分子サイズよりも小さくすることは困難であり、かかる観点から、1nm以上とする。また、接合層の層厚が500nm以下であることで、静電チャック部の面内温度均一性に優れる。
接合層の層厚は、2nm~300nmが好ましく、2nm~150nmがより好ましい。
また、接着層は、複数の接合層を有していてもよいが、静電チャック部の面内温度均一性の観点から、接合層の合計の層厚は2000nm以下であることが好ましい。
例えば、第1の接着層がシリコーン接着剤層を有し、第1の接着層が2層の接合層を有し、シリコーン接着剤層が、前記静電チャック部側の接合層と、前記シート材側の接合層との間に位置する積層構成;及び、第2の接着層が2層の接合層を有し、第2のシリコーン接着剤層が、シート材側の接合層と、ベース部側の接合層との間に位置する積層構成が挙げられる。
第1の接着層と第2の接着層とは同じであってもよいし、異なっていてもよい。
接合層を、接合層用化合物を用いて形成することで、接合層用化合物と、静電チャック部の表面を構成する成分(例えば、アルミニウムを含む焼結体)、シート材の表面を構成する成分(例えば、シリコーン樹脂)、及びベース部の表面を構成する成分と(例えば、アルミニウム)との反応性、親和性、密着性等に優れるため、結果として、接合層の層厚を小さくし易い。
接合層の形成に用いる接合層用化合物は、第1の実施形態に係る静電チャック装置の説明において記載した接合層用化合物と同じであり、接合層用化合物が、更に加水分解性基を有すること等を含め、好ましい態様も同様である。接合層用溶液も第1の実施形態に係る静電チャック装置の接合層用溶液と同様にして用いることができる。
第1の接着層及び第2の接着層は、それぞれ、シリコーン接着剤層を更に有する。既述のように、接着層が更にシリコーン接着剤層を含むことで、静電チャック部とシート材との接着、及び、シート材とベース部との接着をより強固にすることができる。
シリコーン接着剤層の厚さは、第1の実施形態に係る静電チャック装置が有するシリコーン接着剤層と同じであり、好ましい態様も同様である。
例えば、第1のシリコーン接着剤層が、静電チャック部側及びシート材側の一方の側に位置し、接合層が他方の側に位置したり、第2のシリコーン接着剤層が、シート材側及びベース部側の一方の側に位置し、接合層が他方の側に位置していてもよい。
また、接着層が接合層を2層以上含む積層構成として説明したように、2つの接合層の間にシリコーン接着剤層が位置していてもよい。
シリコーンゴムを主成分(シリコーン接着剤層全質量の70質量%以上)とすることで、200℃までの耐熱性を有し、他の耐熱性接着剤であるエポキシ樹脂、ポリイミド樹脂等を主成分とする接着剤と比較して伸びが大きく、静電チャック部とベース部との間の応力を緩和することができ、しかも熱伝導率が高いので、好ましい。
シート材は、静電チャック部とベース部との温度差により生じる応力を緩和する部材である。
シート材は、第1の実施形態に係る静電チャック装置が有するシート材と同じであり、好ましい態様も同様である。
シート材のショア硬度(A)は、静電チャック部とベース部との温度差により生じる応力を緩和する観点から、20~80であることが好ましい。
静電チャック部は、第1の実施形態に係る静電チャック装置が有する静電チャック部と同じであり、好ましい態様も同様である。なお、第2の実施形態に係る静電チャック装置において、静電チャック部の横方向とは、図2に示すような、静電チャック部、第1及び第2の接着層、シート材、並びにベース部の積層構成において、積層方向と直交する方向をいう。また、給電用端子は、絶縁性を有する碍子によりベース部に対して絶縁されていることが好ましい。
加熱部材は、静電チャック部の載置面と反対側の面に位置し、接着剤により、静電チャック部に、互いに間隙を有して固定されている。
加熱部材の形態は特に制限されないが、相互に独立した2つ以上のヒーターパターンからなるヒータエレメントであることが好ましい。
ヒータエレメントは、例えば、静電チャック部の載置面と反対側の面(加熱部材設置面)の中心部に形成された内ヒータと、内ヒータの周縁部外方に環状に形成された外ヒータとの、相互に独立した2つのヒータにより構成することができる。内ヒータ及び外ヒータは、それぞれが、幅の狭い帯状の金属材料を蛇行させたパターンを、加熱部材設置面の中心軸を中心として、この軸の回りに繰り返し配置し、かつ隣接するパターン同士を接続することで、1つの連続した帯状のヒーターパターンとすることができる。
内ヒータ及び外ヒータをそれぞれ独立に制御することにより、静電チャック部の載置板の載置面に静電吸着により固定されている板状試料の面内温度分布を精度良く制御することができる。
ヒータエレメントの厚みが0.2mm以下であることで、ヒータエレメントのパターン形状が板状試料の温度分布として反映されにくく、板状試料の面内温度を所望の温度パターンに維持し易くなる。
また、ヒータエレメントを非磁性金属で形成すると、静電チャック装置を高周波雰囲気中で用いてもヒータエレメントが高周波により自己発熱しにくく、板状試料の面内温度を所望の一定温度又は一定の温度パターンに維持し易くなる。
また、一定の厚みの非磁性金属薄板を用いてヒータエレメントを形成すると、ヒータエレメントの厚みが加熱面全域で一定となり、さらに発熱量も加熱面全域で一定となるので、静電チャック部の載置面における温度分布を均一化することができる。
加熱部材用接着剤の厚みは5μm~100μmが好ましく、より好ましくは10μm~50μmである。加熱部材用接着剤の面内の厚みのバラツキは、加熱部材から静電チャック部に伝達される熱の面内均一性を上げる観点から10μm以内が好ましい。
静電チャック装置は、加熱部材の間隙を埋設する高分子材料層を有することが好ましい。
静電チャック部の載置面と反対側の面(加熱部材設置面)の内、加熱部材が設けられていない面上に位置する高分子材料層の静電チャック装置の積層方向における層厚は、少なくとも、加熱部材設置面から加熱部材のシート材側の表面までの最短距離と同じ厚さである。高分子材料層により、加熱部材表面(加熱部材のシート材側表面)を被覆する場合、加熱部材表面上の高分子材料層の層厚(加熱部材設置面表面から加熱部材のシート材側表面までの距離)は、静電チャック部の面内温度均一性の観点から、1μm~100μmであることが好ましく、1μm~25μmであることがより好ましい。
以上の中でも、耐熱性の観点から、ポリイミド樹脂等の耐熱樹脂、シリコーン接着剤、フッ素樹脂、及びフッ素シリコーンゴムが好ましく、ポリイミド樹脂、シリコーン接着剤、及びフッ素樹脂がより好ましい。また、シリコーン接着剤(シリコーンゴム)は液状であることが好ましい。
第2の実施形態に係る静電チャック装置は、ベース部の少なくとも一部を被覆する絶縁材層を有することが好ましい。
第2の実施形態に係る本発明の静電チャック装置は、静電チャック部を加熱する加熱部材を有していることから、静電チャック部とベース部との導通(ショート不良)を抑制し、ベース部の耐電圧性を向上するために、絶縁材層を有することが好ましい。
絶縁材層は、ベース部の少なくとも一部を被覆していればよいが、ベース部の全部を被覆するフィルム状又はシート状の層であることが好ましい。
また、絶縁材層の位置は、静電チャック部とベース部との間にあればよく、また、単層のみならず、複数の層で構成されていてもよい。例えば、ベース部に隣接する位置、加熱部材と静電チャック部との間、加熱部材とシート材との間等に絶縁材層を有していてもよい。
以上の中でも、絶縁材層は、絶縁材層の形成容易性の観点から、加熱部材と、ベース部との間であって、ベース部に近接する位置に備えられることが好ましい。
絶縁材層の熱伝導率は、静電チャック部の温度調整の観点から、0.05W/mk以上かつ0.5W/mk以下が好ましく、より好ましくは0.1W/mk以上かつ0.25W/mk以下である。
ベース部は、静電チャック部を冷却する機能を有し、加熱部材により加熱された静電チャック部を所望の温度に調整するための部材であり、静電チャック部に固定された板状試料のエッチング等により生じた発熱を下げる機能も有する。
ベース部の形状は特に制限されないが、通常、厚みのある円板状である。ベース部は、その内部に水を循環させる流路が形成された水冷ベース等であることが好ましい。
ベース部を構成する材料は、熱伝導性、導電性、及び加工性に優れた金属、これらの金属を含む複合材、並びに、セラミックスが挙げられる。具体的には、例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS)等が好適に用いられる。ベース部の少なくともプラズマに曝される面は、アルマイト処理が施されているか、アルミナ等の絶縁膜が成膜されていることが好ましい。
第2の実施形態に係る静電チャック装置の製造方法は、第2の実施形態に係る本発明の静電チャック装置の積層構成を形成し得る方法であれば、特に制限されないが、接合層の形成にあたっては、接合層の層厚を小さくする観点から、接合層用化合物と水と必要に応じて接合層用化合物を溶解する有機溶媒とを含む接合層用溶液を用いることが好ましい。
また、図3に示される静電チャック装置のように、静電チャック部及び加熱部材による凹部には高分子材料を埋設し、高分子材料層及び加熱部材の高さを揃えるか、図4に示される静電チャック装置のように、凹部及び加熱部材を高分子材料で被覆し、高分子材料層の表面を平坦にしておくことが好ましい。
静電チャック装置に絶縁材層を備える場合は、ベース部上に接着剤(絶縁材層用接着剤)で絶縁材層を固定しておくことが好ましい。
また、ベース部は絶縁材層が固定されていない構成を代表して説明する。以下の説明にいて、ベース部上に絶縁材層が固定されている構成においては、「ベース部表面」を「絶縁材層表面」と読み替えればよい。
接合層用溶液及びその溶媒は、第1の実施形態に係る静電チャック装置の製造の説明で記載した接合層用溶液及びその溶媒と同じであり、好ましい態様も同様である。
高分子材料を溶解する溶媒としては、高分子材料の種類にもよるが、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられ、例えば、高分子材料として、ポリイミド樹脂を用いる場合、溶媒はメチルエチルケトンを用いることが好ましい。
高分子材料層用溶液の高分子材料の濃度は、用いる高分子材料の種類、溶液の塗布方法等にもよるが、例えば、スピンコートによる塗布の場合は、均一塗布の観点から、0.05質量%~5質量%とすることが好ましく、0.1質量%~1質量%であることがより好ましい。また、塗布方法がスクリーン印刷である場合は、高分子材料層用溶液の高分子材料の濃度は、印刷容易性の観点から、30質量%~70質量%とすることが好ましく、40質量%~60質量%であることがより好ましい。
なお、図2に示される静電チャック装置の積層構成のように、静電チャック部及び加熱部材による凹凸が静電チャック部上にある場合は、接合層用溶液をスプレー塗布又はハケによる塗布により付与することが好ましい。
高分子材料層用溶液を、静電チャック部表面、加熱部材の側面又は表面に付与する方法としては、スプレー塗布又はハケによる塗布が好ましい。
接合層用溶液の付与面の加熱は、接合層の厚さ、接合層用溶液中の接合層用化合物の濃度、接合層用化合物の種類等により異なるが、80℃~120℃で、30秒~5分間の条件で行うことが好ましい。
シリコーン接着剤は、粘性の低い液体状、粘性の高い液体状、固体状のいずれの接着剤であってもよいが、静電チャック装置内に溶媒が残存することを抑制する観点から、溶媒を含まない液体状のシリコーン接着剤を用いることが好ましい。
固体状又は粘性の高い液体状のシリコーン接着剤を用いる場合は、付与容易性の観点から、シリコーン接着剤を溶媒に溶かした接着剤層用溶液を用いてもよい。
シリコーン接着剤又は接着剤層用溶液の付与方法は、接合層用溶液を静電チャック部、ベース部等に付与する方法と同じ方法が挙げられ好ましい態様も同様である。すなわち、バーコーターによる塗布が好ましい。
なお、図2に示される静電チャック装置の積層構成のように、静電チャック部及び加熱部材による凹部にシリコーン接着剤を付与する場合は、シリコーン接着剤を、スクリーン印刷法により付与することが好ましい。
接着剤層用溶液及び該溶液を構成する溶媒は、第1の実施形態に係る静電チャック装置の製造の説明で記載した接着剤層用溶液及び該溶液を構成する溶媒と同じであり、好ましい態様も同様である。
接着剤層用溶液の付与面の加熱は、接着剤層の厚さ、接着剤層用溶液中のシリコーン接着剤の濃度、シリコーン接着剤の種類等により異なるが、常圧下では、80℃~120℃で、1秒~7分間の条件で行うことが好ましい。減圧下では、50℃を上限として加熱することが好ましい。
まず、酸化アルミニウム-炭化ケイ素(Al2O3-SiC)複合焼結体により板状の載置板及び支持板を作製する。この場合、炭化ケイ素粉末及び酸化アルミニウム粉末を含む混合粉末を所望の形状に成形し、その後、例えば1600℃~2000℃の温度、非酸化性雰囲気、好ましくは不活性雰囲気下にて所定時間、焼成することにより、載置板及び支持板を得ることができる。
給電用端子を、支持板の固定孔に密着固定し得る大きさ、形状となるように作製する。この給電用端子の作製方法としては、例えば、給電用端子を導電性複合焼結体とした場合、導電性セラミックス粉末を、所望の形状に成形して加圧焼成する方法等が挙げられる。
また、給電用端子を金属とした場合、高融点金属を用い、研削法、粉末治金等の金属加工法等により形成する方法等が挙げられる。
この塗布法としては、均一な厚さに塗布する必要があることから、スクリーン印刷法等を用いることが望ましい。また、他の方法としては、蒸着法あるいはスパッタリング法により上記の高融点金属の薄膜を成膜する方法、上記の導電性セラミックスあるいは高融点金属からなる薄板を配設して静電吸着用内部電極形成層とする方法等がある。
また、給電用端子は、高温、高圧下でのホットプレスで再焼成され、支持板の固定孔に密着固定される。
そして、これら接合体の上下面、外周およびガス穴等を機械加工し、静電チャック部とする。
第1の実施形態に係る本発明によれば、静電チャック部と温度調整用ベース部との接着性に優れ、かつ、静電チャック部の面内温度均一性に優れる静電チャック装置が提供される。
前記第1の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、
前記第2の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む静電チャック装置である。
〔一般式(1)中、Yは、エポキシ基、イソシアネート基、アミノ基、メルカプト基、ビニル基、スチリル基、メタクリル基、アクリル基、ウレイド基、スルフィド基、又はイソシアヌレート基を表し、L1は連結基を表す。Mは、ケイ素原子、チタン原子又は、ジルコニウム原子を表す。Rは炭素数1~5のアルキル基を表し、L2は単結合又はカルボニルを表し、nは1~3の整数を表す。R’は炭素数1~3のアルキル基又はフェニル基を表す。〕
第2の実施形態に係る本発明によれば、静電チャック部とベース部との接着性に優れ、かつ、静電チャック部の面内温度均一性に優れる静電チャック装置が提供される。
前記第1の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、
前記第2の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む静電チャック装置である。
第1の実施形態に係る静電チャック装置に関する実施例及び比較例を実施例a1~a25及び比較例a1~a4に示し、第2の実施形態に係る静電チャック装置に関する実施例及び比較例を実施例b1~b19及び比較例b1~b4に示した。
以下の実施例a1~a25及び比較例a1~a4においては、静電チャック部及び温度調整用ベース部を、後述する基材に代えて、基材1と、第1の接着層と、シート材と、第2の接着層と、基材2との積層体を製造し、積層体を得た。
実施例a1~a25及び比較例a1~a4の積層体の製造に用いた基材、接合層用化合物、接着剤層、及びシート材を、表1に示す。各材料の詳細は次のとおりである。
A:ポリイミドフィルム
カプトン300H(東レ・デュポン社製)、面積30mm×30mm、厚さ75μm
B:金属片
アルミ治具(直径40mm)、厚さ2cm
接合層用化合物は、いずれも、信越化学工業社製の表1に示す品番のシランカップリング剤を用いた。各シランカップリング剤は、表1に示す反応性官能基を有する。
なお、シランカップリング剤は、表1中に特記したものを除き、イソプロピルアルコール(IPA)、所定量の水、触媒を加え、60℃加温にて加水分解を行って、接合層用溶液とした。
接合層用溶液は表1に示す成分を表1に示す配合量で混合して調製した。
ただし、反応性官能基が、アミノ基、エポキシ基、メルカプト基、又はイソシアネート基であるシランカップリング剤(表2における接合層用化合物A、B、C、及びD)を用いた接合層用溶液は、触媒を用いなかった(触媒の配合量が0質量%)。
反応性官能基が、ビニル基、アクリル基、又はメタクリル基であるシランカップリング剤(表2における接合層用化合物E、F、及びG)を用いた接合層用溶液の触媒の配合量は0.5質量%とした。
A:信越シリコーン社製、シリコーン接着剤KE-1820
なお、シリコーン接着剤層は、上記シリコーン接着剤を、メチルエチルケトンにて、濃度30質量%に希釈して得た接着剤層用溶液として用いた。
A:サンシンエンタープライズ社製、Sμ-100-50、厚さ100μm、ショア硬度(A)50
〔実施例a1~a21及び比較例a1~a3〕
表3に示す種類の基材1の片面に、表3に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表3に示す膜厚になるよう塗布し、100℃で1分間加熱した。同様に、表3に示す種類の基材2の片面に、表3に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表3に示す膜厚になるよう塗布し、100℃で1分間加熱した。
基材1上の接着剤層用溶液の塗布面に、表3に示す種類のシート材の一方の面を張り合わせ、基材2上の接着剤層用溶液の塗布面に、シート材の他方の面を貼り合わせて、100℃で3分間加熱し、積層体を得た。
表3に示す種類のシート材の両面に、表3に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表3に示す膜厚になるよう塗布し、100℃で1分間加熱した。このようにして得られた、両面に接合層用溶液の塗布面を有するシート材を、以下、「シート材2」と称する。
表3に示す種類の基材1の片面に、接着剤層用溶液を、バーコートを用いて、表3に示す膜厚になるよう塗布した。同様に、基材2の片面に、接着剤層用溶液を、バーコートを用いて、表3に示す膜厚になるよう塗布した。
基材1上の接着剤層用溶液の塗布面に、シート材2の一方の面を張り合わせ、基材2上の接着剤層用溶液の塗布面に、シート材2の他方の面を貼り合わせて、100℃で3分間加熱し、積層体を得た。
表3に示す種類のシート材の片面に、表3に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表3に示す膜厚になるよう塗布し、100℃で1分間加熱した。このようにして得られた、片面に接合層用溶液の塗布面を有するシート材を、以下、「シート材3」と称する。
一方、表3に示す種類の基材2の片面に、接合層用溶液を塗布せず、接着剤層用溶液を、バーコートを用いて、表3に示す膜厚になるよう塗布した。
表3に示す種類の基材1の片面に、接合層用溶液を塗布せず、接着剤層用溶液を、バーコートを用いて、表3に示す膜厚になるよう塗布した。
一方、表3に示す種類の基材2の片面に、表3に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表3に示す膜厚になるよう塗布し、100℃で1分間加熱した。次いで、基材2上の接合層面に、接着剤層用溶液を、バーコートを用いて、表3に示す膜厚になるよう塗布した。
表3に示す種類の基材1の片面に、接着剤層用溶液を、バーコートを用いて、表3に示す膜厚になるよう塗布した。同様に、基材2の片面に、を含む接着剤層用溶液を、バーコートを用いて、表3に示す膜厚になるよう塗布した。
基材1上の接着剤層用溶液の塗布面に、表3に示す種類のシート材の一方の面を張り合わせ、基材2上の接着剤層用溶液の塗布面に、シート材の他方の面を貼り合わせて、100℃で3分間加熱し、積層体を得た。
1.ピール強度
実施例a1~a25及び比較例a1~a4の各積層体に対して、10kgの加重をしながら、160℃で12時間の加熱及び加圧を行い、ピール強度評価用の試験片を作成した。
試験片の基材1から基材2を、手で引き剥がし、剥離面の破壊状態を目視観察して、下記基準により評価した。
A:接着強度非常に強い (凝集破壊)
B:接着強度強い (界面破壊:ガムテープ程度)
C:接着しているが非常に弱い(界面破壊:セロハンテープ程度)
D:接着していない
ミツトヨ社製の膜厚VL-50Aを用いて、実施例a1~a25及び比較例a1~a4の積層体の5ヶ所における全層厚を測定した。得られた測定結果のうち、層厚が最も大きいヶ所の層厚と小さいヶ所の層厚との差を膜厚ブレとし、10μm以上の膜厚ブレがあった場合はC、膜厚ブレが10μm未満である場合をAとして評価した。
膜厚ブレは、静電チャック装置に固定するウエハの面内温度均一性の指標となり、膜厚ブレが10μm未満である場合は、静電チャック部の面内温度均一性に優れる。
以下の実施例b1~b19及び比較例b1~b4においては、図4に示す静電チャック装置の積層構成に類似する積層体を作成し、評価した。
実施例b1~b19及び比較例b1~b4の積層体は、図4における静電チャック部302、接着剤352、加熱部材350、高分子材料層330、第1の接着層304、シート材306、第2の接着層308、及びベース部310をこの順に積層した構成をしている。ただし、一部の比較例の積層体は、第1の接着層304及び第2の接着層308の一方又は両方を有していない。
実施例b1~b19及び比較例b1~b4の積層体は、図4における絶縁材層360、及び接着剤362は備えていない。
実施例b1~b19及び比較例b1~b4においては、図4における静電チャック部302、接着剤352、加熱部材350、及び高分子材料層330の積層体を「基材1」と称し、ベース部310を基材2と称する。
実施例b1~b19及び比較例b1~b4の積層体の製造に用いた基材、接合層用化合物、接着剤層(シリコーン接着剤層)、及びシート材を、表5に示す。各材料の詳細は次のとおりである。
基材1は、高分子材料層の高分子材料がシリコーン接着剤(モメンティブ社製、TSE3221;シリコーンゴム)である基材種Aと、高分子材料がポリイミド樹脂(ピーアイ技術研究所社製、Q-IP-1022E)である基材種Bの2種類を用意した。
基材2は、アルミ治具(直径40mm、厚さ2cm;基材種C)を用いた。
静電チャック部となるセラミックス板(Al2O3-SiC複合焼結体)上に、加熱部材用接着剤としてTSE3221(モメンティブ社製)を介して、Ti箔(加熱部材)を貼り付けた。次いで、Ti箔をエッチングすることにより、セラミックス板の一部を露出させ、直径の異なる輪状のTi箔が同心円状に配置されたTiパターンを形成した。
Tiパターンによる凹凸面が形成されたセラミックス板上に、高分子材料溶液をスクリーン印刷により付与して、Ti箔間の凹部及びTi箔上に、平坦な高分子材料層を形成した。高分子材料層の層厚は、セラミックス板表面(加熱部材設置面)から高分子材料層表面までの距離が100μmとなる厚さであり、Ti箔表面から高分子材料層表面までの距離が20μmとなる厚さとした。
なお、高分子材料層の形成に用いた高分子材料層用溶液の高分子材料の濃度は50質量%(溶媒:メチルエチルケトン)とした。
接合層用化合物は、いずれも、信越化学工業社製の表5に示す品番のシランカップリング剤を用いた。各シランカップリング剤は、表4に示す反応性官能基を有する。
なお、シランカップリング剤は、表6中に特記したもの(実施例b14)を除き、イソプロピルアルコール(IPA)、所定量の水、触媒を加え、60℃での加温にて加水分解を行って、接合層用溶液とした。
実施例b14では、60℃での加温をせずに、加水分解していない接合層用溶液を用いた。
接合層用溶液は表5に示す成分を表4に示す配合量で混合して調製した。
ただし、反応性官能基が、アミノ基、エポキシ基、メルカプト基、又はイソシアネート基であるシランカップリング剤(表5における接合層用化合物A、B、C、及びD)を用いた接合層用溶液は、触媒を用いなかった(触媒の配合量が0質量%)。
反応性官能基が、ビニル基、アクリル基、又はメタクリル基であるシランカップリング剤(表5における接合層用化合物E、F、及びG)を用いた接合層用溶液の触媒の配合量は0.5質量%とした。
A:モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、シリコーン接着剤TSE3221
シリコーン接着剤層は、上記シリコーン接着剤を、メチルエチルケトンにて、濃度30質量%に希釈して得た接着剤層用溶液として用いた。
A:サンシンエンタープライズ社製、Sμ-100-50、厚さ100μm、ショア硬度(A)50
〔実施例b1~b14及び比較例b1~b3〕
表6に示す種類の基材1の高分子材料層表面に、表6に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表6の「接合層1E」に示す膜厚になるよう塗布し、100℃で1分間加熱した。
同様に、基材2の片面に、表6に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表6の「接合層2E」に示す膜厚になるよう塗布し、100℃で1分間加熱した。
基材1上の接着剤層用溶液の塗布面に、シート材の一方の面を張り合わせ、基材2上の接着剤層用溶液の塗布面に、シート材の他方の面を貼り合わせて、100℃で3分間加熱し、積層体を得た。
表6に示す種類のシート材の両面に、表6に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表6の「接合層1S」及び「接合層2S」に示す膜厚になるよう塗布し、100℃で1分間加熱した。このようにして得られた、両面に接合層用溶液の塗布面を有するシート材を、以下、「シート材2」と称する。
次いで、実施例b1の積層体の製造において、実施例b1で用いたシート材の代わりに、上記シート材2を用いた他は、同様にして積層体を得た。
実施例b15の積層体の製造において、基材1を基材種Aから基材種Bに変更した他は、同様にして、積層体を得た。
表6に示す種類の基材1の高分子材料層表面に、接着剤層用溶液を、バーコートを用いて、表6の「接着剤層1」に示す膜厚になるよう塗布した。同様に、基材2の片面に、接着剤層用溶液を、バーコートを用いて、表6の「接着剤層2」に示す膜厚になるよう塗布した。
基材1上の接着剤層用溶液の塗布面に、シート材2の一方の面を張り合わせ、基材2上の接着剤層用溶液の塗布面に、シート材2の他方の面を貼り合わせて、100℃で3分間加熱し、積層体を得た。
表6に示す種類のシート材の片面に、表6に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表6の「接合層2S」に示す膜厚になるよう塗布し、100℃で1分間加熱した。このようにして得られた、片面に接合層用溶液の塗布面を有するシート材を、以下、「シート材3」と称する。
一方、表6に示す種類の基材2の片面に、接合層用溶液を塗布せず、接着剤層用溶液を、バーコートを用いて、表6の「接着剤層2」に示す膜厚になるよう塗布した。
表6に示す種類の基材1の高分子材料層表面に、接合層用溶液を塗布せず、接着剤層用溶液を、バーコートを用いて、表6の「接着剤層1」に示す膜厚になるよう塗布した。
一方、表6に示す種類の基材2の片面に、表6に示す種類のシランカップリング剤を含む接合層用溶液を、バーコーターを用いて、表6の「接合層2E」に示す膜厚になるよう塗布し、100℃で1分間加熱した。次いで、基材2上の接合層面に、接着剤層用溶液を、バーコートを用いて、表6の「接着剤層2」に示す膜厚になるよう塗布した。
表6に示す種類の基材1の高分子材料層表面に、接着剤層用溶液を、バーコートを用いて、表6の「接着剤層1」に示す膜厚になるよう塗布した。同様に、基材2の片面に、接着剤層用溶液を、バーコートを用いて、表6の「接着剤層2」に示す膜厚になるよう塗布した。
基材1上の接着剤層用溶液の塗布面に、表6に示す種類のシート材の一方の面を張り合わせ、基材2上の接着剤層用溶液の塗布面に、シート材の他方の面を貼り合わせて、100℃で3分間加熱し、積層体を得た。
1.ピール強度
実施例b1~b19及び比較例b1~b4の各積層体に対して、10kgの加重をしながら、120℃で12時間の加熱及び加圧を行い、ピール強度評価用の試験片を作成した。
試験片の基材1から基材2を、手で引き剥がし、剥離面の破壊状態を目視観察して、下記基準により評価した。
AA:接着強度非常に強い (凝集破壊)
A:接着強度強い (界面破壊:ガムテープ程度)
B:接着しているが弱い (界面破壊:ビニールテープ程度)
C:接着しているが非常に弱い(界面破壊:セロハンテープ程度)
D:接着していない
ミツトヨ社製の膜厚VL-50Aを用いて、実施例b1~b19及び比較例b1~b4の積層体の5ヶ所における全層厚を測定した。得られた測定結果のうち、層厚が最も大きいヶ所の層厚と小さいヶ所の層厚との差を膜厚ブレとし、下記基準により評価した。
膜厚ブレは、静電チャック装置に固定するウエハの面内温度均一性の指標となり、膜厚ブレが10μm未満である場合は、静電チャック部の面内温度均一性に優れる。
A:膜厚ブレが、3μm未満であった。
B:膜厚ブレが、3μm以上10μm未満であった。
C:10μm以上の膜厚ブレがあった。
4 第1の接着層
6 シート材
8 第2の接着層
10 温度調整用ベース部
14 接合層
18 接合層
24 シリコーン接着剤層
28 シリコーン接着剤層
80 静電チャック装置
100 静電チャック装置
102 静電チャック部
104 第1の接着層
106 シート材
108 第2の接着層
110 ベース部
114 接合層
118 接合層
124 シリコーン接着剤層
128 シリコーン接着剤層
150 加熱部材
152 接着剤
160 絶縁材層
162 接着剤
Claims (11)
- 一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、第1の接着層と、シート材と、第2の接着層と、前記静電チャック部を所望の温度に調整する温度調整用ベース部とをこの順に備え、
前記第1の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、
前記第2の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む静電チャック装置。 - 一主面を、板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、前記静電チャック部の前記載置面と反対側の面に互いに間隙を有して接着された複数の加熱部材と、第1の接着層と、シート材と、第2の接着層と、前記静電チャック部を冷却する機能を有するベース部とをこの順に備え、
前記第1の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含み、
前記第2の接着層が、層厚1nm~500nmの接合層及び厚さ2μm~30μmのシリコーン接着剤層を含む静電チャック装置。 - 前記加熱部材の間隙を埋設する高分子材料層を有し、前記高分子材料層の層厚が、前記静電チャック部の前記載置面と反対側の面から前記加熱部材の前記第1の接着層側の表面までの最短距離と同じである請求項2に記載の静電チャック装置。
- 前記加熱部材の間隙を埋設し、かつ前記加熱部材表面を被覆する高分子材料層を有し、前記高分子材料層表面が平坦である請求項2に記載の静電チャック装置。
- 前記加熱部材と、前記ベース部との間に、絶縁材層を有する請求項2~4のいずれか1項に記載の静電チャック装置。
- 前記接合層が、エポキシ基、イソシアネート基、アミノ基、メルカプト基、ビニル基、スチリル基、メタクリル基、アクリル基、ウレイド基、スルフィド基、及びイソシアヌレート基からなる群より選択される少なくとも1つの反応性官能基を有する化合物由来の構造を有する層である請求項1~5のいずれか1項に記載の静電チャック装置。
- 前記反応性官能基を有する化合物が、更に加水分解性基を有する請求項6に記載の静電チャック装置。
- 前記シート材が前記第1の接着層及び前記第2の接着層の合計の層厚より厚く、前記シート材の厚さが20μm~500μmである請求項1~8のいずれか1項に記載の静電チャック装置。
- 前記シート材が、シリコーン系エラストマー、及びフッ素系エラストマーからなる群より選択されるいずれかを含有する請求項1~9のいずれか1項に記載の静電チャック装置。
- 前記載置面が、酸化アルミニウム-炭化ケイ素(Al2O3-SiC)複合焼結体、酸化アルミニウム(Al2O3)焼結体、窒化アルミニウム(AlN)焼結体、または酸化イットリウム(Y2O3)焼結体からなる請求項1~10のいずれか1項に記載の静電チャック装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/519,098 US10192766B2 (en) | 2014-10-17 | 2015-10-15 | Electrostatic chuck device |
KR1020177010138A KR101798995B1 (ko) | 2014-10-17 | 2015-10-15 | 정전 척 장치 |
CN201580055847.2A CN106796914B (zh) | 2014-10-17 | 2015-10-15 | 静电卡盘装置 |
JP2015562998A JP6112236B2 (ja) | 2014-10-17 | 2015-10-15 | 静電チャック装置 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-212590 | 2014-10-17 | ||
JP2014212590 | 2014-10-17 | ||
JP2015006981 | 2015-01-16 | ||
JP2015-006981 | 2015-01-16 | ||
JP2015047086 | 2015-03-10 | ||
JP2015-047086 | 2015-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016060205A1 true WO2016060205A1 (ja) | 2016-04-21 |
Family
ID=55746745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079188 WO2016060205A1 (ja) | 2014-10-17 | 2015-10-15 | 静電チャック装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10192766B2 (ja) |
JP (1) | JP6112236B2 (ja) |
KR (1) | KR101798995B1 (ja) |
CN (1) | CN106796914B (ja) |
WO (1) | WO2016060205A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180329A1 (ja) * | 2017-03-29 | 2018-10-04 | 京セラ株式会社 | 試料保持具 |
JP2019047019A (ja) * | 2017-09-05 | 2019-03-22 | 日本特殊陶業株式会社 | 保持装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI827917B (zh) * | 2019-03-28 | 2024-01-01 | 日商Toto股份有限公司 | 靜電吸盤 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008282875A (ja) * | 2007-05-08 | 2008-11-20 | Shinko Electric Ind Co Ltd | 静電チャックおよび静電チャックの製造方法 |
JP2009054932A (ja) * | 2007-08-29 | 2009-03-12 | Shinko Electric Ind Co Ltd | 静電チャック |
JP2013074251A (ja) * | 2011-09-29 | 2013-04-22 | Sumitomo Osaka Cement Co Ltd | 静電チャック装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2440711A (en) * | 1946-02-16 | 1948-05-04 | Du Pont | Coated methyl methacrylate polymer and process of making same |
US6071630A (en) * | 1996-03-04 | 2000-06-06 | Shin-Etsu Chemical Co., Ltd. | Electrostatic chuck |
JP4311600B2 (ja) * | 2001-01-30 | 2009-08-12 | 日本碍子株式会社 | 静電チャック用接合構造体及びその製造方法 |
JP4057977B2 (ja) * | 2003-08-08 | 2008-03-05 | 株式会社巴川製紙所 | 静電チャック装置用電極シート、静電チャック装置および吸着方法 |
TW200612512A (en) * | 2004-06-28 | 2006-04-16 | Ngk Insulators Ltd | Substrate heating sapparatus |
JP2008047881A (ja) * | 2006-07-19 | 2008-02-28 | Ngk Insulators Ltd | ヒータ付き静電チャック |
JP4855177B2 (ja) * | 2006-08-10 | 2012-01-18 | 住友大阪セメント株式会社 | 静電チャック装置 |
US7501605B2 (en) * | 2006-08-29 | 2009-03-10 | Lam Research Corporation | Method of tuning thermal conductivity of electrostatic chuck support assembly |
JP2008187006A (ja) | 2007-01-30 | 2008-08-14 | Tomoegawa Paper Co Ltd | 静電チャック装置 |
DE102007020655A1 (de) * | 2007-04-30 | 2008-11-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Herstellen dünner Schichten und entsprechende Schicht |
JP5496630B2 (ja) * | 2009-12-10 | 2014-05-21 | 東京エレクトロン株式会社 | 静電チャック装置 |
JP5423632B2 (ja) * | 2010-01-29 | 2014-02-19 | 住友大阪セメント株式会社 | 静電チャック装置 |
JP5504924B2 (ja) | 2010-01-29 | 2014-05-28 | 住友大阪セメント株式会社 | 静電チャック装置 |
JP2012096931A (ja) * | 2010-10-29 | 2012-05-24 | Shin-Etsu Chemical Co Ltd | 窒化アルミニウムを被覆した耐蝕性部材およびその製造方法 |
JP6017781B2 (ja) | 2011-12-07 | 2016-11-02 | 新光電気工業株式会社 | 基板温調固定装置及びその製造方法 |
-
2015
- 2015-10-15 JP JP2015562998A patent/JP6112236B2/ja active Active
- 2015-10-15 CN CN201580055847.2A patent/CN106796914B/zh active Active
- 2015-10-15 US US15/519,098 patent/US10192766B2/en active Active
- 2015-10-15 WO PCT/JP2015/079188 patent/WO2016060205A1/ja active Application Filing
- 2015-10-15 KR KR1020177010138A patent/KR101798995B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008282875A (ja) * | 2007-05-08 | 2008-11-20 | Shinko Electric Ind Co Ltd | 静電チャックおよび静電チャックの製造方法 |
JP2009054932A (ja) * | 2007-08-29 | 2009-03-12 | Shinko Electric Ind Co Ltd | 静電チャック |
JP2013074251A (ja) * | 2011-09-29 | 2013-04-22 | Sumitomo Osaka Cement Co Ltd | 静電チャック装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180329A1 (ja) * | 2017-03-29 | 2018-10-04 | 京セラ株式会社 | 試料保持具 |
JPWO2018180329A1 (ja) * | 2017-03-29 | 2019-12-26 | 京セラ株式会社 | 試料保持具 |
JP2019047019A (ja) * | 2017-09-05 | 2019-03-22 | 日本特殊陶業株式会社 | 保持装置 |
Also Published As
Publication number | Publication date |
---|---|
US10192766B2 (en) | 2019-01-29 |
KR101798995B1 (ko) | 2017-11-17 |
JPWO2016060205A1 (ja) | 2017-04-27 |
US20170229335A1 (en) | 2017-08-10 |
JP6112236B2 (ja) | 2017-04-12 |
CN106796914A (zh) | 2017-05-31 |
CN106796914B (zh) | 2020-07-14 |
KR20170075721A (ko) | 2017-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5423632B2 (ja) | 静電チャック装置 | |
KR101902349B1 (ko) | 정전 척 장치 | |
JP6008063B1 (ja) | 静電チャック装置 | |
JP5053696B2 (ja) | 静電チャック | |
JP6551104B2 (ja) | 静電チャック装置及びその製造方法 | |
JP4386360B2 (ja) | 静電チャック | |
JP2007194320A (ja) | 静電チャック装置 | |
WO2017130827A1 (ja) | 静電チャック装置 | |
US10147629B2 (en) | Electrostatic chuck device | |
JP5846186B2 (ja) | 静電チャック装置および静電チャック装置の製造方法 | |
JP6112236B2 (ja) | 静電チャック装置 | |
JP5343802B2 (ja) | 静電チャック装置 | |
JP6597437B2 (ja) | 静電チャック装置 | |
JP6642170B2 (ja) | 静電チャック装置及びその製造方法 | |
JP6531675B2 (ja) | 静電チャック装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015562998 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15851227 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177010138 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15851227 Country of ref document: EP Kind code of ref document: A1 |